The Journal of thg
British APL Association

INAUGURAL ISSUE

® Inside: UK and International
APL News and Views.

@ Spotlight on graphics and
information centres.

@® Communications: We take
the work out of networking.

@ Fifth generation language —
the paper they dared not
print.

@ Technical Forum: Complex
numbers, and Boole
rules OK.

@ New competition and over
150 pages of APL action.

Vol.i No.1 May 1984

CONTRIBUTIONS

All contributions to VECTOR should be sent to the Editor at the address given on the inside
back cover. Letters and articles are welcomed on any topic of interest to the APL community.
These do not need to be limited to APL themes nor must they be supportive of the language.
Articles should be submitted in duplicate and accompanied by as much visual material as possible,
including a photograph of the author. Unless otherwise specified each item will be considered
for publication as a personal staternent by its author, who accepts legal responsibility that its
publication is not restricted by copyright. The provision of camera-ready or machine-readable
copy isencouraged: please contact the Editor beforehand. Program listings shold indicate the
computer system on which they have been run. APL symbols should be displayed on a separate
line and not embedded in narrative. Except where indicated, items published in VECTOR may
be freely reprinted with appropriate acknowledgement.

MEMBERSHIP
VECTOR
Category Fee p.a. copies Pasgses
Nonvoting student membership Free (1984} 1 1
UK Private membership £ 6 1 1
Overseas private membership £ 10 1 1
Corporate membership £ 50 10 5
Sustaining membership £250 100 5

The membership year runs from 1st May to 30th April, Applications for membership should be
made on the form at the end of the journal. Passes are required for entry to some Association
events and for voting at Annual General Meetings. Applications for student membership will
be accepted without charge at the discretion of the Committee on the production of educational
bona fides and a recommencdation from a course supervisor. Overseas membership rates include
VECTOR airmail postage and should be paid in UK £.

Corporate membership is offered to organisations where APL is in professional use. Corporate
mermbers receive multiple copies of VECTOR and are offered group attendance of Association
meelings. Partaking individuals need notbe identified but a contact person should be hominated
for all communications.

Sustaining membership is offered to companies trading in APL products: this is seen as a method
of promoting the growth of APL interest and activity. As well as receiving public acknowledgement
for their sponsorship, sustaining members receive bulk copies of VECTOR, and are offered news
listings inthe editorial section of the journal and opportunities to inform APL users of their products
via seminars and articles.

ADVERTISING

Advertisements in VECTOR should be submitted in typeset camera-ready A5 portrait format
with a 20 mm blank border. lllustrations should be black-and-white photographs or line drawings.
Rates are £200 per page. A6 and A7 sizes are offered pro-rata subject to layout constraints.
Deadlines are:

Advertisemnent booking: 3rd Friday in April, July, October & January,
Camera-ready copy; 1 week later. Distributicn: 2 weeks later.

CONTENTS

EDITORIAL: Back to BASICs?

APL NEWS

Letters to the editor
Quick-reference APL diary
British APL Association news
1983 Report and Accounts
International APL news

British Computer Society news
News from sustaining members
APL product guide

RECENT MEETINGS

APL and Graphics

A Graphic Vision of APL

APL in the Information Cente

Setting up a Company Information Centre
The Global Information Centre

Panel Discussions on Information Centres

Communicating with APL
Networking APL Microcomputers
Interfacing Viewdala and APL
IBM-based APL Communications

GENERAL ARTICLES

Why APL? A non-technical introduction
Steps towards a better BASIC — part 1
Case Studies: an invitation .
Matchmakers: a simulation case study
The paper they dared not print

FGL: Fifth Generation Language

TECHNICAL ARTICLES

Technical Editerial
Prize Competition: This Is Your Life
Complex numbers in APL

SCREENIO: An IBM Full Screen Manager

APL and partitioned data
Inside the international APL standard

MEMBERSHIP APPLICATION FORM

Robert Bittlestone

Bowman, Camacho & Hawke
David Preedy

Robert Bittlestone

Jonathan Barman

Robert Bittlestone

Philip Goacher

David Preedy

David Preedy

Adrian Smith
Graeme Robertson
Adrian Smith
Romilly Cocking
Fred Perkins
Various Contributors
Adrian Smith
Richard Nabavi
John Pym

Tim Perry

Robert Bittlestone
Anthony Camacho
Adrian Smith
Adrian Smith
Anonymous
Robert Bittlestone

Barman & Ziemann
David Ziemann
Alan Hawkes
David Doherty
Jonathan Barman
David Ziemann

Page

15
17
21
23
25

63

65
77
79
80
87
89

103
105
107
121
129
143

158

The VECTOR Working Group

Jonathan Barman Robert Bittlestone
Technical Section Editor

David Preedy David Ziemann
Advertising & Reviews Technical Section

Adrian Smith is also a valued member of the editorial team but unfortunately his
photograph failed to meet the print deadline

EDITORIAL: Back to BASICs?
by Robert Bittlestone

This is the first issue of VECTOR: a new journal for & new generation of computer users, Although
VECTOR is aimed at those who know and use APL, it’s also very much intended for those who
don't yet but might. So we make no apelogy for including articles which look at APL from the
viewpoint of a non-APLer — including that of the general manager who'd like to know why APL
makes sense without necessarily learning it personally.

APL is different from all other computer languages in many ways. These differences are part
of what gives the language its strength, but also part of what causes it to be criticised. One of
the most interesting points about its users is that there are virtuaily no cases of reverse conversion.
Once you become committed to APL, it seems that you are rarely lured away from it. This kind
ofloyalty is praiseworthy indeed but alsc has a dangerous tendency o promots insularity. Events
might just be passing APL by.

It's almost as if there are two Kinds of computing. There is the world out there of COBOL and
FORTRAN and BASIC and everything else. This world has its bad points — very stow project
development and severe design regimentation being two of them. However, it also has its good
points, which include a civilised approach to word processing, imaginative use of on-screen
colour graphics, the advent of new user-friendly devices such as the “mouse’’, the use of a
keyhoard and character set that is'well-nigh universal, and language availability on almost aif
computers.

Then there is the world of APL. Here we find some bad points oo — axtremists who confuse
complexity with ctarity, dreadful legends of undocumented and unsupportable systems, and
obscure non-portable techniques required to cope with standard problems such as lower-case
output. However, we also find a great many good points, such as elegant structures, poweriul
and appropriate array handling, flexible and sophisticated intrinsic features and a relational
mentality that accelerates design as well as implementation.

! hope | have by now established the notion that VECTOR is not going to be a sycophantic journal.
We aim to stimulate by criticism as well as by praise. If we sometimes infuriate, then be sure
it is for a purpose. Write us a letter to object: but above all, keep the dialogue going. We have
in our hands perhaps the most powerful tool yet devised for harnessing the power of the computer
for human needs. So please let’s agree to concentrate on honing its cutting edge, rather than
laying out rococo designs for its handle,

The production of VECTOR is very much a team effort and | would like to acknowledge the
contributions of the journal working group. Jonathan Barman and David Ziemann have
painstakingly assembled all the technical content of the journal and vetted contributions for
accuracy. David Preedy has worked miracles in producing a new product guide and in encouraging
advertisers and sustaining members. Adrian Smith has documented the Assoclation’s meetings
with great precision and has also contributed our first case study. Needless to say, none of this
absolves me from total responsibility for the many infelicities which no doubt remain.

For the APL user:
The LYNWOOD ALPHA APL TERMINAL

@ 8 colours plus shading option

@ Tektronix 4010 compatible

@ Full APL character set with switchable overstrike option
@ Powerful editing features

@ 12 keyboard macros plus 8k bytes interface macro

@ Up to 13 pages of display memory

... for a clear view

Lynwood Scientific Developments Limited
Park House, The Migh Street,
Alton, Hampshire GU34 1 EN,

United Kingdom.

Telephone: Alten (0420) 87024 (10 lines)
Telex: BS8ET?

LETTERS TC THE EDITOR

Letters should be written with non-APL as well as APL readers in mind wherever possible. The
Editor reserves the right to edit letters unless a writer states that a letter is to be published in
full or not at all.

From Mr. Richard Bowman 27th February 1984

Sir: A certain amount of discussion has been going on recently regarding the desirability of an
ASCli-character representation for APL. Perhaps | might be allowed to make something of a
pre-emptive strike in favour of the present graphic notation. ’

Many of the present symbols carry something of a visual sense of what they do; for example,

¢ is concerned with spinning objects around on axes, [] looks somewhat reminiscent of a
terminal screen (1 don't have to think too deeply about [+ sending characters to terminals and
<[] taking them from the keyboard), 4 is obviously going in the opposite direction to ¥.

Leading on from this, APL as presently represented is rather more cross-cultural than the
essentially text-represented languages like BASIC (paraphrasing Allen Rose, do French
programmers have to write text such as "'LAISSEZ A=2 §’IL. VOUS PLAIT"?). In its current
form I would expect APL to have an advantage in transcending national and cultural barriers.

In any case, while history has imposed a penalty of several hundred pounds as the luxury cost
of putting an APL keyboard onto aterminal, we are now in a situation where the STSC (Scientific
Time Sharing Corporation) chip for the IBM Personal Computer is being made available for $25.
To my naive mind, this indicates that economics could cease to be the issue.

I suspect that given a historical perspective the advent of APL as a notational style will be seen
in the same light as the move from Roman to Arabic numerals, or the evolution of calculus notation.
We must not allow ourselves to be tyrannised by the temporary inability or unwillingness of
hardware manufacturers to supply us with what we need at an economic price. Some of the
intraductory remarks in Kenneth Iverson’s *Notation as a Tool of Thought” (Communications
of the ACM August 1980 Vol, 23 No. 8) are well worth re-reading.

Yours sincerely,

Dick Bowman,
CEGB,

85 Park Street,
London SE1.

(Editor. The various current arguments in favour of promoting a conventional representation
for APL do not imply that the existing notation is wholly without any merits, onlythat its advantages
are in some cases outwelghed by problems. Dick's argument may well be the right one, but
some people feel it is twenty years too late! Most computer users by now already own or have
accessto non-APL screens; although these could be converted, in practice they won't be. Another
issue is the awkwardness of including APL character set output in typeset copy without specialist
aids, which most publishers are reluctant to employ. This makes tha inclusion of APL algorithms
in most computer journals difficult or impossible, limiting in turn the spread of the language.
Wae share this problem; the VECTOR edlitorial team would dearly like to hear from any organisation
that can ofter them a solution.)

From Professor A. G. Hawkes 16th March 1984

Sir: 1 don't know when you expect Lo bring out the new Journal (to be called “"VECTOR") but
no doubt you will need a collection of papers to put in it. Enclosed is a paper which i hope you
will feel is suitable.

A proper journal should make good sales from libraries. | hope it will cater for a broad spectrum
of interests. ! think the use ot APL for scientific purposes has been sadly neglected in this country,
and fee! that a proportion of scientific papers in the journal, as well as the more commercial
stuft, will help to remedy this.

Yours sincerely,

Alan. G. Hawkes,

Dept. of Management Science & Statistics,
University College of Swansea,

Singleton Park,

Swansea SA2 8PP.

(Editor: We agree with Professor Hawke's views and are grateful to him for contributing a scientific
paper, which is included in the Technical Section of this issue).

From Mr. Anthony Camacho 24th February 1984

Sir: | found an error in an algorithm published in the “‘FinnAPL Idiom List”. | think this is rare
enough to be worth notice. Idiom 49 does not work if the largest value in ** X" is an exact power
of 16.

v R+FDTOH X

(1] n FINNAPL IDIOM 49

[2] n RESULT TOO SHORT IF [/X IS 16*N

[3l §'0123456789ABCDER'[OIO+({{[/168, X)pl6)TX]
v

FDTOH 16
0

FDTGH 256

‘00

FDTOH 4096
000

FDTOH 15
F

It can easily be correcled by taking the logarithm to the base 16 of 1+ X", butif “X'" contains
many values this process may be time-consuming. It is mueh faster to find the maximum and
to take the logarithm of that value only.

v 4-DTOH N

[1] & IMPROVED DECIMAL TG HEX CONVERTER

(23] ®'0123456T89ABCPEF'[1+((L1+16e[/ , ¥}p16)TH]
v

DTOH 15 16
oF
190

DPGH 40%6
1000

DToH 4095
FFF

This takes less than three seconds to convert the first 256 integers on my microcomputer,
compared with about 33 seconds for the improved FinnAPL idiom number 49t

Yours sincerely,
Anthony Camacho,
2 Blenheim Road,
St. Albans,

Herts AL1 4NR.

(Editor: Our Technical Editors confirrn Mr. Camacho's observations)

I} CELPHI

CONSULIATION

NEED HELP WITH APL?
THEN CONSULT THE ORACLE

Telephone DAVID CROSSLEY
on 03677 384
Delphi Consultation, Church Green House

Stanford in the Vale Oxon.

QUICK-REFERENCE APL DIARY
Compiled by David Pready

Efforts are made to ensure the accuracy ofthese listings before publication, but readers should
in all cases verify details nearer the indicated date. Association members will be posted details
of all meetings,

Unless otherwise indicated all Association events are free, open to non-members as weli as
members, and start at 2 p.m. at:

The Read Lecture Theatre,

Sherfield Building,

Imperial College of Science and Technology,

South Kensington,

London SW7 2BT.

Tel. 01-589 5111

Undergreund: South Kensington, then subway to Science Mussum,

The ““APL Publications” hookstall will be a regular feature of all London events, giving delegates
a chance to purchase hard-to-find APL literature.
Date Venue Event

May 18 London Association meeting:
"“APL vs. packages and 4GL’s.”

June 11-15 Helsinki APLB4 Conference
(Details in this issue)

June 22nd Aldwych Association Special Event:
“APLB4 In Focus”
{Details in this issue)

September 21 tondon Association Meeting:
“Expert Systems and APL"
October 15-17 Toronto I.P. Sharp APL User Meeting:
“The Information Centre and
Changing Technology™

{Dstails in this issue)

October 19 London Association Workshop:
“How to Survive in Version XX of APL"

November 16 London Association Meeting:
: "Information Centre Case Studies”

December Midlands Association Special Event:
“What's New for APL in 19857"
(Details to be announced})

BRITISH APL ASSOCIATION NEWS
Compiled by Robert Bittlestone

Annual General Meeting

The 1983 Annual General Meeting of the British APL Association {formerly the U.K. APL User
Group) took place at 2.00 p.m. on Friday 20th January 1984. Prior to this meeting an
unprecedented level of activity had been taking place with a view to sweeping your Association’s
structure through with a clean broom. The difficulty of organising the Loughborough Business
Technology show in September 1983 had put the spotlight on the need for some changes. Now
thatthe dust has settled, we can reveal that the Loughborough event came within a hair's breadth
of cancellation three weeks before opening day, primarily owing to & lack of its effective promaotion
by your Committee! At the [ast minute we appealed to UK companies trading in APL to help
us out, and they generously gave of their time to mail off details to thelr contact lists. The rasult
was salvation; Loughborough came and went and actually made the Association richer.

‘“The AGM atmosphere was electric: you could cut it with a knife”’

As aresult of the Loughborough experience a Task Force was appointed to conduct an in-depth
review of all Association activity. The proposals were published in the previous issue of the
Association journal and were in essence voted on by the ordinary members at the January Annual
General Meeting. It’s true that competing candidates were not obliged to swear allegiance to
the new manifesto, but social ostracism by the fellow Committee members would have been
the inevitable outcome of any officer rejecting the embraces of change. After all, this didn’t all
happen in 1984 for nothing.

The atmosphere at the AGM was electric; you could also cut it with a knife {an irresponsibly
mixed metaphor?). Based on the votes cast there were about 50 enfranchised members present,
not all of whom voted on every Issue. The first najl-biting scenario occurred when we came to
elect a Chairman. Three candidates were presented: Phil Goacher, the outgoing Chairman and
a donor of long and waorthy service 1o the Association; Ron Fuss of “Fuss at Loughhorgugh™
fame (see last issue) who had been persuaded to stand by a splinter group intent on humour
at Committes meetings at all costs; and Dick Bowman who entered the running as adark horse
late in the day, standing on a CEGB platform in apt harmony with the ambience of the meeting.

““The candidates didn’t even have $24 million to spend on their
campaigns’’

After a period of what has been described as *'white knuckle time"' involving frantic recounts
by Anthony Camache, who had not yet been elected Secretary but was nevertheless constitutional
in his arithmetic following Gordon Sutcliffe’s request as outgoing secretary for a stand-in, the
voles were announced: Bowman 15, Fuss 15, Goacher 18. Neither Hart, Jackson nor Mondale
could have played it more fairly, and our candidates didn't even have $24 million to spend cn
their campaign. The voices of reason held sway and continuity in Association matters was assured,
while at the same time our incoming Chairman's majority was such as to leave the balance of
power in the hands of the yet-to-be elected Committee.

Worse was yet to come, or better, depending on your electoral viewpoint. Mr. Camacho carried
the Secretaryship against Les Hollingbery by 25:15, and Mel Chapman beat Mark Griffiths to
the Treasurer's role by 17:12. Mr. Camacho was seen to be putting renewed vigour into his vote-
counting now that he really was the Secretary, and Mr. Chapman started to count the cost of
proceedings with some financial alacrity.

““The failed candidates’ tongues smarting from the bitter taste of defeat”

Next to come was the role of Activities Officer, where the lineup was David Allen from British
Aerospace, no stranger to the BCS world with his Kingston branch involvement; Dominic Murphy
of inner Produet, no stranger to the APL world with his VIZAPL involvement; Dick Bowman, no
stranger to the world of humbler Committee men as distinct from Chairpersons, gritting his teeth
with manfully concealed disappointment; and Robert Bittlestons, your humble correspondent,
an also-ran for the Journat vacancy and by now eyeing the competition with some concern. Tactical
voting prevailed: Mr. Bittlestone withdrew his nomination for the Activities job, posing a new
constitutional dilemma for Mr. Camacho by so doing, but our gallant Secretary raised no objection
tothis irregularity and the Titans were left to fight it out. The result was Allen 14, Murphy 7, and
Bowman 17, so Allen and Murphy retired to battle with their tongues smarting from the bitter
taste of defeat and Bowman, crowned with a laure! wreath, performed the by now obligatory
gladiatorial circuit of the Read Lecture Theatre arena.

Fred Perkins of |.P. Sharp fame was by now the only candidate for the role of Promotions Officer,
and gracefully the ordinary members let him have it. Mr. Perkins obviously feltthat an uncontested
seat was a worthless seat since he stuck it for three months and then was regrettably obliged
to tender his regination (see later). However, we didn’t know that at the time and so the auditorium
rocked with deafening applause. The post of Journal Editor was then offered and the candidates
were Valerie Lusmore, the outgoing Editor, an APL person from APL People and the worthiest
possible candidate following her years of dedication to the cause, and Robert Bittlestone of
MicroAPL and Metapraxis, whose only claim to APL journalistic fame was his previous editorship
of the blatantly commercial ‘"MicroAPL News’'. Would integrity prevail over commerce? Very
nearly, but after a further ashen-faced recount Mammon triurnphed by 21 votes to 20, ushering
in by one head the current regime of logorrhoea.

“A wave of almost invisible releif swept over the AGM audience”

After this almost unbelievably stressful sequence it was with some visible lack of tension that
Chris Beatty of Westminster City School was elected unopposed as Education Officer, and that
Romilly Cocking of Cocking & Drury was elected also unopposed as Technical Officer. A wave
of almost invisible relief swept over the audience and voting finished with an almost unncticed
ruse of great cunning by the new Chairman, to extend all our terms by 3 further contest-free
months: the Association current year-end has now been fixed at 30th April 1985 and annually
thereafter, thus conveying yet headier joys of this extended office on our unworthy heads.

““The acronym formed by ‘British APL Group’ was rejected”’

Talking of “‘Association’’ reminds me to announce that the name of your Organisation has
undergone various metamorphoses. The original name of “*APL User Group'' was felt to be too
low-key to live up to the major expectations that are now had of it, and so “'British APL Society’’
was proposed. However, the British Computer Society were unenthusiastic about this since it
mightimply that all British Computers were in fact running APL, a commendabls notion but rather
short of the facts. So “British APL Group' was coined and lived for about two months until your
Editor discovered to his horror the appalling nature of the acronym thus formed. Nights were
lost with visions of seething masses of APL enthusiasts exclaiming *'It's in the BAG", so the
BCS was persuaded to adopt BAA instead. Any resemblance to a national airport authority is
felt unlikely to pose a major practical problem. We hope our readers approve of this nomenclature.

10

>

lll!!

COCKING & DRURY LTD.

THE APL PROFESSIONALS

If you are an experienced APL user, you will know how much can be achieved with
APL - and will recognise the skills needed to use the language to its full potential.

if you're new to APL, or are evaluating the language, you will want professional and
unbinsed advice and assistance.

We have over 100 man-years’ experience of APL, and we are familiar with all major
mainframe, mini and micro implementations of the language.

Cocking & Drury were the first European APL consultancy, and we are sfill the leaders in

applications pregramming
education

packages

turnkey systems

conversion

consultancy

information centre implementation

systems programming and support

For further information, contact Romifty Cocking on

01-493 6172

or write to us at

16 Berkeley Street, London W1X 5AE

11

APLB84 in focus

Many UK APL enthusiasts will be unable to visit the APL84 conference in Helsinki this year.
Dick Bowman, the Association’s Activities Officer, has thoughtfully provided a special session
whereby speakers travelling back from Helsinki via London will be waylaid and asked to regurgitate
their seminars. After the practice in Finland the presentations should be even sharper, so don't
miss this opportunity of hearing the highlights of APL84.

This is a Special Event of the Association and is being held at the Waldorf Hotel, Aldwych, London
WC2 on Friday 22nd June. A charge will be made, which will include lunch. The speakers will
include Jim Brown of IBM, who will be talking about APL2; Roy Sykes of STSC, the author of
"Collected Whizzbangs''; Philip van Cleave of TCC and MicroAPL talking about APL.68000;
and a demonstration of the Analogic Corporation ''APL Machine''.

For technical details contact Dick Bowman at the address at the end of the journal. For booking
inquiries contact Philip Goacher at the BCS, address also at the end of the journal.

Our thanks are due to Romilly Cocking for sterling services to the APL User Group in the past
and to the formation of the current Association

12

Situations Vacant

Mr. Romilly Cocking has felt obliged to tender his resignation as Technical Officer. Mr. Frederick
Perkins has also felt obliged to tender his resignaticn as Publicity Officer. Both these posts are
currently vacant and applications are invited to fill them.

The role of Technicat Officer requires a history of exposure to APL, ideally on several different
types of computer, and an acknowledged expertise in the technical aspects of the language.
Duties include (a) acting as a reference point for members of the Association who have technical
inquiries, (b) coordinating the activities of the Association in relation to APL standards, (c)
supporting the Journal Editor by identifying potential authors, and {d) supporting the Activities
Officer by identifying speakers and panellists.

The post of Publicity Officer requires an ability to handle Press contacts and a gift for phrasing
announcements about Association affairs in aninteresting and news-worthy way. Duties include
(a) handling all Press matters, including press releases (b) liaising with sustaining members
over matters of general APL market interest, {c) assisting the Journal Editor in promoting the
circulation of VECTOR, and (d) helping the Activities Officer to publicise Association meetings.

The Association statutes are such that no generat vote of members is required to fill interim
vacancies. Consequently these officers will be appointed by vote of the Committes after reasonable
time has elapsed for candidates to make their interests known. Please write to the Secretary
ofthe Association (address at the end of this issue) with a brief outline of your APL experiences,
a statement of your interests and orientation if appointed, and a recent black and white photograph.

APL86

international APL Conferences take place alternately in the USA and elsewhere. The 1982
Conference was in Heidelberg; the 1983 in Washington; 1984 takes place in Helsinki; 1985 in
Seattle, and 1986 has been allotted by EuroAPL to the United Kingdom. Initial pianningis currently
under way by your Committee, and in due course it is likely that a special secretariat willemerge
to run the affair, with an identity distinct from the Association Committee itself, although existing
officers are by no means disbarred.

Oflers of assistance in organising APL86 will be gratefully received by the Secretary. There is
also a requirement for referees to scan through papers that are submitted to the conference.
Although such appeintments are normally by invitation, any individual who considers himself
or herself qualified and enthusiastic for such involvementis also invited to contact the Secretary,

13

APIXPLUS, the (LK. subsidiary of
STSC, the large American Corporation

renowned for its quality APL-based products
offers a wide range of APL interpreters and

rmodern business computing.

APLI:PLUS/1000

A comprehensive set of enhancements to [BM's VS-APL, available under
both MVS/TSO and VM/CMS offering such features as commercial
formatting, component files, error handling and nested arrays.

API*PLUS,/PC

A high performance APL giving API*PLUS/ 1000 functionality on the
IBM PC, with additions such as graphics, full-screen management,
mainframe communications and language integration.

INFORMATION CENTRE

A range of IC tools providing full-screen data entry, display and analysis
capabilities together with interfaces to other IC products.

Ok
Ok
9 ACT-PLUS
Ok

A comprehensive library of actuarial functions and procedures for the
life insurance sector.

CMCS

Materials Management at its best. Facilities include forecasting, inventory
management, production planning, warehousing and distribution.

APL*PLUS

Professionalism in Software

Aston Science Park, Love Lane, Birmingham B7 4BJ
Telephone: 021-259 5096. Telex: 334535.

14

1983 REPORT AND ACCOUNTS
Jonathan Barman

INCOME AND EXPENDITURE FOR YEAR TO: 31.10.83

Income

Subscriptions

APL Coenference Nov. 82
APL Conference Sep. 83
Profit on sale of books

Total income

Expenditure

Meetings

Newsletter less advertisement income
Expenses

Audit tee

Total expenditure

Surplus of income over expenditure

BALANCE SHEET AT YEAR END

Cash at bank
Debtors
Books in stock

Less Creditors
Net Assets

Accumulated surplus previous year
Surplus current year

Net Reserves

£

15

31.10.82

384

260
30

1,081

251

NOTES TO THE 1983 ACCOUNTS
1. The surplus on the 1983 APL Business Technology conference was made up as follows:

£
Delegates fees 17,340
Exhibitors’ fees 3,555
Programme advertising 375
Product forum fees 300
Total Income 21,570
Conference cosls 13,662
Publicity costs 2,031
Miscellaneous costs 684
Total costs 16,377
Surplus of income over costs 5,193

2. Pending expenditure of the accumulated surplus, the cash is being invested to
produce further income.

3. On ist November 1982 the book stock was sold to APL Publications, run by Mr. L.
Hollingbery. The committee decided that the administration of book sales was
becoming too onerous for it to be carried out by members of the committee, who
receive no fees for work carried out on behalf of the User Group.

{The accounts have been signed by Jonathan Barman as Treasurer and audited by Anne Raikes
MA FCA).

19th January 1884

Editor's comment: The Loughborough conference swelied the finance of the Association
substantially and is in part the reason for the expanded programme of activities and journal content
that your Committee has embarked on for the 1984/85 year.

16

INTERNATIONAL APL NEWS
Compifed by Robert Bittlestone

This column is open to other APL Associations outside the UK; please write 1o us with your news
and we shall be pleased to broadcast extracts for you. A substantial number of VECTOR
subscriptions are from overseas and we hope in this way 10 keep APL users in touch with each
other internationally.

EurcAPL

EuroAPL is the international organisation supporting European APL groups in various ways,
We had hoped for a glowing progress report on hews of APL in Europe, but sadly this is not
to be — not in this issue anyway. Philip Goacher is this year's Chairman of EuroAPL as well
as being the Chairman of our Association. He writes somewhat ruefully:

*EuroAPL has been supported from tunds allocated by the Commission of the European
Communities to the ‘Multi-Annual Programme for Data Processing’, which has allowed
us to meet the travelling costs of members attending the regular meetings in Brussels.”

“Unfortunately the proposal for extending these funds was not approved in March and
the budget has now run out!”

“Whilst waiting for Council to reach a decision on continued finance for the work carried
out under the programme — principally standardisation work — all meetings for the various
activities, including EuroAPL, have ceased.”

“"Members of the EuroAPL Board attending APL84 will meet to discuss the EuroAPL
programme during the conference."

So much for entents cordiale: it's fine so long as someone pays for it. We hope to bring you
more stimulating news of EurcAPL in the next issue.

LP. Sharp 1984 APL User Meeting

For those of you with the opportunity {or excuse) to visit Canada, the regular Sharp APL user
mesting Is being held at the Westin Hotel, Toronto, from October 15th — 17th 1984. The following
details are reprinted from a public mailbox message on the IPSA system.

“The Information Centre and Changing Technologies"

“Featuring keynote addresses by H. Mitchell Watson Jr., IBM Vice President and President,
System Products Division, IBM Corporation, White Plains, New York; and by James Cunnie,
Director of Office System Planning, ITT Corporation, Stratford, Connecticut. There will
be a special halt day presentation by James Martin, who is according to Computer Weekly
the computer industry’s most widely read author and best attended lecturer.”

“Session themes inciude:-

— Introducing the global information centre

— Implementing a global information centre

— Menus, mice and masters in application design

— Managing the information revolution

— Evaluating and implementing user productivity tools
— Managing and implementing international systems
— Some management tools for an information centre

17

— Supporting information centre users

- Exploiting networks

— |. P. Sharp: changing technolegies and future directions
— The evolution of the APL environment: two perspectives

“Optional tutorials (October 18th) cover:-

— For managers The Sharp APL system: a management perspective
— For technicians Dump analysis facility

“The registration fee for the 1984 mesting is $400 (Canadian) or $320 (US). There is an
additional fee of $100 (Canadian) or $80 (US) to register for either one of the tutorials.
A conference brochure and registration form will be mailed in early May to everyone on
the IPSA newsletter mailing list. For more information contact:

Rosanne Wild, IPSA Lid., Suite 1900, 2 First Canadian Place, Toronto, Ontario, Canada M5X
1E3. IPSA Mailbox RWI. Telephone (416)-364-5361

The feedback from previous Sharp conferences has always been very good, with an accent on
the practical as opposed to the theoretical. It is not normally necessary to be an IPSA customer
to be allowed to register and many users of IBM APL systems or of microcomputer-based APL
have learned a lot from the Sharp conferences.

Having bestowed praise whereit is due, perhaps | might raise a pet complaint. Users of timesharing
bureaux, and particularly their staff, seem to imagine that the APL mailbox is the only possible
or civilised way of sending someone a message or distributing news. 1 couldn’t disagree more.
For it 1o be practical use, one has to inspect a personal mailbox at ieast daily, and | certainly
have neither the time nor inclination for that. A telex or a letter is actually delivered personally,
a great innovation.

What's more, if | want to send someone a message on a mailbox system, in practice | have to
type it personally as opposed to being able to delegate it to a secretary (in theory the secretary
could log on for me but in practice the lines are always down at the crucial moment). It also arrives
the other end on some kind of junk printer: as sender{ have ne control over atidy format. Finally,
there’s no lower case, which makes all my messages lock like imperatives! Mailboxes may be
fine for programmers but as hunan beings, please let’s be civilised {(and Lhaven’t even mentioned
the costl).

APLB4

By the time this issue of VECTOR is published, you may or may not have encugh time to book
for the APLB4 International Conference at Espeo, near Helsinki, Finland, which starts on 11th
and ends on 15th June 1984. A most splendid programme has been prepared, which is
unfortunately too long for us to reprint here. What you will need for alate booking is a few addresses.
The company handling all reservations for the conference and accomodation is:

AREA Travel Agency Ltd.,
Congress Department,
P.0. Box 227,

SF-00131 Helsinki 13.
Telex 122783 ARCON SF
Tel. Int. + 358-0-18551

There is a full range of tours avallable, including one to Leningrad for which a visa is required.
18

Late bookers inthe UK ¢can contact the London-based company which is handling group bookings
to see if their April deadline can be varied, The details are:

Noe! Cramer,
Express Boyd Lid.,
4/5 Bonhill Street,
London EC2A 4BX.
Tel. 01-588-8461

Atthe time of preparing for publication the package price for travel and accommodation varied
from £328 to £498 per person depending on hotel and timing. Added 1o this is the cost of conference
registration itseH, which starts at £245 and increases asymptotically to infinity, depending on
your predsliction for tours before or after the conference. All in all an expansive conference but
without doubt a very worth while one — and a rare chance to visit Finland or the USSR on company
business!

A Finnish Fairy Tale

No doubt the APL84 conference crganisers have been very busy with preparing for the show.
| started to get a little concerned about communications with Helsinki back in November 1983,
when | wrote to Sten Kallin, who is one of the organisers, to ask if they would like to run the
“Metaconference” as a service to delegates. (This is a form of computer-based interaction system
that lets users contribute statements and alsc vote on everyone else’s; interested readers can
catch an account of it in the Journal of the UK Operational Research Society December 1983.)

| \.;vai!ed till late January 1984. No response.
| wrote again. No response.

In desperation | sent Sten Kallin a telex message care of AREA travel agency, addressed via
Timo Seppala, the conference chairman. It said:

“lhave never received any reply to my letters to Sten Kallin of 1 1th November 1983, 26th
January 1984 and 7th March 1984. | am going to spread a rumour that he does not exist.
Is this true? Please let me know."’

No respense.

Now | do know that Timo exists — at least he did in Washington, and his voice on the telephone
last year sounded the same as it did when | met him in the flesh. But what about Sten Kallin?
Is he in fact a virtual person, cverlaid on some disc somewhere underneath a head crash? Is
his name some kind of anagram? APL is actually quite good at generating anagrams. You type
inthetext STEN KALLIN, assign it to a variable called X or whatever, and then watch APL executing
X[11?111in a tight locp. You get the occasional duplication that way of course, but it’s nothing
to lose slesp about. Actually you might lose a little sleep ¢ome to think about it because the
effect on the screen is most hypnotic. Try it. | bet you wen’t be able to hit the break key until
at least one credible anagram emerges.

I started by getting the head-scratching NIT KALLSEN, then the well-known Baltic sailor SALT
ENKLIN, and shortly after that the legendary giraffe impersonator IN TALLNEKS. You can alse
very nearly get LINK NATES, which is really quite worrying if you happen to know one of the
two meanings of that obscure English word {l don’t mean *‘anterior pair of optic lobes in brain™,
although that would probably be confusing as well). The mysterious electrical researcher TESLA
is buried in there, as is some EKTASI. But | felt | had hit on a clue when up jumped the phrase

19

KATE LSI NNL., Sten Kallin has had a sex change and subsequently been blown into LSI Ioglc
(large scale |ntegrataon) | think the NNL is the last human gasp before digitisation, but | can't
be sure,

End of fairy tale — or should | say finish. Access to the pages of VECTOR is a privilege which
| have undoubtedly abused by now. It's really much safer to answer people's letters! I'm sure
the conterence will be very well organised, the more sc for people tike Sten not wasting their
time writing to me. | see from the programme that Espoo, the conference venue, is an
archaeological site dating back to 6000 B.C., so no doubt there will be a crop of jokes about
digging up APL hieroglyphics. You may also catch a rare chance to sample the little-known Finnish
custom of culinary monuments. To quote {just about) from the programme:

"'Espoo is now the fourth largest city in Finland, featuring the Garden City of Tapioca
as well as other achievements of modern Finnish architecture™’.

The more hasta, the less pasta? Have a good trip!

3,Crox Lane Close,
Orwell,

Nr.Royrton.

Hertr GO SOV
tel.02}3-207-530

The only employment agency run
by experienced APL professionals.

We specialise in supplying skilled
APL personne! to complement your
APL project team —
permanent or temparary.

To discuss your particular requirements:
Call Valerie Lusmore on 0223-207530

Registered employment agency licence SE6440

20

e

BRITISH COMPUTER SOCIETY NEWS
Compifed by Philip Goacher

I suspect that few of our members know much about the activities of the British Computer Society
(BCS) of which we are one ot the 44 Specialist Groups. Indeed, despite being a BCS member
for ten years and as APL Group Chairman sitling on its Specialist Group Board, it was not until
| becama the BCS Business Manager recently (Ed. — see Press release after this article) that
| came to understand more tully the workings of the Society.

The BCS was formed in 1957 as a result of meetings between two informal groups, one
tepresenting industrial and commercial users of computers, the other representing scientists
and engineers who were using computers in their disciplines. After its first year of existence
the Society had 1,182 members; it now has a membership of 27,500 which represents a
considerable proportion of practising computer professionals.

The cornerstone of the Society's existence is its representation of the computing profession
in the UK, and the status of Professional Membership of the BCS is recognised throughout the
industry. Professional members are required to subscribe to a Code of Conduct concerned with
integrity, confidentiality and social responsibility, A Code of Practice is provided for the guidance
of members and is designed to promote the efficient and responsible use of computers.

“Since 1957 the Society’'s membership has grown
from 1,182 to 27,500’

The result of this recognition of the status of the Society isthatitis the accepted mentional voice
on such professional and social issues as standards in education, good practice and data
protection. The Society also has international links with many computer organisations, particularly
the International Federation for Information Processing (IFIP} and representative bodies of other
countries such as ACM (USA), ACS {Australia), CIPS (Canada), CSl (India), AICA (ltaly), DARA
(W. Germany) and AFCET (France). The Sociely also develops its ability to represent wider areas
of the profession through its boards, committees, specialist groups and branches.

Another important function of the Society Is that it should inform and educate in all areas of
computing. It does this through its quarteriy publications *The Computer Journal” and “Computer
Bullgtin™, its page of news and events in “‘Computing'’, as well as via technical monographs,
reports and conference papers. The BCS holds conferences, lectures and seminars in all aspects
of computing, often organised by its specialist groups. Each year a number of lectures is organised
by the Society; recently these have featured Grace Hopper, Gordon Bell and Gene Amdahl.
There is also an Awards scheme in which prizes are given to the most deserving entrants in
each of three categories: technical, social benefil and applications. The purpose of these awards
is to promote and publicise achievements in the computing industry.

‘‘Recent speakers include Grace Hopper, Gordon Bell
and Gene Amdahl’’

This process continues at a local and specialised level via the Society’s 42 regional branches
and 44 specialist groups. The Society also maintains the largest computing library in the UK
at the |EE; this is open to personal callers and also offers members a postal lending service.

Membership of the Society is open to any person involved either directly or indirectly in computing.
The requirements ot each class are under continuous review to allow the Society to respond
10 new situations. The professional grades are Associate Member (AMBCS), Member (MBCS)
and Fellow (FBCS), advancement depending on level of professional education and evidence
of experience of computing over a specified number of years.

21

There are also the grades of Affiliate, Graduate and Student. Affiliates are those interested in
computing who wish to become involved in Society affairs. Graduates are those who have satisfied
the Society's educational requirement but lack the experlence necessary for professional
membership, whila Students are those following a course of instruction recognised by the Society.
Members of these grades enjoy most of the same privileges asthose in the professional grades
except that they have no voting rights.

The Society is currently applying for a Royal Charter, which would tend additiona!l weight to the
Society’s status as the computing profession's representative organisation.

Ifyou are interested in applying for membership of finding out more about the BCS, please write
to me at the address on the inside back cover of this issue. Through this column | will keep APL
Association members informed of BCS developments which affect our Specialist Group.

BCS Appoints a Business Manager

Editor — | am sure we would all like to congratulate Philip Goacher on his recent appointment
as Business Manager of the British Computer Society. Here is an extract from the recent Press
Release concerning his new role, omitting only Philip’s biographical details to spare his blushes:

“Philip Goacher jeined the BCS as Business Manager in January this year. His brief is
to develop further the Society’s publications and to provide a range of services including
support to the Society's Specialist Groups and Branches In their aim to widen their sphere
of influence, particularly through conferences.”

"“From 1st May 1984 these activities are being managed by The British Informatics Society
Limited (BISL), the commercial subsidiary of the BCS, with Philip Goacher as Managing
Director.”

“The BCS makes contact, not only with its members, but also with the world at large,
through its various publications and reports, and through the many conferaences of high
technical quality which are held regularly. By developing the professional support given
to these and other growing activities, BISL will be helping to promote the role of the BCS
within the computing profession.”

“Through his interest in APL, Philip Goacher has been closely involved with the BCS
for some time as Chairman of their APL Specialist Group. He is also Chairman of EuroAPL
an international liaison group supported by the EEC."”

NEWS FROM SUSTAINING MEMBERS
Compiled by David Preedy

The category of “‘Sustaining Membership" has been introduced and is being offered to companies
trading in APL products; this is seen as a method of promoting the growth of APL interest and
activity. As well as receiving public acknowledgement for their sponsarship, sustaining members
receive bulk copies of VECTOR and are offered news listings in this section of the journal, together
with opportunities to inform APL users of their products via seminars and articles.

The Committee of the British APL Association would like to acknowledge the generous financial
support of the following organisations that have become Association Sustaining Members. In
many cases these organisations also provide manpower and administrative assistance to the
Association at no cost.

APL*Plus Ltd. Aston Science Park, Love Lane,
Birmingham B7 4BJ.
Tel. 021-359 5096

Cocking & Drury Ltd. 16 Berkeley Street, London W1X BAE.
Tel. 01-493 6172

Dyadic Systems Lid. 30 Camp Road, Farnborough, Hants.
Te. 02562 547222

inner Product Lid. Eagle House, 73 Clapham Common Southside,
London SW4 9DG.
Tel. 01-673 3354

MicroAPL Limited Unit 1F, Nine Elms Industrial Eslaté,
87 Kirtling Street, London SW8 58P,
Tel. 01-622 0395

I.P. Sharp Associates 132 Buckingham Palace Road,
London SW1W 95A.
Tel. 01-730 4567

Despite being offered free publicity In this section of VECTOR, only two ot these companies
provided us with news in time for the print deadlinel We're not sure whether the reason was
modesty or inefficiency but no doubt we shall be inundated with copy for the next issue.

APL*PLUS Limited

“APL*PLUS's parent company STSC Inc. has won two LLP.C. awards, recently presented
in a joint ceremony in London and Dallas.”

“APL*PLUS/PC won a ‘Million-in-One’ award for achieving $1,000,000 of business
worldwide In its first year, and “'ARPL » PLUS 1000 won a 'Million-Dolfar-Club’ award for
reaching sales of $1,000,000 since its introduction.”

“Since the New Year, *APL*PLUS has announced three new products.”

A range of Information Centre tools provides full-screen data entry, display and analysis
capabilities, and interfaces to ather proprietary Infermation Centre products.”

“Release 3.0 of ' APL » PLUS/PC now offers a colour graphics system in additfon to their

23

extended APL for the IBM PC and compatiblies.”

"'Finally, a financial and statistical package has been released contalning more than 200
programs for the IBM PC.”

MicroAPL Limited
‘“‘MicroAPL has extended its product range in both larger and smaller systems.”

““The SPECTRUM supermicro now offers up to 10 Mb of main memory and supporis 144
Mb hard discs. Customers with larger systems can now use the Tektronix 4105 colour
graphics terminal to which MicroAPL has added an APL character set. They are currently
testing software to emulate IBM’s GDDM colour graphics processor.”

' At the smaller end of the product range, MicroPLOT, which offers business graphics
to drive the IBM PC’s colour monitor and Hewlett-Packard plotters, is now available under
“APL*PLUS/PC, and the MicroSPAN self-teaching package will soon follow.”

*'On the personnel front there are three new faces at MicroAPL. Emma Saunders has
jolned as personal assistant to three of the directors; Karen Salt has become personal
assistant to the Managing Director, Richard Nabavi; and Alastair Kinloch, well-known
in the Scottish APL community, has joined the team of applications consultants.”

24

APL PRODUCT GUIDE
Compiled by David Preedy

Here is the first release of our exclusive new APL Product Guide, which we hope will provide
VECTOR readers with useful information about sources of APL hardware and software. We shall
be updating this with each issue of VECTOR and we depend on the alacrity of suppliers to keep
us informed of their products.

We reserve the right to edit material supplied for reasons of space or to ensure a fair market
coverage.

The listings are not restricted to UK companies and international suppliers are welcome to take
advantage of these pages. Where no UK distributor has yet been appointed, the vendor should
indicate whether this is imrinent or whether approaches for representation by existing companies
are welcomed.

Farconvenience to VECTOR readers, the product list has been divided into the following groups:

— Complete APL Systems (Hardware & software)
— APL Interpreters

— APL Visual Display Units

— APL character set printers

— APL-based packages

~ APL consultancy

— Other services

— Vendor addresses

Every effort has been made to avoid errors in these listings but no responsibility can be taken
by the VECTOR working group for mistakes or omissions.

Note: 'poa’ indicates ‘price on application’

25

APL PRODUCT GUIDE

Company Product Prices £ Detalls
COMPLETE APL SYSTEMS
Alan Pearman IBMPC & XT 1995- Authorised IBM PC dealer
4425 supplying complete systems
including peripherals based
on IBM PC.
Cocking/Drury MicroAPL SPECTRUM 6000— Suppliedas partofa
SAGE Il 35000 turnkey system. For product
SAGE IV details see MicroAPL entry.
Inner Preduct IBM PC 2000~ All IBM PC compatible
5000 software available.
MicroAPL SPECTRUM 11000~ Expandable multi-user APL
15000 computer using Motorola
68000. Standard
configuration 1 Mb RAM,
12/36 Mb disc, 12 ports.
SAGE IV 8500 Multi-user APL computer, 1

APL INTERPRETERS

Alan Pearman APL*PLUS/PC 420 —
600
APL*PLUS APL*PLUS/PC 600
APL*PLUS/ 000 27000 -
47000
Burroughs APLI700 3150
Cocking/Drury APL*PLUS/PC 600
Dyadic Dyalog APL 1000 -
8000

26

Mb RAM, 12/18 Mb disc.

See APL*PLUS entry

Full feature interpreter for
IBM PC and PC/XT. Also for
compatibles CORONA,
COMPAQ and COLUMBIA.

Enhancements tc IBM's
VSAPL. Runs under
VM/ICMS or MVS/TSO.

Runs on Burroughs B5000,
B6000, 87000 and A9
mainframes.

Discount on multiple orders.

2nd generation portable
APL for UNIX systems eg.
VAX, HP90O0O, Fortune,
MC68000, Zileg, Perkin-
Elmer, Perg etc.

APL PRODUCT GUIDE (continued)

Company Product Prices £ Details

APL INTERPRETERS (continued)

inner Product VIZ:APL 255- B-bit Zilog Z2-80 CP/M

360]
APL’PLUS/PC 800 See APL*PLUS entry
1.P. Sharp Sharp APL poa For IBM mainframes
Sharp APL/IPC poa ForlIBM PC

MicroAPL APL.68000 1000+ Full implementation with
component files, error
trapping ete, for
SPECTRUM and SAGE
magchines or cther popular
MC68000-based computers.

APL VISUAL DISPLAY UNITS

Farnell Tandberg TDV2221 1498 Ergonomic design APL
terminal, 50-19200 baud,
15" anti reflex screen, ow
profile keyboard.

Tandberg TDV2271 1685 Combined APL/ANSI
ergonomic terminal as
above.

Lynwood Alpha 1995 Full APL character set,
16-bit microprocessor with
pixel addressable
monochrome graphics.

Alpha Colour 20985 As above but 8 colour
graphics.

MicroAPL Insight VDT-1 795 Inexpensive APL VDU

Insight GDT-1 1450 With monochrome graphics

Tektronix 4105 2995 High resolution colour
graphics supporting APL
character set on MicroAPL
hardware.

Shandell Concept AVT/APL + 896- Conforms to ANSI 3.64

1195 standard; 80/132 columns,
4/8 pages of memory,
windowing, two comms.
ports, low profile keyboard.
Concept GVT/APL + 1370— As above with vector
1825 graphics.

27

APL PRODUCT GUIDE (continued)

Company Product Prices £ Details
APL PRINTERS
Alan Pearman Epson FX series Printer prices range from
289 to 1995 over all models.
NEC Spinwriter
PRISM 80
PRISM 132
Datatrade Datasouth DS180 1395 180 cps matrix printer with
2000 byte buffer, 9x7 dot
matrix and APL option.
Inner Product Epson FX80 500 Soft char. set, 160 ¢ps, 80
col.
Anadex 9620 1160 200 cps., 132 col., tractor
feed
Siemens PT88 620 180 cps., B0 col., silent
TGC Starwriter 1180 40 cps., letter quality
MicroAPL Datasouth DS180 1545 See Datatrade entry
Philips GP300 2251 Matrix printer with letter and
draft quality and APL.
APL PACKAGES
APL*PLUS Inte Centre 12000—~ Tools for full-screen entry,
20000 display and analysis.
Interfaces to other
proprietary IC products
CMCS 30000- Complete Materials
100000 Management, Factory
Planning & Forecasting
package.
Finance/Statistics poa Comprehensive package for
IBM PC and compatibles.
Cocking/Drury ARMS 2 3000- Applications Generator
15000
AFM 10000 High performance shared
file system.
CALU/AP 3000 Non-APL program
execution.
FORMAT 2250 Enhanced report formatting
WESAIDS 795 Workspace documentation

28

and development aids.

APL PRODUCT GUIDE (continued)

Company Product Prices £ Details

APL PACKAGES {continued)

Holtech CASH 3500~ Accounting package and
10000 hote! management system

implemsnted on MicrcAPL
SPECTRUM & SAGE CPUs.

Inner Product Viewcom 150 Control Viewdata from APL
APL/DBASE I 150 Interace APL with dBase Il
APL/WORDSTAR 150 Interface APL with Wordstar
APL/MULTIPLAN 150 Interface APL with

spreadshest

I.P. Sharp ACT poa Actuarial system
APS poa Financial modelling
BOXJENKINS poa Forecasting technique
CONSOL poa Financial Consolidation
COURSE poa APL Instruction
EASY poa Econometric Modelling
FASTNET poa Project Managemeant
GLOBAL LIMITS poa Exposure management for

banks
MABRA poa record
maintenance/reporting
MAGIC poa Time series
analysis/reporting
MAGICSTONE poa N-dimensional database
system
MAILBOX poa Electronic Mail
MICROCOM poa Mainframe to micro link
SAGA poa General graphics, most
devices
SIFT poa Forecasting system
SNAP poa Project management
SUPERPLOT poa Business graphics
VIEWPOINT poa 4GL — Info centre product
XTABS poa Survey Analysis

MicroAPL MicroTASK 250 Project development aids
MicroFILE 250 File utilities and database
MicroPLOT 250 Graphics for HP plotters etc.
MicroLINK 250 General device

communications
MicroEDIT 250 Full screen APL editor
MicroFORM 250 Full screen forms design
MicroSFAN 500 Comprehensive APL tutor
MicroGRID poa Ethernet & other networking
APLCALC 400 APL spreadsheet system
MicroPLOT/PC 250 For APL*PLUS/PC product

29

Company

APL PRODUCT GUIDE (continued)

Product

Prices £

Detalls

APL CONSULTANCY (prices quoted are per day unless otherwise marked)

Alan Pearman

APL People

Cocking/Drury

Delphi

Dyadic

Inner Product

Consultancy &
Courses

Consultancy

Employment Agency

Consultancy

Consultancy

Consultancy

Consuitancy

|.P. Sharp Consultancy

MicroAPL Consultancy

OTHER PRODUCTS

{.P. Sharp Productivity Tools
Databases

30

25

poa

poa

120-150
140-200
185-300
275-400

poa

poa

200

poa

150 -250

poa

poa

Per hour, onsite and offsite

All levels, most APL
systems

Permanent employees
placed at all levels.
Contractors supplied for
shorl or long term projects,
supervised.

Junior consultant
Consultant

Senior consultant
Managing consultant

Specialising in management
reparting systems and APL
on microcomputers.

APL system design,
consultancy, programming
and training for Dyalog APL,
VSAPL, APL*PLUS, IPSA
APL etc.

Communications a
speciality

Consultancy and support
service world-wide.

Technical & applications
consultancy.

System utilities, operations
utilities, system
administration utilities,
analyst utilities, auxiliary
processors, COmms.
software, int. comms.
network.

Financial, aviation, energy
and socioeconomic.

VENDOR ADDRESSES

Company

APL PRODUCT GUIDE (continued)

Contact

Address & Telephone

Alan Pearman Ltd.

APL People

APL*PLUS Lid.

Burroughs Machines Ltd.

Cocking & Drury Ltd.

Datatrade Ltd.

Delphi Consultation Ltd.

Dyadic Systems Ltd.

Farnell International
Instruments Ltd.

Holtech Lid.

[nner Product Lid.

I.P. Sharp Associates Ltd.

Lynwood Scientific
Developments Lid.

Alan Pearman
Maria Pearman

Valerie Lusmore

Barrie Webster
John Ward

M.J. Fennell

Romilly Cocking

Tony Checksfield

David Crossley

Peter Donnelly

Paul Ferguson

or Roger Attard

Jan Bateman

James Manning

David Weatherby

Gareth Wokes

31

96-98 Chester Road, Huntington,
Chester CH3 6BT. 0244-45024

3 Cross Lane Close, Orwell,
Royston, Herts SGB8 5QW.
0223-207530

Aston Science Park, Love Lane,
Birmingham B7 4BJ, W. Midlands.
021-359 5096

Heathrow House, Bath Reoad,
Heunslow, Middlesex TWS 9QL
01-750 1400

16 Berkelsy Street, London
W1X S5AE. 01-493 6172

38 Billing Road, Northampion,
NN1 5DQ. 0604-22289

Church Green House,
Stanford-in-the-Vale,
Oxon SN7 8LG. 02677-384

30 Camp Road, Farnborough,
Hants. GU14 6EW. 0252-547222

Jubilee House, Sandbeck Way,
Woetherby, W. Yorks. 0937-61961

Davenpert House, Bowers Way,
Harpenden, Herts, 05827-69071

44 Conduit Street, London
W1R 9FB. 01-734 7618

Eagle House, 73 Clapham
Common Southside, London SW4
aDG.

01-673 3354

132 Buckingham Palace Road,
London SW1W 9SA. 01-730 4567

Park House, The High Street,
Alton, Hants GU34 1EN.
0420-87024

Company

VENDOR ADDRESSES (continued)

Contact

Address & Telephone

MicroAPL Ltd.

Shandell Systems Ltd.

Richard Nahavi

Maurice Shanahan

32

Unit 1F, Nine Eims Industrial Estate,
§7 Kirtling Strest,
London SW8 5BP. 01-622 0395

12 High Strest; Chalfont St.
Giles, Bucks HP8 4QA.
02407-2027

RECENT MEETINGS

This section of VECTOR is intended to document the seminars delivered at recent meetings
of the Assoclation, particularly for those members who work outside London and often find it
hard to spare the time to attend.

We are dependent on speakers for their willingness to provide us with a written version of their
seminars, and we would remind them that “'a picture’s worth 1000 words"’. Copies of slides and
transparencies will enhance their articles.

The Activities officer (details on inside back cover) will respond enthusiastically to ofiers from
individuals to contribute seminars and supporting papers.

Give your
Information Center users
the world.

An Information Center should be a company-wide resource taking advantage of modern
technologies through the integration of hardware, software and data communications.

There are many communications companies in the world. There are many software
companies, But for full integration of communications and software,
there is only one L.P. Sharp.

With LP. Sharp’s products for the Global Information Center, your users enjoy:

¢ [PSANET..,one of the world's most advanced private communications
networks providing secure error-free transmission anywhere your
company operates.

Integrated Software...a library of end user productivity tools to reduce
your applications backlog. Products for today's decision making.

Worldwide User Support...through LP. Sharp offices in
22 countries.

Online Public Data...access to over 100 numeric data bases io
complement corporate data and help your erganization
make informed decisions.

* Integration of PC's and mainframes... with a

single application development language,
SHARP APL.

Ready to install, ready to run, and already proven en
an international scale by LP, Sharp clients,

the Global Information Center gives you the most
advanced implementation of the
Information Center concept.

Why not let them
have the world?

Call your nearest I.P. Sharp office in
one of the cities listed below and
we'll show you how your
Information Center users

can have the world.

LE Sharp Associates

Londen, England (European Headquarters)

LP Sharp Associates Limited,
Products for the . 132 Buckingham Palace Road. Landan SWIW 95A,
Global Information Center England. (01) 730-8567. Telex: 8954178 SHARP

Aberdeen, Amstesdam, Allanta, Boston, Brisbane. Bruseels, Calgary, Canberra, Chicayo, Copenhagen, Coveniry, Dallas, Denver, Dublin, Dusseldord, Edmonton, Frankbun, Halifax, Helsinki,
Konrg, Houstan, London. Los Angeles, Madrid, Melboume, Mexico City, Miami, Milan, Monireal, New York Clty, Mewport Beach, Oslo, Otiawa, Palo Alto, Paris, Rochester, Rome,
San Franciscn. Saskaluon, Seattle. Seaul. Singapare, Stockholm, Sydney, Tokye, Toronio, Varcouver, Victona, Vienna, Warringron, Washingten, Wayre, White Plains, Winnipeg, Zurich

34

APL AND GRAPHICS
Compiled by Adrian Smith

The Association meeting on Friday 10th January was well-attended, bearing in mind the normat
lack of enthusiasm for an Annual General Meeting, and was marked by the announcement of
an Acornsoft APL for the BBC Micro. The official business of the day was followed by three brisf
talks on the general theme of APL and graphics.

Chris Lee of APL*Plus introduced Release 3.0 of APL*Flus/PC, which runs with several different
graphics cards, Including the IBM colour card and the Hercules monochrome card, to give
business or free-form graphics. It achieves this with a veritable shoal of quad-functions — for
more details see the APL*Plus handouts.

Graeme Robertson of 1.P.Sharp Associates followed with a slide show of **A Graphic Vision of
APL Data and Funclions”. He has provided us with some examples of his slides in the next article.

The meeting ended with Mr. Martin Martin demonstrating an example of an APL system which
employed the IBM 3270 Graphics attachment to drive a ¢ircuit-design application.

35

A GRAPHIC VISION OF APL

by Graeme Robertson

Many graphics packages written in APL have appeared on the I.P. Sharp Associates system
over the last seven years. Their capabilities are indicated in some forty slides prepared on a
flatbed plotter using software packages SUPERPLOT, SAGA, DRAWMAPS, ROUTEMAPS,
STARMAP, DRAWNET, PLOT3DH, PRISMPLOT, PICTURES and GRAPHICS.

A close analogy exists between the vector algebraic approach of APL notation and that of
GRAPHICS, the inspiration behind these other packages.

GRAPHICS is used to represent APL arrays of different ranks. Lines are generated which represent
real and complex numeric vectors. Surfaces are generated which represent real numeric matrices,
Solid wireframe lattices are used in the representation of three and four dimensional arrays.
Finally, allthese attempts are abandoned in favour of a recursive definition which can in principle
yield a visual representation of a real or complex numeric APL array of any rank whatever.

These results were exhibited in the seminar using twenty colourful slides. Arrays which are
generated as the results of APL functions give very pleasing images which, it was argued, can
be used to help students to understand the nature of complicated mathematical functions.

Structure of the Seminar
1. An Overview of Computer Graphics

1.1 A definition of Graphics
1.2 A cursory history of computer graphics
1.3 Application areas

2, From Business Graphics to Art

2.1 Towards Graphical Representations
2.2 Business Graphics

23 Into3-D

24 An

3. APL and Graphics

3.1 Graphic Variables

3.2 Graphic Primitive Functions

3.3 A Graphic Operator

3.4 Graphic APL-like Utility Functions

4. Representations of Numerlc Data and Functions

4.1 Result Rank 1
4.2 Result Rank 2
4.3 Result Rank 3
4.4 Result Rank 4
4.5 Arbitrary Rank

36

Fig.1 — Greek Domestic Light Transport Flights for May 1983

A
z
b
[—— SHDNTS 330
~——BAITTEN NOAMAN [SLANDER
JHOATS Y VAN
T covmtann” taae B DPPICIAL AV IE IOT Tan. o WO EuTepe
Fig.2 — Total Reserves minus Gold (Billions of U.S. Dollars)
/FouRTH
GUARTERS
LEGENL:

UNITED STAYES
:LAMm
i

P
1875 1978 ary —
YEARS)
PAODUCED USING <PLOTEDM>,.....1.F, SHARP ASSOCIATES

37

Fig.3 — 1.P. Sharp Associates London Office Location

ﬂﬁgdl)

o

7.
o)
A
v /

Yicteria
Station

VICTORIA 5TR
EET

132, Buckingham
Palace Rpad.
{04) 730 4567

Yictoria
Coach
Station

prodused with I.P. Sharp SAGA graphics utility

38

Fig.4 — Cdmputer Aided Instructions Uéing Graphics

S We are trying to find a Iax of distance which 48 not
affected whether we us= one or other of two SySteas of
cocréinates in uniform trenslatory relative aotlon.

K 60 on then master,

S Imaginm thers sre two similarily orlented synohronised
space-time reference frames 4 and B and that B ix
maving ab velecity ASXIY tn the Xi direction
relative to A

Suppuae also that at the moment xhen their orlging aest
both &'y and A's origin clocks reag 12, At tis

instant a candle iz untovered at the comsar grigin, Twe
abservers, one at the origin of frase A and tha pther at
the arigin of frase B agree that the light departed st
12 ¢'tlock, A secont gbserver im frawe { 13 naturally
SLALLORArY with respect ko the FLest tn § Sut iy
situated vertically above hia. The distance in wiles
betxeen thew 13 given by C tizes the decimal hour on
his closk, @7, when the light arrives,

ahile the 1ight 18 travalling along axis (X2, the whole
reference Fras B 1y =gving celative to 8, If, when
the second obeerver in @ recelves the 1ignt aignal,
there happena to BB a second ohserver In A at that
poalkion, the guestion 1s; what is the reading on h1s
clock?

K There are four obgervers altogether. Two in & and tec
in @ Dne 1n & and onz in 8 are coincldent xhen the
light departs, snd pne in & and one in B are cotncldent
When the Light arrives,

Let's assupe decimal clocks at the common origin which
both read zero when the 1ight departs. The secand clock in
& reads AT and the second clock in B reags BT at a
place and time the light arrives, Accoraing t¢ A the §
clock has moved a harlzontal distance
A VAT
and the IIght haz travelled & diagocnal glstance
CxAT
«hile For H the light has travelled & vertical distance
cxgar

The situation tan be summarised In a rignt angled
krlangle.

ABXAVEAT

I '}
\
e

e

Cxa8T L
s

Applying Pythagoras to this triangle glves the relation
betwzen tho readings on the clocka i & and E a3

F="+0a fmd) 507"
TFACT v AT=BIXT [4BRLY, 0. 0)
T aduit [am surprized that clocks st e Rasy place read

atfFerently. Surely 13 19 just sn 1lluslon that tise can
go at different rates In different freses of refecenca,

39

Fig.5 — Set of Typefaces

Light Block (Roman Simplex)
Heavy Block (Roman Duplex)
Light Serif (Roman Complex)
Heavy Serif (Roman Triplex)
Light Italic (Italic Complex)
Heavy Italic (Ilalic Triplex)
Light Seriph (Boniot bimplea)
ey Forl (Foril gl
English Golhic
German Gothic
Ttalian Solhic

Fig.6 — Rank Five Complex Array

[N}
[
[

Vv ard
VA
Farard

IR LR
[LRRY
[LY
| . VoA NN N
[VoA NN N
[AN NN N
\.'\.\\ '-‘—“—hhh
T R
NN e
NSNS N —_—— —
NN ™S — e —_ e
T e . —_— - —
—_ = e - S
—_— - — e P
—_— — — P PV

NN N
NN N
AR Y

1t

40

APL IN THE INFORMATION CENTRE
Compiled by Adrian Smith

The second Association meeting in 1984 was held on Friday 16th March and consisted of two
papers and a panel discussion, all centred on the theme of the ‘Role of APL in the Information
Centre’'.

Romilly Cocking of Cocking & Drury gave atatk on “Setting up a Company Information Centre”
and the next article represents notes on his seminar produced by Wendy Hoare of Rowntres
Mackintosh, whom | would like to thank for her pains. If Romilly Cocking disagrees with any
of this transcript, there is a simple solution: send us your own text instead!

The next talk was by Fred Perkins of 1.P. Sharp Associates, entitled '*The Global Information
Centre.” The notes are mine; the same remedy applies in the event of a complaint about
misrepresentation. | have not devoted much space to this most interesting talk which was
nevertheless a thinly disguised sales pitch. No doubt |.P. Sharp Associates will oblige with glossier
and more detailed documentation on demand.

Finally a most interesting pane! discussion ensued which | have attempted to summarise inthe
dialogue that ensues.

41

SETTING UP A COMPANY INFORMATION CENTRE
by Romilly Cocking

Definitions and Objectives of an Information CGentre (IC)

Astraw poll of the audience revealed that 10 out of 80 felt they knew what an Infermation Centre
was and 12 out of 80 felt their view was based on the IBM concept!

Romilly Cocking began with a couple of rather cynical definitions of an IC, namely:-
“The best sales aid |IBM has developed to date”
and

'*The DP department pacifier for irate users' — to distract their attention from applications that
are late, wrong or way above budget.

A more positive definition put forward the purpose of an IC as providing the hardware, software
and support to enable all employees to satisfy their information needs by being able to:-

a) get at information

and

b} use it

without becoming DP professionals.

Romilly Cocking (RC) stressed the need to keep in view the benefits to the organisation of providing
information, which may be one or mora of the following:-

a) To help directly or indirectly to increase sales

b) To help directly or indirectly to reduce costs

42

c) To improve cash flow

d} To meet legal or corporate requirements

The IC's contribution to these objectives would be in the form of:-

a) better decisions

b) better control

c) better planning

and in helping comfnunicate these decisions to people and justifying them.

The IC may also contribute to greater efficiency by enabling fewer people {0 do the same work.
Justification for an IC

The biggest problem, when deciding whether to set up an IC isthat of cost justifying it in numeric
terms. |t is impossibie in many cases to demonstrate savings. RC proposed that it should be
viewed as going into a separate business, with the associated risks and suggested taking a good
look at the experience of other companies before doing so.

Once established, it should be operated as a business with a separate cost centre from the rest
of the DP department, paying its way within the organisation as a bureau service.

IC Personnel

RC stressed that the IC would be a service business, with people as its key resource, not the
hardware. The level of staffing is an area of contention and the audience were invited to make
suggestions as to an effective ratio of support staff e users. Opinions were varied, ranging from
1:4 up lo 1:70. IBM apparently recommends a ratio of between 1:30 and 1:100 which in RC's
opinion, would be very unsatisfactory if trying to balance desirability against practicality. A more
realistic and effoctive ratio would be somewhere between 1:5 and 1:20. Anywhere below that
would be merely providing access to hardware, rather than providing an Information Centre.

Of the personal skills required within an IC, he suggested that some people would need to be
salesmen, others highly skilled technically and all should be good at handling pecple. Furthermora,
experience in the form of a “veteran’’ from a bureau is almost a necessity.

Software

Assuming that the quality and level ot staffing is right, the next most important factor is software.
Great care must be taken in choosing software that is easy to use and allows users to get at
corporate data and process it. Itis difficult to change products once users have become familiar
with them, They will be reluctant to re-train and thersfore a long term view should betaken when
selecting software.

On the role of APL in the IC, Romilly Gecking’s view on VS APL (as opposed to other APL’s)
was that it was adequate but not ideal due mainly to its restricted tile handling capabilities. APL
on its own would not meet all of the information requirements and has proven notto be an end
user language. The majority of end users don’t wantto learn it and favour the “pointand grunt”
approach which ADRS and ADI have attempted to provide. In RC’s apinion, he doubts that APL
Is ideal for spreadsheet type applications.

He had little to say on other software products, but menticned the “IBM approved’' packages
Wizard and Intellect as looking good and being purchased by several companies.

Hardware

RC emphasised the benefits of having a completely separate mainframe from that used to process
the operational systems. He warned that CPU usage would grow rapidly and that there would
inevitably be a battle over charges it a machine were shared. This would result in a clamp down
on usage by the IC and the consequent need to turn away customers. Costing would be much
easier on an independent machine,

On the question of size, he warned that anything smaller than, say, an IBM 4341/G2 would soon
be inadequate.

VM would be preferable to TSC and CMS should support a larger user base.

As well as a mainframe, the IC should support a netwerk of VDU's and PC’s with provision for
hooking up PC’s with the mainframe. Transferral of data between PC and M/F as yet presents
a problem, with various partial solutions but no satisfactory universal one.

Operating the Information Centre

Education, consultancy and support are among the responsibilities of an IC and Romilly Cocking
suggesled issuing a newsletter, arranging seminars and setting up a help desk as just some
ways of meeting them and making the [C more effective. [C stalf should spend time with users,
find out how they operate, since it may not be obvious to them how the |C can help. The IC may
become involved in developing software with users, which RC says is a good thing. if users are
encouraged to develop systems entirely independently, they will usually either fail completely
of if they are successful, will be tempted to tackle larger systems and will inevitably meet and
try to solve the same problems that DP met and overcame years ago. |BM maintain that the
IC should not become invelved with development, but one of the original reasons for setting
up an IC was to help clear the backlog ot systems waiting to be developed and implemented.
The IC can and should take on some of the small developments and complete them more rapidly.

Summary

RC summed up by stating that the IC concept has worked and that is possible to identify specific
projects which have been cost effective. It gives management a tighter grip on individual
developments and ensures that direct savings can be achieved.

lithe IC is set up properly, there will be rapid growth and it is essential to sort out the charging
system right from the start. It is much easier for the 1C to establish whether and how it is contributing
if each project is costed out. Therefore, when sales revenue grows rapidly, there will be ample
justification for expanding its resources.

The talk ended with the questions ““Is the IC a revolution in computing and should it be staffed
from outside DP?"' RC maintained that there are often revolutions in mainstream DP and that
the Information centre needs the continuing skills from it.

THE GLOBAL INFORMATION CENTRE

by Fred Perkins
This talk also began with a rather cynical view of information centres and leading up to it was
a short history of their beginnings. Inthe mid-to-late 70’s, at atime when users and DP departments
were growing apart, backlogs were getting bigger and users wers getting angrier. IBM came
up with the concept of the Information Centre and marketed it extremely well. They gathered
together a collection of applications scftware, which, in the hands of the users would put the
emphasis back on them, with support being provided by DP. The outcome? — *'Never have
so many waited so expensively for solittle”” — according to Fred Perkins. He cited some of the
problems associated with |C's:-
a) user isolation
b) lack of tools to help make systems portable
¢) Growth/migration problems
d) tools not part of the IC concept
e) incompatibilities between mainframe and PC's
1) packages in different l[anguages
g} inability to access data outside the company and across different systems.

The rest of the talk was devoted to the IP Sharp Global information Centre ltclaimstoovercome
all of these problems mainly due to the following:-

a) Single development language — Sharp APL, identical on the PG to that on the mainframe.

b) Worldwide communications network, with access to the world’s largest on-line library of numeric
data bases.

c) Sophisticated applications software products.

d} Full support for a wide variety of hardware devices.

45

RC:

FP:

RW:

MG:

T™:

DP:

RC:

FP:

FE:

TM™:
RC:

PANEL DISCUSSION ON INFORMATION CENTRES

RC Romilly Cocking Cocking & Drury)

MG Mark Gritfiths APL consultant}

TM Tony Moore ox Tesca)

FP Fred Perkins I.P. Sharp Associates)
DP David Preedy Imperial Group)

RW Richard Watkins CAC))

Q Indicates a question from the floor
77 Indicates an unattributed comment from the panel or the floor

How do the so called ‘4th Generation Languages' fit into the Information Centre strategy?

Can you be sure they will work 5 years on? IBM have landed Plenty of people in the
cart with VSPC — they could just as well do it with FOCUS it they chose.

“APL is the only language anything like a 4GL1" (James Martin); what does 4GL mean
anyway, and are such languages capable of wide adoption?

They are Repor Writers to deliver tools to & user in a way which does not distract him
from the task in hand. They are tending to move to more ‘English-like’ symax, and pro-
ducts like Fogus certainly have a long life ahead of them.

4GLs are still a DP-oriented product. APL allows users to do their own thing; 4GLs are
productivity aids for P (RW: yet the salesmen aid them at users?l)

If NOMAD, SASS and the rest don't run in 5 years’ time, a lot of users really are in
troublel, Manﬁ companies already have a variety, and find it hard te link them — APL
can come in handy as ‘glug’.

This proliferation may be a barrier in itself — maybe a genuine English ‘front-end’ will
soon be necessary?

There is still a DP backlog, with many projects not being tackled why??

Faster hardware hasn't helped much; the human resource is still the limiting factor.
We should look seriously at APL even for very large DP systems (Gigabytes upwards).

Programming may be %Jick in APL, but for big projects the programmer’s time is only
a smalll fraction; often APL programmers are lousy at project management, which doesn't
help. If the 4GLs don't deliver the trend will continue — the user demands function,
not a set of arbitrary rules to learn, No-one bothers how VisiCalc works — they just ses itl
What about data; do we provide duplicate copies in all sorts of different formats?

The user doesn't care. He needn't know where the data is, and in general you should
convert it when needed; you can't keep 6 copies of a real-time database up to date.

At the moment there is no satisfactory answer on IBM systems. Maybe DB2 will help7

... it probably will, but golly will it mop up the CPUI

46

RW:

RC:

FP:

TM:
7
7

?7:

7

If you have spent 10 years building a set of systems the physical structures are likely to
be totally wrong for the IC. Copying may be the only short-term solution.

VS APL finds data access and resource control hard — hence the recommendation to
put it on a separate machine. Sharp APL can share files sensibly on the main machina.

4GLs have this problem too — problems of double updating and integrity can still force
seperation and copying.

What effect will the Macintosh have? it looks more suitable for a coffee table?!
People want windowing, but no-one quite knows how it will work with large volumes of data.
Nothing an IBM 3275 can do remotely resembles the Macintosh.

Are touch screens a gimmick — after a month people prefer to type anyway because it's '
a lot quicker?

The Sunday supplements have a lot answer for — they have boosted expectations for
hardware and increased demand, but done nothing to increase resources.

Some of us are just as guilty. In the hands of a real expent APL is a superbly powerful

modelling tool — much faster than the 4GLs. Hence a sniff of It raises the user’s
expectations, duly increasing that DP backlog!

47

COMMUNICATING WITH APL
Compiled by Adrian Smith
This meeting took place in London on 27 March 1984, and featured three speakers.

Richard Nabavi of MicroAPL described an example of a mixed Ethernet network of local
microcomputers. He has thoughtfully documented his seminar and we reprint this overleaf.

John Pym of inner Product showed how Preste! could be used as a publicly available networking
system. His theme was suspiciously similar to his paper for last year's APL Business Technology
Conference, but we enjoyed his brand of offbeat humour so much that we've included his paper,
after one or two tidying up operations.

Finally Tim Perry of APL People spoke about the use of APL within IBM, a talk that | have
documented based on my notes of his presentation.

48

NETWORKING APL MICROCOMPUTERS
by Richard Nabavi

What is Networking?

Of allthe buzzwords in the computing industry, ‘Networking' isthe one which is the most misused,
and yet the most indicative of underlying user needs for computing in the late *80s. Just as in
the early seventies, ‘Interactive’ and ‘Real Time’ were regarded as the adjectives to look for
in assessing computer systems, today manufacturers all claim that their systems have a
networking capability.

In reality, networking can mean different things. Looking through the computer magazines,
there seem to be three main ways In which the word is used (or misused). These can be
described as Point-to Point, File Serving, and True Networking.

Point-to Point Networks

Many vendors of 'networking’ products are in fact talking about something very simple. This
is illustrated in Figure 1, and a typical example of such a syster is Clearway, a product of
Real Time Systems Lid. Essentially, what this consists of is a coaxial cable (or, more generally,
any means of transmitting messages, such as a fibre optic link) into which a number of devices
can be linked. Typically, the devices which will be hooked on to the cable will be terminals,
printers and computers. The idea is that, instead of wiring terminals and other peripherals
to computers via ordinary ‘R5232" cables, the network is used instead to provide a multitude
of point-to-point links between the various devices. In other wards, this sort of ‘network’ is
really deing nothing except making neater the connections between devices, which otherwise
would be connected via a mess of independent cables.

The advantages of a system such as Clearway are obvious. As new devices are added, you
do not need to rewire your building. A single terminal can switch between different computers
under software control, instead of having to replug RS232 cables every time you wish to log
on to a different computer, This is a lot more efficient than conventional wiring, plugboard
and switches, but these sorts of systems should not be confused with netwerking of computers,
since they do not allow the sharing of data between different CPU's connected to the network,
They represent a very useful simplification of the problems of lots of data cables around a
building, but they do not involve any radically new approaches to data processing or the way
in which computers are used.

File Serving Networks

Many of the claims which computer vendors make for networking capability refer to something
which again should not be confused with true networking. This is what | call the File Server type
of system. The philosophy behind this is again fairly simple, and can be very useful. The ‘network’
is built around a single central computer, usually with a hard disk and perhaps a printer and
other peripherals connected to it, into which are connected {in a 'star’ configuration} external
satellite computers (see Figure 2). These satellite computers will usually be small microcomputers,
with no disc facility at all (or perhaps with a small amount of floppy disc storage). The idea is

49

that hard disc storage is relatively expensive, and that users in many applications will wish to
share common data. Note that, in this type of system, the computers in the network fall into
two distinct classes — File Servers (of which there will usually be only one), and Satellite Units.

A number of points should be apparent. The first is that only the File Servers need to have an
advanced, multi-tasking operating system. This is because the Satellite Units are supporting
only one terminal, and, when a request is made, for example, to read a record from a file, the
Satellite Unit which made the request will wait until the record is returned as data by the File
Server. The second point is that the expansion capability of the network is limited by the response
time of the central File Server. Essentially, we have cnly one computer serving all the disc
read/writes for everyone on the network, which is not much better than having only one multi-
user computer in the first place. Thirdly, although there may be peripherals such as printers
or graph plotters attached to some of the Satellite Units, these will not be accessible to other
Satellite Units. In other words, we are re-creating the concept of a central computer — comprising
disc files and peripherals — which is accessed by remote users, who may or may not have some
local printing facilities. For many of us, it was {0 get away from the restrictions of centralized
computing that we first turned towards microcomputers, and the re-creation of a central computer
is like bringing back the bath water with the baby.

True Networking
By now it should be becoming clear what | mean by a true networking computer system. The
characteristics are:

— The ability to connect together a number of computers, each logically equivalent
as far as the network is concerned;

— Each ofthe computers on the network to be single or multi-user asis most convenient;

— Each of the computers to have the possibility of disc storage, although the amount
and type of storage will vary between the different machines;

— Each of the computers in the network to have the possibility of being connected to
a number of peripherals;

— Any user on any machine on the network to be able to access {transparently to the
applications software) any file on any disc on any machine in the network (subject
of course to normal security checks);.

— Any user on any machine on the network to be able to access any peripheral on
any machine on the network;

— Full multi-user controls including file and record locking to apply across the whole
network.

Further features which in practice we have found desirable are:

— The ability for any user to initiate a task on a remote machine, either attached to
his terminal or to run as a background task. A good example where this is useful is
to start a print spoo! job on a remote machine;

— The ability to connect simultaneously to several networks;

Figure 3 shows a typical small configuration, which s in fact MicroAPL's in-house network system.

Operating System Suppoert of Networking

Most discussions of networking concentrate on the characteristics of the physical connection
between devices on the network. Unfortunately, most computers in use today are based on
operating systems which were conceived before networking was developed. This means that
networking has to be added on as an 'extra’, and is not built-in to the design of the systems
software. The consequence of this is that limitations have to be imposed on what you can do
with the network. For example, some major manufacturers have announced Ethernet connections
between their computers, but when you come to examine the capabilities in detail, you find that
the only way in which data can be accessed on a remote machine is by copying the whole

50

Fig.1 — Point to Point Networking

COMPUTER

)
g 1 |

[

L]

(I

USER TERMINALS

Fig.2 — File Server Natworking

) saﬂvsali’?

|
]

C1

| 2]
1BM PC 1BM PC TaM PC 1BM PC 18X PC
Fig.3 — MICROAPL In-House Network
PLOTTER SAGE R L —
q IEEEA T -
_ — B —

= o ¢

I
T
i

7

[}

DEMONSTRATION TERMINALS
ACOUSTIC PATRIX SPECTRUK /—j_:::::::
COLPLER FRINTER
e R~ E S
- T ,
I . [l
“_____” [L‘” “ ” 2
APL DEVELOPHENT AND SUPFORT VDUS }ﬁ
M MR pias e
[I [: i
| i [[
]] L] L]]
HO FINANCE SALESL SALES2 ACCOUNTS

51

file from the remote machine to your home machine.

Inorder toillustrate the way in which networking ¢an be built in to the system software of amodern
computer, let us look at MIRAGE, one of the few operating systems which was designed right
from the beginning to cater for network operation. MIRAGE is a multi-user, multi-tasking operating
system which was written by a UK company, Swifte Computer Systems Ltd, for Motorola 68000
computers. It has been in use since 1981 on MicroAPL's range of 68000-based micros, and
it implements networking in a very simple way.

To understand the way in which MIRAGE handle network file accesses, let us first consider how
the operating system refers to a file on a single machine. Files are organized in ‘directories’
on logical discs on the system. For example, suppose a user wanted to type out the contents
of a text file called ‘SYSTEM.HELP’ which was sitting in the ‘DOC”’ diractory on logical disc 3
of his machine. Using the MIRAGE utility ‘TYPE’, he would enter at the keyboard:

TYPE DSC3:8YSTEM.HELP[DOC]

‘DSC3:’ refers to the name of the logical disc on which the file resides, the directory In which
it resides is entered between square brackets, and the file name is divided into a main file name
{'SYSTEM’) and a file extension ("HELP"). As a convenience, itis not always necessary to enter
all of thisinformation, since each user has a default disc and directory into which he is *logged’,
and which he can change at any time. For example, by entering:

LOG DSC3:DOC

he can change his default directory to be DOC on DSC3:. If he then enters:
TYPE SYSTEM.HELP

the operating system will by default look for the file in the correct place.

The extension of this to a networked system is simple. As well as specifying the directory and
disc onwhich afileis to be found, you specify a machine on the network. This is done by adding
to the front of the file name a ‘Node’ name ('Node' means maching on the network). This is
distinguished from the logical disc name by being terminated by two colons rather than cne.
The home machine is always 'SYSQ::'. Thus, in the example above, the user could it he wished
have used the full file name:

TYPE SYS0::DSC3:SYSTEM.HELP[DOC)
This means: Type out the file SYSTEM.HELP, which is to be found in directory DOC on disc
3 on my home machine. To access a file on a remote machine, you simply change the Node
name to that of another machine on the network. For example, a user on a remote machine
who wanted to type out the sama file might enter:

TYPE EXT4::DSC3:8YSTEM.HELP{DOC]
where EXT4:: isthe name (as viewed from his computer) of the machine on which the file resides.
Naturally, it might become rather tedious to have all the above information for every file reference,
$0 you can log into a remote directory. For example:

LOG EXT4::DSC3:DCC

would cause the default node, disc and directory to be the ones we wers interested in.

52

Another couple of examples should give an idea of the possibilities. To capy a whole file from
a remote machine to your own:

COPY SYS0::DSCO:MYHELP.DOCIHELP] = EXT4::DSC3:SYSTEM.HELP{DOC]

This copiesthe file SYSTEM.HELP from the DOC directory of dise 3 on remote machine EXT4::
tothe HELP directory of disc 0 of the user's home machine, renaming the file to MYHELP.DOG
in the process.

To copy a file from one remote machine to ancther remote machine:
COPY EXT6E::DSCO:MYHELP.DOCIHMELP] = EXT4::DSC3:SYSTEM.HELP[DOC]

Thisis the same asthe previous example, except that the file is being copied from remote machine
EXT4:: to remote machine EXT6::.

High Level Language Support of Networking

Clearly, all the above facilities are of limited use if they cannot also be used by high-level languages
such as BASIC, Pascal, APL, and sc on. Equally, in a true networking environment, applications
software such as word-processing software and spreadsheets should be able to access files
anywhere on the network. This again shows how important it is for networking capabilities to
lie right at the heart of the system software, so that high-level support for these facilities should
‘fall-out’ automatically without special arrangements. We can see how this works by considering
how APL.68000 under MIRAGE can access files across the network.

Let usfirst consider how APL finds files on a single machine. The user might, for example, enter:
JLIB

which would print out his default library of APL workspaces. He can also access up to 9 other
libraries, by (lor example} asking for:

JLIB 5

What in fact happens here is that the APL interpreter maintains, for each user, atable {technically
an APL system function Quad-MOUNT) of his current ten libraries. By default, these are logical
discs 0 to 9 on his home machine, with his defaull MIRAGE directory. Thus, the default table
locks like this:

SYS0::DSCOJIM
SYSO::DSC1:JIM
SYSO::DSC2:JIM

At anytime, the user (or the applications program) ¢an modify any or all of the rows of this table.
For example, the first three rows of tha table might be changed to:

SYSO::DSCHJIM
SYS0::DSC4:MARY
SYS0::DSCS5:.LUKE

This would mean that library 0 would be directory JIM on disc 0, library 1 would be directory
MARY on disc 4, and library 2 would be directory LUKE on disc 5.

&3

The extension to a networked configuration is obvious and very simple. You simply specify the
node for each logical library. For example:

EXT3:DSCO:APL
EXT6::D8C3:SUE
EXTS::BSC2:DAVE

In this example, libraries 0, 1 and 2 are alf on different remote machines.

Forthose familiar with APL.68000, note that as well as workspace loading, saving, and copying,
the Quad-MOUNT table also specifies the location for component file accesses using APL.68000’s
file system. Up 1o ten different nodes/discs/directories may be specified using Quad-MOUNT.
Ifthis is not enough, you can change Quad-MOUNT dynamically under program control to give
access to an unlimited number of file locations. In addition, print spool files may be directed
to a remote machine, as may arbitrary inputfoutput, so that, for example, a graphics package
may produce graphs on a flat-bed plotter which happens to be connected to a different computer.

The important thing to appreciate here is that an application prograrm, written in APL, need not
be modified to run off a file on a remote machine. Suppose that, for example, we have written
a management information system which was originally designed to run on a single machine,
with files on DSCO: and DSC1: of that machine, Later on, we link the machine into a network,
and we want users on any machine to be able to access the same files, without changing our
applications software. All that is necessary is for the above table (the 'Quad-MOUNT’ table} to
beinitialized to set up the first two rows for access to the machine on which the files exist, and
then the user will ba able to run the application without any changes. The initialization can of
course be automated so that the user is unaware that it is happening, if desired.

Access to the network via other languages is similar; essentially, we merely change the node
part of the file name to go Lo aremote machine. To run the word-processing software off a remote
disc, you simply LOG into the remote directory before running it. With the single exception of
one piece of software which maintains memory-resident disc buffers, all programs written under
MIRAGE can run unchanged across a network.

File and Record Locking on a network

Probably the most embarassing questien you can ask a supplier who claims to support networking
is whether file and record locking operate across the network. The importance of this question
will be obvious to anyone who has experience in writing multi-user applications softwars, since
by definition networked systems are multi-user. A quick example should show what we mean.

Suppose we have a stock control system, and the files can be updated both by the Goods Inwards
department and by the Goods Outwards department — which seems reasonable. Consider the
case whera a consignment of 100 Size 10 Wonderflanges arrives, and at about the same time
anorder for 18 of the same item is being despatched. The stock level before all this happensis 134.

The Goods inwards people go to thelr computer terminal and call up the stock record for the
Size 10 Wonderflanges, and at the same time the Goods Outwards people also do the same.
Goods Inwards type faster, and so they enter the arrival of 100 items, 10 make a stock level of
234, and the record is written back to the file. Meanwhile, Goods Outwards see that there were
134 items in stock, and they enter thelr Goods Out details to reduce the stock to 116, and this
record is written back to the stock file, averwriting the record which Goods Inwards have just
written. The fina! result is that the stock level will be erroneously recorded as 116 instead of 216.

This is an absolutely standard problem in multi-user systems, and careful consideration will show
that there is no way to avoid the difficulty unless the operating system maintains some form

54

of file or record locking feature. What happens then is that, before updating the file, the record
is ‘locked” and no other user can access it until the update sequence is complete. Depending
on the sophistication of the operating system, this lock might be on the whole file, or on specified
records, and it might be a lock against all accesses, or only against writing, Whatever arrangement
is used, a commercial multi-user system must have some form of file locking if multiple on-line
file updating is to be possible.

Exactly the same considerations apply to nelworked systems. If true networked processing is
tobe possible, any user must be able to lock any file on any disc on any machine on the network
(again, subject to security considerations). MicroAPL’s systems can in fact provide file and record
locking across the network, as well as providing two levels of lock (read only or read/write). Again,
the fact that the lock is occurring over the network is transparent to the applications software.

Case Study No. 1: Imperial Group

So far we have considered the facilities offered by MicroAPL’s networking software in theory.
How does it work in practice?

One example of a network used by a MicroAPL client is a group of large MicroAPL Spectrum
supermicros installed at the London headquarters of Imperial Group. These systems serve over
thirty users, with a large number of different printers, graph plotters and other peripherals attached
to the machines on the network. The multi-user machines are used for two main {related)
applications:

— Consolidation of the management accounts of the various companies in Imperial Group to
provide an overall set of Group accounts.;

— On-line display of thousands of graphs detailing performance ofthe ditferent parts of the Group
against budget, previous year's performance, etc. This is done on Tektronix colour screens
installed in the boardroom and in the offices of the senior executives of the Group. Hard copy
of graphs is produced on Hewlett Packard flatbed plotters.

This installation is an example of the use of networking o create a large effective logical computer
out of a number of smaller machines. Initially, two separate machines were purchased (one for
each of the above applications) and data transfer between the machines was via magnetic tape
cartridge. The initial two machines were gradually expanded with extra memory and extra I/Q
ports, and then linked together using an Ethernet link to facilitate exchange of data between
machines. Subsequently, further processing power was added by linking in another machine
with a larger disc capacity. At the time of writing, the installation has been built up to an overall
system of 48 RS-232 /0 ports, approximately 8 Megabytes of RAM, and 144 Megabytes of disc
capacity, with two tape drives for back-up and data exchange.

A nurnber of benefits accrue from this approach. Extra capacity in terms of CPU power, RAM,
disc capacity, IO ports and peripherals can be added as and when it is needed, with no need
to change software as the installation grows. The use of several independent computers on a
network gives the advantage of some degree of fault tolerance whilst permitting the sharing
of common data and peripherals. Data can be backed up on to a remote machine, reducing
the need for expensive tape units and simplifying backup and recovery procedures. New releases
of software can be tested on one of the machines on the network, with access to the real data,
whilst maintaining the previous version on other machines on the network. System maintenance
— both jn hardware and in software terms — is easier than it would be on a single minicomputer
of comparable overall performance,

Case Study No. 2 — BASF

The Imperial Group system is an example of atightly-coupled set of machines; the only practical
alternative to their network of supermicros would be a minicomputer or small mainframe. A different

56

type of installation — built cut of similar building blocks — is to be found at the large BASF complex
at Ludwigshafen in Germany.

BASF have purchased a number of MicroAPL Spectrum machines of different configurations.
These include machines with 5" and 8 floppy discs, 5" Winchesters, 36 Mb 8’ Winchestars
and 72 Mb 8" Winchesters. The systems are used for a variety of applications and are scattered
about the very largs site. Some are used in multi-user mode, others are single-user dedicated
systems. Devices connected to the systems vary between ordinary terminals and printers to
laboratory instruments. The systems are used for scientific and engineering work, as well as
straight commercial work.

in this case, an Ethernet cable of 1.5 kilometres has been used to link together the various
machines. The purpose here is tolallow simple exchange of information (sven though some of
the systems are of different configurdtions so that they cannot, for example, swap tioppy discs
to exchange data), and to avoid tha isolation of having separate computers in various locations.
Whereas in Imperial Group the effect of installing networking has ben to create effectively one
large logical computer, here the different computers are exchanging data less frequently and
are not necessarily running related software. The installation of the natwork has meant improved
comrnunications, sasier exchange of programs in a development environment, and access across
the network to any peripheral, disc or tape on any machine.

The BASF network is thus an example of a network of powerful micres which could run
independently, but which form a much more flexible set of systems when linked together. The
alternative would have been 1o stick with a collection of non-networked micrecomputers, with
ali the disadvantages of isolation which that solution can cause. The problems of non-linked
machines would have been particularly bad in view of the size of the Ludwigshafen site; whereas
in many cases it may be acceptable to walk from one machine to another with a floppy disc if
you want to exchange data, when the other machine is a mile away you do not want to do this
too often.

The real challenge — true multi-vendor networking

The systems we have beentalking about so far are very flexible, but are limited in one very crucial
respect. This s that the computers connected to the network have to be running the same operating
system. Thus, you cannot simply take an assortment of different computers from a variety of
manufacturers and link them together.

True multi-vendor networking does not exist at this moment. Whilst a number of specialist suppliers
have worked on bridging this gap, the solutions offered for muiti-vendor networking have 1o be
very restricted. This is not surprising, since the facilities offered by different operating systems
— let alone how those facilities are implemented — vary snormously. Therefore the ideal of
being able to access filas on any machine on the netwok, irrespective of the make and model
of the machine, is very far off.

Worse than this, even if you could load a program from a remote machine into a computer of
a different type, this would still only be of limited usefulness. Try to run a program written for
the 8088 chip in an [BM PC on the 68000 processor in an Apple Lisa and you will not get very
far. Even pure data files will ba of different formats for different machines, with the possible
exception of text flles which are fairly standard. Even Unix does not provide machine independent
program and data files, because of the multiplicity of different Unix versions and the fact that
many pregrams are compiled into the native cods of the machine they run on. The establishment
of accepted vendor-independent standards for connection of systems is still at a fairly early stage,
although some progress has been made.

Having said this, at MicroAPL we have looked into the question of providing at least some

56

machine-independent networking facilities, by effectively emulating the MIRAGE operating system
network interface on different machines. This would at least provide access to data on various
remote machines, althoughthe applications program might have some conversion to make use
of the data. This work is only at a very preliminary stage, but we have at least established the
technical feasibility of the approach, and we hope to work with a couple of our existing customers
over the next eighteen months to set up a working system providing aceess to various mini-
and micro-computers.

Conclusion

Networking of smail computers is still at an early stage of development, but customers today
can already reap very real benefits from the work that has already been done. The main obstacles
to development are the lack of general standards for data exchange at the file level, and the
tact that most operating systems in use on small computers were not conceived with networking
in mind. The term ‘networking' is used in many different senses, and vendors’ claims should
be examined carefully to establish exactly what faciiities are offered, and what software support
they require.

57

THE SOLUTION TO
YOUR APL QUESTIONS

on IBM PC or Mainframe.

INNER PRODUCT

For further infermation, contact JAMES MANNING, Marketing Man er Product, Eagle Hou
73Clapha mC ommo S th ide, London SW4 9DG, or telephon 01 673 3354

INTERFACING VIEWDATA AND APL
by John Pym

*‘Learning is [earning not to think about operations that once needed to be thought about, We
learn to make processes of deliberate thought instinctive and we learn to make automatic and
instinctive processes the subject of discriminating thought.'” Sir Peter Medawar.

Viewdata Systems

Viewdata systems provide a simple and effective means of accessing a large database of
information. One or more mainframe computers contain thousands of “pages” of text. A page
of information represents a string of text that will fit on a standard television screen, 24 rows
by 40 normal characters or graphic symbols. The mainframe computers are linked to the user
of the viewdata system by telephone via a modem to a display device. This display device may
be either a standard television, VDU or microcomputer screen. The user accesses the viewdata
system by dialling a local number, or if the modem is ‘*smart’’by pressing a key on the modem
to dial the number, or if using a microcomputer by having the software program the modem
to dial the number. The user signs on to the viewdata system by typing an identification and
a password. This again may be done automatically by the software on the microcomputer, in
which case the password could be checked by the software on the microcomputer. Once signed
on the user may access any page directly by typing the page number or from any given page
specify a number from 0 to 9 which determines the next page to be shown. Not all pages need
provide the full ten choices. The definition of which pages will be connected to the current page
is made by the information provider,

{n fact the pages held by the mainframe computer form a network in which it would be possible
to access any one of a million pages direcily with only eight keystrokes, or be directed through
a sequence of just six directory pages, just six keystrokes, 10 any particular page. Itis possible
to be directed "down’’ to pages providing more detailed information on a particular topic, but
you can then be directed back “‘up’ by a different route from the one you came “down"’.

The standard viewdata modem sends to the mainframe computer at 75 baud but receives from
the mainframe computer at 1200 baud. This means that sending is fast enough to cope with
the speed of the user typing the few characters needed to request the next page, but the response
time required to send the thousand or so characters representing the page is small. In addition
the system operates in full duplex, so that the user may request the next page even ifthe system
is in the middle of displaying the previous page. so that to see choice 2 from the current page,
choice 8 from that page and choice 3 from that page, entering 282 will immediately display the
last page and omit display of the two intermediate pages.

Microcomputer/Viewdata Interface

The microcomputer can be programmed to act as a television with viewdata attachment, in which
case it will allow the display of pages in exactly the same fashion as the television system does.
But given the ability to program the microcomputer it is possible to provide additional facilities:

a) Save pages on disk.

b) Recall pages saved on disk when off line.
¢) Display two pages at once.

- d) Changing resolution of display.

e} Programmable baud rates.

fy Programmable user identification.

g) Interface to other packages on the micro.
h) Interface to other languages on the micro,

59

The last facility s of interest as it is posible to make the information contained on a page available
for further processing. Currently two interfaces are available from Inner Product, one to BASIC
and one to APL.

APL/Viewdata Interface

The interface to APL consists of a single APL function. The left argument is a numeric or character
siring and the right argument is a function number. The functions available are:

a) Set baud rates for send and receive.
b) Send character string to viewdata system.
¢) Send character string to viewdata system and await reply.

The result is returned as a character string which may then be saved or manipulated in any way
desired using APL.

Interfaces

The ease with which it is possible to scan the vast amount of information on a viewdata system
prempted me to consider the interface between the user and the microcomputer presented by
APL, systems written in APL and other microcomputer packages. This is the relevance of the
quote at the start of the article, as after many years of using solely APL to implement systems,
| have over the last few years been using other computer languages, systems not written in APL
both on mainframe computer systems and on microcomputer systems. The consequence has
been a reoxamination of some assumptions and habits acquired over the years. BASIC can
seriously damage your health but so can any prejudice.

Some prejudices in favour of APL were merely confirmed. Forinstance, many cther languages
either do not have a consistent syntax or are internally inconsistent or both. Inconsistent syntax
means that itis not possible to deduce how statements should be phrased from what is already
known about the fanguage. For example, rather than a function producing a result which can
either be displayed or can be assigned to a name or a file, some functions will display, some
can only be assigned to a name and seme can only write to file, It is of course possible to design
APL systems with inconsistent syntax but there is less excuse. Another example that appears
inmany languages is the treatment of empty character strings. Many do not allow them; a character
string must have at least one character in it, which can be extremely irritating if you wish to
distinguish between a null response and a blank.

In other areas APL systems come oft less well by comparison. One of these is in full screen
interfaces. Historically, APL systems have been designed round fifteen character per second
Selectric typewriters and many systems seem to be designed as if this was still the form of access.
Even those that take advantage of full screen still do so in a static mode, whereas a quick look
at any standard spreadsheet or word processing package confirms that a much more dynamic
and responsive interface is possible.

Languages

The first thing most people do with APL is to write a “language” of functions appropriate to the
application under development. A chisel is fine, but a table and chairs are more useful when
giving a dinner party. A Swiss army knife is fun to have, especially if you find a horse with a
stone inits hoot, but it's easier to eat dinner out of bowls. APL is fine for developing such languages
but already enforces constraints on the type of syntax that is possible if APL functions are used,
rather than writing a syntax analyser in APL. For example: right-to-left order and a maximum
of two arguments per function. A look at other languages will demonstrate that there are other
possibilities. For example, spreadsheets provide a language that essentially gives a

60

function with as many arguments as you like, up to the number of cells in the spreadsheet. Such
a language represents a ‘‘non-algorithmic’ method, not a sequence of steps but a sequence
of states. It is quite possible to give spreadsheet solutions 1o problems that at first sight would
seem unlikely candidates for such non-algorithmic methods. Good examples include the Tower
of Hanol problem and the eight-queens problem; see Scientific American “*‘Computer Recreations”
section, for October 1983 and January 1984. Other languages such as Smalltalk provide examples
where the function depends on the ““class™ of its arguments, thus generalising the idea sometimes
used in APL of the same function doing different things depending on the type or rank of its
arguments.

Functional design

It is extremely difficult to forget how a problem might be solved using a particular programming
language or a particular package chosen from the ones that you happen to be familiar with.
Trying 1o sit back and design how a system will iook and feel without having some part of you
saying ‘'how the hell can you achieve that effect with a Dodo Megabit Mark IV computer and
the ‘Obvious’ data base language" is hard. But the means for achieving Visicalc were available
a long time before the program was actually produced.

Conclusions

As microcomputers become more common, APLers should not remain parochially confined to
the way things have always been done when communicating with APL, but should look outside
APL to other languages and other systems for new ideas and methods. Crossfertilisation can
produce offspring better suited to a new environment.

61

IBM-BASED APL COMMUNICATIONS
by Tim Perry

The sbecific example Tim used was of an IBM factory with around 2000 employees, and 1300
terminals. A combination of APL and VM/CMS was expected to support a growth path like this:

1983 1984 1985
Mainframes : 3 5 3
Versions of APL : 3 4 1 {APL2)
Users : 200 400 600
PCs : 2 35 70
Cost/Unit : 100 50 25
Units/hr : 100 180 250

i.e. a four-fold reduction in the cost of a unit of computing, with a similar increase in the amount
of useful computing achieved per logged-hour. The use of YM/CMS was seen as vital, in that
itgave APL a consistent environment across the board from the PCs to the biggest mainframes,
and thus facilitated communication between APL systems and also between APL users. If need
be APL could use the power of CMS or CP to send messages worldwide, look up someone's
address in the global phone directory, or access a host of other useful software which Tim could
only hint at {it being somewhat internal to IBM).

Tim dropped a number of interesting hints about the way you can put some go-faster stripes
on your APL, for example by giving it a fixed chunk of memery to run in, which all users share.
This has the beneficial side effect of making all 200 CMS commands avaifable (not just the usual
subset}. He also emphasised the need to restrict the user base so that good response times
were always guaranteed — programs like FRANGO need to be watched very carefully lest they

slow everyone down.

Other simple things you can do include:

— using the CMS stack to get at the output of CP commands (such as Query Time)
for genuine information on resource usage.

-—— making sure you use the best AP for the job in hand {generally AP110, but look for
APS99 which is well hidden in the small print, and is 25 times faster than AP111).

— using PGF or (even better if you can get it) Chart for your graphics. The new
AP126 lets you call Chart (or the ICU to its friends) direct, and it also allows you to
call back pictures off file and get a sensible result when the FSSHOW is
terminated. This lets you build a very effective (and rather cheap) Prestel imitation
complete with top-quality graphics.

— going for big workspaces (1.5 to 15 Mbyte), but keeping the maximum object size
below 64K.

All of which is helping to make APL increasingly useful as a communication teol for people. The
use of online help and news means that any piece of useful software (be it good or awful) gets
quickly spread around the system, while the avaflability of standard packages (ADRS/ADI) also
helps users to swap data and ideas around.

Inconclusion, if you are serious about the idea of management support via computers you need
APL, VM/CMS (preferably plus classified bells and whistles}, and someone to put quite a lot
of effort into tweaking the system. Given these conditions, the resulting system can be very
effective, and surprisingly efficient.

62

GENERAL ARTICLES

This section of VECTOR is oriented towards readers who may neither know APL nor may be
interested in learning it. However, we hope that you are curious about why, under the right
conditions, such impressive results can emerge so quickly from APL programmers.

63

where APL
means business

You know what’s good about micros. Fast response; no monthly bills;
software designed for users, not programmers; access whenever
you like. In a word, independence.

You know what’s bad about some micros. No networking;
no access to your mainframe data; fewer features than you're used to;
no technical and service backup. [n a word, isolation.

Wouldn't you like to see a full range of APL micros, from the IBM PC
to large multi-user machines? With local area networking, and IBM
and ICL terminal emulation? With full lookalikes of features like IBM's
AP124 and AP126? All from a company with the commercial and
technical muscle to support everything it sells?

MicroAPL Limited
Unit 1F, Nine Elms Industrial Estate
87 Kirtling Street, London SW8 5BP
Telephone: 01-622 0395 Telex: 896885 IOTA

64

WHY APL? A NON-TECHNICAL INTRODUCTION
Robert Bittiestone

What is APL?

APLisa general purpose computer language that many people have heard about relatively few
use, at least compared to languages such as BASIC or COBOL. It has a reputation for being
rather mathematical, for using funny symbols that look incomprehensible, and for attracting a
lunatic fringe of dedicated converts who turn their back on using any other language. Computer
experts say that it breaks all the rules in the book; it has no control structures, it has a bewildering
number of ways of doing the same thing; it encourages anarchic programming; it's the “marijuana
in the programmers’ garden’’; ils a ‘mistake carried out to perfection”.

Why then do people use it at all? The answer is very simple. In nearly all the cases | have seen
where APL can be used instead of another language, it generally cuts project developmenttime
down dramatically. Jobs that typically lake several weeks in other languages are developed in
atewdays in APL. Ifthat kind of productivity is of interest to you — and if you would like to know
how APL suppliers are reacting 1o the (in some cases justifiable) complaints about APL by
“civilising™ the language — read on,

Packages vs. Languages

It you have a job that you think would benefit from computerisation, then you have a set of decisions
to take which | have tried to summarise in Figure 1. Your first action Is to determine whether
a suitable package exists or whether you need to develop something specific. You may know
that your needs are so specialised that no package is likely to have been developed for them,
or you may have surveyed the marketplace already and determined that the packages which
are available are unsuitable. Let me just say In passing that APL itself is not a package (although
packages can themselves be written in APL) and consequently if you can find the right package
“off the shelf”’, you probably won't have to get involved in the choice of language anyway. |
might perhaps add that if there is any possiblity of having to modity a “‘standard’ package, the
rest of the chart may have some bearing on the ease of such modification.

Sa you've decided to develop something specific. Will you write it within your department, will
you contract the job our to the data processing department or other external team , or will you
use a mix of internal and external people? The problem with cantracting jobs out in their entirety
isthat you are the one who know broadly what you want to be done, whereas the outside people
only know how the computer works. To quote a price they have to analyse your sytem. This is
not straightforward because your needs are most unlikely to be well defined at this stage —
at least they shouldn't be. Many observations of this principle at work led me some years ago
to coin the following aphorism:

“'The requirements of a project are a result of the
gxperiences you gain during its implementation.'’

If this is true for you, | think you're likely to find it difficult or impossible to specify your needs
in advance. lt may be quicker and more efficient for youto consider spending the time and money
{whether real or as an internal charge-out against your departmentat budget) that you were going
to allocate to the outside team ontraining your own people on how to use the computer instead.
Let the transfer of information go the other way for a change. Let yourself be the one to ask al!
the questions this time. That way your department will acquire very valuable skills which will
be useful for all sorts of future jobs.

65

Fig.1 — Packages vs Languages

| Project to be |

| High machine
| efficiency,
| slow project
| development

| Medium machine |
| efficiency, |
| medium project |
| development |

| computerised |
I
v
|
< ——— -
| |
v v
I |
Use }	Develep		
existing	—mdmmmmmdememmbmmmua>	gpecific	
package			solution
e —— S Y			
i n			
	v		
' I			
; - - ——--			
i	;		
v	v v v		
]			
Can vou]	Develop	}
fiad =			solution
seitahie Je—p——-	yourself] external	
pacicsge?	No	in-house	
!			
Tes = v v v			
i	}		
Test it		Choose your programming	
i before		language by Lrading off	{ tough 1
] you] fast project development]	terms]	
buy it!		against CPU efficiency.	
v			
—— < < < Cmmmm e
! |
v v
{

| Low machine |
| efficiency, |
| fast projectl
| development |

66

Fig.2 — The Pragramming Language Trade-off

oz -
* ASSEMBLER
* QPG
COMPUTER * FORTRAN
CFU * ALGOL
EFFICTLENCY * PASCAL
* COBOL
50% - * PL/1
* BASIC (complled)
* APL (raw)
*APL (& aids)
* BASIC (interpreted)
* Propcictary
propram oaids
0% |
I |
0% 504 7

BROJECT DEVELOPMENT SPEED

Amixofin-house and external staff can be a very useful compromise. Instead of using the external
people to write the whole system, you employ them to design the “architecture” of the computer
suite and to train your own team on how to write the programs themselves. That way you don’t
getalarge bill for many man-months of project development. You also find that your own pecple
can maintain the system, make modifications and add new features to the system without incurring
any more costs. '

Efficiency vs. Flexibility

Nowyou have to choose what kind of programming languags to use. Your choice may of course
be restricted by what's on offer on the hardware that is to be used — but you should still take
a decision based on an "ideal” set of resources at this stage. If you have 1o compromise, at
least make sure you realise it. If instead you are expecting to acquire hardware specifically for
this project, then your choice is completely unconstrained and you should certainly choose the
programming language before you choose the computer.

There are really two kinds of programming language. There are Type A languages that were
developed for the benefit of computers, and Type B languages that were developed for the benefit
of people. Programs that are written in Type A languages take forever to develop, but once they're
finished the computer eats them for breakfast. Programs written in Type B languages get finished
nice and quickly, and then give the computer a heli of a job to run them within a given space
of memory, with a given allocation of CPU time and so on.

Figure 2 illustrates this proposition. The scales| use and the positioning of the languages on
them are based on my own empirical experiences, not on any glossy PhD papets; you may find
that people dispute the exact placing of the different languages, but most of them accept the
existence of the tradeoff.

You now need to decide what’s important to you. Does it matter to your that your computers
_are used as efficiently as possible? That you don’t waste any more CPU (central processor unit)
cycles than you need in doing each job? That a machine of a given size can run the maximum
number of simultaneous users? Or do you think that the goai of fast project development and

67

business relevance is more important than these things? Are you primarily concerned that the
jobis finished on time, within budget, and that the response is fast encugh for the user’s needs?
Will you lose sleep worrying about wasted CPU cycles? Because one thing’s for sure; you won't
get 100% efficiency and 100% flexibility in the same language.

The Inherited Philosophy

| shall leave you o take that decision by yourself. However, you ought to be aware of the
uncenscious bias that almost all computer people have towards machine efficiency. Machine
efficiency traditionally ranks next after cleanliness in its proximity to Godliness, and there’s a
good reason, Until the late 1970°s computers were correctly viewed as large, expensive lumps
of machinery whose utilisation had to be maximised. If you are planning to use a large central
computer for your next job, you will undoubtedly discover that this continues to be true. The
Data Processing manager has a large chart up on the wall which indicates % utilisation; everyone
gets very relieved so long as it stays near 100%. If you want to be popular, try asking him {or
her} the following question:

“What % utilisation did you get on your ball-point pen last week?"

If you survive the response, remind him that when the ball-point pen was invented (for pilots
flying at altitudes where fountain pens would not operate) it cost about thirty pounds (a lot of
money in 1932) owing to the precision low-volume manufacture of the tiny bal-bearing in the
nib. Anyons who expected to use that particular resource made sure that their ball-point pen
utilisation factor was as high as possible; pens were kept in a central locked store and withdrawn
under signature. However, after some years a ravolution took place in which mass production
technigues drove down the price of the pen to a few pence. A few diehards were still left muttering
about inefficient usage of the central resource. .

The point is that it now makes sense to regard the provision of extra processing power as to
all intents and purposes free. I that is not the case for your own company’s data processing
installation, thatisn't a reasen forfailing to adopt user-efficient languages like APL. it's a reason
for changing your data processing installation. -

Given the advent of the microprocessor, the arguments in favour of user-gfficient but machine-
inefficient languages for most commercial applications have become virtually insuperable. It
you don't agree, ask yourself whether you're arguing about the principle or merely the timing.
1 think you'll find that:

“Thé issue is when, not whether.”
Depending on how much change you like to embrace at any one time, you may find that by pursuing
this line of reasening you end up with some rather interesting conclusions. Some of my own
are summarised in Figure 3.1 shan’t commenton them here: let’s leave them as food for thought.

Figure 3: Ten New Rufes for Computer Projects

Systems cannot be specified until they have besn implemented.
No single program should take longer than a day to write.

There is no such thing as the end of a project.

If the requirement does not change, the system is not being used.
All systems should be physically developed in the users’ office.
The user is in charge of the computer project.

Lineprinters are forbidden.

Fields in files should change as frequently as records.

Databases were invented to employ system analysts.

0. If it moves, it will broak this year. If it doesn't — next year,

SEPONSI AN

68

The Three Computing Loops

In Figure 4 | have tried to set out the main steps that occur when a computer application is
generated using a language organised by a *‘compiler’’. Compilers expect to be given the whole
program (or the main module anyway} at one time, which they turn into machine code (binary
digits) in its entirety. This process may identify programming errors, which will be notified to
the programmer, who has to go back to the program, find the problem, correct it and resubmit .

_ the program to the compiler. Depending on tha size of the program, compilation may take anything
from a minute to an hour or mgre. Any change at all in the program — &ven one mis-spelling
on an output report — requires a complete re-compilation. | call this process “The Programming
Loop".

Once the computer confirms that the machine code version contains no errors of a “grammatical”
nature, it is given the input data and it produces whatever output report it is designed to create.
This process may identify errors in the input data, which I haven’t bothered to show on the chart
since the solution is simply to modify the input data and run the job again. | call this stage "'The
Execution Loop™.

The next thing that’s probable is that the report isn’t quite the right format, or the calculations
aren't quite what wasintended — in other words, there's no error inthe programming, butthere’s
amismatch between the program specification and the user’s current needs. These needs may
themselves have changed as a result of seeing the output. That doesn'timply wickedness or sloppy
thinking— it’s a perfectly reasonable and sensible kind of learning process. Sothe system analyst
revises the specification and submits a new request to the programmer, | call this third activity
"“The System Analysis Loop".

69

Fig.4: The Programming, Execution and System Analysis Loops

| Compiler |
————mpwsa=edu=| trznsiates |-
H | prograa I |
1 e |
¥
| |
——— e — i
| Progremmer | THE |
~=>~| writes or alcers | FROGRAMMING v
| | program | Loop |
o e |
| | D s e AP S N
| | v
| - |
| | ———
- | | Aay |
| — ~gam—=] progtam |
] Yea | errors? |
| e ——————
| I
= v Ho
| |
] —————— e mmn.
{ | Machine 1
| ——mmeemes-3ea| code e e
- | | ruas t I
; - S i
| H v
| | |
r———— e
~ | Ioput | THE | dutput i
1 | data | EXECUT fON | report |
l | {e.g. crdeca) | LoOP | (e.g« invoices) |
! ! i
v v
| |]
1 | |
| ¥ e ————— v
I | | Is the cutpuc 1 |
- mmmmmes—e3~=| correct given |- G
: | the input? i
I I |
| THE No v v Yes
- SYSTEM | |
1 ANALYSIS
| LocP | New or revised | | Relax until the |
————C———-<~} ByBCEm Jm=~<==| user’s needs {
| specifications | | ¢hange again |

ltturns out that languages exhibit intrinsically different efficiency in these three loops. Traditional
languages typically maximise efficiency in the Execution Loop. However, the price that one pays
forthat extrerne isthat the Programming and System Analysis loops take a long time. Historically
this didn’t matter very much, because programmers’ time was cheaper than machine time, and
because users’ requirements didn't change very often.

By contrast, the new generation of user-oriented languages such as some dialects of interpretive
BASIC, some proprietary programmer productivity aids, and APL itself (particularly when
enhanced with developmenit utilities) believes that the Execution Loop is relatively unimportant,
whereas the other two loops are vital. Consequently such languages are usually organised by
“interpreters” rather than “compilers”. Interpreters merge the process of compilation with that

70

of execution. The advantage is that errors can be much more precisely identified and far more
quickly corrected, and that minor modifications can be mtroduced almost instantly without having
to recompile the whole program.

The disadvantage is that in most cases the result is less efficient for the computer. In many
commercial applications, this kind of efficiency loss means a response in one-tenth of a second
instead of a response in one-hundredth. How do you feel about that?

Actually, APL happens to have a rather crafty way of cheating in this respect and producing
results via interpretation which surprisingly often match or even surpass compiled program
response. This is because a large number of frequently encountered cases are already “*hard
wired"" into the APL interpreter on a hand-coded basis, which is generally more efficient than
the result of a compilation. However, it looks too suspicious if | start trying to win all the arguments
for APL, so let's agree to concede this one. It really doesn’t matter very much anyway.

Figure 5: The APL Workspace

This workspace is called FRED

PROFIT PROGRAM1
123 456 235 246 334 234 [1] Do this...

(2] Now do that...
SALES [3] Do PROGRAM2
2345 4456 3456 3456 3457 2233 [4] Do the other...
1353 5676 2356 5677 3356 6788
3456 3356 6434 2443 3454 2356 PROGRAM2

[1] Try this...
PRODUCTS [2]Try PROGRAM3
spangleworp Mark 3 [3ITry again...
defibrillicator .
gudgeon sprocket PROGRAM3

[1] Last chance...

[2] Give up.

It has variables PROFIT, SALES and PRODUCTS in it, and programs called PROGRAM1,
PROGRAM2 and PROGRAMS (they could be called anything).

Oops — it's lunchtime, so: SAVE FRED saves all the programs and all the data on the disc,
ready for me {o starl this afternoon with LOAD FRED to get them back again.

Hmmm — that program called SMARTONE that Joe developed the other day could be handy
here. Let's borrow it. | have permission to read his workspaces? Great: COPY JOE
SMARTONE gets me a copy (leaving the original with Joe).

Ahhkh — I'd like to browse through my data, looking at elements of that table called SALES
as | go and changing some entries. No need to write a program: APL desk calculator mode
tets me do all that as standard.

| can use all the built-in APL operations to experiment with my data in desk calculator mode.
When I've got the sequence right, | can type them all in as lines of a program.

Subroutines? Any program in APL can be called by any other program without prior
arrangement. You don't have one big program in an APL workspace; you have lots of small
ones with links between them,

7

The real advantages of APL

In most of the articles about APL which | have seen, the author starts rhapsodising at this point
about all the amazing symbols that exist and ali the wonderful things that you can do with them.
Doing wonderful things is fine, but the use of special symbols apparently dissuades as many
users as it encourages, not least because a special screen or printer is required. Somewhat
belatedly the APL community is waking up to this fact, and several projects arein hand to enable
effective use of APL from standard non-APL screens (ASCIl or EBCDIC etc.). So please don't
regard these non-standard symbols as an inherent part of the APL philosophy.

Figure 5 shows one of the APL advantages: the workspace. Until you've used it, you simply
can'timagine how flexible it can be. A short summary of the real benefits of APL runs as follows:

The Workspace

Everything is done in the APL workspace. Even with micros, this is at least 200,000 bytes
(characters) or more. Your data isindependent of your programs and it can be generated
and edited without using a program at all. You can save them, load them, copy all or part
of them, and you develop all your programs in them.

Data variables

These can be text or numeric and can have almost any ‘dimension”. Zero-dimensional
variables contain a single number or character. One-dimensicnal variables are lists or
‘vactors”. Two-dimensional variables are tables or “matrices'’, and so on, up to 8 or
more dimensions f you want them. See Figure & for details.

Built-in operations

These are numerous. All the standard arithmetical functions, all the algebraic and
{rigenometric ones you're ever likely to need {plus a few more), all the comparatives (greater
than etc.}, the logicals{and, or etc.)... There's a built in numeric (and usually character)sort;
ihere's text and numeric searching, finding minima and maxima, random number
generation, array indexing and manipulation, numeric fermatting, number base changes,
even matrix inversion. And the great advantage is that nearly alf these built-in operations
apply directly to arrays of data without the need to write loops.

Programs

APL programs have a unique architecture; the nearest equivalent is alittie-used language
calied FORTH. In APL you very rarely write a long program. A given project is usually
implemented by a workspace consisting or twenty or more programs. Each does some
small part of the job, rather like a subroutine In other languages. But the subroutinas in
APL are completely freestanding and have their own identity. So a very well organised
control structure emerges in APL by arranging for one program to call another to do some
appropriate job. Phrases like IF...THEN.. . ELSE or DO... WHILE are hardly ever needed
in APL; partly because loops themselves are not needed for operations on arrays, and
partly because the concept of having many programs operational at one time makes these
phrases unnecessary.

72

o -

Figure 6: Examples of APL Variables

(To avoid confusing the reader and the typesetter with the traditional APL symbols, 1 have
used a close ASCII equivalent. Various alternate forms of ASCll-type syntax for APL
expressions are currently on trial by different APL suppliers and undoubted|y a standard
will emerge to bring the benefits of APL to thase who do not wish to modify existing hardware
or acquire new terminals.)

LIST 156
1234567891011 1213 1415

fred__3 & SIZE LIST 15

e

—_ T =
[ERNE A=
(XN FANY
O s
_
Moo,

131

fred [3;]
11121314 15

fred ;2]
2712

fred [3;2]
12

fred [3;21__999

fred [;1]_fred [;1] - 1

jos [2;4 5]__'CL’

joe
apples
ORACLE
to

73

Stumbling on APL via BASIC

Everyone knows the boring old joke about the Irishman who, when asked how to get from A
to B, replied ““I wouldn't start from here if | were you"'. It’s a bit like that if you start considering
APL from a background of knowing any other language. I'm frequently asked how long it takes
to master APL if you're being trained by, for example, a computer-based APL self-teaching course.
My response is always:

“Do you already know another computer language?”’
“Yes — BASIC and a bit of FORTRAN."”

“‘About a fortnight then.”
“And if 1 didn't"

“‘Oh, not more than a week.”

Part of the battle if you're already computer numerate it to:

FORGET ABOUT: AND START USING:

* Loops " Array syntax

* Big Programs * Small program modules

* DATA statements * Independent variables

" Control structures * Program nesting

* Operations on single numbers " Operations on arrays

* File design * Workspace operations

* Specifying the whole system " Prototyping techniques

* Sequential processing * Parallel processing

* Code names for data " English descriptive names
* Accessing data from a program * Desk-calculator access

* Integers vs. floating point * Transparent data conversion
* Man-months * Man-days

It gets easier after a little practice, and you'll never look back.
Files and Inverted Data Structures

Inmost languages, file designis a constant headache. You don't seem 1o be able to do anything
much without sitting down and specifying a whole [ot of boring file formats; and once they're
fixed, they’re bastards to change. In APL you often find that you can implement a whole project
without using a file at all. This is because the data that you specify starts by living in memory,
- and if there's enough room and if nobody else wants to update it simultaneously, you might just
as well leave it there. When you load the system each morning, you load all the data as well.

However, files certainly play their part in APL. You can create files which look just like the sort
of files you getin COBOL or BASIC if you want to — the facilities are there for that son ¢f thing.
But APL makes it delightfully easy to standardise on a so-calied “inverted” (| would rather call
. it“transposed’) format for your files, as illustrated in Figure 5. The advantages are enormous;

the example of Figure 7 should make that clear. APL can effortlessly perform the kind of job
that in other languages you'd need a relational database or a context-addressable memory for.
In fact in some ways APL already is a relational database.

74

Figure 7: File Structures in APL

CONVENTIONAL FILE STRUCTURE

0001 FOSTER JOHN F. 32 ACCOUNTS 1981 16500
0002 CARTER ERIC P. 37 SALES 1976 18900
0003 BLOGGS CHARLES 45 H. OFFICE 1965 25000
2000 TOMLINS JULIA H. 25 HRESEARCH 1882 19000

Files are organised by rows. Each row contains all the data on a particular person. Access
is sequential or by row number or ‘key’ (ie. a nominated atiribute of a person, such as Name).
Requests for information such as:

“*Average age where salary above 18000 and department is accounts”

require a sequential scan through the entire file with as many disc accesses as there are
rows. This is measured in minutes even for files with only 2000 entries.

TYPICAL EQUIVALENT APL FILE STRUCTURE

1 2 3 4 5 8
FOSTER |JOHNF. |22 | ACCOUNTS | 1981 16500
CARTER |ERICP. |37 | SALES 1676 18900
BLOGGS |CHARLES |45 | H.OFFICE | 1965 25000
TOMUNS |JULIAH. | 25 | RESEARCH | 982" 19000

Files are organised by columns. Each column contains all the data on a particular attribute.
Access is by column number; the whole column is read in with a single fils access, and it
can be scanned using APL array operations to find matches, select entries bagsed on some
criterion and so on. A question like;

“Average age where salary above 18000 and department is accounts”

requires three files accesses, for columns 3, 4 and 6, and the question will typically be answered
in a few seconds.

APL Program Development Aids

APL is good, but it's an even better idea to employ pre-written programs in your own APL
applications. There are two main types of development aid or ““utility program’' as they are

frequently called.

75

There are utilities that you could write yourself if you had the time, and there are fast machine-
coded added features which you probably couldn’t unless you happen to be an expert in the
Assembler dialect used on your hardware, These last are usually called “auxiliary processors”,
although they refer to sottware, not fo hardware. Typical useful utility library items include:

* General purpose program development aids, data input routines etc.
* Full-scresn program or variable editors

* Full-screen forms design and data entry systems

* Communication links to other computers or non-APL file formats
* Screen handling primitives for device-independent control

* Automatic documentation facilities

* Graphics routines for colour screens and flatbed plotters

* Specialised file access routines tor specific purposes

* CAl (computer-aided-instruction) APL self-teaching programs

* Spreadsheet “front-end” modules for use under APL control

* Specialised interfaces for on-line inter-user communications

" Printer handling features such as spool queue management

APL suppliers differ in their ability to supply this kind of library software. Furthermore the APL
interpreters themselves, although adhering for the most part to a common language ‘core’ defined
by IBM, differ considerably in terms of the number of optional enhancements that they provide.
Of course, most APL users don't require every APL facility that’s ever been thought of, but it's
surprising how quickly a user matures to a point where a feature such as programmed error
control, for example, becomes mandatory rather than desirable. The moral is to shop around!

Conclusions

APL programmers take for granted the kind of capability which leaves most other languages
gasping. Not surprisingly, very few people who know APL ever become disillusioned and turn
to anotherlanguage. Until recently, however, APL was somewhat inaccessible tomany potential
users, either because of the need for a large mainframe or because of an initial reaction against
its special character set. The first problem has been solved since 1981 with 16-bit microcomputer
versions of APL; the second is on its way. So you really have no more excuses. Good luck and
good programming!

76

Steps Towards a Better Basic - part 1
by Anthony Camacho

When you want to know ths value of a variable in BASIC you have to type 7VAR or P.VAR or
even PRINT VAR. Just typing VAR has no significance, If it were given the same significance
as PRINT VAR nothing would be lost and a good many key depressions saved. To find out the
value of an array is even worse; you have to write a loop. There could scarcely be any loss if
the same were done for arrays. Millions of BASIC programmers would be grateful if they could
type ARRAY and have it displayed for them. Most of the “‘programmers’ toolkits’ miss this
opportunity 1o be really helpful; | have one that responds to DUMP with a display of all the single
variables and their values but totally ignores the arrays.

This reluctance to deal with more than a single variable is odd because BASIC already deals
with some multiple variables as If they were single. The string NAME$ may be ten or a hundred .
characters long — athousand in some versions of BASIC —yet it can all be displayed by PRINT
NAMES$. Some of the loops in BASIC could be cut out by making this method of handling multiple
variables available for numbers as well as letters. In that case NOS could contain 12 3 4 5 {or
a list ot works order numbers or part numbers).

Strings are only moved about, compared and printed; arithmetic on multiple variables brings
complications. If one array holds stock quantity and another holds the prices for the corresponding
items, the instruction LET VALUE = QUANTITY * PRICE would create the new array called
VALUE. Thus it is obviously useful to be able to operate on each variable in one array with the
corresponding element in another array of the same shape, and to produce a third array of the
same shape as the result. But there are occasions when a whole array needs to be multiplied
by a single factor: exchange rates, discounts and inflation rates are factors that come to mind.
Thera is no reason why DISPRICE =PRICE * .90 could not create the array DISPRICE which
is the price after 10% discount.

Such facilities ofter the opportunity to create some more functions, such as would add the rows
of an array or the columns or even all the items. it could be ussful to convert an array of another
shape (for convenience in printing it, if nothing else). There could also be afunctiontotake each
item of one array with each item of ancther. It could be called EWE (for Each With Each) and
be followed by the operation needed in brackets, so NOS EWE(*) NOS would give:-

2 3 4 5
4 6 8 10
6 9 12 15
8 12 16 20
10 15 20 25

Wi =

My excellent cheap calculator changes its display for very small and very large numbers; they
are shown in scientific notation. As in this improved version of BASIC, character and numeric
variables can both hold single or multiple variables, there will nc longer be any need to decide
in advance which type of value each variable is to hold. VAR could now hold either a string or
anumber, and the interpreter could follow the example of my calculator and distinguish between
numbers of different types; it will adjust the way the number is held from integer to floating point
and back according to its value.

Of course this implies that all arithmetic will be done to some standard accuracy, because the
interpreter would no longer know from the variable name whether a variable was wanted as an
integer or single or double precision number, so would have to do everything in double precision.

* Reprinted by kind permission of DATALINK magazine

77

Very few calculations would be appreciably slowed by this and all would be speeded up to a
small extent by having only one method of handling. As computers get taster and cheaper the
loss of speed will be less and less noticeable. And anyway if speed is important, the program
should not be run under an interpreter but should be compiled.

String handling in BASIC demonstrates that in an interactive language there is no need to
DIMension multiple variables. It is quite practical to assign them dynamically, but if that were
done there would be a need for a function such as LEN {(which returns the length of a string)
for arrays. [f the arrays were to be limited to one dimension then LEN would still be adequate,
but it is often convenient tc have tables of numbers (or lists of words) and it would be better
to introduce a new function which reported all the dimensions of an array; it could be called
SHAPE. The only reason this was impossible before was that the result could have had one
or several numbers in it. Now that a variable will be able to hold one or several values there
is no difficulty. So, In the example above SHAPE NOS would be 5 because NOS contains five
numbers. SHAPE NOS EWE(™) NOS would be 5 5. Also a way of extracting one or a group of
the numbers will be needed. For strings BASIC has MID${NAMES$,3,2,)to extract the third and
fourth letter. In Sinclair BASIC, NAMES$(3 TO 4) does the same job better so NOS([3 41 could
do the equivalent for the numbers, and pick out the third and fourth items. And (NOS EWE{")
NOS)I[3 44 5} would pick out

1215

16 20
{each dimension separated from the next by a semicolon, taking lines first and columns second).

One possible objection that might be raised to this is that there would be many more reserved
words. Even with BASIC as it is now there are occasions when a reserved word is inadvertently
used as avariable name. it more reserved words are to be added steps should be taken to avoid
confusion. Variables could be kept in lower case for example. This is already common practice
with the Sinclair Spectrum and the BBC. It makes programs fess tiring to read teo. Originally
BASIC was used on teleprinters without lower case but as even cheap microcomputers have
lower case now there is little point is keeping to upper case only. It might be sensible to use
the capital X as a reserved word for multiplication, for those who find the asterisk annoying.

Now for the surprise: this description, in all essentials, fits a language in current use on hundreds
of microcomputers and mainframes. The language has a great many mors attractive features
which will be explored in further articles. It has a reputaton for being difficult because of the
peculiarcharacters it uses instead of reserved words, and it cannot become widely popular whife
keyboards and displays and printers have to be specially adapted to use these characters. It
has most oftha virtues of such languages as LISP and LOGO and FORTH and a richer collection
of functions than any other language. It should be more widely known. Its name is APL.

78

CASE STUDIES: AN INVITATION
by Adrian Smith

Let me begin by stating my persenal objectives as editor of this section of the Journal:

to include in each issue a clear and concise account of a self-contained (but not
necessarily simple) APL system, or of some specific aspect of a system (such as the
use of colour) which readers can appreciate ‘out of context'.

to collect such accounts from as wide a range of areas as | possibly can.

to stress ideas and methodology rather than technological cleverness. | anticipate a
rather low percentage of actual APL code.

tainclude as much illustrative material {if possible photographs) as company sensitivity
allows.

In general | am happy to play the journalist and do the actual writing bit, but if any reader has
an account which roughly fits the above outline, please do not hesitate to send itin. My standards
for such copy are set very low indeed viz:

typescript preferred, but legible handwriting quite acceptable if the content is right.

diagrams decently drawn in black ink (assuming you want me 1o paste them straight
in to the final version),

function listings as good as you can get them. Please use six lines per inch rather then
eight on IBM dot-matrix printers, and put a new ribbon in!

colour is not (as yet) reproducible, so make sure any graphics are acceptable in
monochrome,

In short if it's sufficiently interesting I'll accept almost anything — don’t let the effort of ‘writing
up' put you off. Since there were no contributions for this first issue | have taken the liberty of
contributing an article myself. | found myself more than willing to accept it.

79

Matchmakers: a Case Study in Simulation
by Adrian Smith

Problem Description

Matchmakers are a boxed chocolate produce from Rowntree Mackintosh. Following manufacture,
the lines of Matchmakes are scooped into trays, which are inserted intc sleeves before final
packing. The sleeving process, currently done by hand, is to be mechanized. The running speed
and breakdown pattern of both traying and sleeving machines can be estimated from past
experience. .

Question; how large a buffer is needed between these machines so that the plant can be kept
running when the sleever breaks down?

Matchmakers to
TRAYING) SLEEVING b

v
{80 per min) {max 86 per min) packing
777777 BUFFER STOCK 77?777

from plant

Basic engineering reason (like the height of the ceiling) restrict the cheice to butiers of between
10 and 20 minutes, with the cost increasing roughly in proportion.

Hypothesis

With a bit of luck beth Traying and Sleeving will stop at random, and the length of stops will
show a nice exponential pattern. If so the logic is easy, because in any given time interval (say
1 minute) there will bs a constant probability of stopping (PROBSTOP) and having stopped a
constant probability of restarting (FROBSTART). All that has to be done is to determine the
frequency and half-life of stops, and we can then generate endless random days and see the
way different buffers fill and empty over time.

Snhag

By an unfortunate coincidence the foreman had only just cleared out his cupboard, evicting in
the process all last year's records! There was thus a short delay for...

Data Gathering/Valuation
Overthe next few weeks the machine [ogs were collated for several comparable pieces of plant.

To the ill-concealed delight of the experimenter the emerging distributions looked like Figures
1and 2.

80

R S S S

Fig. 1: Analysis of Stoppage Time on Traying Unit

Frag

&7 staps an 7
Haif-1ife = 3.

M 4 3 f 7 B £l i 11 12 11
Length of Stoppage ---3

Fig.2: Analysis of Stoppage Time on Sleeving Unit

Freq

148

128 —

ELLE.

Z99 stops
Hatf-life = 2.3 wmin

T 1 T
11 12 13] i3 L&

Length of Stoppage ---»

P

81

Fig.3: Simulation Logrc

Get bath halves ridntng, ses
Clear In; --- [} REUY N> TTUPAIIONS OF YAICHYARCE SIMULATION.
Sel laffer anaty [Reo Sawed on OT/IVS4 ot 1730,
[} [HU R H A
M oeyules () L= 3, N1pD
[=1 IWEF=)
ta the Plant pusaln, ?
1 [n] AOFE YT G0 saasannen
— — L
T Uy Baffer S0 Gew 0 [~ LANT AR TIFVATE LN, 071
i r 4 TTOR1) JF EriNGl)
L Does it =to P} =it Start I SR ILUFFe R
rm) COrNSi 1 1=MreasTer[) 1831000
v In the aleever raanbr, 2 I} -1y
[12] SF2002 3nINGL JePacASTARI {1 }27190}
L [131 “E7vat=lGr2, STLPR) IF ColNgL2]
prap et To | ses 1 f L1491 GeRtwURReAT HUFE-9r
T i [La) GOINSE2 JePRORSTOP[2]571 000
fovw L0 wtop?| will wtart [th] =IINY
I3 (Y73 grapRiCuIvGl2 J=reonsTaRy (2 [>21000
Cul stack 10 HUTI MR, and [YS) EANRIPUFI =00 NAXLOUTF
log away renaltn [ty LOSLIOT J-GO NG, DUFY
tany PRt A er—crel]
w

Taken together with the total number of stops in the total logged running time the graphs give:

PROBSTOP (T S}+4.5 13 (per thousand mins running})
PROBSTART [T S]+180 260

Assuming an arbitrary upper limit (BUFFMAX+-1200) to the buffer, the logic for the simulation
now looks like Figura 3.

The results were analysed with a simple COUNT routine (TRY 480 was typical for an 8-hour
day); each run giving a report like:

Stopsontraying :533173
Stops on Sleever : 713
Butfer full for : 10 min out of 480

Enough sample days were run to check that the generated patterns of stoppage were

indistinguishable from the real thing, and several ‘typical’ days were graphed to ensure nothing
odd was going on in the logic. The results are depicted in Figures 4 and 5.

82

Fig.4: Matchmaker Simulation: 4.5 13 180 260

ETOPS ON PLAMT : & 1 3
STOPS DM SLEEVER : 1 4 2 2 18 8 4 6
Buffer Full for 9 mins out of 48@

1, .nm_L __ r____

1,990
f

308

500 \\

hY
4084
|
I
299
i
I ‘ \
a [ﬁ I _
: . .
§ i
i) U S
“3a i P
2 , ;] | | T | ! . 1
2 52 120 1@ 7@T 250 3@ 350 40 450 S@Q
e FLMT RUMMIING l e SLEEVER FONNING | —— BUFFER CoMTEMTS

Fig.5: Matchmaker Simulation: 4,5 13 180 260

STOPS ON PLANT : 4 1 1
STOPS ON SLEEVER : 8 1 2 9 11 {
Buffer Full for 8 mins ocut of 480
L R
1, BRb—
\\
N
30B N,
. Y
AN AN
sap- I \ .
N L) \
™, hY
409~ N , AN N
N \
2ee - \,
P S S —_ U
I q
-200 I T T)

1 f i T
iga 139 200 258 jpe 330 400 450 500

——— PLAT RUMHING [oo SLEEVER RUNMIMNG | — BUFFER CCHMTEMNTS

83

As soon as all concerned were happy with the pictures, the project moved to its final stage
Production Run/Problem Resolution

Out of consideration for other computer users this was done 'out of hours’. Several runs of 28
days were done at each possible buffer size, and the number of days affected by at least one
‘buffer full’ was plotted. Also shown is the percentage of production-time lostin the period (Figures
6and 7).

Atthis point it becomes clear that the problem as originally formulated does not have a satisfactory
answer; however big the buffer there will always be some days affected. What we can see is
the possibility of a trade-off between the cost of lost production (which does fall away quite sharply)
and the cost of installing butfers of various sizes. I'll spare you the dstails of the economics,
suffice it to say that a decision was rapidly reached which pleased all the interested parties.

Fig.6: Analysis of Days affected per Month on Traying Unit

L+ mr
w
o
s 4
a ~J
TS N 4 — ¢ —_—
~
4 >~ ¢
N
18 & - —
-
~
. 4
~
-~
% 2 T
-
-
~
-
™~
-
& 0] e W e
4 4 -
-
4. 0 . _ s -
4
L E]
o
e T T T T T T)
320 LLI 1, 090 1, 408 £, 200 1, 300 1, 409 1, 599
Buffer Size --->

84

Fig.7: Analysis of Percentage of Production Lost due to Fulf Buffer

Fent
-
=
=
{

T T .
108 102 1, 08 1,160 1, Jop 1, 380 1, 409 i, S4B
Buffer Size --=3

Comment

APL is not an ideal tool for simulation — a run of 28 days of 430 minutes (i.e. 13440 iterations
of the basic model) cranked up around 20 sec of 3083 CPU time, and several such runs were
needed. On the other hand the coding for the whole exercise (including the calls to PGF for
the graphics) fook just over an hour, and itall ran first shot {once the typos had screened themselves
out with SYNTAX ERRORS).

Some other points of inlerest are: the use of block diagrams to sketch out the logic (yes | did
draw the pictures first!); the veritable shoal of helpful wtilities (IF and ITERATE are ones | use
constantly); and the power of graphics as an analytical tool. | dare say any competent
mathematician could have got to the same answers as | did without any computing at all, but
try selling that kind of answer to a bunch of engineers and production managers! The use of
pictures was important in validating the model, and thus giving credibility 1o the answers.

85

Metapraxis Litd.

Metapraxis is a consultancy company involved in the
creation of advanced computer-based management control
systems. We are currently embarking on a major new
project to develop and market a range of control centre
software. Some of this software involves the development
of IKBS modules {expert systems). Substantial City and
Government backing for this project has been arranged
and the development phase will commence shortly.

We are now interested in hearing from individuals with
outstanding track records in one or more of the following
areas:

% Programming (particularly Assembler, APL, PROLOG
or LISP)

% Financial control in the large company environment

% Graphic design and publicity expertise

s Marketing skills for new product launch

* Sales of high-level products to senior corporate managers

% Industry analyst skills in a major commercial sector

There are also one or two vacancies for exceptional graduates
with little or no work experience. Candidates should be prepared
to assimilate many unfamiliar concepts in a very short space
of time and to become an authority in at least one area of the
company’s activities. Applicants should write in confidence with
career details (indicating which job is of interest) to:

Metapraxis Ltd., 26 Barham Road, London SW20 0ET

86

THE PAPER THEY DARED NOT PRINT
by Anonymous APL84 Referess

It has now become a noble tradition to submit to the Programme Chairperson of each annual
international APL conference a paper so scurrilous, so extreme and 5o generally unacademic
that it cannot possibly be accepted. For the 1983 APL Conference the accolade of ““The Paper
They Dared Not Print"” was captured {no contest) by an article entitled ““The Coming Revolution
in APL", which proposed major changes to APL tor it to become more widely used as a general
purpose language. Although the paper was rejected, the APL 83 organisers were kind enough
to give it space at a plenary sesslon; its bootleg presentation to an audience of over 700 was
the ogcasion of some light relief as a contrast to what Ron Fuss of IBM has christened the “‘dot
dot comma slash slash star’’ brigade. Avid seekers of the alternative truth about APL can find
that article in Issue 6 of ““MicroAPL News", a trade journal from one of our sustaining members.

“A paper so scutrilous and extreme that it cannot be accepted’’

To keep the Finns on their toes this year, two papers were submitted to the Programme
Chairperson that stood some reasonable chance of rejection and true to form, rejected they
both were. For those readers who don’t know about the process, APL conferences papers are
circulated to three referees, on the basis of whose comments a paper is accepted or not. A good
way for a Chairperson to keep a potentially embarrassing paper off the listis to send it to referees
who are guaranteed to have apoplexy at anything immoderate. In this respect the choice of referees
forthese papers represented an outstanding success for Mr. Kallin (always assuming he exists:
see earlier International News section).

But unlike the formal APL proceedings, VECTOR is a journal dedicated to printing the truth:
*'We name the guilty men’' and so on. Although in this case we can't quite do that since the
referees are anonymous, we bring you the next best thing; we let you share their indignation.
And we print the papers. One of them you've already seen if your approach to VECTOR is
sequential rather than random access: '"Why APL?: A Nen-Technical Intreduction”. The other
is called "'FGL.: Fifth Generation Language™ and it comes next. The fact that both were created
by your Editor should only whet your appetite for some savage letters for us to print in the next issue,

*‘Try to avoid the word ‘bastard’ as a description of non-APL files.”’

Papers were assessed on five criteria. The ““Why APL" paper gets slated by one referee as
duplicating existing work: '“Would be better published in a popular press microcomputer
magazine”. Another referee says: many atlendees would be interested in it, there are some
new ideas, the length is appropriate, the technical quality is high, and the use of English is
“outstanding’’. However: "'I'd prefer not using the word ‘bastard’ in reference to the difficulty
of changing afile structure”. Ah yes, but has he evertried ? The diagram called the *Programming
Language Tradeot'” which is explicity documented in the article as based only on empirical
observation receives the damning comment “Is this made-up data? Frankly | don't believe it”,
whereas the same referee surprisingly annotates the “Ten New Rules™ with the pithy endorsement
*This one is OK'". Well, thank goodness for such technical praise.

87

“BASIC has nothing to do with science: did you mean science fiction?’’

However, it's only when we get to “FGL.: Fiith Generation Language’' that the flak really starts
flying. On the matter of audience appeal, we have one referee (A) who thinks the paper would
be of interest to everyone, ancther (B) who says “'specialists only”, and a third (C) who can’t
decide. On the thorny issus of criginality, A says ‘very original’ and B agrees, while C ticks the
box saying “duplicates existing work — specify’’, buthe doesn't specify, so we shall never know.
Allthe referaees agree that the paper is much too long, so some of the tables have been omitled
in this reprint te try to make amends. The technical quality comes in as variously high and low.
Finally, the vexed question of the use of English scores cne ‘oustanding’, one ‘good’ and one
‘needs thorough editing’. As far as comments are concerned, there were many, including
“Remove humorous reference to AIDS — in poor taste’* and “BASIC has nothing to do with
science: maybe you meant science fiction?"’

This paper is also published with some reservations from the VECTOR editorial team as awhole.
Cantroversy is expected. The commaon disclaimer that the opinions expressed in a paper do
not necessarily correspond to those of the journal as a whole should be taken sericusly. But
we are afler a little light relief amidst the serious cut and thrust of computer programming, and
this next articie is tor those of you sitting in trains after a long day writing incomprehensible APL
code at the office. By way of a footnote: BYTE politely rejected the article as “‘not of general
interest to the readership”, while the paper’s Hofstadterian self-reference to its own acceptance
at Helsinki was another of the many straws that broke the camel’s back. So APL will no doubt
continue to sail merrily along in its delighttul little backwater while the rest of the world computes
otherwise.

Your Editor happen to be an APL 84 referee too, bul sheer terror at the possibility of printed

reprisals always causes him to heap praise and unconditional recommendation on every article
that is sent to him,

88

FGL : FIFTH GENERATION LANGUAGE
by Robert Bittlastone

Abstract: FGL {Fifth Generation Language) has been the world-wide norm for most computer
programs since the late 1980’s, when it replaced BASIC as the de-facto industry standard. Equally
suitable for business, scientific and knowledge-based expert systems applications {(which
represent of course the main use of computers these days), FGL was first implemented in 1984
and quickly rose te prominence as a language of unmatched elegance, economy, and program
development speed. Running on almost any computer and using only the industry standard
ASCll character set, FGL nevertheless bears a striking structural resemblance to a litite-known
and now obsolete computer language called APL (A Programming Language). Students of the
history of computing may be interested to see how FGL developed from its foundations in APL
and how it was influenced by the success of BASIC,

* Rk kA ok

Some of our older readers may have been taught BASIC at school in the early 1980's and it’s
worth remembering why that [anguage became so popular around that time. In the mid-1970's
the first practical implementations of von Neumann architecture computers on silicon
microprocessors became available. The prevailing architecture at the time was ‘bit-parallel’;
the hardware quickly moved through 4-bit, 8-bit, 16-bit, 32-bit and by 1985, 84-bit CPU generations.
By today’s standards these 64-bit processors were of course primitive: the concept of today's
highly parallel architectures composed of over 20 Giganodes of SHEEP (synapto-heuristic
evolutionary expert processors) was of course a little over the horizon.

It's difficult to remember that in the 1970’s, computer power was still finite and limited, and the
random access memory (RAM) capacity for personal computer users was an incredibly confined
maximum of 64k storage units, or “'bytes"” asthey were called, Even by 1985the average personal
computer user had as little as 1024k bytes or a “megabyte” of space to play with. No small wonder,
then, that the objectives of the languages that pecple were using then still included the quaint
old ideas of:

— minimising the space used by the language interpreter/compiler
— maximising the efficiency of the machine code produced
-~ making it reasonably easy to create the interpreter/compiler

A project group at a location called Dartmouth (believed by some to be in the county of Devon
in latter-day Britain, now part of New Thatcherland) developed BASIC in response tothese goals.
You can find out about BASIC’s capabilities in any good reference book onthe history of science;
here we will describe Its main shorlcomings by the standards of the day.

Some BASIC Drawbacks
— Only one program in memory at any one time.
— All subroutines had to become a physical part of this program.
— Data was either stored in ‘files’ or was declared in the program.
— Data could not be inspected without a program,
— No array-handling features in the standard language.
— Virtually no standardised text or string-handling facility.
— A pathetic selection of arithmetic and other functions.
— Bizarre limitations on variable names.
— Inability to pass data to subroutines via parameters.
— No concept of ‘workspace’ for developing programs and data.
— No built-in sereen and printer control standards.
-~ Fixed-length record-oriented file structures.
— No concept of personalised command languages.
— User-defined functions limited to one line in length,
— Maximum of two dimensions in an array.

89

The list goes on. By today's standards, BASIC can hardly be classed as a computer language;
it's more like an ingenious extension to binary notation. However, BASIC did do one thing: it
made computers available on microprocessors to millions of people who would otherwise have
missed the opportunity to use them. Now some may say, of course, that it would have been a
better thing for mankind if this had never happened. No Third Industrial Revolution, no gangs
of neo-Luddites roaming the streets with their PROMsnifters, no AIDS ricts {Artifictal Intelligence
Destroys Society), and no fatal cases of Syndrome 2480, the tragic mystery illness that's filling
our hospital beds teday with zombie-like patients suffering from an apparently irreversible
degradation of vision into a series of rectangular cells. But the picture isn’t all black. Without
computers — and Fifth Generation Language in particular — we wouldn't have solved the world's
energy crisis, stabilised the globa! weather map, put an end to Third World poverty, brought
the national economy under perfect control, etc. Solet's take a look at how FGL made it all possible.
What follows isn’t a formal definition of the language: you can find that in the 1986 edition of
the proceedings of the FGL User Group Meeting.

FGL Concepts

There are only ten concepts in FGL. These are:

— Names The ruies for composing an FGL object’s name
— Modes The different ways in which FGL can be used

— Workspaces Where a user’s data and programs are developed
— Variables Text or numeric, single or multi-dimensional data
— Intrinsics Built-in data manipulation facilities

— Qperators A way 1o apply intrinsics more powerfully

— Functions Users’ programs and subroutines

— Commands Instructions affecting the FGL environment

— Extensions Implementation-dependent additional facilities

— Files Optional external storage of variables or programs

FGL Names

Workspaces, variables and functions are assigned names by the user. These may be of any
practical iength and are drawn from the alphabet and the digits. Various reserved upper-case
names are used by intrinsics. The first character of a name must be aiphabetic. Users are
encouraged to use lower-case for their names.

FGL Modes

You can only be doing one of three things at any particular time in FGL. In ‘function execution
mode’ you are running a program that you or somebuody else has written; in “function editing
mode’ you are writing or modifying a program yourself; and in immediate execution mode’ you
are trying out FGL expressions by using the language as a kind of super-talculator. FGL's rich
repertoire of built-in intrinsic operations allows you to do a great deal of work inimmediate execution
mode without even bothering to write a program. The data resulting from program runs are
available for inspection at any time, including the contents of multi-dimensional arrays; they
don’t perish when the programs stop running.

FGL Workspaces

AnFGL workspace is an area in the machine (historically RAM, now multi-processed in SHEEP}
inwhich FGL programs and variables are created and in which they normally reside, both when
they are in use and when they are stored away somewhere (historically spinning around on ‘disc'l
— now kept in BUBPAK, LASERCARD or CRAMPAK). An FGL workspace might typically contain
some thirty or forty functions and perhaps ten or twenty variables. Some of the functions would

90

1t T

Table 1: FGL Intrinsics

Intrinsic Monadic Case

+

4
%
MAX
MIN
|

LOG

TRIG
LsT

INV
LEQ

NEQ
GEQ

SET

AND
OR
NAND
NOR
NOT

SIZE

FLIP
SWAP
TAKE
DROP

SORT
TROS
ENC
DEC

FORM

o
EX

Force display

Prefix to negative number
Sign (+1, 0 0r ~1)
Reciprocal

Round up

Round down

Absolute value

€ to the power
log to the base e
factorial

pi times
listfrom1to ...
Random selection
Invert a matrix

True if false

Request dimension of
Turn into a vector
Reverse order of elements
Transpose an array

Ascending sort
Descending sort

Default numeric format
Default numeric ifo
Default text ifo

Execute text as numeric

Dyadic Case

Add

Subtract
Mulitiply

Divide

Select maximum
Select minimum
Remainder

raise to the power

log to any base

combination

sin, cos, tan ete, (15 options)
find position in a list

Random without duplicates
Least squares matrix solution

Less than

Less than or equal to
Equal to

Not equal to

Greater than or equal to
Greater than

Is a member of

True if both true
True if either true
False if both true
False if either true

Create with dimension of
Join together

Rotate slements as specified
Selective transpose

Select from start or end
Discard from start or end
Select if true, else compress
Select if true, else expand

Asc, sort by collation sequence
Des. sort by collation sequence
Encode into a new number base
Decode from a new number base

Specific numeric format
Specific numeric ifo
Specific text ifo

Execute conditional on error

91

act as subroutines to others in the same workspace. The whole workspace can be saved
somewhere when not in use or recovered with a single command. With our modern technology
there is no limit to the physical size of this workspace and for most applications this makes files
redundant.

FGL Variables

An FGL variable may be either text or numeric, and of any dimension. Zero-dimensional variables
correspond to single characters or numbers. The numbers may be stored internally as binary,
integer or floating point types, but that is transparent to the user. One-dimensional variables
are lists or vectors; two-dimensional are tables or matrices; higher dimensions are allowed with
no practical limit for more complex data storage needs. Datacan be manipulated and inspected
casually within the workspace. The underline symbol**_" causes the data on its right o be
assigned to the location named on its left, while the use of the symbols "'(;)" allows indexing.
Arrays of more dimensions use more ;" symbols to separate the axes. A single guote is used
1o delimit entered text. If entered text should itself contain a quote, two adjacent quotes are used
instead.

FGL Intrinsics

Most intrinsics can be applied directly to all or part of an array, in which case each term in the
array is affected. Most intrinsics also have two uses: 'monadic’, in which a variable is supplied
as the right-hand argument, and ‘dyadic’, where a left and a right variable are supplied. Table
1 presents a fairly complete list of FGL intrinsics, divided into seven groups: arithmetic, algebraic,
comparative, logical, manipulative, sorting/coding, and inputfoutput. FGL intrinsics work on
numeric and text arguments wherever possible, and as we said, you can throw multi-dimensional
arrays at them and they’ll respond appropriately.

FGL expressions may be compounded of intrinsics to any degree of complexity, the result from
one operation being passed to the next as an argument. FGL lines are scanned from right to
left. There is no precedence in order of execution between different intrinsics, even between
multiply and add! The symbols “()" may be used 1o force execution to cccur in any particular
order. Unless the result of an operation is assigned to a name or used as the argument of another
expression, it is displayed by default.

FGL intrinsics allow the user to do a great deal of serious work on data without ever writing a
program. They’ve been carefully chosen so that you can do almost anything with them. Space
doesn’t permit a detailed discussion of each, te Table 2 presents some examples to give you
the flavour,

FGL Operators

The syntax of the FGL intrinsics Is that they can be ‘'monadic’ or ‘dyadic’, taking data either
as a right argument or on the right and on the left too. FGL operators are even more cunning.
Instead of merely working on data as a right or left argument, they accept one or more intrinsics
as right or left arguments, causing that intrinsic to be applied repeatedly to successive terms
of an array. This sounds complicated, but actually the concept is very simple. There are five
operaters in FGL. They are called: reduction, scan, inner product, outer product, and axis.

There are about 40 intrinsics in FGL, and most can be applied either monadically or dyadically,
giving about 70 possibilities. By using these intrinsics with opserators, several hundred data
manipulations can be specified without bothering to write a program. One of the most elegant
aspects of FGL is the ‘orthogonality’ of its rules. In a sense an FGL operator is the high level
language analogue of a machine code memory addressing mode, while an FGL Intrinsic
corresponds to a machine code Instruction. Like awell-designed machine code instruction set,

a2

Tablg 2 Examples of FGL Intrinsics
+ eric _ 107100
34 12 57 89 39 4 67 33 79 44

+ eric eric - 19.5

14.5 77.5 37.5 69.5 19.5 "15.5 47.5 13.5 59.5 4.5

eric
1 -1ill-11111

MAX eric
L5 77 38 70 20 ~15 48 14 60 25

MIN eric
16 78 37 6% 19 ~16 47 13 59 24

ABS eric
14.5 7.5 37.5 69.5 19.5 15.5 47.5 13.5 59.5 24.5

eric LIST 37.5 47.5

37
bill _ “the name of this language is FGL®
bill LIST “name”

567313

eric LEQ 20
1100110100

(eric LEQ 20) aND (eric GEQ 0)
1200100100

SIZE eric
10

+ tony _ 2 6 SIZE “hallo mother’
halla
mother

FLIP tony
ollah
rehtom

2 FLIP tony

lio ha
thermo

93

Table 2 {(continued)

SWAP tony
tm
ao
1t
Lh
ae
r
Q0 2 DROP tony
1lo
ther
0 72 DROP tony
hall
moth
1 0 DROP tony
mother
2 T3 TAKE tony
lo
her

+ paul _ LIST 10
12345678910

10020063001 / paul
14477710

1001510001 3100011 1\ paul
100233333400056667000889 10

+ paul _ 10 7 100
23 68 99 45 17 36 27 49 87 77

SORT paul
51764821093

paul {SORT paul}
17 23 27 36 45 49 68 77 87 99

paul [TROS paul]
99 87 77 68 49 45 36 27 23 17

3 + EX “2+2°

7 2 FORM 4.519 6.7
4.52 6.70

94

FGL lets you employ (almost) any intrinsic with (almost) any operator on (almost) any array of data.
FGL Functions

An FGL function is composed of zero or more lines, each containing a valid FGL expression.
Most programs in FGL are very shont, up to about ten lines as a maximum. This contrasts strongly
with the thousands ot lines in programming languages such as BASIC (believed o stand for
Boring And Senselessly Intantile Concept) or — and this one is very much for the history boys
— some even more forgotten dialects such as COBOL (historians now think that this meant Central
Official Bastion of Obsolete Languages). There are two reasons for this brevity. Ona is that the
ability of the native FGL intrinsics and eperators to work on whole arrays at a time means that
loaps, control structures and DO...WHILE instructions are hardly ever needed. The other is that
instead of combining all a project’s needs into one huge monolithic program, FGL breaks the
job down into a set of sub-tasks, with a different and free-standing program responsible for each
area.

FGLisrather like FORTH inthis respact. You can define a vocabulary of your own FGL "“verbs",
“nouns” and “adjectives’ to produce a personalised command syntax appropriate for any
particular job. If takes about three minutes of programming in FGL to construct the functions
which make the following line of English text a valid expression in FGL immediate execution mode:

Average Salary where (Sex is Female) and (Department is Accounts)

and which will produce the correct answer to this and any similar information request. The response
will be almost instantaneous irrespective of the size of the personnel file, because this data consists
of FGL vectors sitting in main memeory all the time — there are no files involved.

FGL functions are in some respects similar to intrinsics. They may be monadic or dyadic, but
they may also be 'niladic’ — using no arguments at all. A niladic FGL program corresponds
tothe idea of a BASIC program. A monadic or dyadic program corresponds to the idea of a BASIC
subroutine, but the FGL versions are free-standing and much more tiexible. The following
additional symbols may be used in FGL programs:

A To start or end function editing

‘' The rest of the line is a comment

@ Branch to indicated lineflabel, or ignore if none specified
& Statement separator

Lines may be prefaced with text labels terminated by a “:"' symbol. Label names are automatically
assigned their runtime line numbers as integer vaiues, so these become psaudo-variablesthat
may be referenced but not altered in the user’s expressions.

Branching in FGL is ofinterest. The *'@" branch expects to see an inleger argument representing
avalid line number. This integer may be calculated any way the user wishes. Multiple conditional
branches similar to the CASE constructs of other languages become trivial in FGL. f the integer
is not presented (by providing an ""empty vector' of zeroiength) then FGL will ignore the branch
instruction. The user may use any one of many FGL techniques toimplement a conditional branch
using this feature. Table 3 contains some examples of FGL functions.

FGL Commands
An FGL command generally actsimmediately on the workspace or the long-term storage medium
and affects the environment within which the FGL programmer is working. Aspects such as

changing the number of columns in the display device line width, inquiring after the names of
variables and functions etc. are typical uses of these system commands. Commands are prefaced

95

Table 3 Examples of FGL Functions
result _ average data

-~

[1] ™"This function will average a vector of numeric values
[2] result _ (+/data) % SIZE data
(31 -~
average 1 2 3 4
2.5
dffaverage 1 2 3 4
7.5

~ analysis
[1}] "This function will do some statistics on tvped-in data
(2] "Notice that it in turn uses the pre-written function ‘AVERAGE"
[3] ‘Please enter your data, separated by space{s), terminated by RETURN®
[4] Thisdata _ §
[5] “Thank you’
[6}] ‘There were ";5IZE hisdata;” values entered”’
{71 ‘The largest was “;MAX/hisdata
[8] ‘The smallest was " ;MIN/hisdata
[9] “The average was “;average hisdata
(10] ‘Goodbye’
(1} =

analysis
Please enter your data, separated by space(s), terminated by RETURN
$: 50 30 40 20 60
Thank you
There were 5 values entered
The largest was 60
The smallest was 20
The average was 40
Goodbye
~ newtab _ crosstab oldtab
[t} "This function cross-tabulates a table {row and column sums)
{2] newtab _ oldtab,[1]+/{l]oldtab
{3] newtab _ newtab,[2]+/[2Z]newtab
(4} =

crosstab 4 4 SIZE LIST 16

1 2 3 4 10
5 6 7 B 26
9 10 11 12 42
13 14 15 16 58
28 32 36 40 138

r _ factorial b

[1] ™Recursive function for calculating factorials
12 @l =r_b)/o

(31 r _ b # factorial b - 1

(41 -~

96

with a feading')"’ symbol which acts as a delimiter to distinguish them from user objects which
might have the same name. Commands are not generally included inside user's functions, but
they may be so incorporated by enclosing them inside quotation marks and executed at run-
time using the “‘EX"’ intrinsic.

FGL Extensions

The “'§" symbol is used by FGL for two tasks: as primitive input-output intrinsic for numeric data,
and also as adelimiting prefix to introduce an implementation-dependent additional FGL facility.
The FGL syntax has been standardised by the ISO but vendors may offer any number of extra
“'goodies™ in their own FGL interpreters. In order to minimise the problem of name clashes,
these extensions are prefaced by ‘8", hence the name “'dollar-functions’ and “dollar-variables”.

FGL Files

Because typical workspaces of 20 Giganodes (comparable in 1980's terms to a user having 200
Megabytes of physical RAM driven by about 10 dedicated 32-bit processors) are the norm these
days, files play a rather minor role in FGL. Dedicated applications tend to store all the data in
the workspace, while multi-user tasks employ the concept of the ‘sharad rodent interface' to
squirt data between other active workspaces and user I/O devices such as mice, without bothering
to use files. However, files can be used if required.

An FGL file is best thought of as a collection of adjacent elastic boxes. The boxes are numbered
sequentially, starting at 1, with no maximurn limit. A box can contain any FGL object of any size:
a single number, a vectar of 100,000 numbers, a text matrix of 10,000 rows by 100 columns,
or a function. Depending on the implementation, dollar-functions may exist to allow a
heterogeneous assortment of variables and functions to be grouped into a single package and
filed as a single object. Filed objects may be replaced by larger or smaller ones without restriction.
Acess is by box number: direct and sequential access of any type Is therefore supported.

Whereas the conventional languages ot the 1980’s expected data records to be stored as
‘horizontal’ slices of a table, with one stored record per person or product in the data file, FGL
records are normally stored ‘vertically’, with ane boxed object per parameter in the data file.
All the SALARIES go into box number 1; all the DEPARTMENTS into box 2; all the JOINING
DATES into box 3, and so on. Files are therefore typically ‘inverted’ all the time, which usually
obviates the need for a database.

Why FGL overtook BASIC
The overriding advantages of FGL were as follows:

— Extremely fast project development time

— A workspace in which to bring together programs and data
— Acrich set of standard data handling primitives

— Ability to work on arrays without looping

— Modular function style with elegant control flow

— No limit to the range of applications that could be handled
— Sophisticated features like recursicn for expert systems

— Standardised full-screen controls

— Standardised printer attribute handling

— Standardised colour graphics routines

— Shared rodent interface for control of mice

— Shared stereo interface for voice recognition and output
— HRequired no special hardware for its character set

— Upper & lower case characters for commercial applications
— Numeric precision to 15 significant figures

87

— Astructure which made database handlers unnecessary
— Parallel processing as an integral part of the language

in addition, the existencs of the earlier APL language meant that there was no need to create
a new language interpreter for each implementation: simple modifications to the character
input/output routines were all that was needed to convert APL into FGL.

Why FGL was well suited for fifth generation projects

The flirtation with knowledge-based expert systems which began at the start of the 1980's
produced proposais for the deployment of other languages for expert systems applications, such
as LOGO, LISP and PROLOG. These languages were strong on inference but weak on arithmetic.
For example, PROLOG was good at solving the following types of problem:

'If time flies like an arrow, do fruit flies like a banana?"’
In PROLOG this would be stated as:

&. Add (Time flies-like an-arrow)
&. Does (Fruit-flies like a-banana)

LISP was good at jobs like proposing robust hyphenation rules for word processing spelling
checkers, rules which helped one to avoid infelicitous proposals for hyphen insertion in a word
such as “teadstool”. In LISP the code to do this would be stated in the user-friendly formulation:

(U toads(too D) MMM}

LOGO excelled at helping people create random artwork designs using turtles; in fact it wiped
out all competition In this field and ended up being referred to the Anti-Trust (Monopolies}
Commission in the Galapagos Islands.)

However, it eventually dawned on people that the basis for good expert systems design had
to be a good general purpose computer language: one that was strong on logic and text
manipulation while also being extremely fast at computation by the use of parallel processing.
As paralle] array processors emerged, moving away from the sc-called *'pipelineg” processing
concept to the aptly-named ‘‘dense-pack’’ synchronous computation field, the advantages of
array-oriented languages for expert system design soon became irrestible. Declarative subsets
of FGL soon emerged which modelled all the best features of the specialised expert systems
languages without throwing away the indigenous ability to calculate (for example) antilogarithms.

The implications of Ashby's Law (‘' The variety of a controller must be as great as that of the
system under contrel”’) meant that any attempt at artificial intelligence in the strict sense required
the creation of an artificial model of reality thal was robust for the uses to which it was being
put. Digital implementations of this concept were inappropriate because of the sequential, clocked
nature of their computations: even at sub-picosecond switching speeds, the variety was just
not there. By the 1980s we had learnt that the answer lay in marrying microelectronic fabrication
disciplinestothe highly parallef, asynchronous nature of mental processes as implemented via
neurens, axons and synapses in the human brain In an essentially analogue fashion. This was
first done by a smali company in Rockville in 1988, using protein instead of silicon as a
semiconducting substrate. The rest, of course, is history.

However, the acceptance that true artificial intelligence required designers to step outside the
sequential von Neumann architecture was enough to encourage the development of pseudo-
intelligent systems. The goal of genuine understanding was set aside for the more prosaic (but
commercially desirable) aim of flexibility and knowledge. FGL turned out be an excellent vehicle

98

for specifying heuristics drawn from fuzzy set theory, from catastrophe theory and from Bayesian
statistics. These were robust means of integrating the large body of detailed knowledge that
was available to the ‘*domain specialists’ who were implementing the systems. In particular
the creation of off-shoots of FGL such as ESP (Expent Systern Producer), ESPRIT (Expert System
Praducer for Rapid Integration of Thoughts) and ESPION (Expert System Producer for Intelligence,
Observation and Neutralisation) were formative in FGL's rapid penetration of this huge arena.

FGL was fast, flexible and mature. It was very good at Boolean logic. It handled recursion elegantly.
It coped beautifully with problems requiring very rapid computation over vast memory areas.
FGL programs could with trivia! ease modify themselves or other FGL programs while executing.
Most important of all, it was there and it worked. In retrospect, there was no other choice.

The reaction from the BASIC community

The response from existing BASIC users represented one of the decade’s most fascinating
examples of techno-cultural re-adjustment. Fortunately the accounts of this process were well
documented at the time and we now know fairly precisely what happened. The first paper on
FGL entitled simply “FGL: Fifth Generation Language®’ was published in a magazine of the time
called ‘BYTE' {now replaced by the hourly circulation electronic journat ‘GNAW’ — Gripping
News Adventurously Written) in the 1983-84 period and the first implementations of the language
became available early in 1984. To users of BASIC, who had been fiddling around with things
like PASCAL, ADA, PROLOG, LISP, LOGO, FORTH, HOPE, SNOBOL, FORTRAN, RPG,
COBOL, ALGOL, PL/1 elc. in the hope of finding something useful, the response was
overwheiming.

Massed bands of cheerleaders ran through the streets of the world's major capitals holding
placards with FGL programs written on them. Spectacular May Day parades in Red Square
featured elaborate floats in the form of FGL 5-dimensional arrays. The Space Shuttle (not to
be confused with the recently infroduced no-reservation required Venus shutlle) was employed
to blanket the ionosphere with FGL Reference Guides multipte-independently targeted on a re-
entrant orbit tothe world’s computer conurbations, No resistance was encountered anywhere,
excep! from those who had previously encountered APL. [t was a landslide.

The reaction from the APL hostility

The first formal presentation of FGL to the APL hostility took place with the submission of the
same paper to the annual APL conference held in Helsinki, Finland, June 11th — 15th 1984.
Despite the betler judgement of several of the paper’s referees, the paper was accepted as part
of the formal proceedings. This was a pity in many ways since previous conferences had tended
to indicate that the pirate presentation of a rejected paper attracted a larger audience than one
that had been accepted. Nevertheless, at least two people were observed to enter the room
in which the paper was being delivered, one of whom was known not to be the paper’s author.
After the paper had been presented, the following questions were posed:

Q. “We already have proposals for an ASCII notation for APL. Why make such a
big thing of it?"' :
A, “Because if APL is to take over in the disguise of FGL, we must kill APL notation

completely for all except academic and research purposes. Nobody is preparad
to rush out and buy new APL screens if they already own ASCII versions — and
by now, they all dol"

Q. “Why not adopt one of the existing ASCIl mnemonic standards?"

A. "“You're missing the point! FGL will be used by people who have never seen
APL notation and who never willl Who wants to talk about $RHO?”

99

7P

>0

Q.
A.

Table 4 depicts the relationship of the defunct APL symbols to the FGL versions that we alinow
use. The few APL fanatics who remained unconvinced were eventually discovered in their caves
in the Adirondacks and the Hebrides. Lucrative offers were made to them and you can still visit
them now; either as part of the *living history” permanent exhibition in Williamsburg, Virginia,
for the entertainment of heads of state, or {in the more traditional British style) in glass cases
atthe Science Museum in London. You can find them there located next door to James Watt's
steamn engine; if you pressthe button on the outside of the stand, they wake up and demonstrate

“You've destroyed the whole spirit of APL"”

“FGL training bocks will contain references to APL notation in an appendix at
the back. Pecple who want 1o play with APL will still be able to. Most APL users
care far less about the notation than mast of the people who set APL standards.
Try actually using FGL for a bit — you’ll find that the APL spirit is still very much
there.”

‘“What is the main objective behind such a major change?”

*'First and foremost, to stop APL inexorably disappearing. This is happening
partly because commercial pressures increasingly preclude the implementation
of an overstruck character set, and partly because APL’s funny symbols simply
put most people off. As a percentage based on the language used per installed
computer {including microcomputers), APL usage has been declining
exponentially for 7 years and is now indistinguishable from the zero axis. If we
don't adopt something like FGL now, APL will sink without trace.”

“"Are there any other advantages?'’

“Of course. FGL lets you use uppercase and lowercase in a standard tashion —
vital for business applications. Suddenly, you can choose any screen or printer
you want. It's now implemented on virtually any computer you want. And the
hardware Is ridiculously cheap, because everyone is using it. Also since you
know APL already, you've already learnt FGL.”

“What about nested arrays?”’

“This has to be the world’s most irrslevant question! APL is already so much
more powerful than BASIC that any further teatures would virtually constitute
overkill. However, it has to be admitled that list structures come in handy for
expert systems, so {provided no new symbols are needed) there’s no reason
why FGL cannot adopt whichever nested array syntax APL eventually decide
on.”

“My IBM 3270-type terminal creates APL characters without overstrikes, so
what's the problem?"

“|BM's EBCDIC code does include APL and non-APL characters in a single
character set. However, IBM and plug-compatible manufacturers are the only
companies that use EBCDIC; {BM has already started seliing an ASCli-type
screen, and it"s now only a question of time before ASCll-based protocols start
to muscle EBCDIC code away.’

““If the next generation of microcomputers are going to have memory-mapped
secreens, what's the problemn?”

“You still won't get APL characlers without a big struggle. Let's change now
whila there's still time.”

‘‘What can ! do in practice to help FGL emerge?”
“‘Write to the FGL Action Group, care of the author.”

100

APL characters in semaphore — as a one-line function with no comments.

Footnote: This article was written by an FGL module entitled ESGRIT, Expert Systems Creation
of Random Intelligert Text. For this reason any views expressed herein remain those of the system
and do not necessarily represent opinions held by the author or any organisation with which
it is associated,

101

Table 4 — APL/FGL Equivalents

The standard APL character set was evolved for paper printing terminals for which no penality
(apart from print speed) is attached to the concept of backspacing and overstriking a character
toform a new composite symbol. The APL character set therefore contains more than the standard
98 ASCII printing characters. Despits this, APL does not contain the lower case alphabet, a serious
deficiency. Furthermore, various punctuation symbols which also exist in ASCl| are located In
non-standard positions in the APL code table. The mapping of APL to FGL characters is as follows:

a. APL A-Z becomes FGL a-z

b. APL A-Z becornes FGL A-Z

c. APL 0-9 stays as FGL 0-9

d. APL punctuation is replaced by ASCI| versions in FGL, if they exist

. ASCII punctuation which is undefined in APL is redeployed in FGL

f. Reserved FGL upper case {APL underlined) names replace remaining symbols

This mapping can be installed on an APL interpreter without making any changesto the interpreter
itself provided the following extensions exist:

— Ability to reconfigure input and output translate tables.
— Ability to create ambivalent user-defined functions.
— User-defined funtions allowed as arguments to operators.

This approach allows the current set of recommeded reservad words such as SIZE, LIST etc.
to be replaced by naticnal language variants if desired.

.. indicates that the APL symbolis not supported in FGL. These cases do not affect any APL
symbols In serious active use. The surprising aspect is how little change is actually required
to APL; many of the APL symbols are a parl of standard ASCIl and hence FGL.

This first draft of the standard was part of the 1983 paper and some changes were of course
made following comments on particular choices. Overall, however, the final standard bore a
close resemblance.

APL FGL APL FGL APL FCL
. ? 1 A \(1)

n - w ves 7 i1
< < € SET 1 3
= LEQ [SIZE H (1}
= = -~ NOT A "
z GEQ + TAFE * EX
> > + DROFP v FORM
] NEQ 1 LI5T - L0G
v OR o TRIG 2] NV
A AND w * L NAND
- - [. w NOR
+ +) MAX 0-U-T waa
* ¥ L MIN 5 LOCK
+ 4 _ ee i} 10
) ver v - b FLIP
+ @ A . ¥ TROS
+ _ ° * 4 SORT
({ ' ’ 8 FLIP[1]
)) a $ § SWAP
L [< aee
] 1 = v
/ / a e
A y\ u vas
H A 1 DEC
. » T ENC
: : | |
- ass 0-5 0-9
- e A-Z a=z
S & a-z A2

102

TECHNICAL EDITORIAL

by Jonathan Barman and David Ziemann

Welcome to the technical section of VECTOR. In these pages we hope o present items of interest
to technical APL readers. Therefore, in future issues of VECTOR you will find papers, articles,
APL code, algarithms and more. There wilt also be a regular technical letters page and prize
competition. We want to encourage you to contribute to any of the abave and would particularly
welcome letters andfor APL code, with a view to maintaining a dialogue on particular areas of
interest.

In this issue we present four contributed papers. The first one is by Alan Hawkes, professor at
the Department of Management Science and Statistics of the University College of Swansea,
whao shares with us some of his work in a paper entitles “Complex numbers in APL". As well
as providing a listing of his complex number tunctions for APL without using a complex data
type, he also gives a mathematical treatment of the algorithms that lead to them. Although written
to run under MIPS APL, the code requires only miner alteration in one or two cases to be run
on other implementations.

Next, David Doherty of the British United Provident Association (BUPA) has contributed
"“SCREENIO — a tull screen manager”. David charts the development of his screen design
package, and shows how flexibility is preserved via the specification of a set of validation rules.

"“Partitioning Datain APL" is submitted by Jonathan Barman. In it, Jonathan discusses a range
of technigues for manipulating partitioned data within a standard VS APL environment. Useful
partition functions are developed and explained in detail within the text.

Finally, David Ziemann presents his paper on the current draft of the international APL language

standard. “Inside the international APL standard™ takes an in-depth look at the way the standard
works, what the actual content is, and how it might be useful to us.

103

..Probably the most powerful APL in the world

e Second Generation Interpreter & [JFMT

Runs under UNIX™ e Event trapping

e Nested Arrays e External Variables

e Full-Screen Editor » Full implementation to ISO Standard

& Full-Screen Data Manager » Auxiliary Processes in high-level languages
e Portable e Complete access to UNI{™ facilities

® Component Files o Full ASCiI support

..and runs on all these computer systems

BLEASDALE BDC680 GOULD SEL

CADMUS 9000 HPS000

FORTUNE 32:18 PERKIN-ELMER
ICL PERQ VAX

ZILOG 38000 (With many to follow)

FREE TRIALOFFER |

dyal N

Far further informathon fiil 1 the coupon and post loday fo
Sales Department, Dyadic Systems Limited, 30 Camp Road,
Farnborough, Hanls Telephone (0252) 547222 Telex 858811

MAME
COMPANY

FOSITION
ADDRESS

TEL b
Th UNIX 15 & rade mark ELERHGNE
of Belt Laboralonies

——— [

104

PRIZE COMPETITION: This is Your Life
by David Ziemann

In the Game of Life a rectangular grid is used as a framework within which the behaviour of
‘organisms’ over successive generations is studied. Each square within the grid must be either
filled or empty, representing either a live or dead/unborn cell. Rules that determine the conditions
under which new cells are born and old ones die are used to produce the next generation of
organisms. For example (and for interest only), the usual rules for birth and death are:

Birth — an empty cell becomes live in the next generation if it currently has exactly
3 live neighbaurs.
Death — a live cell dies in the next generation if:
i) itcurrently has C or 1 live neighbours (isolation)
or i) it currently has 4 or more live neighbours (overcrowding)

In this context, each cell has 8 neighbours — the squares directly adjacent to it.

In APL, the most obvious data structure that can be used to represent the grid is a boolean matrix
of known shape, with 1s indicating tive cells and 0s dead ones. It is then possible to write an
APL function that will take a boolean matrix right argument and return a new one that represents
the next generation of cells. In fact this is quite an old problem, and it can be solved ina fairly
satisfactory non-looping way. However, the time taken to calculate a successor genaration is
proportional to the grid size, and will be the same regardiess of the contents of that grid. With
large grid sizes, this cost can become prohibitive, and s particularly annoying when the grid
only contains a smallish organism somewhere near the centre!

An alternative representation considers runs of 0s and 1s in the ravelled boolean matrix. For
example, using this run-coding method, a 4 by 5 grid

HEE \
BREG
R
I

would be représsnted by the integer vector: 22 4 5 2 2 3 where the quads represent empty cells
and the dominoes live ones.

The first element of the run-code vector always indicates the leading number of 0s in the
corresponding ravelled boolean matrix. The second element then gives the length of the next
“run of 1s, the third the length of the next run of 0s, and so on.

For typical Game of Life grids, this representation provides a reasonably compact data structure.
Morsover, the time taken to calculate the successor grid is now proportional to the size of the
contained organisms, rather than the grid size. This means that ‘boring’ generations are calculated
" quickly, whereas more complex cnes take longer.

Because itis convenient to define and view a grid as a character matrix containing only spaces
and crosses, the boolean representation is still important, and functions are required for converting
between the booiean and run-coded forms. This is the subject of this issue's competition.

The task is to write the two monadic functions BTR and RTB. BTR converts its boolean vector
argument inte a run-coded vector, and ATB goes back the other way. Note that the shape of
the grid Is not relevant because BTR has a boolean vector argument and RTB a boolean vector
result.

105

For example:

+BM«4 5p0 0110,00011,11100,11000

00110
00011
11100
11000
BTR ,BM

2245223
n THE FOLLOWING IDENTITIES MUST ALWAYS HOLD TRUE:

(p.BM)=+/BTR ,BM

(,BM)A .=RTB BTR ,BM
1

Each respondent must submit two APL functions that conform to the first ISO draft proposal
for an APL language standard. (Don’t worry — this effectively just means VS APL).

Additionally, respondents may include two further functions written for the APL implementations
of their choice (please specify!}). Note that no prizes will be awarded in this category.

Entries will be disqualified if they do not conform to the above descriptions, or if they rely on
the external environment (ie, if afunction is not a ‘black box’). The criterion for judging functions
that jump these hurdles will be the minimisation of the number of characters in the solution.
This character count will only include the printing characters entered at the keyboard in del-
editor mode, but will NOT include characters in the tunction header-line or in comment lines.
Composite symbols count as one character.

A first prize of £30 (or equivalent) will be awarded to the author whe, in the judges’ opinions,
submits the shortest correct entry. Two special commendation prizes of £10 each will additionally
be awarded.

Many thanks to Paut Chapman, author of VIZ::APL, who suggested the competition topic.

106

COMPLEX NUMBERS IN APL

Alan G. Hawkes
Department of Management Science and Statistics.
University College of Swansea, U.K.

This paper describes a systematic method of representing complex numbers in standard APL
in such a way that basic complex arithmetic and complex matrix algebra may be simply done.
A listing of functions Is given in section five.

The VECTOR typesetters were persuaded to resist the challenge of setting this article in print,
and consequently it is reproduced directly from Alan's originals.

107

1. Introduction: Representation of complex numbers

One of the stremgths of FORTRAN as a language for scientific and engineering
computing is that it makes provision for declaring COMPLEX variables which may
then be manipulated according to the rules of complex arithmetic by the standard
algebraic symbols +, —, *, /., 1In addition, special functiomns or subroutines
such as CEXP are available: in particular complex matrix algébra can be done by

calling the appropriate subroutines,

Standard APL makes no provision for complex variables. After several
proposals and discussions, Penfield (1979) produced proposals to extend the APL
language into the complex field in a consistent manner. McDonnell (1981)
describes such an extension which has been implemented in I.P. Sharp's APL. 1
would urge all writers of APL interpreters to follow suit as soon as possible;

the scientists would then be more readily moved te change to APL.

In the meantime, it is quite easy to develop a simple means of handling
complex numbers in standard APL. It could no doubt be done mere elegantly in
versions supporting nested arrays. 1 have not attempted to be exhaustive, but
have restricted myself to the basis found necessary in my own applications.
é;he functions mentioned in the text are listed in section five. They have been
knocked together quite rapidly to solve a particular problem. The author would

welcome amendments which would render them move elegant, efficient or accurate.

A single complex number 2 = = + %y has real part x and imaginary part ¥
{x and y both real}, so that it may be thought of as an ordered pair of real
numbers. We adopt the convention that a complex array of shape § will be
represented by a real array of shape 2,5 such that Z« X, [0.5]Y where X is the

real part and Y the imaginary part (each of shape &).
Thus, for example
A<7 8 is a complex scalar 7+i8 with

REAL A

IMAG A

108

I

are real scalars corresponding to the real and imaginary parts of

A (here S is the empty vector). 1In contrast

O +B<2 1p7 8

7

8

is a complex vector with one element. Superficially
REAL B

7
IMAG B .

8

appear to be the same as the previous case but this time 7 and 8 are one-clement

vectors (pREAL B and piMAZ B are both 1).

More generally, the complex numbers 1+i5, 2+i6, 3+i7, 4+i8 may be assigned
to an array of shape 2 4; so that

c
1234
5678
is a four-element complex vector with

REAL C
1234

IMAG C©
5678

An example of a complex 3 by 4 matrix, whose representation is an array
of shape 2 3 4 is
D
1 2 3 4
5 6 7 8
9 10 11 12

13 t4 15 16

17 18 19 20
21 22 23 24

109

with real and imaginary parts

REAL D
1 2 3 4
5 6 7 8
910 11 12
IMAG D
13 t4 15 16
17 18 19 20
21 22 23 24

Higher-dimensional arrays could be defined, but do not seem likely to be

much used.
An alternative polar representation of a complex number

. 8 ..
z+ iy =re’ =pr cosb + 1 sind

r = (x2 + yz)i

is eften useful. The modulus r and argument 9 are obtained by functions

MOD Z and ARG Z, while R CART THETA does the inverse transformaticn from polar
to Cartesian co-ordinates. In this connection the functions RAD and DEG are
useful to convert between angles measured in degrees and radians. CORJ Z
yields the complete conjugate X = <Y, while COMPLEX X converts a real array

into a complex array with zero imaginary part, so that for example

COMPLEX 3
30

is a complex scalar and

COMPLEX 7 5
75
00

is a complex vector of length two.

110-

‘2. Complex arithmetic

Two complex arrays of the same shape may be added or subtracted by Z + W
or Z - K in the usual say. However, this does not satisfy the rule that if one
of the argumentsis a (complex) scalar it is repeated to become the same shape as
the other argument and thus added to, or subtracted from, each element of the
other argument. This property is a feature of the functions CADD and CSUB 80,

for example, using ¢ from the previous section we have

¢ C5UB 1 2
0123
3456

and we see that the complex scalar 1 + i2 is subtracted from each element of the
complex vector . The same is true for elementwise multiplication and division
in the functions Z CTIMES W and Z.CDIV W respectively. In each case Z and ¥ must
be the same shape or be complex scalars. As in the real case, (complex) vectors

of length 1 and 1 by 1 matrices may act like scalars in this respect.

Simple monadic funetions are CRECIP Z, the complex version of monadic =
CEXP 2 and CLOG Z.

4

In principle it would be possible to write functioms to manipulate complex
arrays, such as CTAKE or CDROP etc., but ome can always achieve the same ends by

appropriate real manipulations.

3. Complex matrix algebra

The addition and subtraction of matrices whose elements are complex
numbers is just a special case of the addition and subtraction of general arrays,
as discussed in the previous section. Matrix multiplication is done by Z (MM W,
which is the complex equivalent of Z+.xW, having equivalent rules about con-

formability and (complex) shape of the result.

This leaves three rather more difficult problems. The most important is

that of finding the inverse of a complex matrix. This is an interesting problem

. which I discuss in this section. In the following section T deal with the

computation of the exponential of a matrix. The third problem is that of finding
eigenvalues and eigenvectors of a complex matrix. I have not yet attempted this
becauss it is the most difficult and because I have as yet not had any need to
do so. However, it should be done and I would be pleased to hear from anyone

who may already have done it.

The inverse of a complex matrix

In principle one could write a function which carries out some form of
Gaussian elimination to find the inverse of a complex matrix. However, since
APL is very good at inverting real matrices with Fl it seems a good idea to

make use of that facility.

Denote the inverse of the complex square matrix £ = X + 2¥ by U + £V,
Then, since their product must be the identity I, we have

XU -Y¥v=1I (3.1}

XV + X0 =0 (3.2}

Suppose there exist real Al’ Az such that

B = xA, ¥ = A,Y is invertible. Let

1 2
C = AZX + A1Y .
Then AI x (3.1) - Ay @ (3.2) and Ay % (3.1} + A1x(3.2) yield
BY - LV = A1I
Cy o+ BV = A,
which can be solved to yield
Vs (BB 0T T+ 2,0) (3.3)
v=w@+coE o) (T - 2 CE) (3.4)

1f 7 is non-singular there are at wost 1%pX values of the ratio A1/A2 for

which B is singular. Our general routine CINV Z therefore chooses 31,A2 at
random. There will be a very small probability of hitting one of these
‘eigenratios’ . However, to be on the safe side, an error trap is set in line [7]

which returns to choose another pair of values for A1,A2 if B should be singular.

‘12

" 0f course, if Z is singular, B will always be singular and we would get into an
infinite loop. Thus we set a counter and switch off the error trap in line [10]
after five attempts to find a non-singular B. Once a suitable B is found, the
inverse U + 7V is constructed from (3.3) and (3.4) using only real matrix algebra.
Error-trapping routines vary from one interpreter tec amother, so anyone using

this function may need to make appropriate minor adjustments.

For particular problems cne sometimes knows that the real part ¥ of a
matrix must be invertible, In that case one can take A] =1, Az = 0 which
imply that

B=-X, € =Y and thus

U=+ ipT : (3.5)

Vo= =(X+ X

Do (3.6)
This solution is implemented in the function CINVR 3.

Similarly, if it is known that Y is non-singular, one may take

A1 =0, AZ = -1 so that B = ¥, C = —X which imply that

v= @+ xr o xy! (3.7)
vVe-z+xy'nTt (3.8)
This solution is implemented in the function CINVI Z. A simple example

in which neither the real nor imaginary parts are invertible is
oy L 1
0 i 0 -i

Any values of l1,A2 # 0 would suffice to invert this one. The gemeral

routine CINV does the job.

CINv. 222p 11000001
1 0
0 0

1
1

2

: 1+ 1
The matrix -
1 1-1

) ,however, is singular so

113

TCIRV 22 2p 1211100 71 yields the dreaded DOMAIN ERROR.

Note that any of these three inverse functions are generalisations of the
real monadic B , except that we allow them to apply only to complex square
matrices, vectors of lemgth 1, or scalars. In the real case, of course, one
gets a least squares fit for the non-square case. I have not attempted any

generalisation of this feature.

4. The exponential of a matrix

In applied probability, and other areas of applied mathematics, cne often
needs to evaluate the exponential of a square matrix, defined by the infinite

series

©
s
1}
[
+
BN
R
+
h
w
+

[
w

The accurate and efficient computation of this is a rather delicate matter,
see Moler and Van Loan (1978). 1 have adapted the simplest, and probably most
effective, method of scaling and squaring. Consider the case of a real matrix

A, which is implemented in the function MEXP A.
The most obvious thing to do is to truncate the series
*

e =y =] AT sl . (4.1

Bounds for the error of truncation are given by

I 7 ar-e1] < i [*" tmllal g™ (4.2)

+11!
where ||4]| is the norm of the matrix. A number of different norms may be
used. For simplicity of calculation use the 1-norm

[lalt = ng bla {6.3)

251

114

J I S|

The scaling and squaring method, as implemented here, proceeds in three

stages:—
(i) find the smallest non-negative integer M such that
. oM L oM
Ha+ 2% = {lal] 2" <},
(a+2%
(ii) Approximate e ° by the finite series (4.1), replacing 4 by
M . . -ic
4 ¢ 2 and with ¥ = 13 (truncation error less than 10 15 Y,
)
(iii1} find eA = (eA P2)™ by squaring M times,

For a complex matrix one simply needs to interpret iaijl in (4.3) by
the complex modulus, MOD, and replace +.x by CMM when performing matrix
multiplication. This is done in the function CMEXP. TFor MEXP and CMEXP the
inputs must be real, or complex as appropriate, square matrices, vectors of

length 1 or scalars. In each case, the output has the same shape as the input.

Scmetimes there are short cuks., For example, if T is a real identity

matrix of the same shape as a real matrix § and s a complex scalar, then

PR PR

so that the exponential of this particular complex matrix can be written as the
product of the exponential of a complex scalar and the exponential of a real
matrix. In terms of the functions described in this paper this is equivalent to
the rather less elegant form CMEXP (COMPLEX @) CSUB S CTIMES COMPLEX I is equal
to (CEXP -S) CTIMES COMPLEX MEXP §.

Oh well, at least its better than doing it in FORTRAN!

Finally, a word of warning. The obvious result

A+ B A B
e =g ¢

is only true for matrices if 4 and B commute,

115

REFERENCES

FORBES, D. (1981), Complex floor revisited, APLB1, APLQQ vol. 12 No. 1
September 1981, 107-111.

McDONNELL (1981}, An tmplementation of complex AFL, APLQQ vol. 11 No. 3,
March, 1981, 19-22,

MOLER, C. and VAN LOAN, C. (1978), Ninteen dubious ways to compute ihe
exponential of a matrix, SI1AM Review, vol. 20 No. 4, 801-836.

PENFIELD, P. (1979), Proposal for a complex APL, APL79, APLQQ vol. 9 No. 4,
June 1979, 47-53.

PENFIELD, P. (1981), Prineipal values and branch cuts in complex APL,
APL81, APLQQ, vol. 12 No. 1, September 1981, 24B-256.

116

APPENDIX: Function Listings

VReARG X3T

[1} w ARGUMENT OF COMPLEX X, -PI<THETA<PT

(2] ReRBAL X

[3] I+IMAG X

4] Re{2x{(I20)-0.5))x 20 1[1LR+{(R*x2}+{I*2))*0.5
v

VR+X CADD Y

(11 n ADDITION OF COMPLEX X AND Y

(2] Re((REAL X)Y+REAL Y) ,[0.51(IMAG X)+IMAG Y
v

VZ+R CART THETA
{1} n POLAR TO CARTESIAN(COMLEX); THETA IN RADIANS
(2] Z+(Rx20THETA) ,[0.5]R«10THETA

v

VR+X CDIV Y
[1] » DIVISION OF COMPLEX X BY Y
(2] R«X CTIMES CRECIP Y

v

Vh+X CTIMES ¥;REK;IX;RY;IY

[1]1 w~ MULTIPLIES ELEMENTWISE; X AND Y MUST BE SAME SHAPE OR COMP
LEX SCALAR

[2] RX«REAL X

[3] IXx+IMAG X

(4] RY-REAL Y

[s] I¥IMAG Y

(6] Re((RX=xRY)-(IXxIY)),[0.5](RXxIY}+(IXxRY)
v

VR+CRECIP X3 RX: IX 3 MODSY

[1] ~ COMPLEX RECIPROCAL OF ARRAY X

2] RX+REAL X

[3] IX«IMAG X

(4] R-(RX:MODSQ) ,[0.5]1-IX+MODSQe{RX*2)+(IX*2)
v

YR<CEXP Z
[1] wm EXPONENTIAL OF COMPLEX Z
[2] Be(xREAL Z)CART IMAG Z

v

117

VR«CINV Z3X:Y3B:03 T3 Us LAMDA D; S3d 3 SACINY
[1} r INVERSE OF COMPLEX MATRIX WITH RANDOM TRANSFORM: AGH 1984
[2] +(22145«pZ)/MESS
{31 +((1=p8)v(2=p5)A1="1+5) /SCALAR
(43 +((3=pS)r0=-/1+3) /CONTINUE
[51 MESS:+0,pl"ARGIUMENT MUST BE COMPLEX SQUARE MATRIX'
(63 SCALAR:Z+2 1 1pZ
[7] CONTINUE:SACINV<1 2pCOUNT,1
8] J«1
[9] COUNT:>(52J+J+1)/RAND
[10] SACINV+0 2p1
[11] BAND:LAMDA+LAMDA++/LAMDA«?2p 1000000000
[12]) B+{LAMDAL11xX+REAL Z)-LAMDAL2IxY<IMAG Z
[13] C+«(LAMDAL1]=Y)+LAMDATL2]xX
[14] I«Te.=I+11tpX
[15] DB+ {R+C+, xBB)+.xC
[16] U«D+.x({LAMDA[1]xI)+LAMDAL2IxR
[17] R«5pV,[0.51P+.x(LAMDAL2]xI}~LAMDAT1]xR
v

SR«CINVI Z2;Y;0:X;5
{11 n INVERSE OF COMPLEX Z WHEN IMAG PART INVERTIBLE
[2] +(2#1+5«pZ) /MESS
£3] +((1=p3)v{2=p5)a1="145)/SCALAR
[+({3=p5)A0=-/1+5) /CONTINUE
[5] MESS:+0,0+'ARGUMENT MUST BE COMPLEX SQUARE MATRIX!
[6] SCALAR:Z+2 1 1pZ
[7]1 CONTINUE:D+EY+(ReX+.xBY+IMAG 2)+.=xX+REAL Z
[8] ReSp{P+.xR),[0.5]-D
v

VR+CINVR Z;Y;D;X;5
{11 n INVERSE OF COMPLEX Z WHEN REAL PART INVERTIBLE
[2]1 +(22145+pZ) /MESS
[3] ={(1=pS)Iv{2=p5)al="14+5) /SCALAR
(43 +((3=pS)A0=-/1+5} /CONTINUE
(5} MESS:+0,0TARGUMENT MUST BE COMPLEX SQUARE MATRIX'
[63 SCALAR:7+2 1 1pZ .
[7] CONTINUE:D+EX+(ReY+ xBXREAL Z)+.xY+IMAG Z
[8] FE«5ph,[0.5]D+.x-f
v

VR«CLOG Z
(1] w» LOGARITHM OF COMPLEX 2
(2] R«{eMOD Z},[0.5]4RG Z

v

118

VR+CMEXP A3J3T:M; 8
[1] s EXPONENTIAL OF COMPLEX MATRIX: AGHs4
[2] +(22145+pA)/MESS
[3) +((1=pS)v(2=p5Yal="115)/SCALAR
(4] +((3=ppA) r0=—/14pd)/CONTINUE
[51 MESS:»0,pU'ARGUMENT MUST BE COMPLEX SQUARE MATRIX'
[6] SCALAR:A«2 1 1pA
[7] CONTINUE:A«4+2+M0[T 1+2018 10+[/+/M0D A
[8] ReT+COMPLEX Teo.=T«1{J«1)+1+pA
[9] SERIES:ReR+T+T CMM Asd
L10] +(13zd+«Sf+1)/SERIES
{111 J+0
[12] SQUARE:+(M<J«J+1)/EXIT
[13] ReR CMM R -
[1a] ~SQUARE
[15] EXIT:R+5pR
v

VR<COMPLEX X
£1] n CONVERTS REAL X TO COMPLEX
[2] R+X,[0.5](pX)p0

v

VR+X CMM Y3 RX;RY;IX;TY

{13 n COMPLEX MATRIX MULTIBLICATION

2] RXeREAL X

[31 IX«IMAG X

(4] RY<REAL ¥

[5] IY<IMAG Y

(6] R<((RX+.,xBY)-{IX+.xI¥}) ,[0.5{RX+, xIY)+(IX+,xRY)
v

. VR+CONJ X

[1] n CONJUGATE OF COMPLEX X

(2] Re(REAL X),[0.5]-IMAC X
v

VR+X CSUB Y

(1] n SUBTRACTION OF COMPLEX Y FROM X

[2] R«((REAL X)-REAL Y),[0.5](IMAG X)-IMAG ¥
v

VR+DEG X
(11 wn CONVERTS X IN RADIANS TO DEGREES
[2] ReX=xisgso1

v

VReIMAG X;8
[1] n EXTRACTS IMAG PART OF COMPLEX X
(21 ~(2=1+pX}/CONTINUE
(31 »0,p+'COMFLEX X MUST HAVE 2=1+pX"
(4] CONTINUE:R+Sp(™1.5«1+pX)+X

v

118

(1]
£21

[11
£2]
(3]
(4]
[£s]
6]
7]
[4a]
Lol
[10]
[11]
[12]
[13]
[14]
f15]

(1]
£2]
(3]
[4]

(1]
£21]

VReMOD X
n MODULUS OF COMPLEX X

Re{((RBAL X)=2)+({IMAG X)*2)}%0.5
v

VR«MEXP A;J3;T;M5

n EXPONENTIAL OF REAL MATRIX: AGHSY
S+pA

+(1=p,4) /SCALAR
+({2=ppA)}a(0=-/pA)}) /CONTINVE

+0, p0-"ARGUMENT MUST BE REAL SQUARE MATRIX'
SCALAR: A+, A
CONTINUE: AvAs2%M+00 [142018 10+ /+/ |4
ReD+To, =T« (J+1) +p4

SERIES: ReR+Te T+ . xAtd

+(132J«J+1) /SERIES

J4+0
SQUARE:+(M<J+J+1) /EXIT

R+ xR

+SQUARE
EXIT: R«50R

v

VR+REAL X;3
A EXTRACTS REAL PART OF COMPLEX X
+(2=1+pX) /CONTINVE

+0, pO-"COMPLEX X MUST HAVE 2=1tpX'
CONTINVE; R+5p(1,5+14pX)4X

v

VR+RAD X

A CONVERTS X IN DEGREES T0 RADIANS
R+0X+180

v

120

SCREENIO — A FULL SCREEN MANAGER
by David Doherty

For some time now, BUPA has been a major user of APL. The majority of the APL applications
which we write for our internal users are highly interactive in nature and to ensure that this
interaction is as ‘painless’ as possible, we take full advantage of the IBM fullscreen facilities
available to us under AP124.

Until SCREENIO, the implementation of these fullscreen systems relied solely upon a set of
screen design and low-level screen handling software which had been developed within BUPA.
This software is similar in nature to the IBM supplied screen software.

SCREENIO treats screens as self-contained entities and addresses such problems as dynamic
screen output, complex validity checks, PF key handling and scrolling.

The simple parameter definitions which describe a SCREENIO screen, ensure that they are
simple to build, maintain and modify.

Before describing SCREENIO, let us first consider some of the preblems related to screens and
their management. Wa shall also review the screen software we already had and examine how
far it went towards solving those problems.

SCREEN MANAGEMENT

Designing a screen to run within any application system requires careful consideration and
planning. It must be considered both from the aspect of the user and the application itself.

The Screen-User Interface

— Physical layout:
The physical layout of fields on the screen, ie, their position, shape, and logical
order (I have not seen many screens where the ‘first’ prompt appears at the
bottomn left hand corner of the screenl). Physical layout is a vital aspect of screen
design and can mean the difference between a screen being easy or difficult to
use.

— Field intensity:
Skiltul use of intensity can improve readability of the screen and highlight
important screen details.

— Static text:
Fixed prompts and headings which guide the user in both the use and purpose of
the screen, are vital and must be clear and concise.

— Dynamic text:
Anything from time and date displays to dynamic headings or error messages
constitute dynamic text; these guide the user in his treatment of the screen.

— PF Keys:
They are usetul for all manner of things eg, summeoning help displays which
describe the screen, signalling QUIT or SAVE, centrolling vertical and horizontal
scrolling, invoking special facilities pecullar to that screen or application.

121

The Screen-Application Interface

SCREEN MANAGEMENT — WHAT HAD BEEN DEVELOPED

Screen design software and low-level screen utilities were already in use...

Screen-User Interface

Referencing screen fields:
Screen fields must be referenced in order to read or write to them.

Validation:
Once the screen has been displayed, the user's entries are examined and
validated.

Screen handling:
After, for example, an invalid input, it is usual to re-position the cursor, display
error flags or messages, sound the terminal alarm and so forth,

Capturing screen input:
Finally, it is necessary to capture the users’ {(validated) inputs to the screen.

Physical layout:
Our screen design software allowed easy definition and modification of the 1
positions, shape and type of all screen fields.

Field intensity:
Field intensity could be set dynamically as well as at the design stage.

Static text:
Defined during the design stage.

Dynamic text:
Low-level software allowed us, under the control of application code, 1o write to the
screen.

PF keys:
The key depressed may be detected, but handling of the key has to be controlled
by application code.

The Screen-Application Interface

Referencing screen fields:
Field labels, which simplify field referencing, are defined during the design stage.

Validation:
All validation must be handled by application code.

Screen handling:
Screen control is effected through low-level software driven by application code.

Capturing screen inputs:
The capturing of screen inputs must be controlled by application code.

122

Ciearly, the management of the screen requires a combination of calls to the low-level screen
handling functions for cormunication with and manipulation of the screen, coupled with application
code to actually govern the handling of the screen.

SCREEN MANAGEMENT — A CHANGE IN APPROACH

From caratul consideration of the above, the advantages in treating screens as seli-contained
entities which could be handled by standard software were recognised, therghy:

— Removing the repetitive aspects of the process, saving development time and
eliminating redundant code.

— Combining both the definition of the physica! attributes of the screen with dynamic
output, verification, error messages and PF Key handling, so that the screen could
be regarded as a single entity.

— Providing a standard way of defining these ‘facets’ of the screen so as to simplify
its maintenance.

Itwould then be possible to drive screens via a standard screen manager which would only require
the name of the screen to be used. The manager would then drive the screen, performing all
validation, executing any dynamic outputs and handling the PF Keys according to the parameter
specifications made at the design stage.

One possible problem with this approach might be that the programmer would be constrained
by such a package. Flexibility was therefore given a high priority.

SCREENIO — A POSSIBLE SOLUTION

With these aims in mind, SCREENIO evolved. Logically, it is divided into two groups —
maintenance and application. The maintenance routines (which are themselves SCREENIO
screensl) are held on a central library and loaded as necessary.

Within the application system only the application group is needed to drive the screens and should
be stered as a part of the application.

Maintaining the Screens

SCREENIQ screens are held on file and are referenced by name. Its screen maintenance routines
utilise our existing screen design software: they do not supptant it.

The creation or amendment of a SCREENIO screen involves extra steps in the design stage.
These extra steps are integrated with the existing screen design software.

SCREENIO’s parameter definitions consider the screen both from the aspect of the user and
the application,
The Screen-User Interface

— Physical layout: No change.

123

Field intensity: No change.
Static text: No change.

Dynamic text:

Text may be written to any field on entry to the screen. An OUTPUT PARAMETER
is simply defined for that field. Thus dynamic headings, time, help and date
displays are catered for.

PF Keys:
They may be separately defined for each screen. Some PF keys are defined
according to our own internal standards. These are:

PEF1 summons a help display. ~

PF3 is QUIT.

PF12 is END.

PF8 displays the PF key descriptions

PF keys 7, B, 10 and 11 are reserved for vertical and horizontal screlling of data.

These keys, along with their standard descriptions, are automatically defined for
each screen when it is created. Scrolling will only operate if the data exceeds the
size of the field in either, or both of, the vertical and horizontal dimensions.

The remaining keys, 2, 4, 5 and 6 may be defined by the programmer as special
purpose keys, Both a description and a definition may be entered. EXECUTABLE
EXPRESSIONS are entered for the definitions and text for their descriptions.

‘The Screen — Application Interface

Reference screen fields: No change.

Validation:

SCREENIO provides for the verification of screen input in two ways:
INDIVIDUAL FIELD VALIDATION

Fields may be validated on an individual basfs. For each input field, a number of
parameters are defined during the design stage and they control the validation for
that field.

For each fleld, an (EXECUTABLE) VALIDATION EXPRESSION is entered, which is
used to validate the contents of the field. SCREENIO contains some ‘in-built’
validation routines for the more commen validation requirements, like numeric
validation, table lookups etc. They are invoked using special characters within the
EXPRESSION.

If the input into the field is INVALID, SCREENIO will writea an ERROR MESSAGE
which the programmer has defined, to a nominated ERROR freld The ERROR
MESSAGE may be static, or dynamlcally defined.

The input fields can be flagged as MANDATORY or OPTIONAL which means that

the programmer can force the user to input details where necessary or omit them
when defaults have been predefined.

124

Similarly, SCREENIO can be directed to CLEAR INVALID entries from input fields
or ieave the entry for the user to edit.

Finally, SCREENIO will assign the contents of the field to a (GLOBAL} variable
which the programmer nominates,

RELATED FIELDS

It is frequently necessary to consider fields in relation to one another; for example,
it may be necessary to multiply two fields together to form a new result, which may
in turn have to be validated.

SCREENIO provides for this through the entry of 'rules’ which apply to the input
fields. Each 'rule’ may apply to as many, cr as few fields as required. Like the
individual field validation, the programmer defines several parameters.

An EXECUTABLE VALIDATION EXPRESSION is used to examine input fields in
relation to one another.

It the result is VALID, an (optional) result may be written to a designated field. If
the result is INVALID, an ERROR MESSAGE which again may be static or
dynamic is written to an ERROR FIELD.

Screen handling:
SCREENIO handles the screen in a consistent and logical manner tollowing the
use of PF keys, error messages elc.

Capturing screen inputs:
SCREENIO assigns (as described above) all the users’ inputs into (GLOBAL)
variables,

Driving the Screen

Toruna SCREENIO screenitis only necessary to call SCREENIO with the name of the required
screen passed to it as an argument.

It utilises the low level screen handling software, governing it according to the operation being
performed. We may summarise the execution of SCREENIOQ as follows.

L L

Reads the file-held variables for the required screen into the workspace.
Formats the screen and writes both the STATIC and DYNAMIC text.
Displays the screen and awaits user input.

Actions key depressed.

Validates input and assigns it to (GLOBAL) variables.

The screen is finally left. The key depressed is returned as an explicit result.

The application code can act upon the key returned and utilise the GLOBAL variables SCREENIO
has defined.

125

CONCLUSIONS

The effort put inte SCREENIO has proved worthwhile. it has shown itself to be a valuable tool
which meets its design criteria.

By treating screens as single entities it provides us with a coherent approach to the use of screens
within applications and the problems encountered In their design use.

Itis easy to use, requiring only a single call to SCREENIO within appli¢ation code.

It is eminently flexible, controlling dynamic output to the screen, PF key handling, validation
of fields both individually and in relation to each other, and finally, returning all input from the
screen in a convenient collection of variables.

Above all, SCREENIOQ does nol constrain the programmer because it allows EXECUTABLE
EXPRESSIONS within the parameter definitions.

We are not, however, complacent. SCREENIO evolved into its present state and is continuing

to evolve as the problems associated with screens and their management are reconsidered,
new problems encountered or new approaches sought.

126

APL AND PARTITIONED DATA
by Jonathan Barman

Introduction

APL arrays provide a natural way of partitioning data. A matrix can be viewed as a set of vectors;
each row of a matrix of numbers could be vectors of costs incurred by each department in a
business. Adding up the total costs incurred by each department is then a simple matter of applying
plus reduction along the last dimension. Reduction and Scan operators allow the application
of any scalar function along any axis of an array, and provide powerful tools for creating functions
which work on partitioned data. There are, however, limitations in some applications. In the
example of department costs, some departments may incur many cost items, and have long
vectors, while others may have only one or two cost items. APL arrays have to be rectangular,
so holding the costs as a matrix means that all the rows have to have the same length; short
vectors have to be padded out with zeros to match the largest number of cost iterns. The amount
of padding required can be so large that it becomes difficult to manipulate the matrix without
workspace full messages, although the amount of data is relatively small. It one department
out of 100 departments had 5000 cost items and all the other departments averaged 5 items
apiece, then the matrix has to be 100 rows by 5000 columns taking up 2,000,000 bytes, of which
only 40,000 bytes is data.

Another difficulty is whera the data is normally manipulated as a vector and it is inconvenient
to form it into a matrix so that reductions and scans can be applied, and then reformat it as a
vector. For example, text typed by the user of a system may need to be manipulated and re-
displayed, and it is convenient to keep the text as a vector throughout the processing.

This article explores the ways in which partitioned data can be processed in a more natural way,
without looping. The techniques are well known and have been in use for many years. The Working
Memorandum on Boolean Techniques by Robert A. Smith was published by STSCin 1975, and
sets out the fundamental ideas and lists an extensive set of functions. The FinnAPL Idiom list
contains examples of manipulating partitioned data. The APL*Plus and Sharp timesharing
services both provide workspaces of partition functions.

Before plunging into detail, the general principles wilt be illustrated with a simple example. The
principles will then be analysed in more detail and illustrated with more examples.

Taking the department cost example, assume that each department has a unique code and
that the costs and codes are held in two numeric vectors COSTS and DEPTS. The costs and
department codes were entered from invoices, so that each cost has a corresponding department
code.

There are three basic ways of adding up the costs for each department; by looping through each

department code, by forming the data into a matrix and using plus reduction, or by using partition
techniques. The looping method could he implemented as follows:

127,

~. VR+DEPTS ADDUP COSTS;A;B30I0
[11 n ADD UP <COST'S> FOR EACH CODE IN <DEPTS>
[2) n <RL:11> IS DEPT CODES, <R[32] IS TOTAL COSTS.
[3) = LOOPING METHOD. .
[4] QOfo+1
[5] R0 2p0
{6 Li:+(QepDEPTS) /0
[7] A«1+DEPTS
[81 B«A=DEPTS
9] ReRr,[11A,+/B/COSTS
[10] BB
{411 DEPTS~B/DEPIS
£12] COSFS+B/COSTS
[13] L1

v

144 31 ADPDUFP 10 20 30 40 50
1 60
4 50
3 40

This method is inefficient if large amounts of data are involved. Lines 910 12 reassign the variables,
so0 data is being moved in memory for every unique department found.

Forming the data into a matrixis more efficient than the looping method, but, as explained above,
there may be workspace full problems:

VR+DEPTS ADDUP COSPS; A; P3O0
[1] m ADD UP <COSTS> FOR BACH CODE IN <DEPTS>
£2] n <R(;1)> I8 DEPP CODES, <K[;2] IS TOTAL COSTS.
3] s MATRIX METHOD.
[wl Qo+l
[5] n SORT INTO DEPT CODE SEQUENCE
[6) A<hDEPTS
[7]1 DEPTS<DEPPS[A]
{8] cosrscosrsial
[9] n FIND WHERE CODES CHANGE
[10] P+DEPTS21+DEPTS,0
{111 PL(0zpP)/pPl+1
[12]1 a FIND NUMBER OF CODES FOR BACH DEFT.
(131 A«P/ipF
[14] AA-"1+0,4
[15]1 & FORM EBXPANSION VECTOR.
[i6] A+4e.217/0,4
{171 m MAKE 208PS [NTQ A MATRIX.
£18]1 A«{pA) p(,AI\COSTS
[19] n ADD UP, ARD APPEND DEPT CODES.
[20] R+(P/DEPTS).F1.51+/%
v

14y 31 ADDUP 10 20 30 40 50
1 60
3 40
4 50
Forming the data into a matrix requires a technique which is constantly being used when dealing
with partitioned data. Line 10 is a ‘‘not-equals positive difference operation”, and line 14 is a
“minus negative difference operation’’.

128

Lines 10 and 11 generate a '“partition vector”, Line 11 is necessary because it cannot be
guaranteed that a department ¢ode of zero does not exist. If the rotation methed is used:

P+DEPTS214$DEPTS

then line 11 is required in case there is only one department code in the data.

Care has beentaken that empty arguments do not cause an error. Line 11 checks for an empty
vector. Line 14 could have been written as:

A«4-0,7 144

which would have caused a length error if A was empty. Line 16 has a 0 catenated to Ain case
it is empty. It is good practice to ensure that all code will work properly on empty vectors, but
itis sometimes simpler to branch out on empty at the beginning of the function rather than having
to include special processing as in line 11.

The partitioned data approach is as follows:

YR+DEPTS ADDUP COSTS: A3 P10
£1] m ADD UP <COSTS> FOR EACH CODE IN <DEPTS>
[2]1 m <R[;1]> IS DEPT CODES, <R[;2] I8 TOTAL COSTS.
£3] m PARTITION METHOD. :
- [u] Ofo+y
(51 n SORT INTC DEFF CODE SEQUENCE
[8] A+ADEPTS
[71 DEPTS+DEPTS[A] :
[81 COSTS+COSTS[A]
[9] n FIND WHERE CODES CHANGE
[10] P«DEPTS21+DEPTS,0
[1i) PL(0zpP)/pPl«1
[12] a CUMULATIVE SUM FOR EACH DEPT.
[13] R«P/+\COSIS
{14 n CONVERT T0 INDIVIDUAL SUMS.
[15] R+R-"1+0,R
(161 n APPEND DEP? CODES
[17] R<{P/DEPTS),[1.51R
v

1 44 31 ADDUP 10 20 30 40 50
1 60
3 40
4 50

The steps down to line 11 are Identical to the matrix method. Line 13 gets the overall cumulative
sum for each department, and line 15 does the “minus negative difference

129

operation” which converts the cumulative sums back to individual sums. This relationship between
scan and negative difference operation is another important technique which will be explored 1
more fully later.

The ADDUP tunction is really carrying out three processes: sort the data, set up a partition vector,
and carry out a partitioned plus reduction. The processes are needed in many varied
circumstances, so itis convenient, and better programming practice, to have separate functions.
Lines 10 and 11 generated a trailing partition vector as it was needed in this form on line 13.
A trailing partition vector is one where a 1 flags the end of each partition:

4422266777
A#144,0
00101001

A leading partition vector is one where a 1 flags the start of each partition:

A271+0,4
10010100

All partition functions need a partition vector as an argument, and it is necessary to standardise
on eitherleading or trailing partitions. As the literature on partition functions always uses leading
partitions, we will do likewise. The first function to be defined is one to create a partition vector:

VR-CREATEAPARTITION 4
[1] & <k IS5 A LEADING PARTITION VECTOR WITH 115 WHERE"
[2]1 =& <A> CHANGES.
[3] Redz"1d4
[4]l ~—+{0epR}/O
[5]1 RIOIOI+1
v

CREATEAPARTITION 1 11 1 8 8 50 50 50
100010100

Line 3 uses the rotation method to allow for the data being either character or numeric, line 4
branches on empty, and line § guarantees the first element isa 1.

VR+P PAPLUSARED A
[1] & <P> I5 A LEADING PARTITION VECTOR, .
[2] wm <4> IS A NUMERIC ARRAY.
£3] m <R> IS A PARTIPLONED PLUS REDUCTION ON THE
t4]l n FIRSC DIMENSION OF <4>.
£E5] R+(10P)#+34
[6) ReR-{pR)p0,(I0]1R
v

Lines 5 and 6 of the partitioned plus reduction function are generalisations of lines 13 and 15
of the last ADDUP example. The rotate of the leading partitions on line 5 changes them into
trailing partitions, and the plus scan is carried out along the first dimension so that the data can

130

be a matrix. Line & carries outthe " minus negative difference operation”” along the first dimension
of the array.

P
100010100
4

+ 0w

-

FuwerounpeAro
s

B =P T I

[C- SRR I P [S

P PAPLUSARED A
13 26 15
11 16 11
15 18 24

A more general accumulation function can be written in place of the ADDUP function:

VR+ACCUMULATE A;P;010
[1] m <A[;11> IS A SET OF CODES. REMAINING COLUMNS
[2) R OF <A> IS DATA. IS THE UNIQUE SET OF
[3] n CODES IN COUMN 1, WITH THE TOTALS OF THE DATA
[4] =& IN THE REMAINING COLUMNS.
[51 (o«
[6]1 +(0epR+4)/0
£91 R«RLAR(31133
[8] P+CREATEAPARTITION R[;1]
[9] Re(P/R[;11),P PAPLUSARED 0 1R
v

37 25 99

76 B6 8

28 44

48 24 28

17 49 90

7 91 51
ACCUMULATE A
17 49 90

213 118 80
44 116 150

NN FFF 0
i3
w

[=i

Difference Operations

A list of the boolean difference operations are given in the appendix. At first sight they tend to
look similar, and it is difficult {o appreciate which ones are going to be useful. Rather than go
through them all, the following functions show how the more popular difference operations are
used in practice.

The greater-than negative difference operation keeps the first one in each series of ones, and
setsg the remaining ¢lements to zero:

131

49110011110
A> 140,4
gc100010Cc000

This difference operation is very useful when analysing text typed by the user. For example,
when checking fullscreen data input it is usually necessary to count how many words or numbers
have been entered in each screen field:

VAWGRD A OUNT A
(1] m <4 IS A CHARACTER MATRIX. <R> IS Dil NUMBER
[2]1 w OF WORDS OR WUMBERS ON EACH ROW OF <A>

[3) Reszr
(41 R+R>(pR)*0,R
[5] Ret/R
v
A
ONE TWO
12 34 6
589
WORDACOUNT A

231

When errors are found in the text typed by the user, an error message has to be displayed
describing what has gone wrong. It is nice to be able to point out the exact location of the trouble:

VR«ERE REPORTAERROR TEXT:A;CR
£1] & <ERR> IS A BOOLEAN ERROR INDICATOR WITH AN BLEMENT
{21 « FOR EACH WORD IN THE CHARACTER VECTOR <TEXT>.
[3] n <Rk» IS5 AN ERROR MESSAGE.
[4] A<TEXTz" ?*
[5] A+A4>71+40,4
[6] n VSAPL CARRIAGE RETURN CHARACTER.
[7]1 c¢R~0 1 o/0dTC
8] R+'INVALID ITEM:',CR,TEXT.CR. A\ERR\'A
v

0 0 1 0 REPORTAERROR ' ONE W0 THRE FOUR'
INVALID ITEM:
ONE w0 THRE FOUR
A

Lines 4 and 5 flag the first letter of each word in the TEXT, which is used to position the caret
on line 8.

Two algorithms for checking numbers were published in Quote Quad, and they both exhibit the
use of difference operations. Algorithm 139 by Gerald Bamberger in the March 1980 issue of
Quote Quad (Vol 10 No 3) verifies numeric input, and is similar to the Quad function available
on Sharp APL and APL*Plus APL.

132

1]
[2]
[3]
(4]
[5]
(&l
{7]
{a]
(9]

VR+VI A

n VERIFY NUMERIC IHPUT,

n <4> IS A CHARACTER VECTOR CONTAINING GROUPS OF
n CHARACTERS DELIMITED 8Y ONE OR MORE SPACES.
R <E> IS A BOOLEAN VECTOR WITH A 1 WHERE THE
n CHARACTER GROUP IS A VALID NUMBER. NUMBERS

n OUTSIDE RANGE {(/10)<A<L/10 COUNTED AS VALID,
Be' 11111111112385'[" 0123456789, E'1'0 7,4]
REelve{(ReT2341)VR2 141 ' R)/R

ReRe{8 3p0 41 431)+1 12 121 21 31 312 3121 3210.x1 100
1000

v

VI'123 1.3 3°4 3,4 3By T3IE 3y E3Y

1101110

A slightly simpler version, excluding E notation values, may be preferred:

[1]
£2]
{3l
f4]
51
6]
{7]
L8]
(9]

VRAVI A
VERIFY NUMERIC INPUT.
<4» IS A CHARACTER VECTOR CONTAINING GROUPS OF
CHARACTRERS DELIMITED BY ONE OR MORE SPACES.
<R> IS5 A BOOLEAN VECTUR WITH A 1 WHERE THE
CHARACTER GROUP IS A VALID NUMBER. WNUMBERS
QUTSIDE RANGE ([/10)<A<L/10 COUNTED AS VALID.
Re' 1111111111234'[' 0123456789, '1'0 ',4]
Reive((Re'23")vR2"13' ' \R)/R
B+Rel 12 121 21 31 312 3121 321
v

> D>DDd DD

Line 8 of the function uses the not-equal negative difference operation to remove duplicates.

Algorithm Number 146 by Jefirey Multack, in the September 1980 issue of Quote Quad {Vol
11 No 1} converts numeric input:

[1]
[2]
[3]
[ul
£s]
[s]
£71
[s8]
9]
(101
[11]
[12]

43
123 1.3 0 3.4 30000 3E 34 0

va«FI A;M
VERIFY AND CONVERT NUMERIC INPUT.

2

n <d> IS & VECTOR CONTAINING GROUPS OF CHARACTERS
n DELIMITED BY ONE OR MORE SPACES. <i> IS 4
n NUMERIC VECTOR WITH VALID NRUMBERS IN <4> OR
n ZERO FOR ANY GROUP WHICH IS NOT A NUMBER.
ReVIV t .4

+(v/R)+0
R FORM MASK FOR VALID CHARACTER GROUPS.

M+.Az| L}

MeM>T140,M

Me2\M\R2" 140, R

RLR/ \pRI+2M/ A

g

FI'123 1,3 8™h 3.4 384 T3E 3y E3!

133

Lines 10 and 11 have been altered slightly so that they are in the same form as the difference
operations already given. Line 10 is the greater-than difference operation which flags the first
character in each group. Line 11 then extends the ones for each character group that is valid.

A+'11234 1,.23 UEO !
D.(_M+.A;:!|
1111001131 110000111
etz 140,M
100000100000000100
| }-R<VT A
101
Mz \M\RZ 1+0,R
111111000000000111

Line 11 can be broken down into 3 stages, a not-equal difference operations:

B2T1%0,R
111

an expansion:

M\lz 1+0,R
10000010000000010¢0

and a not-equal scan:

E\M\RZT140,R
11t1t11000000000111

Not equals scan has the property of switching from 1 to 0 and from 0 to 1 every timeatis
encountered in the vector. The not-equals difference operation does the opposite, so the three
stages are: apply atransformation, expand, then put it back 1o what it was. The partitioned plus
reduction does a similar task:

Reif- 130, 7+P/+\A

Apply a transformation (plus scan), compress, then put it back using the minus negative difference
operation. The conversion back to the original form is possible because the minus negative
difference operation is the inverse of plus scan.

eAee\2 4 1 3
26 712

A~T140,4
2415

134

Also, the not-equals difference operation is the inverse of not-equals scan:

JeAE 1 1 0 0 1
13001

AZT140,4
11201

Line 11 of Fi is so useful that it should be defined as a function:

BeP PaMASK A
1] n <P> IS A LEADING PARTITION VECTOR. <A» IS A BOOLEAN
T2] n YECPOR WJHERE pA IS TOENTICAL I'D +/P.
[3) A <> IS A HOOLEAN VECTOR WITH 1 IN EACH PARTIPION
{4 A WHERE <d> IS 1.
(5] Aez\D\A% 140,4

v

1003101 00PMMASK IO L
111100111

Having seen that the basic process is difference, expand, scan, with not-equals, an equivalent
function can be written using the same basic process, but with minus and plus:

VR+P PAREPLICATE A
(1] & <P> IS A LEADING PARTITION VECTOR. <4» IS 4
{21 n NUMERIC VECTOR WHERE pd IS IDENTICAL TO +/P.
[3] m <@> IS A NUMERIC VECTOR WITH EACH ELEMENT OF
[4] s <4> REPLICATED IN EACH PARTITION.
[51 EBer\A\A-T140,4

v

100010100 PAREPLICATE 2 6 3,2
222266 3.2 3.2 3.2
Using the partitioned plus reduction technique of difference, compress, scan, but with not-equals
in place of minus and plus, yields a partitioned not-equals reduction function:

VR+P PANEARED 4
[i] A& <P> IS5 A LEADING PARTITION VECTOR. <A> IS A
£2] =a BOOLEAN VECTOR. <R> IS 2/ FOR EACH PARTITION.
31 Am={19P)/%\A
(4] ReRz 140,R

v

This function can be used to flag partitions with an uneven number of occurrences.

Anather ‘tool-box’ function that illustrates a difference operation is one for remaving surplus
spaces:

135

VR+SQUEEZE A3B
[1] m REMOVE LEADING, TRAILING AND DUPLICATE SPACES
[2] n FROM CHARACTER VECTOR <A>
[3] ReA,?
(4] B+ '27
[5] B+Bv 1+0,B
[6]1 I« 148/R
v

Line 5 has an ‘or’ negative difference operation which adds a 1 after each group of enes. Line
3 guarantees a trailing space which is then removed on line 6.

The following function is one of a set of functions to help formatting numeric data in VS APL:

YR+BRACKETS A;B;C;D
{1] n <4> IS A CHARACTER ARRAY OF FORMATTED NUMBERS
[2] nr WITH AT LEASP ONE SPACE BEFORE EACH NUMBER.
£3) R <> HAS THE NUMBERS MOVED ONE SPACE TQ THE LEFT
Eul m AND HAS BRACKETS [N PLACE OF NESATIVE SIGNS.
{51 AR«1d,A
(6} B+Rzx' !
[7]1 €+B>"1+0,B
[8] D+« 'aC/R
91 RUE\DY 1pRI+' (1
[10] ¢«B<"140,B
T111 ROC\D) /1pRI+T)?
[12]1 Re(pA)pR

v
NUMS
.00 3648.55 T.35 40,10 ~.3n
.00 .00 6.43 536.58 .04
.00 .00 00 761.24 42
BRACKETS NUMS
.00 368.55 (.35} (40.10) (.34}
.00 .00 6.43 536.58 (.0u)
.00 .00 .00 (761.24) 42

Line 7 is a greater-than negative difference which flags the beginning of each group of numbers.
Line 10 is a lese-than negative difference which flags the baginning of each group of spaces.
The negative sign is therefore only replaced by both a left and right parenthesis.

The function was created to help develop a generalised formatter for VS APL. In practice, a

formatting function would have the format specification available to indicate where the right
parenthesis should be piaced.

136

Partition Functions

Partition functions have been given for plus reduction and not-equal redustion, but partition
functions are needed to carry out the equivalent of all the reduction and scan operations. The
working Memorandum on Boolean Techniques gives a very comprehensive list, but here are
two that are most frequently used:

VR«P PAIRARED A
[13 n <P> I5 A LEADING PARTITION VECTOR. <4> IS A BOOLEAN
(2] m VECTOR. <R» IS v/ FOR EACH PARTITION OF <4>.
(3] BR«~(Pva)/P
[4] R«(P/A)zR/19R
v

VR+P PAANDARED A
(11 & <P> IS A LEADING PARTITION VECTOR. <4> IS A BOOLEAN
[2] n VECTOR., <R> IS A/ FOR EACH PARTITION OF <A».
[3] me(PzA)/P
(4] Re(P/AYAR/1OR
v

These functions are also published in the FinnAPL Idiom Library numbers 491 and 492.
An example of their use is taken from a set of tunctions to carry out formatting under VS APL:
VR+BLANKATFAZERD A;B;C; P

(1] & <4> IS A CHARACTER ARRAY OF FORMATTED NUMBERS,
E2] m <R> HAS ALL ZERO NUMBERS SET 10 SPACES,

£3] R+4

[4] +(0eB+pR) /O
{5] H+.R

6] PeR=t t

[7] PP>"1+0,P
[8] PL[OIOI+1
[9] C+P PAMASK~P PMANDARED Re' 0.°
[10]1 ReBpC\C/R
v

NUMS

.00 368.55 ~.35 “50.10 T.34
.00 .00 6.43 536,58 .04
.00 .00 .00 T761.24 42

BLANKAT FAZERO NUMS
368.55 ~.35 “40.10 “.ay
6.43 536.58 .04
T761.24 42

Lines & to 8 set up a partition vector, and line 9 creates a mask for those partitions that do not
have a space, zero or decimal point. Of course, if the format specification Is available the partition
vector ¢an be set up without searching the data.

137

Finally, an example of using partition functions lo eliminate looping. In the last issue of the APL
User Group News Letter Dick Bowman gave a very interesting problem of calculating geometric
means of sets of data.

The solution published calculated the geometric mean of each set of data in aloop, which would
be inefficient if large amounts of data were involved and Dick ends his article with “There surely
must be a betterway’. The partitioned data approach would be to create a partitioned geometric
mean function.

VR«P PAGEOM A3B;C3D
(11 m <P> IS A& PARTITION VECTOR, <A> IS5 A NUMERIC VECTOR.
2] A <k> IS5 THE GEOMETRIC MEAN IN EACH PARTITION WHERE
131 m ALL WUMBERS ARE GREATER THAN ZERO, OTHERWISE ~1.
[4] B«P PANDARED A>Q
[5] C+«P PMMASK B
{6l D«C/P
[7] R+*{D PAPLUSARED®C/A)}:+PASHAPE D
[8] ER«~{B\R)-~B

v

VR+PASHAEE P
[1] mr <P> IS A LEADING PARTITION VECTOR.
[2] n <R> IS THE NUMBER OF BLEMENTS IN EACH PARTITION.
[3] h+(19P)/1pP
[4] R+R-T1+0,R
v

100010100PANEM368102321
3.464101615 ~1 1.817120593

Line 4 finds the partitions that need to be processed, and line & creates a mask. Line 7 then
calculates the geometric mean for each valid partition, and line 8 sets invalid partitions to negative
one. This function can then be used to repiace the loop in the originai function, after having
created a partition vector.

Concilusion

Ditference operation and partition functions provide a useful set of tools which help to solve
the programming problems where the data does not fitin with rectangular nature of APL arrays.

The generalised array facilities in APL2, NARS and Sharp APL developments provide much
more powerful tools for manipulating non rectangular data. The partitioned data approach is
much easier and more direct with generalised arrays; the partitioned plus reduction is merely
a plus reduction for each element of a vector of vectors, and a proper notation is provided for
its application. Roll on generalised arrays — but in the meantime we can make do quite
successfully with partitioned functions!

APPENDIX
Boolean Difference Operations

Less-than Negative Differsence. The first of each group of zeros is set 1o one, all other elements
are set to zero.

138

FA«0 0111
0011110011
A<71+0,A
000000100001 00010

100111000101
1060101

less-than Positive Difference. The last of each group of zeros is set to one, all other elements
are set to zero,

A
00111100111000101

A<1+4,0
01000C0010000010C10

Less-than-or-equal Negative Difference. The first of each group of onies is set to zero, all other
elements are set to one.

4
0011110011100 0101
A< 1+41,4

11011111011111010

Less-than-or-equal Positive Difference. The last of each group of ones is set 1o zero, all other
elements are set to one.

A
00111100111 000101
As1+4.1
11111011110111011

Equal Negative Difference. The first of each group of zeros and the element to the right of each
group of 2eros is set to zero, all other elements are set to one.

A
00111100111000101
A= 1+1,4
010111

01011011000

Equal Positive Difference. The element to the left of each group of zeros and the last of each
group of zeros is set to zero, all other elements are set to one.

4

001111006111 000101
A=1+44,1
1011101

0110110001

139

Greater-than-or-equal Negative Difference. The first of each group of zeros is set to zero, all
other elements are set to one,

10601110006101
z 1+1,4
101111011101

Greater-than-or-equal Positive Difference. The last of each group of zeros is set to zero, all other
elements are set to one.

A
00111100111 000101
Az1+4,1
1011111011111 0101

Greater-than Negative Difference. The first of each group of one is set to one, all other elements
are set to zero.

A4
tci11100111000C¢101
A> 1+0,4

ocl100000100000101

Greater-than Positive Difference. The last of each group of ones is set to one, all other elements
are set to zeros.

A
pp111100111000101

A»14A4,0
00000100001 000101

Not-equal Negative Difference. The first of each group of ones and the element to the right of
each group of ones is set to one, all other elements are set to zero.

A
00111100111000101
A= 1+0,4

00100010100100111

Not-equal Positive Ditference. The element to the feft of each group ot ones andthe lastof each
group of ones is set to one, all other elements are set to zero.

A
001i11100131000101

A*1+4,0
01000101001 001111

140

Or Negative Difference. The element to the right of each group ot ones is seot to ong, all other
elements are unaltered.

A
0011 l 100111000101
AvT140,4

001111101111 00111

Or Posttive Difference. The element to the left of each group of ones is setto one, all other elements
are unaltered.

4
00111100111 000101
Avivd,0
0:11111011110061111

And Negative Difference. The element Lo the right of each group of zeros is set to zero, all other
elements are unaltered.

A
00111100111000101
ArT1+41,4

06011100011 000000

And Positive Difference. The element to the left of each group of zeros is set to zero, all other
elements are unallered.

A
00111100111000101

Ani¥A, 1
001110001100000¢901

141

financial & mathematical modellers

Nl communications %.
& %
COMPLETE APL SYSTEM ¢
£2995
y includes APL Printer, 256K RAM etc
%, — all you need. &
7% Q
“O,A ‘ ’ O
S unusual’ software é}‘*
@,& &
Alan Pearman Limited e —
Maple House TE=ETRE
Mortlake Crescent ===
Chester CH3 5UR
Personal
Computer
46024 IBM Authorised Dealer

142

INSIDE THE INTERNATIONAL APL STANDARD
by David Ziemann
Introduction

This paper constitutes a technical exploration of the contents of the proposed international APL
standard. Before the contents are examined, an introduction followed by short sections on the
reasons for standardisation and a brief history of the standard are provided. The important
concepts of the ““conforming implementation and the *‘conforming program” are then explained
in detail. A description of the features included in the standard is then presented, with a list of
some of the features explicitly not included. Finally, a concluding passage discusses ways in
which the standard will be of use to the authors of APL implementations and programs.

Casual readers be warned — this paper is a précis of the draft standard and is heavy going.
Why standardise?

APL has been around for 20 years without a standard, so why bother now? Well, the answer
lies in the growth of APL, both in terms of the number of establishments using it and the
diversification of the language itself. As the number of people using APL grows, communicating
between them becomes more difficult, and the need for a definitive APL implementation increases.
Atatime whenthere are so many differing implementations of APL on the market, itisimportant
tor APL people to come together and see if they can agree upon what constitutes a minimal
APL. Only oncethis is done can we start to exchange APL programs and skills on a global scale.
The absence of a suitable standard has doubtless prevented the adoption of APL. in many areas,
in particular, government departments in the US will not sanction any computer ianguage unless
it has a standard.

The purpose of the standard is probably best summarised by quoting from the standard itself
which states that *“This International Standard defines the programming language of APL and
the environment in which APL programs are executed. Its purpose is to facilitate interchange
and promote portability of APL programs and programming skills among data pracessing
systems.”

A Brief History of the Standard

International Standards are produced under the control of the International Standards
Organisation (1S0), which works under the auspices of the United Nations and is responsible
for producing standards of all kinds. Working through international technical committees, drafis
otinternational standards slowly come into existence and are then voted to become 1SO standards
by the national standards organisations.

The national standards organisations gather national experts into committees which contribute
to the development of national and international standards, submitting their work to ISO or the
IEC (International Electrotechnical Commission). They also vote on proposals fram ISQ (or [EC)
for adoption of international standards, and adopt either ISO standards or their own home-grown
product as national standards. If a country produces its own nationa! standard before an equivalent
IS0 standard exists, it usually submits it to 1SO as a draft ISO standard.

Creating international standards takes a long time, and a lot of forests. Even once agreement
has been reached in the international forum (which does occasionally happen), there is still the
liaison between the |SO commitiee and the various national committees and other international
commitiees to contend with. The extensive IS0 procedures also have to be followed before the
ISO standard is adopted. It can, and usually does, take years.

143

Figure 1. Some Syntax Diagrams

Line

S R e e L LR TR Petmetreetoatrnaae-ena- R e
| || [I
| | 4= identifier =»-+ | | +- comment ->-+
I bl b
| | +- numeric ----»-+ | |
|] literal |]
I I (.
] +--<- primitive ----- <~+ |
I | (.
| +=--<- character ----- <=+
| | literal | | |
| | I
| +--<-- space ------ <=+
| |
+-<- statement separator =-<----=- +

ldentifier

>»-----+->- simple-identifier -------- >-+

[l

+->- distinguished identifier ->-+->--->>

Simple-ldentifier

===]ELTEL =P m==tmememmene=e L S e

+-<=- letter --+

! |

+-<= digit ===+

+-<- underbar-+

144

In 1979, AFNOR the French national standards body proposed to the ISO technical committee
on information processing (TC97), that an international Standard for APL should be produced.
The proposal was accepted, and the work was assigned to TC97's sub-committee on programming
languages, SC5, which set up Working Group 6 to assist. The first draft appeared in 1980. At
approximately the same time, ANSI decided to produce a US APL standard, and so another
draft appeared. Needless to say, the two drafts were quite different.

In 1981 it was agreed at an international meeting in the USA, that the two drafts should be merged
into a single international working draft. This work proceeded, with contributing experts from
the USA, Canada, Japan, Britain, France and other European countries. By August 1883, the
fifth working draft had been distributed and accepted by SC5 as the first draft proposal. By the
beginning of 1984 the draft proposal was circulated to the SC5 P-members (BStin the case of
Britain) for a three month comment period. These comments will be processed at the next Working
Group 8 meeting in Melsinki just before APL84. The result of this will be an instruction to the
editor to prepare a second draft proposal. Subsequent processing will then resultin an international
standard — hopefully, in the not too distant future. When it does, APL will be the first language
for which the international standard has preceded any national standard.

This paper was written at the time of the first draft proposal and it is to this document that the
remainder of the paper refers.

The Form of the Standard

The standard describes the behaviour of a hypothetical APL machine by specifying how itresponds
to inputs. The syntax (rules for combining the funny symbeols) of this machine is defined by syntax
diagrams (or railroad tracks, as they are sometimes called), which are generally easier 1o
understand than the more traditional Backus-Naur form. The standard described three main
processes which perform the analysis of syntax:

— line evaluation: this uses a set of syntax diagrams to decompose a line of
characters into a list of lexical tokens, working from left to right.

— statement evaluation: this uses syntax diagrams to transform a list of lexical tokens
into a list of syntactic tokens, still working from left to right.

— statement reduction: now working from right to left, this uses a phrase tabie to
decompose a list ot syntactic units into shorter lists, called phrases, each of which
is then evaluated by one of 12 phrase evaluators.

The semantics of APL (what the funny symbols mean) are defined by the behaviour of these
phrase svaluators, and that of the formal procedures which they in turn call. These procedures,
or evaluation sequences as they are called, are expressed in a formal language which uses English
words In asense precisely defined in the standard. The result is a precise but nevertheless readable
document. There is no requirement for an implementation to follow the algorithms suggested
in the evaluation sequences exacty, provided that the system produces results indistinguishable
from those of the APL machine described in the standard.

As well as specifying the syntax and semantics of APL programs, the standard also specifies
the characteristics of the environment in which APL programs are executed, and the requirements
for conformance with the standard. In this context, the term ‘program’ is used broadly, to include
sverything from a single APL expression to a collection of workspaces communicating via shared
variables.

On the other hand, the standard DOES NOT specify:

— required values for implementation limits such as APL workspace site or numeric
precision.

— the data structure tised to represent APL objects.

— the facilities available through shared variables.

145

Some Technical Terms

Of fundamental importance to an understanding of the standard are the two terms *‘conforming
implementation’ and ‘conforming program’. Loosely speaking, a conforming implementation
is an APL interpreter which follows the rules laid down in the standard, and a conforming program
isan APL program which would run successfully on the APL machine specified in the standard.
In order to define these terms more strictly, we have first to consider the four classes of facility
recognised by the standard. These are the defined facility, implementation defined facility, optional
facility and the consistent extension,

Defined facility — this is a facility that is fully specified by the standard, and not designated optional
or implementation defined. The transpose function, for example, is a defined facility in the
standard,

Optional facility — this is a facility that is also fully specified by the standard, but is designated
optional, as & conforming implementation may or may notinclude it. The APL statement separator
is an example of an optional facility.

Implementation defined facility — this is a facility that is NOT fully specified by the standard,
and is designated implemention defined. The algorithm used by an implementation to generate
pssudo-random numbers, for example, is animplemnentation defined facility, but the APL functions
roll and dea! are defined tacilities and must be provided as specified.

Consistent extension — this is a facility that is NOT specified at all by the standard, but ifincluded
in an APL implementation will not give rise to an error in circumstances in which the APL machine
would, In other words, an error report arising from a specific input 1o the APL machine in the
standard can be replaced by some other behaviour in the actual implementation. For example,
you can bring out an implementation with a brand new APL function in it (say a dyadic execute
function) because this would replace an error report by some other action. The consistent extension
is the only mechanism by which extra APL features may be added to an implementation.

Conforming Implementations

We can now look more closely at what a conforming APL implementation actually is. In order
o conform to the standard, an implementation must provide all the defined facilities and
implementation defined facilities specified in the standard, and each defined facility must behave
exactly as specified. Additionally, a conforming implementation may provide any or all of the
facilities described in the standard as optional. If included, the facility must behave exactly as
specified. Finally, a conforming implementation may also include any consistent extensions.
Because the consistent extention mechanism is the only way the standard permits an
implementation to provide extra APL features, the standard itself tends to adopt a ‘minimal®
approach, including only minimum agreed features. Where implementations differ, the standard
will often require an error. This is not meant to encourage an implementation to produce an error
under the particular circumstance, but to allow more than one interpretation to be standard
conforming. Some examples of this will be described later. The observant reader may have noticed
one loophotle that needs to be closed here. A program that attempts to use an optional facility
that is not pravided in a particular implementation will generate an error. It is therefore NOT
permissible for an implementation to replace such error signalling by any other behaviour.

Implementation algorithms and implementation parameters
Before we proceed, it will be necessary to look at two further concepts — implementation
algorithms and implementation parameters. Facilities in the standard are described both informally

in English and procedurally using what are calied evaluation sequences. These evaluation
sequences often refer to algorithms not defined in the standard, and whose behaviour is deemed

146

implementation defined —thatis, it's up to the implementor 1o provide an exact definition. These
implementation algorithms fall into five groups:

The Implementation algorithms
— Pythagorean algorithmns; eg sine, inverse cosine, hyperbolic tangent

— General numeric algorithms; Exponential, gamma function, modulo, natural
logarithm and power

— Seminumeric algorithms; the pseudorandom number gensrator, and the algorithm
for the deal function

— Linear algebraic algorithms; this group only contains the algorithm for generalised
matrix divide

—— System dependent algorithms; eg how numeric literals are converted to internal
nurnbers, how the current time is generated, how a function trace display is to be
presented, and others.

Each one of these algorithms is referred to by the standard, but must be defined by the particular
APL implemantation. In addition to these algorithms are the implementation parameters. These
ara quantities referred to by the standard but whose values are implementation defined. Over
twenty of these are recognised by the standard, and some examples follow:

Some implementation parameters

— . Atomic vector: an implementation defined character vector containing every
element of the character set exactly once.

~— Positive number limit: the number (in machine rather than mathematical terms)
greater than all other numbers.

— Rank limit: an integer specifying the maximum value for the rank of an array. The
limit must apply uniformly to all arguments and results of primitive operations.

— Identifier length limit: an integer specifying the maximum number of characters in
an identifier.

— Comparison tolerance limit: the largest value permitted by the implementation for
the system variable quadCT.

— Integer tolerance: a value used to determine whether a given number is to be
considered integral or not.

The question then naturally arises — what happens If some action causes a limit specified by
one of these implementation parameters to be exceeded? For example, suppose you try to
increase the rank of an array which already has the maximum number of dimensions permitied
by the particular implementation you arg using. Clearly, it would be nice if the implementation
complained about this, rather than just ignoring the attempted action, or even taking some other
action and not telling you what it’s done. (A good example of the [atter is the behaviour of some
implementations when you try to reference a variable whose name contains more characlers
than the identifier length limit — the name is very often merely truncated to the maximum permitted
length, and you don't even get to know about itl)

147

Figure 2. More Syntax Diagrams

Distinguished-Identifier

Foem——a— Pemmm——- quote-quad ->----+
I i
>»---+->-quadePeseteanmanccnoan >edamgadait>
I |
+-<- letter --+
I I
+-<- digit ---+

Numeric-~Literal

R R +---- pumeric ---->-+----- >
| scalar |
| literal |
I I
| N R + |
[1
+-<=+=-<- blank -+-<-+

Numeric-Scalar-Literal

stands
stands
stands
stands

o3 e

+m>+ |

for
for
for
for

teatk

digit.
exponent-marker.
overbar.

dot.

FemmadIdPh =g mB ot ah

N

+>p>+ i

!

R e - bl B e b i Dok

[I B A I

| +e<-+

+-<-+

| +>e>+->+->-+>d>+->4

* Example:
*
&

----- pr>+>d>+->+ +m>+ +-<-+

+-<=+

T12.34567E 890

148

The problem is solved by requiring a conforming implementation to signal an errorif any action
is taken that would resultin an implementation parameter limit being exceeded. Butwhat error?
Out of the existing popular error messages onty DOMAIN ERROR comes close, but not close
enough. A DOMAIN ERROR should strictly only be reported when a function argurment lies outside
the domain of the function — it is an abstract mathematical concept rather than an indication
ofashortcoming of a particularimplementation of the APL language. So, a small bitof creativity
was experienced here, and the standard requires that a new error message, LIMIT ERROR,
be signalled in such cases.

Reguired documentation for conforming implementations

A conforming implementation must provide documentation relating to its optional facilities,
implementation defined facilities and consistent extensions. It must document the presence
orabsence of each of the facilities described in the standard as optional, and also the following
aspects of the implementation defined facilities:

— adescription of the character set. This must include a chart showing the
carrespondence between the atomic vector and the characters in the required
character set. (The required character set is a standard-specified subset of an
implementation defined finite set of characters called the character set).

— adescription of the numbers, including a characterisation of the internal
representation used. {Note that the numbers are an implementation defined finite
set whose elements are used to represent arithmetic quantities).

— descriptions of the characteristics of each implementation algorithm.
— the value of each implementation parameter.

As tar as consistent extensions goes, each one provided must be documented by a conforming
implementation. The documentation must also clearly state that use of a consistent extension
prevents a program from conforming with the standard.

This documentation has often been colloguially referred to as the ‘toaster plate’ of an
implementation because, like a plate on an electrical appliance, it reveals to the potential purchaser
the salient features and limitations of the product.

People occasionally ask why iImplementation parameter limits like the rank limit and identifier
length limit are not hard-coded into the standard. To do this means deciding upon a minimum
value necessary to achieve conformance, and thisis hard to do, as everyone has differentideas
about what constitutes a minimal APL. For example, what would you choose as the minimum
allowable rank limit for an APL implementation? Typical answers are 3, 8, 15, 63 etc. These
answers are arbitrary, and often have more to do with people’s ideas of how computers work
than with useful limits. Let's say we decide on 15 as our minimum rank limit. This means that
we reject as non-conforming any APL implementation that allows no more than 14 dimensions
inany array. Alternatively, we may encourage an implementor to use a more inefficient storage
representation for arrays just because we insist upon a rank limit of 15 rather than 14. The approach
in the standard has therefore been, loosely speaking, that implementors can decide the values
of these limits themselves, but they've got to tell everyone loud and clear what they are.

If you see two conforming implementations, one with a rank limit of 3 and one with a rank limit
of 30, you will know which one to buy, just as you know which electric fire will warm you if one
is rated at 3 watts and the other at 3 kilowatts. The attitude is very much one ot 'let the market
decide’,

149

Figure 3. Yet More Syntax Diagrams

Assignment

>>-eet=>=- yariable =->-t-->-t-P-c--- ==-->-+- assignment --->>
| name token | ! | arrow
I I I I
+->- system ---->-+ +->- index ->-+
! variable |

] name token |

+=>=- shared =-=-=->=-+
variable
name token

Derived-Function

+- small ---------- >-+
f circle |
>>=-+- primitive -->-+->-+->- dyadic --->--- primitive =->-t=----->>
function i operator function |

i I

+->- monadic -=>=+=>-+->-- axis ==-->-+

| operator | | specification |
[e . >ad
Axis-Specification
»>=- left «=-->-~-- gxpression ---->-=- right ---->>
axis) axis
bracket bracket

150

Conforming Programs

We now know how to spot a standard-conforming APL implementation, but what about standard
conforming APL programs? It is extremely important to be able to write a conforming program
it you want to port it between conforming implementations.

A contorming program can use only facilities that are specified in the standard, that is defined,
implementation defined and optional facilities. A conforming program cannot use consistent
extensions. Also, a conforming program cannot depend on the signalling of any error by a
conforming implementation. This is because consistent extensions that replace errors are
permitted in conforming implementations. This means that a conforming program cannot use
an arror trapping facility {(which may be provided as a consistent extension by a conforming
implementation), and more interestingly, the standard in its present form ¢can never include one
as a defined, implementation defined, or even optional facility.

Note that in general, the presence of a consistent extension in a conforming implementation
shall not affect the behaviour of a conforming program. Remember also, that errors produced
by the absence of an optional tacility cannot be replaced by consistent extensions in a conforming
implementation, since this would affect the behaviour of conforming programs that use the optional
facility.

Implementors of conforming implementations are also discouraged from replacing LIMIT
ERRORS with consistent extensions, since these errors are the only safeguards a conforming
program has when attempting to operate in a conforming implementation whose implementation
parameters are inadequate to support it. For example, if the LIMIT ERROR on the identifier length
limit were not signalled, a conforming program with identifiers longer than the local identifier
length limit woeuld malfuniction without warning. Currently the standard only warns implementations
off doing this, but does not prohibit it.

Required documentation for conforming programs

A conforming program must document which of the optional features described in the standard
it requires. It also has to document any specific minimal values required for implementation
parameters. For example, it may perform calculations upon numbers as large as 1E100 and
would therefore require an implementation whose positive number limit was at least this large.
The document should also state, for another example, the length of the longest identifier name
in order to determine whether the program can run on a particular implementation. Generally,
the requirement for each of the implementation parameters should be documented in order to
determine the program’s suitabliity for a given conforming implementation.

It is not surprising that a non-conforming program can produce unexpected results when run
on a conforming implementation, but more surprising that the same is true of conforming
programs. In fact, a conforming program rmay or may not work, and may or may not produce
identical results on different conforming implementations, due to inherent dependencies on
implementation parameters orimplementation algorithms. For example, the algorithm used for
matrix divide is implementation defined, and may or may not generate a DOMAIN ERROR for
given arguments ondifferent conforming implementations. Another example is the implementation
parameter called integer tolerance. The value of this parameter is used by an implementation
to determine whether a given number is to be considered integral or not. So the same index
expression run on two conforming implementations could produce a result on one and an error
on the other, dependent on their respective values for this parameter. This situation seems
unavoidable, but is alleviated when conforming programs document required values for such
paramaeters,

151

Figure 4. Some Phrase Evaluators

5.3.12 And

Z « A ANB

* Z is the Boolean product of 4 and B.

Evaluation Sequence:

If either A or B is not near-Boolean, signal domain-error.
Set A1 to the integer-nearest-to 4.
Set B1 te the integer-nearest-to B.
If either A1 or Bl is zero, return Zero.
Otherwise, return one.

Example:

*
*
* 01 e,A 0 1
*
"

oo
[

2v 5,313 Or
e

Z« Av oD

* Z is the Boolean sum of 4 and B.

Evaluetzion Sequence:

If either A or B is not near-Boolean, signal domain-error.
Set A1 vo the integer-nearest-to A.
Set Bl to the integer-nearest-to B.
If either A1 or BE1 is one, return one.
Otherwise, return Zero.

Example:

*
*
w* 01 e,v 0 1
"
®

[Ee]
[

152

APL facilities in the standard

In this section we will summarise the content of the standard in terms of the APL features included
within it. First let's take a high-leve! view of what has been included in and excluded from the
standard. This will be done by comparison with [BM's VS APL, because V8 APL is widely known,
and is most similar to the APL machine described in the standard.

The standardisation committes agreed early on in the process that the standard should describe
existing practice in APL rather than establish a new language level. As a guideline, a feature
is considered for standardisation ifit exists in at least two existing APL implementations. in other
words, the standard documentis rather than invents, as far as possible. (In fact, there are some
minor exceptions to this as we shall see).

Here is a list of defined facilities included in the standard:

— all of the primitive functions and operators from VS APL that you have come to
know and love,

— the system functions quadTsS, gquadAV, quadLC, quadDL, quadNC, quadEX,
quadFX and quadCR,

— the system variables quadCT, quadRL, quadPP, quadlO and quadLX.

— quad and quote quad input and output.

— entry and editing of niladic, monadic and dyadic user defined tunctions via a
minimal del-editor,

— the system commands JCLEAR,)COPY,)DROP, JERASE,)FNS, JLIB,)LOAD,
JRESET,)SAVE,)8I,)SINL,)VARS,)WSID,

— the use of the underbar character (_) in all but the initial character of identifiers

— the use of comments 1o the right of, and on the same line as executable code {(end
of line comments).

The last two points constitute added features to VS APL.

Currently only three facilities are described as optional in the standard:

— shared variables via the system functions quadSVO, quadSVQ, quadSvC and
quadSVR,

— the diamond statement separator.

— trace and stop control via the system functions quadTRACE and quadSTOP.

The standard specifically doss not include, or make any reference to, the following facilities:

— acomponent filing system via system functions.

— trace and stop control via the Tdelta and Sdeita syntax.

— the implementation dependent system functions quadAl, quadWA and quadPW.

— the grouping of identifiers via system commands such as JGROUP,)JGRP or)GAPS,

— the creation and behaviour of locked user defined functions.

— mechanisms for creating and handling enclosed or generalised arrays.

— error trapping.

— pass-through localisation, ie. initialisation of localised system variables 10 the value
of their global homonyms.

In fact, all of these tacilities (except the Tdelta and Sdelta syntax) could be provided by an
implementation as consistent extensions, although a conforming program could not then employ
them.

Let's now look at some of the specified facilities in more detail:

153

Primitive functions

These are as found in VS APL, with no omissions and no additions. There are some interesting
points to note however:

it an argument to a scalar function is empty, then the result is also empty, and has
a type dependent on the function being used. For example, the expression "*3-"
will yield an empty numeric vector, as will the expression “ +
in the standard, roll and deal are classified as mixed rather than scalar functions
because their result arrays cannot be generated in parallal.
the standard has been designed with a view to allowing complex arithmetic as a
consistent extension. This is apparent in two areas:
i) the more usual definition of the circutar function with a left argument of **-4"
has been replaced by one which would permit such a consistent extension,
iy the distinction made in some implementations of APL between rational and
irrational powers has been eliminated to allow complex arithmetic as a
consistent extension. For example, the standard requires that '‘-8" raised to
the one-third power should yield a domain error, because the right argument
of power is not integral. This behaviour can then, of course, be replaced by a
suitable consistent extension,
the result of “A,B" where A and B are empty vectors is always the value of A. For
example, the result of the expression ***,0/0" is the empty character vector,
whereas the result of ''(0/0),”" is the empty numeric vector. In practice, this seems
to differ from system to system, with some giving the result as the left argument,
some the right argument and some either the numeric vector always or character
vector always. The standard has gone for the left argument, but the point is still
under discussion!
in accordance with the ‘'minimal’ approach, the definition of the base value
(decode) function is stricter than on many implementations. It does not require that
a unit inner dimension of one argument be replicated to match the corresponding
inner dimension of the other. This behaviour can be provided as a consistent
extension.
indexed assignment is defined so that assigning 1 2 3 into Af1 1 1] causes Af1] to
have the value 3. This not necessarily obvious result comes from the decision to
process the assignments in the ravel order of the index array rather than notionally
in parallel. An alternative would have been for the standard to require a domain
error, and leave the implementor to provide a suitable consistent extension. It was
felt, however, that in this case standardising the result was more useful than
ignoring the problem.

System function and system vartables

The standardisation committes spent a lot of time and expended much energy in this area,
althoughthere are few surprises. The primary difference between system functions and system
variables is that an error is signalled if the name of a system function appears in the list of local
names of a user defined functicn header. Among the points of interest are the following:

quadT$S uses an implementation defined facility to generate its result.

quadLC contains only elements relating to user defined functions, and not to
contexts created by the use of the execute function or quad input.

quadNC and quadEX signal DOMAIN ERROR if their arguments contain names
which are not simple identifiers, so that consistent extensions can be made. A
simple identifier is an identifier which does not start with a quad or quote quad
character.

the standard ensures that an error is reported if the syntax class of any tokens ina
statement changes during execution of that statement. For example, the
expression *'F quadEX'F" attempts to do just this, where F is a user defined
monadic function. A syntax error would be reported in this case. Similarly, an

154

attemnpt to fix a function G by using quadFX in an expression that forms the left
argurment of a call to the dyadic function G will result in a DOMAIN ERROR. A
conforming implementation may relax these restrictions, of course, but a
conforming program must abide by them.

the evaluation sequences for assignment to the system variables report DOMAIN
ERROR if the value to be assigned is unacceptable to that system variable. In
addition, primitive functions that implicitly use system variables will report
IMPLICIT ERROR if the relevant system variable has no value. This can happen if
a system variable is [ocalised to a function and not set before it is implicitly
referenced by a primitive function. Conforming programs that localise system
variables should therefore assign them valid values before calling any primitive
operations that require them.

User defined functions

user defined functions may be created and edited via a minimal del-editor
described in the standard. Currently this is a defined facility, and is therefore
required by a conforming implementation, but some people feel that in these days
of clever full screen editors, it is unreasonable to insist upon a line-editor. it is
possible, therefore, that the facility may become optional in a later draft.

the class of the result name In a user defined function cannot be defined function
or shared variable. A value error is signalled under such circurnstances in order to
prevent conforming programs from causing an exit from a function when the result
name has one of these classes.

an error should not be reported by a conforming implementation if a defined
tunction fails to assign to its result name and the calling context does not require a
value.

System commands

thirteen system commands are currently included as a defined facility, although
there is some feeling that these should be made optional, or even removed
altogether. Some implementations provide the required operations by way of
system functions. In the standard, system commands cannot be entered during
function definition mode, or invoked as an argument to the 'execute’ primitive.

Shared varlables

shared variables are an optional facility of the standard. They provide an interface
between cooperating APL sessions, although they may also be used to provide an
interface between APL programs and non-APL system facilities. Conforming
programs that use shared variables must document this fact, since shared
variables are not a defined facility of the standard.

Trace and stop control

trace and stop facilities are provided in the standard via the system functions
quad TRACE and quadSTOP. The facility is optional because it is only just coming
into widespread use. The two functions are the only example of full English words
being used in the names of system functions or variables, However, the standards
committee were unanimously agreed that the Tdelta and Sdelta syntax would not
be cast in concrete, and sa some design had to be done In this area. The right
argument is always the function name. When used monadically, the result is the
line numbers of the lines currently set for trace/stop. Dyadicaily, the left argument
is a vector of line numbers for which a trace/slop set is required. The result is then
the line numbers of the prior set. It an atternpt to trace or stop line zero of a

155

Figure 5. More Phrase Evaluators

kad
"
*
*
*
-
ks
k3
k3
"

8.1.7 Execute

Z « 2 B

Z is the result of evaluating the character scalar or vector B
as a line of APL.

Evaluation Seguence:

f the rank of B is greater-than one, signal rank-error.

f any item of the ravel-of B is not a character, signal
domain-error.

Generate a new context with

I
T
H

mode set to execute.
current-line set to the ravel-of B.

Append the new context to the state-indicator as a new first
item.

Set Z to evaluate-line.

Eemove the first context from the state-indicator.

Return Z.
Examples:
173!
r
3
Owz'Te3!
3
A<zt!

value-error

Note:

If an error is signalled during execute, the user should be able to
determine from infermation provided by the system where the error
ceeourred in the argument of exXecute as well as where the failing
execute primitive cccurred in the immediate-execution or
defined-function line.

156

function is made, a DOMAIN ERROR is reported, thereby allowing consistent
extensions to be made here.

Finally, lst's take a quick look at the reasons for excluding certain facilities from the standard.
In general, these reasons can be summarised in the following list:

1. The facility has not achieved widespread use among many implementations of
APL.

2. The function provided by the fagility is fairly widespread, but different APLs provide
the feature via a different syntax.

3. The facility is too closely bound to the specific nature of the operating environment
rather than to the APL language itself.

4. Inclusion of the facility would result in the APL language being compromised, from
a theoretical viewpoint.

These considerations have to be balanced against the commercial desirability and usefulness
of a particular feature, and these judgements are of course subjective.

Good arguments against including a component filing system, for instance, can be constructed
from all the points on the above list, although this is leRt as an exercise for the reader.

CONCLUSION

As well as improving the portability of APL programs, the internaticnal APL standard will also
promote the use of APL itse!f, and improve the quality of APL implementations. The standard
will prove (and already has proven) invaluable for APL implementors who wish to conform to
it. ltcan be used to form the basis of an implementation and to encourage implementors to provide
extensions to the language which are consistent with the standard. The standard will also be
important for software vendors who wish to write standard conforming programs. It will encourage
them to reduce, isolate and document those areas of their packages that are not standard
conforming. Finally, and most importantly, those who purchase APL interpreters and APL
programs will expect to see the product documentation required by the standard for conforming
implementations and programs. The prospective purchaser of an APL interpreter should be able
ta determine quickly whether it conforms to the standard, and what optional features and consistent
extensions it provides. Those buying APL software should likewise be able to determine the
suitability of APL programs for their particular installations, and to predict the areas In which
problems might arise.

However, the standard is aver 300 pages in length and it requires a fair amount of dedication
to read and understand. Interpretation of the standard is therefore not a task to undertake casually.

REFERENCES

[11 The First Draft Proposal for the International APL Standard. 1ISO document
number: 150 DP8485 APL.

[2] Standardisation of APL, J.M. Sykes, Chairman BSf APL group. Appearing in
Computer Bulletin, March 1984,

f31 Language Standards for APL, P. Barnetson, IBM UK Ltd., September 1983.

157

BRITISH APL ASSOCIATION
Membership Application Form

Please read the membership information in the inside front cover of VECTOR before completing
this form. Existing members should send in an application to update our records; this will be
credited pro-rata for any advance membership fees already paid. Use photocopies of this form
for multiple applications. The membership year runs from 1st May 1984 — 30th April 1985.

Name:

Department:

Organisation;

Address line 1:

Address line 2:

Address line 3:

Address line 4:

Post or zip code:

Country:

Telephone number:

Membership category applied for (tick one):

Non-voting student membership Free
UK private membership £ 8
Overseas private membership...... £ 10
Corporate membership £ 50
Sustaining membership £250

For student applicants:

Name of course:

Name and title of supervisor:

Signature of supervisor:

PAYMENT

Payment should be enclosed with membership applications in the form of a UK steE[ing cheque
or postal order made payable to *“The British APL Association” . Gorporate or sustaining member
applicants should contact the Treasurer in advance if an invoice is required.

Send the completed form to the Treasurer at this address:
Mel Chapman, N. Staffs Polytechnic, Blackheath Lane, Stafford ST18 0AD, UK.

158

Chairman:

Secretary:

Treasurer:

Activities:

Education:

Journal Editor:

Publicity:

Technical:

THE BRITISH APL ASSOCIATION

The British APL Association is a Specialist Group of the British Computer Society and a member
of EuroAPL, an organisation supported by the Commission of the European Communities. It
is administered by a Committee of eight officers who are elected by the vote of Association
members at the Annual General Meeting. Working groups are also established in areas such
as activity planning and journal production. Offers of assistance and involvement with any
Association matters are welcomed and should be addressed in the first instance to the Secretary.

1984 COMMITTEE

Philip Goacher
01-637 0471

Anthony Camacho
St. Albans 60130
Mel Chapman
0785-53511

Dick Bowman
01-634 7639

Chris Beatty

Robert Bittlestone

Vacant

Vacant

The British Computer Society,
13 Mansfield Street,
London W1M 0BD

2 Blenheim Road, St. Albans,
Herts AL1 4NR.

N. Staffs Polytechnic,
Blackheath Lane,
Stafford ST18 0AD.

CEGB, 85 Park Street,
London SE1.

220 Balham High Road,
London SW12.

26 Barham Road,
London SW20 OET.

ACTIVITIES WORKING GROUP

David Allen

Dick Bowman
Dominic Murphy
David Preedy
Stan Wilkinson

JOURNAL WORKING GROUP

Jonathan Barman
Robert Bittlestone
David Preedy
Adrian Smith
Pavid Ziemann

Photoset by Wizard Printing Services, Brookwood, Surrey.
Printed in England by Copyprint Ltd., London SW1,

VECTOR

VECTOR is the quarterly Journal of the British APL Association and is distributed to Association
members in the UK and overseas. The British APL Association is a Specialist Group of the British
Computer Society and a member of EuroAPL, an organisation supported by the Commission
of the European Communities. APL stands for ''A Programming Language'' — an interactive
computer programming language noted for its elegance, conciseness and fast development
speed. It is supported on many timesharing bureaux and on most mainframe, mini and micro
computers.

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial support
of the following Association Sustaining Members. In many cases these organisations also provide
manpower and administrative assistance to the Association at their own cost.

APL*Plus Ltd. Aston Science Park, Love Lane,
Birmingham B7 4B..
Tel. 021-359 5096

Cocking & Drury Ltd. 16 Berkeley Street, London W1X 5AE.
Tel. 01-493 6172

Dyadic Systems Ltd. 30 Camp Road, Farnborough, Hants.
Tel. 0252 547222

Inner Product Ltd. Eagle House, 73 Clapham Common Southside,
London SW4 9DG.
Tel. 01-673 3354

MicroAPL Limited Unit 1F, Nine Eims Industrial Estate,
87 Kirtling Street, London SW8 58P.
Tel. 01-622 0385

|.P. Sharp Associates 132 Buckingham Palace Road,
London SW1W 9SA.
Tel. 01-730 4567

L

WA
e
466
B

=

The British Computer Society, 13 Mansfield Street, London W1M 0BD.

