

INAUGURALISSUE
@ Inside: UK and InternationalAPLNewsandViews.
@ Spotlight on graphics and

information centres.
@ Communications: We take

the work out of networking.
@ Fifth generation language —

the paperthey dared not
print.

@ Technical Forum: Complex
numbers, and Boole
rules OK.

@ New competition and over
150 pages of APLaction.The Journal of the

British APL Association

A Specialist Group of the British Computer Society Voli. No.1 May 1984

CONTRIBUTIONS
All contributions to VECTOR should be sentto the Editor at the address given ontheinside
back cover. Letters and articles are welcomedonanytopicofinterest to the APL community.
These do not need to belimited to APL themesnor mustthey be supportive of the language.
Articles should be submitted in duplicate and accompaniedbyas muchvisual material as possible,
including a photographof the author. Unless otherwise specified each item will be considered
for publication as a personal statementbyits author, who accepts legal responsibility thatits
publication is not restricted by copyright. The provision of camera-ready or machine-readable
copyis encouraged:please contactthe Editor beforehand.Programlistings should indicate the
computer system on which they have beenrun. APL symbols should be displayed on a separate
line and not embeddedin narrative. Except whereindicated, items published in VECTOR maybefreely reprinted with appropriate acknowledgement.

MEMBERSHIP

VECTOR
Category Fee p.a. copies Passes
Nonvoting student membership Free (1984) 1 1
UK Private membership £6 1 1
Overseasprivate membership £10 1 1
Corporate membership £ 50 10 5
Sustaining membership £250 100 5

The membershipyear runsfrom 1st Mayto 30th April. Applications for membership should be
madeon the form at the end of the journal. Passesare required for entry to some Association
events and for voting at Annual General Meetings. Applications for student membershipwill
be acceptedwithoutchargeatthe discretion of the Committee on the production of educational
bonafides and a recommendation from a course supervisor. Overseas membershiprates include
VECTORairmail postage and should bepaid in UK £.
Corporate membershipis offered to organisations where APLis in professional use. Corporate
membersreceive multiple copies of VECTORand are offered group attendance ofAssociation
meetings. Partaking individuals need notbe identified but a contact person should be nominated
for all communications.
Sustaining membershipis offered to companiestrading in APL products;this is seen as a method
of promoting the growth of APLinterestandactivity. As well as receiving public acknowledgement
for their sponsorship, sustaining members receive bulk copies of VECTOR,andare offered news
listings in the editorial sectionof thejournal and opportunities to inform APLusers oftheir products
via seminars and articles.

ADVERTISING
Advertisements in VECTORshould be submitted in typeset camera-ready A5 portrait format
with a20 mm blankborder.Illustrations should be black-and-white photographsorline drawings.
Rates are £200 per page. A6 and A7sizes are offered pro-rata subject to layout constraints.
Deadlines are:
Advertisement booking: 3rd Friday in April, July, October & January.
Camera-ready copy: 1 weeklater. Distribution: 2 weekslater.

CONTENTS

EDITORIAL: Back to BASICs?

APL NEWS
Letters to the editor
Quick-reference APL diary
British APL Association news
1983 Report and Accounts
International APL news
British Computer Society news
Newsfrom sustaining members
APLproduct guide

RECENT MEETINGS
APL and Graphics
A Graphic Vision of APL
APLin the Information Cente
Setting up a CompanyInformation Centre
The GlobalInformation Centre
Panel Discussions on Information Centres
Communicating with APL
Networking APL Microcomputers
Interfacing Viewdata and APL
IBM-based APL Communications

GENERALARTICLES
Why APL? A non-technical introduction
Steps towards a better BASIC — part 1
Case Studies: aninvitation.
Matchmakers: a simulation case study
The paper they dared notprint
FGL: Fifth Generation Language

TECHNICAL ARTICLES
Technical Editorial
Prize Competition: This Is YourLife
Complex numbers in APL
SCREENIO: An IBM Full Screen Manager
APLandpartitioned data
Inside the international APL standard

MEMBERSHIP APPLICATION FORM

Robert Bittlestone

Bowman, Camacho & Hawke
David Preedy
Robert Bittlestone
Jonathan Barman
Robert Bittlestone
Philip Goacher
David Preedy
David Preedy

Adrian Smith
Graeme Robertson
Adrian Smith
Romilly Cocking
Fred Perkins
Various Contributors
Adrian Smith
Richard Nabavi
John Pym
Tim Perry

Robert Bittlestone
Anthony Camacho
Adrian Smith
Adrian Smith
Anonymous
Robert Bittlestone

Barman & Ziemann
David Ziemann
Alan Hawkes
David Doherty
Jonathan Barman
David Ziemann

Page

15
17
21
23
25

33

63
65
77
79
80
87
89

103
105
107
121
129
143

158

The VECTOR Working Group

Jonathan Barman Robert Bittlestone
Technical Section Editor

David Preedy David Ziemann
Advertising & Reviews Technical Section

Adrian Smith is also a valued memberof the editorial team but unfortunately his
photographfailed to meet the print deadline

EDITORIAL: Back to BASICs?

by Robert Bittlestone
This is thefirst issue of VECTOR:a new journalfor a new generation of computerusers. Although
VECTORis aimed at those who know anduse APL,it’s also very muchintendedfor those who
don’t yet but might. So we make no apologyfor including articles which look at APL from the
viewpoint of a non-APLer— includingthatof the general managerwho'd like to know why APL
makes sense without necessarily learning it personally.
APLis different from all other computer languagesin many ways. These differences are part
of what gives the languageits strength, but also part of what causesit to becriticised. One of
the mostinteresting points aboutits usersis that there arevirtually no cases of reverse conversion.
Once you become committed to APL,it seemsthatyou are rarely lured awayfromit. This kind
ofloyalty is praiseworthy indeed but also has adangerous tendencyto promote insularity. Events
mightjust be passing APLby.
It’s almostasif there are two kinds of computing. There is the world out there of COBOL and
FORTRANand BASIC and everything else. This world hasits bad points — very stow project
developmentand severe design regimentation being two of them. However,it also hasits good
points, which include a civilised approach to word processing, imaginative use of on-screen
colour graphics, the advent of new user-friendly devices such as the ‘“‘mouse”’, the use of a
keyboard and charactersetthatiswell-nigh universal, and languageavailability on almostallcomputers.
Then there is the world of APL. Here we find some bad points too — extremists who confuse
complexity with clarity, dreadful legends of undocumented and unsupportable systems, and
obscure non-portable techniquesrequired to cope with standard problemssuch aslower-case
output. However, wealso find a great many good points, such as elegantstructures, powerful
andappropriate array handling, flexible and sophisticated intrinsic features and relational
mentality that accelerates design as well as implementation.
Shope | have by now established the notion that VECTORis not going to be a sycophanticjournal.
Weaim to stimulate by criticism as well as by praise. If we sometimesinfuriate, then be sure
itis for a purpose. Write usa letter to object: but aboveall, keep the dialogue going. We have
in our hands perhaps the most powerfultool yet devised for harnessing the powerof the computer
for human needs.So pleaselet’s agree to concentrate on honingits cutting edge, rather than
laying out rococo designsforits handle.
The production of VECTORis very mucha team effort and | would like to acknowledge the
contributions of the journal working group. Jonathan Barman and David Ziemann have
painstakingly assembledall the technical contentof the journal and vetted contributions for
accuracy. David Preedy has worked miraclesin producing a new product guide andin encouraging
advertisers and sustaining members. Adrian Smith has documented the Association’s meetings
with great precision and hasalso contributed our first case study. Needless to say, none of this
absolves mefrom total responsibility for the manyinfelicities which no doubt remain.

For the APL user:
The LYNWOOD ALPHA APL TERMINAL

@ 8 colours plus shading option
 @ Tektronix 4010 compatible
 @ Full APL character set with switchable overstrike option

@ Powerful editing features
@ 12 keyboard macrosplus 8k bytes interface macro
@ Up to 13 pages of display memory

... For a clear view
LynwoodScientific Developments LimitedPark House, The High Street,Alton, Hampshire GU34 1 EN,United Kingdom.
Telephone:Alten (0420) 87024 (10 lines)

Tefex: 858811

LETTERS TO THE EDITOR
Letters should be written with non-APL as well as APL readersin mind whereverpossible. The
Editor reservesthe rightta edit letters unless a writer states that a letter is to be published in
full or not at all.

From Mr. Richard Bowman 27th February 1984
Sir: A certain amountof discussion has been going onrecently regarding the desirability of an
ASCll-character representation for APL. Perhaps | might be allowed to make something of a
pre-emptive strike in favour of the present graphic notation. .
Manyof the present symbols carry something of a visual sense of what they do; for example,

is concerned with spinning objects around on axes, [] looks somewhatreminiscentof a
terminal screen (I don't haveto think too deeply about [- sending charactersto terminals and
{J taking them from the keyboard), A is obviously going in the opposite direction to y.
Leading on from this, APL as presently represented is rather more cross-cultural than the
essentially text-represented languages like BASIC (paraphrasing Allen Rose, do French
programmers haveto write text such as “LAISSEZ A=2 S’IL VOUS PLAIT”?). In its current
form | would expect APLto have an advantagein transcending national and cultural barriers.
in any case,while history has imposed a penalty of several hundred poundsasthe luxury cost
of putting an APL keyboard ontoaterminal, we are now in a situation where the STSC(Scientific
Time Sharing Corporation) chip forthe IBM Personal Computeris being madeavailablefor $25.
To my naive mind,this indicates that economics could cease to betheissue.
| suspectthat givena historical! perspective the adventof APLas a notationalstyle will be seen
inthe samelight as the movefrom Romanto Arabic numerals, orthe evolution of calculus notation.
We mustnotallow ourselvesto be tyrannised by the temporary inability or unwillingness of
hardware manufacturers to supply us with what we need at an economic price. Someof the
introductory remarks in Kenneth Iverson’s ‘‘Notation as a Tool of Thought” (Communications
of the ACM August 1980 Vol. 23 No.8) are well worth re-reading.
Yourssincerely,
Dick Bowman,
CEGB,
85 Park Street,
London SE1.
(Editor. The various current argumentsin favour of promoting a conventional representation
for APL do notimplythatthe existing notationis wholly without any merits, only that its advantages
are in some cases outweighed by problems.Dick’s argument may well be the right one, but
some peoplefeetit is twenty years too late! Most computerusers by now already own or have
access to non-APLscreens;although these could be converted,in practice theywon't be. Another
issueis the awkwardnessofincluding APL characterset outputin typeset copywithoutspecialistaids, which most publishersare reluctant to employ. This makesthe inclusion of APL algorithmsin most computerjournalsdifficult or impossible, limiting in turn the spreadof the language.Wesharethis problem; the VECTOReditorial team would dearly like to hear from any organisationthat can offer them a solution.)

From Professor A. G. Hawkes 18th March 1984
Sir: | don’t know when you expectto bring out the new Journal(to be called “VECTOR”) but
no doubtyou will need a collection of papers to putin it. Enclosed is a paper which | hope you
will feel is suitable.
Aproperjournal should make good salesfromlibraries.| hopeit will cater for a broad spectrum
ofinterests. { think the use of APLforscientific purposes has beensadly neglectedin this country,
and feel that a proportion of scientific papers in the journal, as well as the more commercial
stuff, will help to remedy this.
Yours sincerely,

Alan. G. Hawkes,
Dept. of ManagementScience & Statistics,
University College of Swansea,
Singleton Park,
Swansea SA2 8PP.
(Editor: We agree with Professor Hawke's views and are gratefulto him for contributing a scientific
paper, whichis included in the Technical Section of this issue).

From Mr. Anthony Camacho 24th February 1984
Sir: | found anerror in an algorithm published in the “FinnAPL Idiom List’’. | think this is rare
enoughto be worth notice.Idiom 49 doesnot workif the largest value in ''X” is an exact power
of 16.

V R+FDTOH X
C1] a FINWAPL IDIOM 49
C2] a RESULT TOO SHORT IF [/X IS 16*N
tal 8'012345678SABCDEF' [Dro+(({1 /16@,X)p16)TXI

v FDTOH 160 FDTOH 256“00 PDTOH 4096000 PDTOH 15P

It can easily be corrected by taking the logarithm to the base 16 of ‘1 + ,X’’, but if “X"” contains
manyvalues this process may be time-consuming.It is muchfasterto find the maximum and
to take the logarithm of that value only.

V ReDTOH[11] 9 IMPROVED DECIMAL TO HEX CONVERTER

C2] &'0123456789ABCDEF'[1+((Li+160./,¥)p16 Tv)
DTOH 15 16

OF
10

DTOH 4096
1000

DroH 4095
FEF

This takes less than three seconds to convert thefirst 256 integers on my microcomputer,
compared with about 33 secondsfor the improved FinnAPLidiom number49
Yours sincerely,

Anthony Camacho,
2 Blenheim Road,
St. Albans,
Herts AL1 4NR.
(Editor: Our Technica! Editors confirm Mr. Camacho’s observations)

 [) GELPHCONSULTATION
NEED HELP WITH APL?

THEN CONSULT THE ORACLE

Telephone DAVID CROSSLEY
on 03677 384

Delphi Consultation, Church Green House
Stanford in the Vale Oxon.

QUICK-REFERENCE APL DIARY
Compiled by David Preedy

Efforts are made to ensurethe accuracyof theselistings before publication, but readers should
in all cases verify details nearer the indicated date. Association memberswill be posteddetails
of all meetings.
Unless otherwiseindicated all Association events are free, open to non-membersas well as
members, and start at 2 p.m.at:
The Read Lecture Theatre,
Sherfield Building,
Imperial College of Science and Technology,
South Kensington,
London SW7 2BT.
Tel. 01-589 5111
Underground: South Kensington, then subway to Science Museum.
The ‘APL Publications” bookstall will be a regular feature of all London events,giving delegates
a chanceto purchase hard-to-find APL literature.

Date Venue Event
May 18 London Association meeting:

“APL vs. packages and 4GL’s.””
June 11-15 Helsinki APL84 Conference

(Details in this issue)
June 22nd Aldwych Association Special Event:

“APL84 In Focus”
{Details in this issue)

September 21 London Association Meeting:
“Expert Systems and APL”

October 15-17 Toronto \.P. Sharp APL User Meeting:
“The Information Centre and
Changing Technology”
(Details in this issue)

October 19 London Association Workshop:
“How to Survive in Version XX of APL”

November 16 London Association Meeting:
. “Information Centre Case Studies”
December Midlands Association Special Event:

“What's New for APL in 1985?”
(Details to be announced)

BRITISH APL ASSOCIATION NEWS

Compiled by Robert Bittlestone
Annual General Meeting

The 1983 Annual General Meeting of the British APL Association (formerly the U.K. APL User
Group) took place at 2.00 p.m. on Friday 20th January 1984. Prior to this meeting an
unprecedentedlevelof activity had been taking place with a view to sweeping yourAssociation’s
structure through with a clean broom.Thedifficulty of organising the Loughborough Business
Technology show in September 1983 had putthe spotlight on the need for some changes. Now
that the dust hassettled, we can reveal that the Loughborough event camewithin a hair’s breadth
of cancellation three weeksbefore opening day, primarily owing to a lackofits effective promotion
by your Committee! At the last minute we appealed to UK companiestrading in APLto help
us out, and they generously gaveoftheir time to mail off details to their contactlists. The result
was salvation; Loughborough came and wentand actually made the Association richer.

“The AGM atmosphere waselectric: you could cut it with a knife’”’
Asaresult of the Loughborough experience a Task Force was appointed to conduct an in-depth
review of all Association activity. The proposals were published in the previous issue of the
Association journal and were in essence voted on by the ordinary members at the JanuaryAnnual
General Meeting.It’s true that competing candidates were not obliged to swear allegiance to
the new manifesto, but social ostracism by the fellow Committee members would have been
the inevitable outcomeofanyofficer rejecting the embraces of change.Afterall, this didn’tall
happenin 1984 for nothing.
The atmosphere at the AGM waselectric; you could also cutit with a knife (an irresponsibly
mixed metaphor?). Based onthevotescastthere were about 50 enfranchised memberspresent,
notall of whom voted onevery issue. Thefirst nail-biting scenario occurred when we cameto
elect a Chairman. Three candidates were presented:Phil Goacher,the outgoing Chairman and
a donorof long and worthy service to the Association; Ron Fussof ‘Fuss at Loughborough”
fame(seelast issue) who had been persuadedto stand bya splinter groupintent on humour
at Committee meetings at all costs; and Dick Bowman whoentered the running as a dark horse
late in the day, standing on a CEGBplatform in apt harmony with the ambienceof the meeting.

“The candidates didn’t even have $24 million to spend on theircampaigns”’
After a period of what has been described as ‘‘white knuckle time” involving frantic recounts
byAnthony Camacho, whohad notyet been elected Secretary but was nevertheless constitutional
in his arithmetic following Gordon Sutclitfe’s request as outgoing secretary for a stand-in, thevotes were announced: Bowman 15, Fuss 15, Goacher16. Neither Hart, Jackson nor Mondale
could haveplayedit morefairly, and our candidates didn’t even have $24 million to spend on
their campaign. The voices of reason held sway and continuity in Association matters was assured,
while at the sametime our incoming Chairman's majority was such as to leave the balance of
powerin the handsofthe yet-to-be elected Committee.
Worse wasyet to come,or better, depending onyourelectoral viewpoint. Mr. Camacho carried
the Secretaryship against Les Hollingbery by 25:15, and Mel Chapmanbeat MarkGriffiths to
the Treasurer's role by 17:12. Mr. Camacho wasseento be putting renewed vigourinto his vote-
counting nowthat he really was the Secretary, and Mr. Chapmanstarted to countthe cost of
proceedings with some financial alacrity.

“Thefailed candidates’ tongues smarting from the bitter taste ofdefeat”
Next to come wastherole of Activities Officer, where the lineup was David Allen from British
Aerospace, no strangerto the BCS world with his Kingston branch involvement; Dominic Murphy
of Inner Product, no strangerto the APL world with his VIZAPLinvolvement; Dick Bowman, no
strangerto the world of humbler Committee men as distinct from Chairpersons,gritting his teeth
with manfully concealed disappointment; and Robert Bittlestone, your humble correspondent,
analso-ran for the Journal vacancyandbynow eyeing the competition with some concern. Tactical
voting prevailed: Mr. Bittlestone withdrew his nomination for the Activities job, posing a new
constitutionaldilemmafor Mr. Camacho byso doing,but our gallant Secretary raised no objection
to this irregularity and the Titans wereleft to fight it out. The result was Allen 14, Murphy 7, and
Bowman17, so Allen and Murphyretired to battle with their tongues smarting from the bitter
taste of defeat and Bowman, crownedwith a laurel wreath, performed the by now obligatory
gladiatorial circuit of the Read Lecture Theatre arena.
Fred Perkinsof I.P. Sharp fame was by nowthe only candidate for the role of PromotionsOfficer,
andgracefully the ordinary memberslet him haveit. Mr. Perkins obviouslyfelt that an uncontested
seat was a worthless seat since he stuckit for three months and then wasregrettably obliged
to tenderhis regination (see later}. However, we didn’t know thatat the time and so the auditorium
rocked with deafening applause. Thepostof Journal Editor was then offered and the candidates
were Valerie Lusmore, the outgoing Editor, an APL person from APL People and the worthiest
possible candidate following her years of dedication to the cause, and Robert Bittlestone of
MicroAPL and Metapraxis, whose only claim to APLjournalistic fame washis previouseditorship
of the blatantly commercial ““MicroAPL News’’. Would integrity prevail over commerce? Very
nearly, but after a further ashen-faced recount Mammontriumphedby 21 votesto 20, ushering
in by one head the current regime of logorrhoea.

“A waveof almostinvisible releif swept over the AGM audience”’
After this almost unbelievably stressful sequenceit was with somevisible fack of tension that
Chris Beatty of Westminster City School waselected unopposed as Education Officer, and that
Romilly Cocking of Cocking & Drury waselected also unopposed as TechnicalOfficer. A wave
of almostinvisible relief swept over the audience andvoting finished with an almost unnoticed
ruse of great cunning by the new Chairman,to extend all our terms by 3 further contest-free
months:the Association current year-end has now beenfixed at 30th April 1985 and annually
thereafter, thus conveying yet headierjoys of this extended office on our unworthy heads.

“The acronym formed by‘British APL Group’ wasrejected”’
Talking of ‘‘Association” reminds me to announcethat the name of your Organisation has
undergonevarious metamorphoses.The original nameof “APL User Group”wasfelt to be too
low-keyto live up to the major expectationsthat are now hadofit, and so “British APL Society”
was proposed. However,the British Computer Society were unenthusiastic aboutthis sinceit
might imply thatall British Computers werein fact running APL, a commendabtienotion but rather
short of the facts. So “British APL Group”wascoined andlived for about two months until your
Editor discoveredto his horror the appalling nature of the acronym thus formed. Nights were
lost with visions of seething masses of APL enthusiasts exclaiming “‘It’s in the BAG”, so the
BCS was persuadedto adopt BAA instead. Any resemblanceto a nationalairport authority is
felt unlikely to pose a majorpractical problem. We hape our readers approveof this nomenclature.

10

>F COCKING & DRURYLTD.

THE APL PROFESSIONALS

If you are an experienced APL user, you will know how muchcan beachieved with
APL- and will recognisethe skills needed to use the languagetoits full potential.
if you’re new to APL,or are evaluating the language,you will want professional and
unbiased advice and assistance.
Wehave over 100 man-years’ experience of APL, and weare familiar with all major
mainframe, mini and micro implementations of the language.
Cocking & Drury werethefirst European APL consultancy, and wearestill the leadersin

applications programming
education
packages
turnkey systems
conversion
consultancy
information centre implementation
systems programming and support

For furtherinformation, contact Romilly Cocking on
01-493 6172

or write to us at
16 Berkeley Street, London W1X 5AE

"1

APL84in focus
Many UK APLenthusiasts will be unableto visit the APL84 conferencein Helsinki this year.
Dick Bowman,the Association's Activities Officer, has thoughtfully provided a special session
whereby speakers travelling back from Helsinki via Londonwill be waylaid and asked to regurgitate
their seminars. After the practice in Finland the presentations should be even sharper, so don't
missthis opportunity of hearing the highlights of APL84.
This is a Special Eventof the Association and is being heid at the Waldorf Hotel, Aldwych, London
WC2on Friday 22nd June. A chargewill be made, which will include lunch. The speakerswill
include Jim Brownof IBM, whowill be talking about APL2; Roy Sykes of STSC, the author of
“Collected Whizzbangs'’; Philip van Cleave of TCC and MicroAPLtalking about APL.68000;
and a demonstration of the Analogic Corporation ''APL Machine’’.
For technical details contact Dick Bowmanatthe addressat the end of the journal. For booking
inquiries contact Philip Goacherat the BCS,addressalso at the end of the journal. Our thanks are due to Romilly Cocking for sterling services to the APL User Group in the past
and to the formation of the current Association

12

Situations Vacant
Mr. Romilly Cocking hasfelt obliged to tenderhis resignation as Technical Officer. Mr. Frederick
Perkinshasalsofelt obliged to tenderhis resignation as Publicity Officer. Both these posts are
currently vacant and applications are invited to fill ther.
Therole of Technical Officer requires a history of exposure to APL,ideally on severaldifferent
types of computer, and an acknowledged expertise in the technical aspects of the language.
Duties include(a) acting as a reference point for members of the Association who havetechnical
inquiries, (b) coordinating the activities of the Association in relation to APL standards,(c)
supporting the JournalEditor by identifying potential authors, and (d} supporting the Activities
Officer by identifying speakers and panellists.
Thepostof Publicity Officer requires an ability to handle Press contacts and gift for phrasing
announcements aboutAssociationaffairs in an interesting and news-worthy way. Duties include
(a) handling all Press matters, including press releases(b)liaising with sustaining members
over matters of general APL marketinterest, (c) assisting the Journal Editor in promoting the
circulation of VECTOR,and (d) helping the Activities Officer to publicise Association meetings.
The Association statutes are such that no general vote of members is required tofill interim
vacancies. Consequently theseofficers will be appointed by vote of the Committee after reasonable
time has elapsed for candidates to maketheir interests known. Please write to the Secretary
of the Association (addressat the end ofthis issue) with a brief outline of your APL experiences,
astatementof yourinterests and orientation if appointed, and a recentblack and white photograph.

APL86
international APL Conferences take place alternately in the USA and elsewhere. The 1982
Conference wasin Heidelberg; the 1983 in Washington; 1984 takes placein Helsinki; 1985 in
Seattle, and 1986 has beenallotted by EuroAPLto the United Kingdom.Initial planning is currently
under way by your Committee, and in due courseitislikely that a special secretariat will emerge
torunthe affair, with an identity distinct from the Association Committeeitself, although existing
officers are by no meansdisbarred.
Offers of assistance in organising APL86will be gratefully received by the Secretary. There is
also a requirementfor referees to scan through papersthat are submitted to the conference.
Although such appointments are normally by invitation, any individual who considers himself
or herself qualified and enthusiastic for such invoivementis also invited to contactthe Secretary.

13

 APLXPLUS,the CLK. subsidiary of
STSC,the large American Corporation

renownedforits quality APL-based products
offers a wide range of APLinterpreters and

modern business computing.

API:PLUS/1000
Acomprehensive set of enhancements to IBM's VS-APL,available under
both MVS/TSO and VM/CMSoffering such features as commercial
formatting, componentfiles, error handling and nested arrays.APIxPLUS/PC
Ahigh performance APLgiving APL*PLUS/1000 functionality on the
IBM PC,with additions such as graphics,full-screen management,
mainframe communications and languageintegration.INFORMATIONCENTRE
A rangeofIC tools providingfull-screen data entry, display and analysis
capabilities togetherwith interfacesto other IC products.

oS
Ok
ey ACT*PLUS
oO

A comprehensivelibrary of actuarial functions and proceduresfor the
life insurance sector.CMCS
Materials Managementatits best. Facilities include forecasting, inventory
management, production planning, warehousing and distribution.

APEPLUS
Professionalism in Software

Aston Science Park, Love Lane, Birmingham B7 4BJ
Telephone: 021-359 5096.Telex: 334535.

14

1983 REPORT AND ACCOUNTS

Jonathan Barman

INCOME AND EXPENDITURE FOR YEAR TO: 31.10.83
£

Income
Subscriptions 1,392
APL Conference Nov. 82 1,183
APLConference Sep. 83 5,193
Profit on sale of books 33.
Total Income 7,801

Expenditure
Meetings 334
Newsletter less advertisement income {95)
Expenses 169
Audit fee 60
Total expenditure 468

Surplus of income over expenditure 7,333

BALANCE SHEET AT YEAR END
Cash at bank 3,331
Debtors 5,890
Booksin stock 0

9,221
Less Creditors 706
Net Assets 8,515

Accumulated surplus previous year 1,182
Surplus current year 7,333
Net Reserves 8,515

15

31.10.82

251

= 2 RR

NOTES TO THE 1983 ACCOUNTS
1. The surplus on the 1983 APL Business Technology conference was madeup asfollows:

£
Delegates fees 17,340
Exhibitors’ fees 3,555
Programme advertising 375
Product forum fees 300
Total Income 21,570

Conference costs 13,662
Publicity costs 2,031
Miscellaneous costs 684
Total costs 16,377
Surplus of income overcosts 5,193

2. Pending expenditure of the accumulated surplus, the cashis being invested to
producefurther income.

3. On ist November 1982 the book stock was sold to APL Publications, run by Mr. L.
Hollingbery. The committee decided that the administration of book sales was
becoming too onerousforit to be carried out by membersof the committee, who
receive no fees for work carried out on behalf of the User Group.

(The accounts have beensigned by Jonathan BarmanasTreasurerand audited by Anne RaikesMA FCA).
19th January 1984

Editor’s comment: The Loughborough conference swelled the finance of the Association
substantially andisin part the reason for the expanded programmeofactivities andjournal content
that your Committee has embarked onfor the 1984/85 year.

16

INTERNATIONAL APL NEWS
Compiled by Robert Bittlestone

This columnis opento other APL Associations outside the UK;please write to us with your news
and we shall be pleased to broadcast extracts for you. A substantial number of VECTOR
subscriptionsare from overseas and wehopein this way to keep APLusersin touch with each
other internationally.

EuroAPL
EuroAPLis the international organisation supporting European APLgroupsin various ways.
We had hopedfor a glowing progress report on news of APL in Europe,but sadly this is not
to be — notin this issue anyway. Philip Goacheris this year’s Chairman of EuroAPLas well
as being the Chairmanof our Association. He writes somewhatruefully:

“EuroAPL has been supported from fundsallocated by the Commissionof the European
Communities to the ‘Multi-Annual Programmefor Data Processing’, which has allowed
us to meetthe travelling costs of membersattending the regular meetings in Brussels.”
“Unfortunately the proposal for extending these funds was not approved in March and
the budget has now runout!”
“Whilst waiting for Council to reach a decision on continuedfinance for the workcarried
out underthe programme — principally standardisation work— all meetingsfor the various
activities, including EuroAPL, have ceased.”
“Members of the EuroAPL Board attending APL84will meet to discuss the EuroAPL
programme during the conference."

So muchfor entente cordiale:it’s fine so long as someonepaysfor it. We hope to bring you
more stimulating news of EuroAPLin the next issue.

LP, Sharp 1984 APL User Meeting

For those of you with the opportunity (or excuse)to visit Canada, the regular Sharp APL user
meetingis being held at the Westin Hotel, Toronto,from October 15th — 17th 1984. The following
details are reprinted from a public mailbox message on the IPSA system.

“The Information Centre and Changing Technologies”
“Featuring keynote addresses by H. Mitchell Watson Jr., IBM Vice President and President,
System Products Division, IBM Corporation, White Plains, New York; and byJames Cunnie,
Directorof Office System Planning, ITT Corporation, Stratford, Connecticut. Therewill
be aspecialhalf day presentation by James Martin, whois according to Computer Weekly
the computer industry’s most widely read author and best attendedlecturer.”
“Session themesinclude:-
—__ Introducing the globalinformation centre
—__ Implementing a global information centre
— Menus, mice and masters in application design
— Managingtheinformation revolution
— Evaluating and implementing user productivity tools
— Managing and implementinginternational systems
— Some managementtools for an information centre

17

— Supporting information centre users
— Exploiting networks
—_ |.P. Sharp: changing technologies and future directions
— Theevolution of the APL environment: two perspectives

“Optional tutorials (October 18th) cover:-
— For managers The Sharp APL system: a management perspective
— For technicians Dumpanalysis facility
“Theregistration fee for the 1984 meeting is $400 (Canadian)or $320 (US). There is an
additional fee of $100 (Canadian) or $80 (US)to register for either one of the tutorials.
Aconference brochure andregistration form will be mailed in early Mayto everyone on
the IPSA newsletter mailing list. For more information contact:
Rosanne Wild, IPSA Ltd., Suite 1900, 2 First Canadian Place, Toronto, Ontario, Canada M5X
1E3. IPSA Mailbox RWI. Telephone (416)-364-5361

The feedback from previous Sharp conferences has always beenvery good, with an accent on
the practical as opposed to the theoretical. It is not normally necessary to be an IPSA customer
to be allowedto register and manyusers of IBM APL systemsorof microcomputer-based APL
have learneda lot from the Sharp conferences.
Having bestowed praise whereit is due, perhaps | mightraise apet complaint. Usersoftimesharing
bureaux, and particularly their staff, seem to imagine that the APL mailbox is the only possible
orcivilised way of sending someone a messageordistributing news. | couldn’t disagree more.
Forit to be practical use, one hasto inspect a personal mailbox at least daily, and | certainly
haveneitherthe time norinclination for that. A telex ora letter is actually delivered personally,
a great innovation.
What’s more,if 1 want to send someone a message on a mailbox system,in practice | have to
typeit personally as opposedto beingable to delegateit to a secretary (in theory the secretary
could log on for me but in practice thelines are always downatthe crucial moment).It also arrives
the other end on somekind ofjunk printer: as sender { have no control over a tidy format.Finally,
there’s no lower case, which makesall my messageslooklike imperatives! Mailboxes may be
fine for programmersbut as humanbeings,pleaselet’s becivilised (and | haven’t even mentioned
the cost!).

APL84
Bythe timethis issue of VECTORis published, you may or may not have enoughtime to book
for the APL84International Conference at Espoo, near Helsinki, Fintand, which starts on 11th
and ends on 15th June 1984. A most splendid programme has been prepared, which is
unfortunately too longfor usto reprint here. Whatyou will need fora late bookingis a fewaddresses.
The companyhandling all reservations for the conference and accomodation is:

AREATravel AgencyLtd.,
Congress Department,
P.O. Box 227,
SF-00131 Helsinki 13.
Telex 122783 ARCON SF
Tel. Int.+ 358-0-18551

Thereis a full range of tours available, including one to Leningrad for which visa is required.
18

Late bookersin the UKcan contactthe London-based companywhich is handling group bookings
to see if their April deadline can be varied. The details are:

Noe! Cramer,
Express Boyd Ltd.,
4/5 Bonhill Street,
London EC2A 4BX.
Tel. 01-588-8461

At the time of preparing for publication the packageprice for travel and accommodation varied
from £328 to £498 perperson dependingonhotel and timing. Added to thisis the cost of conference
registration itself, which starts at £245 and increases asymptotically to infinity, depending on
your predeliction for tours beforeorafter the conference.Allin all an expensive conference but
without doubta very worth while one— and a rare chanceto visit Finland or the USSR on company
business!

A Finnish Fairy Tale
No doubt the APL84 conference organisers have beenvery busy with preparing for the show.
| started to geta little concerned about communications with Helsinki back in November 1983,
whenI wrote to Sten Kallin, who is one of the organisers,to ask if they would like to run the
“Metaconference”as a service to delegates.(This is a form of computer-based interaction system
thatlets users contribute statements and also vote on everyoneelse’s; interested readers can
catch an accountofit in the Journalof the UK Operational Research Society December1983.)
| waited till late January 1984. No response.
| wrote again. No response.
In desperation f sent Sten Kallin a telex message care of AREAtravel agency, addressed via
Timo Seppaila, the conference chairman.It said:

“| have never received any reply to my letters to Sten Kallin of 11th November 1983,26th
January 1984 and 7th March 1984. | am going to spread a rumourthat he does notexist.
Is this true? Please let me know.”

No response.
Now I do knowthat Timo exists — at least he did in Washington,andhis voice on the telephone
last year sounded the sameasit did when | met him in the flesh. But what about Sten Kallin?
Is he in fact a virtual person, overlaid on some disc somewhere underneath a head crash? Is:
his name somekind of anagram? APLis actually quite good at generating anagrams. You type
in the text STEN KALLIN, assignitto avariable called X or whatever, and then watch APLexecuting
X[117111 in a tight loop. You get the occasional duplication that way of course,butit’s nothing
to lose sleep about. Actually you might lose little sleep cometo think about it because the
effect on the screen is most hypnotic. Try it. | bet you won't be able to hit the break key until
at least one credible anagram emerges.
{started by getting the head-scratching NIT KALLSEN,thenthe well-knownBaltic sailor SALT
ENKLIN,and shortly after that the legendary giraffe impersonator IN TALLNEKS.You can also
very nearly get LINK NATES,whichis really quite worrying if you happen to know oneof the
two meaningsof that obscure English word (I don’t mean‘‘anterior pair of optic lobesin brain”,
although that would probably be confusing aswell). The mysteriouselectrical researcher TESLA
is buried in there, as is some EKTASI. But I felt [had hit on a clue when up jumpedthe phrase

19

KATE LS! NNL.Sten Kallin has had a sex change and subsequently been blown into LSI logic
(large scale integration). (think the NNLis the last human gasp before digitisation, but ! can't
be sure,
Endoffairy tale — or should| say finish. Access to the pages of VECTORisa privilege which
| have undoubtedly abused by now.It’s really much safer to answer people'sletters! I’m sure
the conferencewill be very well organised, the more so for people like Sten not wasting their
time writing to me. | see from the programme that Espoo, the conference venue, is an
archaeological site dating back to 6000 B.C., so no doubt there will be a crop of jokes about
digging up APLhieroglyphics. You mayalso catch a rare chance to samplethelittle-known Finnish
custom of culinary monuments. To quote (just about) from the programme:

“Espoois now thefourth largest city in Finland, featuring the GardenCity of Tapioca
as well as other achievements of modern Finnish architecture”.

The more hasta, the less pasta? Have a goodtrip!

(ii APL People Ltd. 3.Cro# Lane Close,
i Orwell,

Nz Royston,
Herts, SOO SOW
tel.0223-207-530

The only employment agency run
by experienced APL professionals.

Wespecialise in supplying skilled
APLpersonne! to complement your

APLproject team —
permanent or temporary.

To discuss your particular requirements:

Call Valerie Lusmore on 0223-207530

Registered employment agency licence SE6440
20

BRITISH COMPUTER SOCIETY NEWS

Compiled by Philip Goacher
| suspectthatfew of our members know muchaboutthe activities ofthe British Computer Society
(BCS)of which we are oneof the 44 Specialist Groups. Indeed, despite being a BCS member
for ten years and as APL Group Chairmansitting on its Specialist Group Board,it was not until
| became the BCS Business Managerrecently (Ed. — see Pressreleaseafterthis article) that
I came to understand more fully the workingsof the Society.
The BCS was formed in 1957 as a result of meetings between two informal groups, one
representing industrial and commercial users of computers, the other representing scientists
and engineers who were using computersin their disciplines. Afterits first year of existence
the Society had 1,182 members; it now has a membership of 27,500 which represents a
considerable proportion of practising computer professionals.
The cornerstone of the Society's existenceis its representation of the computing profession
in the UK, and the status of Professional Membership of the BCS is recognised throughoutthe
industry. Professional members are required to subscribe to a Code of Conductconcerned with
integrity, confidentiality and social responsibility. A Code of Practice is provided for the guidance
of members andis designed to promotetheefficient and responsible use of computers.

“Since 1957 the Society’s membership has grown
from 1,182 to 27,500”

Theresult of this recognition of the status of the Societyis thatit is the accepted mentional voice
on suchprofessional and social issues as standards in education, good practice and data
protection. The Society also has international inks with many computerorganisations, particularly
the International Federationfor Information Processing(IFIP) and representative bodiesof other
countries such as ACM (USA), ACS (Australia), CIPS (Canada), CSI(India), AIGA(Italy), DARA
(W. Germany) and AFCET (France). The Society also developsits ability to representwider areas
of the profession throughits boards, committees, specialist groups and branches.
Another important function of the Society is thatit should inform and educatein all areas of
computing.it does this throughits quarterly publications “The ComputerJournal”and “Computer
Bulletin”, its page of news andevents in “Computing”, as well as via technical monographs,
reports and conference papers. The BCS holds conferences,lectures and seminarsin all aspects
of computing,often organised byits specialist groups. Each year a numberof lecturesis organised
by the Society; recently these have featured Grace Hopper, Gordon Bell and Gene Amdahl.
Thereis also an Awards schemein whichprizes are given to the most deserving entrantsin
each of three categories: technical, social benefit and applications. The purposeofthese awards
is to promote and publicise achievements in the computing industry.

“Recent speakers include Grace Hopper, Gordon Bell
and Gene Amdahi’”’

This processcontinuesata local and specialised level via the Society’s 42 regional branches
and 44 specialist groups. The Society also maintains the largest computing library in the UK
at the IEE;this is open to personalcallers and also offers members a postal lending service.
Membershipof the Society is open to any personinvolved eitherdirectly orindirectly in computing.
The requirements of each class are under continuousreviewto allow the Society to respond
to new situations. The professional grades are Associate Member (AMBCS), Member (MBCS}
and Fellow (FBCS), advancement depending onlevel of professional education and evidence
of experience of computing over a specified numberof years.

21

There are also the gradesofAffiliate, Graduate and Student.Affiliates are those interested in
computing who wishto becomeinvolved in Society affairs. Graduates are those who havesatisfied
the Society's educational requirement but lack the experience necessary for professional
membership, while Students are those following a courseofinstruction recognised bythe Society.
Membersof these grades enjoy mostof the sameprivileges as thosein the professional grades
except that they have no voting rights.
The Society is currently applying for a Royal Charter, which would tend additional weight to the
Society’s status as the computing profession's representative organisation.
\fyou are interested in applying for membership offinding out more about the BCS,please write
tomeatthe address onthe inside back coverof this issue. Through this column| will keep APL
Association members informed of BCS developments which affect our Specialist Group.

BCS Appoints a Business Manager
Editor — | am sure we would all like to congratulate Philip Goacheron his recent appointment
as Business Managerofthe British Computer Society. Here is an extract from the recent Press
Release concerning his new role, omitting only Philip’s biographicaldetails to spare his blushes:

“Philip Goacherjoined the BCS as Business Managerin January this year. His briefis
to develop further the Society’s publications and to provide a rangeofservicesincluding
support to the Society's Specialist Groups and Branchesintheir aim to widentheirsphere
of influence, particularly through conferences.”
“From 1st May 1984 theseactivities are being managed by The British Informatics Society
Limited (BISL), the commercial subsidiary of the BCS,with Philip Goacher as Managing
Director.”
“The BCS makescontact, not only with its members, but also with the world at large,
throughits various publications and reports, and through the many conferencesof high
technical quatity which are held regularly. By developing the professional support given
to these and othergrowingactivities, BISL will be helping to promotetherole of the BCS
within the computing profession.”
“Through his interest in APL, Philip Goacher has beenclosely involved with the BCS
for some time as ChairmanoftheirAPL Specialist Group. Heis also Chairman of EuroAPL,
an internationalliaison group supported by the EEC.”

NEWS FROM SUSTAINING MEMBERS
Compiled by David Preedy

The category of ‘Sustaining Membership” has been introduced andis being offered to companies
trading in APL products;this is seen as a method of promoting the growth of APLinterest and
activity. As well as receiving public acknowledgementfor their sponsorship, sustaining members
receive bulk copies of VECTORandare offered news listingsin this section of the journal, together
with opportunities to inform APL. users of their products via seminars and articles.
The Committeeof the British APL Association would like to acknowledge the generousfinancial
support ofthe following organisations that have become Association Sustaining Members.tn
manycases these organisations also provide manpowerand administrative assistance to the
Association at no cost.

APL* Pius Ltd. Aston Science Park, Love Lane,
Birmingham B7 4BJ.
Tel. 021-359 5096

Cocking & Drury Ltd. 16 Berkeley Street, London W1X 5AE.
Tel. 01-493 6172

Dyadic SystemsLtd. 30 Camp Road, Farnborough, Hants.
Te. 0252 547222

inner ProductLtd. Eagle House, 73 Clapham Common Southside,
London SW4 9DG.
Tal. 01-673 3354

MicroAPL Limited Unit 1F, Nine Elms Industrial Estate,
87Kirtling Street, London SW8 5BP.
Tel. 01-622 0395

LP. Sharp Associates 132 Buckingham Palace Road,
London SW1W 9SA.
Tel. 01-730 4567

Despite being offered tres publicity in this section of VECTOR,only two of these companies
provided us with newsin time for the print deadline! We’re not sure whether the reason was
modestyorinefficiency but no doubt we shall be inundated with copy for the next issue.

APL*PLUSLimited
“APL* PLUS's parent company STSCInc. has wontwo I.P.C. awards, recently presented
in a joint ceremony in London andDallas.”
“APL*PLUS/PC won ‘Million-in-One’ award for achieving $1,000,000 of business
worldwideinits first year, and “APL* PLUS 1000 wona ‘Million-Dollar-Club’ award for
reaching sales of $1,000,000 since its introduction.”
“Since the New Year, ‘““APL*PLUS has announcedthree new products.”
“A range ofInformation Centre tools providesfull-screen data entry, display and analysis
capabilities, and interfaces to other proprietary Information Centre products.””
“Release 3.0 of “APL * PLUS/PC nowoffers a colour graphics system in addition to their

23

extended APLfor the IBM PC and compatibles.”
“Finally, a financial and statistical package has been released containing more than 200
programs for the IBM PC.”

MicroAPLLimited
“MicroAPL has extendedits product rangein both larger and smaller systems.”
“The SPECTRUM supermicro now offers up to 10 Mb of main memory and supports 144
Mbhard discs. Customerswith larger systems can now use the Tektronix 4105 colour
graphics terminalto which MicroAPL has added an APLcharacterset. They are currently
testing software to emulate IBM’s GDDM colour graphics processor.”
“At the smaller end of the product range, MicroPLOT,whichoffers business graphics
to drive the IBM PC’s colour monitor and Hewlett-Packardplotters,is now available under
“‘APL* PLUS/PC, and the MicroSPANself-teaching packagewill soonfollow.”’
“On the personnelfront there are three new faces at MicroAPL. Emma Saunders has
joined as personalassistantto three of the directors; Karen Salt has become personal
assistantto the Managing Director, Richard Nabavi; and Alastair Kinloch, well-known
in the Scottish APL community, has joined the team of applications consultants.”

24

APL PRODUCT GUIDE

Compiled by David Preedy
Hereisthefirst release of our exclusive new APL Product Guide, which we hopewill provide
VECTORreaders with useful information aboutsources of APL hardware and software. Weshall
be updatingthis with each issue of VECTORand we depend onthealacrity of suppliers to keep
us informed oftheir products.
Wereservethe right to edit material supplied for reasons of spaceor to ensurea fair marketcoverage.
Thelistings are not restricted to UK companies andinternational suppliers are welcometo take
advantage ofthese pages. Where no UK distributor has yet been appointed, the vendor should
indicate whetherthisis imminent or whether approachesfor representation by existing companies
are welcomed.
Forconvenience to VECTORreaders,the product list has beendividedinto the following groups:
— Complete APL Systems (Hardware & software)
— APLInterpreters
— APLVisual Display Units
— APLcharactersetprinters
— APL-based packages
— APL consultancy
— Otherservices
— Vendor addresses

Every effort has been madeto avoid errorsin theselistings but no responsibility can be taken
by the VECTORworking group for mistakes or omissions.
Note: ‘poa’ indicates ‘price on application’

2

APL PRODUCT GUIDE

Company Product Prices £ Details
COMPLETE APL SYSTEMS
Alan Pearman §BM PC & XT 1995- Authorised IBM PC dealer

4425 supplying complete systems
including peripherals based
on IBM PC.

Cocking/Drury MicroAPL SPECTRUM 6000- Supplied as part of a
SAGEII 35000 turnkey system. For product
SAGE IV details see MicroAPL entry.

Inner Product IBM PC 2000- AlllBM PC compatible
5000 software available.

MicroAPL. SPECTRUM 11000- Expandable multi-user APL
15000 computer using Motorola

68000. Standard
configuration 1 Mb RAM,
12/36 Mb disc, 12 ports.

SAGEIV 8500 Multi-user APL computer, 1
Mb RAM,12/18 Mbdisc.

APL INTERPRETERS
Alan Pearman APL*PLUS/PC 420-— See APL*PLUSentry

600

APL*PLUS APL*PLUS/PC 600 Full feature interpreter for
IBM PC and PC/XT.Also for
compatibles CORONA,
COMPAQ and COLUMBIA.

APL*PLUS/1000 27000- Enhancementsto IBM’s
47000 VSAPL. Runs under

VMICMSor MVS/TSO.
Burroughs APL/700 3150 Runson Burroughs B5000,

Béooo, 87000 and A9
mainframes.

Cocking/Drury APL*PLUS/PG 600 Discount on multiple orders.
Dyadic Dyalog APL 1000- 2nd generation portable

8000 APLfor UNIX systems eg.
VAX, HP9000, Fortune,
MC68000,Zilog, Perkin-
Elmer, Perq etc.

26

APL PRODUCT GUIDE (continued)

Company Product Prices £ Details
APL INTERPRETERS(continued)
Inner Product VIZAPL 255- B-bit Zilog Z-80 CP/M

360
APL’ PLUS/PC 600 See APL*PLUSentry

LP. Sharp Sharp APL. poa For IBM mainframes
Sharp APL/PC poa_ For IBM PC

MicroAPL APL.68000 1000+ Full implementation with
componentfiles, error
trapping etc. for
SPECTRUM and SAGE
machines orother popular
MC68000-based computers.

APL VISUAL DISPLAY UNITS
Farnell Tandberg TDV2221 1498 Ergonomic design APL

terminal, 50-19200 baud,
15” anti reflex screen, low
profile keyboard.

Tandberg TOV2271 1685 Combined APL/ANSI
ergonomic terminal as
above.

Lynwood Alpha 1995 Full APL characterset,
16-bit microprocessorwith
pixel addressable
monochromegraphics.

Alpha Colour 2985 As above but 8 colourgraphics.
MicroAPL Insight VDT-1 795 Inexpensive APL VOU

Insight GDT-1 1450 With monochromegraphics
Tektronix 4105 2995 High resolution colour

graphics supporting APL.
character set on MicroAPL
hardware.

Shandell Concept AVT/APL + 896- Conforms to ANSI 3.64
4195 standard; 80/132 columns,

4/8 pages of memory,
windowing, two comms.
ports, low profile keyboard.

Concept GVT/APL+ 1370- As above with vector
1825 graphics.

27

APL PRODUCT GUIDE(continued)

Company Product Prices £ Details
APL PRINTERS
Alan Pearman Epson FX series Printer prices range from

289 to 1995 over all models.
NEC Spinwriter

PRISM 80
PRISM 132

Datatrade Datasouth DS180 1395 180 cps matrix printer with
2000 byte buffer, 9x7 dot
matrix and APL option.

(nner Product Epson FX80 500 Soft char. set, 160 cps, 80
col.

Anadex 9620 1450 200 cps., 132 col., tractor
feed

Siemens PT88 620 180 cps., 80 col., silant
TGC Starwriter 1180 40 eps., letter quality

MicroAPL Datasouth DS180 1545 See Datatrade entry
Philips GP300 2251 Matrix printer with letter and

draft quality and APL.
APL PACKAGES
APL*PLUS Info Centre 12000— ‘Tools for full-screen entry,

20000 display and analysis.
Interfaces to other
proprietary IC products

CMCS 30000- Complete Materials
100000 Management, Factory

Planning & Forecasting
package.

Finance/Statistics poa Comprehensive package for
IBM PC and compatibles.

Cocking/Drury ARMS 2 3000- Applications Generator
15000

AFM 10000 High performance shared
file system.

CALL/AP 3000 Non-APLprogram
execution.

FORMAT 2250 Enhancedreport formatting
WSAIDS 795 Workspace documentation

28
and developmentaids.

APL PRODUCT GUIDE(continued)

' Company Product Prices £ Details

: APL PACKAGES(continued)
Holtech CASH 3500- Accounting package and

t 10000 hotel management system
implemented on MicroAPL

. SPECTRUM & SAGE CPUs.
: inner Product Viewcom 150 Control Viewdata from APL
. APL/DBASEIl 150 Interace APL with dBaseIl
' APL/WORDSTAR 150 Interface APL with Wordstar
; APL/MULTIPLAN 150 Interface APL with

spreadsheet
LLP. Sharp ACT poa Actuarial system

APS poa Financial modelling
BOXJENKINS poa Forecasting technique
CONSOL poa Financial Consolidation
COURSE poa APLInstruction
EASY poa Econometric Modelling
FASTNET poa Project Management
GLOBALLIMITS poa Exposure managementfor

banks
MABRA poa record

maintenance/reporting
MAGIC poa Time series

analysis/reporting
MAGICSTONE poa N-dimensional databasesystem
MAILBOX poa Electronic Mail
MICROCOM poa Mainframe to micro link
SAGA poa General graphics, most

devices
SIFT poa Forecasting system
SNAP poa Project management
SUPERPLOT poa Business graphics
VIEWPOINT poa 4GL — Info centre product
XTABS poa Survey Analysis

MicroAPL MicroTASK 250 Project developmentaids
MicroFILE 250 File utilities and database
MicroPLOT 250 Graphics for HP plotters etc.
MicroLINK 250 General device

communications
MicroEDIT 250 Full screen APLeditor
MicroFORM 250 Full screen forms design
MicroSPAN 500 Comprehensive APLtutor
MicroGRID poa Ethernet & other networking
APLCALC 400 APL spreadsheet system
MicroPLOT/PC 250 For APL*PLUS/PC product 29

APL PRODUCT GUIDE(continued)
Company Product Prices £ Details
APL CONSULTANCY(prices quoted are per day unless otherwise marked)
Alan Pearman

Employment Agency

Courses
APL People Consultancy

Cocking/Drury Consultancy

Delphi Consultancy

Dyadic Consultancy

Inner Product Consultancy

LP. Sharp Consultancy

MicroAPL Consultancy

OTHER PRODUCTS
LP. Sharp Productivity Tools

Databases

Consultancy &

30

25

poa

poa

120-150
140-200
185-300
275-400

poa

poa

200

poa

180 — 250

poa

poa

Per hour, onsite andoffsite

All levels, most APL
systems
Permanent employees
placedatall levels.
Contractors supplied for
short or long term projects,
supervised.
Junior consultant
Consultant
Senior consultant
Managing consultant
Specialising in management
reporting systems and APL
on microcomputers.
APL system design,
consultancy, programming
and training for Dyalog APL,
VSAPL, APL*PLUS,IPSA
APLetc.
Communications a
speciality
Consultancy and support
service world-wide.
Technical & applications
consultancy.

System utilities, operations
utilities, system
administration utilities,
analystutilities, auxillaryprocessors, comms.
software,int. comms.
network,
Financial, aviation, energy
and socioeconomic.

VENDOR ADDRESSES

Company

Alan Pearman Ltd.

APL People

APL*PLUSLtd.

Burroughs MachinesLtd.

Cocking & Drury Ltd.

Datatrade Ltd.

Delphi Consultation Ltd.

Dyadic SystemsLtd.

Farnell International
Instruments Ltd.

Holtech Ltd.

Inner ProductLtd.

1.P. Sharp Associates Ltd.

Lynwood Scientific
Developments Lid.

APL PRODUCT GUIDE(continued)

Contact
Alan Pearman
Maria Pearman
Valerie Lusmore

Barrie Webster
John Ward

M.J. Fennell

Romilly Gocking

Tony Checksfield

David Crossley

Peter Donnelly

Paul Ferguson

or Roger Attard

Jan Bateman

James Manning

David Weatherby

Gareth Wokes

31

Address & Telephone

96-98 Chester Road, Huntington,
Chester CH3 6BT. 0244-46024
3 Cross Lane Close, Orwell,
Royston, Herts SG8 5QW.
0223-207530

Aston Science Park, Love Lane,
Birmingham 87 4BJ, W. Midlands.
021-359 5096
Heathrow House, Bath Road,
Hounslow, Middlesex TW5 SQL
01-750 1400
16 Berkeley Street, London
W1X 5AE. 01-493 6172
38 Billing Road, Northampton,
NN1 5DQ, 0604-22289
Church Green House,
Stanford-in-the-Vale,
Oxon SN7 8LQ. 03677-384
30 Camp Road, Farnborough,
Hants. GU14 6GEW. 0252-547222
Jubilee House, Sandbeck Way,
Wetherby, W. Yorks. 0937-61961

Davenport House, Bowers Way,
Harpenden, Herts. 05827-69071
44 Conduit Street, London
W1RA 9OFB.01-734 7618
Eagle House, 73 Clapham
Common Southside, London SW4
9DG.
01-673 3354
132 Buckingham Palace Road,
London SW1W 9SA. 01-730 4567
Park House, The High Street,
Alton, Hants GU34 1EN.0420-87024

Company

MicroAPLLtd.

Shandell Systems Ltd.

VENDOR ADDRESSES(continued)
Contact
Richard Nabavi

Maurice Shanahan

32

Address & Telephone

Unit 1F, Nine Elms Industrial Estate,
87Kirtling Street,
London SW685BP.01-622 0395
12 High Street; Chalfont St.
Giles, Bucks HP8 4QA.
02407-2027

RECENT MEETINGS
This section of VECTORis intended to documentthe seminars delivered at recent meetings
of the Association, particularly for those members who work outside London and often findit
hard to sparethe time to attend.
Weare dependenton speakersfortheir willingness to provide us with a written version of their
seminars, and we would remind them that ‘‘a picture’s worth 1000 words’. Copies of slides and
transparencies will enhancetheir articles.
TheActivities officer (details on inside back cover) will respond enthusiastically to offers from
individuals to contribute seminars and supporting papers.

Give your
Information Center users

the world.
An Information Center should be a company-wide resource taking advantage of modern
technologies through the integration of hardware, software and data communications.
There are many communications companies in the world. There are many software
companies, Butforfull integration of communicationsandsoftware,
there is only one LP. Sharp.

With LP. Sharp's products for the GlobalInformation Center, your users enjoy:
* IPSANET...one ofthe world’s most advancedprivate communications
networks providing secure error-free transmission anywhere your
company operates.
Integrated Software...a library of end user productivity tools to reduce
your applications backlog. Products for today’s decision making.
Worldwide User Support. ..through IP. Sharp offices in22 countries.
Online Public Data...access to over 100 numeric data bases to
complementcorporate data and help your organization
makeinformed decisions.

* Integration of PC's and mainframes...witha
single application developmentlanguage,SHARPAPL.

Readyto install, ready to run, and already proven on
aninternationalscale by IP, Sharp clients,
the GlobalInformation Centergives you the most
advanced implementation of the
Information Center concept.

Whynot let them
have the world?
Call your nearest I.P. Sharp office in
oneofthecities listed below and
we'll show you how your
Information Centerusers
can have the world.

LP Sharp Associates London,England (European Headquarters)LP Sharp Associates Limited,Productsfor the 132 BuckinghamPalace Road, London SWIW9SA,Global Information Center England. (01) 730-4567, Telex: 8954178 SHARP

Aberdeen, Amsterdam, Allanta, Boston, Brisbane. Brussels, Calgary, Canberra, Chicayo, Copenhagen, Coventry, Dallas, Denvet, Dublin, Dusseldort, Edmonton, Frankfun, Halifax, Helsinki,Hong Kong. Houston, Landan. Los Angeles, Madrid, Melbourne, Mexico City, Miami, Mian, Montreal, New York City, Newport Beach, Oslo, Ottawa, Palo Alto, Paris, Rochester, Rome,San Fronciscn, Saskatoon, Seattle, Seoul, Singapore, Stockholm, Sydney, Tokye, Torunto, Vancouver,Victoria, Vienna. Warrington, Washington, Wayne, White Plains, Winnipeg, Zurich

34

APL AND GRAPHICS
Compiled by Adrian Smith

The Association meeting on Friday 10th January waswell-attended, bearing in mind the normal
lack of enthusiasm for an Annual General Meeting, and was marked by the announcementof
an Acornsoft APLfor the BBCMicro.Theofficial business of the day wasfollowedbythree brief
talks on the general theme of APL and graphics.
Chris Lee of APL* Plusintroduced Release 3.0 of APL*Plus/PC,which runs with severaldifferent
graphics cards,including the IBM colour card and the Hercules monochromecard, to give
businessorfree-form graphics.It achievesthis with a veritable shoal of quad-functions — for
moredetails see the APL” Plus handouts.
Graeme Robertsonof|.P.Sharp Associates followed with a slide show of“A Graphic Vision of
APLDataand Functions”. He hasprovided us with some examplesof hisslidesin the next article.
The meeting ended with Mr. Martin Martin demonstrating an example of an APL system which
employed the IBM 3270 Graphics attachmentto drive a circuit-design application.

35

A GRAPHIC VISION OF APL
by Graeme Robertson

Many graphics packageswritten in APL have appeared onthe I.P. Sharp Associates system
over the last seven years. Their capabilities are indicated in some forty slides prepared on a
flatbed plotter using software packages SUPERPLOT, SAGA, DRAWMAPS, ROUTEMAPS,
STARMAP, DRAWNET, PLOT3DH, PRISMPLOT, PICTURES and GRAPHICS.
A close analogy exists between the vector algebraic approach of APLnotation and that of
GRAPHICS,theinspiration behind these other packages.
GRAPHICSis usedto represent APLarraysof different ranks. Lines are generated whichrepresent
real and complex numeric vectors. Surfaces are generated which represent real numeric matrices.
Solid wireframeiattices are used in the representation of three and four dimensionalarrays.
Finally, all these attempts are abandonedin favourof a recursive definition which canin principle
yield a visual representation of a real or complex numeric APLarray of any rank whatever.
These results were exhibited in the seminar using twenty colourful slides. Arrays which are
generated as the results of APL functions give very pleasing images which,it was argued, can
be used to help students to understand the nature of complicated mathematical functions.

Structure of the Seminar
1. An Overview of Computer Graphics

1.4 Adefinition of Graphics
1.2 Acursory history of computer graphics
1.3. Application areas

2, From Business Graphics to Art
2.1 Towards Graphical Representations
2.2 Business Graphics
2.3 Into 3-D
2.4 Art

3. APL and Graphics
3.1 Graphic Variables
3.2 Graphic Primitive Functions
3.3 A Graphic Operator
3.4 Graphic APL-like Utility Functions

4, Representations of Numeric Data and Functions
4.1 Result Rank 1
4.2 Result Rank 2
4.3 Result Rank 3
4.4 Result Rank 4
4.5 Arbitrary Rank

36

Fig.1 — Greek Domestic Light Transport Flights for May 1983

 CONTENEY OF E.R. Gane aonocTATeS, (GN Tau 4nn7.‘Sus SATA EOPYTSOT sume RY OFFICIAL AimIM avTOPA Tur,. OM BROOK BLLEWOIR

Fig.2 — Total Reserves minus Gold (Billions of U.S. Dollars)

QUARTERS
Lesenw-

—_iTas

 PROOUCEO USING <PLOTSOH>,,....1.P, SHARP ASSOCIATES

Fig.3 — 1.P. Sharp Associates London Office Location

Victoria
Station

132, Buckingham
Palace Road.
(04) 730 4587

Victoria
Coach
Station

produced with I.P. Sharp SAGA graphies utility
 38

Fig.4 — Computer Aided Instructions Using Graphics

S Wa are trying to find a tax of distance which 19 notaffected whether we use one or other of tno systeas ofcoordinates in untfora tranglatory relative motion.
Go on then master,
© Imagine there are two stailarily opiented synchronisedspace-time reference franes A and B and that @ tsroving at velocity ABXiV tn tha X$ directionrelative to a,

Suppose also that at the moment xhen thetr origins aeetboth as and Q's origin clocks read 12. At thisanstant a candle ts uncovered at the comson origin. Twoobservers, one at the origin of frase 4 and the other at
the origin of frase & agree that the Light departed at42 o°tTock, A second opserver tn frame @ ts naturally
stationary with respect to the first tn @ dut txsituated vertically above hia. Te distance tn miles
between thes is given by € tines the deciaal hour on
his clock, Gf, when the light arrives,

while the Light 19 travelling along axis BX2, the holePeference frase B 1s soving relative to 4, If, shenthe second observer tn @ receives the Light signal,there happens to be a second observer in A at thatposstion, the question is; what ts the reading on his
clock?

He There are four observers altogether, Two in A and tacan @, One in A and one in @ are coincident when theLight departs, end one in A and one tn B are coincidentwhen the Light arrives.
Let's assume Geciaal clocks et the common ortgin whichboth read zero when the Itght denarts. The second clock inAreads aT and the second clock in @ reads Bf ataplace and tine the Light arrives, Accaraing to A the &clock has moved a horizontal distance

ABXLVEAT
and the Tight has travelled # diagonal distance

oxar
while for A the Light has travelled a vertical distance

car
The sttuation can be summarised in a right angledtntangie.

\ aay)\‘fo7

exer

Applying Pythagoras to this triangla gives the relationbetween tho readings on the clocks tn A and 2 a3
Fetefry) O17
“FACT'FAT*BYKT (ABXLY, 00)

Tadait {am surprised that clocks at the same place readonfFerently. Surely 12 48 just an illusion that tise cango at different rates in different frames of referenca,

39

Fig.5 — Set of Typefaces
 Light Block (Roman Simplex)

Heavy Block (Roman Duplex)
Light Serif (Roman Complex)
Heavy Serif (Roman Triplex)
Light Italic (Italic Complex)
Heavy Italic (Italie Triplex)Light Serint (beriot Simplex)Haaoy Feng (Sen BonesEnglish Gothic

German Gothic
Ltalian Gothic

Fig.6 — Rank Five Complex Array
 yassieWt

pad Vvyay VANyu VN

1 it \ \NONON
1d \\ NNN
| VN NNN

NAN aNNN satNAS sas
NNN ~ NN ~~
NNN ~~ ON mse S
NNN ~~ ONO ~~ S

- mae 444
- ao, amo 44a
- a aoe 44a

ee
e

cr
e

re
e

AN
N

NA
N

NA
AN

40

APL IN THE INFORMATION CENTRE

Compiled by Adrian Smith .
The second Association meeting in 1984 washeld on Friday 16th March andconsisted of two
papers and a paneldiscussion,all centred on the themeofthe ‘‘Role of APLin the Information
Centre”.
Romilly Cocking of Cocking & Drury gave talk on ‘Setting up a CompanyInformation Centre"
and the next article represents notes on his seminar produced by Wendy Hoare of Rowntree
Mackintosh, whom | would like to thankfor her pains. If Romilly Cocking disagrees with any
of this transcript, there is a simple solution: send us your owntext instead!
The next talk was by Fred Perkins of i.P. Sharp Associates, entitled ‘The Global Information
Centre.”’ The notes are mine; the same remedy applies in the event of a complaint about
misrepresentation. | have not devoted much space to this most interesting talk which was
nevertheless thinly disguised sales pitch. No doubt I.P. Sharp Associateswill oblige with glossier
and more detailed documentation on demand.
Finally a mostinteresting panel discussion ensued which| have attempted to summarisein the
dialogue that ensues.

41

SETTING UP A COMPANY INFORMATION CENTRE
by Romilly Cocking

Definitions and Objectives of an Information Centre (IC)
Astrawpoll ofthe audience revealed that 10 outof 80 felt they knew whatan Information Centre :
was and 12 out of 80 felt their view was based on the IBM concept! 1
Romilly Cocking began with a coupleof rather cynical definitions of an IC, namely:-
“The best sales aid IBM has developedto date”’
and

“The DP departmentpacifierfor irate users” — to distract their attention from applications that
are late, wrong or way above budget.
Amore positive definition put forward the purpose of an IC as providing the hardware, software
and support to enableall employeesto satisfy their information needs by being able to:-
a) get at information
and
b) useit
without becoming DP professionals.
Romilly Cocking (RC)stressed the need to keepin view the benefits to the organisation of providing
information, which may be one or moreof the following:-

a) To help directly or indirectly to increase sales :
b) To help directly or indirectly to reduce costs

42

c) To improve cash flow
d) To meetlegalor corporate requirements
The IC’s contribution to these objectives would be in the form of:-
a) better decisions
b) better control
c) better planning
and in helping communicate these decisions to people and justifying them.
The IC may also contribute to greater efficiency by enabling fewer people to do the same work.
Justification for an IC
The biggest problem, whendeciding whetherto set up anICis that of costjustifyingit in numeric
terms.It is impossible in many cases to demonstrate savings. RC proposedthatit should be
viewedas going into a separate business,with the associated risks and suggested taking a good
look at the experience of other companies before doing so.
Onceestablished,it should be operated as a businesswith a separate cost centre from the rest
of the DP department, paying its way within the organisation as a bureau service.
IC Personnel
RC stressedthat the !C would be a service business, with people asits key resource,not the
hardware.Thelevelof staffing is an area of contention and the audience wereinvited to make
suggestionsasto an effective ratio of support staff to users. Opinions werevaried,ranging from
4:4 up to 1:70. 1BM apparently recommendsa ratio of between 1:30 and 1:100 which in RC’s
opinion, would be very unsatisfactory if trying to balance desirability against practicality. A more
realistic and effective ratio would be somewhere between 1:5 and 1:20. Anywhere below that
would be merely providing access to hardware,rather than providing an Information Centre.
Of the personal skills required within an IC, he suggested that some people would need to be
salesmen,others highly skilled technically and all shoutd be good at handling people. Furthermore,
experience in the form of a ‘‘veteran”’ from a bureau is almost a necessity.
Software
Assumingthat the quality and levelof staffing is right, the next most importantfactoris software.
Great care mustbe taken in choosing software that is easy to use and allows users to get at
corporate data and processit. Itis difficult to change products once users have becomefamiliar
with them. Theywillbe reluctantto re-train and therefore a long term view should be taken when
selecting software.
Ontherole of APL in the IC, Romilly Cocking’s view on VS APL (as opposedto other APL’s)
wasthatit was adequate but notideal due mainlyto its restricted file handling capabilities. APL
onits own would not meetall of the information requirements and has proven not to be an end
userlanguage. The majority of end users don’t wanttolearnit and favourthe “point and grunt”
approach which ADRSand ADI have attempted to provide. In RC’s opinion,he doubts that APL
Is ideal for spreadsheettype applications.

He hadlittle to say on other software products, but mentioned the “IBM approved” packages
Wizard andIntellect as looking good and being purchased by several! companies.
Hardware
RC emphasised the benefits of having a completely separate mainframefrom that used to process
the operational systems. He warned that CPU usage would grow rapidly and that there would
inevitably be a battle over chargesif a machine were shared. This would result in a clamp down
on usage bythe IC and the consequentneed to turn away customers. Costing would be much
easier on an independent machine.
Onthe question of size, he warned that anything smallerthan, say, an |BM 4341/G2 would soon
be inadequate.
VM would be preferable to TSO and CMSshould support a larger user base.
As well as a mainframe, the IC should support a network of VDU’s and PC's with provisionfor
hooking up PC’s with the mainframe.Transferral of data between PC and M/F asyet presents
a problem,with various partial solutions but no satisfactory universal one.
Operating the Information Centre
Education, consultancy and support are amongthe responsibilities of an IC and Romilly Cocking
suggested issuing a newsletter, arranging seminars andsetting up a help desk as just some
ways of meeting them and makingthe IC moreeffective. IC staff should spend time with users,
tind out how they operate, since it may not be obvious to them how the IC can help. The IC may
becomeinvolved in developing software with users, which RC saysis a goodthing.if users are
encouraged to develop systemsentirely independently, they will usually either fail completely
ofif they are successful, will be tempted to tackle larger systemsandwill inevitably meet and
try to solve the same problemsthat DP met and overcameyears ago. !BM maintain that the
IC should not becomeinvolved with development, but oneof the original reasons for setting
up anIC wasto help clearthe backlog of systems waiting to be developed and implemented.
The IC can and should take on someofthe small developments and complete them morerapidly.
Summary
RC summedupbystating that the IC concept has workedandthatis possible to identify specific
projects which have been costeffective. It gives management a tighter grip on individual
developments and ensuresthat direct savings can be achieved.
Ifthe IC is set up properly, therewill be rapid growth andit is essential to sort out the charging
system right from thestart.Itis much easierforthe !C to establish whether and howitis contributing
if each project is costed out. Therefore, when sales revenue growsrapidly, there will be ample
justification for expanding its resources.
The talk ended with the questions“Is the IC a revolution in computing and should it be staffed
from outside DP?” RC maintainedthat there are often revolutions in mainstream DP and that
the Information centre needs the continuing skills from it.

THE GLOBAL INFORMATION CENTRE
by Fred Perkins

This talk also began with a rather cynical view of information centres and leadingupto it was
ashort history of their beginnings.Inthe mid-to-late 70’s, at atime when users and DP departments
were growing apart, backlogs were getting bigger and users were getting angrier. IBM came
up with the conceptof the Information Centre and marketed it extremely well. They gathered
together a collection of applications software, which, in the handsof the users would put the
emphasis back on them, with support being provided by DP. The outcome? — “Never have
so many waited so expensivelyforsolittle” — according to Fred Perkins. He cited someof the
problems associated with IC’s:-
a) userisolation
b) lack of tools to help make systems portable
¢) Growth/migration problems
d) tools not part of the IC concept
8) incompatibilities between mainframe and PO's
f) packagesin different languages
g) inability to access data outside the company and acrossdifferent systems.
Therestof the talk was devoted to the IP Sharp Global Information Centre. Itclaims to overcome
ail of these problems mainly due to the following:-
a) Single development language — Sharp APL,identical on the PC to that on the mainframe.
b) Worldwide communications network,with accessto the world’s largest on-line library of numeric

data bases.
¢) Sophisticated applications software products.
d) Fult support for a wide variety of hardware devices.

45

RC:

FP:

RW:

MG:

TM:

DP:

RC:

FP:

FP:

TM:
RC:

PANEL DISCUSSION ON INFORMATION CENTRES
RC Romilly Cocking ‘Cocking & Drury)MG sMark Griffiths ‘APL consultant)TM Tony Moore ‘ex Tesco)FP Fred Perkins 1.P. Sharp Associates)DP David Preedy Imperial Group)
RW Richard Watkins CAC]

Q Indicates a question from the floor
22 Indicates an unattributed comment from the panelorthe floor

How do the so called ‘4th Generation Languages’fit into the Information Centre strategy?
Can you be sure they will work 5 years on? IBM have landed pienty of people in thecart with VSPC — they could just as well do it with FOCUSit they chose.
“APLis the only language anythinglike a 4GL!"” (James Martin); what does 4GL mean
anyway, and are such languages capable of wide adoption?
They are Report Writers to deliver tools to a user in a way which doesnotdistract himfrom the task in hand. They are tending to moveto more ‘English-like’ syntax, and pro-
ducts like Focus certainly have a long life ahead of them.
4GLsarestill a DP-oriented product. APL allows usersto do their ownthing; 4GLs are
productivity aids for DP (RW: yet the salesmen aid them at users?!)
(f NOMAD,SASSandthe rest don’t run in 5 years’ time, a lot of users really are introuble!, Many companies already have a variety, and find it hard to link them — APL
can come in handy as ‘glue’.
This proliferation may be a barrierin itself — maybe a genuine English ‘front-end’ willsoon be necessary?
Thereisstill a DP backlog, with many projects not being tackled why??
Faster hardware hasn't helped much; the human resourceisstill the limiting factor.Weshould look seriously at APL even for very large DP systems (Gigabytes upwards).
Programming may be quick in APL, but for big projects the programmer'stimeis onlyasmaill fraction; often APL programmersare lousy at project management,which doesn'thelp. If the 4GLs don’t deliver the trend will continue — the user demandsfunction,not a setofarbitrary rules to learn. No-one bothers how VisiCalc works — theyjust seeit!
What about data; do we provide duplicate copiesin all sorts of different formats?
The user doesn’t care. He needn't know wherethedatais, and in general you should
convert it when needed; you can’t keep 6 copiesof a real-time database up to date.
Atthe momentthereis no satisfactory answer on IBM systems. Maybe DB2will help?
... it probably will, but golly will it mop up the CPUI

46

RW:

Rc:

FP:

TM:
22:
2:

eR?

22:

If you have spent 10 years building a set of systemsthe physical structuresarelikely to
be totally wrongfor the IC. Copying may be the only short-term solution.
VS APL finds data access and resource control hard — hence the recommendation to
putit on a separate machine. Sharp APL cansharefiles sensibly on the main machine.
4GLs have this problem too — problems of double updating andintegrity canstill force
seperation and copying.
What effect will the Macintosh have? it looks more suitable for a coffee table?!
People want windowing,but no-onequite knowshowit will work with large volumesof data.
Nothing an IBM 3279 can do remotely resembles the Macintosh.
Are touchscreens a gimmick— after a month people prefer to type anyway becauseit’s :
a lot quicker?
The Sunday supplements havea lot answerfor — they have boosted expectationsfor
hardware and increased demand, but done nothing to increase resources.

Someof us are just as guilty. In the hands of a real expert APL is a superbly powerful!
modelling tool — much faster than the 4GLs, Hencea sniff of it raises the user’s
expectations, duly increasing that DP backlog!

47

COMMUNICATING WITH APL
Compiled by Adrian Smith

This meeting took place in London on 27 March 1984, and featured three speakers.
Richard Nabavi of MicroAPl described an example of a mixed Ethernet network of local
microcomputers. He has thoughtfully documented his seminar and wereprintthis overleaf.
John Pym of Inner Product showed how Prestel could be used asa publicly available networking
system. His theme wassuspiciously similarto his paperfor last year’s APL Business Technology
Conference, but we enjoyedhis brand of offbeat humour so muchthat we've included his paper,
after one or twotidying up operations.
Finally Tim Perry of APL People spoke about the use of APL within IBM,a talk that | have
documented based on mynotesof his presentation.

48

NETWORKING APL MICROCOMPUTERS
by Richard Nabavi

Whatis Networking?
Ofall the buzzwords inthe computing industry,‘Networking’isthe one whichis the most misused,
and yet the mostindicative of underlying user needs for computingin thelate 80s. Just as in
the early seventies, ‘Interactive’ and ‘Real Time’ were regarded as the adjectives to lookfor
in assessing computer systems, today manufacturers all claim that their systems have a
networking capability.
In reality, networking can meandifferent things. Looking through the computer magazines,
there seem to be three main ways in which the word is used (or misused). These can be
described as Point-to Point, File Serving, and True Networking.

Point-to Point Networks

Manyvendorsof ‘networking’ products are in fact talking about something very simple. This
is illustrated in Figure 1, and a typical example of such a system is Clearway, a product of
Real Time SystemsLtd. Essentially, whatthis consists of is a coaxial cable (or, more generally,
any meansoftransmitting messages, such asa fibre optic link) into which a numberof devices
canbe linked. Typically, the devices which will be hooked onto the cable will be terminals,
printers and computers. Theidea is that, instead of wiring terminals and otherperipherals
to computersvia ordinary ‘RS232' cables, the networkis used insteadto provide a multitude
of point-to-point links between the various devices. [n other wards, this sort of ‘network’ is
really doing nothing except making neater the connections between devices, which otherwise
would be connected via a messof independent cables.
The advantages of a system such as Clearwayare obvious. As new devices are added, you
do not need to rewire your building. A single terminal can switch betweendifferent computers
under software control, instead of having to replug RS232 cables every time you wishto log
onto a different computer. This is a lot more efficient than conventional wiring, plugboard
and switches, but these sorts of systems should not be confused with networking of computers,
since they do notallow the sharing of data between different CPU’s connectedto the network,
They represent a very useful simplification of the problemsoflots of data cables around a
building, but they do notinvolve any radically new approachesto data processingor the way
in which computers are used.

File Serving Networks
Manyof the claims which computer vendors makefor networking capability refer to something
which again should not be confused with true networking.This is what I call the File Server type
of system. The philosophybehindthis is againfairly simple, and can be very useful. The ‘network’
is built around a single central computer, usually with a hard disk and perhapsa printer and
other peripherals connectedtoit, into which are connected(in a ‘star’ contiguration) external
satellite computers (see Figure 2). These satellite computers will usually be small microcomputers,
with nodiscfacility at all (or perhaps with a small amountof floppy disc storage). The ideais

49

that hard disc storageis relatively expensive, and that users in many applicationswill wish to
share commondata. Note that, in this type of system, the computersin the networkfall into
two distinct classes— File Servers (of whichtherewill usually be only one), and Satellite Units.
A numberofpoints should be apparent. Thefirst is that only the File Servers need to have an
advanced, multi-tasking operating system. This is because the Satellite Units are supporting
only one terminal, and, when a requestis made, for example, to read a record from file, the
Satellite Unit which madethe requestwill wait until the record is returned as data by the File
Server. The second pointis that the expansion capability of the networkislimited by the response
time of the central File Server. Essentially, we have only one computerservingall the disc
read/writes for everyone on the network, whichis not much better than having only one multi-
user computerin thefirst place. Thirdly, although there may be peripherals such asprinters
or graphplotters attached to someof the Satellite Units, these will not be accessible to other
Satellite Units. In other words, we are re-creating the conceptof a central computer— comprising
discfiles and peripherals —which is accessed by remote users, who mayor may not have some
local printing facilities. For many ofus, it was to get away from the restrictions of centralized
computing that wefirst turned towards microcomputers, and the re-creation of a central computer
is like bringing back the bath water with the baby.
True Networking
By nowit should be becoming clear what | mean by a true networking computer system. The
characteristics are:

—_ Theability to connect together a number of computers, each logically equivalent
as far as the network is concerned;

— Eachofthe computersonthe networkto be single or multi-user as is most convenient:
— Eachof the computersto havethe possibility of disc storage, although the amount

and type of storage will vary between the different machines;
—~ Each of the computers in the network to have the possibility of being connected to

a numberof peripherals;
— Any user on any machine on the networkto be able to access(transparently to the

applications software) anyfile on any disc on any machine in the network (subject
of course to normal security checks);.

— Anyuser on any machine on the networkto be able to access any peripheral on
any machine on the network;

— Full multi-user controls including file and record locking to apply across the whole
network.
Further features which in practice we have found desirable are:

— Theability for any userto initiate a task on a remote machine,either attached to
his terminalor to run as a background task. A good example wherethis is usefulis
to start a print spool job on a remote machine;

— Theability to connect simultaneously to several networks;
Figure 3 showsa typical small configuration, whichisin fact MicroAPL's in-house network system.
Operating System Support of Networking
Mostdiscussionsof networking concentrate on the characteristics of the physical connection
betweendevices on the network. Unfortunately, most computers in use today are based on
operating systems which were conceived before networking was developed. This means that
networking hasto be added on asan ‘extra’, and is not built-in to the design of the systems
software. The consequenceofthisis that limitations have to be imposed on what you can do
with the network. For example, some major manufacturers have announced Ethernet connections
betweentheir computers, but when you cometo examinethe capabilities in detail, you find that
the only way in which data can be accessed on a remote machine is by copying the whole

50

Fig.1 — Point to Point Networking

aaa cH —, cv
Cl oS oo ca

USER TERMINALS:

Fig.2 — File Server Networking

-Ye

Fig.3 — MIGROAPL In-House Network

PLOTTER SAGE
IEEE488 o—Se i*I"3

DEMONSTRATION TERMINALS ia

acousTIC MATRIX SPECTRUK : walCOUPLER PRINTER a<P cr

oe .. — H
I lpL_ |L_| L_| 3La 3‘APL OEVELOPHENT AND SUPPORT YDUS 8

SPECTRUN lDaisy wATRIX2 ae a

FINANCE Lod SALES |

51

file from the remote machine to your home machine.
In orderto illustrate the way in which networking can bebuilt in to the system software of amodern
computer,let us look at MIRAGE,oneofthe few operating systems which was designed right
from the beginningto caterfor network operation, MIRAGEis a multi-user, multi-tasking operating
system which waswritten by a UK company, Swifte Computer SystemsLtd, for Motorola 68000
computers. It has been in use since 1981 on MicroAPL's range of 68000-based micros, and
it implements networking in a very simple way.
To understand the wayin which MIRAGEhandle networkfile accesses,letusfirst consider how
the operating system refersto a file on a single machine.Files are organizedin ‘directories’
on logical discs on the system. For example, suppose a user wantedto type out the contents
of a text file called ‘SYSTEM.HELP’which wassitting in the ‘DOC’ directory onlogical disc 3
of his machine. Using the MIRAGEutility ‘TYPE’, he would enter at the keyboard:

TYPE DSC3:SYSTEM.HELPIDOC]
‘DSC3:' refers to the name ofthe logical disc on whichthefile resides, the directory in which
it resides is entered between square brackets, and thefile nameis dividedinto a main file name
(‘SYSTEM’) anda file extension (‘HELP’). As a convenience,it is not always necessary to enter
all of this information, since each userhas a default disc and directory into whichheis ‘logged’,
and which he can changeat any time. For example, by entering:

LOG DSC3:D0C
he can changehis default directory to be DOC on DSC3:. If he then enters:

TYPE SYSTEM.HELP
the operating system will by default lookforthefile in the correct place.
The extensionof this to a networked system is simple. As well as specifying the directory and
disc on whicha file is to be found, you specify a machineon the network. This is done by adding
to the front of the file name a ‘Node’ name(‘Node’ means machine on the network). This is
distinguished from the logical disc name by being terminated by two colons rather than one.
The home machineis always ‘SYSO::’. Thus, in the example above, the user could if he wished
have usedthefull file name:

TYPE SYSO::DSC3:SYSTEM.HELPIDOC]
This means: Type out the file SYSTEM.HELP,whichis to be found in directory DOC on disc
3on my home machine.To accessa file on a remote machine, you simply change the Node
nameto that of another machine on the network. For example, a user on a remote machine
who wanted to type out the samefile might enter:

TYPE EXT4::DSC3:SYSTEM.HELP[DOC]
where EXT4:: is the name(as viewed from his computer) of the machine on whichthefile resides.
Naturally, it might becomerathertedious to haveall the above informationforevery file reference,
so you can log into a remote directory. For example:

LOG EXT4::DSC3:D0C
would cause the default node, disc and directory to be the ones we were interestedin.

52

Another couple of examples should give an idea of the possibilities. To copy a wholefile from
a remote machine to your own:

COPY SYS0::DSCO:MYHELP.DOCIHELP] = EXT4::DSC3:SYSTEM.HELP[DOC]
This copies the file SYSTEM.HELPfrom the DOCdirectory of disc 3 on remote machine EXT4::
tothe HELPdirectory of disc 0 of the user’s home machine, renamingthefile to MYHELP.DOC
in the process.
To copya file from one remote machine to another remote machine:

COPY EXT6::DSCO:MYHELP.DOCIHELP] = EXT4::DSC3:SYSTEM.HELP[DOC]
This is the sameasthe previous example,exceptthat thefile is being copied from remote machine
EXTA4:: to remote machine EXT6::.
High Level Language Support of Networking
Clearly,all the abovefacilities areoflimited useif they cannotalso be used by high-level languages
such as BASIC,Pascal, APL, and so on. Equally, in a true networking environment, applications
software such as word-processing software and spreadsheets shouldbeable to accessfiles
anywhere on the network. This again shows how importantit is for networking capabilities to
lie right at the heart of the system software, so that high-level support for these facilities should
‘fall-out’ automatically without special arrangements. We can see how this works by considering
how APL.68000 under MIRAGEcanaccessfiles across the network,
Letusfirst consider how APLfindsfiles on a single machine. The user might, for example, enter:

)LIB
which wouldprint out his default library of APL workspaces. He can also access up to 9 other
libraries, by (for example) asking for:

JLB 5
Whatin fact happenshereis that the APL interpreter maintains,for each user, a table (technically
an APL system function Quad-MOUNT) ofhis currentten libraries. By default, these are logical
discs 0 to 9 on his home machine,with his default MIRAGEdirectory. Thus, the default table
looks{ike this:

SYSO::DSCO:JIM
SYSO::DSC1:JIM
SYSO::DSC2:JIM

At any time, the user(orthe applications program) can modify anyorall of the rowsofthis table.
For example,thefirst three rows of the table might be changedto:

SYSO::DSCO:JIM
SYSO::DSC4:MARY
SYSO::DSC5:LUKE

This would meanthatlibrary 0 would bedirectory JIM ondisc0,library 1 would bedirectory
MARYondisc 4, and library 2 would be directory LUKE ondisc 5.

53

The extension to a networked configuration is obvious and very simple. You simply specify the
node for each logicallibrary. For example:

EXT3::DSCO:APL
EXT6::DSC3:SUE
EXTS::DSC2:DAVE

In this example,libraries 0, 1 and 2 are all on different remote machines.
Forthose familiar with APL.68000,note that as well as workspaceloading, saving, and copying,
the Quad-MOUNTtablealso specifies the location for componentfile accesses using APL.68000's
file system. Up to ten different nodes/discs/directories may be specified using Quad-MOUNT.
If this is not enough, you can change Quad-MOUNTdynamically under program controlto give
access to an unlimited numberoffile locations. In addition, print spoolfiles may be directed
to a remote machine, as mayarbitrary input/output, so that, for example, a graphics package
May producegraphsona flat-bed plotter which happensto be connected to different computer.
The importantthing to appreciate hereis that an application program,written in APL, need not
be modified to run off a file on a remote machine. Supposethat, for example, we have written
a managementinformation system which wasoriginally designed to run on a single machine,
with files on DSCO: and DSC1: of that machine. Later on, we link the machineinto a network,
and we wantusers on any machineto be able to access the samefiles, without changing our
applications software. All that is necessary is for the above table (the ‘Quad-MOUNT'table) to
beinitialized to set up thefirst two rows for access to the machineon whichthefiles exist, and
then the userwill be able to run the application without any changes.Theinitialization can of
course be automatedso that the user is unawarethatit is happening,if desired.
Accessto the networkvia other languagesis similar; essentially, we merely change the node
part of the file name to go to aremote machine.To run the word-processing software off a remote
disc, you simply LOGinto the remote directory before runningit. With the single exception of
onepieceof software which maintains memory-residentdisc buffers,all programswritten under
MIRAGEcan run unchanged across a network.
File and Record Locking on a network
Probably the most embarassing question you can ask a supplier who claimsto support networking
is whetherfile and record locking operate across the network. The importanceof this question
will be obvious to anyone who has experiencein writing multi-user applications software, since
by definition networked systems are multi-user. A quick example should show what we mean.
Suppose we have a stock contro! system, andthefiles can be updated both by the GoodsInwards
department and by the Goods Outwards department—which seemsreasonable. Considerthe
case where a consignment of 100 Size 10 Wonderflangesarrives, and at about the sametime
an orderfor 18 of the same item is being despatched. The stocklevel beforeall this happensis 134.
The Goods Inwards people go to thelr computer terminal and call up the stock recordfor the
Size 10 Wonderflanges, and at the same time the Goods Outwards people also do the same.
Goods Inwardstype faster, and so theyenterthe arrival of 100 items, to make a stocklevel of
2934, and the recordis written backto thefile. Meanwhile, Goods Outwards seethat there were
134 items in stock, and they entertheir Goods Outdetails to reducethe stock to 116, and this
recordis written back to the stockfile, overwriting the record which Goods Inwards have just
written. Thefina! result is that the stocklevelwill be erroneously recorded as 116 instead of 216.
This is an absolutely standard problem in multi-user systems, and careful consideration will show
that there is no way to avoid the difficulty unless the operating system maintains some form

54

of file or record locking feature. What happensthenis that, before updatingthefile, the record
is ‘locked’ and no other user can accessit until the update sequenceis complete. Depending
on the sophisticationof the operating system,this lock might be on the wholefile, or on specified
records,andit mightbe a lock againstall accesses,or only againstwriting. Whatever arrangement
is used, a commercial multi-user system must have someform offile lockingif multiple on-line
file updating is to be possible.
Exactly the same considerations apply to networked systems.If true networked processingis
to be possible, any user mustbe ableto lock any file on any disc on any machine onthe network
(again, subjectto security considerations). MicroAPL’s systemscanin fact providefile and record
locking across the network,as well as providing twolevelsof lock (read only or read/write). Again,
the fact that the lock is occurring over the networkis transparentto the applications software.
Case Study No.1: Imperial Group
Sofar we haveconsidered thefacilities offered by MicroAPL’s networking softwarein theory.
How doesit work in practice?
One example of a network used by a MicroAPLclient is a group of large MicroAPL Spectrum
supermicrosinstalled at the London headquartersof Imperial Group. These systemsserve over
thirty users, with a large numberofdifferentprinters, graph plotters and otherperipheralsattached
to the machines on the network. The multi-user machines are used for two main (related)applications:
~ Consolidation of the management accounts of the various companiesin Imperial Group to
provide an overall set of Group accounts.;
— On-line display of thousandsof graphsdetailing performanceofthe differentparts of the Group
against budget, previous year’s performance, etc. This is done on Tektronix colour screens
installed in the boardroom andin theoffices of the senior executives of the Group. Hard copy
of graphsis produced on Hewlett Packard flatbed plotters.
This instalfation is an exampleofthe use of networkingto createalarge effective logical computer
out of a numberof smaller machines.Initially, two separate machines were purchased (one for
eachof the above applications) and data transfer between the machines wasvia magnetic tape
cartridge. Theinitial two machines were gradually expandedwith extra memory and extra I/O
ports, and thenlinked together using an Ethernetlink to facilitate exchange of data between
machines. Subsequently, further processing power was addedbylinking in another machine
with a largerdisc capacity. At the timeofwriting, the installation has beenbuilt up to an overall
system of48 RS-232I/O ports, approximately 8 Megabytes of RAM,and 144 Megabytesofdisc
capacity, with two tape drives for back-up and data exchange.
A numberof benefits accrue from this approach. Extra capacity in terms of CPU power, RAM,
disc capacity, I/O ports and peripherals can be added as and whenit is needed, with no need
to changesoftwareastheinstallation grows, The use of several independent computers on a
networkgives the advantage of some degreeof fault tolerance whilst permitting the sharing
of common data and peripherals. Data can be backed up on to a remote machine, reducing
the need for expensive tape units and simplifying backup and recovery procedures. New releases
of software can betested on one of the machineson the network, with accessto the real data,
whilst maintaining the previous version on other machineson the network. System maintenance
— bothin hardware andin software terms— is easier than it would be ona single minicomputer
of comparable overall performance.
Case Study No. 2 — BASF
The Imperial Group system is an exampleofatightly-coupled set of machines;the only practical
alternative to their network of supermicros would be a minicomputeror small mainframe.A different

55

type ofinstallation — builtoutof similar building blocks— is to be found at the large BASF complex
at Ludwigshafen in Germany.
BASFhavepurchased a numberof MicroAPL Spectrum machinesofdifferent configurations.
Theseinclude machineswith 5" and 8” floppy discs, 5’’ Winchesters, 36 Mb 8"’ Winchesters
and 72 Mb 8”Winchesters. The systemsare usedfora variety of applications and are scattered
aboutthe very large site. Some are usedin multi-user mode,others are single-user dedicated
systems. Devices connected to the systems vary betweenordinary terminals andprinters to
laboratory instruments. The systemsare used forscientific and engineering work, as well as
straight commercial work.
In this case, an Ethernet cable of 1.5 kilometres has been usedto link together the various
machines. The purposehereis to‘allow simple exchangeofinformation (even though someof
the systemsareofdifferent configurations so that they cannot,for example, swapfloppy discs
to exchangedata), and to avoid theisolation of having separate computersin variouslocations.
Whereasin Imperial Grouptheeffectofinstalling networking has bento create effectively one
large logical computer, heré the different computers are exchanging dataless frequently and
are not necessarily runningrelated software. Theinstallation of the network has meant improved
communications, easier exchangeof programsin a development environment, and access across
the network to any peripheral, disc or tape on any machine.
The BASF network is thus an example of a network of powerful micros which could run
independently, but which form a much moreflexibia set of systems whenlinked together. The
alternative would have beentostick with a collection of non-networked microcomputers,with
all the disadvantagesofisolation which that solution can cause. The problems of non-linked
machines would have been particularly bad in view ofthe size of the Ludwigshafensite; whereas
in many cases it may be acceptable to walk from one machineto anotherwith a floppy discif
you want to exchange data, whenthe other machineis a mile away you do not wantto dothis
too often,
The real challenge — true multi-vendor networking
The systems we have beentalking aboutso farare very flexible, butare limited in one very crucial
respect.Thisis that the computers connected to the network have tobe running the same operating
system. Thus, you cannot simply take an assortmentofdifferent computers from a variety of
manufacturers and link them together.
True multi-vendor networking doesnotexist atthis moment. Whilst a numberofspecialist suppliers
have worked onbridging this gap,the solutions offered for multi-vendor networking haveto be
very restricted. Thisis not surprising, since thefacilities offered by different operating systems
— let alone how those facilities are implemented — vary enormously. Therefore the idealof
beingable to accessfiles on any machine on the netwok,irrespective of the make and model
of the machine,is very far off.
Worsethanthis, even if you could load a program from a remote machine into a computerof
a different type, this wouldstill only be of limited usefulness. Try to run a program written for
the 8086 chip in an IBM PC on the 68000 processorin an Apple Lisa and you will not get very
far. Even pure datafiles will be of different formats for different machines, with the possible
exception oftext files which arefairly standard. Even Unix does not provide machine independent
program and datafiles, becauseof the multiplicity of different Unix versions andthe fact that
manyprograms are compiled into the native code ofthe machine they run on. The establishment
of accepted vendor-independentstandardsfor connection of systemsisstill at a fairly early stage,
although someprogress has been made.
Having said this, at MicroAPL we have lookedinto the question of providing at least some

56

machine-independent networkingfacilities, by effectively emulatingthe MIRAGEoperating system
networkinterface on different machines. This would at least provide accessto data on various
remote machines,although the applications program might have some conversion to make use
of the data. This workis only at a very preliminary stage, but we have at least established the
technicalfeasibility of the approach, and we hopeto workwith a couple of our existing customers
over the next eighteen monthsto set up a working system providing accessto various mini-
and micro-computers.
Conclusion
Networking of small computersisstill at an early stage of development, but customers today
canalready reap very real benefits from the workthat has already been done. The main obstacles
to developmentarethelack of general standards for data exchangeatthefile level, and the
fact that most operating systemsin use on small computers were not conceived with networking
in mind. The term ‘networking’ is used in manydifferent senses, and vendors’ claims should
be examined carefully to establish exactly whatfacilities are offered, and what software support
they require.

57

THESOLUTION TOYOURAPL QUESTIONS
on IBMPCorMainframe.INNERPRODUCT

Forfurther information, contact JAMES MANNING,Marketing Manager,Inner Product, Eagle Hou
73ClaphaamCorcommonnSosuthside, London SW4 9DG,ortelephonerB73‘3354,

INTERFACING VIEWDATA AND APL

by John Pym
“Learning is learning notto think about operations that once needed to be thought about. We
learn to make processesofdeliberate thoughtinstinctive and we learn to make automatic and
instinctive processes the subject of discriminating thought.” Sir Peter Medawar.
Viewdata Systems
Viewdata systems provide a simple and effective means of accessing a large database of
information. One or more mainframe computers contain thousandsof “‘pages” oftext. A page
of information representsa string of text that will fit on a standard television screen, 24 rows
by 40 normal characters or graphic symbols. The mainframe computersare linked to the user
of the viewdata system by telephone via a modemto a display device. This display device may
be either a standard television, VDU or microcomputerscreen. The useraccessesthe viewdata
system bydialling a local number,orif the modemis ‘‘smart’'by pressing a key on the modem
to dial the number,or if using a microcomputer by having the software program the modem
to dial the number. The user signs on to the viewdata system by typing an identification and
a password. This again may be done automatically by the software on the microcomputer,in
which case the password could be checkedbythe software on the microcomputer. Once signed
on the user may access any page directly by typing the page numberor from any given page
specify a numberfrom 0 to 9 which determinesthe next page to be shown.Notall pages need
provide the full ten choices. The definition of which pageswill be connected to the current page
is made bythe information provider.
{n fact the pages held by the mainframe computer form a network in whichit would be possible
to accessanyoneof a million pagesdirectly with only eight keystrokes,or be directed through
a sequenceofjust six directory pages, just six keystrokes,to any particular page.Itis possible
to be directed '‘down”’to pages providing more detailed information on a particular topic, but
you can then be directed back “‘up’by a different route from the one you came‘down’.
The standard viewdata modem sendsto the mainframe computerat 75 baud but receives from
the mainframe computer at 1200 baud. This meansthat sending is fast enough to cope with
the speedofthe usertyping the few characters needed to requestthe next page,butthe response
time required to send the thousand orso characters representing the page is small.In addition
the system operatesin full duplex, so that the user may requestthe next page evenifthe system
is in the middle of displaying the previous page. so that to see choice 2 from the current page,
choice 8 from that page and choice 3 from that page, entering 283 will immediately display the
last page and omit display of the two intermediate pages.
Microcomputer/Viewdata Interface
The microcomputer can be programmed to act as a television with viewdata attachment, in which
caseit will allow the display of pagesin exactly the same fashion asthe television system does.
Butgiven theability to program the microcomputerit is possible to provide additionalfacilities:
a) Save pages on disk.
b) Recall pages saved on disk when off line.
c) Display two pagesat once.

» d) Changing resolution of display.
e) Programmable baudrates.
f} Programmable useridentification.
g) Interface to other packages on the micro.
h) Interface to other languages on the micro.

59

Thelastfacility is of interestasit is posible to make the information contained on a page available
for further processing. Currently two interfacesare available from Inner Product, one to BASIC
and one to APL.
APL/ViewdataInterface
The interface to APL consists of a single APLfunction. Theleft argumentis a numeric or character
string and the right argumentis a function number. The functions available are:
a) Set baud rates for send and receive.
b) Send characterstring to viewdata system.
c) Send characterstring to viewdata system and await reply.
The result is returned as a characterstring which may then be saved or manipulated in any way
desired using APL.
interfaces
The easewith whichitis possible to scan the vast amountofinformation on a viewdata system
prompted me to considerthe interface between the user and the microcomputer presented by
APL, systems written in APL and other microcomputer packages.This is the relevanceof the
quoteatthe start of the article, as after many years of using solely APL to implementsystems,
{haveoverthe last few years been using other computer languages, systems not written in APL
both on mainframe computer systems and on microcomputer systems. The consequence has
been a reexamination of some assumptions and habits acquired overthe years. BASIC can
seriously damage your health but so can any prejudice.
Someprejudices in favour of APL were merely confirmed. For instance, manyother languages
eitherdo not have a consistent syntax or are internally inconsistent or both. Inconsistent syntax
meansthatit is not possible to deduce how statements should be phrased from whatis already
knownaboutthe language.For example, rather than a function producing a result which can
either be displayed or can be assigned to a nameora file, some functionswill display, some
can only be assigned to a name and some can only writetofile. It is of course possible to design
APL systemswith inconsistent syntax but there is less excuse. Another example that appears
in many languagesis the treatmentof empty characterstrings. Many do notallow them; a character
string must have at least one characterin it, which can be extremelyirritating if you wish to
distinguish betweena null response and a blank.
in other areas APL systems comeoff less well by comparison. One oftheseis in full screen
interfaces. Historically, APL systems have been designed roundfifteen character per second
Selectric typewriters and many systems seem to be designedasif this wasstill the form of access.
Even those that take advantageoffull screen still do so in a static mode, whereas a quick look
at any standard spreadsheetor word processing package confirms that a much more dynamic
and responsiveinterface is possible.
Languages
Thefirst thing most people do with APLis to write a “language” of functions appropriate to the
application under development. A chiselis fine, but a table and chairs are more useful when
giving a dinnerparty. A Swiss armyknife is fun to have, especially if you find a horse with a
stoneinits hoof, butit’s easierto eat dinneroutof bowls. APLis fine for developing such languages
but already enforces constraints on the type of syntax thatis possible if APL functions are used,
rather than writing a syntax analyserin APL. For example: right-to-left order and a maximum
of two arguments perfunction. A look at other languageswill demonstratethat there are other
possibilities. For example, spreadsheets provide a language that essentially gives a

60

function with as many arguments as you like, up to the numberofcells in the spreadsheet. Such
a languagerepresents a ‘‘non-algorithmic” method, not a sequence of steps but a sequence
of states. It is quite possible to give spreadsheet solutions to problemsthatatfirst sight would
seem unlikely candidates for such non-algorithmic methods, Good examplesinclude the Tower
of Hanoi probtem and the eight-queens problem;see ScientificAmerican “Computer Recreations”
section, for October 1983 and January 1984, Other languages such as Smalltalk provide examples
where the function dependsonthe “class”of its arguments, thus generalising the idea sometimes
used in APLof the samefunctiondoingdifferent things depending on the type or rank ofits
arguments.
Functional design
It is extremelydifficult to forget how a problem might besolvedusing a particular programming
language or a particular package chosen from the ones that you happento be familiar with.
Trying to sit back and design how a system will look and feel without having somepart of you
saying “howthehell can you achieve that effect with a Dodo Megabit Mark IV computer and
the ‘Obvious’ data base language”is hard. But the meansfor achieving Visicalc wereavailable
a long time before the program was actually produced.
Conclusions
As microcomputers become more common, APLers should not remain parochially confined to
the way things have always been done when communicating with APL, but should lookoutside
APLto other languagesand other systemsfor new ideas and methods.Crossfertilisation can
produce offspring better suited to a new environment.

61

'BM-BASED APL COMMUNICATIONS
by Tim Perry

The specific example Tim used wasof an IBM factory with around 2000 employees, and 1300
terminals, A combination of APL and VM/CMSwasexpected to support a growth pathlike this:

1983 1984 1985
Maintrames : 3 5 3
Versions of APL. : 3 4 4 (APL2)
Users : 200 400 600
PCs : 2 35 70
Cost/Unit 2 100 50 25
Units/hr 2 100 180 250

i.e. a four-fold reductionin the costof a unit of computing, with a similar increase in the amount
of useful computing achieved per logged-hour, The use of VM/CMSwasseenasvital, in that
itgave APL a consistent environment across the board from the PCsto the biggest mainframes,
and thusfacilitated communication between APL systemsand also between APLusers.If need
be APL could use the power of CMS or CP to send messages worldwide, look up someone's
addressinthe global phonedirectory, or access a hostof otheruseful software which Tim could
only hintat {it being somewhatinternal to IBM).
Tim dropped a numberofinteresting hints about the way you can put some go-faster stripes
on your APL,for examplebygivingit a fixed chunk of memory to run in, which all users share.
This has the beneficial side effect of making all 200 CMS commandsavailable (notjust the usual
subset). He also emphasised the needto restrict the user base so that good response times
were always guaranteed — programslike FRANGOneedto be watchedvery carefully lest they
slow everyone down.
Other simple things you can do include:
— using the CMSstackto get at the output of CP commands(such as Query Time)

for genuine information on resource usage.
— making sure you use the best APfor the job in hand (generally AP110, but look for

AP999 which is well hidden in the small print, and is 25 timesfaster than AP111).
— using PGFor (evenbetterif you can getit) Chart for your graphics. The new

AP126lets you call Chart (or the ICUtoits friends) direct, and it also allows you to
call back picturesoff file and get a sensible result when the FSSHOWis
terminated. This lets you build a very effective (and rather cheap) Prestelimitation
complete with top-quality graphics.

— going for big workspaces (1.5 to 15 Mbyte), but keeping the maximum objectsize
below 64K.

Allof whichis helping to make APLincreasingly useful as a communication tool for people. The
use of online help and news meansthat any piece of useful software (be it good or awful) gets
quickly spread aroundthe system,while the availability of standard packages {ADRS/AD)) also
helps users to swap data and ideas around.
In conclusion, if you are serious about the idea of managementsupport via computers you need
APL, VM/CMS(preferably plus classified bells and whistles), and someoneto putquite a lot
of effort into tweaking the system. Given these conditions, the resulting system can be very
effective, and surprisingly efficient.

62

GENERAL ARTICLES
This section of VECTORis oriented towards readers who may neither know APL nor may be
interested in learning it. However, we hope that you are curious about why, underthe right
conditions, such impressive results can emerge so quickly from APL programmers.

63

——
<<

—,
-—

<—
<—

,
——

—_
~,

-
—
—
— | |iMWLICIR|AlLI C
K

where APL
means business

You know what’s good about micros. Fast response; no monthly bills;software designed for users, not programmers; access wheneveryoulike. In a word, independence.
You know what’s bad about some micros. No networking;no access to your mainframe data; fewer features than you’re used to;no technical and service backup.In a word,isolation.

Wouldn’t youlike to see a full range of APL micros,from the IBM PCto large multi-user machines? With loca! area networking, and IBMand ICL terminal emulation? With full lookalikes of features like IBM’sAP124 and AP126? All from a company with the commercial andtechnical muscle to support everythingit sells?

MicroAPLLimitedUnit 1F, Nine ElmsIndustrial Estate
87 Kirtling Street, London SW8 5BPTelephone: 01-622 0395 Telex: 896885 IOTA

64

WHY APL? A NON-TECHNICAL INTRODUCTION

Robert Bittlestone
Whatis APL?
APLis a general purpose computer language that many people have heard aboutrelatively few
use, at least compared to languages such as BASIC or COBOL.It has a reputation for being
rather mathematical, for using funny symbols that look incomprehensible, and forattracting a
lunatic fringe of dedicated converts who turntheir back on using any other language. Computer
experts say thatit breaksall the rulesin the book;it has no controlstructures,ithas a bewildering
numberofways of doing the samething; it encourages anarchic programming;it’s the “marijuana
in the programmers’ garden”; its a ‘‘mistake carried out to perfection”.
Whythen do peopleuseit at all? The answeris very simple.In nearly all the cases|have seen _
where APLcanbe usedinsteadof another language,it generally cuts project developmenttime
downdramatically. Jobs thattypically take several weeksin other languagesare developedin
afew daysin APL.If that kind of productivity is of interest to you— andif you would like to know
how APL suppliers are reacting to the (in some casesjustifiable) complaints about APL by
“civilising” the language — read on.
Packages vs. Languages
Ifyou havea jobthat you think would benefit from computerisation, then you havea setofdecisions
to take which | have tried to summarise in Figure 1. Your first action is to determine whether
a suitable package exists or whether you need to develop something specific. You may know
that your needsare so specialised that no packageislikely to have been developed for them,
or you may have surveyed the marketplace already and determined that the packages which
are available are unsuitable. Let mejust say in passing that APLitselfis not a package(although
packages can themselves be written in APL) and consequently if you canfind the right package
“off the shelf’, you probably won’t have to get involved in the choice of language anyway.|
might perhapsaddthatif there is any possiblity of having to modify a ‘‘standard” package, the
rest of the chart may have some bearing on the ease of such modification.
So you've decided to develop something specific. Will you write it within your department, will
you contractthe job ourto the data processing departmentorotherexternal team , or will you
use a mix ofinternal and external people? The problem with contracting jobs outin their entiraty
is that you are the one who know broadly whatyou wantto be done, whereastheoutside people
only know how the computer works. To quote a price they haveto analyse your sytem. This is
not straightforward because your needs are most unlikely to be well defined at this stage —
at least they shouldn’t be. Many observationsof this principle at work led me someyears ago
to coin the following aphorism:

“The requirements of a project are a result of the
experiences you gain during its implementation.”

If this is true for you,| think you’relikely to find it difficult or impossible to specify your needs
in advance.It may be quicker and moreefficient foryou to consider spendingthe time and money
(whetherrealorasaninternal charge-out against your departmental budget)that you were going
to allocate to the outside team ontraining your own people on how to use the computerinstead.
Letthe transfer of information go the other way for a change.Let yourself be the one to ask alt
the questionsthis time. That way your department will acquire very valuable skills which wilt
be useful forall sorts of future jobs.

65

Fig.1 — Packages vs Languages

[Project to be |
computerised |

[Use | | Develop |
| existing | nenennnanda----> | specific |
[package | I | solution |

|v

l
nnhekeen>
I |
v v
| |

| Develop | | Use both | | Puc the |
| solution | | inside & | { Job ot || yourself | | external | | to a I
[| in-house | | staff I | contract |

| | |
v v Vv
| ! l

| Choose your programming | | Negotiate]
| language by trading off | { tough 1
] fast project development] [terms i| against CPU efficiency. | § etc. !

---< < ee
!v

| High machine

Medium machine |

|v
|

| Low machine |! || efficiency, | | efficiency, I | efficiency, |
{ slow project | { medium project | | fast project!
| development I | development. i | development |

66

Fig.2 — The Programming Language Trade-off

100% - * ASSEMBLER
* RPG

COMPUTER * FORTRAN
cru * ALCOLEFFICIENCY * PASCAL* coBol50% - * PL/I * BASIC (comp{ led)

* APL Craw)* APL C& aids)
* BASLC (interpreted)

* Propeietaryprogram aids
0% ;

I0% 50% Long,
PROJECT DEVELOPMENT SPEED

Amixof in-house and externalstaff can be very useful compromise.Insteadof using the external
peopleto write the whole system, you employ them to design the “‘architecture’”’of the computer
suite andto train your own team on how to write the programs themselves. That way you don't
get a largebill for many man-monthsof project development. Youalso find that your own people
can maintain the system, make modifications and add newfeaturesto the system withoutincurringany morecosts. .
Efficiency vs. Flexibility
Nowyou have to choose whatkind of programming languageto use. Your choice mayof course
berestricted by what’s on offer on the hardwarethatis to be used — butyou shouldstill take
a decision based on an ‘“‘ideal”set of resources at this stage. If you have to compromise,at
least make sure yourealise it. If instead you are expecting to acquire hardware specifically for
this project, then your choice is completely unconstrained and you should certainly choose the
programming languages before you choose the computer.
There are really two kinds of programming language. There are Type A languagesthat were
developedforthe benefit ofcomputers, and Type B languagesthat were developedforthe benefit
of people. Programsthatarewritten in Type A languagestake forever to develop, but once they’re
finished the computereats them for breakfast. Programswritten in Type B languagesgetfinished
nice and quickly, and then give the computera hell of a job to run them within a given space
of memory,with a given allocation of CPU time and so on.
Figure illustrates this proposition. The scales| use and the positioning of the languages on
them are based on my own empirical experiences,not on any glossy PhD papers;you mayfind
that people dispute the exactplacing of the different languages, but most of them acceptthe
existenceof the tradeoff.
You now need to decide what’s important to you. Doesit matter to your that your computers
_are usedasefficiently as possible? That you don’t waste any more CPU(central processorunit)
cycles than you needin doing each job? That a machineof a given size can run the maximum
numberof simultaneous users? Ordo you think that the goalof fast project development and

67

business relevanceis more importantthan these things? Are you primarily concernedthat the
jobisfinished ontime, within budget, and thatthe responseis fast enoughforthe user’s needs?
Will you lose sleep worrying about wasted CPUcycles? Becauseonething’s for sure; you won't
get 100% efficiency and 100%flexibility in the same language.
The Inherited Philosophy
| shall leave you to take that decision by yourself. However, you ought to be aware of the
unconsciousbias that almost all computer people have towards machineefficiency. Machine
efficiencytraditionally ranks nextafter cleanlinessin its proximity to Godliness, and there’s a
goodreason.Until the late 1970’s computers were correctly viewed as large, expensive lumps
of machinery whoseutilisation had to be maximised.If you are planningto use a large central
computer for your next job, you will undoubtedly discoverthat this continues to be true. The
Data Processing managerhas large chart up on the wall which indicates %utilisation; everyone
gets very relieved so [ongasit stays near 100%.If you want to be popular,try asking him (or
her) the following question:

“What %utilisation did you get on your ball-point pen last week?”
It you survive the response, remind him that when the ball-point pen wasinvented(forpilots
flying at altitudes where fountain pens would notoperate)it cost aboutthirty pounds(a lot of
money in 1932) owingto the precision low-volume manufactureofthetiny ball-bearing in the
nib. Anyone who expected to usethat particular resource madesurethat their ball-point pen
utilisation factor was as high as possible; pens werekeptin a central locked store and withdrawn
undersignature. However, after someyears a revolution took place in which mass production
techniques drove downtheprice ofthe pento a few pence. A few diehards werestill left muttering
aboutinefficient usage of the central resource. :
The pointis that it now makes senseto regard the provision of extra processing poweras to
all intents and purposesfree.If that is not the case for your own company’s data processing
installation, thatisn’t a reasonforfailing to adoptuser-efficient languageslike APL:it’s areason
for changing your data processing installation. :
Given the adventof the microprocessor, the argumentsin favourof user-efficient but machine-
inefficient languages for most commercial applications have becomevirtually insuperable.If
you don’t agree, ask yourself whether you're arguing aboutthe principle or merely the timing.
I think you'll find that:

“The issue is when, not whether.”

Depending on how muchchangeyoulike to embraceatany onetime, you mayfind that by pursuing
this line of reasoning you end up with someratherinteresting conclusions. Some of my own
are summarisedin Figure 3. | shan’t commentonthem here:let’s leave them asfoodfor thought.

Figure 3: Ten New Rules for Computer Projects

Systems cannotbe specified until they have been implemented.
Nosingle program should take longer than a dayto write.
There is no such thing as the end of a project.
If the requirement does not change, the system is not being used.
All systems should be physically developedin the users’office.
The useris in charge of the computerproject.
Lineprinters are forbidden.
Fieldsin files should change as frequently as records.
Databases were invented to employ system analysts.

0. If it moves,it will break this year. If it doesn’t — next year.S
L
O
N
A
U
P
O
N
>

68

The Three Computing Loops
In Figure 4 | have tried to set out the main steps that occur when a computerapplication is
generatedusing a language organised by a ‘compiler’. Compilers expectto be given the whole
program (or the main module anyway) at one time, which they turn into machine code (binary
digits) in its entirety. This process may identify programmingerrors, which will be notified to
the programmer, whohasto go back to the program,find the problem, correct it and resubmit -
the program to the compiler. Dependingonthesize ofthe program, compilation may take anything
from a minute to an hour or more. Any changeatall in the program —- even one mis-spelling
on anoutput report — requires a complete re-compilation.t call this process “The Programming
Loop”.
Oncethe computerconfirmsthat the machine codeversion contains no errorsof a “grammatical”
nature, itis given the input data andit produces whateveroutputreport it is designed to create.
This process mayidentify errors in the input data, which [haven’t bothered to show onthe chart
sincethe solutionis simply to modify the input data and run the job again. | call this stage ‘The
Execution Loop”.
The nextthing that’s probableis that the report isn’t quite the right format, or the calculations
aren’t quite what was intended — in otherwords,there’s no error in the programming,but there’s
amismatch between the program specification and the user’s current needs. These needs may
themselves have changed asa result of seeing the output. That doesn't imply wickednessor sloppy
thinking— it’s a perfectly reasonable and sensible kind of learning process. So the system analyst
revises the specification and submits a new requestto the programmer.| call this third activity
“The System Analysis Loop”.

69

Fig.4: The Programming, Execution and System Analysis Loops

{ Compiler 1aapewnenoe-| translates [-—a-wenee
' j progran |

I|¥
!iI THE 4o~| writes or alters | PROGRAMMING ¥| program Il LOOP [1reeeee

meen>=! code
| rune
| Tm the oucpue =|=pe-—e>e=| correct given [--<—-enon. e

n

Ie
ee

e
e
e
p
e
e
e
m
e
e

THE
SYSTEXA

| ANALYSIS
| LOOP | New or revised 1 | Relax until the |~eaenc] system Jo-nc=| user’s needs f(specttications | | change agaia i

Itturns outthat languagesexhibit intrinsically differentefficiencyin these three loops.Traditionallanguagestypically maximiseefficiency in the Execution Loop. However,the pricethat one paysfor that extremeis that the Programming and System Analysisloops take a longtime. Historicallythis didn’t matter very much, because programmers’ time was cheaperthan machinetime, andbecause users’ requirementsdidn’t changevery often.
Bycontrast, the new generationof user-oriented languages such as some dialectsofinterpretiveBASIC, some proprietary programmerproductivity aids, and APL itself (particularly whenenhancedwith developmentutilities) believes that the Execution Loopis relatively unimportant,whereasthe othertwoloopsarevital. Consequently such languagesare usually organised by“interpreters”rather than “‘compiters"’. Interpreters merge the process of compilation with that

70

of execution. The advantageis that errors can be much moreprecisely identified and far more
quickly corrected, and that minor modifications can be introduced almostinstantly without having
to recompile the whole program.
The disadvantage is that in most cases the resultis less efficient for the computer. In many
commercial applications,this kind of efficiency loss means a responsein one-tenth of asecond
instead of a response in one-hundredth. How do you feel about that?
Actually, APL happens to have a rather crafty way of cheating in this respect and producing
results via interpretation which surprisingly often match or even surpass compiled program
response.This is because a large numberof frequently encountered cases are already “‘hard
wired”into the APLinterpreter on a hand-coded basis, which is generally more efficient than
the result of a compilation. However,it looks too suspiciousif | start trying to win all the arguments
for APL, so let’s agree to concedethis one.It really doesn’t matter very much anyway.

Figure 5: The APL Workspace

This workspaceis called FRED

PROFIT PROGRAM1
123 456 235 246 334 234 [1] Dothis...

[2] Now dothat...
SALES [3] Do PROGRAM2
2345 4456 3456 3456 3457 2233 [4] Do the other...
1353 5676 2356 5677 3356 6788
3456 3356 6434 2443 3454 2356 PROGRAM2[1] Try this...PRODUCTS [2ITry PROGRAM3spangleworp Mark 3 (3ITry again...
defibrillicator
gudgeon sprocket PROGRAM3[1] Last chance...

[2] Give up.
(t has variables PROFIT, SALES and PRODUCTSinit, and programs called PROGRAM1,
PROGRAM2 and PROGRAMS(they could be called anything).
Oops — it's lunchtime, so: SAVE FREDsavesall the programsandall the data on the disc,
teady for meto start this afternoon with LOAD FREDto get them backagain.
Hmmm—that program called SMARTONEthatJoe developed the other day could be handy
here. Let’s borrow it. | have permission to read his workspaces? Great: COPY JOE
SMARTONEgets mea copy(leaving the original with Joe).
Ahhh — I'dlike to browse through my data, looking at elementsof that table called SALES
as | go and changing someentries. No need to write a program: APLdeskcalculator mode
lets medoall that as standard.
can useall the built-in APL operations to experimentwith my data in desk calculator mode.
WhenI’ve got the sequenceright, | can type them all in as lines of a program.
Subroutines? Any program in APL can be called by any other program without prior
arrangement. You don’t have onebig program in an APL workspace; you havelots of small
oneswith links between them.

71

The real advantages of APL
In mostof the articles about APL which | have seen,the authorstarts rhapsodisingatthis point
aboutall the amazing symbolsthatexist and all the wonderful thingsthat you can do with them.
Doing wonderful thingsis fine, but the use of special symbols apparently dissuades as many
usersasit encourages, not least because a special screen orprinter is required. Somewhat
belatedly the APL community is wakingupto this fact, and several projects are in hand to enable
effective use of APL from standard non-APL screens (ASCII or EBCDICetc.). So please don’t
regard these non-standard symbols as an inherent part of the APL philosophy.
Figure 5 shows one of the APL advantages: the workspace.Until you’ve usedit, you simply
can't imaginehowflexibleit can be. A short summary of the real benefits of APL runs asfollows:
a. The Workspace

Everything is donein the APL workspace. Evenwith micros,this is at feast 200,000 bytes
(characters) or more. Yourdata is independentof your programsand it can be generated
and edited without using a program atall. You can save them,load them, copyall or part
of them, and you developall your programsin them.
Data variables
These can be text or numeric and can have almostany ‘‘dimension"’. Zero-dimensional
variables contain a single numberor character. One-dimensional variablesarelists or
“vectors”. Two-dimensionalvariables are tables or ‘“‘matrices'’, and so on, up to 8 or
more dimensions if you want them. See Figure 6 for details.
Built-in operations
These are numerous. All the standard arithmetical functions, all the algebraic and
trigonometric ones you're everlikely to need (plus a few more), all the comparatives (greater
thanetc.}, the logicals (and,or etc.)... There’s a built in numeric (and usually character)sort;
there's text and numeric searching, finding minima and maxima, random number
generation,array indexing and manipulation, numeric formatting, number base changes,
even matrix inversion. Andthe great advantageis that nearly all these built-in operations
apply directly to arrays of data without the needto write loops.
Programs
APL programshave a uniquearchitecture;the nearestequivalentisa littie-used language
called FORTH.In APL youvery rarely write a long program.A given projectis usually
implemented by a workspaceconsisting or twenty or more programs. Each does some
small part of the job, ratherlike a subroutine in other fanguages. But the subroutinesin
APLare completely freestanding and havetheir ownidentity. So a very well organised
control structure emerges in APL by arranging for one program to call another to do some
appropriate job. Phraseslike IF...THEN...ELSE or DO... WHILEare hardly ever needed
in APL; partly because loops themselves are not needed for operations on arrays, and
partly because the conceptof having many programsoperational at one time makes these
phrases unnecessary.

72

|

Figure 6: Examples of APL Variables

(To avoid confusing the reader and the typesetterwith thetraditional APL symbols, | have
uséd a close ASCII equivalent. Various alternate forms of ASCll-type syntax for APL
expressionsare currently ontrial by different APL suppliers and undoubtedly a standard
will emergeto bring the benefits ofAPLto those who do not wish to modify existing hardware
or acquire new terminais.)

LIST 15
123456789101112131415

fred_3 5 SIZE LIST 15
el

ta
o

y
a
w

a
a
w
a

Ro
n

no
u

131

fred [3;]
1112131415

fred [52]
2712

fred [3;2]
12

tred [3;2]_999
fred [;1]_fred [;1] - 1

Joe [2;4 51_'CL’
Joe

apples
ORACLEtomato

73

Stumbling on APL via BASIC.
Everyone knowsthe boring old joke aboutthe Irishman who, when asked how to get from A
to B, replied “I wouldn’t start from hereif | were you’”’. It’s a bit like thatif you start considering
APL froma background of knowinganyother language.I’m frequently asked how longit takes
to masterAPLif you’ re beingtrained by,for example, a computer-based APL self-teaching course.
My responseis always:

“Do you already know another computer language?”"
“Yes — BASIC and a bit of FORTRAN.”

“About a fortnight then.”
“And if i didn’t”

“Oh, not more than a week.”

Part of the battle if you're already computer numerateit to:
FORGET ABOUT: AND START USING:
* Loops * Array syntax
* Big Programs * Small program modules
* DATA statements * Independentvariables
* Control structures * Program nesting
* Operations on single numbers * Operations on arrays
* File design * Workspace operations
* Specifying the whole system * Prototyping techniques
* Sequential processing * Parallel processing
* Code namesfor data * English descriptive names
* Accessing data from a program * Desk-calculator access
* Integers vs. floating point * Transparent data conversion
* Man-months * Man-days

{t gets easieraftera little practice, and you'll never look back.
Files and Inverted Data Structures
In most languages,file design is a constant headache. You don't seem to be ableto do anything
muchwithoutsitting down and specifying a wholelot of boringfile formats; and once they’re
fixed, they’re bastards to change.In APLyouoften find that you can implementa whole project
without using file atall. This is because the data that you specify starts byliving in memory,

- and if there's enough room andif nobody else wants to updateit simultaneously, you mightjust
as well leave it there. When you load the system each morning,youloadall the data as well.
However,files certainty play their part in APL. You can createfiles whichlookjustlike the sort
of files you get in COBOLor BASICif you want to — thefacilities are there for that sort of thing.
But APL makesit delightfully easy to standardise on a so-called “inverted” (i would rathercall

. ittransposed”) formatfor your files, asillustrated in Figure 5. The advantages are enormous;
the example of Figure 7 should make that clear. APL caneffortlessly perform the kind of job
thatin other languages you'd need a relational database or a context-addressable memory for.
In fact in some ways APL alreadyis a relational database.

74

Figure 7: File Structures in APL
 CONVENTIONALFILE STRUCTURE

0001 FOSTER JOHNF. 32 ACCOUNTS 198% 16500
0002 CARTER -_ERICP. 37 SALES 1976 48900
0003 BLOGGS CHARLES 45H. OFFICE 1965 25000

2000 TOMLINS JULIA H. 25 RESEARCH 1982 19000

Files are organised by rows. Each row containsall the data on a particular person. Access
is sequential or by row numberor‘key’(ie. a nominated attribute of a person, such as Name).
Requestsfor information such as:
“Average age where salary above 18000 and departmentis accounts”
require a sequential scan through the entire file with as many disc accesses as there are
rows. This is measured in minutes even forfiles with only 2000 entries.

TYPICAL EQUIVALENT APL FILE STRUCTURE
1 2 3 4 5 6

FOSTER JOHN F. 32 ACCOUNTS 1981 16500
CARTER ERIC P. 37 SALES 1976 18900
BLOGGS CHARLES 45 H. OFFICE 1965 25000 TOMLINS JULIAH. 25 RESEARCH i982 19000

Files are organised by columns. Each column containsall the data on a particularattribute.
Accessis by column number; the whole columnis read in with a single file access, andit
can be scanned using APLarray operationsto find matches, select entries based on some
criterion and so on. A questionlike:
“Average age where salary above 18000 and departmentis accounts”
requires three files accesses,for columns,4 and6, and the questionwill typically be answered
in a few seconds.

APL Program DevelopmentAids
APLis good, butit’s an even better idea to employ pre-written programs in your own APL
applications. There are two main types of developmentaid or “‘utility program" as they are
frequently called.

75

There areutilities that you could write yourselfif you had the time, and there are fast machine-
coded added features which you probably couldn't unless you happen to be an expert in the
Assemblerdialect used on your hardware. Theselast are usually called ‘“‘auxiliary processors’,
althoughthey refer to software, not to hardware. Typical useful utility library items include:
* General purpose program developmentaids, data input routinesetc.
* Full-screen program or variable editors
* Full-screen forms design and data entry systems
* Communication links to other computers or non-APLfile formats
* Screen handling primitives for device-independent control
* Automatic documentationfacilities
* Graphicsroutines for colour screens and flatbed plotters
* Specialised file access routines for specific purposes
* CAI (computer-aided-instruction) APL self-teaching programs
* Spreadsheet‘‘front-end” modules for use under APL control
* Specialised interfaces for on-line inter-user communications
* Printer handling features such as spool queue management
APL suppliersdifferin their ability to supply this kind oflibrary software. Furthermore the APL
interpreters themselves,although adheringfor the mostpart to a common language‘core’ defined
by IBM, differ considerably in termsof the numberof optional enhancementsthatthey provide.
Of course, most APLusers don't require every APLfacility that’s ever been thoughtof, butit’s
surprising how quickly a user matures to a point where a feature such as programmederror
control, for example, becomes mandatory rather than desirable. The moralis to shop around!
Conclusions
APL programmers take for granted the kind of capability which leaves mostother languages
gasping. Not surprisingly, very few people who know APLever becomedisillusioned and turn
to anotherlanguage. Until recently, however, APL was somewhat inaccessible to manypotential
users,either because of the need for a large mainframeor becauseofaninitial reaction against
its special characterset. Thefirst problem has beensolved since 1981 with 16-bit microcomputer
versionsof APL; the secondis on its way. So you really have no more excuses. Goodluck and
good programming!

76

Steps Towards a Better Basic- part 1
by Anthony Camacho

Whenyou wantto know the valueof a variable in BASIC you haveto type ?VARor P.VAR or
even PRINT VAR.Just typing VARhasno significance.If it were given the samesignificance
as PRINT VARnothing would be lost and a good many key depressions saved.Tofind out the
value of an array is even worse; you have to write a loop. There could scarcely be anylossif
the same were doneforarrays. Millions of BASIC programmers would begratefulif they could
type ARRAYand haveit displayed for them. Most of the ‘programmers’toolkits” miss this
opportunity to be really helpful; | have one that responds to DUMPwith a displayofall the single
variables andtheir values but totally ignores the arrays.
This reluctance to deal with morethan single variable is odd because BASIC already deals
with some multiple variablesasif they were single. The string NAME$ may betenorahundred -
characters long—athousand in someversions of BASIC— yetit can all be displayed by PRINT
NAMES. Someofthe loops in BASIC could be cut out by making this method of handling multiple
variables available for numbers as well asletters. In that case NOS could contain 12345 (or
a list of works order numbers or part numbers).
Strings are only moved about, compared andprinted; arithmetic on multiple variables brings
complications.If one array holds stock quantity and anotherholdsthe pricesfor the corresponding
items, the instruction LET VALUE =QUANTITY * PRICE would create the new array called
VALUE.Thusit is obviously useful to be able to operate on eachvariable in one array with the
corresponding elementin anotherarray of the same shape, and to producea third array of the
same shapeasthe result. But there are occasions when a whole array needs to be multiplied
by a single factor: exchange rates, discounts andinflation rates are factors that come to mind.
Thereis no reason why DISPRICE = PRICE * .90 could not create the array DISPRICE which
is the price after 10% discount.
Suchfacilities offer the opportunity to create some morefunctions, such as would add the rows
of an array or the columnsorevenall the items. It could be useful to convert an array of another
shape(for conveniencein printingit, if nothing else). There could also be a function to take each
item of one array with each item of another.It could be called EWE(for Each With Each) and
be followed by the operation neededin brackets, so NOS EWE(*) NOS would give:-

2 3 4 6
4 6 8 10
6 9 12 15
8 12 16 20

10 15 20 25O
a
O
N
s

My excellent cheap calculator changesits display for very small and very large numbers; they
are shownin scientific notation. As in this improved version of BASIC, character and numeric
variables can both hold single or multiple variables,there will no longer be any need to decide
in advance whichtype of value eachvariable is to hold. VAR could now hold eithera string or
a number, and theinterpreter could follow the example of my calculator and distinguish between
numbersofdifferenttypes;it will adjust the way the numberis held from integerto floating point
and back according to its value.
Of coursethis impliesthat all arithmetic will be done to some standard accuracy, because the
interpreter would no longer know from thevariable name whethera variable was wanted as an
integeror single or double precision number, so would haveto do everythingin doubleprecision.
* Reprinted by kind permission of DATALINK magazine

77

Very few calculations would be appreciably slowedbythis and all would be speeded up to a
small extent by having only one methodof handling. As computersgetfaster and cheaperthe
loss of speed will be less and less noticeable. And anywayif speed is important, the program
should not be run underaninterpreter but should be compiled.
String handling in BASIC demonstrates that in an interactive language there is no need to
DiMension multiple variables. It is quite practical to assign them dynamically, butif that were
done there would be a needfor a function such as LEN {whichreturnsthe length ofa string)
for arrays.If the arrays were to be limited to one dimension then LEN would still be adequate,
butit is often convenient to have tables of numbers(orlists of words) andit would be better
to introduce a new function which reported all the dimensionsof an array; it could be called
SHAPE.The only reason this was impossible before was that the result could have had one
or several numbersin it. Now that a variable will be able to hold one or severalvalues there
is no difficulty. So, in the example above SHAPE NOSwould be 5 because NOScontainsfive
numbers. SHAPE NOS EWE(*) NOS would be 5 5. Also a way ofextracting one or a group of
the numberswill be needed.Forstrings BASIC has MID$(NAMES$,3,2,) to extractthe third and
fourth letter. In Sinclair BASIC, NAMES§(3 TO 4) does the samejob better so NOSI3 4] could
do the equivalentfor the numbers,andpick outthe third and fourth items. And (NOS EWE(*)
NOS)I3 4;4 5} would pick out

1215
16 20

(each dimension separated from the next by a semicolon, takinglinesfirst and columns second).
Onepossible objection that might be raisedto this is that there would be many more reserved
words. Even with BASICasit is now there are occasions whena reserved wordis inadvertently
used as avariable name.if more reserved wordsare to be addedsteps should be taken to avoid
confusion. Variables could be kept in lower case for example.This is already commonpractice
with the Sinclair Spectrum and the BBC.It makes programslesstiring to read too. Originally
BASIC was used onteleprinters without lower case but as even cheap microcomputers have
lower case nowthereislittle point is keeping to uppercase only. It might be sensible to use
the capital X as a reserved word for multiplication, for those whofind the asterisk annoying.
Now for the surprise: this description,in all essentials,fits a language in current use on hundreds
of microcomputers and mainframes. The language has a great many more attractive features
which will be explored in further articles. It has a reputaton for beingdifficult because of the
peculiar charactersit uses instead of reserved words,and it cannot becomewidely popular while
keyboards and displays and printers have to be specially adapted to use these characters.It
has mostofthe virtues of such languages as LISP and LOGO and FORTHand arichercollection
of functions than any other language.It should be more widely known.Its name is APL.

78

CASE STUDIES: AN INVITATION

by Adrian Smith
Let me begin bystating my personalobjectives as editor of this section of the Journal:

to include in each issue a clear and concise accountof a self-contained (but not
necessarily simple) APL system,or of some specific aspectof a system (such as the
use of colour) which readers can appreciate ‘out of context’.
to collect such accounts from as wide a range of areas as | possibly can.
to stress ideas and methodologyratherthan technological cleverness.| anticipate a
rather fow percentage of actual APL code.
ta include as muchillustrative material(if possible photographs) as companysensitivity
allows.

In general | am happyto play the journalist and do the actualwriting bit, but if any reader has
an account whichroughlyfits the aboveoutline, please do not hesitate to send itin. My standards
for such copy are set very low indeed viz:

typescript preferred, but legible handwriting quite acceptable if the contentis right.
diagrams decently drawn in black ink (assuming you wantmeto paste them straight
in to the final version).
functionlistings as good as you can get them.Please usesix lines per inch rather then
eight on IBM dot-matrix printers, and put a newribbonin!
colouris not (as yet) reproducible, so make sure any graphics are acceptable in
monochrome.

In short if it’s sufficiently interestingI'll accept almost anything — don’tlet the effort of ‘writing
up’ put you off. Since there were no contributionsforthis first issue | have takentheliberty of
contributing an article myself. | found myself more than willing to acceptit.

79

Matchmakers: a Case Study in Simulation
by Adrian Smith

Problem Description
Matchmakers are a boxed chocolate produce from Rowntree Mackintosh. Following manufacture,
the lines of Matchmakes are scoopedinto trays, which are inserted into sleeves beforefinal
packing. The sleeving process, currently done by hand,is to be mechanized. The running speed
and breakdown pattern of both traying and sleeving machines can be estimated from past
experience. .
Question: howlarge a buffer is needed between these machinessothatthe plant can be kept
running whenthe sleever breaks down?
Matchmakers tocom plant TRAYING SLEEVING ———————_>
rom plan| (80 per min) (max 86 per min) packing

222227 BUFFER STOCK 27772?
Basic engineering reason(like the heightof the ceiling) restrict the choice to buffers of between
10 and 20 minutes, with the cost increasing roughly in proportion.
Hypothesis
With a bit of luck both Traying and Sleeving will stop at random, and the length of stops will
show a nice exponentialpattern.if so the logic is easy, because in any given timeinterval(say
1 minute) there will be a constant probability of stopping (PROBSTOP)and having stopped a
constantprobability of restarting (PROBSTART).All that has to be doneis to determine the
frequency and half-life of stops, and we can then generate endless random days and see the
waydifferent buffers fill and empty overtime.
Snag
By an unfortunate coincidencethe foreman had onlyjust cleared out his cupboard, evicting in
the processall last year’s records! There wasthus a short delayfor...
Data Gathering/Valuation
Overthe next fewweeksthe machinelogs werecollated for several comparablepiecesofplant.
Totheill-concealed delight of the experimenter the emerging distributions lookedlike Figures
tand 2.

80

Fig. 1: Analysis of Stoppage Time on Traying Unit

 67? staps in 750 hr
4

z hn
Half-life = am

19

8
1 ? qd 4 3 t 7 B 3 in a1 12 anLength of Stoppage ---)

Fig.2: Analysis of Stoppage Time on Sleeving Unit
 & 7 a a ie it az is 14 5 16Length of Stoppsge ---5

81

Fig.3: Simulation Logic

fet beth halves pnonth, eseClear leg s+ RRUY <N> ITERATIONS OF VATCRYAREE SIMULATIONSSet barter enaty .Ree Saveton 28/72/84 at 17.27

M cycles Lose (3, Nh nD=)

:1
1 corvztT=1!1
1

ta he Plant runala, >' » ROBE XU GO vex xt up watter sa See ae my nrearr yis ay erty sr orryat t)rf paws tt seo eFf eth Start 1 +89tan) EL JePavnsrepyy 1921690| im the ateever rannbey ? tr ’U2) cree RU J PRCASTARIE 1971909‘ ~ oT O31 TF corvat?ypray Hirt So see bf tal =9FT u cy wonsTen(? }<PNOrAPoon Le <tog7| vLtL start [tal8 tens POUST ARTEL? 1>P1ANCut stack te HUTTE ant [193 xUnurrlog away renault try ICT JcoING, over130) tered

Taken togetherwith the total numberof stopsin the total logged running time the graphsgive:
PROBSTOP[T S}+-4.5 13 (per thousand mins running)
PROBSTART[T S]+-180 260

Assuming anarbitrary upperlimit (BUFFMAX+-1200)to the buffer, the logic for the simulation
now lookslike Figure 3.
The results were analysed with a simple COUNTroutine (TRY 480 wastypical for an 8-hourday); each run giving a report like:
Stops ontraying :533173
Stops on Sleever :713
Butterfull for +10 min out of 480

Enough sample days were run to check that the generated patterns of stoppage were
indistinguishable from the real thing, and several‘typical’ days were graphed to ensure nothing
odd was going on in the logic. The results are depicted in Figures 4 and 5.

82

Fig.4: Matchmaker Simulation: 4.5 13 180 260

STOPS ON PLANT; 6 1 JSTOPS ON SLEEVER : 142218846Buffer Full for 3 mins aut of 48@
288-4 earrerFaterneaea

|aHa8 |

aay

6904 \

 \\.
qae 4 |

{I
2084

h i \3 1 h Lf tN —
id t ve

“208 — ; T 7 T T 7 T 7Q sa 220180) 202) 2Sa) aR 350 4d) SO S00
TENTS

 Fig.5: Matchmaker Simulation: 4.5 13 180 260
 STOPS ON PLANT: 41 1STOPS ON SLEEVER : 8429 11 1

Buffer Full for @ 5 ut of 489

1, 8804 N.

Baa

sea

40a

2864

T T
392 35@ 400 450 500
 T T

188 150

T T
200 258
 a= PLANT RUNNING |. CLEEVER RUNNING —_ BUFFER CONTENTS

83

As soon as all concerned were happywith the pictures, the project movedtoits final stage
Production Run/Problem Resolution
Outof consideration for other computerusers this was done‘out of hours’. Severalruns of 28
days were doneat each possible buffer size, and the numberofdaysaffected by at least one
‘bufferfull’ was plotted. Also shownis the percentage of production-timelostin the period (Figures
6 and 7).
Atthis pointit becomesclearthat the problem asoriginally formulated does not havea satisfactory
answer; howeverbig the buffer there will always be some days affected. What we can see is
the possibility of a trade-off betweenthe costof lost production (which doesfall away quite sharply)
andthecostofinstalling buffers of various sizes. !'ll spare you the details of the economics,
suffice it to say that a decision was rapidly reached which pleasedall the interested parties.

Fig.6: Analysis of Days affected per Month on Traying Unit

La“5®ey
104 ¢ — ‘ a~ ~ ~ ‘~ise a —.

se ~ q
an Ts

a0 me
’ 4 ~

4.8 — ste.

’
6 4

get T T T T T T 1
300 906 4, BOD 1, 180 4, 208 4, 3RO 1, 408 4, SaoBuffer Size --->

84

Fig.7: Analysis of Percentage of Production Lost due to Full Buffer

+ BfPe
nt

 T T -sae 4a 4, a0 4,460 4, 208 4,308 1, 400 4, 508
Buffer Gize --->

Comment
APLis not an idealtoo! for simulation — a run of 28 days of 480 minutes(i.e. 13440iterationsof the basic model) cranked up around 20 sec of 3083 CPU time, and several such runs wereneeded. Onthe other hand the codingfor the whole exercise (including the calls to PGFforthe graphics) tookjust overan hour, and it all ran first shot (oncethe typos had screened themselvesout with SYNTAX ERRORS).
Some other points ofinterest are: the use of block diagramsto sketch out the logic (yes | diddraw the picturesfirst!); the veritable shoalof helpfulutilities (IF and ITERATE are ones | useconstantly); and the power of graphics as an analytical tool. | dare say any competentmathematician could have gotto the same answersas | did without any computing atall, buttry selling that kind of answer to a bunchof engineers and production managers! The use ofpictures was importantin validating the model, and thus giving credibility to the answers.

85

Metapraxis Ltd.

Metapraxis is a consultancy company involved in the
creation of advanced computer-based managementcontrol
systems. Weare currently embarking on a major new
project to develop and market a range of contro] centre
software. Some of this software involves the development
of IKBS modules (expert systems). Substantial City and
Governmentbacking for this project has been arranged
and the development phase will commence shortly.
Weare nowinterested in hearing from individuals with
outstanding track recordsin one or moreofthe following
areas:

* Programming (particularly Assembler, APL, PROLOG
or LISP)

% Financial control in the large company environment
% Graphic design and publicity expertise
% Marketing skills for new product launch
* Sales ofhigh-levelproducts to senior corporate managers
x Industry analyst skills in a major commercial sector

There are also one or two vacancies for exceptional graduates
with little or no work experience. Candidates should be prepared
to assimilate many unfamiliar concepts in a very short space
of time and to becomean authority in at least one area of the
company’sactivities. Applicants should write in confidence with
career details (indicating which job is of interest) to:

Metapraxis Ltd., 26 Barham Road, London SW20 0ET

86

THE PAPER THEY DARED NOT PRINT

by Anonymous APL84 Referees
It has now becomea nobletradition to submit to the Programme Chairperson of each annual
international APL conferencea paperso scurrilous, so extreme and so generally unacademic
thatit cannotpossibly be accepted. For the 1983 APL Conferencethe accoladeof‘‘The Paper
They DaredNotPrint” was captured (no contest) by an article entitled “The Coming Revolution
in APL”, which proposed major changesto APLforitto become morewidely used as a general
purposelanguage.Althoughthe paper wasrejected, the APL 83 organisers were kind enough
to give it spaceat a plenary session;its bootleg presentation to an audience of over 700 was
the occasionof somelightrelief as a contrast to what Ron Fuss of IBM has christened the ‘‘dot
dot commaslashslash star” brigade. Avid seekersof the alternative truth about APLcanfind
that article in Issue 6 of ‘“‘MicroAPL News”, atrade journalfrom one of our sustaining members.

“‘A paper so scurrilous and extremethat it cannot be accepted”’
To keep the Finns ontheir toes this year, two papers were submitted to the Programme
Chairperson that stood some reasonable chanceofrejection and true to form,rejected they
both were. For those readers who don’t know aboutthe process, APL conferences papers are
circulated to three referees, on the basis of whose comments a paperis accepted or not. A good
wayfor a Chairpersonto keepa potentially embarrassing paperoff thelistis to send itto referees
who are guaranteed to have apoplexyat anything immoderate.In this respectthe choice of referees
for these papers represented an outstanding successfor Mr. Kallin (always assuming heexists:
see earlier International News section).
Butunlike the forma! APL proceedings, VECTORis a journal dedicatedto printing the truth:
“We namethe guilty men’’ and so on. Althoughin this case we can't quite do that since the
referees are anonymous,we bring you the next best thing; we Jet you share their indignation.
And weprint the papers. One of them you've already seen if your approach to VECTORis
sequential rather than random access: ‘Why APL?: A Non-TechnicalIntroduction”. The other
is called “‘FGL: Fifth Generation Language”and it comes next. Thefact that both were created
by yourEditor should onlywhetyour appetite for some savageletters for us to print in the next issue.

“Try to avoid the word ‘bastard’ as a description of non-APLfiles.”’
Papers were assessed onfive criteria. The ‘Why APL” paper gets slated by one referee as
duplicating existing work: ‘‘Would be better published in a popular press microcomputer
magazine”’. Another referee says: many attendees would beinterested init, there are some
newideas, the length is appropriate, the technical quality is high, and the use of English is
“outstanding’’. However: “I'd prefer not using the word ‘bastard’in referenceto the difficulty
of changinga file structure”. Ah yes,but has he evertried? The diagram called the “Programming
Language Tradeoftf’” whichis explicity documented in the article as based only on empirical
observation receives the damning comment“‘Is this made-up data? Frankly | don’t believeit”,
whereas the samereferee surprisingly annotatesthe“Ten New Rules” withthe pithy endorsement
“This one is OK’’. Well, thank goodnessfor such technical praise.

87

“BASIChas nothing to do with science: didyou meansciencefiction?”
However,it's only when weget to “‘FGL: Fifth Generation Language”thattheflakreally starts
flying. On the matter of audience appeal, we have one referee (A) who thinks the paper would
beofinterest to everyone, another (B) who says “specialists only”’, and a third (C) who can’t
decide. Onthe thornyissueoforiginality, A says ‘very original’ and B agrees,while C ticks the
box saying ‘duplicates existing work— specify’, but he doesn’t specity, so we shall never know.
Allthe referees agreethat the paperis muchtoo long, so someofthe tables have been omitted
in this reprint to try to make amends. The technical quality comesin as variously high and low.
Finally, the vexed questionofthe use of English scores one ‘oustanding’, one ‘good’ and one
‘needs thorough editing’. As far as comments are concerned, there were many,including
“Remove humorous reference to AIDS — in poor taste’ and “BASIC has nothing to do with
science: maybe you meantsciencefiction?”
This paperis also published with somereservations from the VECTOReditorial team as awhole.
Controversy is expected, The commondisclaimerthat the opinions expressed in a paper do
not necessarily correspondto those of the journal as a whole should be taken seriously. But
weareaftera little light relief amidst the serious cut and thrust of computer programming,and
this nextarticle is for those ofyousitting in trainsafter a long day writing incomprehensible APL
code atthe office. By way of a footnote: BYTEpolitely rejected the article as “not of general
interest to the readership”, while the paper’s Hofstadterianself-referenceto its own acceptance
at Helsinki was anotherof the manystrawsthat broke the camel’s back. So APL will no doubt
continuetosail merrily alongin its delightful little backwater while therest ofthe world computes
otherwise.
Your Editor happento be an APL84referee too, but sheerterror at the possibility of printed
reprisals always causeshim to heappraise and unconditional recommendation on every article
that is sent to him.

88

FGL : FIFTH GENERATION LANGUAGE

by Robert Bittlestone
Abstract: FGL(Fifth Generation Language) has been the world-wide norm for most computer
programssince thelate 1980’s, whenit replaced BASIC as the de-facto industry standard. Equally
suitable for business, scientific and knowledge-based expert systems applications (which
representof course the main use of computers these days), FGLwasfirst implemented in 1984
and quickly rose to prominenceasa language of unmatched elegance, economy, and program
development speed. Running on almost any computer and usingonly the industry standard
ASCIl character set, FGL nevertheless bearsa striking structural resemblancetoa little-known
and now obsolete computerlanguagecalled APL (A Programming Language). Students of the
history of computing maybeinterested to see how FGL developedfromits foundations in APL
and howit wasinfluenced by the success of BASIC.

we
Someofourolder readers may have been taught BASICat schoolin the early 1980's andit’s
worth remembering whythat language becameso popular aroundthattime.In the mid-1970's
the first practical implementations of von Neumann architecture computers onsilicon
microprocessors becameavailable. The prevailing architecture at the time was‘bit-parallel’;
the hardware quickly movedthrough 4-bit,8-bit, 16-bit, 32-bit and by 1985, 64-bit CPU generations.
Bytoday’s standards these 64-bit processors wereof courseprimitive: the conceptof today’s
highly parallel architectures composed of over 20 Giganodes of SHEEP (synapto-heuristic
evolutionary expert processors) wasof course little over the horizon.
It’s difficult to rememberthatin the 1970's, computer powerwasstill finite andlimited, and the
random access memory (RAM)capacity for personal computerusers wasanincredibly confined
maximumof64k storageunits,or ‘‘bytes” asthey were called. Even by 1985the average personal
computeruserhadaslittle as 1024k bytes or a “megabyte”of spaceto play with. No small wonder,
then, that the objectives of the languages that people were using thenstill included the quaint
old ideasof:
— minimising the space used by the language interpreter/compiler
— maximisingtheefficiency of the machine code produced
makingit reasonably easyto create the interpreter/compiler

A project groupata location called Dartmouth (believed by someto bein the county of Devon
in latter-day Britain, now part of New Thatcherland) developed BASIC in responseto these goals.
You canfind out about BASIC’s capabilities in any good reference bookonthehistory of science;
here we wili describe its main shortcomings by the standardsofthe day.
Some BASIC Drawbacks
— Only one program in memory at any onetime.
— All subroutines had to becomea physical part of this program.
— Data waseitherstoredin ‘files’ or was declared in the program.
~— Data could not be inspected without a program.
— Noarray-handiingfeatures in the standard language.
— Virtually no standardisedtext or string-handling facility.
— Apathetic selection of arithmetic and otherfunctions.
— Bizarrelimitations on variable names.
— Inability to pass data to subroutines via parameters.
~-- No conceptof ‘workspace’ for developing programs and data.
— No built-in screen and printer contro! standards.
~- Fixed-length record-orientedfile structures.
— No conceptof personalised command languages.
— User-defined functions limited to oneline in length.
— Maximumof two dimensionsin an array.

89

Thelist goes on. By today's standards, BASIC canhardly be classed as a computer language;
it's more like an ingenious extension to binary notation. However, BASIC did do one thing:it
made computersavailable on microprocessorsto millions of people who would otherwise have
missed the opportunity to use them. Now some maysay, of course,that it would have been a
better thing for mankindif this had never happened.No Third Industrial Revolution, no gangs
of neo-Luddites roamingthestreets with their PROMsniffers, no AIDSriots(ArtificialIntelligence
Destroys Society), and no fatal cases of Syndrome 2486,the tragic mystery illnessthat’sfilling
our hospital beds today with zombie-like patients suffering from an apparentlyirreversible
degradationofvision into a series of rectangularcells. But the picture isn’tall black. Without
computers— andFifth Generation Languagein particular—we wouldn't have solved the world’s
energy crisis, stabilised the global weather map, put an end to Third World poverty, brought
the national economy underperfectcontrol, etc. So let's take a look at how FGL madeit all possible.
Whatfollowsisn’t a formal definition of the language: you canfind thatin the 1986 edition of
the proceedings of the FGL User Group Meeting.
FGL Concepts
There are only ten concepts in FGL. These are:
— Names The rules for composing an FGL object’s name
— Modes The different ways in which FGL can be used
— Workspaces Where a user’s data and programs are developed
— Variables Text or numeric, single or multi-dimensional data
— Intrinsics Built-in data manipulation facilities
— Operators A wayto apply intrinsics more powerfully
— Functions Users’ programs and subroutines
— Commands Instructions affecting the FGL environment
— Extensions Implementation-dependentadditional facilities
— Files Optional external storage of variables or programs

FGL Names
Workspaces, variables and functions are assigned namesbythe user. These may beof any
practical tength and are drawn from the alphabetand the digits. Various reserved upper-case
names are used by intrinsics. The first character of a name must be alphabetic. Users are
encouraged to use lower-case for their names.
FGL Modes
You canonly be doing oneof three thingsat any particular time in FGL.In ‘function execution
mode’ youare running a program that you or somebody else has written; in ‘function editing
mode’you are writing or modifying a program yourself; and in ‘immediate execution mode’ you
aretrying out FGL expressionsby using the languageasa kind of super-calculator. FGL’srich
repertoire ofbuilt-in intrinsic operations allows youtodo agreatdealof work in immediate execution
mode without even bothering to write a program. The data resulting from program runs are
available for inspection at anytime, including the contents of multi-dimensionalarrays; they
don’t perish when the programs stop running.
FGL Workspaces
AnFGLworkspaceis anareain the machine(historically RAM, now multi-processed in SHEEP)
in which FGLprogramsandvariables are created andin which they normally reside, both when
they are in use and when they are stored away somewhere(historically spinning around on ‘disc’!
—now keptin BUBPAK, LASERCARDorCRAMPAK). An FGL workspace mighttypically contain
somethirty orforty functions and perhapstenortwenty variables. Someof the functions would

90

Table 1: FGL Intrinsics
Intrinsic Monadic Case
+

te%MAXMIN

LOG
TRIGLIST
INV
LEQ
NEQGEC
SET
AND
OR
NAND
NOR
NOT
SIZE
FLIP
SWAP
TAKE
DROP

SORT
TROS
ENC
DEC
FORM
io
EX

Force display
Prefix to negative number
Sign (+1, 0 or —1}
Reciprocal
Round up
Round down
Absolute value
@ to the power
log to the base e
factorial
pi times
list from 1 to ...
Random selection
Invert a matrix

Trueif false
Request dimension of
Turn into a vector
Reverse orderof elementsTranspose anarray

Ascending sort
Descending sort

Default numeric format
Default numerici/o
Default texti/oExecute text as numeric

Dyadic Case
Add
Subtract
Multiply
Divide
Select maximum
Select minimum
Remainder
raise to the power
log to any base
combination
sin, cos, tan etc. (15 options)
tind position in a list
Random without duplicates
Least squares matrix solution
Less than
Less than or equalto
Equalto
Not equal to
Greaterthan or equal to
Greater than
Is a memberof
True if both true
Trueif either true
False if both true
Falseif either true

Create with dimension of
Join together
Rotate elements as specified
Selective transpose
Select from start or end
Discard from start or end
Selectif true, else compress
Selectif true, else expand
Asc,sort by collation sequence
Des. sort by collation sequence
Encodeinto a new number base
Decode fram a new number base
Specific numeric format
Specific numerici/o
Specific text i/o
Execute conditional on error

91

act as subroutines to others in the same workspace. The whole workspace can be saved
somewhere whennotin use or recovered with a single command. With our modern technology
there is nolimitto the physicalsize ofthis workspace andfor mostapplicationsthis makesfiles
redundant.
FGL Variables
An FGLvariable maybeeithertext or numeric, and of any dimension. Zero-dimensionalvariables
correspondto single characters or numbers. The numbers may be stored internally as binary,
integerorfloating point types, butthatis transparentto the user. One-dimensionalvariables
are lists or vectors; two-dimensionalare tables or matrices; higher dimensionsare allowed with
no practicallimit for more complex data storage needs. Datacan be manipulated and inspected
casually within the workspace. The underline symbol'*__” causesthe data onits tight to be
assignedto the location named onitsleft, while the use of the symbols "(5)"allows indexing.
Arrays of more dimensions use more “;" symbols to separate the axes. A single quote is used
to delimit entered text. If entered text should itself contain a quote,two adjacent quotes are used
instead.
FGLIntrinsics
Mostintrinsics can be applied directlytoall or part of an array, in which case eachterm in the
arrayis affected. Mostintrinsics also have two uses:‘monadic’,in which a variable is supplied
as the right-hand argument, and ‘dyadic’, where a left and a right variable are supplied. Table
1 presentsa fairly completelist of FGL intrinsics, divided into seven groups: arithmetic, algebraic,
comparative, logical, manipulative, sorting/coding, and input/output. FGLintrinsics work on
numeric and text arguments wherever possible, and as we said, you can throw multi-dimensional
arrays at them and they’ll respond appropriately.
FGLexpressions may be compoundedofintrinsics to any degree of complexity, the result from
one operation being passed to the next as an argument. FGLlines are scanned from right to
left. There is no precedencein order of execution betweendifferent intrinsics, even between
multiply and add! The symbols “()"’ may be used to force execution to occur in any particular
order. Unless the result of an operationis assigned to a nameor used as the argument of another
expression,it is displayed by default.
FGL intrinsics allow the userto do a great dealof serious work on data without everwriting a
program.They've been carefully chosen so that you can do almost anything with them. Space
doesn’t permit a detailed discussion of each,to Table 2 presents some examplesto give you
the flavour,
FGL Operators
The syntax of the FGLintrinsics is that they can be ‘monadic’ or ‘dyadic’, taking data either
as a right argumentoronthe right and ontheleft too. FGL operators are even more cunning.
Instead of merely working on data as

a

rightor left argument, they accept one or more intrinsics
as rightorleft arguments, causingthatintrinsic to be applied repeatedly to successive terms
of an array. This sounds complicated, but actually the conceptis very simple. There are five
operators in FGL. They are called: reduction, scan, inner product, outer product, and axis.

There are about 40 intrinsics in FGL, and most can be applied either monadically or dyadically,
giving about 70 possibilities. By using these intrinsics with operators, several hundred data
manipulations can be specified without bothering to write a program. Oneof the most elegant
aspects of FGLis the ‘orthogonality’of its rules. In a sense an FGLoperatoris the high level
language analogue of a machine code memory addressing mode, while an FGLintrinsic
correspondsto a machine codeinstruction. Like awell-designed machinecodeinstruction set,

92

Table 2 Examples of FGL Intrinsics

+ eric _ 107100
34 12 57 89 39 4 67 33 79 44

+ eric | eric - 19.5
14.5 "7e5 37-5 69.65 19.5 “15.5 47.5 13.5 59.5 24.5

eric
P-lLili-btritt

MAX eric
15 ~7 38 70 20 ~15 48 14 60 25

MIN eric
14 ~8 37 69 19 ~L6 47 13 59 24

ABS eric
14.5 765 3765 69.5 19.5 15.5 67.5 1365 59.5 24.5

eric LIST 37.5 47.5
37

bill | ‘the name of this language is FGL’
bill LIST ‘name’

5673

eric LEQ 20
PLOOLLOLOA

(eric LEQ 20) AND (eric GEQ 0)
1000100100

SIZE eric
lo

+ tony _ 2 6 SIZE “hallo mother’
hallo
mother

FLIP tony
ollah
rehtom

2 FLIP tony
lio ha
thermo

93

Table 2 (continued)
SWAP tony

hm
ao
It
lh
oe
x

Q 2 DROP tony
ilo
ther

Q ~2 DROP tony
hall
noth

1 0 DROP tony
mother

2 ~3 TAKE tony
lo
her

+ paul _ LIST 10
12345678910

1002003001 paul
144777 10

TOOLSLOO0OOL3LO0O11 1 \ paul
1002333334000566670008910

+ paul _ 10 7 100
23 68 99 45 17 36 27 49 87 77

SORT paul51764821093
paul {SORT paul]

17 23 27 36 45 49 68 77 87 99

paul(TROS paul]
99 87 77 68 49 45 36 27 23 17

3 + EX °2+2"

7 2 FORM 4.519 6.7
4.52 6.70

94

FGLlets you employ (almost) anyintrinsic with (almost) any operatoron (almost) anyarrayof data.
FGL Functions
An FGL function is composed of zero or morelines, each containing a valid FGL expression.
Mostprogramsin FGLare very short,up to abouttenlines as a maximum.This contrasts strongly
with the thousandsoflines in programming languages such as BASIC (believed to stand for
Boring And Senselessly Infantile Concept) or — andthis one is very muchforthe history boys
—someeven moreforgotten dialects such as COBOL(historians now thinkthatthis meant Central
Official Bastion of Obsolete Languages). There are two reasonsforthis brevity. Oneis that the
ability of the native FGL intrinsics and operators to work on whole arrays at a time meansthat
loops, control structures and DO...WHILEinstructions are hardly ever needed. The otheris that
instead of combining all a project’s needsinto one huge monolithic program, FGL breaks the
job downinto set of sub-tasks,with a different and free-standing program responsible for eacharea.
FGLis ratherlike FORTHin this respect. You can define a vocabulary of your own FGL“verbs”,
“nouns” and “adjectives” to produce a personalised command syntax appropriate for any
particular job. It takes about three minutes of programming in FGL to constructthe functions
which makethefollowingline of English text a valid expression in FGL immediate execution mode:

Average Salary where (Sex is Female) and (Department is Accounts)
and whichwill producethe correct answertothis and anysimilarinformation request. The response
will be almost instantaneousirrespectiveofthe size of the personnelfile, becausethis data consists
of FGLvectors sitting in main memory all the time — there are nofites involved.
FGLfunctions are in some respects similarto intrinsics. They may be monadic ordyadic, but
they mayalso be‘niladic’ — using no argumentsatall. A niladic FGL program corresponds
to the idea of a BASIC program. A monadic or dyadic program correspondsto the idea of a BASIC
subroutine, but the FGLversionsare free-standing and much moreflexible. The following
additional symbols may be used in FGL programs:

4 To start or end function editing
“Therest of the line is a comment
@ Branchto indicatedline/label, or ignore if none specified& Statement separator

Lines may be prefaced withtextlabels terminated bya “:"" symbol. Label namesare automatically
assignedtheir run-timeline numbers as integer values, so these become pseudo-variables that
may be referenced but notaltered in the user’s expressions.
Branching in FGLis of interest. The “‘@" branch expectsto see aninteger argumentrepresenting
a valid line number.This integer may be calculated any waythe userwishes. Multiple conditional
branchessimilar to the CASEconstructsof other languages becometrivialin FGL.Ifthe integer
is not presented (by providing an ‘emptyvector” ofzero length) then FGLwill ignore the branch
instruction. The user may use any oneofmany FGLtechniquesto implementaconditional branch
using this feature. Table 3 contains some examplesof FGLfunctions.
FGL Commands
An FGL commandgenerally acts immediatelyon the workspaceorthe long-term storage medium
and affects the environment within which the FGL programmeris working. Aspects such as
changing the numberof columnsin the display deviceline width, inquiring after the namesof
variables and functionsetc.are typical uses ofthese system commands. Commandsare prefaced

95

Table 3 Examples of FGL Functions
result average data

[1] “This function will average a vector of numeric values
[2] result _ (+/data) % SIZE data
(3) 7

average 123 4
2.5

3#average 1234
7.5

“ analysis
[i] "This function will do some statistics on typed-in data
(2) "Notice that it in turn uses the pre-written function “AVERAGE”
[3] ‘Please enter your data, separated by space(s), terminated by RETURN‘
[4] hisdata_ $
[5] “Thank you’
{6} “There were °;SIZE hisdata;” values entered’
{7} °The Largest was *;MAX/hisdata
[8] “The smallest was ” ;MIN/hisdata
[9] “The average was “;average hisdata{10} ‘Goodbye’
(11) >

analysis
Please enter your data, separated by space(s), terminated by RETURN
$: 50 30 40 20 60
Thank you
There were 5 values entered
The largest was 60
The smallest was 20
The average was 40Goodbye

“ newtab _ crosstab oldtab
{1} "This function cross-tabulates a table (row and column sums)
{2] newtab_ oldtab,[1]+/{l] oldtab
{3] newtab _ newtab,[2]+/[2]newtab
(4) 7

crosstab 4 4 SIZE LIST 16
1 2 3 4 10
5 6 7 8 26
9 10 Ti 12 42
13°14 15 16 58
28 32 36 40 136

rv _ factorial b
(1] “Recursive function for calculating factorials
12) @(1 = r_ b)/0
(3] xr _ b # factorial b~ 1
(4) *

96

with a teading"’)’’ symbol whichacts asa delimiterto distinguish them from user objects which
might have the same name, Commandsarenot generally included inside user's functions, but
they may beso incorporated by enclosing them inside quotation marks and executed at run-
time using the ‘‘EX"’ intrinsic.
FGL Extensions
The “'$"' symbolis used by FGLfor twotasks:as primitive input-outputintrinsic for numeric data,
and also as a delimiting prefix to introduce an implementation-dependentadditional FGL facility.
The FGL syntax has been standardised by the ISO but vendors may offer any numberof extra
“goodies”in their own FGLinterpreters. In order to minimise the problem of name clashes,
these extensionsare prefaced by $”, hence the name‘‘dollar-functions” and ‘“‘dollar-variables”’.
FGLFiles
Becausetypical workspacesof20 Giganodes (comparablein 1980's terms toa user having 200
Megabytesof physical RAM driven by about 10 dedicated 32-bit processors) are the norm these
days, files play a rather minorrole in FGL. Dedicated applications tend to store all the data in
the workspace, while multi-user tasks employ the concept of the ‘shared rodent interface’ to
squirt data betweenotheractive workspacesanduserI/O devices suchas mice, without bothering
to usefiles. However, files can be used if required.
AnFGLfile is best thought of as a collection of adjacentelastic boxes. The boxes are numbered
sequentially, starting at 1, with no maximumlimit. A box can contain any FGLobjectof anysize:
a single number, a vectorof 100,000 numbers,a text matrix of 10,000 rows by 100 columns,
or a function. Depending on the implementation, dollar-functions may exist to allow a
heterogeneous assortmentofvariables andfunctions to be groupedinto a single package and
filed as a single object. Filed objects maybe replacedbylarger orsmaller ones withoutrestriction.
Acessis by box number:direct and sequential access of any type is therefore supported.
Whereasthe conventional languages of the 1980’s expected data records to be stored as
‘horizontal’ slices of a table, with one stored record per person or productin the datafile, FGL
records are normally stored ‘vertically’, with one boxed object per parameterin the datafile.
All the SALARIES go into box number1; all the DEPARTMENTSinto box 2; all the JOINING
DATESinto box 3, and soon.Files are therefore typically ‘inverted’ all the time, which usually
obviates the need for a database.
Why FGL overtook BASIC
The overriding advantages of FGL wereasfollows:
— Extremely fast project development time
— Aworkspace in which to bring together programs and data
— Artich set of standard data handiing primitives
— Ability to work on arrays without looping
— Modular function style with elegant controlflow
— Nolimit to the range of applications that could be handled
— Sophisticated featureslike recursion for expert systems
— Standardised full-screen controls
— Standardisedprinterattribute handling
— Standardised colourgraphics routines
— Sharedrodentinterface for controt of mice
— Sharedstereointerface for voice recognition and output
— Required nospeciat hardwareforits character set
— Upper& lower case characters for commercial applications
-—~ Numeric precision to 15 significant figures

97

— Astructure which made database handlers unnecessary
— Parallel processing as an integral part of the language

in addition, the existence of the earlier APL language meantthat there was no need to create
a new languageinterpreter for each implementation: simple modifications to the character
input/outputroutines were all that was needed to convert APLinto FGL.
Why FGLwaswell suited for fifth generation projects
Theflirtation with knowledge-based expert systems which began at the start of the 1980's
produced proposals for the deploymentof other languagesfor expert systems applications, such
as LOGO,LISP and PROLOG.These languages were strong on inference but weak on arithmetic.
For example, PROLOG wasgoodat solving the following types of problem:

‘If time flies like an arrow,dofruitflies like a banana?”
In PROLOGthis would be stated as:

&. Add (Timeflies-tike an-arrow)
&. Does(Fruit-flies like a-banana)

LISP was good atjobs like proposing robust hyphenation rules for word processingspelling
checkers, rules which helped oneto avoid infelicitous proposals for hyphen insertion in a word
suchas “‘toadstool’’. In LISP the code to dothis would be stated in the user-friendly formulation:

(CQCC({(toads(tool)))))))))
LOGOexcelled at helping people create random artwork designs usingturtles;in factit wiped
out all competition in this field and ended up being referred to the Anti-Trust (Monopolies)
Commission in the GalapagosIslands. .
However, it eventually dawned on people that the basis for good expert systems design had
to be a good general purpose computer language: one that was strong on logic and text
manipulation while also being extremely fast at computation by the useof parallel processing.
As paralle! array processors emerged, moving away from the so-called ‘‘pipeline” processing
conceptto the aptly-named ‘‘dense-pack”’ synchronous computationfield, the advantagesof
array-oriented languagesfor expert system design soon becameirrestible. Declarative subsets
of FGL soon emerged which modelled all the best features of the specialised expert systems
languageswithout throwing awaythe indigenousability to calculate (for example)antilogarithms.
The implications of Ashby’s Law (‘The variety of a controller must be as great asthat of the
system under control”) meantthat any attemptatartificialintelligence in the strict sense required
the creation of an artificial modelof reality that was robustfor the uses to whichit was being
put.Digital implementationsofthis concept were inappropriate becauseof the sequential, clocked
nature of their computations: even at sub-picosecond switching speeds, the variety wasjust
not there. By the 1980s wehadlearntthat the answerlay in marrying microelectronic fabrication
disciplines to the highly parallel, asynchronousnature of mental processes as implementedvia
neurons,axons and synapsesin the humanbrainin an essentially analogue fashion. This was
first done by a smali company in Rockville in 1986, using protein instead of silicon as a
semiconducting substrate. The rest, of course,is history.
However, the acceptancethattrueartificialintelligence required designersto step outside the
sequential von Neumannarchitecture was enough to encourage the developmentof pseudo-
intelligent systems. The goal of genuine understanding wasset aside for the moreprosaic (but
commercially desirable) aim of flexibility and knowledge. FGL turned out be an excellent vehicle

98

for specifying heuristics drawnfrom fuzzy settheory,from catastrophetheory and from Bayesianstatistics. These were robust means ofintegrating the large body of detailed knowledge thatwasavailable to the ‘‘domain specialists’ who were implementing the systems.In particularthe creationof off-shoots of FGL such as ESP (Expert System Producer), ESPRIT(Expert SystemProducerfor Rapid Integration of Thoughts) and ESPION (Expert System ProducerforIntelligence,Observation and Neutralisation) were formative in FGL’s rapid penetration of this huge arena.
FGLwasfast, flexible and mature.It was very good at Booleanlogic.It handled recursion elegantly.It coped beautifully with problems requiring very rapid computation over vast memory areas.FGLprograms could with trivial ease modifythemselvesor other FGL programswhile executing.Mostimportantofall, it was there andit worked. In retrospect, there was no other choice.
Thereaction from the BASIC community
The response from existing BASIC users represented one of the decade's most fascinatingexamples of techno-cultural re-adjustment, Fortunately the accountsofthis process were welldocumentedat the time and we now knowfairly precisely what happened.Thefirst paper onFGLentitled simply “FGL: Fifth Generation Language” was published in a magazineofthe timecalled ‘BYTE’(now replaced by the hourly circulation electronic journat ‘GNAW’ — GrippingNews Adventurously Written) in the 1983-84 period andthefirst implementationsof the languagebecameavailable early in 1984. To users of BASIC, who had beenfiddling around with thingslike PASCAL, ADA, PROLOG,LISP, LOGO, FORTH, HOPE, SNOBOL, FORTRAN, RPG,COBOL, ALGOL, PL/1 etc. in the hope of finding something useful, the response wasoverwheiming.
Massed bandsof cheerleaders ran throughthe streets of the world’s major capitals holdingplacards with FGL programswritten on them. Spectacular May Day parades in Red Squarefeatured elaboratefloats in the form of FGL 5-dimensional arrays. The Space Shuttle (nat tobe confused with the recentlyintroduced no-reservation required Venus shuttle) was employedto blanket the ionosphere with FGL Reference Guides multipte-independently targeted on a re-entrantorbit to the world’s computer conurbations. No resistance was encountered anywhere,except from those who had previously encountered APL.It was a landslide.
Thereaction from the APL hostility
Thefirst formal presentation of FGL to the APL hostility took place with the submission ofthesame paperto the annual APL conference held in Helsinki, Finland, June 11th — 15th 1984.Despite the better judgementof severalofthe paper’sreferees, the paper was accepted as partof the formal proceedings.This wasa pity in many wayssince previous conferences had tendedto indicate that the pirate presentation of a rejected paperattracted a larger audience than onethat had been accepted. Nevertheless,at least two people were observed to enter the roomin which the paper wasbeing delivered, one of whom was knownnotto be the paper’s author.After the paper had been presented,the following questions were posed:
Q. “Wealready have proposals for an ASCII notation for APL. Why makesuch abig thing of it?” .
A. “Becauseif APL is to take over in the disguise of FGL, we mustkill APL notationcompletely for all except academic and research purposes. Nobodyis preparedto rush out and buy new APLscreensif they already own ASCII versions — andby now,they all do!’

“Whynot adoptoneof the existing ASCII mnemonic standards?”
“You're missing the point! FGL will be used by people who have never seenAPLnotation and who neverwill! Who wantsto talk about $RHO?”

>o

99

“You've destroyed the whole spirit of APL’’
“FGLtraining books will contain references to APL notation in an appendix at
the back. People who wantto play with APLwill still be able to. Most APL users
care far less about the notation than most of the people who set APLstandards.
Try actually using FGL for a bit — you'll find that the APLspirit is still very much
there.”

>o

“What is the main objective behind such a major change?”
“First and foremost, to stop APLinexorably disappearing. Thisis happening
partly because commercial pressures increasingly preclude the implementation
of an overstruck character set, and partly because APL’s funny symbols simply
put most people off. As a percentage based on the language used per installed
computer(including microcomputers), APL. usage has been declining
exponentially for 7 years and is now indistinguishable from the zero axis.If we
don’t adopt something like FGL now, APLwill sink without trace.”

Po

“Are there any other advantages?”
“Ot course. FGL lets you use uppercase and lowercase in a standard fashion —
vital for business applications. Suddenly, you can choose anyscreenorprinter
you want.It's now implemented onvirtually any computer you want. And the
hardwareis ridiculously cheap, because everyoneis usingit. Also since you
know APLalready, you’ve already learnt FGL.””

PP

“What about nested arrays?”
“This has to be the world’s mostirrelevant question! APL is already so much
more powerful than BASIC that any further features would virtually constitute
overkill. However,it has to be admitted thatlist structures comein handyfor
expert systems, so (provided no new symbols are needed) there’s no reason
why FGL cannotadopt whichever nested array syntax APL eventually decide
on.”

Po

Q “My IBM 3270-type terminal creates APL. characters without overstrikes, so
what’s the problem?”
“IBM's EBCDIC code doesinclude APL and non-APL charactersin a single
character set. However, IBM and plug-compatible manufacturers are the only
companiesthat use EBCDIC;!BM has alreadystarted selling an ASCli4ype
screen, andit’s now only a question of time before ASCil-based protocols start
to muscle EBCDIC code away.”

Q. “If the next generation of microcomputers are going to have memory-mapped
screens, what's the problem?”
“You still won't get APL characters without a big struggle. Let's change now
while there's still time.”

Q “What can I do in practice to help FGL emerge?”
A. “Write to the FGL Action Group, care of the author.”

Table 4 depictstherelationshipof the defunct APL symbolsto the FGLversionsthatwe allnow
use. The few APL fanatics who remained unconvinced wereeventually discoveredin their caves
in the Adirondacks and the Hebrides. Lucrative offers were madeto them andyoucanstill visit
them now;eitheras part ofthe ‘living history’ permanentexhibition in Williamsburg,Virginia,
for the entertainmentof headsofstate, or (in the moretraditional British style) in glass cases
atthe Science Museum in London.You canfind them there located next door to James Watt's
steam engine; ifyou pressthe button onthe outside of the stand, theywake up and demonstrate

100

APLcharacters in semaphore — as a one-line function with no comments.
Footnote: Thisarticle was written by an FGL module entitled ESCRIT,Expert SystemsCreation
of RandomIntelligent Text. Forthis reason anyviews expressed herein remain thoseofthe system
and do not necessarily represent opinions held by the author or any organisation with which
it is associated.

101

Table 4 — APL/FGL Equivalents
The standard APL character set was evolved for paperprinting terminals for which no penalty
(apart from print speed)is attached to the concept of backspacing and overstriking a character
to form a new composite symbol. The APL characterset therefore contains more than the standard
96 ASCII printing characters. Despite this, APL does not contain the lower casealphabet, a serious
deficiency. Furthermore, various punctuation symbols which alsoexist in ASCII are focated in
non-standard positions in the APL code table. The mapping of APLto FGL charactersis as follows:
a, APL A-Z becomes FGL a-z
b. APL A-Z becomes FGL A-Z
c. APL 0-9 stays as FGL 0-9
d. APL punctuation is replaced by ASCII versions in FGL,if they exist
6. ASCII punctuation which is undefined in APL is redeployed in FG@L
t. Reserved FGL upper case (APL underlined) namesreplace remaining symbols
This mapping can beinstalled on an APLinterpreterwithout making any changestotheinterpreter
itself provided the following extensions exist:
— Ability to reconfigure input and output translate tables.
— Ability to create ambivalent user-defined functions.
— User-defined funtions allowed as arguments to operators.
This approachallowsthe currentset of recommeded reserved words such as SIZE,LIST etc.
to be replaced by national language variantsif desired.
««...” indicates that the APL symbolis not supported in FGL. These casesdonotaffect any APL
symbols in serious active use. The surprising aspect is how little changeis actually required
to APL; manyof the APL symbols are a part of standard ASCII and hence FGL.
Thisfirst draft of the standard was part of the 1983 paper and some changeswereof course
made following commentsonparticular choices. Overall, however, the final standard bore a
close resemblance.

APL FGL APL FGL APL FCL

+ ? t x Va)7 ~ oy ae é 7a< < € SET ! :
s LEQ 2 SIZE 3 >Ct}
= = ~ NoT 8 "2 GEQ 1 TAKE 2 Ex
> > + DROP 7 FORM.* NEQ . LIST ® LOGv OR ° ‘TRIG a Inv
A AND * * ” NAND- - « wee ” NOR+ + t MAX 0-U-T wae
x # l MIN a Lock+ x _ aes g 10s . v - > FLIP> @ 4 wee y TROS
+ _ ° . 4 SORT
(C ' . e FLIP (1))) a § 8 SWAP
c C < see
J 1 > wee
/ / a wee
\ \ u wee; 3 4 DEC: > T ENC
: : | |
» nee 0-3 0-9
4 see A-Z acz° & AZ AZ{

102

TECHNICAL EDITORIAL

by Jonathan Barman and David Ziemann
Welcometethe technicalsection of VECTOR.In these pages we hope to presentitemsofinterestto technical APL readers. Therefore,in future issues of VECTOR youwill find Papers,articles,APL code,algorithms and more. Therewil also be a regular technicalletters page and prizecompetition. We wantto encourageyouto contribute to anyof the above and would particularlywelcomeletters and/or APL code,with a view to maintaining a dialogue on particular areas ofinterest.
in this issue we presentfour contributed papers. Thefirst one is by Alan Hawkes,professoratthe Departmentof ManagementScienceand Statistics of the University College of Swansea,who shares with us someof his workin a paperentitles “Complex numbers in APL”. As wellas providing

a

listing of his complex numberfunctions for APL without using a complex datatype, he also gives a mathematical treatmentof the algorithmsthatlead to them. Although writtento run under MIPS APL,the code requires onty minor alteration in one or two cases to be runon other implementations.
Next, David Doherty of the British United Provident Association (BUPA) has contributed“SCREENIO —

a

full screen manager’. David charts the developmentof his screen designpackage,and showshowflexibility is preserved via the specification ofa setof validation rules.
“Partitioning Data in APL” is submitted by Jonathan Barman. Init, Jonathan discusses a rangeof techniquesfor manipulating partitioned data within a standard VS APL environment. UsefulPartition functions are developed and explainedin detail within the text.
Finally, David Ziemannpresents his paperon the currentdraft of the international APL languagestandard.“Inside the international APL standard” takes anin-depthlookat the waythe standardworks, whatthe actual content is, and howit might be usefulto us.

103

..Probably the most powerful APL in the world

 e Second Generation Interpreter ¢ (FMT
e Runs under UNIX™ @ Event trapping
@ Nested Arrays e External Variables
@ Full-Screen Editor ® Full implementation to ISO Standard
e FullScreen Data Manager ® Auxiliary Processesin high-level languages
@ Portable ® Complete access to UNIX™facilities
@ ComponentFiles @ Full ASC! support

..and runs on all these computer systems
BLEASDALE BDC680 GOULD SEL
CADMUS 9000 HP9000

FORTUNE 32:16 PERKIN-ELMER
ICL PERQ VAX
ZILOG $8000 (With manyto follow)

(i further information fill in the Coupon andpost today toSales Department, Dyadic Systems Limited, 20 Camp Road,Farnborough, Hants ‘Telephone (0252) 647222 Telex 858811

NAME
COMPANY

| POSITION, —— |
ADDRESS

zTM UNIX is a trade mark TELEPHONEof Belt Laboratories ee
104

PRIZE COMPETITION:This is YourLife

by David Ziemann
In the GameofLife a rectangular grid is used as a framework within which the behaviourof‘organisms’over successive generationsis studied. Each squarewithinthe grid mustbeeitherfilled or empty, representing eithera live or dead/unborncell. Rules that determinethe conditionsunderwhich newcells are born and old ones die are used to produce the next generation oforganisms. For example (and forinterest only), the usualrules for birth and death are:
Birth _ an empty cell becomeslive in the next generationif it currently has exactly3 live neighbours.
Death — a live cell dies in the next generationif:

i) it currently has 0 or 4 live neighbours(isolation)
or it) it currently has 4 or morelive neighbours (overcrowding)

{n this context, each cell has 8 neighbours — the squaresdirectly adjacenttoit.
In APL,the mostobviousdata structure that can be usedto representthe grid is a boolean matrixof known shape,with 1s indicatinglive cells and Os dead ones.It is then possible to write anAPL. function that will take a boolean matrix right argumentand return a new onethatrepresentsthe next generationof cells. In fact this is quite an old problem, andit can be solved ina fairlysatisfactory non-looping way. However,the time taken to calculate a successor generationisproportionalto the grid size, and will be the same regardiessof the contents of that grid. Withlarge grid sizes, this cost can becomeprohibitive, and is particularly annoying when the gridonly contains a smallish organism somewhere near the centre!
Analternative representation considers runsof Os and 1s in the ravelled boolean matrix. Forexample, using this run-coding method, a 4 by 5 grid

ORE) 'OURGLOa0
would be represented by the integer vector: 2245 223 where the quadsrepresent emptycells
and the dominoeslive ones.
The first element of the run-code vector a/ways indicates the leading numberof Os in the
correspondingravelled boolean matrix. The second element then gives the length of the next
tun of 1s, the third the length of the next run of Os, and so on.
Fortypical GameofLife grids, this representation provides a reasonably compactdatastructure.
Moreover, the time takento calculate the successorgrid is now proportionalto the size of the
contained organisms,ratherthanthe grid size. This meansthat‘boring’ generationsare calculated

" quickly, whereas more complex onestake longer.
Becauseit is convenientto define and view a grid as a character matrix containing only spaces
and crosses,the boolean representationisstill important, and functions are required for converting
between the boolean and run-codedforms. This is the subjectof this issue's competition.
Thetaskis to write the two monadic functions BTR and RTB. BTR convertsits boolean vector
argumentinto a run-coded vector, and RTB goes back the other way. Note that the shape of
the grid is not relevant because BTRhas a boolean vector argument and RTB a boolean vector
result.

105

For example:

+BMe4H 5000110,00011,11100,11000
00110
00011
11100
11000

BIR ,BM
2245 22 3

a THE FOLLOWING IDENTITIES MUST ALWAYS HOLD TRUE:
(p,BM)=+/BIR ,BM

(,BM)A.=RTB BIR ,BM
1
Each respondent must submit two APL functions that conform to the first ISO draft proposal
for an APL language standard. (Don’t worry — this effectively just means VS APL).
Additionally, respondents mayinclude twofurtherfunctions written for the APL implementations
of their choice (please specify!}. Note that no prizes will be awardedin this category.
Entrieswill be disqualified if they do not conform to the above descriptions,orif they rely on
the external environment(ie,ifa functionis not a ‘black box’). The criterion for judging functions
that jump these hurdles will be the minimisation of the numberof characters in the solution.
This character countwill only include the printing characters entered at the keyboard in del-
editor mode,butwill NOTinclude characters in the function header-line or in commentlines.
Composite symbols count as one character.
A first prize of £30 (or equivalent) will be awarded to the author who,in the judges’ opinions,
submits the shortest correct entry. Two special commendation prizes of £10 each will additionally
be awarded.
Manythanks to Paul Chapman,author of VIZ:;:APL, who suggested the competition topic.

106

COMPLEX NUMBERSIN APL
Alan G. Hawkes

Department of Management Science andStatistics.
University College of Swansea, U.K.

This paperdescribes a systematic method of representing complex numbers in standard APL
in such a waythat basic complex arithmetic and complex matrix algebra maybe simply done.
listing of functions is given in section five.
The VECTORtypesetters were persuadedto resist the challengeofsettingthis article in print,
and consequentlyit is reproduceddirectly from Alan’s originals.

107

1. Introduction: Representation of complex numbers
One of the strengths of FORTRAN as a language for scientific and engineering

computing is that it makes provision for declaring COMPLEX variables which may
then be manipulated according to the rules of complex arithmetic by the standard
algebraic symbols +, -, *, /. In addition, special functions or subroutines
such as CEXP are available: in particular complex matrix algebra can be done by
calling the appropriate subroutines.

Standard APL makes no provision for complex variables. After several
proposals and discussions, Penfield (1979) produced proposals to extend the APL
language into the complex field in a consistent manner. McDonnell (1981)
describes such an extension which has been implemented in I.P. Sharp's APL. I
would urge all writers of APL interpreters to follow suit as soon as possible;
the scientists would then be more readily moved to change to APL.

In the meantime, it is quite easy to develop a simple means of handling
complex numbers in standard APL. It could no doubt be done more elegantly in
versions supporting nested arrays. I have not attempted to be exhaustive, but
have restricted myself to the basis found necessary in my own applications.
qe functions mentioned in the text are listed in section five. They have been
knocked together quite rapidly to solve a particular problem. The author would
welcome amendments which would render them move elegant, efficient or accurate.

A single complex number 2 = x + ¢y has real part x and imaginary part y
(e and y both real), so that it may be thought of as an ordered pair of real
numbers. We adopt the convention that a complex array of shape S will be
represented by a real array of shape 2,5 such that Z¢ X, [0.5]¥ where X is the
real part and Y the imaginary part (each of shape S).

Thus, for example
A+7 8 is a complex scalar 7+48 with
REAL A

IMAG A

108

L

are real scalars corresponding to the real and imaginary parts of

A (here S is the empty vector). In contrast
O+8+2 197 8

7
8
is a complex vector with one element. Superficially

REAL B
7

IMAG B >
8
appear to be the same as the previous case but this time 7 and 8 are one-element
vectors (pREAL B and pIMAG B are both 1).

More generally, the complex numbers 1+i5, 2+i6, 3+17, 4+18 may be assigned
to an array of shape 2 4; so that

Cc
1234
5678
is a four-element complex vector with

REAL C
1234

IMAG C
5678

An example of a complex 3 by 4 matrix, whose representation is an array
of shape 234 is

D
123 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

109

with real and imaginary parts
REAL D

12 3 4
5 6 7 8
910 11 12

IMAG D
13 14 15 16
17 18 19 20
21 22 23 24

Higher-dimensional arrays could be defined, but do not seem likely to be
much used.

An alternative polar representation of a complex number

- 718 on.a+ ty = re =r cos® + t stné

r= (+ yy
is often useful. The modulus r and argument ® are obtained by functions

MOD Z and ARG Z, while R CART THETA does the inverse transformation from polar
to Cartesian co-ordinates. In this connection the functions RAD and DEG are
useful to convert between angles measured in degrees and radians. CON Z
yields the complete conjugate X - tY, while COMPLEX X converts a real array
into a complex array with zero imaginary part, so that for example

COMPLEX 3
306
is a complex scalar and

COMPLEX 7 5
75
a0
is a complex vector of length two.

110-

“2, Complex arithmetic

Two complex arrays of the same shape may be added or subtracted by 2+ Wh
or Z-W in the usual say. However, this does not satisfy the rule that if one
of the argumentsis a (complex) scalar it is repeated to become the same shape as
the other argument and thus added to, or subtracted from, each element of the
other argument. This property is a feature of the functions CADD and CSUB so,
for example, using C from the previous section we have

C CSUB 1 2
0123
3456
and we see that the complex scalar 1 + i2 is subtracted from each element of the
complex vector C, The same is true for elementwise multiplication and division
in the functions 2 CTIMES W andZ.CDIV W respectively. In each case 2 and W must
be the same shape or be complex scalars. As in the real case, (complex) vectors
of length 7 and 1 by 1 matrices may act like scalars in this respect.

Simple monadic functions are CRECIP 2, the complex version of monadic 3,
CEXP 2 and CLOG 2.

In principle it would be possible to write functions to manipulate complex
arrays, such as CTAKE or CDROP etc., but one can always achieve the same ends by
appropriate real manipulations.

3. Complex matrix algebra

The addition and subtraction of matrices whose elements are complex
numbers is just a special case of the addition and subtraction of general arrays,
as discussed in the previous section. Matrix multiplication is done by 2 CMM HY,
which is the complex equivalent of Z+.xW, having equivalent rules about con-
formability and (complex) shape of the result.

This leaves three rather more difficult problems. The most important is
that of finding the inverse of a complex matrix. This is an interesting problem

which I discuss in this section. In the following section I deal with the

computation of the exponential of a matrix, The third problem is that of finding
eigenvalues and eigenvectors of a complex matrix. I have not yet attempted this
becausé it is the most difficult and because I have as yet not had any need to
do so. However, it should be done and I would be pleased to hear from anyone
who may already have done it.

The inverse of a complex matrix

in principle one could write a function which carries out some form of
Gaussian elimination to find the inverse of a complex matrix. However, since
APL is very good at inverting real matrices with fF] it seems a good idea to
make use of that facility.

Denote the inverse of the complex square matrix 2 =X +7¥ by U + iV.
Then, since their product must be the identity 7, we have

xu - Yat G1)
XV + YU=0 (3.2)

Suppose there exist real Aye ry such that

Be a,x 7 OY is invertible. Let
C= yk vA.

Then 4 x G.1) - do x (3.2) and A, x (3.1) + 4,*G.2) yield2
BU - CV = AT
cu + BY = 2d,

which can be solved to yield
u
Vv

w+ oso! Gyr + ajce!) G.2)
(e+ cxtoy"! Gar - 4,087") G.4)

If 2 is non-singular there are at most 1+pX values of the ratio AP for
which B is singular. Our general routine CINV Z therefore chooses Rpg at
random. There will be a very small probability of hitting one of these
‘eigenratios' . However, to be on the safe side, an error trap is set in line [7]
which returns to choose another pair of values for Ayohg if B should be singular.

112

"Of course, if Z is singular, B will always be singular and we would get into an
infinite loop. Thus we set a counter and switch off the error trap in line [10]
after five attempts to find a non-singular B. Once a suitable 3 is found, the
inverse U + ZV is constructed from (3.3) and (3.4) using only real matrix algebra.
Error-trapping routines vary from one interpreter to another, so anyone using
this function may need to make appropriate minor adjustments.

For particular problems one sometimesknows that the real part X of a
matrix must be invertible. In that case one can take 4 =, Xo = 0 which
imply that

B=xXx,C=/Y and thus
us (x + yxly (3.5)
Vv -e + yxty)t ygt (3.6)
This solution is implemented in the function CINVR Z.
Similarly, if it is known that Y is non-singular, one may take
4 = 0, og =-1 so that B = Y, C = -X which imply that
ue Weahl xy! (3.7)
ve-eyhg (3.8)
This solution is implemented in the function CINVI Z. A simple example

in which neither the real nor imaginary parts are invertible is

rrytoe 1 i
0 i 0 -i

Any values of Ayory + 0 would suffice to invert this one. The general
routine CINV does the job.

CINV 2229 11000001
1 0
0 0

1
“4

. t+i 2 : .The matrix 1 mi ,however, is singular so

113

“CINV 222912141100 "1 yields the dreaded DOMAIN ERROR. 4

Note that any of these three inverse functions are generalisations of the
real monadic MM , except that we allow them to apply only to complex square
matrices, vectors of length 1, or scalars. In the real case, of course, one
gets a least squares fit for the non-square case. I have not attempted any
generalisation of this feature.

4, The exponential of a matrix

In applied probability, and other areas of applied mathematics, one often J
needs to evaluate the exponential of a square matrix, defined by the infinite J
series

®, Ea " wy + > n
N + Ra we +

tI wy

The accurate and efficient computation of this is a rather delicate matter,
see Moler and Van Loan (1978). I have adopted the simplest, and probably most
effective, method of scaling and squaring. Consider the case of a real matrix
A, which is implemented in the function MEXP A.

The most obvious thing to do is to truncate the series* A k re = 7(A) = YA art. .1)=O 4

Bounds for the error of truncation are given by

1Ii 7, cay-e" | ¢ LAtelat reeai , (4.2)
+411

where ||A|| is the norm of the matrix. A number of different norms may be
used. For simplicity of calculation use the t-norm

{iall = Haw) \a (4.3)aq!

114

The scaling and squaring method, as implemented here, proceeds in three

stages:-
(i) find the smallest non-negative integer M such that

soft . offHae2°t] = [lalbe2" <a,
ez(ii) Approximate e“ * by the finite series (4.1), replacing A by

M . . -yeA 2° and with k = 13 (truncation error less than 107));
. ffGit) ting A = eA UH by squaring M times.

For a complex matrix one simply needs to interpret la,| in (4.3) by
the complex modulus, MOD, and replace +.x by CMM when performing matrix
multiplication. This is done in the function CMEXP, For MEXP and CMEXP the
inputs must be real, or complex as appropriate, square matrices, vectors of
length 1 or scalars. In each case, the output has the same shape as the input.

Sometimes there are short cuts. For example, if I is a real identity
matrix of the same shape as a real matrix @ and s a complex scalar, then

ett +@ _ os 0
so that the exponential of this particular complex matrix can be written as the
product of the exponential of a complex scalar and the exponential of a real
matrix. In terms of the functions described in this paper this is equivalent to
the rather less elegant form CMEXP (COMPLEX @) CSUB S CTIMES COMPLEX I is equal
to (CEXP -S) CTIMES COMPLEX MEXP Q.

Oh well, at least it’s better than doing it in FORTRAN!

Finally, a word of warning. The obvious result
A+B A OBe =e @

is only true for matrices if A and B comnute.

115

REFERENCES

FORBES, D. (1981), Complex floor revisited, APL81, APLQQ vol. 12 No. 1
September 1981, 107-111.

McDONNELL (1981), An implementation of complex APL, APLQQ vol. 11 No. 3,
March, 1981, 19-22.

MOLER, C. and VAN LOAN, C. (1978), Ninteen dubtous ways to compute the
exponential of a matrix, SIAM Review, vol. 20 No. 4, 801-836.

PENFIELD, P. (1979), Proposal for a complex APL, APL79, APLQQ vol. 9 No. 4,
June 1979, 47-53.

PENFIELD, P. (1981), Prinetpal values and branch cuts in complex APL,
APL81, APLQQ, vol. 12 No. t, September 1981, 248-256.

116

APPENDIX: Function Listings

VRCARG X;IC1] ARGUMENT OF COMPLEX X, -PI<PHETASPI(2] ReREAL X[3] IIMaG x
C4] Be(2x((120)-0.5))x"20°10 ALR ((R#2)+(T*2) 40.5v

UR+X CADD ¥{1] 9 ADDITION OF COMPLEX X AND Y
(2) Re((REAL X)+REAL Y),CO.SICIMAG X)+IMAG Yv

VZeR CART THETAC1] POLAR TO CARTESIAN(COMLEX); THETA IN RADIANSC2] 2+(Rx20THETA) ,[0.5]Rx10THETAv
VR+X CDIV Y[1] DIVISION OF COMPLEX X BY Y(2] R+X CTIMES CRECIP ¥v
VRX CTIMES Y;RX;IX;RY;IYC1] 9 MULTIPLIES ELEMENTWISE; X AND Y MUST BE SAME SHAPE OR COMPLEX SCALAR[2] RX+REAL XC3) IX+IMAG X[4] RY+REAL Y{5} IY+IMAG Y

C6) Re (RXRRY)~-CIXxIY)) CO. 51 RXxIY) +(1XxRY)v
UR+CRECIP X; RX; IX;MODSQ(41] COMPLEX RECIPROCAL OF ARRAY XC2] RX*REAL X[3] IX+IMAG x

Ca] ReCRXeMODSQ) ,C0.5]-IXsMODSQ+ (RX*2) +(IX*2)v
VRCCEXP Z

C1] a EXPONENTIAL OF COMPLEX Z
C2] RC «REAL Z)CART IMAG Z

v

117

VRCINV 2;X3¥3B3C313U; LAMDA; D3 S303 SOCINV(1] on INVERSE OF COMPLEX MATRIX WITH RANDOM TRANSFORM: AGH 1984
C2] +(2e1t5<pZ) /MESS€3] +((1=pS)v(2=p8)a1=145) /SCALAR
Cu] +((3=p5)A0=-/1+S) /CONTINUE[5] MESS:+0,p0e'ARGUMENT MUST BE COMPLEX SQUARE MATRIX'[6] SCALAR: Z+2 1 1pZ(7) CONTINUE: SXCINV+1 2pCOUNT,1
(8) d+1
[9] COUNT: +(S2J+J+1)/RAND
[10] SacINV+0 291[11] RAND: LAMDA+LAMDA+ +/LAMDA+? 2p 1000000000C12] ~Be(LAMDAL1]*X+REAL Z)-LAMDAL2]xY*IMAG Z[13] C+(LAMDAL1]xY)+LAMDAT2]xX
Can] I+Fe,sIe.itpx
(15) D++(R+C+xB) +.xCC16] UD+,x(LAMDA[1}xI) +LAMDA[2]«R(17) ReSpV,[0.5]D+.x(LAMDA[2x2) -LAMDAL1xRv

VReCINVE 2; Y;D3X;S(1] a INVERSE OF COMPLEX 2 WHEN IMAG PART INVERTIBLE
[2] +(2#1tSepZ)/MESS£3} +((1=pS)v(2=pS)a1="145)/SCALAR[4] +((3=p5)0=-/14S) /CONTINUE[5] MESS:+0,D0+"ARGUMENT MUST BE COMPLEX SQUARE MATRIX'[6] SCALAR: Z+2 1 1pZ[7] CONTINUE: DRY+(R+X+.xBY+IMAG 2)+,xX+REAL %
(8] ReSp(D+.xR) ,C0.5]-Dv

VRHCINVR 23Y;D3X35{1] INVERSE OF COMPLEX Z WHEN REAL PART INVERTIBLE
C2] +(241+5+pZ)/MESS[3] +((1=pS)v(2=pS)a1="1tS)/SCALAR
(¥} +({3=pS)A0=-/14S) /CONTINUE[5] MESS:+0,O0+'ARGUMENT MUST BE COMPLEX SQUARE MATRIX*
(63 SCALAR: 22 1 1pZ .[7] CONTINUE: DHBX+ (ReY+.xEX+REAL Z)+.xY+IMAG 2
[8] R+SpD,[O.5]D+.x-Fv

VR+CLOG Z
(4] ew LOGARITHM OF COMPLEX 2[2] Re(@MoD Z),CO.SIARG Zv

118

VACCMEXP Azd3sT3M383[4] @ BXPOWENTIAL OF COMPLEX MATRIX: AGH84C2] +(2#1+5+pA) /MESSC3] +((1=p3)v(2=p5)a1="145) /SCALAR

Cal +((3=ppA)ad=-/1+pA) /CONTINUE[5] MESS:>0,pU+'ARGUMENT MUST BE COMPLEX SQUARE MATRIX*[6] SCALAR: A+2 1 ipA
C7] CONTINUE: A+At2eMeO[[1+2@1E 10+0/+/MOD A[8] ReE+COMPLEX Te.=T+1(J+1)+14pA
C9] SERIES: ReR+T+P CMM AsdC10] +(132d+d+1)/SERIES{11] J+o
£12] SQUARE: +(M<ded+1) /BXIT[13] ReR CMM R[14] >SQUARE(15] BXIT: R+SpRv

VR<COMPLEX X
£1] «9 CONVERTS REAL X TO COMPLEX
C2] R+X,[0.5](pX) po

v

VReX CMM Y;RX;RY;IX;TY
£1] @ COMPLEX MATRIX MULTIPLICATION{2] RX+REAL X[3] EX+IMAG X
C4] RY+REAL Y(5] IY+IMAG ¥C6] ReCCRX+, xRY)-CIX+.xI¥)) ,[O.5](RX+, xI¥)+(IX+.xRY)Vv

. VR+CONT XC1] 9 CONJUGATE OF COMPLEX XC2) Re(REAL X),(0.5J-IMAG xXv
VR+X CSUB Y£1] 9 SUBTRACTION OF COMPLEX Y FROM X

[2] R+((REAL X)-REAL Y),£0.5](IMAG X)-IMAG Yv

VRCDEG X[1] - CONVERTS X IN RADIANS TO DEGREES(2] ReXx180101v
VRIMAG X;S

[1] 9 EXTRACTS IMAG PART OF COMPLEX X[2] +(2=14pX) /CONTINUE(3] +0,pL'COMPLEX X MUST HAVE 2=14+pXx'C4] CONTINUE: R+Sp(1,5+1+pX) +Xv

419

(1)C2]

(1)
{2](3]
Cy][5][6]
C7]
[a]
[9](101
Cit](12)[13]C14]
(15)

Cs)£2]C3](4

(1)2]

VReMOD Xa MODULUS OF COMPLEX X
ReCCCREAL X)*2)+(CIMAG X)*2))*0.5v
VRMEXP Asd3T3M3Sa EXPONENTIAL OF REAL MATRIX: AGH84
S+pA>(129,4) /SCALAR>+((2=ppA)a(0=-/pA)) /CONTINUE+0, e0+'ARGUMENT MUST BE REAL SQUARE MATRIXSCALAR: At ,ACONTINUE: AAs2eMeO[[1+2@1F1041/+/1A
ReT+To ,=T+1 (J+1) tpSERIES: RR+T+T+ xAtd+(132ded+1) /SERIESJ«o

SQUARE: +(M<ded+1) /EXIT
ReR+ xR+SQUAREEXT?: RSpRv
VR“REAL X;Sa EXTRACTS REAL PART OP COMPLEX X>(254tpX) /CONTINUE>0,pO+'COMPLEX X MUST HAVE 2=14pX'CONTINUE: ReSp(1,5+1+pX) 4Xv
VR+RAD X

n CONVERTS X IN DEGREES TO RADIANS
Reox+180
v

120

SCREENIO — A FULL SCREEN MANAGER

by David Doherty
For some time now, BUPAhas beena major user of APL. The majority of the APL applications
which wewrite for our internal users are highly interactive in nature and to ensure that this
interaction is as ‘painless’ as possible, we take full advantage of the IBM fullscreenfacilities
available to us under AP124.
Until SCREENIO,the implementation of these fullscreen systemsrelied solely upon a set of
screen design and low-level screen handling software which had been developed within BUPA.
This softwareis similar in nature to the IBM supplied screen software.
SCREENIOtreats screensasself-contained entities and addresses such problemsas dynamic
screen output, complex validity checks, PF key handling and scrolling.
The simple parameter definitions which describe a SCREENIO screen, ensure that they are
simple to build, maintain and modify.

Before describing SCREENIO,letusfirst consider someofthe problemsrelated to screens and
their management. We shall also review the screensoftware we already had and examine how
far it went towards solving those problems.

SCREEN MANAGEMENT
Designing a screen to run within any application system requires careful consideration and
planning. [t must be considered both from the aspect of the user and the applicationitself.

The Screen-UserInterface
— Physical layout:

The physical !ayoutof fields on the screen,ie, their position, shape, and logical
order (I have not seen many screens wherethe ‘first’ prompt appearsat the
bottom left hand corner of the screen!). Physical layoutis a vital aspect of screen
design and can meanthe difference between a screen being easyordifficult touse.

— Field intensity:
Skilful use of intensity can improve readability of the screen and highlight
important screen details.

— Static text:
Fixed prompts and headings which guide the user in both the use and purpose of
the screen,are vital and must be clear and concise.

— Dynamic text:
Anything from time and date displays to dynamic headings or error messages
constitute dynamic text; these guide the user in his treatment of the screen.

— PF Keys:
They are useful for all mannerof things eg, summoning help displays which
describe the screen, signalling QUIT or SAVE,controlling vertical and horizontal
scrolling, invoking specialfacilities peculiar to that screen or application.

121

The Screen-Application Interface

SCREEN MANAGEMENT — WHAT HAD BEEN DEVELOPED
Screen design software and low-level screenutilities were already in use...

Screen-UserInterface

Referencing screenfields:
Screen fields must be referencedin order to read or write to them.
Vatidation:
Oncethe screen has beendisplayed, the user’s entries are examined and
validated.
Screen handling:
After, for example, an invalid input, it is usual to re-position the cursor, display
error flags or messages, sound the terminal alarm and so forth.
Capturing screen input:
Finally, it is necessary to capture the users’(validated) inputs to the screen.

Physical layout:
Ourscreen design software allowed easy definition and modification of the 4
positions, shape andtypeof all screen fields.
Field intensity:
Field intensity could be set dynamically as well as at the design stage.
Static text:
Defined during the design stage.
Dynamic text:
Low-level software allowed us, underthe control of application code,to write to the
screen.
PF keys:
The key depressed may be detected, but handling of the key hasto be controlled
by application code.

The Screen-Application Interface
Referencing screenfields:
Field labels, which simplify field referencing, are defined during the design stage.
Validation:
All validation must be handled by application code.
Screen handling: ,
Screen contro! is effected through low-level software driven by application code.
Capturing screen inputs:
The capturing of screen inputs must be controlled by application code.

122

Clearly, the managementof the screen requires a combinationof calls to the low-level screen
handling functions for comunication with and manipulation of the screen, coupled with application
code to actually govern the handling of the screen.

SCREEN MANAGEMENT — A CHANGEIN APPROACH
From careful consideration of the above, the advantagesin treating screens as self-contained
entities which could be handled by standard software were recognised, thereby:
— Removing the repetitive aspects of the process, saving developmenttime and

eliminating redundant code.
— Combining both the definition of the physica! attributes of the screen with dynamic

output,verification, error messages and PF Key handling, so that the screen could
be regarded asa single entity.

— Providing a standard wayof defining these ‘facets’ of the screen so asto simplify
its maintenance.

[t would then be possibleto drive screensviaa standard screen managerwhich would only require
the nameof the screen to be used. The manager would then drive the screen, performing all
validation, executing any dynamic outputs and handling the PF Keys according to the parameter
specifications madeat the design stage.
Onepossible problem with this approach might be that the programmer would be constrained
by such a package.Flexibility was therefore given a high priority.

SCREENIO — A POSSIBLE SOLUTION
With these aims in mind, SCREENIO evolved. Logically, it is divided into two groups —
maintenance and application. The maintenance routines (which are themselves SCREENIO
screens!) are held on a central library and loaded as necessary.
Within the application system onlythe application group is needed to drive the screens and should
be stored as a part of the application.

Maintaining the Screens
SCREENIO screensare held onfile and are referenced by name.Its screen maintenance routines
utilise our existing screen design software: they do not supplantit.
The creation or amendmentof a SCREENIOscreeninvolvesextra stepsin the design stage.
These extra steps are integrated with the existing screen design software.
SCREENIO’s parameterdefinitions consider the screen both from the aspect of the user and
the application.

The Screen-UserInterface
— Physical layout: No change.

123

Field intensity: No change.
Static text: No change.
Dynamictext:
Text may be written to any field on entry to the screen. An OUTPUT PARAMETER
is simply defined for that field. Thus dynamic headings,time, help and date
displays are catered for.
PF Keys:
They may be separately defined for each screen. Some PF keys are defined
according to our owninternal standards. These are:
PF1 summonsa help display. ~PFS is QUIT.
PFi2 is END.
PF9 displays the PF key descriptions
PF keys 7, 8, 10 and 11 are reserved for vertical and horizontal scrolling of data.
These keys, along with their standard descriptions, are automatically defined tor
each screen whenit is created. Scrolling will only operate if the data exceeds the
size ofthefield in either, or both of, the vertical and horizontal dimensions.

The remaining keys, 2, 4, 5 and 6 may be defined by the programmeras special
purpose keys. Both a description and a definition may be entered. EXECUTABLE
EXPRESSIONSare entered for the definitions and text for their descriptions.

The Screen — Application Interface
Reference screenfields: No change.
Validation:
SCREENIO providesfor the verification of screen input in two ways:
INDIVIDUAL FIELD VALIDATION
Fields may be validated on an individual basis. For each inputfield, a numberof
parameters are defined during the design stage and they control the validation for
thatfield.
For each field, an (EXECUTABLE) VALIDATION EXPRESSIONis entered, which is
used to validate the contents of the field. SCREENIO contains some‘in-built’
validation routines for the more commonvalidation requirements,like numeric
validation, table lookups etc. They are invoked using special characters within the
EXPRESSION.
lf the input into the field is INVALID, SCREENIO will write an ERROR MESSAGE
which the programmerhasdefined, to a nominated ERROR field. The ERROR
MESSAGEmaybestatic, or dynamically defined.
The input fields can be flagged as MANDATORYor OPTIONALwhich meansthat
the programmercan force the userto input details where necessary or omit them
when defaults have been predefined.

124

Similarly, SCREENIO can be directed to CLEAR INVALID entries from inputfields
or leave the entry for the userto edit.
Finally, SCREENIOwill assign the contentsof the field to a (GLOBAL)variablewhich the programmernominates.
RELATEDFIELDS
It is frequently necessary to considerfields in relation to one another; for example,
it may be necessary to multiply two fields together to form a new result, which may
in turn have to bevalidated.
SCREENIOprovidesfor this through the entry of ‘rules’ which apply to the input
fields. Each ‘rule’ may apply to as many, or as few fields as required. Like the
individual field validation, the programmerdefines several parameters.
An EXECUTABLE VALIDATION EXPRESSIONis used to examine inputfields in
relation to one another.
If the result is VALID, an (optional) result may be written to a designatedfield.If
the result is INVALID, an ERROR MESSAGEwhich again maybestatic or
dynamicis written to an ERROR FIELD.
Screen handling:
SCREENIOhandles the screen in a consistent and logical mannerfollowing the
use of PF keys,error messagesetc.
Capturing screen inputs:
SCREENIOassigns(as described above) all the users’ inputs into (GLOBAL)
variables.

Driving the Screen
TorunaSCREENIOscreenitis only necessary to callSCREENIO with the nameofthe required
screen passed to it as an argument.
It utilises the tow level screen handling software, governing it according to the operation being
performed. We may summarise the execution of SCREENIOasfollows.

P
o
p
o

n
a Readsthefile-held variables for the required screeninto the workspace.

Formats the screen and writes both the STATIC and DYNAMICtext.
Displays the screen and awaits user input.
Actions key depressed.
Validates input and assignsit to (GLOBAL)variables.
The screenisfinally left. The key depressed is returned as an explicit result.

Theapplication code can act uponthe key returned andutilise the GLOBALvariables SCREENIO
has defined.

125

CONCLUSIONS
The effort put into SCREENIO has proved worthwhile. it has shownitself to be a valuabletool
which meetsits design criteria.
By treating screensassingle entities it provides us with a coherent approachto the use of screens
within applications and the problems encounteredin their design use.
It is easy to use, requiring only a single call to SCREENIO within application code.
It is eminently flexible, controlling dynamic output to the screen, PF key handling, validation
of fields both individually andin relation to each other, andfinally, returning all input from the
screen in a convenient collection of variables.
Aboveall, SCREENIO doesnot constrain the programmer because it allows EXECUTABLE
EXPRESSIONSwithin the parameter definitions.
Weare not, however, complacent. SCREENIOevoivedinto its present state and is continuing
to evolve as the problems associated with screens and their managementare reconsidered,
new problems encountered or new approaches sought.

126

APL AND PARTITIONED DATA

by Jonathan Barman
Introduction
APLarraysprovide a natural wayof partitioning data. A matrix can be viewed asa setof vectors;
eachrowof a matrix of numbers could be vectors of costs incurred by each department in a
business. Adding upthetotal costs incurred by each departmentis then a simple matter of applying
plus reduction along the last dimension. Reduction and Scan operators allow the application
of any scalarfunction along anyaxis of an array, and provide powerful tools for creating functions
which work on partitioned data. There are, however,limitations in some applications. In the
example of departmentcosts, some departments may incur many costitems, and have long
vectors, while others may have only one or two cost items. APL arrays have to be rectangular,
so holding the costs as a matrix meansthatall the rows have to have the samelength; short
vectors have to be padded out with zeros to match the largest numberof cost items. The amount
of padding required can beso large thatit becomesdifficult to manipulate the matrix without
workspacefull messages, although the amountof datais relatively small. If one department
out of 100 departments had 5000costitemsand all the other departments averaged 5 items
apiece,then the matrix has to be 100 rows by 5000 columnstaking up 2,000,000 bytes, of which
only 40,000 bytes is data.
Anotherdifficulty is where the data is normally manipulated as a vectorandit is inconvenient
to form it into a matrix so that reductions and scans can be applied, and then reformatit as a
vector. For example,text typed by the user of a system may need to be manipulated andre-
displayed, andit is convenient to keep the text as a vector throughout the processing.
Thisarticle explores the ways in which partitioned data can be processed in a more natural way,
withoutlooping. Thetechniquesare well known and havebeenin use for manyyears. The Working
Memorandum on Boolean Techniquesby Robert A. Smith was published by STSCin 1975, and
sets out the fundamentalideas andlists an extensive set of functions. The FinnAPLIdiom list
contains examples of manipulating partitioned data. The APL*Plus and Sharp timesharing
services both provide workspacesof partition functions.
Before plunginginto detail, the general principles will be illustrated with a simple example. The
principles will then be analysed in more detail andillustrated with more examples.
Taking the department cost example, assume that each department has a unique code and
that the costs and codesare held in two numeric vectors COSTS and DEPTS.The costs and
departmentcodeswereentered from invoices, so that each cost has a corresponding department
code.
There are three basic ways of adding upthe costs for each department; by looping through each
departmentcode,by forming the datainto a matrix and using plus reduction,or by using partition
techniques. The looping method could be implemented as follows:

127,

“. VR*DEPTS ADDUP COSTS;A;B;0I0
[1] “a ADD UP <COSYS> FOR BACH CODE IN <DEPTS>(2] a <R[yil> IS DEPT CODES, <R[;2] IS TOTAL CosTS.
[3] LOOPING METHOD. :
C4] Oro+a
[5] +0 2p0 1
C6) Li:+(0epDEPTS) /0[7] Ae1+DEPrS[8] 8+A=DEPTS{9] #eR,[1]4,+/8/C0sTS 1
[10] Be~B{11] DEPTS+B/DEPPS(12] cosrs+B/cosrs[13] +51v

14 4 3.1 ADDUP 10 20 30 40 50
1 60
4 50
3 40

This method is inefficientif large amounts of data are involved. Lines 9 to 12 reassignthe variables,
so data is being moved in memory for every unique department found.
Farming the data into a matrix is more efficient than the looping method,but, as explained above,
there may be workspacefull problems:

VR+DEPPS ADDUP COSTS; A;P;(I0
C1] 9 ADD UP <COSTS> FOR BACH CODE IN <DEPTS>C2] on» <R{;1]> IS Deer copes, <R(;2] IS TOTAL Costs.€3] ® MATRIX METHOD.
C4] Ofo+1[SJ a SORT INTO DEPT CODE SEQUENCE{6} AeMDEPTS
€7] DEPTS+DEPPS[AJ{8] CcosTs-COSfs[A]{9] 9 FIND WHERE CODES CHANGE[10] P+DEPTS*1+DEPTS,0
C41] PLCO*pP)/pP]+1[12] 9 FIND NUMBER OF CODBS FOR GACH DEPT.C13] A+P/ipP ‘[14] AeA-"1490,A .[15] a FORM EXPANSION VECTOR.
C16) A+Ao.217/0,A(171 a MAKE COSTS £NfO A MATRIX, :C18] R+(pA) (,A)\CosTs[19] a ADD UP, AND APPEND DEPP Codes.[20] R+(P/DEPTS) ,C1.5}4+/2v

144 3 1 ADDUP 10 20 30 40 501 603 404 50

Formingthe data into a matrix requires a technique which is constantly being used when dealing
with partitioned data. Line 10 is a ‘‘not-equalspositive difference operation’’, and line 14 is a
“minus negative difference operation’.

128

Lines 10 and 11 generate a “partition vector”. Line 11 is necessary becauseit cannot be
guaranteed that a department code of zero doesnotexist. If the rotation method is used:

P+DEPTS*1QDEPTS

then line 11 is required in case there is only one department codein the data.
Care has been taken that empty arguments do not causeanerror. Line 11 checksfor an empty
vector. Line 14 could have been written as:

AA-0,7 144

which would have causeda length errorif A was empty. Line 16 has a O catenatedto A in case
it is empty.It is good practice to ensure thatall code will work properly on empty vectors, but
itis sometimes simplerto branch out on emptyat the beginningofthe function rather than having
to include special processing asin line 11.
The partitioned data approachis as follows:

VRDEPTS ADDUP COSTS; A;P;(I0{1] a ADD UP <COSTS> FOR EACH CODE IN <DEPTS>[2] 9 <Rl;1]> Is DEPT CopgS, <R(;2] IS TOTAL COSTS.(3] a PARTITION METHOD. :
-C4] OfoesC5] a SORT INTO DEPP CODE SEQUENCE(6] A+ADEPTS
[7] DEPTS+DEPTS[A] ‘{81 cosrs-costs(al[9] n FIND WHERE CODES CHANGE[10] PeDEPTS*1+DEPTS,O[141] Pl(0#pP)/pP)+1£12] 9 CUMULATIVE SUM FOR BACH DEPT.[13] #+P/+\cosrs
£14] a CONVERT TO INDIVIDUAL SUMS.(15) #+R-"140,R(16] pn APPEND DEPT CODES[17] Re(P/DEPTS) {1.518v

14 4 3 4 ADDUP 10 20 30 40 50
i 60
3 40
4 50

The steps downto line 14 are Identical to the matrix method. Line 13 gets the overall cumulative
sum for each department, and line 15 does the “minus negative difference

129

operation” which converts the cumulative sumsbacktoindividual sums.This relationship between
scan andnegative difference operation is another important technique which will be explored
more fully later.
The ADDUPfunctionis really carrying out three processes:sort the data, set up a partition vector,
and carry out a partitioned plus reduction. The processes are needed in many varied
circumstances, so itis convenient, and better programming practice, to have separate functions.
Lines 10 and 11 generateda trailing partition vector as it was needed in this form online 13.
Atrailing partition vector is one where a 1 flags the end of each partition:

At2 2266777
A¥14A,0

ooi1dairoot

A leading partition vector is one where a 1 flags the start of each partition:

Az~140,A
10010100

All partition functions need a partition vector as an argument,anditis necessary to standardise
oneitherleadingortrailing partitions. As theliterature on partition functions always uses leading
partitions, we will do likewise. Thefirst function to be definedis one to create a partition vector:

VA+CREATEAPARTITION A
(1] « <R> IS A LEADING PARTITION VECTOR WITH 11S WHERE‘
[2] 9 <A> CHANGES.
[3] ReAt™164
Cu] +(0epR)/o(5) REWro}+i

v

CREATEAPARTITION 1111 8 8 50 50 50
100010100

Line 3 uses the rotation methodto allow for the data being either character or numeric,line 4
branches on empty, and line § guaranteesthe first element is a 1.

VR«P PAPLUSARED A
C1] a <P> IS A LEADING PARTITION VECTOR,
[2] a <A> IS A NUMERIC ARRAY.
£3] a <R> IS A PARTITLONED PLUS REDUCTION ON THE
C4] os PIRSE DIMENSION OF <A>.
C5] ReC1OP)A+hA
[6] R+R-(pR) po, (701kv

Lines 5 and 6 ofthe partitioned plus reduction function are generalisationsoflines 13 and 15
of the last ADDUP example. The rotate of the leading partitions on line 5 changes them into
trailing partitions, and the plus scanis carried out along thefirst dimension so that the data can

130

be a matrix. Line 6 carries out the “minus negative difference operation” alongthefirst dimension
of the array.

1
P

o00g010100
A

F
O
W

FW
OR
RO
ME
EO
D

e
M
R
O
N
O
N

S
o
w
m
n
n
a
r
a
r

P PAPLUSARED A
13 26 15
1116 41
15 18 24

A more general accumulation function can be written in place of the ADDUP function:

VATACCUMULATE A;P;0T0[i] a <AC31]> IS A SEP OF CODES, REMAINING COLUMNS(2] a OF <A> IS DATA. <R> IS THE UNIQUE SET OF(3] CODES IN COUMN 1, WITH THE TOTALS OF THE DATAC4] 9 IN THE REMAINING COLUMNS.[Cs] Qfo+1
[6] +(depR+A)/0
C7] ReRTARC 3113][8] PXCREATBAPARTITION R[31)
(9] R+(P/RL31]),P PAPLUSARED 0 148v

U
N
F
E
E
W

24
5

37 25 99
76 66 8
89 28 44
4B 24 28
17, 49 90
7 91 St
ACCUMULATE A
17° 49 «90

213 118 80
44 116 150

Difference Operations
list of the boolean difference operations are given in the appendix.Atfirst sight they tend to
look similar, andit is difficult to appreciate which onesare going to be useful. Rather than go
through them all,
used in practice.

the following functions show how the more populardifference operations are

The greater-than negative difference operation keepsthefirst one in each series of ones, and
sets the remaining elements to zero:

131

AQiloo1iriid
A> 1+0,4

q1000i0000
This difference operation is very useful when analysing text typed by the user. For example,
whencheckingfullscreen data inputitis usually necessary to count how manywords or numbers
have been entered in each screenfield:

VAR+WORDACOUNT A
Ci} a <A> IS A CHARACTER MATRIX. <R> IS THE NUMBER
[2] A OF WORDS OR NUMBERS ON EACH ROW OF <A>[3] ReAet +C4] ReR>(pR)+0,8(S] Re+/Rv

AONE TWO12 346589WORDACOUNT A
231

Whenerrors are found in the text typed by the user, an error message hasto be displayed
describing what has gone wrong.It is nice to be able to point out the exactlocation of the trouble:

VRCERR REPORTAERROR TEXT; A;CR
C1] <ERR> IS A BOOLEAN ERROR INDICATOR WITH AN ELEMENT[2] 9 FOR EACH WORD IN THE CHARACTER VECTOR <TEXT>.
[3] 9 <R IS AN ERROR MESSAGE.[Cu] AePExXTt#! +
£5] AtA>71+0,A[6] m VSAPL CARRIAGE RETURN CHARACTER.C7] Creo 1 o/fre
{8] Re'INVALID ITEM:* ,CR,TEXT,CR,A\ERR\ At

v
0 0 1 0 REPORTAERROR ' ONE TWO THRE FOUR*

INVALID ITEM:
ONE TWO THRE FOUR

A

Lines 4 and flag thefirst letter of each word in the TEXT, which is used ta position the caret

Two algorithms for checking numberswere published in Quote Quad, and they both exhibit the
use of difference operations. Algorithm 139 by Gerald Bambergerin the March 1980 issue of
Quote Quad (Vol 10 No 3) verifies numeric input, and is similar to the Quad function available
on Sharp APL and APL*Plus APL.

132

C1)(2)
Ca)
C4]{s}
(6)
(7)
Ca]C9]

URVI Aa VERIFY NUMERIC INPUT.a <A> IS A CHARACTER VECTOR CONTAINING GROUPS OFA CHARACTERS DELIMITED 8Y ONE OR MORE SPACES.A <R> IS A BUOLEAN VECTOR WITH A 1 WHERE THEa CHARACTER GROUP IS A VALID NUMBER. NUMBERSA OUTSIOR RANGE (1/10)<A<L/10 COUNTED AS VALID.Re" 11114111112345'C' 0123456789.E'1'0 *,A]Aeite((Re'23y")vRet+! ',R)/RReRe(8 3p0 44 434)+1 12 121 21 31 312 3124 321¢.x4 1001000v
VI'123 4.3 374 3.4 384% “3E°34 E3!

11011140
A slightly simpler version, excluding E notation values, may be preferred:

C1}
£2](3)C4]ts](6)
C7]C8]C3]

VR“AVI A
VERIFY NUMERIC INPUT.
<4> IS A CHARACTER VECTOR CONTAINING GROUPS OFCHARACTERS DELIMITED BY ONE OR MORE SPACES. IS A BOOLEAN VECTOR WITH A 1 WHERE THE
CHARACTER GROUP ITS A VALID NUMBER. MUMBERSOUTSIDE RANGE (f/10)<A<L/10 COUNTED AS VALID.Ret 1111111111234'C' 04123456789. "1 '0 ',A]

Reitve((Re'23')vRe1+! ',R)/RReRel 12 121 21 34 312 3121 324v

D>
DD
ID
D

Line 6 of the function uses the not-equal negative difference operation to remove duplicates,
Algorithm Number146 by Jeffrey Multack,in the September 1980 issue of Quote Quad (Vol11 No 1) converts numeric input:

C1](2)
C3]
c4]5]
{6}7]
C8)
f9)
C10](11)
[12]

VACFI A3M
VERIFY AND CONVERT NUMERIC INPUT.2fn <A> IS 4 VECTOR CONTAINING GROUPS OF CHARACTERSf DELIMITED BY ONE OR MORE SPACES, <R> IS Af NUMERIC VECTOR WITH VALID NUMBERS IN <A> ORa ZERO FOR ANY GROUP WHICH IS NOT A NUMBER.ReVIt ta+(V/R) 40A FORM MASK FOR VALID CHARACTER GROUPS,MeAz' ¢

MeM>"140,MMez\M\RE7140,8
RLR/1ipR]}+2M/Ag
FI'123 1.3 3978 3.4 3E4 “32°34 E3t

“3h 0123 1.3 0 3.4 30000 “3873

133

Lines 10 and 11 have beenalteredslightly so that they are in the same form asthedifference
operations already given.Line 10 is the greater-than difference operation whichflagsthefirst
character in each group.Line 11 then extends the ones for each character groupthatis valid.

Ae'1234 41..23 460'
Oeweatt t

Littoo1riir1id8#veHo O11t
DeMem>"140,1000091000000001i100
LUeRVI A

101
(eMee\\R27140,81ittt1idceev000000111

Line 11 can be broken downinto 3 stages, a not-equaldifference operations:

Rt-1490,8
Tit

an expansion:

M\AZ714081g¢0090100000000100

and a not-equal scan:

4\M\RE7140,Rdittittooo000c00o0iit

Not equals scan has the property of switching from 1 to 0 and from

0

to 1 every time a 1 is
encounteredin the vector. The not-equals difference operation does the opposite, so the three
stagesare: apply a transformation, expand,then putit backto whatit was. The partitioned plus
reduction does a similar task:

ReR-"149, ReP/H\A

Apply a transformation (plus scan), compress,then putit back using the minus negativedifference
operation. The conversion backto the origina! form is possible because the minus negative
difference operation is the inverse of plus scan.

Ue4er\2 440526712
A~"140,424145

134

Also, the not-equals difference operation is the inverse of not-equals scan:

GeAet\1 100119001
At“140,At1a9a0t

Line 11 of Fi is so useful that it should be defined as a function:

RP PRMASK A{1] a <P> IS A LBADING PARTITION VECTOR, <A> IS A BOOLEAN[2] on YECLOR WHERE pA IS IDENTICAL [0 +/P.£3] a <R> IS A BOOLEAN VECTOR WITH 1 IN RACH PARTITIONi4] a WHERE <A> IS 1.[5] R*2\P\At7140,Av
1093101400 PAMASK101

Pitioor1iai

Having seenthatthe basic processis difference, expand, scan,with not-equals, an equivalent
function can be written using the same basic process, but with minus and plus:

VR+P PAREPLICATE A(1] a <P> IS A LEADING PARTITION VECTOR. <A> IS 4{2] a NUMERIC VECTOR WHERE pA IS IDENTICAL TO +/P.(3] 9 <R> IS A NUMERIC VECTOR WITH EACH ELEMENT OF[4] 8 <A> REPLICATED IN EACH PARTITION.[5] Ret\P\A-140,Av
0 0 PAREPLICATE 2 6 3.2
3

loooiotl
266 3.2 3.2 3.2222

Using the partitioned plus reduction techniqueofdifference, compress, scan,but with not-equals
in place of minusandplus, yields a partitioned not-equals reduction function:

VReP PANEARED A[1] « <P> IS A LEADING PARTITION VECTOR, <A> IS A[2] ® BOOLEAN VECTOR. <R> IS #/ FOR BACH PARTITION.3] R+(19P)/#\ACa) ReR47140,Rv
This function can be used to flag partitions with an uneven numberof occurrences.
Another‘tool-box’ function thatillustrates a difference operation is one for removing surplusspaces:

135

VRCSQUEEZE ASB
[il] REMOVE LEADING, TRAILING AND DUPLICATE SPACES
(2] FROM CHARACTER VECTOR <A>
3] Rea,’ '
C4] Bet eR
[5] B+Bv"140,B
Ce] Re"148/Rv

Line 5 has an‘or’ negative difference operation which adds a 1 after each groupof ones.Line
8 guaranteesa trailing space which is then removed online 6.
The following function is one of a set of functions to help formatting numeric data in VS APL:

VA+BRACKELS A;8;C;0Ci] a <4> IS A CHARACTER ARRAY OF FORMATTED NUMBERS
C2] 8 WITH Af LEAS? OWE SPACE BEFORE EACH NUMBER.£3] 9 <R> HAS THE NUMBERS MOVED ONE SPACE TO THE LEFT£4] 9 AND HAS BRACKETS (NH PLACE OF NEGATIVE SIGNS.
(5) #+19,A(6] BeRzt 'C7] C+B>"140,8
[8] Det 's¢/8
C9} RE(C\D)/1pR1+* (4
[10] C+B<7140,B
{14] RECC\D)/ipRI+")[12] R+(p4) oRv

wuss .+00 368.55 7.35 740.10 7.38+00 -00 6.43 536.58 +08+90 +00 +00 761.24 42
BRACKETS NUMS+00 368.55 (435) (40.10) (.34)-00 +00 6.43 536.58 (04)+00 +00 +00 (761.24) +42

Line7 is a greater-than negative difference whichflags the beginning of each group of numbers.
Line 10 is a less-than negative difference whichflags the beginning of each groupof spaces.
The negative sign is therefore only replaced by both left and right parenthesis.
The function was created to help develop a generalised formatter for VS APL.In practice, a
formatting function would have the format specification available to indicate where the right
parenthesis should be placed.

136

Partition Functions
Partition functions have been given for plus reduction and not-equal reduction, but partition
functions are needed to carry out the equivalentofall the reduction and scan operations. The
working Memorandum on Boolean Techniquesgives a very comprehensivelist, but here are
twothat are most frequently used:

VRP PAORARED A[1] a <P> IS A LEADING PARTITION VECTOR, <A> IS A BOOLEAN(2] 9 VECTOR, <k> IS v/ FOR BACH PARTITION OF <A>.C3) R+(Pva)/PCu] Re(P/A)2R/16Rv
VR«P PAANDARED A(1] a <P> IS A LEADING PARTITION VECTOR, <A> IS A BOOLEAN{2} a VECTOR, <R> IS a/ FOR BACH PARTITION OF <A>.[3] &e(P24)/P[4] R+(P/A)AR/16Rv

Thesefunctionsare also published in the FinnAPL Idiom Library numbers 491 and 492.
An example oftheir use is taken from a set of functionsto carry out formatting under VS APL:

VRBLANKAITFAZERG A;B;C3P.(1] a <d> IS A CHARACTER ARRAY OF FORMATTED NUMBERS,(2] a <R> HAS ALL 2&RO NUMBERS SET f0 SPACES.
C3] R+A
C4] +(oeB+p#)/o
C5) Re,F£6] PeRst t[7] Pep140,P{al PLOLO}+1[9] +P PAMASK~P PAANDARED Re 0.*[10] ReBpC\C/Rv

NUMS
00 368.55 “135 “40.10 7.3400 00 6.43 536.58 “0400 -00 +00 ~761.24 “42

BLANKAIFAZERO NUMS .
368.55 “35 “40.10 2346.43 536.58 ~ 047761.24 +42

Lines6 to 8 set up a partition vector, and line 9 creates a maskfor thosepartitions that do not
have aspace,zero or decimalpoint. Ofcourse,ifthe format specification is availablethe partition
vector can be set up without searching the data.

137

Finally, an example of using partition functionsto eliminate looping.In the last issue of the APL
User Group NewsLetter Dick Bowmangavea very interesting problem of calculating geometric
meansof sets of data.
The solution published calculated the geometric meanof eachsetof datain a loop, which would
be inefficientif large amountsof data were involved and Dick endshisarticle with ‘There surely
must be a better way’. The partitioned data approach would beto create a partitioned geometric
meanfunction.

VRP PAaGEOM A;B;C;D(1] 9 <P> IS A PARTITION VECTOR, <A> IS A NUMERIC VECTOR.[2] a <R> IS THE GEOMETRIC MEAN IN EACH PARTITION WHERE
[3] 9 ALL WUMBERS ARE GREATER THAN ZERO, OTHERWISE “1.
[yu] B+P PAANDARED A>0[5] C+P PAMASK 8
C6] Dec/P(7] Re«(D PaPLUSARED@C/A)+PASHAPE D
C8] R+(B\R)-~Bv

VR*PASHAPE P[1] a <P> IS A LEADING PARTITION VECTOR.
[2] n» <> IS {HE NUMBER OF ELEMENTS IW EACH PARTITION.
C3] R+(1OP)/19P
[4] ReR-"440,Rv

100010100 PAGHM 368102321
3.464101615 “1 1.817120593

Line 4 finds the partitions that need to be processed,andline 5 creates a mask.Line 7 then
calculates the geometric meanfor eachvalidpartition, andline 8 sets invalid partitions to negative
one. This function can then be used to replace theloopin the original function, after having
created a partition vector.
Conclusion
Difference operation and partition functions provide a useful set of tools which help to solve
the programming problems wherethe data doesnotfitin with rectangular nature of APLarrays.
The generalised arrayfacilities in APL2, NARS and Sharp APL developmentsprovide much
more powerful tools for manipulating non rectangular data. The partitioned data approachis
mucheasier and more direct with generalised arrays; the partitioned plus reduction is merely
a plus reduction for each elementof a vector of vectors, and a propernotation is provided for
its application. Roll on generalised arrays — but in the meantime we can make do quite
successfully with partitioned functions!

APPENDIX
Boolean Difference Operations
Less-than Negative Difference. Thefirst of each groupof zerosis set to one, all other elements
are set to zero.

138

[TeA+o 0oo1tiii)
A<7140,A

oocecoo010000100010

Tirir1d4or11rtidé)dsodid)%tL
OL11a00o101

Less-than Positive Difference. Thelast of each groupofzerosis setto one, all other elementsare setto zero.
A

oolitiroor1tiodooaioin
A<14+4,0

o100000100000106010

Less-than-or-equal Negative Difference. Thefirst of each group of onesis set to zero,all otherelementsare set to one.
A

Qo1ii2002121000101
As 141,A

PTiortirtirtort1iirtiaioa

Less-than-or-equal Positive Difference. The last of each groupof onesis set to zero,all otherelements are set to one.
A

OC111 100111000101
ASI+A,1

TLLA’IAOLTALTOLIL1011

EqualNegative Difference. Thefirst of each group of zeros and the elementto the right of eachgroupof zerosis set to zero, all other elements are set to one.

OoOL1i£tooriitoooid)l
= 141,A
1i01011011000e
m

o10

Equal Positive Difference. The elementto the left of each group of zeros and thelast of eachgroup of zerosis setto zero,all other elements are set to one.

A
Oo1L1i11100111000101

A=14A,1
1oiad O10110110001

139

Greater-than-or-equal Negative Difference. The first of each group of zerosisset to zero,all
other elementsare set to one.

00111000101
.
o12112011101

Greater-than-or-equa! Positive Difference. The last of each groupof zerosis set to zero,all other
elements are set to one.

A
Ooo0i111100111000101

AzivA,1
POLLA’1OL1LiA’ALALOL

Greater-than Negative Difference. Thefirst of each groupof oneis set to one,all other elements
are set to zero.

A
Ooii1iitooririiaooidal

A> 1+0,A
ootoooo0ota0g0ogg101

Greater-than Positive Difference. The last of each group of onesis setto one, all other elements
are set to zeros.

A
ooL1itiitagor1triaogooirad

A>14A,0
cooo0oo01d90 0001000101

Not-equal Negative Difference. Thefirst of each group of ones andthe elementto the right of
each group of onesis set to one,all other elementsare set to zero.

A
00111100111000101

At 440,4
goo0o190001L1010010014111

Not-equalPositive Difference. The elementtotheleft of each group of ones andthe last ofeach
groupof onesis set ta one,all other elements are setto zero.

A
ooi1ia1daor1iitoooaoiot

At1+A,0
oi0d0g1T01001 0011711

140

OrNegative Difference. The elementto the right of each groupofonesis set to one,ail otherelements are unaltered.

A
OOTL1100111000101

AV 140,4
OO1211101114400111

OrPositive Difference. The elementto thelett of each groupof onesis set to one,all other elementsare unaltered.
A

OoO111100111000101
AVi+A,0

OLLirtitorrirtio0o1Lii

AndNegative Difference. The elementto theright of each groupofzerosissetto zero,all otherelements are unaltered.

A
Oo1L111100111000101

AA141,A
oo01t11100011000000

AndPositive Difference. The elementto theleft of each groupofzerosis set to zero,all otherelementsare unaltered.

A
OooL1itoo011t1tdeoo1 8o1

AALHA,1
ooL1ii1daddcdiitooaaggodti

144

 financial & mathematical modellers

Alan Pearman LimitedMaple HouseMortlake CrescentChester CH3 5UR

0244
46024

QaSs communications %,o So,COMPLETE APL SYSTEM
£2995

Z includes APL Printer, 256K RAM etcCR — all you need. x2ie) S“& ‘unusual’ software sse éA <

IBM Authorised Dealer
 142

INSIDE THE INTERNATIONAL APL STANDARD

by David Ziemann
Introduction
This paper constitutes a technical exploration of the contentsofthe proposed international APL
standard. Before the contents are examined,an introduction followed by short sections on the
reasonsfor standardisation and brief history of the standard are provided. The important
conceptsofthe “conforming implementation”andthe “‘conforming program”are then explained
in detail. A description of the features included in the standard is then presented, witha list of
someof the features explicitly not included. Finally, a concluding passage discusses ways in
which the standard will be of use to the authors of APL implementations and programs.
Casual readers be warned — this paperis a précis of the draft standard andis heavy going.
Why standardise?
APL has been around for 20 years without a standard, so why bother now? Well, the answer
lies in the growth of APL, both in terms of the numberof establishments using it and the
diversification of the languageitself. As the numberof people using APL grows, communicating
betweenthem becomesmoredifficult, and the needfor a definitive APL implementation increases.
Atatime whenthereare so manydiffering implementations of APL on the market, itis important
tor APL people to cometogether and see if they can agree upon what constitutes a minimal
APL. Only oncethis is done can westart to exchange APLprogramsandskills on a global scale.
The absenceofa suitable standard has doubtless prevented the adoption of APL in manyareas,
in particular, government departmentsin the USwill not sanction any computer tanguage unless
it has a standard.
The purposeof the standardis probably best summarised by quoting from the standarditself
whichstatesthat “This international Standard defines the programminglanguageof APL and
the environmentin which APL programsare executed.Its purposeisto facilitate interchange
and promote portability of APL programs and programming skills among data processing
systems.”
A Brief History of the Standard
International Standards are produced under the contro! of the International Standards
Organisation (ISO), which works underthe auspices of the United Nations and is responsible
for producing standardsofall kinds. Working through internationaltechnical committees, drafts
ofinternational standards slowly comeinto existence and are then voted to become {SO standards
by the national standards organisations.
The national standardsorganisations gather national experts into committees which contribute
to the developmentof national andinternational standards, submitting their work to ISO or the
IEC(International Electrotechnical Commission). Theyalso vote on proposals from ISO (or EC)
for adoptionofinternational standards,and adopteither }SO standardsortheir own home-grown
productas nationalstandards.If a country producesits own national standard before an equivalent
ISO standardexists, it usually submits it to ISO as a draft ISO standard.
Creating international standards takesa long time,anda lotof forests. Even once agreement
has beenreachedin the internationa! forum (which does occasionally happen), theresstill the
liaison between the ISO committee and the various national committees and otherinternational
committees to contend with. The extensive ISO procedures also haveto be followed before the
ISO standard is adopted.It can, and usually does, take years.

143

Figure 1. Some Syntax Diagrams

Line

Doonanhee ene ete nce nen e eee eeDabeedeceteeteneeecenneDaete->>
| || tbo otil |
| | ++ identifier ->-+ | [| + comment ->-+I Io ttt| [| ++ numeric ---->-+ | |
| t literal |]| | || +--<- primitive ----- <ot || | It| t+--<- character -----<-+
| | literal ' | || I || +| |+ +

Identifier

Deecc--+->- simple-identifier --------oot
| |+->- distinguished identifier ->-+->--->>

Simple- Identifier

D>--- letter ->---t-------e+0-peteceeen-

+-<- letter --+
| \t-<- digit ---+
+-<- underbar-+

144

In 1979, AFNORthe Frenchnational standards body proposedto the ISO technical committee
on information processing (TC97),that an International Standard for APL should be produced.
The proposalwasaccepted, and the workwas assigned toTC97’s sub-committee on programming
languages, SC5, which set up Working Group 6 to assist. Thefirst draft appearedin 1980. At
approximately the same time, ANSI decided to produce a US APLstandard, and so another
draft appeared. Needless to say, the two drafts were quite different.
In 1981 it was agreedat an international meeting in the USA,that the two drafts should be merged
into a single international working draft. This work proceeded, with contributing experts from
the USA, Canada,Japan, Britain, France and other European countries. By August 1983, the
fifth working draft had been distributed and accepted by SC5 as thefirst draft proposal. By the
beginning of 1984 the draft proposal was circulated to the SC5 P-members(BSTin the case of
Britain) for a three month commentperiod. These commentswill be processed at the next Working
Group 6 meeting in Helsinki just before APL84. The result of this will be an instruction to the
editor to prepare a second draft proposal. Subsequentprocessingwill then result in aninternational
standard — hopefully,in the not too distant future. Whenit does, APLwill be thefirst language
for which the international standard has preceded any national standard.
This paper was written at the timeofthefirst draft proposalandit is to this documentthat the
remainderof the paperrefers.
The Form of the Standard
The standard describes the behaviourof a hypothetical APL machine by specifying howit responds
toinputs. The syntax(rules for combining the funny symbols)of this machineis defined bysyntax
diagrams(orrailroad tracks, as they are sometimes called), which are generally easier to
understand than the moretraditional Backus-Naur form. The standard described three main
processes which perform the analysis of syntax:
— line evaluation:this uses a set of syntax diagrams to decomposea line of

characters into list of lexical tokens, working fromleft to right.
— statement evaluation: this uses syntax diagramsto transform list of lexical tokens

into list of syntactic tokens,still working from left to right.
—__ statement reduction: now working from right to left, this uses a phrase table to

decomposea list of syntactic units into shorterlists, called phrases, each of which
is then evaluated by one of 12 phrase evaluators.

The semantics of APL (what the funny symbols mean) are defined by the behaviourof these
phraseevaluators, and thatofthe formal procedures whichtheyin turn call. These procedures,
or evaluation sequencesas they are called, are expressed in aformal language which uses English
wordsin asenseprecisely defined in the standard. Theresultisa precise but nevertheless readable
document. Thereis no requirementfor an implementation to follow the algorithms suggested
in the evaluation sequences exactly, provided that the system producesresults indistinguishabie
from those of the APL machine described in the standard.
As well as specifying the syntax and semantics of APL programs,the standardalso specifies
the characteristics of the environmentin which APL programsare executed, and the requirements
for conformancewith the standard.In this context, the term ‘program’is used broadly,to include
everything from a single APL expression to a collection of workspaces communicating via shared
variables.
Onthe other hand, the standard DOES NOTspecify:
— required values for implementation limits such as APL workspacesite or numeric

precision.
— the data structure used to represent APL objects.
— the facilities available through shared variables.

145

Some Technical Terms
Of fundamentalimportance to an understanding of the standard are the two terms‘conforming
implementation’ and ‘conforming program’. Loosely speaking, a conforming implementation
is an APLinterpreter whichfollows the ruleslaid down in the standard, and a conforming program
isan APL program which would run successfully on the APL machinespecified in the standard.
In orderto define these terms morestrictly, we havefirst to consider the four classesoffacility
tecognised bythe standard.Thesearethe defined facility, implementation defined facility, optional
facility and the consistent extension.
Defined facility — this is a facility that is fully specified by the standard, and not designatedoptional
or implementation defined. The transpose function, for example, is a defined facility in the
standard,
Optionalfacility — thisis a facility that is also fully specified by the standard,but is designated
optional, as a conforming implementation may or may notincludeit. The APL statement separator
is an exampleof an optional facility.
Implementation defined facility — this is a facility that is NOTfully specified by the standard,
and is designated implemention defined. The algorithm used by an implementation to generate
pseudo-random numbers,for example,is an implementation defined facility, but the APL functions
toll and dealare defined facilities and must be provided as specified.
Consistent extension —thisisa facility that is NOT specified atall by the standard, butifincluded
in an APL implementation will not give rise to an error in circumstancesin which the APL machine
would. In other words, an error report arising from a specific input to the APL machinein the
standard can be replaced by someotherbehaviourin the actual implementation. For example,
youcanbring out an implementation with a brand new APLfunctionin it (say a dyadic execute
function) because this would replace anerror report by some otheraction. The consistent extension
is the only mechanism by which extra APL features may be added to an implementation.
Conforming Implementations
We can now look more closely at what a conforming APL implementation actually is. In order
to conform to the standard, an implementation must provide all the defined facilities and
implementation defined facilities specified in the standard, and each defined facility must behave
exactly as specified. Additionally, a conforming implementation may provide any orall of the
facilities described in the standard as optional. If included,the facility must behave exactly as
specified. Finally, a conforming implementation may also include any consistent extensions.
Because the consistent extention mechanism is the only way the standard permits an
implementationto provide extra APL features, the standard itself tends to adopta ‘minimal’
approach,including only minimum agreed features. Where implementationsdiffer, the standard
will often require an error. This is not meant to encourage an implementation to produce anerror
underthe particular circumstance, but to allow more than one interpretation to be standard
conforming. Some examplesofthis will be described later. The observant reader may have noticed
oneloophole that needs to be closed here. A program that attempts to use an optionalfacility
that is not provided in a particular implementation will generate an error.It is thereforé NOT
permissible for an implementation to replace such errorsignalling by any other behaviour.
Implementation algorithms and implementation parameters
Before we proceed,it will be necessary to look at two further concepts — implementation
algorithms and implementation parameters.Facilities in the standard are described both informally
in English and procedurally using what are called evaluation sequences. These evaluation
sequencesoften referto algorithms not definedin the standard, and whose behaviour is deemed

146

implementation defined—thatis,it’s up to the implementorto provide an exactdefinition. These
implementation algorithmsfall into five groups:
The Implementation algorithms
— Pythagoreanalgorithms; eg sine, inverse cosine, hyperbolic tangent
— General numeric algorithms; Exponential, gammafunction, modulo, natura!

logarithm and power
— Seminumeric algorithms; the pseudorandom number generator, and the algorithm

for the deal function
— Linear algebraic algorithms;this group only containsthe algorithm for generalised

matrix divide
— System dependentalgorithms; eg how numericliterals are convertedto internal

numbers, how the currenttime is generated, how a function trace display is to be
presented, and others.

Each one of thesealgorithmsis referred to bythe standard, but mustbe defined bythe particular
APL implementation.in addition to these algorithms are the implementation parameters. These
are quantities referred to by the standard but whose values are implementation defined. Over
twenty of these are recognised by the standard, and some examplesfollow:
Some implementation parameters
— - Atomic vector: an implementation defined character vector containing every

elementof the character set exactly once.
— Positive numberlimit: the number(in machine rather than mathematical terms)

greaterthanall other numbers.
— Ranklimit: an integer specifying the maximum value for the rankof an array. The

limit must apply uniformly to alt arguments and results of primitive operations.
— Identifier iength limit: an integer specifying the maximum numberof characters in

an identifier.
— Comparisontolerancelimit: the largest value permitted by the implementation for

the system variable quadCT.
— Integer tolerance: a value used to determine whether a given numberis to be

considered integra!or not.
The question then naturally arises — what happensif some action causesa limit specified by
one of these implementation parameters to ba exceeded? For example, suppose youtry to
increasethe rankof an array whichalready has the maximum numberof dimensions permitted
by the particular implementation you are using. Clearly, it would beniceif the implementation
complained aboutthis, rather than just ignoring the attempted action,or even taking some other
action andnottelling you whatit’s done. (A good exampleofthelatter is the behaviour of some
implementations when youtry to reference a variable whose namecontains more characters
thantheidentifier lengthlimit—the nameis very often merely truncated to the maximum permitted
length, and you don’t even get to know aboutit!)

147

Figure 2. More Syntax Diagrams

Distinguished- Identifier

toeecerePeeeerequote-quad ->----+
Doe metePequads>aertrrrer sete e shat err pedeBoD

| |t-<- letter --+
| |wte<- digit -+-+

Numeric-Literal

DRo etn e nnn abec nn numeric ---->-
scalar
literal

|w<-+-<- blank -+-<-

Numeric-Scalar-Literal

stands for digit.
stands for exponent-marker.
stands for overbar.
stands for dot.wv

ia
Oo
m

ametoot=ott
en I ot f+m>+ | pesat +>p>+ |

I tl !
Droboetter -t>d>tep>todrte rtote asec cnc nnn enDepo n-->>

I ot of I ot tl |
| tacat He<et | +> e>t->t->-t>d>+->4

| Ito od
Heder ereprotod>t+<>+ +m>+ +-<-4+

1 |to<-t

* Example:
*
* “12.34567E890

148

The problem is solved by requiring a conforming implementationto signalanerrorif any action
istaken that would result in an implementation parameterlimit being exceeded. Butwhaterror?
Outof the existing popular error messages onty DOMAIN ERRORcomesclose,but not close
enough. ADOMAIN ERRORshould strictly only be reported whenafunction argumentlies outside
the domainofthe function — it is an abstract mathematical concept rather than an indication
ofashortcoming ofa particular implementation ofthe APL language.So, a small bit of creativity
was experienced here, and the standard requires that a new error message, LIMIT ERROR,
be signalled in such cases.
Required documentation for conforming implementations
A conforming implementation must provide documentation relating to its optionalfacilities,
implementation defined facilities and consistent extensions. It must document the presence
or absenceof eachofthefacilities described in the standard as optional, andalsothe following
aspects of the implementation definedfacilities:
— adescription of the character set. This must include a chart showing the

correspondence between the atomic vector and the charactersin the required
characterset. (The required character set is a standard-specified subset of an
implementation defined finite set of characters called the character set).

— adescription of the numbers,including a characterisation of the internal
representation used. (Note that the numbers are an implementation definedfinite
set whose elements are used to representarithmetic quantities).

— descriptions of the characteristics of each implementation algorithm.
— the value of each implementation parameter.

Asfar as consistent extensions goes, each one provided must be documented by a conforming
implementation. The documentation must also clearly state that use of a consistent extension
prevents a program from conforming with the standard.
This documentation has often been colloquially referred to as the ‘toaster plate’ of an
implementation because,like a plate on an electrical appliance,it reveals to the potential purchaser
the salient features andlimitations of the product.
People occasionally ask why implementation parameterlimits like the rank limit and identifier
length limit are not hard-codedinto the standard. To do this means deciding upon a minimum
value necessary to achieve conformance,andthis is hard to do, as everyonehasdifferent ideas
about what constitutes a minimal APL. For example, what would you choose as the minimum
allowable rank limit for an APL implementation? Typical answers are 3, 8, 15, 63 etc. These
answersare arbitrary, and often have more to do with people’s ideas of how computers wark
than with useful limits. Let’s say we decide on 15 as our minimum rank limit. This means that
wereject as non-conforming any APL implementation that allows no more than 14 dimensions
in anyarray. Alternatively, we may encourage an implementorto use a moreinefficient storage
representationfor arrays just becauseweinsist upon a ranklimit of 15 rather than 14. The approach
in the standard has therefore been, loosely speaking,that implementors can decide the values
of theselimits themselves, but they've gotto tell everyone loud and clear whatthey are.
If you see two conforming implementations, one with a rank limit of 3 and one with a rank limit
of 30, you will know which one to buy, just as you know whichelectric fire will warm you if one
is rated at 3 watts and the otherat 3 kilowatts. The attitude is very much oneof‘let the market
decide’.

149

Figure 3. Yet More Syntax Diagrams

Assignment

>>rert->- variable -->-+-->-+->----- weer>-t- assignment -~->>
| name token | | | arrow| | | |
+->- system ---->-+ +->- index ->-+
t variable |
| name token I| tt->- shared ---->-+

variable
name token

Derived-Function

+- small ---------- pot
{ circle {

>>et- primitive -->-+->-+->- dyadic --->--- primitive -->-te+++-->>
function } operator function |

| |
+->- monadic -->-+->-+->-- axis c+9>-+

| operator j | specification }| 1 | |Haden ence eeeend $e> eee neat

Axis-Specification

 >>- left - -7- expression - or- right -+-->>
axis . axis
bracket bracket

150

Conforming Programs
We now know how to spota standard-conforming APL implementation, but what about standard
conforming APL programs?It is extremely importantto be able to write a conforming program
if you want to port it between conforming implementations.
Aconforming program canuseonlyfacilities that are specified in the standard,that is defined,
implementation defined and optionalfacilities. A conforming program cannot use consistent
extensions. Also, a conforming program cannot depend on the signalling of any error by a
conforming implementation. This is because consistent extensions that replace errors are
permitted in conforming implementations. This meansthat a conforming program cannot use
an error trapping facility (which may be provided as a consistent extension by a conforming
implementation), and moreinterestingly, the standardin its present form can neverinclude one
as a defined, implementation defined, or even optionalfacility.
Note that in general, the presence of a consistent extension in a conforming implementation
shall not affect the behaviour of a conforming program. Rememberalso,that errors produced
by the absenceofan optionalfacility cannot be replaced by consistent extensions ina conforming
implementation,since this would affect the behaviourof conforming programsthatusethe optional
facility.
Implementors of conforming implementations are also discouraged from replacing LIMIT
ERRORSwith consistent extensions, since these errors are the only safeguards a conforming
program has when attempting to operatein a conforming implementation whose implementation
parameters are inadequate to support it. For example,ifthe LIMIT ERRORontheidentifier length
limit were not signalled, a conforming program with identifiers longer than the localidentifier
lengthlimit would malfunction withoutwarning. Currently the standard only warns implementations
off doing this, but does not prohibitit.
Required documentation for conforming programs
Aconforming program must documentwhichofthe optional features described in the standard
it requires. It also has to documentany specific minimal values required for implementation
parameters. For example, it may perform calculations upon numbersas large as 1E100 and
would therefore require an implementation whosepositive numberlimit wasat leastthis large.
The documentshould alsostate,for another example, the length of the longestidentifier name
in order to determine whetherthe program can run on a particular implementation. Generally,
the requirementfor each of the implementation parameters should be documentedin orderto
determine the program's suitability for a given conforming implementation.
It is not surprising that a non-conforming program can produce unexpected results when run
on a conforming implementation, but more surprising that the same is true of conforming
programs.In fact, a conforming program may or may not work, and may or may not produce
identical results on different conforming implementations, due to inherent dependencies on
implementation parameters or implementation algorithms. For example, the algorithm used for
matrix divide is implementation defined, and may or may not generate a DOMAIN ERRORfor
given arguments ondifferent conforming implementations. Another exampleis the implementation
parametercalled integertolerance. The value of this parameteris used by an implementation
to determine whether a given numberis to be considered integral or not. So the same index
expression run on two conforming implementations could produce a result on one and an error
on the other, dependenton their respective values for this parameter. This situation seems
unavoidable, butis alleviated when conforming programs documentrequired values for suchparameters.

151

Figure 4. Some Phrase Evaluators

2aae *
*
*
*
*

5.3.12 And

Z<AaB
Z is the Boolean product of A and B.

Evaluation Sequence:
If either A or B is not near-Boolean, signal domain-error.
Set Al to the integer-nearest-to A.
Set B1 to the integer-nearest-to B.
If either Al or B1 is Zero, return zero.
Otherwise, return one.

Example:
OL eA 01

006
o4

5.3.13 Or

Z<«<Av8B
Z is the Boolean sum of A and B.

Evaluation Sequence:
If either A or B is not near-Boolean, signal domain-error.
Set Al to the integer-nearest-to A.
Set B1 to the integer-nearest-to B.
If either Al or B1 is one, return one.
Otherwise, return zero.

Example:

Oleovdi

Ro RR

152

APLfacilities in the standard
inthis section we will summarise the contentofthe standard in terms of the APLfeatures included
withinit. First let's take a high-level view of what has beenincluded in and excluded from the
standard.This will be done by comparisonwith IBM's VS APL, because VS APLis widely known,
and is mostsimilar to the APL machine describedin the standard.
The standardisation committee agreed early on in the processthatthe standard should describe
existing practice in APL rather than establish a new languagelevel. As a guideline, a feature
is considered for standardisationifit exists in at least two existing APL implementations.In other
words,the standard documentsratherthaninvents,as far as possible.({n fact, there are some
minor exceptions to this as we shall see).
Hereis list of definedfacilities included in the standard:
— all of the primitive functions and operators from VS APL that you have come to

know andlove,
— the system functions quadTS, quadAV, quadLC, quadDL, quadNC, quadEX,

quadFX and quadCR.
— the system variables quadCT, quadRL, quadPP, quadlO and quadLx.
— quad and quote quadinput and output.
— entry and editing of niladic, monadic and dyadic user defined functions via a

minimal del-editor.
— the system commands)CLEAR,)COPY,)DROP,)ERASE,)FNS,)LIB,)LOAD,)RESET,)SAVE,)SI, JSINL,)VARS,)WSID.
— the use of the underbar character (_.) in ail but the initial character of identifiers
—_ the use of commentsto the right of, and on the sameline as executable code (end

of line comments).
The last two points constitute added features to VS APL.
Currently only three facilities are described as optional in the standard:

—_ shared variables via the system functions quadSVO, quadSVQ, quadSVC and
quadSVR.

— the diamond statement separator.
— trace and stop controlvia the system functions quadTRACE and quadSTOP.

The standard specifically does not include, or make any referenceto, the followingfacilities:
— acomponentfiling system via system functions.
— trace and stop controlvia the Tdelta and Sdeita syntax.
—_ the implementation dependent system functions quadAl, quadWA and quadPW,
—__ the grouping ofidentifiers via system commands such as)GROUP,)GRPor)GRPS.
— the creation and behaviourof locked user defined functions.
— mechanismsfor creating and handling enclosed or generalised arrays.
— error trapping.
—— pass-through localisation, fe. initialisation of localised system variables to the value

of their global homonyms.
In fact, all of these facilities (except the Tdelta and Sdelta syntax) could be provided by an
implementation as consistent extensions,although a conforming program could not then employ
them,
Let's now lookat some ofthe specified facilities in more detail:

153

Primitive functions
These are as found in VS APL,with no omissions and no additions. There are some interesting
points to note however:

if an argumentto a scalar function is empty, then the result is also empty, and has
a type dependentonthe function being used. For example, the expression ''3-”'
will yield an empty numeric vector, as will the expression “+
in the standard, roll and deal are classified as mixed rather than scalar functions
becausetheir result arrays cannot be generatedin parallel.
the standard has been designedwith a view to allowing complex arithmetic as a
consistent extension. This is apparent in two areas:
i) the more usual definition of the circular function with a left argumentof ‘*-4”°

has been replaced by one which would permit such a consistent extension.
ii) the distinction made in some implementations of APL betweenrational and

irrational powers has been eliminatedto allow complex arithmetic as a
consistent extension. For example, the standard requiresthat'-8” raised to
the one-third power should yield a domain error, because the right argument
of poweris not integral. This behaviour can then,of course, be replaced by a
suitable consistent extension.

the result of ‘A,B’ where A and B are empty vectorsis always the value of A. For
example, the result of the expression ‘”’,0/0” is the empty character vector,
whereasthe result of ‘(0/0),”" is the empty numeric vector. In practice, this seems
to differ from system to system, with somegiving the result as the left argument,
somethe right argument and someeither the numeric vector always or character
vector always. The standard has gonefor the left argument, but the pointis still
underdiscussiont
in accordance with the ‘minimal’ approach, the definition of the base value
(decode)function is stricter than on many implementations. It does not require that
a unit inner dimension of one argumentbe replicated to match the corresponding
inner dimension of the other. This behaviour can be provided as a consistent
extension,
indexed assignmentis defined so that assigning 1 2 3 into Afi 1 1] causes Afi] to
have the value 3. This not necessarily obvious result comes from the decision to
process the assignments in the ravel order of the index array rather than notionally
in parallel. An alternative would have beenfor the standard to require a domain
error, and leave the implementor to provide a suitable consistent extension.It was
felt, however, that in this case standardising the result was more useful than
ignoring the problem.

System function and system variables
The standardisation committee spent a lot of time and expended much energyin this area,
althoughthereare few surprises. The primary difference between system functions and system
variablesis that an erroris signalledif the nameof a system function appearsinthelistof local
namesof a user defined function header. Amongthepoints of interest are the following:

quadTS uses an implementation defined facility to generate its result.
quadLC contains only elementsrelating to user defined functions, and not to”
contexts created by the use of the execute function or quad input.
quadNC and quadEX signal DOMAIN ERRORif their arguments contain names
which are not simple identifiers, so that consistent extensions can be made. A
simple identifier is an identifier which does not start with a quad or quote quad
character.
the standard ensuresthat an error is reported if the syntax class of any tokens ina
statement changes during execution of that statement. For example, the
expression “F quadEX‘F’”’ attempts to do just this, where F is a user defined
monadic function. A syntax error would be reported in this case. Similarly, an

154

attemptto fix a function G by using quadFX in an expression that formstheleft
argumentof a call to the dyadic function G will result ina DOMAIN ERROR. A
conforming implementation may relax these restrictions, of course, but a
conforming program must abide by them.
the evaluation sequencesfor assignmentto the system variables report DOMAIN
ERRORif the value to be assigned is unacceptable to that system variable. In
addition, primitive functions that implicitly use system variableswill report
{MPLICIT ERRORif the relevant system variable has no value. This can happenif
a system variable is localised to a function and notset beforeit is implicitly
teferanced bya primitive function. Conforming programsthat localise system
variables should therefore assign them valid values before calling any primitive
operations that require them.

User defined functions
user defined functions may be created and edited via a minimal del-editor
describedin the standard. Currently this is a definedfacility, and is therefore
required by a conforming implementation, but some peopiefeelthat in these days
of cleverfull screen editors,it is unreasonable to insist upon a line-editor.It is
possible, therefore, that the facility may become optional in a later draft.
the classof the result namein a user defined function cannot be defined function
or sharedvariable. A value erroris signalled under such circumstancesin orderto
prevent conforming programs from causing an exit from a function whenthe result
name has oneof these classes.
an error should not be reported by a conforming implementationif a defined
function fails to assignto its result name and the calling context does not require a
value.

System commands
thirteen system commandsare currently included as a definedfacility, although
there is some feeling that these should be made optional, or even removed
altogether. Some implementations provide the required operations by way of
system functions. In the standard, system commands cannot be entered during
function definition mode, or invoked as an argumentto the ‘execute’ primitive.

Shared varlables
shared variables are an optionalfacility of the standard. They provide aninterface
between cooperating APL sessions, although they mayalso be used to provide an
interface between APL programs and non-APL system facilities. Conforming
programsthat use shared variables must documentthis fact, since shared
variables are not a defined facility of the standard.

Trace and stop control
trace andstopfacilities are provided in the standard via the system functions
quadTRACEand quadSTOP.Thefacility is optional becauseit is only just coming
into widespread use. The two functions are the only example offull English words
being used in the namesof system functions or variables. However, the standards
committee were unanimously agreed that the Tdelta and Sdelta syntax would not
be cast in concrete, and so some design had to be donein this area. Theright
argumentis always the function name. When used monadically, the result is the
line numbersof the lines currently set for trace/stop. Dyadically, the left argument
is a vectorof tine numbers for which a trace/stop set is required. The result is then
the line numbersof the priorset. If an attemptto trace or stop line zero of a

155

Figure 5. More Phrase Evaluators

*
*
*
*
*
x
”
*
*
*

8.1.7 Execute

Z2<« 28
Z is the result of evaluating the character scalar or vector B
as a line of APL.

Evaluation Sequence:
f the rank of B is greater-than one, signal rank-error.
£ any item of the ravel-of B is not a character, signal
domain-error.

Generate a new context with

Iy

mode set to execute.
current-line set to the ravel-of B.

Append the new context to the state-indicator as a new first
item.

Set Z to evaluate-line.
Remove the first context from the state-indicator.
Return Z.

Examples:

a'Te3!
r

3
DeatT<3!

3
Awalt

value-error

Note:
If an error is signalled during execute, the user should be able to
determine from infermation provided by the system where the error
cccurred in e argument of execute as well 4s where the failing
execute primitive occurred in the immediate-execution or
defined-function line.

156

function is made, a DOMAIN ERRORis reported, thereby allowing consistent
extensions to be madehere.

Finally,let's take a quick look at the reasonsfor excluding certain facilities from the standard.
In general, these reasons can be summarised in the followinglist:

1. Thefacility has not achieved widespread use among many implementations of
APL.

2. The function provided bythefacility is fairly widespread, but different APLs provide
the feature via a different syntax.

3. Thefacility is too closely bound to the specific nature of the operating environment
rather than to the APL languageitself.

4. Inclusion of the facility would result in the APL language being compromised,from
a theoretical viewpoint.

These considerations have to be balanced against the commercial desirability and usefulness
of a particular feature, and these judgementsare of course subjective.
Good argumentsagainstincluding a componentfiling system,for instance, can be constructed
from all the points on the abovelist, althoughthis is left as an exercise for the reader.
CONCLUSION
As well as improvingthe portability of APL programs,the international APL standard will also
promote the use of APLitself, and improve the quality of APL implementations. The standard
will prove (and already has proven)invaluable for APL implementors whowish to conform to
it. [tcan be used to form the basis of an implementation and to encourage implementorsto provide
extensionsto the language which are consistent with the standard. The standardwill also be
important for software vendors whowishto write standard conforming programs.It will encourage
them to reduce, isolate and documentthose areas of their packagesthat are not standard
conforming.Finally, and most importantly, those who purchase APLinterpreters and APi.
programswill expectto see the product documentation required by the standard for conforming
implementations and programs. The prospective purchaserof an APLinterpreter should be able
ta determine quickly whetherit conformsto the standard, and whatoptionalfeatures and consistent
extensionsit provides. Those buying APL software should likewise be able to determine the
suitability of APL programsfor their particular installations, and to predict the areas in which
problems might arise.
However, the standard is over 300 pagesin length andit requires a fair amountof dedication
to read and understand. Interpretation of the standard is therefore not atask to undertake casually.
REFERENCES
[1] The First Draft Proposalfor the International APL Standard. ISO document

number: ISO DP8485 APL.
{2} Standardisation of APL, J.M. Sykes, Chairman BS! APL group. Appearing in

Computer Bulletin, March 1984.
[3] Language Standards for APL, P. Barnetson, IBM UK Ltd., September 1983.

157

BRITISH APL ASSOCIATION
Membership Application Form

Please read the membership informationin the inside front cover of VECTORbefore completing
this form. Existing members should send in an application to update our records;this will be
credited pro-rata for any advance membership fees already paid. Use photocopiesofthis form
for multiple applications. The membership year runs from tst May 1984 — 30th April 1985.
Name:

Department:
Organisation:
Addresstine 1:
Addressline 2:
Addressline 3:
Addressline 4:
 Postor zip code:

Country:
Telephone number:

Membership category appliedfor(tick one):

Non-voting student membership Free
UKprivate membership : £6
Overseasprivate membership £10
Corporate membership . £ 50
Sustaining membership. £250

For student applicants:
Nameof course:
Nameandtitle of supervisor:
Signature of supervisor:

PAYMENT
Paymentshould be enclosed with membershipapplicationsin the form of a UK sterling cheque
or postal order made payableto “‘The British APL Association". Corporate or sustaining member
applicants should contact the Treasurer in advanceif an invoice is required.
Send the completed form to the Treasurer at this address:
Mel Chapman,N. Staffs Polytechnic, Blackheath Lane, Stafford ST18 OAD, UK.

158

THE BRITISH APL ASSOCIATION
The British APL Associationis a Specialist Groupof the British Computer Society and amember
of EuroAPL, an organisation supported by the Commissionof the European Communities.It

. is administered by a Committee of eight officers who are elected by the vote of Association
membersat the Annual General Meeting. Working groupsare also established in areas such
as activity planning and journal production. Offers of assistance and involvementwith any
Association matters are welcomed and should be addressedin thefirst instance to the Secretary.

Chairman:

Secretary:

Treasurer:

Activities:

Education:

Journal Editor:

Publicity:
Technical:

1984 COMMITTEE
Philip Goacher TheBritish Computer Society,
01-637 0471 13 Mansfield Street,

London W1M OBD
Anthony Camacho 2 Blenheim Road, St. Albans,
St. Albans 60130 Herts AL1 4NR.

Mel Chapman N. Staffs Polytechnic,
0785-53511 Blackheath Lane,

Stafford ST18 OAD.
Dick Bowman CEGB, 85 Park Street,
01-634 7639 London SE1.
Chris Beatty 220 Balham High Road,

London SW12.
Robert Bittlestone 26 Barham Road,

London SW20 OET.
Vacant
Vacant

ACTIVITIES WORKING GROUP
David Allen
Dick Bowman
Dominic Murphy
David Preedy
Stan Wilkinson

JOURNAL WORKING GROUP
Jonathan Barman
Robert Bittlestone
David Preedy
Adrian Smith
David Ziemann

Photoset by Wizard Printing Services, Brookwood, Surrey.
Printed in England by Copyprint Ltd., London SW1.

VECTOR
VECTORisthe quarterly Journal of the British APL Association andis distributed to Association
members in the UK and overseas.The British APLAssociation is a Specialist Groupof the British
Computer Society and a memberof EuroAPL, an organisation supported by the Commission
of the European Communities. APL stands for ''A Programming Language" — aninteractive
computer programming languagenoted forits elegance, conciseness and fast development
speed.It is supported on manytimesharing bureaux and on most mainframe, mini and microCorelCIN

SUSTAINING MEMBERS
The Committee ofthe British APL Association wish to acknowledge the generousfinancial support
ofthe following Association Sustaining Members.In manycases these organisationsalso provide
manpower and administrative assistance to the Association at their own cost.
APL*Plus Ltd. Aston Science Park, Love Lane,

Tie=Var
Tel. 021-359 5096

Cocking & Drury Ltd. 16 Berkeley Street, London W1X SAE.
Tel. 01-493 6172

Dyadic Systems Ltd. 30 Camp Road, Farnborough,Hants.
tyrpred

Inner Product Ltd. Eagle House, 73 Clapham Common Southside,London SW4 9DG.
Tel. 01-673 3354

MicroAPL Limited Unit 1F, Nine Eims Industrial Estate,
87 Kirtling Street, London SW8 5BP.
Tel. 01-622 0395

\.P. Sharp Associates 182 Buckingham Palace Road,
were)Ah ecole
DMREAU aor The British Computer Society, 13 Mansfield Street, London W1M OBD.

