Namespaces — Special Feature

+ Donnelly Bounces an Encapsulated

- Duck 66
- Lescasse Builds Tidy Applications 75
- Kekéldinen Earns a Cold Beer 92
Plus ...

« 16-page Educational Supplement 11
- Langlet on the Axiom Waliz 1
- Smith on Making Menus 122

The Journal of the
British APL Association

A Specialist Group of the British Computer Society

ISSN 0955-1433
Vol.i11 No.3 January 1995

Contributicns

All contributions 1o VECTOR may be sent to the Journal Editor at the address on the inside back cover. Letters and
atticles are welcome on any topic of interest to the APL community. These do not need to be limited to APL themes,
nor must they be supportive of the language. Arficles should be accompanied by as much visual matetial as possible
{bfw or colour prints welcome). Unless othetwise specified, cach item will be considered for publication as a personal
statement by the author. The Editor accepts no responsibility for the contents of sustaining membets” news, or
advertising.

Please supply as much material as possible in tnachitc-readable form, ideally as a sitmple ASCII text file on an IBM
PC compatible diskette (any fotmat). APL code can be accepted as camera-ready copy, in warkspaces from I-APL,
APL*PLUS, IBM APL2/PC or Dyalog APL{W, or in documents from Windows Write (use the Vectot TrueType font,
available free from Vectot Production), and Winword-2.

Except where indicated, items in VECTOR may be freely reprinted with appropriate acknowledgement, Please inform
the Editor of yout intention to re-use material from VECTOR.

Membership Rates 1994-95

Category Fee Vectors Passes
UK Private £12 1 1
Overseas Private £14 1 1
(Supplement for Aitmail, not needed for Europe) £

UK Cotporate Membership £100 10 5
Overseas Coiporate £135 10

Sustaining £430 50 5
Nop-voting Member (Student, OAP, unemployed) £6 1 1

The membership year runs from Ist May to 30th April. Applications for membership should be made to the
Administrator nsing the form on the inside back page of VECTOR, Passes are required for entry to some association
events, and for voting at the Annual General Meeting. Applications fot student membership will be accepted on a
recommendation from the course supervisor. Overseas memmbership rates covet VECTOR surface mail, and may be
paid in sterling, or by Visa or Mastercard at the prevailing exchange rate.

Corporate membership is offered to organisations whete APL is in professional use. Cotporate members receive 10
copics of VECTOR, and are offered group attendance at association mectings. A contact petson must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of premoting the
growth of APL interest and activity. As well as receiving public acknowledgement for their aponsorship, sustaining
members receive bulk copies of VECTOR, and are offered news listings in cach issue.

Advertising

Advertisements in VECTOR should be submitted in typeset camera-teady format (A4 or AS) with a 20mm blank
botder after reduction. Blustrations should be photographs (bfw or colour prints) or line drawings. Rates are £250 per
full page, £125 for half-page or less (thete is a £75 surcharge per advertisement if spot colour is required).

Deadlines for bookings and copy ate given under the Quick Reference Diary. Advertisements should be booked with,
and sent to: Gill Smith, Brook House, Gilling East, YORK YOS 4J1. Tel: 01439-785385 CompuServe: 100331,644

VECTOR Vol.11 No.3
Contents
Page
Guest Editorial: Duncan Pearson 3
APL NEWS
Quick Reference Diary 5
News from Sustaining Members Gill Smith 7
The Education Vector lan Clark 11
REVIEWS SECTION
APL Product Guide — Complete Gill Smith 27
RECENT MEETINGS
APLY4: The APL Theory of Human Vision Gérard Langlet 42
Germany: Die Programmiersprache APL 52
APL at Corona/Nordstern Dieter Diiren 53
Helsinki: Causeway Workshop Adrian Smith 60
SPECIAL FEATURE: Namespaces
The Use of Namespaces for Encapsulation
— a Practical Introduction Peter Donnelly 66
Namespaces Eric Lescasse 75
Namespaces: A Way to a Well Organized World or
Just Another Means to Multiply your Chaos Kimmo Kekildinen 92
Coast-to-Coast revisited Adrian Smith 96
TECHNICAL SECTION
Puzzle Corner: The Age of the Vicar Alan Sykes 99
The Axiom Waltz Gérard Langlet 101
At Work and Play with] Eugene McDonnell 111
Bodyguard of Lies Peter Merritt 119
Causeway: Making Menus Adrian Smith 122
J Inscription 0 Richard Oates 130
Index to Advertisers 143

dyalog ¥

The Definitive APL for Windows

---- Grid. ToolBar and SistusBar Objects

File Edit

[Clys Fourletdul 3]

== SR ;
May Jun b .. hug Sep

Chatean Cote-Daugay-cx-Madd 212 1000 154 631 2

Chatoeu Coutel 681 206 437 709 i

Chatcau Cure-Ban-La-Madeleld 389 953 940 380

Chatena Fauric-de-Soutard 12 192 94 245 ld

Chzveaa Forplegade 258 234 102 224

Clas Feurct 595 226|319 rae

Chateas Franc-Mayne 162 486 BE1 14

Chateau FranePonmet L5} 258 3 394

Domsine do Grangd-Faurie 677 514 729 21

[Chateau Grand-Mayne 606 k1 151 671 I

- T T

[t fiva " Toume: T

Experience counts

Since we launched Dyalog APL/W at APL92, nearly two years ahead of our nearest
competitor, our customers have developed hundreds of successful industrial-strength GUI
applications. With the benefit of their experience, we have enhanced and refined
Dyalog APL/W into the mature, stable and above all useful Windows development tool
that it is today.

Not only does Dyalog APL/W provide the most comprehensive set of GUI facilities
available for any APL, but you can be confident that your workspaces will run
unchanged on Unix workstations under OSF/Motif,

With Version 7.0 we have added support for Visual Basic Custom Controls, a powerful
built-in Grid object, Numeric, Currency, and Date fields, ToolBar, StatusBar and TabBar
objects, automatic context-sensitive Hints and Tips, Metafiles, MDI, 3-D Forms and
Controls, a fully customisable Session, an ODBC interface, Namespaces for
encapsulation, and a host of other improvements.

That's why Dyalog APL/W remains the professional choice. For a free trial copy, contact
Dyadic or your local distributor today.

Dyadic Systerns Limited., Riverside View, Basing Road, Old Basing, Basingstoke, Hants RG24 7AL, United
Kingdom. Tel:(0256) 811125 Fax: (0256) 811130 Email; sales @ dyadic.com.

VECTOR Vol.11 No.3

Guest Editorial

by Duncan Pearson

We are standing at an important point in the development of mainstreamn APL.
The interest in namespaces or contexts or whatever we call them, from the
commercial users of APL (that is, everyone who pays good money for a
professional interpreter) is generating some action from the developers. Dyadic
have introduced namespaces in Dyalog v7 and a great deal of interest has been
shown in them. Last May James Wheeler promised that a future release of +II}
would have similar features, not only providing encapsulation of APL code but
also integrating the GUT elements fully with the APL programming structure,
Finally], the newest professional development environment, has locales,

Whatever Manugistics produce T hope that it is different from the Dyalog
implementation. This is not because 1 think that the Dyalog way is the wrong
way. I have not used it sufficiently to judge. My point is that until a reasonable
body of serious developers have spent time building big applications using these
features we cannot tell whether the design is right or not. It is clear from the
experience of Kimmo Kekildinen that there is a world of difference between
having a pretty demo that shows some code sitting in the button that calls it, and
the reality of using namespaces to organise large chunks of utility code across
multiple applications.

So let us have as many different, independently conceived, approaches to this
problem as there are interpreters. Furthermore, why should we rely on the
writers of interpreters to do the design work? Many people will have tried to
solve this problem in their own way using local definition and assignment (the
+II user command processor being an example). If you think that your approach
has merits then write and explain them.

In the long term this is the feature that will decide what we are using in ten years
time, and it had better be right. Let us, the users of APL, discuss freely the
relative merits of whatever approaches come along, share our experience of
using them and let the developers know when they get it right.

VECTOR Vol.11 No.3

Warning:
Change to ALL UK Phone Numbers

For the benefit of overseas subscribers, please
note that as from 16th April 1995 there will be a
complete revision of the telephone didlling codes
In Great Britain.

In most cases, simply add an extra "1’ 1o the code,
for example:

+44-439-788385
becomes
+44-1439-788385

The exceptions are:

Bristol: +44-272-730036 >> +44-117-9730036
Leeds: +44-532-xxx >> +44-113-2xxx
Leicester: +44-533-xxx >> +44-116-2xxx
Nottingham: +44-602-xxx >> +44-115-9xxx
Sheffield: +44-742-xxx >> +44-114-2Xxx

You should start using the new numbers now.

VECTOR Vol.11 No.3

Quick Reference Diary 1994-95

Date Venue Event

30 January 95 London (TBA) GUI Workshop ‘hands on’
25 March 85 Birmingham (TBA) Beginners’ tutorial

19 May 95 IEE AGM + invited speakers

June 4th-8th 95 San Antonio, Texas APL95

15 September 85 IEE Vendor forum

British APL Association meetings are normally held in the IEE, Savoy Flace.
Nearest tube outlets: Temple or Embankment.

APL Training Courses for 1995

Training courses are offered by MicroAPL Lid and Bleomsbury Software
(formerly Cocking & Drury) - please contact the companies for details.

If you would like to have your courses or seminars listed in Vector, please
contact Gill Smith with the details.

Dates for Future Issues of VECTOR

Vol.11 Vol.12 Vol.12

No.4 No.l No.2
Copy date 3rd March 95 2nd June 95 1st September 95
Ad booking 10th March 95 9th June 95 8th September 85
Ad Copy 17th March 95 16thJune 85 15th September 95
Distribution April 95 July 85 October 95

8 SOLITON ASSOCIATES

SHARP APL.:
the high performance choice

SHARP APL is superior in the rapid
development of mission-critical applications
which meet the ever-changing demands
of our customers.

SOLITON provides SHARP APL
' for MVS and UNIX with:

« Superior productivity

+ Ease in managing shared-file multi-user
applications

« Powertful cooperative processing

« High performance DB2 interface P

» Applications for end-users and programmers -,

* Responsive support services '

For more information, telephone or FAX:

SOLITON ASSCCIATES LIMITED
44 Victoria Street, Suite 2100
Toronte, Ontario, Canada M5C 1Y2
In Europe Tel: (416) 364-9355 FAX: (416) 364-6159 in the U.5.

Sollion Assoclates Limited of Canada, Soliton Asseclates Intorporated
Groet Blankenberg 53, 1082 AC Amstardam 1100 University Avenue, Suts 111
The Netherlands. Rechester, New York, USA 14607
Tel:+31-20-646-4475 FAX: 4 31-20-644-1206 Tel (716) 256-8486 FAX: (716} 256-8469

or via Internet to: sales@soliton.com

VECTOR Vol.11 No.3

News from Sustaining Members
Compiled by Gill Smith

Dyadic Systems Ltd

Dyadic is pleased to announce Dyalog APL/W Version 7.1 for Microsoft
Windows. This is a maintenance release that will be distributed to customers free
of charge. It does however contain a significant number of enhancements.

As further evidence of Dyadic’s commitment to provide greater compatibility
with TBM APL2, Dyalog APL/W Version 7.1 includes the following language
enhancements: Enclose with Axes, Take and Drop with Axes, Ravel with Axes,
and Strand Assignment with parentheses. These enhancements do not conflict
with existing Dyalog APL language conventions and are implemented at all
migration levels (defined by the system variable OML). In addition, Version 7
offers an optional APL2-compatible partitioned enclose at migration level 3,

The Dyalog APL/W session now supports drag and drop editing which is
implemented in a manner that is consistent with Microsoft Word for Windows.
Drag and drop editing provides a fast and convenient method for moving and
copying text (both whole lines and partial lines) within an edit window or
between edit and session windows.

Namespaces have been extended in several ways. You may now create a GUI
object, such as a Form, as a child of a namespace. Indeed, you can insert a
namespace at any level in the GUI hierarchy. For example, you could create a
namespace as a child of a Form and then create Buttons and other objects as
children of the namespace together with any code and data that the objects need
to share. Secondly, namespaces and GUI objects may be stored on component
files in their DOR form. This feature will greatly simplify the management and re-
usability of complex objects and provides the basis for the implementation of
class libraries in the future. Further enhancements to namespaces may also be
included in Version 7.1.

The popular Grid object now supports the selection of rows, columns and blocks
of cells. A selected block can be cut or copied to the clipboard and pasted back
into the Grid. This facility also allows the user to transfer data very quickly
between the Grid object and other spreadsheets such as Microsoft Excel. You
may also drag a block of cells and drop them elsewhere within the Grid.
Individual rows and columns may be resized by the user dragging the row and
column title dividers. The user may also have the system resize a row or column

VECTOR Vol.11 No.3

to fit the contents of that row or column, by double-clicking the mouse over a
divider. All of these operations generate new events to which you may attach
callback functions and you may also generate these actions under program
control. A new mechanism is provided to control the input mode and the
behaviour of the cursor keys. All these features have been implemented in a
manner that is consistent with Microsoft Excel.

In addition to these changes, the Grid now allows you to associate Combo and
Button objects with individual cells. Combos provide a very convenient means
for the user to input one of a series of options and Buttons (particularly Check
boxes) provide a good way of making and displaying yes/no cheices. As Button
objects may display bitmaps, icons and metafiles, you can also use them to
display pictures in individual Grid cells.

On top of these enhancements, Dyalog APL/W Version 7 users will find that a
large number of minor enhancements have been added. Dyadic intends to ship
Version 7.1 during January.

Insight Systems

Insight Systems is pleased to announce general availability of the Professional
Edition of SQAPL. In addition to being an interface from APL to SQL, the SQAPL
product range allows APL to function at both ends of a Client/Server
application. SQAPL/PE is available from Insight Systems for Dyalog APL and
APL*PLUS T under Windows and Unix, and for IBM APL2 under QOS/2 and
Unix. It is available from Soliton for Sharp APL under Unix, and from
Manugistics for APL*PLUS IIl under the name APL Link Pro.

Compared to the Eniry Level version of SQAPL, which is now also available from
Manugistics under the name APL Link, and is bundled with version 7 of Dyalog
APL for Windows, the DProfessional Edition contains the following
erthancements:

» Support for SequeLink drivers as an alternative to QDBC, giving high
performance access from Windows, O5/2 and Unix to most popular SQL
databases and a number of non-SQL services such as IBM CICS, AS/400
Transaction Programs, or our own SQAPL Server.

+ Automatic detection of performance options supported by good ODBC
drivers; most significantly block fetch modes, which can substantially increase
performance (in one example with a WatCom ODBC driver, an order of
magnitude increase in performance for multi-row fetches}.

VECTOR Vol.11 No.3

+ Support for a number of additional APL data types, in particular date/time
columns as Julian day numbers, Quad-TS vectors, or base-100 encoded
integers, in addition to the ISO Standard characler format.

+ The ability to store any APL array in a CHAR or BINARY column, in a format
which can be extracted by any other SQAPL/PE client even though data is
stored in binary format. This can be used to implement a Component File
system, which can be used by all four major APL systems, under Windows,
0S5/2 and Unix.

- Support for data sets, so that you can extract a (subsel of a) table, make
changes to it using APL, and then get SQAPL to generate the required SQL to
apply the same changes to the underlying SQL table.

- Output data can be grouped according to the requirements of your application.
For example, you can extract all columns of the same data type in a single cell
of output, to conserve space compared to the heterogenous/mixed result
returned by the Entry Level product.

For more information, contact us at the address on the back cover, or ask your
APL dealer.

We are close to releasing most of the new server products mentioned in our news
item in the October Vector. Make sure to get the next issue of Vector to read all
about them!

HMW Trading Systems Ltd

Please note a new Email contact and a change to our phone number:

Tel: 0171-353-8900; Fax {unchanged): #171-353-3325
Email: 100020.2632@Compuserve.com

Manugistics Inc
(UK Re-seller: The Bloomsbury Software Company Ltd)

Manugistics are now shipping APL Link, the fast easy-to-use interface from
APL*PLUS 11T Windows to all of your data. Using Microsoft’'s ODBC, APL Link
lets you access a wide variety of databases on different hardware platforms,
you'll be able to write APL programs that use powerful yet simple SQL
statements. And because ODBC is an industry standard, you can change
databases and your programs will work with little or no modification.

There are two versions of APL Link to choose from: APL Link is an inexpensive
yet powerful interface from APL*PLUS III to a variety of databases; APL Link Pro

VECTOR Vol.11 No.3

is designed for the power user and combines increased performance with
advanced functionality including: the ability to execute blocks of SQL statements
simultaneously, support for more data types, and the ability to distribute APL
Link as part of a run-time application,

Further details from our UK re-sellers:

The Bloomsbury Software Co Lid.,
formerly Cocking & Drury (Software) Ltd.,
3-6 Alfred Place,

Bloomsbury, London WC1E 7EB.

Tel: 0171 436 9481;

Fax: 0171 436 0524,

Bloomsbury Software report a number of customers approaching them recently
with a view to moving their VSAPL off their mainframes onto PC's running
APL*PLUS 11l Windows — no previous version of APL having offered them both
the ease of migration and the necessary performance to make this exercise a
reality. Bloomsbury Software have some tools they developed to help automate
this process.

See our advertisement on page 141 for more details.

10

The Educatlon Vector Vol.11 No.3

THE
EDUCATION
VECTOR

January 1995

Editor Ian Clark

This Education Vector has been reprinted from VECTOR Vol.11 No.3. VECTOR
is the Quarterly Journal of the British APL Association. For more information
about the British APL Association, please contact: Antheny Camacho, 11 Auburn

Rd, Redland, BRISTOL, BS6 6LS Tel: 0117-9730036.

Contents
Editorial Ian Clark
Jot-Dot-Floor Ian Clark
J-ottings 4 Norman Themson
The Common Mean and APL Joseph De Kerf
Word-Search Squares in I-APL Bill McLean and lan Clark
Ian Clark
IAC/Human Interfaces,
9, Hill End, Frosterley,
Bishop Auckland,

Co. Durham DL13 25X.

Tel: 01388-527190
Email: clark.i@applelink.apple.com or 100021.3073@compuserve.com

11

12

14
17
21

The Education Vector Vol.11 No.3

Editorial
by lan Clark

One thing about being an ease-of-use consultant, you get to see a wide range of
jobs. Turning my hand to a spot of supply teaching at one of the better girls
schools, the headmistress confided in me “We do tend to push the weaker girls
towards IT”.

So there it is. IT is the Domestic Science of the 90s, fit only for cotton-heads that
ought to be barefoot and babbit by the time they're sixteen, and would be if their
parents weren’t so well-to-do. The sort of girl that's lucky to be leaving school
with any sort of qualification. So push-em towards IT. As for the more
academically-minded girls, well — who can blame them if they consider
anything to do with computers to be beneath their dignity?

I read in a recent issue of CUE Newsletter (Computer-Using Educators, Inc., of
Alameda, California): “The dilemma in 1990: we had the technology, we could
create powerful, well-designed word-processed documents, charts and graphs,
you name it. What power to unleash in a classroom! Unfortunately my students
and 1 shared the same secret — all of these skills only counted in the computer
classroom.” The writer of the article, entitled “A Goal Without a Plan is a
Dream”, goes on to recount how things have changed. “The lab had moved from
the place where students were learning skills that had little relevance to their real
or academic lives to a studio where tools were made available and creatively
used.”

Assuming that Ms Schandler is not talking through her sweatband, then by
comparison we in Great Britain in the Year of Grace 1994 are stuck in a 1980s
timewarp. 1 didn't say 1990 because at that time we were ahead of the
Californians in the constructive use of computers in the classroom. But the world
moves on — and it seems Britain doesn't. Chris Abbott, writing in Educational
Computing and Technology (November 1994), recounts his embarrassment at
having to tell erstwhile overseas visitors, who had come to this country to see
what had been achieved by the network of LEA centres, that most of them have
closed. “The 1993 Education Act suggests that private sector centres will develop
overnight, like so many mushrooms, where LEA centres close. No such magical
events have taken place.” He judges that “there are only two kinds of
organisation which now have the funding, the resourcing and the legal right to
develop new structures: the universities and the IT industry.”

12

The Education Vector Vol.11 No.2

Both of course have their own agenda. Industry will argue, as its running-dogs
have been doing in the correspondence column of “Computing”, that children
must be taught on “industry standard” software and hardware. “Who'd employ
somebody trained on an Acorn?” seems to clinch the matter as far as they were
concerned. For “ Acorn” you might substitute “AFPL” in the present context.

Of course there were indignant replies pointing out that children being “trained”
now won’t be looking for jobs for another ten years — and what price now the
industry standards of ten years ago? (8-bit computers, 5 inch floppies, 64kb of
memory, CIS-COBOL seen as the only way to program a serious commercial
application on a PC, if you're silly enough to sidestep the mainframe). Chris
Abbott again: “The only definition of industry standard which has long-term

rur

credibility is something like ‘fitness for purpose at lowest possible cost”™.

If people really believed that when purchasing for the classroom, then they
would not buy fashionable industry standard systems which “trained”, but time-
proved, time-proof ones which “taught”. Out would go expensive packages
which are supposed to exemplify, as closely as the budget will allow, what is out
there in the Real World. In would come modelling media in which the
mechanisms of a word-processor or a financial package (or genetic engineering
or an atomic pile) could be modelled, in terms which the pupil (and even the
teacher) could grasp. So it boils down to the choice of a good, cheap durable
modelling medium.

Some people build models out of matchsticks. Especially prisoners, who have all
the time in the world. Presumably they would use a low level programming
language to build a software model. Those of us for whom time (and patience} is
in short supply need to model with larger components and subassemblies we
could in principle build ourselves — or at least take apart and understand. More
like Lego than Lucifers.

Who can manufacture these goodies for us? Universities? When 1 worked in a
university it was academic suicide to be caught making things easy for people
with IQ<100. And as for industry — well! Whots paying? What are they buying?

T'm not being cynical. Both parties play the game by rules which are handed
down to them. It's up to our rulers to make rules which are productive and
beneficial, supposing they feel sufficiently motivated to do so. Education of the
next generation — isn’t that sufficiently motivating? Not if your mentality is
straight out of “Chitty-Chitty-Bang-Bang”.

13

The Education Vector Vol.11 No.3

Jot-Dot-Floor
by lan Clark

Here's a quote from the June 1994 editorial:

“...my first innovation, a column of jottings on rock-bottom educational matters,
Since il's simply got lo have a techie APL title, what betler than “Jot-Dot-
Floor'?”

I didn’t really want an answer to this. But I got one. A week or so ago the
following flame from cyberspace tracked me down, node-by-node, like King
Tut's ghost:

“This has been bugging me for a while, so I thought I'd better fix it now. Your
column title ‘jot dol floor’ is catchy, but wrong,. For someone doing education
stuff you're misleading the public. Floor is a monadic verb. Min is a dyadic
verb. Both inner and outer products lake dyadic verbs as their right operands.
Hence your column should properly be titled: ‘jot dot min’ This is not only
correct, but looks nicer [3 characlers of 3 each].

jot
dot
min — Bob (Bernecky)”

Well, what can I say? Bob's right, of course. T could point to the absence of
arguments altogether, which makes it niladic, sort of, but that only draws
attention to its being syntactically as well as semantically wrong, besides making
people wonder if there are any valid arguments in the body of the text, let alone
the title,

I could hide behind a symbolic rendering: «. L but that’s obscurantist and just
bemuses the public. The Editor-In-Chief was no comfort. He said 1 should have
consulted the ISO standard which gives the proper English names for all the
primitives (now he tells mef),

But I was thinking of a plan to digitise myself enunciating the names of the
primitives in my beautiful BBC English (mummy used to leave me alone in the
house with the radio on}. My son’s already done it in broad Werdle. I could find
others to read them for me in Brummie, "Merkin, perhaps even Strine. Then onito
French, and other languages.

I thought some more about it. Do the Finns have standardised names for the APL
verbs — and can you type them on a single line? Do the Russian names for the

14

The Education Vector Vol.11 No.3

verbs have perfective and imperfective aspects? Bearing in mind who hosted
APL'94, do the Belgians — and do they have twice as many standard names as
everybody else — one set in Walloon and one in Flemish?

Who else can I think of? What's Spanish for Floor, or Min? Is it the same in South
America? Do Californian schools have to teach three names for every APL verb,
in English, Spanish and Vietnamese like their public signs? Have the French
expelled the last remaining soupgon of Franglais from their APL nomenclature? Is
APL usage governed by the Académie Frangaise? What about APL in Hebrew —
do the verbs decline and the nouns conjugate? Has the Islamic world even begun
to think of names for the contents of 14 V? — or were their scholars calligraphing
them from right to left in flowing Naskh during the 11th century? Did the
Crusaders actually bring APL back from the Holy Land, only to have it branded
as heretical by the official dogma?

Do the Chinese use the same written names as the Japanese, but pronounce them
differently? Do the Eskimos have 127 different names for Rho? And what, ch
what, are they doing to APL on the Pacific Rim? Do the Ozzies care an xxxx?

Let’'s come nearer home. Do the APL primitives have names in Welsh, and why
not, man? Would the acceptance of Gaelic names by the whele Irish people help
or hinder the peace process? North of the Border, would the SNP demand
different names on the PC and the Macintosh? If Cornish is an extinct language,
would Cornish-spoken APL bring it to life again, or might the other thing
happen?

1 began to fantasise about touring the world on an APL scholarship, armed with
a tape recorder and a copy of I-APL, discovering how different primitive tribes
pronounced the APL primitives and release my findings into the public domain
just in time for APL 2000. The talking part’s very easy on the Mac (I've already
got one that speaks numbers) and Windows says “Me-Too"” nowadays — if you
install a Sound-Blaster — but you've spotted the snag, of course. It would need a
built-in syntax analyser just to determine whether *?" is Roll or Deal, or just a
plain query inside a message string. It might be one of those recursively-
unsolvable problems when taken across the whole ensemble of possible APL
interpreters. In Dyalog APL you can define a new function like this:

MYFUN+=, |

- so what's the machine to say when it reaches the end of the expression and
finds no right argument?

15

The Education Vector Vol.11 No.3

Other mathematico-philosophical movements have foundered on their
nomenclature, especially when you supply not just one, but two or more new
names for things your audience already has names for, like good old question-
mark. I spent half the seventies trying to get people to call their files “relations”
and their records “tuples”. Not singlets, doublets and triples, mind, but 1-tuples,
2-tuples, 3-tuples, 4...

Needless to say, our band of high fliers ran into a lot of flak, even from
academics, who really ought to have known better. Isn’t the whole of academic
life all about learning to call everything by its right name {Augustine of Hippo, 1
believe)? The Company cherished us, like the Mikado, as a source of innocent
merriment, but T chucked it in and spent the rest of the seventies researching
why people found computers so difficult.

Eh, what's that? Did 1 discover the reason? Well... no, not entirely. But there are
things you can do to be helpful, and things which hinder. Introducing a lot of
new names and new concepis with no apparent one-to-one mapping between
themn is not one of the helpful things to do.

Yes, read my lips. What I'm saying is that the strange characters of APL aren’t the
problem with the language — that's if you accept there is a problem. It's the
names for them. Who complains about code-page 437, 1 ask you? Yet everyone
uses it, everyone still using DOS that is, and it's full of the most bizarre glyphs —
Wingdings comes nowhere by comparison. And they all have names, every last
jot and sigil of them.

So I think I'll stick with the present title for now, until I can think of a better one.
Or a Spanish one, perhaps? Or in one of those Tintin-esque Fast European
languages. It would be fun to see the actual names of the primitives decorated
with slashes and backslashes, jots and dots, tildes and carets, all liberally laced
with each-pepper.

16

The Education Vector Vol.11 No.3

J-ottings 4

by Norman Thomson

J-ottings is about learning J rather than about J itself — that is left to those more
expert.] is much more tantalising than APL ever was. Somehow it is much more
difficult to get properly started, and yet the rewards of having done so are great.
The] literature is in some respects too polished, which can lead to the feeling of
running in a race where the leaders keep disappearing out of sight. It thus
seemed worth while to record an account of some failures and wrong avenues
encountered on the path to writing a simple J verb.

Eugene McDonnell in “At Play with J” (Vector Vol.10 No.3) articulated the fact
that in learning new computer languages, there is a need to have as a handhold
the confidence of being able to write simple multi-line programs in the style of
more primitive languages. He described a nine-liner te compute primes — 1
propose to do something much simpler, namely emulate in] the Basic program:

10i=1

20if i=11 then exit
30 print i

40 i=i+]

50 goto 20

and to record a catalogue of intermediate failures, Of course 1+1.10 can achieve
my objective at a stroke, but that is not the point. The object is to generate the
feeling of security that comes from being able to do it in a step-by-step multi-line
program, or as it is called in], a multi-line verb {mlv).

Multi-line verbs come little and late in the J Infroduction and Dictionary. A first
reading leaves the vague feeling that they have something to do with something
called suite ($.) which counts lines, and is somewhat similar to GLC. (Suite has
in fact been removed from the more commercially oriented | Release 2, however
I judge that readers of this section of Vector are more likely to continue to be
users of the earlier shareware versions.)

In APL a user-defined function is an entity whose roots are well grounded in
traditional programming. However, in J a multi-line verb is a table (or possibly
pair of tables in the ambivalent case), where a table is a character matrix. By
analogy with APL it is as if the Canonical Representation 1S the function. The
analogy of suite with OLC is quite strong in that suite is a vector of row numbers
referencing the table, and represents the list of statement numbers which will be

17

The Education Vector Vol.11 No.3

execiited in sequence provided that this sequence is not interrupted by explicit
assignment to suite. Suite is initially set to i.n where n is the number of rows in
the table. When the value of suite becomes an empty vector, this is a signal to exit
the verb.

A table is built up from its component rows using link (;). Suppose these rows
are the character strings a, b, ¢, ... Then define

table=.a;b;c
followed by

miv=.table : "!

if the verb is monadic, or
mlv=.t'"t : tablie

if it is dyadic, or
mlv=.tablel : table2

if it is ambivalent,

g, b and c are NOT program variables within mlv; they are temporary names
used to store the program lines as the verb is built up.

In editing simple tables] find it convenient to edit a line, then redefine table
and mlv, since this is made very convenient by the line recall feature of the]
interpreter.

Here i{s my first attempt at reproducing the Basic program above (remember
rows are numbered in origin zero) :

a=.1%,=,(1+y.=40),{. y.~:10! NB. ~: is not equal
=,']y=.y.+1' NB. y. is right argument
c=.'y.!

tabie=.a;b;c
mlv=,t : !

The idea is that, assuming an argument of less than 10, suite will be set to1 0in
line 0, so that y. is incremented and displayed following execution of line 1, then
the 0 in suite restores control to the top line. This process is then repeated until
eventually y.=10, suite becomes 2, 10 is displayed, and execution terminates.
Before reading further see if you can spot the flaw.

18

The Education Vector Vol.11 No.3

The reason for it is stated clearly by Eugene, viz. the result of a verb is the result
of the sentence executed last. Execution is thus silent in the sense that a verb such
as the above does not produce a line-by-line result. Also, since all variables
including y. and suite are local, it is not possible to work out after the event
what happened within the verb. It is possible to write a verb

write=,11:282

which uses one of the foreign conjunctions to transmit its argument to the screen,
and so replacing] in the second line with vrite helps, but now the 10 is
displayed twice, once by the trace verb vrite, and once by virtue of the “result-
is-last-senttence” rule.

Educated by my failure so far here is a second attempt at the verb (The
intermediate stages of building up the table are omitted):

$.=.(10-y.)#1
Ye=o¥e, ¥4l

This time I calculate in the first line the appropriate number of times the second
line has to be repeated. At every stage the newly incremented value of y. is
catenated, until last time round the full vector from start point to 10 is printed.
Again try to spot the flaw before reading on.

Consider f 9. This indeed has the value 9 10 as anticipated. Now consider £ s.
First time round y. becomes 8 9. Next time round 8 9is joinedtoy.+1togive 89
910 and so on.

A successful verb is:

$.=, (10-y.)#1
Yo=Y, 14{:y. NB. {: Is tail

The above example illustrates a simple way do deal with if/then logic. Extension
to the case statement follows in an obvious way:

a=.'s.=,y.!
b=.1'1gne'1t
cu=, 11 typt 1t

d=.!'!'Tthree'? !

t=.a;b;e:d
f=.t : 't

f 2 two

19

The Educatlon Vector Vol.11 Nc.3

] has labels which use } where APL uses :, and so if/then logic can be expressed:

as.'$.=.(y.=0)}lab2,lab1?
=.'labi)ttzergt!?
=,'lab2)}'t'not zero!''!

0 zero
7 not zero

This is used in a simple recursive verb to calculate triangular numbers.

a=.'$,=.(y.=0)}1abz,lahl’
b=.t'labil)r=.0"'
c=.'"lab2)r=.y.+f y.-1"

t=.a:b;¢
f=.t : ¢
£ 5 15

In writing multi-line verbs it is not necessary to name each row explicitly in the
table build-up phase. For example the above verb could be written:

a=.'$.=.(y.=0}}1labli, lab2! ; 'lab2)r=.¢' ; 'labl)r=,y. + y.-1!

f=.a : "
T 5 15

f in cither form is of course a travesty of] style, nevertheless | consider it
important to be ABLE to do it this way even although one wouldn't! An
acceptable] verb definition would use agenda(@.), tie(*) and $: which means
“self-reference”:

f=,0:1(+5:@<:)@.% NB, <: is decrement by 1, » 1s signum
f 5 15

This says take the signum of the right argument. If it is zero use the verb 0: to
initialize to 0. Otherwise add (+) the value of r used recursively ($:) after
decrementing its argument by 1.

20

The Education Vector Vol.11 No.3

The Common Mean and APL
by Joseph De Kerf

The classical definitions of the mean of two non-negative real mumbers are the
harmaonic mean h(x,y), the geometric mean g(x,y) and the arithmetic mean a(x,y):

H(x,y)=2xy f(x +y)
gla.y) =y

a(x,y)=(x+y)f2

with min(x,y) < h(x,y) < g(x,y) < a(x,y) < max(x,y). For example, let x=1 and
¥=99. We obtain respectively:

h(x,y)= 1.98000000

glx,y)= 9.94987437

a(x,y) = 50.00000000

As we see, there may be a serious gap between the geometric mean g(x,y) and the
arithmetic mean a(x,y). This gap may be filled by the concept of commien mean [1]
— a not very familiar concept from the literature. For convenience, let x; be the
smaller of two non-negative real numbers x; and y,. The geometric mean x; and
arithmetic mean y, are:

Xy =qxolfp and y, =(x0 +y0)/2

If this procedure of forming alternatively geometric and arithmetic means is
repeated indefinitely:

X =%y and y,,, =(xy,)/2 with i=1,2,3...
one obtains:
Xp€x, S, S .25 S Sy S Sy, S, Sy

% and y; converging to the same value. We define this as the common mean
c(xpyy) of the numbers x; and ;.

21

The Education Vector Vol.11 No.3

For the example x=1 and y=99 for instance, with an accuracy of 10 digits, we get
successively:

9.94987437 and 50.00000000
22.30456721 and 29,97493719
25.85687532 and 26.13975220
25.99792902 and 25,99831376
25.99812139 and 2599812139

such that ¢{x,y) = 25.99812139.

Finally, we have: glxy) = 994987437
c(xy) = 25.99812139
a{x,y) = 50.00000000

with 9.94987437 < 2599812139 < 50.00000000.

In fact the order in which x and y are treated and the order in which the
sequences of geometric and arithmetic means are calculated is not relevant and
c(x,y) = e(y,x) (commutativity). In addition c{x,x) = x {idempotency). Finally,
c(xy) = 0if and only if x = 0 or y = 0 (or both).

Programming the algorithm for calculating the common mean can be somewhat
complicated in most programming languages. In APL however, it is very simple.
A function to do the job is:

v R«X CMEAN Y
(1] ReX,Y
[2] LAB:R«(0.5x+/R),(x/R)*»0.5
[a] +{=#/R)/LAB
(4] R+0.5x+/R
v

which for the chosen example gives:

1 CMEAN 99
25.99812139

Accuracy is determined by the current, ie. the default value of comparison
tolerance {JCT. It may be changed by defining the comparison tolerance as a
global or local variable.

Note: a special case is the common mean of the numbers 1 and 14/2:

1 CMEAN + 2+%0.5
0,84721308u48

The Education Vector Vol.11 No.3

which is known in the literature as the “ubiquitous constant U” since it turns up
all over the place. Finally, the common mean is very useful in the design of simple
and efficient algorithms for calculating the complete elliptic integrals of the first
kind K{p) and of the second kind E(p). More details may be found in [1].

Reference

(1]] Spanier and K B Oldham: An Atlas of Functions. Hemisphere Publishing
Corporation, New York. New York 1987,

Word-Search Squares in I-APL

by Bill McLean and Ian Clark

I needed a Word-Search making program, since there are a lot of good teaching
points involved. The program is written using APLomb, which is a Macintosh
screen interface construction set based on I-APL, but any port of 1-APL should
work, although you won't get to see the square being built up and you won't get
the fancy buttons to control it. However the working functions don’t care whether
theyre running on APLomb or not, so simply make all the functions dealing with
the interface, viz. APLOMB, BUTTON1, BUTTON2 and REFRESH, into trivial
functions that do nothing when called and it should work with any APL (I'm
going fo try it with Dyalog — Ed).

LIST is a 2D char matrix containing the words to be matched. You can input
LIST by assigning to it the result of MAT 10, say, supposing 10 is the maximum
width of word you want. MAT will then accept successive words typed-in,
stopping when you just press <Enter> without typing anything,

Define GRID to be the size you want, e.g. a 10 by 10 array of asterisks {(or
anything, they'll get turned to asterisks), Enter in turn:

BEGIN
TRY
FINALISE

TRY will output into the session log what it's doing as it runs. This listing also
happens to tell you the solution to the finished square, something you'll need
unless you're very clever at solving these things. You can halt it at any stage

The Education Vector Vol.11 No.3

(sometimes it doesn’t manage to fit in all the words you give it in LI ST since it’s
possible to give it an impossible set) and then run FTNALISE. This fills in all the
remaining asterisks in GRID with random letters. Hey prestol — there’s your
finished square for the school newsletter,

And don’t forget, Konky Puzzles made a lot of money selling books of things like this.

Listing of Workspace WDS

(A Macintosh version of this workspace is available. Send a blank disk and SAE to
the Editor, EV. Other versions by arrangement.)

ABANDON: YB[;]-0

APLOME: 300 (OMC !

BUTTON1: BEGIN

BUTTON2: FINALISE

FINALISE: LOSE GRID|;)«GRID SUBST RANDCHAR nsneaky way to update giobal
G1:; GRID[;1+1s!

IF: w/a

IFALL: (afu)ia

INDOWN: GRIDISET:COLI+WORD

INHORIZ: GRIDIROW;SET]+WORD

INRIGHT: GRID[ROW;SET)+~WORD

LOSE: : 0 : w & suppresses output from @ direct definition

MAT: {wtV),[1] MAT w ¢ O=pV-D : (O,w)p""’

FEXT: ((¥+N+1)eLIST)[1:]

RANDCHAR: 'ABCDEFGHIJKLMNOPQRSTUVNWXYZ'[7{pGRID])p26]

REFRESH: 101 [MC '' » maintains kompos In mid-execution

SUB5T1: &+ »pp2+{,a).[.57,u ¢ (polp{l,B)eZ)(L1;] wmhow DOES 1t work?z
FB: (T14{" Trw)lipw)tu

v HEGIN

[1] =~ START THE APLOMB VERSION OF WORD SEARCH
{z] RUNNING++0Q

[3] CONTINUE++1

Tu] GRID[;]+""

{561 LORIENT<HORD+'<emptys'

{s6] TEMPGRID+' !

(7] MAX+ROW+COL+U+0

(8] N+i m--use first word in LIS?

[s] APLOMB

-

BIT;HORD
[1] HORD«
{2z] ~+(1 2¢72)/NORMAL REVERSE

[3] NORMAL:
[4] O«WoRD
[s]1 =0

[6] REVERSE:
[7] O+&WORD

[8] ~0
v
¥ EZ+BYHAND
[1] 1INPUT A WGRD'

[2] wWoRD«(l

[3] L+pWGRD

[4] '"WHICH ROW DOES THE WORD START ON?!'
[s] Row<D

pL)

The Education Vector Vol.11 No.3

[6]

[71

[a]

[9]

[10]
[11]
f12]
{131
[14]
[151}
[18]
[17]
[18]
f19]
fzo0]
f21]
[22]
[23]
[2u]
t2s1
[261]
[27]
[28]
[z291
[301
[31]

[11]
[2]
[3]
[v]
[5]
[8]
171
(s8]

[13
[2]
[a]
[u]
[5]
[6]
[71
[8]
[2]
[i0}
[£1]
[12]
[13]
[14]
[15]
[163
{171
[15]
[19]
[20]
[21]
{22}
[231
[24]
[25]
[z6]

D0, 1(L-1)
'WHICH COLOMN?'
coL+{
SET+ROW+D
‘DO YOU WART (D)TAGOKAL, (H)ORIZONTAL OR {V}ERTICAL?'
SELECT+[]
+{ "DHV'«SELECT)/DIAGONAL ,HORIZONTAL ,VERTICAL
DIAGONAL:
FEMPEBOX+GRID{(ROW+D) ; (COL+D)]
HOS«{ROWp0), {1 {L-1)},((10~ (ROW+({I-1)))p0)
TEMPGRID+NOS$GRID
TEMPGRID[ROW+D;COL J+WORD
GRID+(NOSx ™1)¢ TEMPGRID
1t
GRIL
+0
HORIZONTAL:
INRIGHT
1
GRID
+0
VERTICAL:
INDOWN
L]
GRID
+0
v

¥ Z+X SUBST Y
n substitutes Y elements into X as identified by i In boclean B
s ¥, ¥ and B must be the same 2D shape,
» Here B 1s assigned internally, but you can remove the B+ line
A and Colpose H before calling SUBST.
B+X='=' p--optional Iline, see above,
Z+(.X),[.5],Y a--Form 2»n array, X on top, Y below
Z«((,B)8Z) n--Rotate Z vertically using B
Z+v(pX)p2Zl1;] n-~Take row 1 of Z, reshape like X and return it.
v

V TRY;Z2:5T2E:MAX; 7 L;LABEL ;LAR;ROPATE

a f1l1l GRID randomly with WORD chosen from LIST
LABEL~DOWNRIGHT ,HORIZONTAL ,DOWNLEFT , VERTICAL
SIZE«''ppGRID n-~height of GRID, assume=width
A N+0 san N made global to allow restart

L]

NEXTWORD:

a--0Ose exlsting ¥, finish at end of list
+0 IF N>14pLIST

a--clear trailing spaces from next WORD
L+~pHORD+TH LISTIN:]

n-~keep within MAX row/col for WORD to fit GRID
MEX+1+SIZE-L
D+"1+1L n-~vector of indexes, 0 1 2... for HORD
a--optionally reverse WORD at random
2 '"WORD+4WORD' IF 2=22
REFRESH
LABEL+LABEL[474] a--scramble order of labels
J+1 n--indexes LABEL[]

R

NEWORIENT1 m--try another orientation
+ABANDON IF Y4<J«J+CORTINUE++1
LAB+LABEL{J] n--the label to be used
YB+(MAX . MAX)p1 n-~flag array used by UNTRIED
2'YB+(SIZE MAX)p1' IF LAB=HORTZONTAL
2" YB+(MAX STZE}Ypi' TF LAB=VERTICAL

25

The Education Vector

Vol.11 No.3

[271
[28])
[29]
[ae]
[a1]
[32]
[33]
[au]
[a5]
[36]
[a7]
[28]
[a3]
[40]
{u1]
{uz]
[u3]
[uu]
[us]
{ue]
[u73
[usl
(492
[50]
[51]
[52]
(53]
[541]
{551
(58]
[57]
{581
{591
{s0]
{611
[62]
[631]
[eu)
[65]
[661]
[671]
[68]
[69]
[70]
[72]
[72]
(73]
{74
{751

[1]
(2]
[3]
[u]
(5]
[61
[+1
(8]
(9]

NEXTCELL: a--find next untried cell
Z+UNTRIED

n-—-if no celis left try new orlentation
+NEWORIENT IFALL (Z=0)v~CONTINUE
ROW+Z[1]

CoL+Z(2]

FEMPGRID+'"

REFRESH w--update the APLombk kompos
+LAF n--go to the randomly chosen label
a
DOWKRIGHT: LORIENI+'down/right’

ROTATE+D

Z+1 1§TEMPGRID+GRID[{ROW+D);:{COL+D)]
~+DIAGONALLY

A
DOWNLEFT :LORIENT~'down/left"

ROTATEw$D

Z+1 i&TEMPGRID+GRID[{ROW+D);(COL1D)]

A

DIAGONALLY:

n-~select a block and make Z the diagonal

REFRESH n-~-te show IEMPGRID

+NEXTCELL IF 0e(Z='=')v(2=WORD)

a--insert WORD 1in the diagonal of TEMPGRID
TEMPGRID+~ROTATEYTEMPGRID
TEMPGRID[;1 J«HORD

TEMPGRID~ (-ROTATE)¢ TEMPGRID

REFRESH o--to show new TEMPGRID

n--replace TEMPGRID In GRID
GRID[L{RON+D) ; (COL+D)]« TEMPGRID
+NEXT

A

HORIZONTAL:LORIENT~'horizontally'
TEMPGRID+Z+«GRID[ROW; SET<COL+D]
REFRESH

+NEXTCELL IF Ge{Z='x')v{Z=HORD)
INRIGHT

+NEXT

B

VERTICAL:LGRIEND~*vertically'
TEMPGRID+Z+GRID{SET»ROW+D;COL]
REFRESH

wNEXTCELL IF Oe(Z='+')v(Z=WORD)
INDOHN

A
NEXT:WORD,' inserted ',LORIENT,™ at ',¥ROW,COL
+NEXTWORD N+~N+1
ABANDON:WORD,' abandoned!'
+NEXTWORD , H+N+1

v Z+UNTRIED;B;T:id
» chooses a random YB=1, sets it to ©C
U++/,YB n--the total of 15 1n YB (U global for Inspection)
+EX IF U=I+J+0 @ return 0,0 1f there are no 15 left in IYB
Ze(pYBipl ,YBI\(20)86U+1 n--one of the 1s in YR selected at random
YB<¥Ba—Z m--turn it off {n ¥B
n-~find coords of the 1 in 2
I+(v/Z)/ 1 14pYE
J+{v£Z) 114pYE
EX:Z+I,J
v

ALPH

ABCDEPGHIJXLMNOPQRSTUVHXYZ

26

VECTOR Vol.11 No.3

APL Product Guide

compiled by Gill Smith

VECTOR's exclusive APL Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

Pressure on space occasionally prevents us from printing the complete guide,
however updates will always be listed. We do depend on the alacrity of vendors
to keep us informed about their products. Anyone who is not included in the
Guide should contact me to get their free entry — see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are ‘not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups (‘poa’ indicates “price on application’):

+ Complete APL Systems (Hardware & Software)
+ APL Interpreters

» APL-based Packages

+ APL Consultancy

» Other Products

« Overseas Associations

+ Vendor Addresses

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

All contributions and updates to the APL Product Guide should be sent to Gill
Smith, at Brook House, Gilling East, York, YO6 4J]. Tel: 01435-788385, Email:
100331.644@Compuserve.com

27

Vector Product Guide Vol.11 No.3
COMPLETE APL SYSTEMS
COMPARY PRODUCT PRICES(E) DETAILS
Dyadic {BM RS{6000 MD320 11,738 APL POWERSslation (Greyscale) 27.5 MiPS, 7.4 Milops RISC
Precassor 8Mb RAM, 120Mb Disk
19" 1280x1024 Greyscale Graph Display AlX, OSF Motil, Dyalog
APL (1-user)
1BM RS{5000 MD320 13,817 APL POWERSstaton (Colour) 27.5 MIPS, 7.4 Mllcps RISC
Procassor 8Mb RAM, 120Mb Disk
16" 1280x1024 Colour Graphics Display AlX, OSF Matif, Dyalog
APL {3-user}
18M RS/500C MD320 22,656 Advanced APL POWERstation 27.5 MIPS, 7.4 Mfiops RISC
Processor 16Mb RAM, 320Mb Clsk, 150Mb Tape
16" 1280x1024 Colour Graphlcs Display AlX, OSF Matif, Dyalog
APL (1-user)
{BM RS/8000 MD520 37114 APL POWERSsystem (8-users) 27.5 MIPS, 7.4 Mfieps RISC
Processar 16Mb RAM, 320Mb Disk, 150Mb Tape CD-ROM
Drlve, 16 Ports
AlX, Dyalog APL (2-8 user licence)
IBM RS{E000 MD530 72,054 APL POWERsystem {16-usars) 34.5 MIPS, 10.9 Mllops RISC
Processor 32Mb AN, 1.34Gb Disk, 2.3Gb Tape CD-ROM
Drive, 18 Ports
AlX, Dyalog APL (8+ user licence)
IBM RS/6000 MD540 122842 APL PCWERsystem (32-users) 41 MIPS, 13 Mficps RISC
Processor 64Mb RARM, 1.7Gb Disk, 2.3Gb Teps CD-RCM Drive,
32 Perts
AlX, Dyalog APL (8+ user lkence}
Interprocass
Systems APLZ Dev't Workstatioh poa Malnframe APL2 supparted on & PS/2 via a co-processor card
with $6Mb of memory running VMESA (370 mode). A complate
system includes & PS/2, a Pf370 co-processor card, and
software licensas for VM/ESA, APL2, GDDM and the full ine of
Interprocess APL2 enhancements.
MicroAPL 1BM RS/6000 12,000+ POWER rangs of RISC systems running AIX. Dumb terminal or
graphical Interface.
Aurora 20,000+ Multi-user APL computer using 68020 CPU, Sid. configuration
2Mb RAM, 18 RS232 ports, 68 Mb hard disc, 720K diskette
Cptima, 1BM Compatible poa Comgplete PC-based stafion, APL Interpreters & all support eq't
APL INTERPRETERS
COMPANY PRODUCT PRICES(E) DETAILS
APL Software APL"Pius/PC Releass 10 450 STSC's APL for [BM PCs & compatibies.Upgrades from earller
releases also avallable.
Aun-time poa Closed verslon of APL*Flus/PC which prevents user exposure to
APL.
APL*Flus Il 1,385 All the features of mainirame APL*Plus for your 386PCH
Rurn-time pea
Dyalog APL 1000-10,000 2nd generation APL tor Unix systems
APL2/PC poa IBM’s APL 2 for the PC.
Atlantis Sottwara Analytic Platerm (K) poa K is en APL-like language
The Bloomsbury Software Company
(was Cocking/Drury) APL*FLUS PG Rel 11 250 STSC's tull featured APL for IBMs and compatibles - Version 11
glves free runtime.
APL"PLUS IIl Windows 549 The new 32-bit natlve Windows APL*PLUS. Develap In

Windows, and distribute APL applications with no runtime
charges. Aeasonatle migration charges from APL*PLUS/PC and
APLPLUSI.

28

Vector Product Guide

Vol.11 No.3

Dyadic

IAG{Human interfaces

I-APL Ltd

I-APLASI
1-APLYISI

|BM APL Products

[nsight Systems

Iverson Software Ine.

APL*PLUS Il for BOS

APL*PLUS Il for UNIX

APLFPLUS VMS
APL*PLUS Mainframe

Dyalog APL for DOS/386

750

poa

poa

poa

995

Dryalog APL/W for Windows 295

Dyalog APL for Unix

I-AFL{Mac
I-APL{PC or clones
I-APL/BBC Master

I-APLArchimades
|-APL{Macintosh

Iversoh Software Inc

APLIWIN/388
IWIN3BS

TIyARLZ

APL2 PC (US Version)

995-12,000

8-11

kX
13

50
16

tree

$630

APLZ PC (European Version) £348

APLZ for ©S{2 Entry Edition $185
APL2 fer OSf2 Advanced Edition $650

APL2 for Sun Sclarls
APL2 for AlX, 6000

APL2 Verslon 2

APLZ Application Envt Vn2
APL"PLUSIPG

Dyalog APL

APLZ

APLIZE8

APLIPC
APLIWIN
APL Reference Manual

$1500

Now that APL*PLUS Il for Windows Is available, the facility for
creatng Windows applications in PLUS I has been removed,
and the price reduced.

STSC's 2nd generation APL for all major Sparc and Risc Unix
waorkstations.

2nd generation APL for DEC VAX computers under VMS.

Enhances Y5 APL with many high performance, high
productivity leatures, For VM{CMS and MVS{TSO offers simple
upgrade from VS APL.

Second generation APL for DOS,Auns in 32-bit mods, supports
very large workspacas, Unique "window-basad” APL
Development Environment and Screen #Manager. Requires
386/486 based PC or PS{2, at least 2Mb RAM, EGA or VGA,
DOS 3.3 or later.

As above, plus object-based GUI developmant tools. Requires
Windows 3.0 or later.

Second gensratien APL for Unix systems. Avallable for Altos,
Apallo, Bull, Dec, HP, IEM 6150, IEM RS/6000, Masscomp,
Pyramid, NGR, Sun and Unisys machines, and for PCs and
PCI2s running Xenlx or AIX. Oracta interface available for IBM,
Sun and Xenlx versions.

Macintesh versfon of l-APL

IS0 conforming interpreter. Supplied enty with manual (sse
‘Other Products' for accompanying books).

As above

As ahove

A5 above

I-APL I the UK agent for all $S1 products, Including APLIWIN and
JWIN for PC and many other mathines,

Windows APL induding manuat

Including Dictoriary of J and infroduction to J
Pleasa note the packing charge of £3 per order.

APLZ for educational er demonsiration use. Write, fax or Email to
APL Products; speclfy disk slze dasired,

Product No. 6759-PGG. PRPQ Number Ri0411.
Order from 1-800-IBM-CALL

Produet No, $604-260. Part number 38F1753.
From all {BM dealers, indluding MlcreAPL,

Part No B¥51556.

Part No B9G1697. Contains all facilities of the Entry Editlon plus:
LB2 Interface; co-cperative processing TGP/IP Interface; kiols
for writing APs; TIME facllity

Product No. 5648-065.
Product No, 5765-012.
Product No. 5688-228. Full APL2 system for 5/370 and S/390
Product No. 5688-229, Runtime environment for APL2 packages
APL systems marketed and supported ...

trom: Dyadlc, Manugistics, 1BM

under; Windows, 52 and Unix

Sharp APL Release 20 for PC 386, 486 with graphics, and abliity
to oparats under Windows.

Faot PC under DOS
For 388/PC under Windows 3.1
Documentation far all the above.

29

Vector Product Guide

Vol.11 No.3

J System Kit $24
J Source Code $90
MicroAPL APL.GE00D Level | 2000
APL.6B000 Levet Il 2500
APL.E80D0/X 1500-6000
APL.SB000 Level |
Mac, ST, Amiga 87
Mag, Amiga 280
APL.GBOOO Level Il
ST 170
Amiga 260
Mac 520
APL*PLUS Rs! 10 450
APL*PLUS I V A0 1385
Optima APLPLUSIPC 359
APL*FLUS I g50
APL=PLUS Il PC Developers Kit poa
Oyalog APL felee)
RE Time Tracker Oy APL*PLUS/PC poa
APL=FLUS II/DOS
APL*PLUS {IAWIN
APL"PLUS/UNIX
Soliten Assoclaies SHARP APLfor MVS poa
SHARP APL for Unix poa
Unlware APL*PLUSIPC 495
Run-Time call
APL*PLUSIUNX call
APLFPLUSH call
APL PACKAGES
COMPANY PRODUCT PRICES(E)
Adapiable Sysiems FLAIR poa
APL-385 APL-385 50{PC),125{mf}
FSM-385
DRAW-385
DB-385
GEN-38%
The APL Group Qualed| §1500-4000

J 6.2 diskette with manual "J:Intreduction and Dictionary”
Full C source code plus 100-pags book

First ganeratlon APL with numerous enhancemsnts. Multi-user
version {Unlx, Mirage, MCS).

Second generaticn APL. Nested arrays, user deflned operators,
selectiva spacification etc, Mult-user version (Unix, Mirage,
MCS}

Second-generation APL. Nested arrays, user defined operatots,
selective specification, etc. Multi-usar AlX varsion with fulf
OSFMotf suppert.

First ganeration APL. Single user, tull windowlng intertace,
softwera floating point support,

First generation APL. Single user, full windewing interlace,
hardware floating polnt.

Second generation APL, Full windowing intarface, soltware
floating point support.

Second generations APL. Full windowing Interface.Harcdware and
softwara floating point suppert.

Second generation APL. Full windowing interface. Hardware and
software fioating point support.

Complete APL*PLUS and Statgraphlcs product range and user
support for Finland

for |IEM MVS malnframes
for IBM RS/600C and Sun SPARG
STSC's tull feature APL for IBM PCIXTJAT, Compag, Olivett.

Closed vorsion of APL"PLUS{PC which prevenis user exposure
1o APL.

STSC's 1ull feature APL for UNIX based computars
STSC's full feature APL for 388 machines.

DETAILS

Finita loader and Interactive rescheduler. Customisable full-
tuncton scheduling system. (Avallable cutskde Australia by
spedal arrangement only.)

Including ...

Sereen development
Screen design
Relatlonal W.S.
Miscaltaneaus Liilides

Electronic Data Interchangs (ED!} ¥anslation software for the
PC, with strict compllance checking.

30

Vector Product Guide

Vol.11 No.3

APL Sottware Lid
(mainframa)

{microcomputer}

RDS
IPLS
REGGPAX

POWERTOCLS

AEGGPAK
RDs

The Bloomsbury Software Compary

{was Cocking/Drury)
{tor VSAPL)

{for APL2}

Cinerea AB

CODEWORK

CYBEX AB

HMW,

HRH Systams

Enhancaments & Sharafile

Compiler
SharelllejAP

CRCHART

HELM

APL GraffPC
APL Graf WI/PC

Lty Functions APL2
Utitity Functions II)/PC
4XTRA

Arbitrage

Basket

Menu-Bar

APL Utliities

APL*PLUS Utilites

LAG/Human Intertaces| AC/Graf

I-APL Ltd

Impetus Ld
INFOSTRCY

Insight Systems

IAC/Vox
Educational warkspaces

impetys

APL*PLUS/Xbasa Intarface
{1/{386 Version 2)

(PC Varsion 2)
{ELL Versior: 1}

IUTILS/XP

poa

pea
285
poa

990

poa

250

poa

290
390
1500
130
poa
poa

poa

poa

poa
$198

$od
$168

20-95

Relaton Data Base System
Project Management System
Fegression Analysls Package

Assembler written replacement function for commanly used
GPU-consuming APL functions, Includes a Forms Processor.

Regression Analysis Package
Relational Database System

Component files, quad-iunctions & nested arays for VSAPL
under VRICMS & MVS/TSC

The First APL compltert

STSC's shared access component flla system for APLZ.
Comparable to all APL*PLUS fila systems: mutll-user storage of
APL2 arrays with efficient disk usage.

Organization chart package for IBM APL2JPC. Full & heavity
commented sourca code Included - fres Integraticn Inta other
applications. NB: ASCII cutput with line-drawing (seml-graphic)
characters for baxes.

Declslon: Support system for top management. Developed in Itafy
over 7 years, Requires APL mainframe or APL*PLUS/II, Optiona!
modules: EIS, Exce! Intarface, DTP output via LATEX, output on
map background.

Presentation graphics for APL"PLUS{PG (CG!)
Presentation graphles for APL"PLUS II/PC (CGl).
For APL mainframe; Ind. a very fast search.
Same packags for APL*PLUS 1I/PC.

Frent-end Forelgn Exchangs deallng [pos keeping
Arbitrage medalling

Basket curency modelling

pull-down menu for APL*PLUS/PC

Soltware to transfer workspaces batwesn APL*PLUS and Sharp,
and batween APL"PLUS and |-APL Soltware to import [BM .ATF
files to APL*PLUS.

Public domaln scttware, unlock locked s, a user-endly
alternative to locking, Ins of mathemateal physics, menus, and
cthers.

Graph ploting for i-APL/Mac
Spoken APL characters for I-APL/Mac

PC forma: disks with the examples from: Thomson, Espinasse
(Kits 1-4), Kromberg, Jlzba & FinnAPL All the examples to save
your fingers!

Corporate Modelling and Reporting System.

Complete package written In C. Comparable with the data, Index
& menw flles of FoxPro, dBASE, & Clipper. Mutthusar support,
No DBMS [icense required.

As above for APL*PLUS/PC,

The same I a DLL form! Gives your Windows applications all
advantages of DLLs.

Cross-platform utility library Indluding simple OS calis (DIR,
CGPY, DEL, RENAME} and DATE functions, Far APL*PLUS 11,
APLZ2 and Dyalog APL under Windows, O$/2 and Unix,

31

Vector Product Gulde Vol.11 No.3

ASt 95 AP, Spreadsheet Intetface. “Device-independent” spreadshest
driver supporting Exgcel, 123 and Quattro-Pro for Dyalog APLIW

WinCom 95 Asynchranous comms package for Dyalog APL/W

52D,220,X2X poa Advanced APL syntax analys's anc conversion packages from
Sharp and APL2 to Dyalog, and between any two APLs

SQAPL Cllent poa Interface from APL"PLUS II, APLZ and Dyalog (Windows, GSf2
or Unlx} to most SQL databases over most networks,

SQAPL Server poa Makes APL*PLLUS II, APL2 or Oyalog APL (Unix) avallable as

SequeLink servars, Can be called from SQAPL clients or other
applications such as Excel, C++, Smalltalk, Visual Basla,

Interprocess Systems APL2 Development Worksiation poa

IEDIT $3000-6000 Full screen APL2 editor with Immedlate APL execution, and fuli-
sereen debugger
{malnframe} AFM $5500-15300 High performance compenent and keyed flla system (VS APL
and APL2)
(PC) AFM $176 Single user component and keyed files for APL2/PC,
Enhanced Format $2575 A Quad FMT dala formalter for V5 APL and APL2
PowerCode $2000 External functions for APL2
CALL/AP $4700 For calling non-APL programs (VS APL and APLZ}
WSORG poa Full-screen Workspace Organizer for APL2.
JAD Sottware JAD SMS 150-500 Software management system for APL*PLUS Il based on

herarchical datebases; Inciudes full-screen interface and stand-
alone functions. Price depends on number of users.

Lingo Allegre FRESGCQ Business Graphlcs £250 Fast ard Easy Business Graphics BLL
GDDME $1000 AP126 GDDM graphics emulation for Dyalog/W
AP12T 250 CDBC interfacae for Dyalog/W
FACS $1000 EMMA-like functlons for SGL tables
TCPR poa APL Code and Application Management for Dyatog APLIW
Rumbe Connection £350 Cannact Malnframe APL. to Dyalog APL/W using Rumba
[RMA Connection $250 Conngct Malnframe 10 Dyalog APLW using Irma for Windows
Mercia LOGOL g2 poa Logistics management system for 386/488 & RISC computers.

Sales Forecasting, Inventory Management, Master Scheduling,
Distribution Requirements Planning, Sales & Operations

Planning.
TWIGS poa A modular [ibrary of tocls to teach and explore state-of-the-an
matetlals management concepts, Developed by ALG. Brown.
MicroAPL MicroTASK 250 Preduct development alds
MicroFILE 2% Flle utllities and database
MicroPLOT 250 Graphics for HP plotters etc
MicroLINK 250 General device cemmunications
MicroFORM 250 Full screen forms daslgn
MicreSPAN 250 Comprehensive APL tutor
MicroPLOT/PG 250 For APL*PLUS{PC product
MicroSPANSPC 250 APL self Instruction tor APL*PLUS/PC
STATGRAPHICS Ret 5 590
AE Time Tracker Oy UIT/W poa TMT-Team Oy's Usar Interface Toolkh tor APL*PLUS If and

PLUS Il under Windows. Comprehensive spreadsheets,
replicated fislds, speclal field types, elc.

DB+ pca TMT-Team Oy's databasa interfaca for APL'PLUS |1 & PLUS HII
under Windows. Interfaces to almost twenty different databases.

Soliton Associates LOGOS poa Application Development Environment

32

Vector Product Gulde

Vol.11 No.3

MAILBGX poa
VIEWPOINT poa
UNIWARE

{for mainirame) STSC's ENHANCEMENTS poa
STSC's SHAREFILE poa
TOOQLS & UTILITIES poa
EXECUCALC poa
{for APL*PLUSIFC) APL Debugger 2.1 FF1950
FF9750
Menus 3.0 FF2450
FF12250
ETATGEN 2.0 FF1950
FF9750
UNITAB 2.0 FF4550
FF22750
UNIASM 3.0 {site llcense) Fr4950
UNISTAT 5.1 FF2o00
{ter APL*PLUS 1) UNIWARE Toolkit 11 4.1 FF38000
APL Debugger Il 2,1 FF2930
FF14750
Manus If 4.0 FF3950
FF18750
ETATGEN 1l 2.0 FF2O5G
FF14750
UNITAB | 2.0 FF6950
FF34750
UNISTAT Plus 5.2 FF4300
Warwick University BATS 250
FAB Iree
Zark APL Tutor {FC) 4299
APL Tuter (MF) $5000
Zark ACE $99
APL Advanced Technlques.... $59.95
Communications $200 pe, $500 mf

APL CONSULTANCY
COMPANY PRODUCT PRICES(E)
Aclive Workspace APL Programming poa
Adfee Consultancy poa
Andrews Consultancy poa

Elgctronic Mak
Heport generator with [nterfaces to DBZ and MVS data

Quad-functions & nested arrays for IBM VSAPL
component files for IBM VSAPL and for [BM APL2

Including FILEPRINT, FILESORT, FILECONVERT
FILEMANAGER{EMMA) STSC’s database package

Mainframe spreadsheet compatible with VISICALC and part of
LOTUS 1-2-3 under VSAPLIVM or TSO)

A visual APL debugger o help davelep applications
(site license)

Complete set of hlerarchical menu utilltles
{site kcense)

Page layout report generator
{site icense)

An APL*PLUS spreadsheel-ike data entry and validation system
{sita license)

Assemtler utifities to speed up APL"PLUS{PC applications
Data analysis add-on medule tor Statgraphlcs

(site llcense only). Relational databasa systam and complete set
of utllides for APL*PLUS |l development

A visual APL debugger to help develop appllcations

(site llcensa)

Complete set of hisrarchical mouse-driven menu utilities
(shte llcanse)

Paga layout report generater
(sl lleense)

An APL*PLUS spreadshaet-like cata eniry and valldation system
(site llcenss)

Data analysis add-on module for Stalgraphics

Menu driven system for tme serles analysis and forecasting
using Bayasfan Dynamic modelling. Price is reduced to £35 for
academic Instltutions,

Training program far the above.

APL computer-based tralning. Avallable for APL*PLUS PC &
APL*PLUS I. Demw disk $10,

Malnframe verslor.

APL continuing education, APL tutor news and holtllhe phone
support,

4BBpp. book, (ISBN 0-9619067-07) Including 2-disk set of utllity
funetions {APL*PLUS PC format).

Move workspaces or files between APL environments,

DETAILS
Short of long-term consuliant avallable.

Cevelopment, maintenance, conversion, migration,
documentation, of APL products In all APL environments

APL pregramming and analysls, spaclalises In tres-processing
algorithms.

33

Vector Product Guide

Vol.11 No.3

APL People

Consultancy

Bloomsbury Scttware Consultancy

Camacho

Rav Canren
Paul Chapman

David Crosslay
Patar Cyriax

begon Research

Dyadic

E&S

Evestic AB

General Software

Consultancy

Consultancy

Consultancy

Consuliancy
Consultancy

Consultancy

Consultancy

Consultancy

Censulancy

Censultancy

Greymantia Assec [tdConsulting

HMW.

Michael Hughes

Consultancy

Consuitancy

{ACIHuman |nterfacesConsultancy

INFOSTROY

insight Systems

tnteliigent Programs

JAD Software
Kestrel

Linge Allegro USA

Documentation
Training
Consultancy

Consultancy

Consultancy
Documentation
Trainng
Censultancy

Consultancy

Cansuliancy

pon

300-750+VAT

poa

poa
poa
poa
100-150

120-200
160-300

poa

poa

poa

poa

from 120

poa

poa

poa

350

100-200

poa

poa

poa

poa
poa
poa

poa

poa

poa

Gonsultants avallabla at all levels. Expertise In APL system
daslgn, project management, prototyplng, financlal epplications,
decislon suppont systems, MIS, links to non-APL systems,
documeantation, etc.

Manuals; feaslbillty reports and estimates; analysis and
programming; APL and MS Windows applications; Sharp, ISI
APL, APL*PLUS, APL2/PC and cther APLs spoken, Fixed prica
systams a spaclality

APL, G, Assamblar, Windows, Graphlcs: PC and mainframea

24-hr pregrammer; APL, C, Assamblar, Graphics; PC, min,
mainframe and natwork.

Broad experience in many APL envirenments

Junlor Consuttant
Gopsultant
Senlor Consultant

APL Systems consultancy, design, implementation, support,
documentation and maintenance. All dialecis with special
emphasis on APL2 and Dyalog APL/W.

APL and Unix system design, cansuttancy, programming and
tralnlng.

System prototyping: all types of Infermation system, engineering
soltwara, graphics and decision support systems APL*PLUS/PC,
APL2, Dyalog APL

Excelent track record from 10+ years of APL applications In
banking, Insurance, and education services, All dialscts,
plattorms and project phasas, SQL expertise.

Company reporting, business graphics, Windows applications
with Dyalog APLIW.

Syslem deslgn censuliancy, programming. HMW specalize in
banking and prototyplng work.

Consullant with 10+ years experienca with various APL
interpreters and C.

APL on Macintosh & PG, HC! design, VDU ergonomics:
EG{Health & Safety compllance.

On-line asslstance, product demos & mock-ups, manual writhg;
foreign language software localization.

Uslng -APL for courseware & distance leaming materals; Mac
pregramming In G, AFL & HyperCard.

APL*PLUS & Windows consultancy. Parting of software written
in G inte APL"PLUS.

Experts i APL conversions between any combination of;
APL*PLUS, APL2, Dyalog APL and Sharp APL We are also
experiencad right-sizers, comforiable with networks and
relational databases (that also means when NOT to use SQL)
and dientfserver development It APL, C and Visual Basle,

Systems development, enhancements, support.
Preparaton of new manuals, rewriting of existing materials,
Training for APL experts through to non-lechnleal system users.

Systems design and development, project management,
tachnlcal manuals, finenclal and actuarial expartisa In APL.

All APLs, all environments, Design, analysls, coding,
maintenance, decumentation, tralning, interfading.

General APL consuttancy speclalizing In Frototyping, Migration,
Mainframe to PC Downsizing, Performance Analysls,
Troubleshooting, and Graphics.

34

Vector Product Gulde

Vol.11 No.3

MlcroAPL

Ellis Morgan

Optima

Parallax Systems Ine
QB On-Lne

RE Time Tracker Oy

Rex Swaln

Rochester Group
Sykes Systems Inc

Cansultancy poa
Caonsultancy 250-500
Consultancy poa
Cansultancy £750
Consultancy aso
Consultancy poa
Consultancy poa
Consultancy poa
Consultancy poa

Unlvware Consultaney (Senior) FF{day 5000
Consultancy (Senlar) FFi{day 7500
Training FF10000
Wickliffe Computer Consultancy poa
OTHER PRODUCTS
COMPANY PRODUCT PRICES(E}
Adfes Employment poa
APL Pecple Employment Agency poa
Bloomsbury Scitware Training pea
HMWY Employment poa
HRH Systems APL lessons
The BBSIAPL: $24pa.
J-APL Ltd An APL Tutoriat 3
An Encyclopaediaof APL (2d Ed) 6
APL In Soclal Studles 3
I-APL Instruction Manual (2d Ed} 3
APL Programs fer the Mathematics
Classroom (Springer-Veriag) 16
J Dictionary 16
Pregramming In J 10
Arthmetic 12
An Introduction to J 8
Tangible math g
Sharp APL Reference Manusal 18
APL Pross Books 0a

Lverson Sottwarae Inc.

Kestret

Technical & applications consultancy.

Buslness Ferecasting & APL Systems.

Arange of consultants with 3-15 yrs APL PC and mf experlenca.
Introductory APL, APL for End-user & Advanced Topics In APL
Speclalising In Banking, Financial & Planning Systems.

Speclalised In comprehensive APL Windows user Interfaces,
APL Mulimedia, APL to APt level interfacing for Windows,
Windows applications, DLL s & dalabases. Also Iranchising
consultancy

Independent consultant, 20 yeers experience, Custom soltware
development & tralning, PC andfor malnframa,

Speclalise In MIS using Sharp APL

Cempleta APL services speclalising in auit, optimisation and
conversion of APL systems. Excellent design sidlls, All dialects
and pladorms, 17-23 years experishce.

Consukancy from people with at feast § years APL experianca,
Advica and training in Windows programming with APL*PLUS I
E-day class on Windows pregramming with PLUS |l version 4.0

System design, consultancy, programming and decumentation,
Espedizlly project managament and decislon support systems

DETAILS

Centractors and permanent employees
Employees placed atall tevels.

Centact the compeny for detalls.

Contractars and permanent employees placed.

On-screen Interactive APL lessons for APL*PLUS, TryAPL2,
Sharp and I-APL — In English or French.

703-528-7617, 1200-14400b, N-8-1, 24 hours. APL educational
materlal Is downloadable fres, An additional 30 megs of APL
software for APL*PLUS, PLUS |1, IBM, Sharp & I-APL Is
avaliable to subscribers (cost Is $24/yr). Selection avallable on
dish for $15 post-pald, Free on-isk catalogue,

45pp by Alvord & Thomson
228pp by Helzar

3Bpp by Traberman

8Epp by Camacho & Zlemant

185pp by Thomson

by Ken Iverson

75pp by Ken Iverson

118pp by Ken Iversen

47pp by Ken lverson

35pp by Ken lverson

349pp by Berry

A comprehensive selection of early APL lterature

p
Please note there ls & packing charge of 3 per order

Programming in J $15
Tanglble Math $12
Arithmetic 318
Employment poa

TGpp.
pp.
123pp.

Permanent and centract, homa and abroad. From individual
placement to supply of complete prajsct Yeams.

35

Vector Product Guide Vol.11 No.3

Sottware Library poa Low-cast softwane distribution service; call for detalls.
Renatssanca
Data Systems Bocksallers The widest range of APL books avallable anywhere. See Vectar
adverilsements.
Solion Assoclates MVSLINK poa irterface from Sharp APL {Unlx & MVS) to nen-APL data and
software in the MVS environment.
S5QL poa High-performance DB2 interfaca for Sharp APL (Unix and MVS).
OVERSEAS ASSOCIATIONS
GROUP LOGATION JOURNAL OTHER SERYICES Ann.Sub,
ACMISIGAPL International Quote Quad
APL Bay Area USAN, Californla APLBUG Monthly Meetings (2nd Monday) $186
APL Club Austria Austria - CQuartarly Meetings 200AS(Indiv), 10C0AS(com)
APL Club Germany Germany APL Journal Seml-annual meatings DMS&2

APL Interest Group South Afrlca - -
Ass. Francophone pour

ia promotion d'APL France Las Nouvelles d"APL

BACUS Balgium APL-CAM Conferences & Seminars £18 ($30)
Chicage SIG Chicage

Harttord Group Hartford, Connecticut, USA

CPCUG APL SIG Washingten, D.C. Monthly meetings,

(Capltal PCUG) Menitor cccaslonal classes tree
Danish SIG Denmark

Duich APL Assoc. Holland - Mini-congress, APL ShareWare Inliative

FinnAPL Helsinkt, Finland ~ FinnAPL Newslatter Seminars on APL 100FIM{private), 30{student), 100G (Co}
Japan APL Assoc. Tokyo, Japan

Melbourna APLUG Melbourna, Australia Quarterly mesetings free
New York SIG New York, USA

Potomac SIG Washington DG, USA Frea monthly meetings

Rochester APL Hochester, New York
Rome/italy SIG Roma, taly
SE APL Users Grp Atanta, Georgia ~ SEAPL Newslatter

SOCAL Southern Californla Seminars $15 ($5 students)
SevAPL Cbninsk, Russla

SwedAPL Sweden SwedAPL Nytt Seml-annual meetings, seminars SEK 75
SWAPL Texas, USA SWAPL $18
Swiss APL {SAUG) Bem Part of Qtty Sl-Info SFE0 (81) + SF20 {SAUG)
Sydney APLUG Sydney, Australla Epsllon Monthly Meetings

Toronte SIG Toronto, Canada Glmme Arrays! Maonthly Meetings, APL skills database, J 51G, Toronte Toolkit $25

36

Vector Product Guide

Vol.11 No.3

VENDOR ADDRESSES

COMPANY
ACM/SIGAPL

Active Workspace Lid
Adaptable Systams
Adfes

Andrews
APL-385

APL Bay Area Users Group

APLBUG

APL Club Austtia
APL Club Germany

The APL Group Inc

CONTACT
Danna Baglio

Ross D Ranson

Lols & Richard Hill
Bernard Smoor

Dr Anne D Wisen
Adran Smith

Lewis H. Roblnson (Sec)

Erich Gall
Dleter Lattermann

Stuart Sawabinl

APL Intarest Group, South Afrlca

APL People / Software

Mike Montgomery

Jill Moss

Associaton Francophone pour

ta prometion d’APL
Atlantls Sottware
BACUS

Or. Gérard Langlet
Arthur Whitney
Joseph de Kert

The Bloomsbury Software Ca Ltd

Camacho
Ray Cannon
Paul Chapman

Chicago SIG
Clnerea AB
CODEWCRHK

CRCUG
David Crossley
CYBEX AB

Pater Cyrlax Systems
Danlsh User Group
Datatrade Lid.

Dogon Research

Dutch APL Association
Dyadic Systems Lid.

Petor Cay

Antheny Camache

Larry Mysz
Rolt Kernemark
Mauro Guazzo

Lynne Startz

Lars Wentzel

Peter Cyrlax
Per Glerlof
1an Tomlin

Cick Bowman

Bemard Smeor (Seg)
Poter Donnelly

ADDRESS & TELEPHONE No.
ACM, 1515 Broadway, New York, NY 10036 USA Tel+1 {212) 626-0606
Emall: baglio@acm.org

Moulsham Mill Centre, Parkway, Chelmsford, Essex, CM2 7TPX.
Tel: 01245-496547; Fax: 01245-496646.

49 First Streel, Black Aock 3123, Australia,
Tel: +61 3 589 5678 Fax: +61 3 589 3220

Dorpsstraat 50, 4128 BZ Lexmond, Netherlands.
Tel +31-3474-2337, Fax: +31-3474-2342

23, The Green, Acomb, YORK YO2 5LL Tel: 01804-792670

Breok House, Gliling East, York. Tel; 01439-788385 Fax; 01439-78B194
Email: 100331.644@compuserve.com

1100 Gough St, Apt 144, San Franclsco, CA 64100, USA
Tel: +1 {415) 928-2058 Emall: frgp21a€ prodigy.com

15M Osterralch, Obere Donaustrasse 95, A-102¢ Wien, Austria

Rheinstrasse 23, D-69190 Walldorl, Germany.
Tel: +496227-683469 Compuserve: 100332, 1461

844 Danbury Road, WILTON, CT 06897 USA.
Tel: +1 (203) 762-3933 Fax: +1 (203) 762-2108

Private Bag X11, Rivonia 2128, South Africa
Tel: +27 (11} 803.7200 Fax:+27 (11) 803-9134
Emall: mikemont@spl.co.za

The QId Malthouse, Clarence St, BATH, BA1 8NS, Tel: 01225462502

SCM, C.E. Saclay, F-81191-Glf sur Yvette, France. Fax:+33 1 69-08-79-63
1105 Harker Avenue, Palo Alte, CA 24301 USA
Roolnberg 72, B-2570 Dutfel, Belglum, Tel; +32 15 31 47 24

3-6 Alfred Placs, Bloomsbury, London WC1E 7EB. Tel: 0171-436 9483;
Fax: D171-436 0524

11 Aubumn Read, Redland, Bristol BSG 6LS., Tel: 0117-9730036.
emall: acamacho @cix.compulink.co.uk Reutemst (Sharp): ACAM

21 Woodbrldge Rd, Blackwater, Camberlay, Surrey GU17 0BS
Tel: 01262-874697

51B Lambs Condult Street, London WCTN 3NB.
Tel: 0171-404 5401. Compuserve: 100343,3210

838 Highland Drive, Chleago Helghts, IL 60411 Gompuserve;73040,3032
Skyttegatan 25, 5-193 00 Sigtuna, Sweden.

Corsa Calroll 32, 10123 Torino, laly.
Tel: #+39 11 885168 Fax: +39 11 812 2652

Capltal PG User Group, 51 Menroe Strest, Suite PE-2, Rockville,
Maryland 20850, USA. Tel: +1 (301) 762-9372,

487 Le Tour dfu Pont, Quartier Le Mourre, 84210 ST DIDIER, France
Tel: +33 50-66-08-87

Gruvgalan 35B, 5421 30 V. Frolunda, Sweden.
Tel: +46 31-45 37 40. Fax: +46 3145 24 23.

22 Heraford Read, Lendon W2 4AA, Tel; 0171-229 5344
Emall: gjerper@lnet.unl-c.ck

1 & 2 Sterfing Business Park, Selthouse Road, Brackmills, Nerthampton,
NN4 OEX. Tel: 01604-760241

2 Dean Gardens, Londen E17 3QP Tel: 0181-520 6334
Emall:bowman @apl.demoen.co.uk

Postbus 1341, 3430BH Nleuwegeln, Tel; +3t 3474-2337

Riverslde View, Basing Road, Old Basing, Basingstoke, Hants RG24 DAL,
Tel: 01256-81 1125 Fax: 01256-811130

37

Vector Product Guide

Vol.11 No.3

E & 5 Asscclates
Evestic AB
FinnAPL

General Software Ltd
Greymantle Associates

Hartforé CT Group

Frank Evans
Olle Evero

M.E. Martin
George Macleod

Bab Pomaroy

H.MW.TradIng Systems Ltd Stan Wilkinson

HRH Systems
Michael Hughes
|AC/Human Intefaces

-APL Lid

IBM APL Products

Impetus Ltd
INFOSTROY
Insight Systems ApS

Inteflligent Programs Ltd
Intarprocess Systems Inc,

Iverson Software nc.
JAD Software

Japan APL Asscclation
Kestre] Consulting

Lingo Allegro USA Inc.
Melbourne APL Group
Mercia Scftware L1d.
MicroAPL Lid.

Ellis Mergan

New York SIG APL
Optima Systems Ltd

Potomac APL SIG

QB Cn-Lne Systems

Dick Holt

lan A, Clark
Anthony Camacho

{for querias, order forms)

J C Business Services
{for pre-pald grders only)

Nancy Wheeler
Cedric Heddle
Alexel Miroshnikav
Morten Kromberg

Mike Bucknall
Stella Chamberlain

Eric lverson

David Crossley

Mark Hamis
Walter G. Fit
Harvey Davies
Gareth Brentnall
David Eastwood
Eills Morgan

Nestor Nelson
Paul Gresvenar

John Martin

Philip Bulmer

Renalssance Data Systems Ed Shaw

19 Homesdale Road, Orpington, Kent BRI 1JS. Telk 01689-824741
Bertellusvagen 124, S-146 38 Tullinge, Sweden Tel&Fax: +46 778 4410

Suomen APL-Yhdlistys RY, FinnAPL RF, PL, 1005, 00101 Helsink 10,
Finland

22 Russell Road, Narthholt, Middx, UBS 4QS. Tel: 0181-854 9537

Bartrum House, Ravens Lane, Berkhamsted, Herts, HP24 2DY
Tel: 01442-878065 Emall: 100412,13058 compusarva,com

Mass Mutua! Life, 1268 State St, Maildrop F465, Springtlald, MA 01111
Tel: +1 (413) 788-8411x2838

Hamilton House, 1 Temple Avenue, Victorla Embankmant,
London EC4Y GHA, Tel: 0171-353 8900; Fax: 0171-353 3325,
Emali: 100020.2632@ compuserve.com

3802 N Richmond 51, Sulte 271, Adington, VA 22207
Tel: +1 (703} 52B-7624; Emall: dick holt@acm.org

28 Rushten Road, Wilbarston, Market Harborough, Leics,, LE16 8Qt.
Tel: 01536-770998

§ Hill End, Frostarley, Blshop Auckland, Co, Curham D113 25X
Tel: ¢1388-527190. Email: clark.i@ applelink.apple.com CS: 100021,3073

11 Auburn Road, Redland, Bristol BSS 6LS. Tel: 0517-9760036
emall: acamacho@cix.compulink.co.uk Reuternet (Sharp): ACAM

56 The Crescent, Miiton, Weston-super-Mare, Avon, B322 8DU

APL Products, IBM Santa Teresa, Dept M46/D12, 556 Bailey Avenue,
San Josa CA 95141, USA. Tel: +1 (408) 463-APL2 {=2752)
Fax: +1 (408} 453-4488 Emall: APL2@ vnetibm.com Csarve: GO IBMAPL2

Rusper, Sandy Lane, Ivy Hatch, SEVENOAKS, Kernt TN15 OPD
Tel: 01732-885126

3 8. Tulenin Lane, St. Petersburg 191186 Russla.
Teli+7 812-3111611 Faxi+7 812-3153321 Emaltaim@Infostroy spb.su

Nordre Strandve| 119A, DK-3150 Hellebask, Denmuark,
Tel:+45 42 10 70 22 Fex: +45 42 10 75 74 Emall: Insight@Inetuni-c.dk

9 Gun Whart, $30 Wapping High S, London E1 8NH Tel: 0171-265 1120

11660 Alpharetia Highway, Suits 455, Roswell, Georgla 300676, USA
Tel: +1 (404) 410-1700, Fax: +1 (404) 410-1773 Cserve: 70873,2676

33 Major Street, Toronto, Ontario, Canada M5S 2K9
Tel: +1 {416) 225-6096; Fax: +1 (416) 488-7559

580 Eyer Drive, #81 Pickering, Ontario, Canada L1W 3B7
Tal: +1 {906} 837-1885 Fax: +1 (905) 8315172

23-2-302 Hiromlchl, Adachi-ku, Tokyo 120, Japan

Business & Technelegy Centre, Bessemer [rive, Stevenags,
Herts. 8G1 20X Tel: 01438-310165 Fax: 01438-310131

113 McHenry Road, Sulte 181, Buffale Grove, IL 50082 USA
Tel+1 (312} 2034926 Fax:+1 (708) 459-8501 Cserve: 71303,3224

CSIRO Div Atm Res, Private Bag No.1, Mordialleg, Victerla 3195, Australla
Tel: +61 3 586 7574 Fax: +61 3 586 7600 Emall; hid@dar.csiro.au

Holt Court North, Heneage Stree! West, Aston Science Park, Birmingham
BT 4AX. Tel: 0121-359 5096. Fax: 0121-356 0375

South Bank Technoperk, 80 London Road, LONGCN SE1 6LN
Tel: 0171-822 8366 Fex: 0171-928 1008

Myrtle Farm, Winchester Road, Stroud, Peterstleld, Hants.
Tel: 01730-263843

PO Box 138, NY 10185-0002, USA

Alrport House, Purley Way, Croydon, Surrey CRJ OXY Tel: 0181-781 1812
Fax: 0181-781 1899

Computer Sclences Corp, 1100 West St, Laurel, Maryland 20707-3587
Tel: +1 (301) 497-2098 Fax; +1 (301) 408-6260 Emall:jam@acm.org

& Sumey House, Partsmouth Rd., Camberley, Sumey, GU15 1LB.
Tel: 01276-855880 Fax: 01276-855301

P.C. Box 20023, Park West Finance Station, New York, NY 10025-1510,
U.S.A Tel: +1 (212) BB4-3078

38

Vector Product Gulde

Vol.11 No.3

AE Time Tracker Oy
HAochester APL

The Rechester Group Ine,
Romefl1aly SIG

SE APL Users Group
Shandell Systems Ltd,
SOCAL (South Californla)

Sofiton Assoclales

SovAPL
Rex Swain
SWAPL

SwedAPL
Swiss APL User Group

Sydney APLUG
Sykes Systems Inc

Toronto 8IG
Uniware

Wickiffe Computer Ltd
Warwick University

Zark Incorporated

Richard Eller
Gary Dennis

Robert Pullman
Maric Sacco

John Manges
Maurice Shanahan
Roy Sykes Jr

Laurfe Howard

Alexander Skomorokhav
Rex Swain
Stuart Yarus

Gilan Medr

Fob Hodgkinson
Roy Sykes Jr

Marc Griitiths
Efk Lescasse

Nick Telfer
Prot, Jett Harrison

Gary A, Bergquist

PO Box 363, FIN-00101 Helsink, Finland. Tek +358-0-400 2777

Saliton Assoclales, 1100 University Avenue, Rochester, NY 14807
Email: gsd@ipsalab.tor.soilton.com

50 S.Unicn St., Rochester NY 14507-1828, US.A,
Tel: +1 (716) 454-4360, Fax; +1 (716) 454-5430

Casella Postala 14343, 00100-Roma Trulle, Haly
Emall: marsac@vnetibm.com

991 CreeKdale Drive, Clarkston, GA30021 USA
Chiltern Houss, High Street, Chatfont St. Gifes, Bucks., HP8 4QH.

Sykes Systems Inc, 4649 Willans Ave, Woodland Hills, CA 91364-3812
Tel: +1 {818} 222-2759 Fax; +1 (818) 222-6280

Soliton Assoclates Ltd, Groot Blankenberg 53,
1082 AC Amsterdam, Netherlands
Tel; +31 20 646 4475 Fax: +31 20 644 1206 Emaill;jh @ soliton.com

PO Box 5061, Cbninsk-5, Kaluga Region, Russla
Emall:askemn @epi2.cbninsk.su

& South Street, Washington, CT 08793, U.S.A.
Tel: +1 (203} 868-0131 Fax: + (203) 8689970

PO Box 210357, Bedlord, Texas 76095, USA Tel: +1 (817) 5770165
Compuserve; 73700,2545

Box 16184, 5-103 24 Stockholm, Sweden Tel:+46 (8) $6 09 47

Swiss APL User Group, CH-3001, Bemn 1, Switzerand
Emall: s1@ ifl.unizh.ch

PO Box 1511, Macquarie Centre, NSW 2113, Australia Tel:+61 2257 5313

4649 Willens Ave., Woodland Hills, CA 91364, USA
Tel: +1 {818) 222-2759 Fax: +1 (818) 222-9250

PO Box 384, Adelalde St Post Qitice, Toronto Ontarlo M5G 2J5, Canada
Tel:+1(416) 532-0843 Emal; mareg @ utcs.utoronto.ca Cserve; 76260,3314

Tour Neptune, Cedex 20, 92086 Paris la Defense 1, France.
Tel: +33 (1) 47.78-786-00. Fax: +33 (1) 40-90-04-11

76 Victeria Rd., Whitehaven, Cumbrla, CAZ28 8JD. Tel: 01946-692588

Dept of Statistics, University of Warwick, Coventry, CV4 7AL
Tel: 01203523369

23 Ketchbreok Lana, Eliington CY 06029, USA. Tel: +1 (203) 872-7808

39

& COMPASS’

The Compass graup is a recognised and rapidly expanding international consultancy
with a prestigious client base extending across Europe, North America and the Far
East. Compass provides detailed action plans to improve IT efficiency by
benchmarking against top performing companies. In 1993 alone, the implementation of
Compass recommendations reduced our clients’ IT costs by more than $600 million
world-wide.

Based in Guildford, Compass R&D is respensible for the development of a range of
software products used by the group and our clients. Compass has been committed to
APL since 1984 and a number of key software products have been developed using
APL*PLUS/PC and APL*PLUS II. We are now looking for an accomplished
specialist to join our high calibre team.

Senior Software Engineer (APL)

You will assist in the development and support of our existing APL systems including
a large database and modelling system running on PCs at siles throughout the world,
Plans for 1995 include integrating this system with Windows using APL*PLUS III,
ODBC, DDE and MicroSoft Office products.

Accordingly, you will require good APL development experience using APE*PLUS
I or Dyalog APL and the ability to deliver quality software on time. Familiarity
with the Windows development environment and Visual Basic or C would be an
advantage.

Compatible with the expertise and commitment of our employees, Compass R&D
offers a highly competitive remuneration and benefits package.

If you are interested in this challenging position and would like to join our successful
and highly motivated team, please reply to Ruth Ramsay, Compass R&D, 10,
Frederick Sanger Road, Surrey Research Park, Guildford, Surrey GU2 5YD. Tel:
(01483) 302249, Fax: (01483) 302275

VECTOR Vol.11 No.3

RECENT MEETINGS

This section of Vector documents all British APL. Association meetings, and any
other events of interest to the APL world. If you have recently attended any
gathering which you feel would be interesting to Vector readers, please let the
Editor have a brief note, and we will include it here.

In this issue, we continue the documentation of APL94 with the complete set of
foils from Gérard Langlet's presentation on human vision. We also have in full
one of the papers from the meeting at Frankfurt organised by Dittrich and
Partner, and a brief résumé of Adrian Smith’s seminar to FinnAPL on the
Causeway platform.

41

VECTOR

Vol.11 No.3

APL 94 at Antwerp

The APL Theory of

Human Vision
by Gérard A. Langler

We are glad to be able to bring our readers
the foils from Gérard Langlet's presentation

of this paper at Antwerp.

These foils can be read like a book if you
take them in the right order. They are
reduced to an eighth of their original size,
but we hope they will be legible enough.

The order to read them in is:
12
34

What does "by" mean 7

What does "-" mean ?

What does "+" mean ?

"-"is the presence of 1 electron
o

"+"is the absence of 1 electron
ie.

"+" is the presence of 0 electron

"+"is a VOID, a HOLE

APL94, Antwerp

The APL Theory of Human Vision

Gérard A. Langlet, CEA/DSM/DRECAMISCMW/LIT
Centre d'Etudes de Saclay

F-31191.-Gif sur Yvette, France

An APL game for the electrons

+ by + is +

+ by - is -

I

- by + is
- by - is +

Benjomin Franklin (1 706-1790)

1is OINE QUANTUM of MASS

1is ONE QUANTUM of
CHARGE

0 is O'NE QUANTUM of NO-
MASS

0 is O'NE QUANTUM of NO-
CHARGE

then...

VECTOR Vol.11 No.3
APL transcription : Inital state : (A, B)
0 #04is 0 Next state : (A, A#B)
0#1idis 1 fe.
Next state : {#\A4,B)
1#0is 1
1 #£14is 0 APL2 economy : (#\A B)

For acouple (&,B) of Quanta
A e 01

Beo1l

What is {)ision ?

Optics, Biochemistry &
Electricity

What is @Biochemistry ?

Chemistry of "living entities"

What is Chemistry ?

The Science of Bonds

What are the (Bonds made of ?

Electrons

more generally for a CHAIN

ie.aVECTOR V<A B C ..

#Z\V

othe Jeast- Action g?rinciP[e

for INFORMATION

“"Nature is thrifty in all its actions”
{1744)

Maupertuis (1698-1759)
Elementary NO-ACTION : w+« ©

Elementary ACTION : @+~w

Controlled Least-Action
{Decision Theory) :

IFa THEN @+~
[ELSE w+]

VECTOR Yol.11 No.3
APL transcription : Only 3 func.tions warrant
absolute isentropy or

. non-Gddelian behaviour :

Inital state : (o, w) —=
NOT
Next state : (¢, A#w)
ie. EQUAL
Next state : (F\a, w) UNEQUAL
Restoration
NOT w is 1#w

{reversibie computation) ;
(@, w)=(A\#\a, w)

Reversibility warrants
isentropy
Le.
NO NOISE, NO LOSS
of INFORMATION

"We only perceive Differences™

“Kristiaan Huygens (1678)
(Traité de fa Lumiére)

Example of Kurt Gidel's

undecidability :
o
AND
gate R {result}

R is known as 0
@0 @ is known as 0
What was the value of @ 2

Qori1 7?7

Undecidability may occur
with all Boolean functions
except ~ =and #

CEQUALS @ is #/1,a,0
ie
the last item of #\1,a,

with arguments 1 o @

in ANY order

Gaodel's thecrem (1931) cannot
be proven anymore if one
removes the axiom of
ordered sets

The result of #/
which composes every item of
a result given by #\
is independent from the order
of the arguments
(commutativity)

Nature is non-Gédelian :

It always decides.

Quantum Mechanics is
Godelian

Parity logic with #\ is not

VECTOR

Vol.11 No.3

The Theory of NO-VISION

Louis Braille {1809-1852)'s
Alphabet
for the Blind (1825, 1829)

® ® ®- & &Kk B
® @ ® s & ®
® & - & ®

The 3D integer-modulo2 code
is difference-scanned in
parallel from left to right

in 3 rows
by the sensitive fingertips

Information is seen and
understood at the same time

Receptors in retina {rods and
cones) are arranged in a close-
packing with 3-fold (triangular)

symmetry

1000719101 ::DHD!MH’J
2 4 rt

00000001 1010101100119 £10110011001
An example of neurcbit-packing

Every horizontal row is the row
above, difference-scanned
with a half-position shift

Every row, parallel to the sides
of a 4 character is its
neighbouring parallel row,
difference-scanned

#\ is, mathematically,
the modulo2 equivalent of
undefined integration for
continuous functions and of
discrete numeric cumulation
+\

#\ is also the modulo2
equivalent of —\

#\ is a difference-scanner
which produces differences
without damaging information

#\ ciphers and deciphers
information within itself,
contrary to scalar # which
requires a cryptographic key
with the same length in bits as
the message

Every row, parallel to the sides
of the A character contains, in
bits, the modulo-2 equivalent

of a Jourier (1768-1830)-
transform

#\ performs two very fast
FFT-like transforms without
difficulty or truncations, in
modufo2 integer arithmetics,
directly in the neurobit-network

Oneis the FCT :
Fast Cognitive Transform

The other one is the FHT :
Fast Helical Transform

at the speed of electron jumps

VECTOR

Vol.11 No.3

Typos in the paper

(Quote-Quad, Vol. 25 No 1)

Page 109 near the bottom of
the first column :

IThe nine bits or pixels, underlined below Fig. 1 about the
retinatopology ;1 0 1 1 0 1 1 1 fotm an APL
veoior, which, right-matrix-multiplied by matrix M above,
poduce 1 1 1 0 0 1 1 0 jc the kel side of the
following finjte-difference triangle, extracted from the same
figure with black/light pixels :

bl
rotaind ar nol, Ny 120"}

|
Two 0s (in bold below) are missing :

The nine bits or pixels, undertined below Fig, 1 about the
retinatopology:1 0 0 1 1 0 1 1 1 formandPL
vector, which, right-matrix-multiplicd by matrix M above,
podecel 1 1 0 0 O 1 1 D ic the lef side of the
following finite-difference triangle, extracted from the same
figure with black/ight pixals :

Use this matrix three times as
an ante-factor or a post-factor
for the modulo2 matrix product
with any sequence S of 16 bits
e.g. your initials in the PC's
OAV character code

GS1l« G #.A S
SGl« S #.A G
GS2« G #.A GS1
SG2« S #.A 5G1
GS3« G #.A GS2
SG3« S #.A SG2

46

Orractal Matrix Recipe

Take a primordial parity
sequence B in bits, e.g. 1
followed by 15 zeros :

10006000D0CO0O0CGO 00
Iterate 16 times : B«#\B
Fill the rows of a G-matrix, a 16-

geniton with the 16 integrals of B :

1 1

Ll ol e e e N e N Ll T NS
CHFOMOHOHODHFOMOMAQH
COHFOQRFOOKFMOO KM
SCOOHOCOOHOQOOHOOO M
COQRHHPRPHOIOOIDIOHPF MM
QOOOQOHFPOFRPROQOODOMHD

COD0QOHFHPOCOCQOHKH
COoOO0OCOoODOHOQLQOOOO K
D CDOOQOCQOQOR MMM
QOCOO0OOC0COODOHOKOMOM
O000O0COoO0DODRDHKMKEOOKM
QoCOoOOoCOOQODCOoOrHOOODKR
D000 O0O000OCKMPE

[~R-N-R-N-NeNN.N-N-N-N-X-N_ -0
(==l elog-N=-N-N+R+N+0-N-2-2
COoOQCQCO0ODDODOOCOC KM

First, both vectors GS 3 and
SG 3 should reproduce your
initial sequence S because

the fractal matrix G is a 3-fold
symmetry operator :

It is always equivalent to a
rotation matrix which performs
what you can hardly do with
double-precision complex
arithmetics using Euler’s factor

eZn il3

In other words, for any size,
from 2 to infinity, this matrix
acts as an exact binary code of

J the complex cubic root of 1.

VECTOR

Vol.11 No.3

And the inverse matrix is also
its modulo2 matrix square

G#.A G

or its hypercomplex conjugate

which is obtained by symmetry

- so without computation -
as either:

vei
or:

oG

How simple is neuro-
computing, expressed in
APL!

But do not try to use this matrix
method to transform a
sequence the shape of which
would reach a Gigabit..., unless
your APL WS is large encugh
to contain the G matrix :

PG
1073741824 1073741824

Rather use the magician's
algorithm, given in the
paper and in
Les Nouvelles d'APL N°11
whose execution time is
in (O)N
while the matrix product

isin (O)N?

47

Fortunately, our left eye is
wired to the right brain and
conversely :

When analysed in detail,

symmetries induced by

#\ appear to be able to
replace the whole of
classical computing...

if the shape of B is a power of
2, then the genitonis a
symmetric matrix so that a left-
or a right- matrix product
returns the same result :

GS1 (or SG1) is the FHT,
reversed (mirrored)
while GS2 (or SG2) is the FCT,
reversed (mirrored)

Recollection

If applied to sequence S
directly ,
16 successive iterations of #\
produce P a fractal PARITON
matrix the last row of which is
S=,P[pS;]

The FCT will then be
automatically found in the /asf
column on the right (0I0=1):

FCT=,P[;pS]

while the FHT will be
automatically found as the

second diagonal of P :

FHT=1 1 ®weP

VECTOR Vol.11 No.3

{a) tha organic molecuiar computer &l rest

K
\ v/ >—
CH3 Cc==C H
5\ / \ / *—o
HE3C H c=2cC C==cC
[/ \ / —d|._
H3C;C\ /C = C\ H CH3 C-H o OO
I [o]
Hztl: c H o} SITo
N *—8
B2t © 11 cis-retinal =
CHz CH3a *—e >
The small dewn-arrow $ points o the carban atom {number 11) *—e CD
around which the carbon chaln jumps when a photon aclivates >—_
the sleeping cpmpuler : symmelry changes from 'cis (bending
on the same size) to trans (maximum linear extension) : a
(b} the same computer, in extension, ready to operate
H\ Meocrandme
CH3 =0
\ 7 | oty badrt
H C=2=cC tionsinn
/ A
CHa C=C H
\ / \
HiCc H C=2C H
RB3C é \C = C/ H
N \
Hz(ll ﬁ H
HzC, C All-trans-retinal
CH2 CH3

Now, the symmelry of bonds is ternary around each
nade (carbon atomy in the chain of the pigment.

0100000010101 0000

1111110011 00007

010101000 000

011001111;000;%% QOStu[atum
01000101000CD00000 !
©113110601111111171

010100010101 01071

611000011¢0z21001

0100060016001 0000]1 f

SRR RREE TheLa\.?(s) which govern(s) the
01010100000101060 evolution of what we are able
U110011111100111 -
010003I01061006061071 to perceive
911110G¢61100001109

0101000100000103 should be the same as the
8110000111111 000 Law(s) which govern(s) the
03T 00006030301 0000

evolution our perceptions

themselves
+ Helix (diagonal in the flat matrix)

in particular #Howwe SEE,

and the same as the Law(s)
which govern(s) the evolution
of ourselves.

Model ofaRod
Structure as a
Cylindric topology of
Paritics, processed by #\

+ Copnitive ring

VECTOR

Vol.11 No.3

APL, as a complete (with the
mathematical meaning)
language
for the description of
dynamical processes,

i.e. sequences of actions,
i.e. algorithms,

becomes the best TOOL for
studying (scanning),
modelling,
propagating (teaching)
the KNOW-HOW,
with simple & efficient
axpressions,
which, by their existence as
very-short-although-fast
programs, will bring the
necessary proofs
to the theory.

Double-Helix Data Structures

0-D+«DIAGOREP R DIAGO ls 2pDIO
01¢1030C00C100O0TC
= = = =

0+-DD+DI AGOROE 6P
61010100010001400
L= =% &= =
one has extracted a double helix from
the periphery of the rod (cylinder)
D(18] = DD[18]

(Typos in the text p. [15, right column : remove APL-
character ";™ from the expressions)

2 8pD #A2 apD
01010190 01000100
0010000

2 8phD r#2 8pDD
010610100 0Co0oo010000
010600100

In all such double-helix data structures,
any half among the 3 different halves,
is the logical difference {or the integer
modulo2 sum) of the other two,
automatically

49

The main Law of

(senetics :

If a gene is dominant, it acts,

If a gene is recessive, it does
not act.

At the Quantum level of Action,
this is the SAME law as the
APL formulation of the
Jeast-Action Principle (TAP)

for information processing :

7\

A major question about helix
chirality {i.e. either left-handed
or right-handed
double helices)
is now solved :

Only one diagonal of the
Pariton matrix, the
second diagonal,

has the property of containing

a Fast Transform of the
information contained in the
last row,

and also a Fast Transform of

the information contained in
the last column (the Cognitive
Ring in the cylindric topology)

VECTOR

"Living” DNA/RNA, as well as
the 7-helix molecule
(rhodopsine) which fixes
retinal in the rod, are always

right-handed helices

The equivalent of
Maxwell's law, now for
information processing,

in right-handed corkscrew
structures, becomes, for
any sequence S :

(COG S) OHEL®S
(HEL S) PCOG®S

with COG & HEL APL fns which
compute both transforms

The "neurcbit-system" detects periodic
replications and compresses them,
filling both the 3cT and the FuT with Os.

The "neurobit-system" detects
palindromes : the 3CT and the Fut
become symmetric of one another.

50

Vol.11 No.3
3 A culinto 4 quadrants ;
0113111189 01100000
01010100 4100000900
01100111 10000¢C00
A 01000101 000006CG00 T
01111001 11111111
01010001 01810101
01100001 10¢611¢0]1
a1000001 000G100071
011111138 000111120
01010100 00010100
01100131 11100113
o1g00101 031000101 ¢
01111001 10000110
1010001 cooo001049
01100001 |1111100030
01 ¢00001 a10130000C
A= BAC
A= CHAD
B= CHA
B= A#C
c= A#B
c= B#£A

A is itself a P matrix, etc...

The Code of Essential Information

Adenine Thymine {Letter "A"}
H
N
N N-H : O CH3
s S / \ /
H-C c-c c-cC
N / N / N
N-C N : B-N [
4 hS / A /
tothe 151chaln N - C cC - N
of the double helix A /! [N
R] to the 20d chain of
t + the double helix

Guanine Cytosine (Letter "G")
H
s
N 0O : g-N H
s S ’ 5\ s
H-C c-C c-C
N / i s ~
N-C N-H : N C-H
] ~ s N\ ’
fotha 18tchain N - C cC-XN
of the doubla helx hY V4)
N-H : O to the 2nd chain of
/ the deubla helix

VECTOR

Vol.11 No.3

General isomorphism of information
in modulo2 integer matrices

n G2 : 1 any row or column is #\ of the other one
1

1
o

Sex matrix Spin-state matrix
X X ot
X ¥ t o4
Agglutinogen matrix DNA {(A-T) matrix
A A N N
A 0 ({sameforOB) NO

Synapse ion matrix Microtubule matrix (%

¢« oo

o Mt ap
("} Ater Michael Zaus, Berichte aus demn Instiut for Kegriions-
forschung, Ne 18 ; "&b tische und a die PoritAtsk

Carl v. Ossletsky Unrversr!al Olidenburg (1994] p. 6.

G2 is the growth matrdy; It Is Fibonacelan, {so are Its rotations
in the plans; e.g. in classlcal algebra, the Golden section @ s
an efgenvalue of 652 the other ¢he being —+@ , this also
halding for all the matrix powers of 832).

#G2 and ©G2 ars the Involutive moduloZ-self-tnverse
operators (matrices) for the FHT and the FCT which compress
and analyse informatlon, already the medulo? equivalents, for 2
two-blt Informaticn, of a FFT. ¢6G2 and GZ are the modulo?
square and matrix inverse of ene ancther {/ almij2 In complex
algabra).

- Human language, music, electro-
encephalograms, are all 1/f signals, of
which Paritons offer a plausible

mathematical model.

- Topologies which process or keep
information in biological entities are not
random : ternary bit networks (retina
patterns), cylindric data structures {rods),
confc data structures {cones), double-
helix data structures and rings {coegnitons)
have very special properties which
immediately appear thanks to the
symmetries induced by the #\ motor.

- The genetic code itself is a paritcnic
data structure (so are all parity data codes
for electron spins, sexes, agglutinogens,
microtubules, fons in synapses).

- #\ s the correct formulation of the
least-action principle for elementary,
isentropic then fiable data processing.

- No Natural Process is Random,

Main Conclusions

- Our senses (inter alia vision) proces:
information in bits, NOT as continuou:
signals (with potentials, fields and smootl
derivatives).

- The responsible mechanism may bt
described by #\ (ISO8485, Geneva, 1989).

- #% is the quantum description o
electrodynamics, the correct algebra fo
the interpretation of quantum states
{either 0 or 1) being modulo2 integei

algebra, in which # (XOR of the
isomorphous logical algebra) corresponds
to @ (PLUS or MINUS modulo 2).

- Inventors reproduce the way they are
themselves programmed : e.g. the braille
code for the blind, which looks like DNA
code, expressed in bits with either 0 for
Oxygen or1 for Nitrogen.

Acknowlzdgcments

Dlctor Tlesson (software testing)

(laude (Cortel {discusslons, pure mathematics,
proots of theorems)

ean PDelaunay (Macintosh &video support)
PDr Jean Halnaut {medicin)

Pr Jacqueline Ganglet (Thesis on retinal,
theoretical-chemistry work on DNA base-pair
stacking).

Bernard Mailhol (discussions, APL2, 05/2 &
SHARE support)

Houis Métayer {discussions, mathematics,
APL*PLUS I1)

Miss Moulfl, Institut des Jeunes Aveugles,
Paris, {for Braille documentation)

Dr Michael Faus, Univ. Oldenburg,

Germany, (for the supply of reprints, and his
Interest for the propagation of "#\ logic™)

51

VECTOR Vol.11 No.3

Die Programmiersprache APL
13th October, Frankfurt

notes by Adrian Smith

Background

This was a one-day seminar covering all aspects of GUI programming in APL. It
was organised (most professionally) by Dittrich & Partner Consulting of
Hanover, and was attended by over 40 delegates from all branches of German
commerce and industry. The talks covered:

+ an introduction to Dyalog/W by Peter Donnelly

+ the APL2 product range for O8/2 and AIX by Nancy Wheeler

- Causeway "Ein sicherer Weg iiber den Gui” by Adrian Smith

« An APL2 data bank by Klaus-Peter Friedrich (Rheinischer Sparkassen)
+ APL*PLUS Il version 1.2 by Stefan Denker (Dittrich)

« Migration from mainframe to PLUS III by Dieter Diiren (CNL)

+ Using APL*PLUS Ii for DOS by Christine Biewer {(Cosmos Direkt)

Most of the talks were based around a live presentation, and I hope the audience
survived my English better than 1 survived their German! Fortunately the paper

by Dieter Diiren was accompanied by a comprehensive handout, so we have had
time to translate it for you. Thanks to Gill Smith for the translation.

Thanks to Peter Donnelly for arranging the Causeway session, and to Dittrich
and Partner for their hospitality.

52

VECTOR Vol.11 No.3

Conversion from APL2 (IBM Mainframe)

to APL*PLUS III (Manugistics)

by Dieter Diiren
(Colonia Nordstern Lebensversicherungsmanagement AG
= Colonia Northstar Life Assurance Managetment Ltd.)

1. Hard- and Software:
Mainframe: . . .2 IBM/3%90 under MVS/TSO

486DX and 486DX2 under DOS 5.0-6.2/Windows 3.1
Novell Network and Stand-alone PC

...... 1. IBM Mainframe APL2 Version 2.1.00
2. IBM APL2-PC Version 1.02 (DOS and Windows)
3. Manugistics APL*PLUS III Verston 1.2 (Windows)

IL. Overview
I1a. User-Departments

APL will be installed in the following sections:

1.
. Balance Sheet
. Re-insurance

o U e W

Business Pian

Forward Sales

. Proposal
. Customer Service

Number of APL programmers: ¢. 30 people
Number of End-users: >120Q people

IIb. Applications

1.

2.

Product development (PC), e.g. programs for calculating premiums, surrender
values, surpluses, and the analysis of (product) data.

Technical individual calculations [i.e. for individual policyholders] (mf with
DB2), e.g. for altering contracts or investigating surrender values,

53

VECTOR Vol.11 No.3

Supporting the Sales department (mf and PC with interfaces to Word and
Excel), e.g. offering programs for special products [bespoke programs for one-
off solutions).

EDP (Electronic Data Processing) - compensation applications (mf with DB2,
GDDM, DCF, AFF, ISPF/DTL-panels), e.g. documentation programs for
special products, or altering proposals.

Draft and testing of the EDP programs for stock control (mf and PC).
Balance sheet and calculating profits (PC, FS-Panel, Word, Excel}.
Risk Analysis (PC, Word, Excel).

Calculating premiums, contribution tables [lit: profit/ gain share tables] and
example calculations.

Managing the system of the re-insurance department (PC, FS-Panel, Word,
Excel).

III. Why are we installing APL?

1.

APL contains powerful functions or, rather, signs/characiers which are
derived from mathematical logic.

With APL it is possible to portray formulae in a “speaking” form. Because of
this, quick development and changes in the interpreter system are possible.

APL supports many [different] data structures {scalar, vector, matrix) with
general functions, which are applicable for all structures.

Quicker building of screen panels through FS-Panel (PC) and I1SPF/DTL
panels (inf) or internal tools (AP124) is possible.

Complete and easy control of print queues and printers (NEC dot-matrix, HP
Laserjet) is possible,

The interpreter allows easy error-tracking through stop-vectors. Stepping
through programs, and controlling or altering data in the workspace during
execution is possible, leading to shorter development times.

Mainframe and PC APL are almost compatible.

54

VECTOR Vol.11 No.3

IV. Why have we converted?
TVa. Mainframe >> PC

LA e

Saves CPU costs

Response times

Independence from mainframe
Individual system configurations
Quick and higher quality printing
Multi-tasking

IVb. APL-IBM >> APL*PLUS 11l

1.

w00 N1

10.

APL*PLUS runs under Windows 3.x, Windows for Workgroups 3.x and
Windows NT. According to Manugistics it also already runs under beta
versions of “Chicago”. APL*PLUS will be developed for a 32-bit operating
system. Partly through “downgrading” it has been adapted to run on the
16-bit Windows versions.

. The APL2/2 versions much advertised by IBM were not available for delivery

for months for the “IBM Standard”. The demo version we tested crashed as
soon as the Editor was called. It was recognisable that IBM would keep the
concept of partner-programs. IBM tried to break into the market with dump-
pricing of APL2/2 and also OS/2.

. Manugistics has kept to its timely promises concerning updates before,

. IBM has kept us waiting more than a year for APL2-PC Version 1.02. The

ability to run under Windows was not mentioned in the official
documentation. Rumour has it that IBM has reduced the number of APL2
developers.

. IBM is holding back on the notification/advertising of an APL2 Windows

version.

. The market, our customers, use Windows almost exclusively.
. The execution speed is ¢.100% higher with APL*PLUS.
. The printing of APL characters is possible on every Windows-capable printer.

. [! — somebody can’t count!]

APL*PLUS is a Windows application, that is, all Windows features
(Clipboard, DDE, etc.) are available, and the co-operation with other Windows
applications (Word, Excel, etc.) is guaranteed. Multi-sessions (MDI} are
possible.

55

VECTCR Vol.11 No.3

11.

12.
13.

14.

15.
16.
17.
18.
19.

20.

21.

Built-in additional features:
» Windows dialog box editor (WED)
« Debugger
- Online Help
» Function calls to external Codes (16- and 32-bit DLL, VBX, etc.)

Lots of service functions and examples are supplied.

The possibility exists of defining one’s own user-commands. One can store
these outside the workspace.

Instead of APs many system functions are supplied, which can also be called
from functions.

Control structures (IF, WHILE, FOR, etc.} + quicker and more readable code.
Data handling results from simple but effective system functions.

Two keyboard layouts are available {national and “classic” APL-keyboards).
Runtime versions can be distributed free.

Limited hardware prerequisites (no co-processor necessary, though
recommended).

Qualified support through Dittrich & Partner. Dittrich & Partner themselves
now only program in APL*PLUS.

APL*PLUS will be constantly developed.

. Manugistics are working on the development of APL*PLUS very closely

together with Microsoft.

V. Disadvantages of Conversion

1.

APL*PLUS is not fully compatible with IBM-APL2 (for example Format by
Example, Partitioned Enclose, Take and Drop with axis are impossible,
Evolution Level; see also Appendix 1),

. All programs with interfaces (Input, Output, Data Handling} must be newly

installed or revised.

. Some programmers have special skills in APL2-PC deeply engrained (e.g.

storing data in special APL Data structures) and cannot now change.

. Lots of manpower is needed to convert old workspaces.

56

VECTCR Vol.11 No.3

10.

“Old hares” [experts in the old techniques] can only be brought round from a
text-oriented development environment to the graphically-oriented Windows
with great difficulty.

A re-training in Windows and APL*PLUS is necessary.
APL*PLUS is more expensive than APL-PC from IBM.

Without previous knowledge of Windows programming in C and/or C++ one
cannot adopt low-level Windows programming in APL*PLUS.

The “classic” keyboard Iayoul is not complelely identical to the German IBM-
keyboard. Three keys are differently arranged.

Extra/additional hardware must be bought for the transfer from the
mainframe to the PC.

VI. Conversion Procedures

1.
2.

Because of a lot of “old applications” which we must maintain, and because of
the introduction of new tariffs/rates from 1/7/94, we could only convert the
mathematical core of our new insurance calculations up to now. At the same
time we have proceeded as follows:

Analysis of the two APL dialects concerning syntax and functionality.

Installation of search functions, which should localise the difficult statements,
and if found alter them. The complex functionality and the abundance of
variables in these statements (e.g. Partitioned Enclose, Format by Example,
Activate) led us however to throw out this idea.

. Should we obtain the complex functionality of these problematic statements?

. Because the answer lo the previous question is no, we have decided to transfer

our new maths core from mainframe to APL*PLUS, and to start work on the
main functions by trial and error.

. So it turned out that in most cases of the previously found differences only

small/limited problems showed up. In c. 30% of cases a syntax can be found
which runs on both platforms, that is we used statements from an intersection
of both dialects. In other cases we installed platform-dependent functions (see
Appendix 2).

. New applications, which will only run on the PC, will only be installed with

APL*PLUS.

57

VECTOR Vol.11 No.3

7. We will progressively convert almost all our “old” applications, either when
the need arises or when we have time, We assume that this conversion will be
finished in about 3 years.

8. In our new applications we are optimising the code for installation of runtime-
modules (e.g. control structures), in order to achieve a faster execution speed.
Through analysis we use the supplied MFFNS functions of the workspace. In
the maths core for insurance calculations, however, we only remove (all)
comments and insert Diamonds. This last measure increases the execution
time by ¢. 5%. All measures together give an improvement of ¢.10%.

Our Conclusion

APL*PLUS TII will run on the operating system with the largest market
acceptance. It offers a development environment that is state of the art. It
shortens the development time of powerful applications with standard
interfaces, and can be delivered free to customers on demand {using runtime] in
the form of Windows applications. The printed output can be sent to standard
tools (Word, Excel), and qualitatively higher value results [i.e. better/higher
quality results]. In spite of all the disadvantages we believe that the advantages
of APL*PLUS outweigh them, and that the future will belong to APL*PLUS.

Appendix 1: Problems of the Evolution Level

APL*PLUS T uses the switch Evolution Level (=0, 1 or 2) so that source code
that was written under previous versions should still run. In the course of
APL*PLUS development the implementation has changed some APL characters,

If one sets the Evolution Level to 0(Jevievel 0}, all functions in which this
problem appears crash with the error message (EVOLUTION ERROR).

The Evolution Level will not be stored with the respective workspace. On
starting APL*PLUS III Default Level 2 is installed.

As model examples of the above problem:

+ A First ... c n Partitioned Enclose

1110 R at Yevlevel 0 1 1 0 1c'1234' n ev 0
EVoLUTION ERROR EVOLUTFTON EREROR

4110 A at)evlevel 1 14 0 1c'1234' A ev 1
12 345678910 1 2% 4

4140 n at Yevlevel 2 140 1c'i234' m ey 2
1 NONCE ERKOR

56

VECTOR Vol.11 No.3

Appendix 2: Some Platform-dependent Functions

ergrla MIG_FO ra

A Diiren 06.07.%4

Abhdngig vem jeweiligen APL [(APL2-Hoest, APLZ-PC und APLaPLUS III) wird
A bei IEM "IBM~Format by Example" verwendet. Fiir APL#PLUS wird “Manugistics-
A Format by Example" verwendet.

a

~{DAVI241rF'w' } /IBM

af(l=p,la)ansla="5"} s erg={{v0,ra}, 'I1'"i0fmt ra’

a{{4=p la)aasla='5"')/'ergeii¥p,ra), ' 'T4' "I0fmt ra’

-a

IBM:arg~lavs

erg-MIG_FDH ra
A Diiren 06.07.94

A Abhdngig vom jeweiligen APL (APL2-Host, AFL2-2C und APLaPLUS III) wird

A heli TBM die "paarweise Differenz von hinten” gebildet. Fir APL»PLUS wird eine
A nachgebaute Version verwendet.

A
+(0AV[24]+# a' } /TEM
erg-(lsral-"1lira
-0

IBM:erge«—2-/ra

erg+la MIG_PE ra;dl:d2;1

A Glerling 07.09.94

A Abhdngig vom jewelligen APL (APL2-Host, APLZ-PC und APLaPLUS III) wird
A bei IBM "Partioned Enclosed" angewendet. Fiir APLaPLUS wird eine nachgebatte
R eingeschrinkie Version von "Partioned Enclosed" verwendet.

R

+(DAV(24]#'w') /IBM
m{l=die+/1{+/ra="1")[+/ra='-"){+/ra='0')}/0,00erg,Cra

i=1,0pd2~0, (d1+~d1l/1pd1~(ram' 1")+(pa="'w"}4ra="0"], 1+pra, dpargedip’ '
lab:={{pd2)<ivri+1)/0

ergfi-1]~eraldzli-11+1d2[i}-d2(i-2]+1]

~lab

IBM: arg«lacra

erg~MIG_PG ra

A Dilren 03.07.94

s Abhingig vem jeweiligen APL (APL2-Host, APL2-PC und APL#PLUS ITI) wird
A bei IBM die "paarweise Glelchheit” angewendet. Fir APLxPLUS wird eine
A nachgebaute Version verwendet.

A
~{0AV[24]#'w') /TBY
erg+{liral="lira
-0

IBM:ergs2=/ra

erg+la MIG_RE ra:ind

A Schehl 06.07.94

n Abhingig vom jeweiligen APL (APL2-Host, APL2-PC und APL*PLUS III} wird bel
s IBM "Reduziere Each" angewendet. Filr APL#PLUS wird eine nachgebaute Yersion
R verwendet. 1 0 1/7°(,2) 0 1

]

~{0AVIZ24]¥Tw')/IBM

ralind]+~+"ralind],0pind~{1=+"p ral/1p,ra

IBM:erg~la/ 'ra

erg+la MIG RN rasind

A Schehl 068.07.94

" Abhingig vom jeweiligen APL (APL2-Host, APL2~PC und APLAPLUS III) wird bel
A IBM "Reduziere" angewendet. Filr APLsPLUS wird eine nachgsbaute Version

A verwendet. 1 ¢ 1/,2

A

~{0AV(241# 0") /IEM

ralind]«r’ralind],0pind~(t=1"p"ra)/\p,ra

i(1=p,ra)/'ra~+ra"

IBM:erg«lasra

59

VECTOR Vol.11 No.3

Pitkospuut GUIsuon Yli

Causeway in Helsinki — notes by Adrian Smith

Background

Qctober 94 was an eventful month! Having attended the Frankfurt meeting on the
14th, I flew straight out to Helsinki for a most enjoyable weekend, before settling
in for a hard day’s seminar on the Monday. This was at the invitation of FinnAPL,
and we had the use of a splendidly equipped lecture hall at the Finnish timber
agency METSA. The day was designed as a follow-up to Swansea, with the
objective of introducing a varied population of APLers to the strange new world
of Windows programming. We covered the basics of event-based design, with an
hour or so of hand-waving around the well-known Windows game of
Minesweeper. In my view, an ability to (a) play and (b} design and code this game
should be a pre-requisite for any serious Windows programmer. The rest of the
day was strictly about APL, and how we can bring our existing APL skills and
ideas to bear in this slightly frightening new programming paradigm.

What is Causeway?
Causeway is an architecture for portable GUI development with APL. It is:

* a published and documented standard, freely available

« supported by the British APL Association and encouraged by many other APL
clubs around the world

* open to anyone. APLers are positively encouraged to build implementations
for the interpreter of their choice

* currently implemented {documented and supported) for Dyalog APL, and
available for early testing in APL*PLUS IIl. These implementations are
copyright Adrian Smith and Duncan Pearson respectively.

All the workspaces are available with fully commented source code for you to
copy and extend. Causeway offers you:

+ faster development

* less complexity

+ fewer functions

+ more reliable applications

Small systems are realised faster; big systems hurt less - HOW?

60

VECTOR Vol.11 No.3

How is Complexity Mastered?

The key difference you need to grasp is that you base your design around the
Windows objects you see on the screen. These objects already know how to
display and update APL variables, but they do a lot more than that:

* objects can be told to watch specific variables, and will update themselves
automatically when any watched variable changes.

s objects can react to user-actons through a simple table
event + condition >> action

where the action is any APL expression. Of course it may change some APL
variables, in which case other objects will respond as required.

« the main ‘container’ objects (forms) may have local variables, which are visible
to their child forms, and so on down the stack — just like APL functions!

It is hard to believe how much difference this approach can make to development
times, 50 here is a small challenge for you: design and build a Centigrade to
Fahrenheit convertor, such that when either number is changed the other
immediately flips to match. Ideally, the user should be able to either type in the
data, or spin the values from an initial setting of 0=32 with spin boxes. The
centigrade figures should spin in 1-degree increments; the Fahrenheit should spin
in 2s. How long do you think this should take you?

The replies (I tried this in Frankfurt as well as Helsinki) were well spread, and
apart from one facetious suggestion of 5 minutes, were all in the half-hour or
above range. Most people who thought hard about this (as I hope you will)
estimated at least half a day.

Starting with Something Simple

Let’s begin with the example from Vector 10.4 - the one which just puts your
name on the screen and lets you flip it with a push-button.

To build this, you start with a quite ordinary
APL variable:

Name ‘
him§ nairda |

name+‘tAdrian Smith!

and then build your form with:

Dbx ‘exampliel’

61

VECTOR

Vol.11 No.3

The first stage is to add that text edit field using the right-mouse menu:

Cancel Button
Close Button

OK Button

Buttons

Testt abjects * | Label

Selectors Text entry

Decorations Notepad [
d Special Numeric Field |
P R N Spin Box

~ AppEBIanceE .., . —I
Data to watch ...
Behaviour ...

Delete Text entry

j >

Cue-card ...
Cancel

. which is dragged out to a nice size and captioned with the ‘appearance’
dialogue (left button on the object). Now we can add a close button and an action
button {called ‘Flip’} and we are ready Lo start the serious work!

The first stage is to tell the edit field to watch the variable name, and to refresh
the display whenever that variable changes.

Text variable ...

[n ame|

Fermat [e.g, Y00 is uic 4 long] ...

Refresh on a Change to ...

lname

|

r 0K || Cancel l,

This is the dialogue box you get
when you ask for ‘data to walch’
on any of your objects. All objects
have built-in documentation, so
the prompts you see are picked
up directly from the object
definition.

If you define objects of your own,
the designer is quite happy to
work with them.

Now we should add an action to the push button to flip name whenever it is
pressed. This will need to execute some APL code, and also “holler’ name, so that
any other interested objects know that something happened to it.

62

VECTOR Vol.11 No.3

o

Condition |2 % 273 eyl
1: [pL . name+¢name — 4 |
2 E
3 2
ER]

?ﬁgme ussiul everts for this type of object ge: &
MM -Mouse move 5L Select TR~ Cigate

 crnap e
H Ca“é] I : E’

In the first column, you list any events that you want the object to notice. The
second column is an optional condition (any APL expression returning a boolean),
and the third column is the code you want to run when that event occurs and the
condition (if any) is satisfied. The final column is a list of the variable names
which the expression may have modified.

Now you can press the <Run> button on the designer, and your form will work.
When you exit to the workspace, name will have the last value you saw on the
sCTreerL.

Stop and think for a moment ... this (admittedly trivial) application requires:
* no functions
* no variables
* nologic
All you coded was a statement of the problem:
name+bname

1t will be utterly reliable, because it is too simple to fail.

Moving On

It is interesting to think again about the Centigrade to Fahrenheit problem.
Clearly a couple of local variables will be required, and these should be initialised
when the form is created (i.e. before it becomes visible on screen). Let's start with
a form and a couple of spin-boxes and see how it goes:

63

VECTOR

Vol.11 No.3

Fahr: :l
Cen:[:::::]

=)

: Note that locals are added to the form’s titlebar,
and can be initialised by setting an action like:

cen«0 ¢ [hr+32

which you set on the “CR’ or creation of the
form itself.

Now for the tricky bit! Each spin box is sel to watch the appropriate variable, and
the formatting data is used to set the increment. What we must also do it to catch
a ‘Post Update’ on both objects and holler the name of the other variable (which got
changed in our APL expression):

Event{ Condltlion

Holler

fiFL. to E:_cecu.ta

-[pu

cent(fhr-32)x5+9

cen

[I+

e |wir] ~{10

[+

Some uselul events for this l;pe of abiect ate:

VL-Veidels PU-PostUpdae PR Prorchiesh

L —

OE o

Now, when you run the completed form:

Spin either box, and the other follows along.

The ‘Post-update’ trigger is fired just after
Causeway has assigned the new value into the
variable your object was watching: your code
runs, calculates a new value for the
it corresponding variable, and hollers the name.

That is all you need to do!

In Summary ...

No variables, no functions, just two APL statements. Best time to date 2 minutes

29 seconds. You stated the problem, Causeway handled the GUIL

Now you can be an APL programmer again - just like the old days!

64

VECTOR VYol.11 No.3

NAMESPACES
SPECIAL FEATURE

Namespaces are the most interesting new thing to happen to APL since nested
arrays, and in this Vector we have tried to give you a cross-section of opinions on
what they are good for, and where the pitfalls and limitations may lie.

This is still a very young technology, and it is up to you to influence its
development. Please follow the advice in Duncan’s Editorial and experiment
with these ideas as much as you can {maybe only on paper if you don’t have
Dyalog 7 or the latest j release}; then let us know what you think and Vector can
help form a consensus on what is ‘just right’, what is harder to use than it should
be, and what just got left out entirely.

Peter Donnelly works through a simple (but amusing) tutorial which will help
you to grasp the basic ideas that objects can have hidden data. 1 believe that
Vector can claim a publishing scoop here — we are the first APL magazine to
reveal the co-ordinates of the Dyadic Duck.

Eric Lescasse has contributed a much more technical article which shows you
how you can exploit namespaces effectively in building GUI systems.

Finally, Kimmo Kekildinen offers some suggestions on using the session
namespace [J5E to manage your utility set, and some warnings about the
dangers of going too quickly into this new world. The feature ends with a return
visit to Adrian Smith’s ‘Coast-to-Coast” game to see how much of his APL code
namespaces have replaced.

65

VECTOR Vol.11 No.3

The Use of Namespaces for Encapsulation:
a Practical Introduction

by Peter Donnelly, Dyadic Systems Limited

Introduction

In Dyalog APL/W Version 7, Dyadic introduced the concept of namespaces. A
namespace is a container that may be used to store functions, variables and other
objects and provides a separate execution environment which is isolated from the
ouler workspace and from other namespaces. In Version 7, GUI objects are
themselves namespaces and may therefore contgin any functions and variables
they need for their operation. Dyalog APL/W thereby supports encapsulation, an
important feature of object-oriented programming. This article is effectively the
script of a demonstration that explains how useful this concept is in practice. If
you have a copy of Dyalog APL/W Version 7, you will be able to reproduce the
entire demonstration by typing in the APL code.

The Demonstration

First we will create a Form called Dk. Its Caption is Bouncing Duck; it has a
Pixel co-ordinate system and is positioned at (300 300) with a size of (175 300):

'DE' WC ‘Form' 'Bouncing Duck' (300 300){175 300)'Pixel?

— BT TICR - Now we can step info the Form. The

system command }CS means Change
Space and is used to switch from one
namespace to another. Having changed,
yc5 reports the full pathname of the
new current namespace:

yCS5 Dk
#.Dk

Now that we are within the Form we can create some child objects. First we need a
Static window in which to draw the duck. Note that the Attach property defines
how the child object reacts to its parent being resized.

66

VECTOR Vol.11 No.3

In this case, we want the Static to shrink/expand so that its edges remain a fixed
distance from the sides of the Form.

'Box' [JWC 'Static® (10 10)(120 280)
'Box' OWS 'Attach' ('Top' 'Left! 'Bottom' ‘Right')

Next we will add a stop/start button called Stop. Its Caption (initially) will be
“Start”, and its Select event will fire a callback function called START. This time,
the Attach property makes the Bulton fixed in size and remain a constanl distance
from the bottom left corner of the Form.

'Stop! [OWC 'Button' 'Start' (135 10)(30 60)
('Event' 'Select’ 'START')
'Stop' [OWS 'Attach' ('Bottom' ‘Left' 'Bottom' ‘'Left!')

Now we will add a scrollbar called Speed to input the speed of the duck. Note
that, by specifying a height of &, you get a standard height scrollbar. The HScroll
property specifies that it is a horizontal scrollbar. The Range property defines the
scale. The Step property defines the amounts (small change and large change) by
which it scrolls. The Thumb property specifies the position of the “thumb”. The
Attach property fixes the height of the scrollbar, but lets it expand and contract
horizontally with the Form.

*Speed' [OWC 'Scroll' (145 80) (@& 215) ('HScroll:
tSpeed® [WS ('Range' 60)('Step! 2 10){'Thumb' 15)
'Speed! [WS ‘'Attach' ('Bottom' 'Left'! ‘'Bottom' 'Right')

1)

= Bauncing Duck [~[~] The last object we need is a Timer. The
job of a Timer is to fire an event at
regular intervals. We can animate the
duck by attaching a callback function
(which draws the duck) to the Timer.
Our Timer will fire every 50
milliseconds, but initially it will be

inactive.
e o]

'Timert OWC 'Timer! 50 (*Active! 0)

Whenever the Timer fires it generates a Timer event. We will attach this to a
callback function called DRAW that resides (and runs) within the Duck object,
which in a moment we will create as a child of the Static Box.

67

VECTOR Vol.11 No.3

The function is therefore referenced by its pathname (from here} which is
Box.Duck.DRAW

‘Timer' [WS 'Event' 'Timer' 'Box.Duck.DRAW'

The next thing to do is to write the two functions needed to start and stop the
animated display. Let's first write the START function:

v START

[1] '‘Timer'Ws'dctive' 1 a Activate the Timer

[z] 'Stop'OWS{'Caption' '&Stop')('Event' 'Select' 'STOP')
v

The first line of START activates the Timer by setting its Active property to 1. The
second line changes the Caption of the Button o “Stop” and changes the callback
function to STOP. (Incidentally, this nicely illustrates how you can control an
application dynamically by changing the callback function associated with an
event “on the fly”.) The STOP function is simply the reverse.

v STOoP

[1] 'Timer "(JWS*Active' 0 n De-activate the Timer

[2] tStop!'OWS('Caption® '&Start')(*Event' 'Select' 'START')
v

STOP de-activates the Timer by setting its Active property to 0. Then it changes
the Caption of the Button to “Start” and changes the callback function back to
START.

- Object List | Dk So whal do we have now? Let's
: use the Object List dialog to see

) gnnt . | ¥ Mamespaces | What objects and functions we

i aren ; ithi :

sE Somedor % Functions have defined within the Dk Form.

B Stati .

Sg:ed Sciul? & Qp‘?'a“’“ Next we need to define the co-

Stop Button Pt Variables ordinates of our Duck. First we

START Function - x P act i

STOP Fonction F Ul aviect= | will step inte the Box object in

Timer Timer which we want to draw the duck:

: JCS Box
#.Dk.Box
Then set up the co-ordinates in a

variable called DUCK.

VECTOR

Vol.11 No.3

DUCK«%4 2p0
DUCK{ ;1]+15
7

29

DUCK[321+ ©
30

12

17
9
29
2
30
1¢

is8
10
28
n
78
8

18
10
27
[
26
6

17
10
26
B
24
n

15
11
24
in0
22

3

ih
12
20
12
22

1

13
15
15
ik
22

0

ik
17

17
24

13 9 e 2 0 0 2 & 7
18 22 25 28 29 3C 30 30 29

18 18 18 19 Zz1 23 25 27 29
25 26 26 25 23 21 19 17 1k

{Naturally, if you have the co-ordinates already set up in a variable in another
workspace, you simply copy the variable in.) COPY brings objects into the current
namespace as you would expect.)

Using these co-ordinates, we can now create a Poly object called Duc k. (Note that
in Dyalog APL, graphical objects are not transient things but are true objects that
generate events and can be manipulated like Forms, Buttons and so forth.} The
FStyle and FillCol properties define a solid vellow fill.

tDuck' [OWC

'Poly! DUCK ('FStyle!

= Bouncing Duck

-

-

<

&l

L

[2]

0){'"FillCol™ 255 255 Q)

The next step further illustrates the facility in Dyalog APL to encapsulate code
and data within the object to which they rightfully belong. First, we will copy the
variable containing the duck’s co-ordinates into the Duck object:

Duck.DUCK « DUCK

Then erase the variable from here (D&, Box):

YERASE DUCK
NI 2 3 4

69

a Nothing here now

VECTOR Vol.11 No.3

Now we will step info the Duck namespace:

JCS Duck
#.Dk.Box.Duck

JVARS
DUCK

To animate the duck, we need to write the DRAK function that is attached to our
Timer.

To simplify the code we will first define some static variables. A static variable is
one that is global to a namespace. It is therefore visible to functions that run in
that namespace, but is not visible from outside that namespace, In this case we
will use static variables to remember the position (POSH) and direction of motion
{DIR) of the duck between successive calls to DRAW.

POSN«0O ©
DIR+1 1

Rather than computing jt each time, we will also create a variable SIZE defining
the size of the object. We need this to calculate when it hits a wall.

SIZE+([+DUCK)- | #DUCK
Finally, the DRAW function itself:

¥ DRAW;WINSIZE;SPEED

[1] WINSIZIE«'## 'WG'SIZE' a Size of parent window
[2] SPEED<(xDIR)Y»"## . ## .Speed 'QWG'Thumb' a Speed from scrollbar
[3] POSN+POSN+SPEED a Calculate new position
[u] DIR+xDIRx1 T“1[1+{POSN<Q)vWINSIZE<POSN+SIZE] & Does it bounce ?
[51] POSN+Q [POSNIWINSIZE-SIZE s Update pogition

[5] OWS'POINTS ' (DUCK+(pDUCK)pPOSH) a and redraw

v

Note that the variables and the function we have created are encapsulated within
the Duck object.

JFNS
DRAW
JVARS
DIR DUCK POSN SIZE

70

VECTOR Vol.11 No.3

= Objeet List [Dk.Box.Duck |

13 Root § L Hamespaces
#a Parent j
OSE Session ¥ Functions™
DIR Uariable % Doerators’
DRAH Furction ¥ Dperatars
“|BUCK Uariable X Yariables
Fon variable [BUI Dbjects
SIZ2E Uariahle - .

|

We can test our system by running the DRAW function directly from here. You can
see how it works using the Tracer.

DRAW n Trace it !

= Bouncing Duck [~ |~

]

[ser | E—T1 =

Now let’s switch back to the main workspace ...

)cs
#

... and start the system by clicking Start, While this is running, the session remains
actve. We can (for example) directly change the properties of the Duck object; for
example:

'DEk.Box.Duck' OWSs 'FillCol* 255 0 0 a Red
'Dk.Box.Duck' OWS 'FillCol' 255 255 0 a Back to yellow

71

VECTOR Vol.11 No.3

More interestingly, we can step into the Duck object and do it from there:

YCS DPk.Box.Duck
#.Dk.Box,Duck

POSN+<10 10

DUCK+$DICK

Encapsulation and Inheritance

S0 what have we achieved? Essentially, we have produced an Object (called Dk)
which contains within it all the sub-objects, code and data needed to perform its
allotted task; in a nutshell, encapsulation. Having made one object, we can clone
it to make others. This introduces fnheritance, another important principle of
object-oriented programming.

= Bouncing Duek w |-

YC5 #.Dk.Box
#.Dk.Box
"Clone' OWC [JOR 'Duck!

The new object Clone is a complete copy of the original namespace, including
the functions and variables it contains. (In practice, these are merely pointers, so
they do not consume undue amounts of workspace.) Notice that the cloned duck
is displayed on top of the original one because it inherits all its attributes,
including its size and position.

We can move Dk by running the DRAW function:

Duck.DRAW

72

VECTOR Vol.11 No.3

We can also identify the clone by making it red:

'Clone' (WS 'FillCol' (255 0 0)

= Bouncing Duck H -,

&

I e e —

To animate the second object we need to create another Timer object:

JCS ##
#.Dk
721 (WC 'Timer' 10C ('Event' 'Timer' 'Box.Clone.DRAW')
(tActive!' 0)

In addition, we need to edit the START and STOF functions to activate and de-
activate the new Timer T2:

YSTART[11172' *Pimer' [OWS <'Active' 1V
VSTOP[11'T2' 'Timer' (WS '<'Active' 0OV

The Clone object inherits its DRAW function from the original Dk. We can
however change it to rotate the duck at random intervals:

JCS #.Dk.Box.Clone
#.Dk.Box.Clone

VDRAW[7] +(5275)/0 ¢ DUCK+$DUCK V¥
Now start it up:

1cs
#

Click Start button.

73

Vol.11 No.3

‘

VECTOR
= Dk Structure

| C(Form3 ;

HrBox (Static)
Clone (Poly)d
HDIR (Uariable)
HCIDRAW (Function)
HEaDUCK (Uariable)
HCIPOSH (Uariabled
LEISIZE (Variable)
Duck (Polyld
L&IDIR (Uariable)
HEADRAH (Function)
HCIDUCK (Variable)
HCIPOSH (Uariable)
= 4 (UVariablel

HE 8 peed (Serall)

HStop (Button)

HEISTART (Function)

HEAsSTOP (Functior)

LEIT imer (Timer)

| This picture illustrates the structure of
the Form (and namespace) Dk. It was
produced using the MSOUTLIN.VBX
(OUTLINE) custom control which is
distributed with Visual Basic and which
can be accessed directly from Dyalog
APL/W Version 7.

Finally, we can save the object we have created:

JOBJECTS
Dk

JSAVE DUCK

The object can then be copied into any active workspace where it will come up
ready for use exactly as it was when il was saved:

JCOPY DUCK DE

74

VECTOR Vol.11 No.3

Namespaces

by Eric Lescasse (Uniware)

Introduction

I have always been very surprised to notice how slow APL users are, in general,
to start using new features of the language. We have seen that only a rather small
percentage of the user base is taking advantage of such simple, powerful and
useful tools as the APL*PLUS User Command Processor, error handling facilities
(including wonderful utiliies like HANDLERFOR or ELXHANDLER) and nested
arrays. On the other hand, one encouraging note is how well the Control
Structures have been accepted and adopted by the APL*PLUS community.

But, I have asked myself several times what are the conditions for a new feature
to be adopted by APL users quickly. I think they are multiple:

¢ there needs to be a lot of noise and publicity made around the new feature

® people have to understand the new feature and what benefits it can bring to
them

¢ the new feature has to be simple to use (i.e. control structures) and really
useful

* users have to be educated in simple terms about the new feature

I think, among these 4 conditions, the second two, and especially the last, are by
far the most important and [feel that it is through the lack of them that many
APL users are still using only a small part of their favourite software.

One brand new concept recently brought to APL is the one of namespaces. This
article is aimed to help people discover namespaces (a new Dyalog APL feature),
and show them a few simple techniques involving namespaces that can make a
huge difference in terms of development ease.

What are Namespaces?
To simplify, namespaces are just sub-workspaces:

One workspace can contain one or more namespaces, as well as other objects:
functions, variables and GUI (Graphical User Interface) objects like forms.

A workspace always has a root namespace (represented by #).

A namespace can itself contain other namespaces, as well as other objects:
functions, variables and GUI objects.

75

VECTOR Vol.11 No.3

In fact, a GUI object, like a form, is itself a namespace, and every other GUI
object {buttons, list boxes, combaos, scroll bars, you name them) are all
namespaces.

Ome consequence, which we will be using a lot, is that any GUIT object, being a
namespace, can itself contain functions and variables. These functions and
variables are said to be “encapsulated” within the GUI object. Another
consequence is that the workspace and its own namespaces constitute a hierarchy.

Here is a simple diagram better explaining what namespaces are:

Warkspace —
Root Namespace pacel Namespace2
Fnl Fnl
Fn2 Frd Fl
Fnb
Fnl vard
Fnf
varl
var2
Namespace3 — 1 am 3 namespace []«
Me as welll’
’E Namegpaced El [am 2 namespace lon
Namespaceh
Fnl - & | can contain APL fns and vars

As one can see, several objects can have the same name within one workspace,
provided that they belong to different namespaces.

Notation

The dol serves as a separator to denote the hierarchy leading to one object. Thus,
function Fn1 within ¥amespaces is represented by the following full name:

Namespace3d,Namespacel ,Namespaces.Fnl

while function Frn1 in Namespacel is represented by the following full name:
Namespaceli.Fnl

and Fn1 within the workspace is represented by the following full name:

Fni

76

VECTOR Vol.11 No.3

All this, assuming that we are positioned within the root namespace of our
workspace. Yes, you guessed it: you can decide to position yourselfl within any of
your workspace namespaces, in which case names are relative to the place where
you stand.

Assume you have put yourself within Namespacel: to access function Fn1 in
Namespace5 from there, you only need to type:

Namespaceb5,.Fni

If you positioned yourself within Namespace2, you can type:

Fn1 to execute the Namespace2? Fni function
##.Fn1 to execute the Namespacel Fnl functon
#.Fni to execute the workspace Fpi1 function

#.Namespacei.Fni toexecute the Namespacel Fni function

represents the parent namespace.
represents the workspace itself.

This notation is very similar to the DOS notation used to access files within
directories, so you will quickly feel very comfortable with it.

All this is very simple, isn't it.

The APL Session Namespace ((s¢e)

Namespaces are a brilliant idea. But the implementors have had a second brilliant
idea which marries well with namespaces.

The APL session itself, which is your development environment, with its own
menus, toolbar, statusbar, is itself a Dyalog APL GUT object, called [se, hence a
namespace! This not only means that you can configure it at will (ie. you can
change its menus to your own native language, change the toolbar and the
statusbar, etc...), but you can also store objects within it, namely, functions,
variables and other namespaces!

[lse works as an external namespace, relative to your workspace. This means that
if you load another workspace you can still directly access objects within [Ise;
this means that if you do) ¢l ear you can still directly access objects within [Jse.

That Ieads to an immediate idea: store your main and most often used utilities,
forms, ... within Jse. They will suddenly become available to you at all times,
while you work in Dyalog APL. The previous diagram becomes:

77

VECTOR Vol.11 No.3

Workspace

Fal Namespacel Namespace?
Fnl
Fn2 phip! Fnt
Fnl vard Fn&
van FnG
war2
Mamespacel | am o namespace
Me a5 well! j
Mamespaced E 1 am 2 namespace 100 i
Nomzapaces [loowol]
Fnl ® § can contain APL {ns and vara

re
=

To execute the [Jse Fni function, from your workspace or from any namespace
in your workspace, just enter:

(se.Fni
If you positioned yourself inside [Ise, you can enter:

#.Fn1 to execute your workspace Fn1 function
#.Namespacel.Fni to execute your Namespacel Fnl function

Positioning Yourself in a Namespace

The)C5 command is used o position yourself in any namespace.

The)NS5 command, used “niladically”, tells you in which namespace you
currently are. Here are a few examples:

Ins

we start from the root namespace in your workspace
Jcs Namespaceil change from root to Namespacei

#.Namespacel we are now in Namespacel
Ins proof

#.Namespaceil

78

VECTOR

Yol.11 No.3

Ycs Namespace?2
#.Namespacel,Namespace2

lcs #4#
#.Namespacel

Jcs Namespace?
#.Namespacel.Namespace2

change from Namespacel to Namespace?
we are now in ¥amespace?2

change to parent namespace

back into Namespace2 again

Jcs #.Namespace3d.Namespacet change from Namespace?

#.Namespaced,Namespacey

)cs
#

to Namespacel

niladic) cs brings back to root namespace

As you see, navigating between namespaces is fairly easy.

Creating New Namespaces

You use the) NS command to create namespaces. Examples:

Ins

Ins Namespaces

#.Namespacet

ns

Jes Namespaces

#.Namespaceb

Jns KNamespace7
#.Namespacet.Namespace?

Jns #.Namespace8
#.Namespaces

ns
#.Namespacesb

we start from the root namespace
create Namespaceé

echo

pay attention: we are still in the root namespace

shift from root namespace to new Namespacet

create sub-namespace Namespace?

from N’ spaces, create Namespace8 as child of root

79

VECTOR Vol.11 No.3

Jcs

Jns Namespace9.Namespaceid create 2 new namespaces at once
#.Namespace9.Namespacell

Nothing difficult in all this either.

There is another way of creating a new namespace, and, as you guessed, it is to
create any new GUI object, using (wc. Examples:

'F' Qwc 'Form' create namespace F (and also create form F, of course!)
'F.GK'" (Qwc 'Button! create namespace 0K as a child of namespace F

Moving Objects from Namespace to Namespace

The dyadic (ns system function is used to:

* create new namespaces (if left argument is not an existing namespace)
* move objects from one namespace to another (if right argument is not empty)

* report current namespace (if both arguments are empty)
Its syntax is:

R « D [0Ons §

where:
R is the full name of the D) namespace
D is the destination namespace (created by (Jn s if non existent)
S is one or more objects to be copied into D
Examples:
'Namespaceil' (ns '? cteate Namespaceil

#.Namespaceil

'Namespaceil' {Ins '#.Namespacel.Fnl' '#.Namespace3.Namespaceli.Frn2!
#.Namespacell copy 2 functions into ¥amespacell

‘Namespacei2' [ns '#.Fni' '#.Fn2’ create Namespacel? and copy into it

.Namespacel2
' Ons ™! report current namespace name

80

VECTOR Vol.11 No.3

Jcs Namespacel?
. Namespacel?

Yfns
Fnl Fn2

Note that a simple way to copy variables from one namespace to another can be
achieved by the following simple method:

dest.var +« source.var
where dest is the destination namespace and sour ce the source namespace.

Example:

#.var3 <« #,Namespacei.Namespacel.vars3

Rules for Evaluation

The last important topic to. understand, before we move to the major subject of
this article, concerns the way the interpreter evaluates expressions when they
involve namespaces. Assume we are positicned in the workspace root namespace
and want to execute the following expression:

R « Namespacel.Fnil vari
where vari is a variable in the root namespace. Dyalog APL does the following:
» evaluates variable vari in the root namespace to produce argument for
function

* switches to namespace Namespacel

» executes function Fn1 within Namespace1, using argument var1 from root
namespace

» switches back to root namespace

+ assign variable R in root namespace

One very important notion to understand is that, while Fn 1 is executing, in the
previous example, it is executing WITHIN Namespace1l. That means, that, if it
needed to use variable varz from the root namespace, it should refer to it as
#.var2 and NOT just as var2.

This is essential to understanding how to work with namespaces.

g1

VECTOR Vel.11 No.3

What Else Can You Do with Namespaces?

Most system functions and the ¢ primitive are namespace aware. This means you
can do such things as:

ns
#.Namespacel
#.Namespace3d Namespacel,[Inl 2
vars
'#' 2 'Fn1!
Ose.ed 'Deb!
Namespace2.vari+i19

Benefits from Using Namespaces

After having read these few pages introducing namespaces, you have understood
most namespaces concepts, but may be still asking yourself what are your
benefits of using such things?

In fact they are numercus. Namespaces can help you:

1. Store your utilities in the {]Jse namespace and have them handy at any time.
This is probably one of the first things you will want to do. It brings similar
advantages as APL*PLUS User Command Processor, with better performance.
I could no longer work in APL without either one of these tools.

2. Avoid name conflicts. Example: if you kept your workspace root namespace
empty and stored all your functions and variables in namespaces, you would
never worry about name conflicts when copying objects in your workspace.

3. Clean up your workspace and graup objects logically. And do not clutter any
namespace with hundreds of functions and variables.

4. Avoid local functions. They can be replaced by identical functions called from
namespaces.

5. Have several objects with the same name within one workspace. Namespace
will let you do such things as emulate the following SQL syntax:

select employee.name,dept.name,employee,.salary
from Employee where employee.id eg dept.id

where name and id would be variables residing in the employee and dept
namespaces! This would have been impossible without namespaces or
without using quotes.

82

VECTOR Vol.11 No.3

6. Encapsulate all callback functions in GUT objects. This really is the major
advantage of namespaces, in my opinion. And [will conclude this article by
showing a namespace technique which greatly simplifies the programming of
GUI objects and of Windows applications with Dyalog APL/W.

7. Exchange information between GUI objects without using global variables
or ‘data’ property. It very often occurs when programming GUT objects that a
callback routine needs a piece of information created by another callback
routine, Unfortunately, the nature of event driven programming makes all
callback functions independent of each other and moreover global objects in
the workspace. Therefore the only way to pass information from one to another
is to use global variables. But as you all know, this is not good APL
programming practice and should be avoided, Both APL*PLUS and Dyalog
APL provide a ‘data’ property for almost all of their objects, within which
you can store any amount of information. But there is only one data property
per object and, even if you store nested arrays in it, it is not as convenient to
use as just storing variables in the object namespace.

There are certainly several other advantages of using namespaces which I have
not yet discovered or used, but these cnes are already more than enough to make
me wish that namespaces one day become standard in any APL. As well as
control structures!

A Useful and Simple Namespace Technique
to Program GUI Objects

GUI programming

The previous pages were necessary for Dyalog APL/W or namespace novices to
understand the following part of this article. We have seen that each GUI object
has its own namespace. The whole job of GUI programming is to write small APL
routines to react to events occurring on GUI objects.

The work is quite simple:

o create and design your form, installing objects in it and giving them properties
+ identify all user events that can occur on these objects
* write one APL callback function for each (object, event) couple

For example, if one wants to react to a user click on the 0¥ button of form F, one
needs to associate an APL function to the ‘Select’ event on the ‘F. 0K’ button,
with the following expression:

83

VECTOR Vol.11 No.3

TFL.O0K' QWS ‘'Event' 'Select' 'F_OK Click!
where F_0K_C1ick is the name of the APL callback function.

When the user clicks on the 0K button, the APL interpreter instantaneously
executes F_OK_C1ick because it knows, since our Ows expression, that we have
associated this name to the ‘Select’ (alias click) event on the button.

Problems with GUI programming

The problem is that the GUI programmer quickly discovers that his workspace
soon gets cluttered with hundreds of callback functions, This is because one
dialog box can easily contain 20 objects and each of those can easily get several
different events. Remember that you have to write one APL function for each
(object, event) couple.

A second problem is that your form and all of its children objects will not run
unless all of its callback functions and (global!) variables are there with it in the
same workspace environment.

Imagine one day wanting te copy this form object into a new workspace and then
discovering that you have also to copy a hundred callback functions to choose
among a thousand functions residing in the source workspace. What a headache!

A solution to the problems of GUI programming
The answer, of course, comes from namespaces. Here are the rules:
» Tt seems natural to store a callback function in the object (namespace) to which
it refers
» It seems natural to name this callback function before the event it handles

For example, an APL callback function handling the Select event on a button, will
be named Select and will be stored in the button namespace.

We would (hen really use a lot of the power of namespaces: we will have several
functions in our workspace bearing the same name (Select for example): only
namespaces allow that!

We will also encapsulate all callbacks within our form and its child objects,
making our form self-functioning. We can then copy it as a stand-alone object in
another workspace and start using it immediately: it will run perfecily, because
the hundred callback functions will have been carried with it when copied into
the new workspace.

That's great: it means we can write self-functioning forms!

84

VECTOR Vol.11 No.3

We have spent years writing utility functions, and creating our own library of
powerful utilities to develop lightning fast with APL: it means we can now start
writing utility forms or better, what I will call PARTS, i.e. GUI objects that we can
easily plug into any new application we write.

Imagine: almost all Windows applications have a File menu and the File
menu structure is fairly standard: even the accelerator keys it uses tend to be
standard across applications. Well, we can use namespaces and write a File
menu PART which will encapsulate parameterized callbacks,

Then we can plug it in any new Windows application we write, just as is, or clone
it with-COR and change it by exception. Half an hour {or may be an hour) saved
each time.

A namespace technique that will save you a lot of time and effort

With Dyalog APL/W, you generally start developing your forms with the
WDESIGN workspace which is a nice resource editor. However, once you have
designed your form and set most of its properties and children’s properties, you
generally want to create a _MAKE function representing your form and start
working with this _ MAKE function, forgetting about WDESIGN.

If you install callbacks within your form objects, they will be lost every time you
run your _MAKE function, since the _MAKE destroys your form when recreating it
with OWC.

Soon comes the idea of installing the callback functions within the MAXE
function so that they are re-installed properly within their relevant objects’
namespace every time _MAKE is rerun. The namespace technique 1 have developed is
doing exactly that. We have worked with it for a couple of months, developed a lot
of forms using it, and it has proved to be a real time and effort saver, for
programuning GUI objects.

How does it work in practice? It is best described by an example.

Here is a sample application: It is a simple MDI
application which shows several objects:

a form

a menu bar with a File menu

a toolbar with one icon

a status bar with one field displaying the
current Hme

* an MDI dient with a bitmap image

L I I]

85

VECTOR Vol.11 No.3

This application handles the following events:

Object Event Action to perform

F Close Kill the timer

F KeyPress |If Esc, terminate the application
F.TH Timer Display the new time

F.MB.FILE.NEW |Select |Startchild window application (#.Transaction)

F.MB.FILE.QUIT |Select Terminate application

F.TE.B1 Select Same as Select on ¥ , ME.FILE . NEW

The listing below shows the stand-alone APL function that can recreate the whole
application. The top part of the function has been more or less created by
WDESIGN and conlains the instructions that can recreate the form and its child
objects. The bottom part of the function contains all the callbacks relative to this
form. Each of them starts with a line following a v symbol.

The key to our technique is the use of the storefns routine, called from (Ose,
on line 30. This utility analyses the code of its calling function (Main here),
recreates the callback functions and installs them in the relevant objects. It will be
explained in more detail later on.

v Main
[11
[2] a Create main form
[a] \FU(WCtForm' 'Sample Application Showing Namespace Technigue!
(4] 'F'OWS("bcol' 255 255 255){'Coord! 'Pixel')
[5] 'FIOWS{ tAccelerator' (27 0))('3D' 'Default')
[8]
[71 A Create toolbar
[8] WEW'OWCTBitmap' ‘'ci\wdyaloghele\bmp\new!'
fa] 'F.TE'0OWC' ToolBar!
[10] TFL.TB.BLOWC Buttont '1(2 u){22 24){'Picture' "NEW')
[111
[1?2] a Create menu bar
[13] 'F.MB'ONC"MenuBar"
[1u] 'F.MB ,FILE'[JWC 'Menu' '&File?
[15] 'F.MB . FILE.NEW'OWC 'Menultem' 'ENew!'
[16] ‘F.MB,FILE . QUIT'OWC 'Menultem' 'EQuit'
{171
£18]1 a Create timer
{13] ‘P TM'OWC ' Timer ' { "interval® 1060)
{20l
f2il a Create status bar
fzz] ‘F,SB'[IWC'StatusBar"
fz31 'F.SB.F1'OWCt StatusField' (*size'd 60)
[24]

[25] n Create MDI Client and menu

86

VECTOR Vol.11 No.3

[26] 'BMPAI'WC'Bitmap®' 'C:\WINDOWS\WINLOGO.BME'

[27] 'F.MDI'OWC'MDICIIent'{'3D" 'Default'){'Picture' *'BMPi' 1)
[28] ‘F.MB'(WS'MDIMenu' 'FEN?

[293

[30] 05SE.storefns n store callbacks in form objects
[31] gpe -

[az] +0

fas)

[34] A +44 Callbacks section +++

[35]

[36] v

[azl Close nF

[381] OJEx ' 7M*

(39]

[vo] ¥

[411 KeyPress a F

[uz2] OQEX'TM'
[u3] #,0Ex'Fr

[u4]

(451 v

[46] A+FormatCurrentTime; subroutine n F.TH

[47] A+, "G<99:59:99> IQFMT 100:07S[[0I0+3 & 5]

[48]

[w3a] v

[50] Timer A F.TM

[s1] '#.F.SB.F1'(WS ' text ' FormatCurrentTime

[52]

[53] v

[56] Select A F.MB.FILE.NEW
{55] #.Transaction

[56]

[57] v

[58] Select n F.MB.FILE.QUIT
[59] #. OEX' F!

[60]

[81] v

[62] Select a F.TH.B1

[63] #.F.MB.FILE.NEW,Select

v

You can notice that:

all callbacks described in the above table are defined within the Ma 1n function
they are separated by a v symbol

all callbacks are named before the events they represent

on line 30 utility st orefns is called from [15E

FormatCurrentPime is a subroutine: it is not an event.

the word ‘subrout ine’ must be localized in FormatCurrent I'ime to
distinguish it from a callback

callback Select onbutton F. TB.R1 calls another callback
F.MB.FILE .NEW.Select

callback Timer uses a subroutine (FormatCurrentTime)

it has not been necessary to use such expressions as (' Event' 'Select'
'F.TE.B1.Select!')

87

VECTOR Vol.i1 No.3

Let’s now analyse in more detail, what the storefns is doing.

Analysis of st orefns utility

This function looks at the code of the function that calls it, i.e. the Ma in function
here. It searches lines starting with the v symbol and extracts pieces of code
separated by vs and fixes them as functions in the root namespace.

It then analyses the comment on line 0 of these functions (another nice feature of
Dyalog APL/W that we are exploiting here) which is supposed to contain the
name of the object in which the callback is to be stored.

It then activates the events by issuing the ‘'object!' [IWS ‘'Event'
tevent' l'object.event' instruction for us: this means we do not need
to add all these instructions in the top part of our Ma in function! Note that it does
not activate events for functions that have the word subrout ine localised.

It then copies the callback functions in the relevant objects and finishes by erasing
the callback functions from the root namespace. In case you want to use this
technique, here is the code of storefns:

Ose.(Jvr'storefns'
v storefns;AsB;C;D3E; G I;L;0OML ;010
[1] n Store local functions in their corresponding objects namespaces
[2] n Can only be executed in main workspace namespace.
[3] n Copyright (c) 1994 Eric Lescasse 2loctak
(%] 010+ xOML«2

(5] A+«#.0CR 250381 a name of calling function
{6l A<t 03+ (AL:2]=v")c[1]A a event handlers code
171 Iel a loop index
[a] +L+{(pd)pa},o0 an loop labels
[s] a:1B+I>4 an function Jcr
[10] C+B[1;] a function line ©
fit] D+((Ct'at)sC)~t ' n object name
[12] +(1='2'eD)+b n 15 it a dynamic name?
f13] Det@raD-ta! s evaluate dynamic name
[1%]) b:E«#.0FX B n create function
[15] G+{#. ", D)0NS'#."' \E s copy function in object namespace
[16] +{1e';subroutine'eC)pc w do not activate event If subroutine
[17] ('#.7,D)OWS'Event 'E{"#.',D,'.' ,E) A activate event for this object
[18] c:#.0JEX E s erase function
[19] +L[I+I+1] a Iloop back
v
Raising the Difficulty

Our application is an MDI application and as such can create child forms. One of
the problems of MDI applications is that you have to keep track of child forms’
names since the user can generally create multiple copies of them (MDI would not
mean Multiple Document Interface otherwise, would it?). Therefore it is your

88

VECTOR

Vol.11 No.3

application that needs to dynamically generate these child form names as the user
creates new ones. How does this fit with the storefns utility? We cannot pre-
allocate dynamic object names on the line 0 comment of callback functions. Well,
this is solved by prefixing the object names with the execute symbol, as our
application Tr ansact ion function shows.

But first let’s look at the Transaction child document:

g ... g
Wimscen | 4] 4 o] |
| MomCliest JUNPWARE Tntar | |
| Wam Praduk . [Renaun Rapp#t
Intmmdlaies [RHE 2 CEMR
Achil¥ems Saieis
@ dehat” pae & f sraiqsed] .
C Veste Qunntit |]
| P 1000001 F N
Crioulé B R]
Commission [200007} oo [E

¥ Transacticn;childname

[1]
[2]
[3]
[41
[5]
[6]
[71
[8]
[sl
[10]
111
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[z0]
[21]
f22]
[231
[2u]
[25]
[26]
r271]
f28]
[z29]

childname«'F.MDI,TR',%D

childname [OWC*SubForm’
childname (OWS('BCOL'(192 192 192))('CAPTION'('Transaction ',¥D))
A change more properties

The function that creates the above child
document is the following (where we have not

reproduced all lines in order to save space in
this article):

a dynamic name

(childname, ' .BOK')IWC'BUTTON' ('CAPTION' 'R0K')['POSN' ...
(childname,* .BAnn' }OWO'BEITTON' (' CAPTION! '&Annuler:')('POSK!

n create more objects

OX¥Q childname'MDIActivate®

[I8E.storefns

+0

v
Select

OEX" ## ' ONS "

v

n #childname,'.Bdan’

ReCheckField A;B;I;subroutine n schildname
s Is only a callback subroutine

v

Select 4;B;C;D;E;F36; 3Ty bad

A+## . CheckPield'CCLi
B+##.CheckField!CPro!

A schildname,'.BOK'

89

VECTOR Vol.11 No.3

We just need to add an ¢ symbol before the dynamic expression that represents
the name of cur child document: lines 12 and 13 of utility storefns handle
object names starting with the e symbol (such as: echildname,'.BOK').

Benefits of the Namespace Technique Explained Above

The benefits are many:

* you can write self-functioning forms with complete encapsulation

¢ your whole form can be recreated by just one function (Main or
Transaction here)

+ you do not risk lesing any callback encapsulated within objects

» you do not need issuing the 'object' [ws 'Event' 'event'
tcallback’ sentences

* you can visualise several or all callbacks at once

« you can most easily capy and paste APL code between callbacks {often needed
in GUI programming}

+ you do not clutter your workspace with numerous callback functions

The whole MDI application shown above (simplified from a real case) is
contained in the 2 following functions:

yfns
Main Transaction

Is Encapsulation Possible with APL*PLUS I1I?

For those of you who are using APL*PLUS II, it IS possible to encapsulate all
your callback routines within your main application form, although in a different
manner.

Here is a possible technique.

s Create an additional button called code on your form
+ Giveita‘where’ property of 10¢ ~100 so that it is located outside the form

+ Store all your callbacks and utilities in the ‘data’ property of this button.
Something like:

‘Vform.code' Owi 'data' {(Qvr ‘'‘callbacki' ... 'lastcallback®)

90

VECTOR Vol.11 No.3

= Then, define the Open callback of your form as:
tform' [Owi 'onOpen' 'handlers+Qdef”*'form.code''(wi''data'' ¢ form Open'
» And define the ¢1ose handler of your form so that it erases all handlers:

'form' [wi 'onClose' 'form_Close o (Jerase handlers’

Conclusion

Namespaces is a very interesting exlension to APL. It is the path to a real object
oriented APL which will exist one day. And for now, it is a rather simple to use
and very powerful feature. Some further refinements are needed, some nice
extensions of the namespace concepts are possible as well, but even as they have
been done in the first place, they are more than useful: they can make GUI
programming with APL much nicer and much easier and they really allow us to
write PARTS and, if used well, bring us re-usability and encapsulation, and are
close Lo bringing us polymorphism as well.

91

VECTOR Vol.i1 No.3

Namespaces:
a Way to a Well Organized World or
Just Another Means to Multiply your Chaos

by Kimmo Kekdldinen
email:Kimmo.Kekalainen@metsa.fi

My waiting was finally rewarded by Dyalog version 7 last summer. About
namespaces | had heard John Scholes” intreduction in Swansea, Although 7 was
full of new fancies — toolbar, hints & tips, VBX, timer, MDY, metafile and so on
— they all were just new features — welcome, useful indeed, but mainly to be
classified as add-ons to GUI-functionality, even the Grid. Namespaces were
something different. When exploring 7, I saved it till last. As 1 could have
concluded from John's demo, this new concept seemed to provide thus far
unreached possibilities to organize your working environment in a new, more
controllable and productive manner.

Extensions to the Interpreter

Who had not a subset of little utils like O VER, DEB, RONFIND, DLTB? You need
them time after time, in every workspace. To do anything with APL, you scon
miss some of them, you copy them. Why not have them around like primitives or
OFUNCTIONS? Now namespaces provide you with this possibility, at least in a
logically analogous manner. You don’t happen to have OROWFIND. However, if
you had, ORORFIND or GSE.RONFIND, what's the difference to a calling
program?

But you can go much further. If you are an application developer using AFPL, you
definitely have a subset of tools to do common tasks that are needed, whatever
application area you are invelved in. You probably use some dialog boxes to ask
questions, give WAIT- and OK-messages, print, show reports to the user, maybe
graphics, file handling etc. The problem with these in every task is not only to
copy those, but also the varying range of sub-functions they are calling. And you
also develop them, whether to correct bugs or do improvements. But where on
earth was the last version.

Then, after a programming period you take) FNS to see what you have and are
faced with the problem of extracting the problem-specific functions from the
common namejunk of OVERs and QUERYSTRINGs. Then you think again that

92

VECTOR Vol.11 No.3

shouldn’t they have put these into the interpreter, of course deliberately
ignoring the fact that if they really would have, your EXE would finally end up
exceeding the size of your RAM. Well, Namespaces allow you to do this yourself,
without overloading the exe-file, but logically at the interpreter-level. Here is the
way to make your own enthancements to the environment. Having these in mind
I started.

Step into Spaces

First | put my ROWNFINDs directly under the [1SE. That's a proper place, at least
for idiom-like things. They are small, mostly oneliners, old, safe and robust,
familiar like primitives. Good to have them around, always. The same counts for
my set of general GUI functions named according to task like QUERYSTRING,
CHOICEFROM, POP_UP_MENU, OK_MSG, WAIT_MSG and so on.

When you proceed with hacking your toolset, you probably face the problem
that the complexity of your commen task-related tools grows. They call sub-
functions, beth idiom-like and task-related. If you want them to be always
available, the answer is to create your own namespace and save it directly under
{5E. Basically, this is a very straightforward clear concept. However, if you have
a GUI-tool to show a report on a scrollable form on screen, you probably want to
provide the possibility within that tool to print it, guide it to the clipboard or
Excel, maybe give your user a chance to change fonts or colours on screen and so
on. But to provide parallel things like these you may need to call functions from
other namespaces under [1SE, or in namespaces under them. Still, this showing a
report on screen is a very common need. Most of my application programming
somehow relates to reporting. It must be handled in a unique manner, with one
general tool. So T did it ...

... and went on. In a few days I had about 15 different sized namespaces under
my OSE. There were my goodies, available in a clear workspace as I always had
wanted. My goal was gained. Hadn't T earned 1 feeling of relief and satisfaction
— perhaps a cold beer! [Have two ~ Ed]

Still this made me wonder, Most of my 0SF was OK, definitely, idiom-like stuff
and so on. What made me nervous was the growing number of references
between functions in different namespaces. How ever am I going to maintain this
in the future? The reason in the start was sound and clear — they were already
there. Another way would have been to copy and commit a sin of multiplication;
wasn't that to be something of the past age, before namespaces? Dyalog allows
you to go as deep as you wish in namespace structure. If you really do, good
luck — and prepare a map. 1 began to feel a bit, if not lost, at least confused. What

93

VECTOR Vol.11 No.3

if T want to use some of these tools independently of current [15E? Am | now
somehow stuck with my profile? I had happily got rid of the namejunk in my
application workspace, at the price of namejunk in my OSE.

A consistent naming convention is a thing 1 often preach to others as a free and
powerful way to give readability to code and to provide self-carrying
information to an application structure. This was something I forgot to plan in
my anxious start. Some namespace-names under JSF were UPPERCASE, some
were lowercase, some started with Uppercase and so on. Had [adopted a
disciplined standard it would have made functions calling these easier to read
and extract in application code. OK, go and change the names of the namespaces.
Yes, but then go and change all the references to functions in them that lie there
waiting in those 15 namespaces or under them. Then there was this trouble of
finding those AP- or DLL-functions that you forgot to kill or localize. There they
stayed lost in some unfound namespace and efficiently prevented you from
saving your latest work.

While worrying about these I made a little DIR to find out that my original [SE-
file had grown from 100 Kilos to half a megabyte (part of that goes to a bug in
the Dyalog saving structure, but still ...). What T did? I created a workspace copy
of (ISE- functions and of every single [SE-namespace under it. And stopped.

Conclusions

This process was worthwhile. I made a good inventory of what 1 have. My
attitude towards namespaces is totally positive. They are not only a promise, I'm
convinced that they really provide you with a way of handling your utils better.
Mistakes were mine. I think I learned a lot. Benefits don’t come autcmatically. Se,
when I next start organizing my little Dyalog World, I will carefully think and
judge my existing toolset in the following terms:

« What are the general routines you really are going Lo need as functions
directly under JSE? What really are the general routines you are going lo
need as namespaces directly under 0S5E?

« Are you going to allow a namespace-located function to call a function living
directly under 1SE, and more important, do you allow it to call to functions
in another namespace?

+ How many namespaces under a single 05F will you be supporting from the
point of view of memory load and maintainability?

G4

VECTOR Vol.11 No.3

+ How many session profile files do you think will be needed to provide a
controllable and productive environment, starting from the fact that if you are
an application programmer, the minimum is two — one to develop
applications, one to run them (you don't need N5DOC to do that)?

+ What's the proper place to save and maintain the “source” code for utility
functions that end up in JSE . namespace? Will the traditional WS still the
be the most flexible alternative for thal, after all? [t would allow the
independence of the ns-concept (totally if ns-references are not allowed) in the
case of possible use in environments where namespaces are not supported.
Still they could be easily called and hooked into (1SE by copying in at the start
and easily stripped off when not needed, I'll probably never be able to
expunge a third of my interpreter as | in certain situations wish, but should at
least be able to do so for my session enhancements.

Currently | still have more questions than answers, sorry!

When you keep developing applications with APL for several years, you will get
accustomed to doing things in a certain way, adopting habits, preferring certain
techniques. They give a kind of “stamp” to your work. This is good in the sense
that it brings consistency to your work, bad in the way that you may get stuck
with them and miss possibilities that others have discovered, which might help
you do things better.

Every now and then, it is good to stop and do some evaluation; look around. If
you haven't done this lately, namespaces is a good place for that, in fact a must.
They are a stop point, in case you den't want to miss the point and lose the
benefits. They can help you to organise your application development
environment to be a productive and disciplined world, or just stay as an
alternative means to multiply your chaos.

95

VECTOR Vol.11 No.3

Coast-to-Coast Revisited
by Adrian Smith

Please refer to Vector 10.1, page 97 for the background to this note. One of the
ideas that 1 introduced was of managing the Dyalog 'data’ property using a pair
of functions set_data and get_data to store named variables in any GUI
object. I commented at the time that 1 felt this was a “huge step forward in
design” and fitted in well with the APL style we already knew. I started with the
assumption that T ought to be able to remove all this code, as namespaces were
designed to do precisely the job I had coded around.

If you look first at Init_icons (page 101) or init_game (page 105) you can
see that as long as you know what your object is called, namespaces clean things up
nicely:

f8] 'ttmk'0OFC'BITMAP' ''‘bmp cm
(91 ttmk.rtn titmk.fn ttmk.map+2 ‘'‘make_term 3' map

{241 BD.ToPlay+'HN! a Either player may start!

The fun begins when you have the same callback on many objects, so the object
name comes in as an argument. Look at rotate_tile on page 104

(4] rtn fn+bmp get_data 'rtn' 'fn' n 0ld version
[4] rtn fn<sbmp,'.rtn ' bmp,'.fn' & New version

This is nasty enough, but putting the data back again gets quite horrible:
[8]1 bmp set_data {‘'rtn' rtn)('map' map} n 0ld version

[8] tbmp,'.rtn+rtn o ', ,bmp,'.map+map!' A New version

1 know that Dyadic are working on (€S, to let us shift namespace under
program contral, so 1 suppose [will soon be able to write:

[8] OCS bmp o rtn+##.rtn o map+##.map ¢ (OCS '##' r Switch +}

... which is better, but leaves me in danger of forgetting to switch back at the end.
I think what I really want is something that looks like:

[8] Emp OCS { rip+~##¥.rtn o map+##.map } n Execute in namespace

... but T don’t hold cut much hope of seeing it!

96

VECTOR

Vol.11 No.3

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of

fluency in AFL.
Contents
Puzzle Corner: the Age of the Vicar Alan Sykes
The Axiom Waltz Gérard Langlet
At Work and Play with } Eugene McDonnell
Bodyguard of Lies Peter Merritt
Causeway: Making Menus Adrian Smith
J Inscription 0 Richard Oates

101

111

119

122

130

97

Dyalog APL/W

Migration Aids

AP127/PC SQL to ODBC Interfaceccccceeveveeerevinen.. 3300

AP126/PC GDDM Text and Graphits........cccoeveveevvennn $1000

AP128/PC GDDM Text OnlY .o rerecnnane $300

FRESCO Business Graphics Systemccccovvevevennee, $300

FACS (Emma-like) Data Management System............ $1000
(includes AP127/PC)

SHARK Sharp APL to Dyalog APL/W ..o 31000
Mainframe Link & Cede Converter

TOPR Application Management Software $1000

Multiple Copy Discounts, Site and Run-Time Licensing,
Porting to other APL Systems, and Dealer Terms Available

Lingo Allegro U.8.A,, Inc.
113 McHenry Road, Suite 161
Buffalo Grove, llinois 60089 USA
Phone: +1 312 203 4926

Fax: +1708 459 8501

VECTOR Vol.11 No.3

Puzzle Corner:
The Age of the Vicar

from Alan Sykes

The Problem

A vicar says to his curate:

“I have three parishioners whose ages multiply together to equal 2450 and
whose ages sum to twice your age — what are the ages of the parishioners?”

The curate thinks for a while and then tells the vicar that he does not have
enough information.

“Quite right” replies the vicar “but if | tell you an extra piece of information you
will have encugh.”

The extra piece of information is that the vicar is older than any of his
parishioners.

Your task is to find the age of the vicar!

The Solution

... will be in Veetor 11.4 along with a full explanation!

9

APL for the Apple Macintosh

Since 1985 MicroAPL has pionsered the use of APL in graphical environments.
Qur latest version of APL.68000 Level il for the Apple Macintosh is now available,
offering dramatically enhanced GUI programming facilities.

(& File Edit Interrupt Terminel Special 1Wndow A
MOUIES
APL.682BD Level 1T Copyright (C] 1990-1994 HicroAPL Lid. [{_> [—
WS Size=3681K, Uersion 3.84M — —_— -
ceerus E0== Mouvies from RPL ==H15] MieroARt
IWSID
9% MOVIES
DemoMovie

MOVIES: DemoMouie

[0 DemoMovie FM;z,FILE

[1) FMe¢HextForm

[2} FILE+'MicroAPL:MOUIESQUICKTIME LOGO MOUIE®
{33 z¢FM Dwi ‘New' ‘Form'(‘'capticn' 'Movies from
[4] ~n

{51 m How create a movie.

(63 z#(FH,'.mvl'Mlwi "New' 'Movie'('where' | 31 ('
(?} n

(B} ~Afdd a quit button

(93 ze(FH,'.Quit'}0wi 'Hew' 'Button'(‘where' i3 i
[£@] & Force the user %o exit the form

[t11 w

[12) 2¢1 DUE 71

[13]

@[

APL S8COGC Level

APL.68000 Level Il for the Macintosh includes the folowing features:

. Runs on all models of Apple Macintosh

. Native version for the Power Magintosh

. Conforms closely to the APL2 specification

. Uses the standard Mac interface

. Object-based GUI programming via OWI

. Full event handling via APL callbacks

* Free runtime version with application packager

Accelerated for
Power Macintosh

MicroAPL Limited South Bank Technopark, 80 London Road,
London, SE1 6LN, UK

Voice: 0171 922 8866
Fax: 0171 928 1006
Applelink: microapl

Internet: microapl @ microapl.demon.co.uk

VECTOR Vol.11 No.3

The Axiom Waltz (The Information Wall)
or When 1+1 make 0

by Gérard A. Langlet APL-CAM Journal, Vol. 15, No. 4, 16 October 1993,
pp 601-609. Copyright ©1993: BACUS
Translated by Diane Whitehouse and Gill Smith

Editor’s note: | am very grateful fo the two transletors. Gérard's French is very
difficult to translate, as it is packed tight with various kinds of word play, not to
mention obscure French proverbs and sayings. Such great brillinnce sometimes makes
it harder io follow the frain of thought; with Gérard there are probably three
simultaneous trains of thought anyway. I would be glad to hear whether readers enjoy
reading our best efforts at rendering Langlet into English. If so the lntest issue of Les
Nouwelles d’APL has a further two articles!

Summary or Introduction

One of the most famous axioms in the history of mathematics is undoubtedly
Euclid's: "Through a point situated outside a line, one can only draw a single line
parallel to that line.”

The abandonment of this dogma, fixed in the mind by centuries of teaching
Euclidean geometry based on the aforesaid axiom, happened many centuries
after Euclid, with Riemann and Lobatchevski, and led to a tremendously rich
new mathematics (from which relativity ensued). Yet at the same time the whole
world is convinced that twe and fwo make four...

Cn a little reflection one realises that it is now possible to break down the
Information Wall, like the Berlin Wall, without a great effort. This is largely
thanks to APL with its wonderful properties, such as a pure mathematical
notation, and the possibilities this language offers for experimentation in new
ideas using any kind of modern microcomputer and then expressing these ideas
concisely. In mathematical terms, this comes down to overhauling fundamental
axioms, to exploring new routes — routes neglected not only by pure
mathematical theory but which are, above all, missing ipso facto from models in
physics and biology. It is unfortunate that these have, up till now, relied mainly
on considerations of mass and energy, while the opportunity of research into
Information remains wide open; yet it contains the seed of fruitful discoveries.

Physicists or biologists always gather Information (and very little energy) in their
experiments. The computer, now a familiar tool to both, can be stretched to an

101

VECTOR Vol.11 No.3

unlimited extent to handle whatever Information one gives it. The DNA which
programs us all is more Information than matter. So, let us destroy the Wall and
try to revise the axioms. In principle, when one travels up the course of a river to
find its source (whether that river is the Nile, the Seine, the Amazon, or the
Mississippi}, the widest branch at each confluence is not always the longest: one
must explore every branch of every fork one after the other to get to know it all
(which can’t be done all at once, unless you can use a satellite).

Information’s Natural Processes

We know very little about the processes that lead a man to think, nor of those
that govern the development of a human being starting from a chemical program
(2 metre and a half long if one unravels the wonderful double helix of the DNA
sequence — the helical spring of our being wound up in the nucleus of our cells
and invisible to the naked eye, with a “listing” of 23 pairs of sub-programs called
chromosomes). When a system is self-organizing, the appearance of observable
order would go against the laws of thermodynamics, for entropy seems to
decrease in such a process; now entropy is, by definition, tied to energy: it is
itself defined as its “quality”. On the other hand, if one considers the information
in a self-organized system, one can postulate that this information must be
preserved without any deterioration in quality, for example from one generation
to the next, or during metamorphoses: the caterpillar contains all the information
of the chrysalis which itself holds all the information of the butterfly.)

The Principle of Conservation of Information can replace, if not be identified
with, that of conservation of momentum in mechanics, a principle that is well
known to billiards players. But information is only expressed in bits or in pixels.
One cannot either average it or smooth it without degrading its content. One can
never increase the quantity of information contained in a system by either
interpolation or extrapolation. Only reversible processes conserve all the
information contained in a given system: these exchanges should produce a
constant volume of information to remain optimal. If a system grows in size and
adds to its information, it is because it has captured information from
somewhere outside itself, to the detriment of another systemn that it has
destroyed (naughty!); or, it has copied, aped, or cloned the information from
another system without necessarily destroying it {(dodgy but kind).

In mathematical terms, beginning with linear algebra for instance, we are led to
seek plausible models for a simple and above all correct formulation (so as to
make the least number of mistakes, we will put forward the smallest possible
number of axioms. ‘

102

VECTOR Vol.11 No.3

Matrix Mathematics

An inverse matrix (with no numeric mistakes) is an ideal operator for
transforming information. Indeed — though in theory only - this matrix and its
inverse offer us the possibility of transforming a problem’s data into resuits, but
also of recovering the data from the results. In practice, it is impossible, except in
particular very rare, if not trivial, cases, given any matrix M, to calculate the
inverse matrix M1 such that the inverse matrix of the latter (M-1)1 is strictly
identical to M. Readers with a knowledge of APL can try to disprove this more
easily than others, for in APL any comparison of real magnitudes takes place
while taking into account a relative epsilon called the comparison tolerance.

However, to model a reversible process, we need a self-inverse matrix, with M
by definition identical to M-1. Hence, it seems useless to refine the numeric
algorithms of matrix inversion. Tt would seem much wiser to use pure reasoning
to investigate the required self-inverse matrices. To do so, we shall start small
and then explore the trivial example of a one-row, one-column matrix necessarily
containing 1 {in APL 1 1p 1), and then two-by-two matrices. Afterwards, let us
extend our reasoning to a greater number of rows, going, if possible, right up to
infinity to see whether by chance we might have forgotten some fundamental
options, just as by failing to explore the pathways corresponding to branches of
reasoning and perhaps to the toppling of parity in the positing of the initial
axioms, the little black or white pebbles of Perrault’s Little Tom Thumb, lost in
the combinatorial forests of a Game of GO, from “go to” to GOTO, the great
Japanese theoretician of decision-making,

Self-inversion of Matrices of Rank 2

For every matrix of rank 2, we can write a system of four equations (1) (2) (3) (4).
This will allow us to search for the possible values for the fourtermsa b ¢ dif
the matrix is self-inverse. (The period symbol “.” on its own shows the
generalized matrix product expressed by the inner product in APL in the form
+. % for the numerical arguments.)

ab . ab -> aZ+bc abibd <--» 1 0 thus: a2 + bc = 1(1) ab + bd = 0 (2)
cd cd acted bo+d? o1 ac+ed = {3} botd? = 1 (4}

Equations (1) and (4) imply: a2 - ¢2 = o (5)
then a2 = d2 therefore efther a = d or a = -d

A determinant equal to 1 Is expressed by: ad-bc = 1 (6)
Equation (2} I3 resclved by either: b = ¢ pr with a = -d

Equation {3} 1s resoclved by either: ¢ = 0 or with a = -d

The solution a = d i3 only possible 1f b = 0 and ¢ = 0.

Thus, according to (6) ad equals 1, thus a and d are both egqual to 1 or -1,

103

VECTOR Vol.11 No.3

Two matrices are therefore self-inverse. They are:

i0 and -1 o
o1 9 -1
Thus a = -d, then equation (6) becomes: -a2 - bg = 1 {7}

Adding (7) to (1) would force the equation to be reselved as:

0 = 2 (8)

This resolution is especially sensitive in the context of axioms that are
particularly well established. This kind of result constitutes an Information Wall
that is generally impossible to climb. Unless ...

A Change in Algebra or a Very Natural Algebra?

When we announce that “fwo and fwo make four”, we presuppose that and means
plus and that “one and one make” is already “two.” In reality, if one human being
and another human being make two humans, a man and a woman form a
couple, and make a child. Counting purely numerically is therefore an
abstraction of reality; or, more precisely, it is an abstraction of our judgement of
reality (which occurs with the aid of our senses and our “understander”, the
brain). If Huygens had already announced, in his Treatise on Light (1671) — and
in French — “We percefve ONLY the differences,” he had already understood the
puzzle’s fundamental axiom. However, Huygens had neither the APL nor a
suitable computer to make any kind of progress except with the help of
continuous functions.

All our biological receptors are discrete, and no measurements of anything can
be made other than through sampling (and this assertion was already true before
the time of Poincaré and Shannon) and we can never analyse nor model the
universe itself: we can ONLY try to interpret, understand, and possibly calculate,
our perceptions of the so-called universe.

The information we perceive can always be expressed by 0 and 1. We have found
no other effective means of handling information other than as a series of 0s and
1s. We can rightly enquire, “Why?"

Both conceptually and naturally, all information can be reduced to Os and 1s.
Why therefore do we try, on a day-by-day basis, to shape that information into
other forms which are much more difficult to digest and to manage by
computers which, by definition, only know how to handle 0s and 1s? The simple

104

VECTOR VYol.11 No.3

inversion of a more or less large matrix executes thousands of millions, even
billions, of useless and perfectly short-circuitable, conversions between various
series of bits with a floating decimal point called code, and the numbers we are
accustomed — through education — to use for counting and reasoning,

A new-born computer (without software) is, a priori, only able to transform 0s
into 1s and 1s into Us. However, it is already more intelligent than one might
believe, The only arithmetic it can use is a natural arithmetic, the result of the
physical processes which allow it to function: the quantified leap of a recognized
state (electronically or magnetically symbolised either by + or by -) to another
recognized state {electronically or magnetically symbolised either by — or by +
respectively). Before we teach it something by stuffing it full of software, all it
knows of floating-point and/or universal arithmetic is the changing of the sign.
And the rule of signs applies:

+ and + is %, 0 + ¢ is ©
+ and - is -, 0 + 1 is5 1
-and + is -, 1 + 0 is 1
-and - is +, 1 + 1 is o

The word “and” has become “plus”, but in MODULO 2. Tt is then to our
advantage to replace the functional symbol + with the APL sign =. Thus, we can
understand to what extent, just how, and why Huygens was right.

Modulo 2 algebra was not yet known in the Enlightenment; it was studied by
Galois at the beginning of the nineteenth century, and later by Boole (around
1860) who, thanks to some famous polynomials, codified its isomorphism with
logical algebra. Even today, mathematicians still use the @ symbol for + modulo
something (among others, 2), as if the definition of exclusion or logical difference
were derived from addition, and not the other way round. Unlike the symbol #
(which symbolises a true primitive when handling information), addition —
which we still class as an “elementary operation” — is not one. It is impossible to
make it so in a physical system in a simple way, and it is highly unlikely that we
will one day be able to teach a molecule the necessary algorithms. On the other
hand, a simple chain of molecules containing alternating single and double
chemical bonds is already an organism which can carry out an operation like #\
by itself, like a rope hooked to one of its ends,

To understand the effect of =\ and its consequences, it is better to learn APL and
start experimenting... Thus, we notice that =\ induces a genuine, waving,
periodic process, chaotic in the extreme, and very similar to electrostatic,
magnetic or gravitational effects. When we consider 0 as an empty space, and 1
as either a material or magnetic mass or as a charge, effectively the 1 entities are

105

VECTOR Vol.11 No.3

repelled only a short distance and are attracted over the long distance across the
empty space (0 0 0 ... 0 0 0) without there being any need to understand the
mechanism or to create equations of any sort. And #\ also represents the ideal
model for an optimal decision-making chain, which in other programming
languages is expressed laboriously with interwoven loops like:

IF a THEN BEGIN b: = NOT b; [F b THEN BEGIN ¢: = NOT ¢; IF ¢ THEN
BEGIN... ... END; END; END;

over several pages .. But, if & is a watchful neuron, and the sequence
b,c,d...X,¥,Z a chain of sleeping neurons (all equal to 0), where z is the
release mechanism for other processes, #\a, b, ¢. . .is quite sufficient to mode]
the moment that z wakes up as soon as & jumps to 1. It is only if there are
inhibitions (equal to 1) between b and y that the chain will stop spreading the
wake-up process. #\ ¥ is sufficient in APL if ¥ already contains the twenty-six
bits necessary for the model. We can extend this to several million bits using one
of today's microcomputers.

The computer’s new-born arithmetic is a result of the natural physical properties
of its constituents, which involve either opposing charges and “magnetic
masses” that attract or identical charges that repel, as all physicists know
perfectly well. The paradox 0 = 2 from equation (8) is resolved effortlessly. Two
clectrons with a negative charge (by convention, - or 1), which one
unfortunately wants to be in the same place, are going to leap elsewhere, leaving
behind a void which will be seen and recorded as an absence of charge (in
reality, 0) but always noted down as +, a positive charge (which it is not really)
purely by convention. In an empty space (0), we can put nothing (0), or put
something (1). We can take nothing away (0) from a full space (1), or we can
empty it, setting it back to 0, by taking out the something (1) that was inside. But
we certainly cannot fill the space up again, because it would not let itself be
pushed around like that.

This waltz of the monopoles and electrons follows an identical logic to that of the
information waltz it manages: physical properties and natural algebra are then
isomorphic at the level of parity, the logic of the two numbers 0 and 1, the only
elements of the set Z/2Z.

Forgotten Matrices

Actually the algebra of the set Z/2Z is the only known algebra in which 1+1
MODULO 2 indeed equals 0. With the help of programmable APL, we can express
and calculate this more easily in binary algebra as 8=1#1.

106

VECTOR Vol.11 No.3

So, if one returns to the impossible equation 0 = 2, the reasoning we have
followed so far has also constructed a mathematical proof that there is NO other
choice. Of course, the equations (1) (2) (3) (4) with which we started can also be
posed entirely in modulo 2 algebra in which sum and product exist, the sum
identifying with the difference.

So, a = d and a = -d are a single, same solution: a and d must equal 1 if be is zero.
According to equation (6), b or ¢ must therefore be 0, and both can be zero. But
the solution ad = 0 with a = d also allows the finding that be can equal 1. In
Z/27, this leads to b=1 and ¢ = 1. Thus, in Z./ 27, there are four solutions to the
problem of self-inverse matrices of rank 2, of which three are not trivial:

(1) (anti-I) {Gh)} (Gv)
10 o1 10 11
01 1¢ 11 01

In terms of transformational matrix operators that are neither trivial nor almost
trivial (as is the case of anti-I), only Gh and Gv are left. They are the only possible
involution operators in Z/2Z of an algebra that is not signed and is necessarily
linear, to describe any transformation that is supposed to be reversible.

In Z/2Z there are four square roots to I, the matrix-unity of rank 2. But other
matrices can be reversed, because condition (6) ad-bc = 0 can be rewritten as
ad # be in binary algebra, where multiplication becomes the logical function of
logical AND a:

bac=tleadstob = 1tandec = 1.
In Z/2Z, the product be becomes the function MINIMUM (b,c). In APLitis b | c.

So, we must have ad = 0 since, if a is equal to 0, d is equal to 1, or vice-versa. As
a result, the only other two possible reversible matrices are:

(G) {Gd)
11 and 01
10 11

These two matrices are not part of the set of four matrices listed above. They
cannot be self-inverse; they must, however, be the inverse of each other. Besides,
it is necessary that the set of six matrices which combine them forms a
multiplying group for the matrix product in Z/2Z.

The product of these two matrices one multiplied by the other, through
symmetry, must be commutative and if the two matrices are symmetric the
result must be that one of the matrices is itself symmetric, so (I) or (anti-l). The

107

VECTOR Vol.11 No.3

simple scalar product MODULO 20f11by0O1has1asa result, which eliminates
(anti-I). Consequently, the matrices (G) and (Gd) have (I) as a product. So, if the
product of the two inverse matrices is the matrix-unity (I), the matrices will each
be the cubic root of {I). As transformational operators, they will have the
properties of j and of j2, the complex cubie roots combined with unity.

Without particularly looking for any other examples, these properties appear in
all their simplicity, like Botticelli's Venus, where the enigma 0 = 2 provides the
key to the electrical and magnetic fields which cause Venus to rise so discreetly
from the waves.

Qur reasoning showed, before we sought to extend it to matrices of any rank R
(R varying from 2 to infinity), that there are no other matrices than those listed
here for rank 2. In an entire algebra in modulo 2, which is isomorphous to logical
algebra, we know how to define a coherent set of “spinors”, that generate a
three-dimensional space. In fact, we can define a three-sided object with
orthogonal axes and three orthogonal planes. This implies that we can at least
identify the rotating operator of a third of a turn around the diagonal of this
trihedron. It needs a rotation matrix equivalent to j (and so, necessarily, the
inverse matrix equivalent to j2 to allow the inverse).

In complex classical algebra, for rank 2, this is physically impossible; it cannot be
achieved without error or approximation in a device trying to put these
calculations physically into effect. In no other programming language than APL
can we define j (alias G) more simply — and in a rigorously exact manner, in
four bits — and then use it.

The symbol G identified with j means “Geniton”.

A Geniton generates symmetry in a topological space of parities which are either
0 or 1. The choice of identifying G with j and Gd with j2 rather than the opposite,
is a convention. It is like the trigonometric direction in a complex plane, or the
minus sign designating the charge on an electron, or 0 referring to False in Logic,
or the sign for heat being emitted (in Chemistry, this is a positive sign, but
negative in Physics where the system is considered as losing energy). We can see
that a system retains its total information during a reversible phase-change; for
example when water freezes, it keeps all its information since it returns to its
former structure when it melts — as many times as we wish.

108

VECTOR Vol.11 No.3

Extension to Higher Ranks or Orders

Are there any matrices, in the same algebra, that have the same properties as G
and Gd (the inverse of their square), Gh and Gv (self-inverse), and of which the
matrices of rank 2 are the sub-matrices, for every value of row R?

The symmetry in relation to the second diagonal, in G2, can replace the geniton
in rank 2: this is at the same time, the operation of matrix inversion and that of
the elevation to the square. (It is the equivalent of the symmetry in relation to the
horizontal axis of the complex plane, called conjugation, which changes the sign
of the imaginary part of a complex number.) By auto-similarity, let us replace
every 1in G2 by (G2 and every 0 by Z2, the nul! matrix of rank 2. We obtain G4:

11114 000 1
1010 of which the symmetrical expression 0011
1100 in relation to the second diagonal is 0101
1000 1111

The matrix product can be found from the products of the sub-blocks of rank 2
{12 is the unified matrix of rank 2):

G2 G2 ., Z2 G2
G2 Z2 G2 G2

with the result

12 Z2
Zz2 I2

of which the unified matrix is 14.

Through repetition, this reasoning can be extended to infinity. It shows that, by
replacing each 1 in G4 directly by G4 and each 0 directly by Z4, G4, then G8, then
Gl16, and so on, {or even directly, G16 from G4), are always the symmetrical
inverses about the second diagonal d. Their product, that is, the elevation to the
square of each matrix thus obtained, always has as a result — at all its orders —
this same inverse.

5o, this property will also be preserved if we remove the last line AND the first
column of all the matrices G4, G8, G16, etc. The example below of G3, sub-matrix
of G4, shows this:

o
=
=3~

109

VECTOR Vol.11 No.3

The symmetry, in relation not to the second diagonal but to the centre, is:

oo
o
PO

If we continue suppressing both the last line and the first column, in every
matrix G of row R equal to the power of 2 {it will eventually be very large), the
characteristic must be maintained. We will have both a construction and a
rigorous representation, from 2 to infinity, of the rotation operators j and j2in a
complex plane. There will be no need to define, as is usual as a precondition, any
number other than 0 and 1. Nor will it, above all, be necessary to define {, the
imaginary root of -1, which first required the definition of negative numbers. (A
well-organised head being worth more than a well-filled head, Montaigne.)

These verifications and demonstrations are child’s play for those who know APL
and its marvellous primitives which allow one to study all these constructions,
and even enjoy it (and why not?).

The union of the sets G and Gd, forms the “bi-compound” set. The set is so called
because it is double, and contains all the compound axial rotation operators in
both senses of rotation. It can also, if we use a computer, be expressed through
binary algebra (thus, in bits) without there being any need to use whole, real, or
above all complex, arithmetic.

Similarly, we can also easily show, by starting from the sub-blocks G2, G2h, G2v,
and Z2, then G4 and so on, and successively suppressing lines and columns, that
the horizental rotations Gh, and/or, via symmetry, the vertical rotations of the
“bi-compounds” G or Gd, for each row R from 2 to infinity, will be self-inverse.
As a result, they represent the only matrix operators able to carry out direct
orthogonal transformation on information sequences (which are, by definition,
coded in bits and able to sample every modulation and form all imaginable
computer programs) without error or approximation. They will also medel both
physical and biological changes while conserving the information of the systems
— which are, by definition, reversible.

If, as Jacques Brel sang, the [axiom] waltz has taken some time, the blows from
its battering ram will get the better of the (Information) wall, little knock by little
knock, which can also be modelled by =\.

110

VECTOR Vol.11 No.3

At Work and Play with]

by Eugene McDonnell

Parallel Jacobi

Warning: this column contains material which may either put you to sleep or
turn you against applied mathematics altogether. To take some of the sting away
I have added a problem which may give you some pleasure in trying to solve. If
you completely distrust your ability to read descriptions of programs, no matter
how well-written, I advise you to go at once to the section headed “Problem”
and avoid the preliminary exposition, or the material following, valuable as it is.

Background

Recently T had need of a program to perform eigenanalyses of square symmetric
matrices, and went to Vector 9 3 for January 1993, which had Donald Mclntyre's
article “Jacobi’s Method for Eigenvalues: an lustration of]”. T refer you to that
article for Mclntyre's lucid explanation of what the method is. In the course of
transcribing his 11-line jacobi program, along with its sixteen subprograms and
its seven utility verbs, 1 thought 1 saw the possibility of speeding it up
significantly by taking advantage of some of the parallelism inherent in the
problem. I have communicated with MeIntyre concerning this, and he tells me
that he has used this method for many years, beginning with a Fortran program
which he obtained from someone many years ago, transcribing it into APL and
recently, as his article shows, into .

I you look at his program, you will see that at the heart of it are the lines

r=. ((cos,-s8in}),sin,cos) (la R)} I
Q=. g ip {:r [R=. r ip R ip {:r

The first line amends an identity matrix conforming to the argument matrix by
replacing two of its diagonal elements and the two corresponding off-diagonal
elements with a 2-by-2 rotation matrix. The elements amended are chosen by
finding the off-diagonal element of maximum magnitude, say at row-column
indices p,q, and inserting the 2-by-2 matrix items at locations (p,p), (p.q), (4.p)
and (q,q). This amended identity matrix r is then used with two matrix products
involving R, the original argument, and Q, originally an identity matrix. Those
involving R have the effect of zeroing out elements (p,q) and (q,p) of R, while
leaving the eigenvalues of R unaltered. When this operation has been performed
a sufficient number of times, one finds that all of the off-diagonal elements are

111

VECTOR Vol.11 No.3

essentially zero, and that the diagonal elements are the eigenvalues of the
argument matrix . Those involving Q produce the eigenvectors of the argument
matrix.

The valuable book “Matrix Computations” by Golub and Van Loan describes this
method (section 8.5), but because the search for (p,q) is O(n”2), goes on to
suggest that it might be more efficient to select p and q in a more rigid way. For
the case of a 4-by-4 argument, they suggest that p and q be selected in the
following order:

MR RO oo™
W W N WA O

and go back to the beginning, repeating until a sufficiently good solution
appears. Golub and Van Loan go on to point out that the rows of the (p,q) table
can be arranged in a disjoint, or non-conflicting fashion:

a b c
¢ i 4} 2 ¢} 3
2 3 1 3 1 2

and that, in a parallel machine, separate processors can be assigned to perform
the individual matrix product operations. For example, in the 4-by-4 case, two
processors are needed, so that in step A one processor could do the (0,1) case and
the other processor could do the (2,3) case; in step B one processor could do the
{0,2) case and the other processor could do the (1,3) case; and similarly for step C.
They point out that this method works only for even-order matrices, but that the
odd case can be handled by bordering the argument matrix on the right and at
the bottom with zeros, and then dropping these excess columns at the end. Thus
the rotation matrices needed would look like this:

step A { step B H step C

c01 s01 0 0 | co2 ¢ s02 0 | co3 0 0 503

~801 c01 o o] 0 0 0 o] o 0 o] 0
procli © 0 1] o |-s02 0 coz2 o] 0 0 0 0
1] 0 o o] o 0 0 0 |-s03 0 4] c03

0 0 [} o | 4] 0 o} [V I] 4] 0 Q0

0 0 4] 0 | 0 cl3 [513} 0 cil2 s12 [}

procz 0 0 c23 s23| 0 0 1] ¢} 0 =-s12 «clil2 4]
0 0 =~s523 ¢23] 0 -s13 [+] ci3| © 0 0 1]

112

VECTOR Vol.11 No.3

My contribution enters here. I realized that one doesn’t need a parallel machine
to obtain the benefits of this parallel Jacobi method. One can combine the
rotation matrices, since they are disjunct, as follows:

step A step B step C
c01 501 0 1] co2 0 502 ¢ c03 0 0 503
~501 cO01 0 ¢ 0 c13 0 513] clz s12 1]
0 0 c23 s23 -502 0 co2 V] 0 -s12 ci2 4]
0 ¢ =-823 c23 0 =813 0 c13 -s03 0 ¢ co03

This technique reduces the number of matrix products required for a matrix of
size n by a factor of n%2. Thus the larger the matrix, the greater the savings. A 10-
by-10 problem can be reduced by a factor of 5; a 100-by-100 problem by a factor
of 50, and so forth.

The Problem

Now we come to the playful part. As you can see, the row-column pairs to be
included at each step must somehow be derived. In the case of a 4-by-4 matrix,
we see that step A uses the pairs (0 1) and (2 3); step B uses (0 2) and (1 3); and
step C uses (0 3) and (1 2). The problem is to determine a permutation z that
produces the desired rtesult. For example, for n=4 any of the following
permutations will do:

WWRNNKNP =D D
PO ODORMNDN
oR WO P W
N O WD W

If wesetz=.¢ 3 1 2, wecan experiment as follows:

w o PR o No

113

VECTOR Vol.11 No.3

Je=,{>/"1)b NB. mask shows where lead item is greater than trail
600004

ld=.c |."_2 b NB, pairs with leading smaller item
o1
23
03
12
0 2
13
Je=,/:~d NB. pairs in ascending order
o1
o2
0 3
12
13
23

Problem 1: Define a verb which takes as argument a positive even integer n and
yields a permutation which, repeatedly applied to a conforming identity
permutation, produces, in successive pairs of items, all possible choices of 2
items from n, with no duplications.

Problem 2: How many of the In permutaticns of even order n are solutions to
problem 17

Solutions to this problem may be sent by email to eem@ipsaint.ipsa.reuter.com
or by ordinary mail to Eugene McDonnell / 1509 Portola Ave. / Palo Alto, CA
94306 / U.S. A.

Principal verbs

The verbs described below were written for J8. If you are using an earlier version
of J you may wish to get your system upgraded. Here are the verbs making up
my solution to the parallel Jacobi problem. The two verbs CEA and CEAT
produce identical results, but CEA is written using the rhetorical control
structures which have been added to] recently (see my last article) and CEAI
uses the algebraie control structures which have been in } from the beginning,

Each main verb ¢EA and CEAI (Complete EigenAnalysis) takes as argument a
square symmetric matrix A and returns two conforming matrices, the first with
the eigenvalues along the diagonal, and zeros elsewhere, and the second whose
columns are the eigenvectors for the corresponding eigenvalues. They each test
the parity of the number of rows of A. If this is even they laminate to A a
conforming identity matrix, using the utility verb IM, and then apply the subverb

114

VECTOR Vol.11 No.3

PJ to this initial argument. If it is odd, the action is to border A on the right and
the bottom with a column and row of zeros, using the utility verb bz, and then to
apply CEA (or CEAI) to this, and at the end removing the bottom row and
rightmost column of each matrix of the result with the utility verb ub.

CEA =, 3 : 'if, (2!#y.) do. ub"2 CEA bz Y. else. PJ yv.,:IM y. end.!
CEAI=, (PJ@(,:IM)) (ub"2@(CEAIGbzZ))@.(2: |#)

The subverb PJ (parallel Jacobi) takes as argument an array of two square
matrices. It prepares four global variables for use by hsjr: a quantity eps as the
product of a globally defined tolerance tol and the Frobenius norm of the first
matrix, yielded by the utility verb NF; a quantity s, the number of rows in the
first square matrix; a list x, the integers from o to s-1; and a list p, a permutation
which will be used to alter the arrangement of the atoms of k, using the ultility
verb mxp. It then employs the verb hsjr (half of s Jacobi rotations) to the limit.
At the limit, it ylelds the desired complete eigenanalysis of the original
argument,

PJ=. 3 : ¢
eps=:tol*NF (. vy.
s=:4 {. Y.
k=:1, s

p=:mXp &

hsjr ~:_ y.

)

The subverb hsjr (half of s Jacobi rotations) takes as argument an array of two
square matrices. It begins by making a rotation matrix rm, using the verb RM. This
rotation matrix is used with the first matrix of the argument to develop PJo, the
next stage of the eigenvalue matrix, one which has a smaller off-diagonal norm
than the previous one, and setting to zero any of its elements which are less than
or equal to the quantity eps, using the utility verb clean. Next, it uses the same
rotation matrix rm with the last matrix of the argument, to develop PJ1, the next
stage in the eigenvector matrix. The two matrices are laminated to give the result
array.

hsjr=.3 ; o0

rm=.(k=:p{k}) RM {.y.

PIo=.((j:rm}+/ .*{{.¥.)+/ .»rm) clean eps
Pdi=.{{:v.)+/ .»rm

PJO,:PJ1

)

The subverb RM (rotation matrix) builds a parallel Jacobi rotation matrix.

115

VECTOR Vol.11 No.3

It takes as left argument a particular permutation of the integers from o through
sP1. It fashions this into a two-column table t, then reverses those rows of t in
which the first atom is greater than the second atom. An array cs of 2-by-2
cosine-sine matrices, one for each row of t, is formed, using the verb csm. These
will be used to amend a matrix of zeros in locations specified by a conforming
array of 2-by-2 boxes i1x, whose atoms are each a 2-atom list derived from the
corresponding row of t, formed using the utility verb cP (Cartesian product). For
example, if a row of t is 2 3, the 2-by-2 boxes corresponding to it will be:

tom ==t
|2 2]2 3]
+o——t———t
13 213 3]
el et X

Finally, a matrix of zeros is formed, conforming to the right argument y., and
the positions in this corresponding to positions given by the matrices of 1x will
be amended with the corresponding matrices of ¢s, yielding the desired parallel
Jacobi rotation matrix.

RM=,3 : ©

t=.((~-:8),2)%x.
t=.(>/"1 t)l."0 1 ¢t
cs=.y. csm"2 1t
ix=.CP t

cs {x}o:"0 y.

)

The subverb csm (cosine-sine matrix) takes as left argument a square matrix and
as tight argument a 2-element list of indices for that matrix, the first element
giving a row number and the second element giving a column number, with the
row number less than the column number. If the entry in the matrix at that row-
column position is zero, the result will be a 2-by-2 identity matrix. If it is nonzero
the result will be a 2-by-2 Jacobi rotation matrix, using the verb makecs.

csm=,makecs* (=@{1.82:))@. (0:=<@]{[)

The subverb makecs (make cosine-sine table) takes as left argument a square
matrix and as right argument a 2-element list of indices for that matrix, the first
element giving a row number and the second element giving a column number,
with the row number less than the column number. It yields a 2-by-2 Jacobi
rotation matrix.

makecs=. 3 : 0

116

VECTOR Vol.11 No.3

tau=. (((<28}, y.){x.)-(<2#{, ¥y.){x.)%+:(<y.){x.
t=.(*tauw)%{ltau)+4 o. tau

c=.%4% 0. t
s=.twe
(c,s},:(-8).cC
)

The subverb mxp (make index permutation) takes a positive even integer as
argument and yields a list which is a permutation of the integers from 0 through
one less than the argument. The permutation is such that when applied
repeatediy to a conforming list, none of the successive pairs in the lists are equal.

mxp=.[: C. 0: 3 <: , (,~ »:@|.)@:@+:@1.@<:v

Utility verbs

The utility verb CP takes a list as argument and returns the Cartesian product of
the items of the list.

CP=, {@;"i~

The utility verb IM takes as argument a matrix and yields an identity matrix
having the same number of rows.

IM=. [: = [: 1. #

The utility verb NF takes a matrix argument and yields its Frobenius norm as
result.

NF=. [z %: [: +/ [: , *:

The utility verb clean takes a numeric array as left argument and a positive
atom as right argument. It yields a conforming array as result, wherein each
element of the left argument with magnitude less than the right argument is
replaced by zero.

clean=. [» I < [: | [

The utility verb bz takes a matrix argument and yields a similar matrix bordered
on the right and below by a new column and row of zeros.

bz=. »:@% {.]

The utility verb ub takes a matrix argument and yields a similar matrix with the
rightmost column and bottom row removed.

ub=, 1 _18}).

117

VECTOR Vol.11 No.3

Test Information
Alter the following value as desired to control accuracy and speed:
tol=.1e_6 NB. value should ke In the range le_2 to 1le_17
NBE. Test matrices

111 1,12 3 4,% 36 10,:1 & 10 20

JA=.
11 1 1
12 3 u
13 6 10
14 10 20
Jjm=,1.5 _i1 _0.5,_1 2 _1,:_0.5 _1 1.5
1.5 _1 _0.5
_1 2 1
0.5 _1 1.5

Jr=.1 1 0.5,1 1 0.25,:0.5 0.25 2

1 i 0.5
1 1 0.25
6.5 0.25 2

NB. test results, using tol as specified above (executed on a
Macintosh)

CEA A

0.453835 0 0 0
0 0.038016 [0
o 0 2.20345 0
0] 0 26.3047

0.787275 _0.308686 0.530366 0,0601868
_0.16323% ©.723091 0.640331 ©.201173
_0.532107 _0.59455 0.391833 0.458082

0.265358 0,168411 _0.393897 0.863752

CEA m
2 0 Qo
¢ 3 1]
0 0]

0,707107 _0,408248 0.57735
_9.8829e_10 0.B16497 0.57735
_0.707107 _0.408248 0,57735

CEA
_0.0166u473 0 v
0 1.48012 [
0 0 2.53653

0.721208 O.44428 0.531483
_0.686348 0.56211 0.U614T73
_0.,093729 _0.697601 0.710329

118

VECTOR Yol.11 No.3

Bodyguafd of Lies

by Peter Merritt

Well, several months and one new motherboard later, welcome to part two of my
encryption piece for simple (minded} APL-ers. 1 must start by expressing my
thanks to Ray Cannon for constructing and publishing my apology for lateness
and my equally sorry solution to the original problem! Slipping out of my hair
shirt for a while, T was a little disappointed at the lack of reaction in the letters
page, but, as a regular contributor to historical magazines, F've come to expect it.
Anyway, if anyone else has read this far, it's time for the solution and some
background notes on the ideas behind it.

As was mentioned last time, the message started life as a rank-2, 4-row by
30-column simple character matrix. The encryption process itself was in two
stages, each invelving a form of substitution (normally the easiest to crack, but
I've added a twist). Firstly, ¥ randomly generated a table of 256 2character codes
(using only upper- and lower-case letters, and the numbers 0-9). Then, using the
order of occurrence in JAV to provide indices, T generated a numeric matrix of
these indices with the same dimensions as the original text object. So far, so
bland.

Now the problem was how to both disguise the original data AND transmit
enough of the decryption key for the receiver — which is where my original APL
doodling came in. Using a randomly generated number for each element of two
vectors with the shape of the first and last dimensions, the ROTATE symbol was
then applied, thus ‘jumbling’ the elements — in effect substituting one element
for another. So now I had a collection of character tables and numeric vectors
which needed to be ‘packaged’ in some regular form, ready for transmission,
storage, or publication in the national press (depending on content, of course).
As this was to be the ‘simple’ form for Vector competition purposes, the package
was assembled as follows:

PART (1) — the table of 2-character codes (or as much as necessary; in the
example, only characters, numbers and ONE punctuation symbol were used,
or 63 chrs in ail);

PART (2) — the three numbers which describe the object’s original
dimensions, but expressed as codes from the above table (using the numbers
as positicnal information — 6 chrs);

119

VECTOR Vol.11 No.3

PART (3) — the 34 numbers which were the rotation figures (using their
positions in the code table again; a further 68 chrs);

PART (4) — the 240 characters derived from the 120 code-position numbers
which were produced by the original, simple look-up (or in other words, the
data — you knew we’d get to it eventually, if only you hung on long
enough.......).

The eventual character vector was then split into 5-character sets, so beloved of
espionage systems in the 30’s to early 50's (the gaps easing transmission/
recognition), the remaining odd set being ‘padded’ with randomly generated
garbage (as opposed to the sophisticated garbage which preceded it). Now, to
transmit the key-table does form a heavy overhead for small messages, but this
becomes insignificant as the amount of text increases (as the table is the same size
whatever the circumstances). The most obvious feature of the final vector is the
unique pairs at the start, as opposed to the later repeating patterns - it is this
break which is the best clue to solving this puzzle, the rest being extended game-
playing. Interestingly enough, several of the testers who have tried the
competition at first rejected some of their results because they were not expecting
a mix of numbers and text — they ASSUMED that all results should conform or
be significant EITHER as characters OR as text.

This was just the beginning, however — we can get much more devious than
this, which is where the title of this piece comes in [Winston Churchill’s
instruction for the protection of the Overlord invasion plans was to “......shield
the truth with a bodyguard of lies....."]. Amongst the other techniques which
could be tried, again using the simple application of the rotation operator, are:

- to rotate each of the 5-character sets (thus destroying the obvious unique key
at the start);

+ {orotate the order of the sets by a given number (either positive or negative);

+ to add, somewhere near the slart, a large-ish number (perhaps date-based?),
together with a reasonably large prime number — this has NO relation to our
encryption technique but is used by so many others that automated
decryption can go off merrily down the garden path for hours. Still, it keeps
the computers busy.........

Of course, once you start to use multiple (optional?) methods, then a further
signal needs to sent to the other end indicating which methods apply and,
equally important, the ORDER in which they are applied. One suggestion I'd like
to make concerns the use of binary-equivalents as disguised selection vectors
{that is to say, if methods 1, 2, 4 & 5 apply, thisis 11011 as a selection vector,

120

VECTOR Vol.i1 No.3

but can be sent as a single number — or the code table substitute — of 27). This is
also a good method for getting rid of the large-number dross mentioned earlier.

Oh, on a final note those with access to speech-to-text phonetics software might
like to consider the advantages of using these files as a basis — again very useful
in an age of automated decryption where the machine has a copy of the complete
Oxford English (or perhaps Oxford Serbian?) Dictionary built-in, but which
doesn’t have “Heh-LLohw” {= Hello} in its look-up table, and so would reject
any method which obtained this text as “wrong’ — perhaps semi-logical, lateral
humans aren’t redundant quite yet after all....

Vector Back Numbers

Back numbers of Vector are available from:

British APL Association,
c/o Gill Smith,

Brook House, Gilling East,
YORK YO6 4]]

Price in UK: £10 per complete volume (4 issues);
£12 (overseas); £16 (airmail) including postage.

121

VECTOR Vol.11 No.3

Making Menus with Causeway
by Adrian Smith

Introduction

At the heart of any significant Windows application is the menu-bar for your top-
level form. For the user, this menu-bar is the gateway to all that APL code you
spent days or weeks developing - so the design and structuring of the menu
options deserves more thought than it often gets. However the menu can serve
another equally useful purpose - as on-line documentation which will point some
future APLer at the function names in the workspace, and that will go some way
towards describing what they do.

This article describes how menus are constructed in the Causeway utility set, and
includes examples from a number of recent APL systems, as well as a couple of
classics {from the SAP package - see Appendix-2) which may help you to avoid
the worst excesses of the over-enthusiastic Windows programmer. An old stand-
alone version of the menu-builder utility function (in Dyalog 6.3 code - see
Appendix-1} is included for those who would like to try these ideas, but do not
want to take on the whole Causeway workspace.

Getting Started

In its simplest terms, a menu is simply a caption (for the user to see} and either an
action (to be executed} or a pointer to another menu. It could look like:

Hello:2+2
World:i1i2

This might be a vector of vectors, or a simple character matrix. The text to the left
of the colon is what the user sees; the text after the colon is executed by APL
when the user selects that option:

Gui_menu 'Hello:2+42' '"World:ii2'

Dyalog-7 users can load the Causeway workspace and try this for themselves. The
effect is to create a pop-up menu {(where the mouse is at the time) and echo either
borli 2 3 4 5 6 7 B 9 10 11 12 tothe APL session when an option is
selected. This is fine for a simple pop-up (obviously you would normally have a
function call here), but in a real system the first thing you need is normally a

122

VECTOR Vol.11 No.3

menu-bar for your main form. The convention that most Windows programs
adopt is to hang a sub-menu undemeath each and every entry on the menu-bar,
so this simple style needs to be extended slightly to cope with (recursively) nested
menus. I based my ideas on the Motif standard (Unix users can look at .mwmrc
which is the Motif root menu definition) to give a definition like this:

[root]
EFile>file
gEdit>edit
&Help>help

[file]

LNew:2+2

8Save:3+3

E&xit:'Farewell cruel world'

[edit]
. and so on

I hope you can see the pattern! Anything after the colon gets executed (as before)
and anything after a > chains to another menu. The indenting and spare lines are
just for clarity, but the square brackets are essential, and the names must match
exactly. Of course you can nest the sub-menus as deep as you like, but do read the
Microsoft style guide before you give all your users a bad attack of the screaming
heebie-jeebies with 4-level cascading menus. If you cannot hang everything you
need on a single layer of pull-downs (with judicious use of right-mouse pop-ups
for context-sensitive functionality) your application is too damn complicated and
you should go back to the drawing board until you have simplified it.

Let’s make a small form and see the effect of hanging a menu definition on it:

Gui_init !

'ff'Y Qwe '"Form!

'Y Gui_menu mm
Farewell cruel world

New

Save

Exit

123

VECTOR Vol.11 No.3

As you can see, I chose the ‘Exit’ option and the corresponding message was
echoed to the APL session, A more realistic example (note that any line starting
with a hyphen is treated as a separator) might be:

[root]
EF1lesfile
BEdit>edil
8Dictienary>dict
RBArranges>arrange
E0ptiong=eplions
iHelp>help

[f11e]

Afew: NEWFILE
&0pen: OPEN '?
iS5ave: SAVE ©
Save BAs: SAVE 1L
§iMerge tMERGE ''

Print Prefview...: print_view

iPrint ...: print_sel

Prigt Setup ...: psetup

--- SEPARATGR ---

Eixivs: EXIT

[edit]

glndo: undo

iGoto page ...: jump ''

Go &Home: home

iNew page ,..: new !

iCopy page ...: copy

--- SEPARATOR ---

Select fAll: select_all

~—~ SEPARATGR ---

ERename page [/ change descr ...: rom

iRemove page from pad ..,: Zap

--- SEFARATGR ---

iMaintaln Function/FProcess info ...r fnproc

[gict]

Collate &Transaction list ...: collect_tran
L..oete

larrange]
§Link selected objects: linkup

. Btc
[opt ions]
. ete
[heip]
&Centents ...: Guide
f4kout ,.,: ABOUT

From the user’s point of view, this definition is entirely adequate, but what can
the APL coder (in this case me) hope to get out of it? This workspace was
completed in late 1993, so 1 have by now forgotten most of the function names -
what better way to find my way into the code than to put the menu definition on
screen:

ted amenu

124

VECTOR Vol.11 No.3

... and double-click my way to the underlying code? In a sense, the main menu
definition of a Windows workspace performs the same role as the {JZX in an old
mainframe application - it is the starting point from which the maintenance
programmer finds his or her way to the APL code. Given this fact {which I only
began to realise some while after | finished writing this particular system), what
can we add to the definition to help matters? An obvious possibility would be
some judicious comments:

[rile]

&New: NEWFILE a Start a pew drawing

&0pen: OFEN ! a Open an existing drawing

gSave: SAVE O n Save your work

Save &4As: SAVE 1 [. With a new nanme

EMerge:MERGE '' n Merge with ancther drawing
and sa on

... but perhaps it would be handy for the user 1o see those comments as well! Here
we must move to Dyalog-7, so be warned that the Gui_menu code quoted in the
appendix does not support this exira feature. This time, 1 am going to make my
form with the Causeway designer, and specify the menu definition as the ‘data’
for the main form:

Dbx *xx’
Disp xx

FM|Sample Form 588 1Lb|1LL 364 | | mm

ST 119 ¢ Z4 364

CL|&4Close 8L 284 |28 72

Gui_call xx

Sample Farm -

File Edit Help
New B

. Bave -
Exit

Saveyourwok - 1

125

VECTOR Vol.11 No.3

+mm
[root]
EFile>file
irdit>edit
§Help>help

[file]

iNew; Start a new file :2+2

&Save; Save your work :3+3

E&xit; Sign off :'Farewell cruel world?®

ledit]
and so on

Here I have added a ‘Status Bar" object lo my form - Causeway automatically set
this as the "‘Hintobj’ for any children of that form - and picked out the part of the
caption following the first semi-colon as a hint. This way, the user sees the
comments as he or she runs the mouse up and down the menus, and the APL
developer sees the comments too! Again, the alignment is ignored by Gui_menu,
but it helps the programmer a lot.

Adding Hot-keys

Again, this is specific to Dyalog-7, and 1 rather wonder if I am beginning to
overload the definition. However, here is how 1 did it:

[file]

&New=Ctrl+N; Start a new file 242

ESave=Shift+F12; Save your work :3+3

E&xit; Slign off :'Farewell cruel world!
: o :
Ctri+N
ShiftsF12

i Save your work I

Anything in the caption after an = sign is stripped off, parsed and set as the
accelerator key for that option. Now if I were to hit Ctrl+N I would see 4 echoed
into the APL session. I also turn the = into a tab character, which makes the menu
look much neater to the user.

126

VECTCR Vol.11 No.3

Taken from Life

Those of you who came to Swansea in July will remember the help-file builder 1
used to illustrate some feahures of a Causeway system. Here is its main menu:

+Amenu
[root]
iFtle>file
sEditredit
&0ptions»options
4Help>help
tfile]
ENew;Starts a new file tNEW :afile
&0pen;Opens an existing file :GPEN tafile
i5ave=Clrl+5;Saves your work :SAYE O
SavekAs;Fakes a copy with a new name :SAVE 1 1afile
&Export ¥XT ...=Ctrl+E;Makes a plain ASCII file...:Export tsel
EBuild .RTF ,.,.=Ctrl+R;Makes a suitable file ... sBuild
EHex error ...=Ctri+H;Quick search for any ... :browse_rtf afile,'.RTF*
&Testfly .HLP ...=Ctri+T; Tries out the Conten ... :Testfly

E8xit:Gui_post '5C!

[edit]
&Find=Ctrl+F; Locates 4 text string anywhere in the topic list :find_txt

loptions]
83et Copyright;ddds copyright details to contents page:
scopyright+acopyright Win_input 'Please enter your name and the date ...'

&Headers ...;Sels up type-styles and other op... :headers

&Chapters ...;Sets up chapter headings and sequence: Chaps:astoplics
&APLFont ...; Togyles the use of an APL font in the editor :setfont

&Icon ... Picks an Icon ...: aiconfilevaicenfile Win_input 'Icon file ...?'
{helpl

&4About ...:ABOUT

AHelp Contents...=F1:WHLP 'helpstuf.hlp*

Note that I have truncated some of the hints to save the text wrapping across two
lines, Just in case you worry about the time taken by APL to riffle through all this
and get the form on screen:

Gui_menu amenu

... has a pop-up on screen in about 0.8 seconds (DX2/50 processor), and of course
you only do this once, when the application is started. I think this is a small price
to pay for a menu structure which is easy to read, and could potentially be pulled
in from a simple ASCII file at startup time, Maybe your users would like to
redefine some of your structuring, eliminate some of the less interesting options,
translate the hints into Finmnish?? All they need is a text editor and this article!

127

VECTOR Vol.11 No.3

Appendix-1: the Stand-alone Code

{_pnt)Guil_menu _arg;_dg;_mt;_grp;._cap;_nm;_ps;_itm;_inm;_lex;_fect;_sct;0I0

n Build menu struciure defined in <_mt> at section [grpl

n This either hangs from & menubar, or is roected. Rooted

n menus are popped up at the cursor and locally DQed.
+{0=0NC"_prt')/ _pnt+'1''" o [QICG+1

2{3>|a_arg)/'_arg+c_arg' o _arg+3+_arg,2pc'' o _dg+0

_mt _grp _cap+_arg o _lct+_sci+l

n Check for top-level menus, which may be owned By a FORM,

n If so, make a MENUBAR to hang them onl

+{0=p_pnt)tRoot ¢ »('FORM'=s_pnt OWG'TYPE'")tMBar A << WATCH IT <<=x=x
Child:_pnt+_pnt,'.menu',_grp o _pnt OWC'MENU'_cap o -»Sect
MBar:i_pnt+_pnt,'.menubar' o _pnt OWC'MENUBAR' o +Sect
Roct:_pnt+‘'rootmenui' o _pnt OWC'MENU' o _dg+1 o +5ect

n Now chop out the right section of the structure ...
Sect:_ps+'['=0>_mt o +{p_grp)iTop

_pes~_mtie'[', grp,'1' o »(_ps>p_mL}t0

Top:_grp+._ps+_mt o _grp+{ " 1+{=>"_grpi1'[')+_grp

n Check each eantry, and make item or another menu ...
Next:+(p_grpl+Done o _Itmen_grp o _itme(+/a\' t=_itm)t_Itm

+{p_dtm)+Skip o +('-'=o_itm)tSep

n Split off name and » part at ':!

_ps+l/_dtmt:>' o _inme_pst_itm o _lfex+ psi_Itm

»{'>'="1+ inm)+Mernu o _Inm+T14_inm
=== MENUITEM ==
_mme_pnt,'. . ftem' ,¥v_Iict o _fct++l
_nm OWCTMENUITEM' _fnm o +{(' 'a.=_iex}*8kip

n Set items to execute action on select ...

_nm OWS'event' 50 'Gui_exec' _iex o +8kip

p ==s======cz==z=== SEPARATOR =============z==zz:z=
Sep:{_pnt,'.sep',¥_sct}IWC'SEFARATOR' o _sctt+l o +5kip
f ==s====s==as=== SUBMENU s=c=ss==s======s=zzz==

n Next menu down gets our captiocn as Its title (Yuk)
Menu:_pnt Gui_menu mt{_dex-'[J")(i+ inm)
Skip:_grp+1i_grp ¢ =Next

Dones;+_dgi0 o DG _pnt

_ex Gui_exec _msqg
s _ex A also not required in Dyalog 7

This will be fine in Dyalog 6.3 - but Dyalog 7 users will need 1o change FORM 1o
Form (thanks lads) to make it work. The nasty names are to avoid conflicts with
executed code (relevant to pop-ups only, as Gui_menu won't be on the stack
when your application runs otherwise).

128

VECTOR Vol.11 No.3

Appendix-2: How not to do it!

Here are a couple of screen snaps from the SAP system, which illustrate very
nicely the pitfalls of over-enthustastic menu design:

Otflce RN ting Humanr Jools System Help 1
Materlals management | N N K

Sales/distribution)l D [|ﬂ' | | lql? [I I I I z

Praduglion Master data »

Plant maintenance S0P

Quality management Master planning
Logist. controlling MAP Demund management
Profect q t Production orders MPS

Central functions Product costing Repot. manutacturing

Capacity planning

TTMTT gamod . OvR 011

Seen like this, it doesn’t look all that bad, but think of the poor user who wants to
be in Demand Management and can’t remember where it was. She starts off looking
under Materials Management - about € x & x 4 options to explore, before
homing in on Production, but a quick scan of the sub-menu shows nothing
interesting ... and so on.

Even for the expert, navigating
accurately down and across and
down and across requires a lot of
concentration and is both visually and
physically tiring.

Create session
End i
User profile

Reporting

Utilities ABAPI4 Query Sometimes, the sub-menus get so far
List Output centroller

Job status Table maintenance [2CTOSS the screen that they start
Status Batch input popping up to the left, and confusion
Job definition | reigns supreme,
Job everview Queue]

il i Business Graphics 3 Down’t do it!
2.25 service :

129

VECTOR Vol.11 No.3

J INSCRIPTION
o :
by Richard Oates

Release 1 version 7 of] introduced an unobtrusive keyboard process for explicit
definition. Tt is started with a zero left argument. I call it inscription and do it with
the adverb train IN:=. o : . Inscription can be scripted. It is much more
convenient than the prior definition technique. It has validated script and made
the saved workspace obsolete. A script is a file where every line is a } sentence. To
script a file is to read it as a keyboard, like Unix standard input.

I describe a J utility which edits DOS script. 1 like DOS more than Windows but
less than Nextstep. Forty tacit verbs are defined in four explicit verbs. One tacit
equivalent is fixed for each explicit verb. The utility runs from the explicit verbs
or the tacit equivalents. It uses the adverse and agenda control conjunctions.

Introduction

My profile scripts eight adverb trains and three verbs. A conjunction and either
of its arguments is a fain which makes an adverb waiting for the other
argument. In J Release 2 some arguments of the foreign 1: conjunction are
changed.

h:=. 0!: NB. Host IN:=., O : NB. Inscribe

f:=. 1}: NB. File vi=. " _ NB. Verb from noun
n:=. #!: NB. Name

m:=, 5!: NB. Map C=. (13{a.)v: NB,. Carriage return
s:=. 81: NB. Screen L=, (40{a,)v:; NB. Line feed

d:=. 9!: NB. Dial e:=. (1.0 0)v: NB. Empty

The] editor 9 s: acts on line text but not on verbs. A line text is a vector where
each line ends with a line feed. Before version 7 an argument of explicit
definition could be a sentence in quotes, a list of boxed sentences, or the open
thereof. Boxed sentences are clumsy. In an early version of the language | wrote a
utility that used 9 s: to edit a verb in the workspace. I then saved workspaces
and ignored script. It worked like APL del so I called it 8d for “Not del”.

Inscription suspends execution while the user enters] sentences one after
another. Execution resumes on entry of a bare parenthesis. The new verb is in the

130

VECTOR Vol.11 No.3

workspace. The process is serial but the sequence can appear in script that can be
edited freely before it is scripted into J. If a complete locale is defined in script,
the whole can be scripted at the start of the session. A locale is a workspace or
part of one. See “Version 7” below. Saved workspaces are no longer needed and
support will be withdrawn. When version 7 appeared 1 changed Nd. It now
applies 9 s; to text from a DOS script.

Boxed Sentences vs Inscription

Brute force at the keyboard or in script is required to manage a list of boxed
sentences.

tfut=. <;._2!
'Go=. »>@Cut’
' Go y.!

a=.
b=.
c=.
{Table=, (a;b;c) : 'T) NB. Quter paren's display the verb

Cut=, =<;._2j:
Go=. »@Cut
Go ¥.

Table'cup box !
cup
box

Inscription suspends the indented prompt and sentence execution. It has a
double begin/end structure. A bare colon separates the monad from the dyad. A
bare right parenthesis terminates the process. Explicit and tacit verbs and
adverbs and conjunctions can be inscribed. Explicit verbs are selected by a zero
right argument to definition: 0 : 0 . This inscription defines the same verb.

Table=. 0 IN:
Cut=. <;,_2
Go=. »@Cut
Go y.

)
Table can be “edited” by bringing each sentence from the output to the input

area with Ctrl/Enter. If the verb is longer than this or will be needed on another
day itis defined in script.

In addition, line text can be inscribed with 4 IN: .If each line is a] sentence the
line text can be used in a subsequent definition, Jtext : Y .Ido not discuss this.
Most tables are easier to inscribe than to write in script with primitives like

131

VECTOR Vol.11 No.3

append or shape. | inscribe them in line text and cut and open each text on the
end-of-line indicator to produce a J noun, as described below in the verb Ndn.

End-of-Line Indicators

Carriage return and line feed appear at the end of every line in DOS script. Line
feed appears at the end of every line in line text. These indicators shatter boxed
maps.

(65{a.)v: (13{a.}v: (L=. (10{a.)v:)

.
nGE G

1 convert them to verbs with the constant conjunction in v: . Consfanf noun"noun
is not as well known as rank verb"noun . Constant makes a verb that ignores its
arguments and returns the noun on its left as its result. The verb 2: works the
same way.

tgt2: 3 65{a. *s'((65{a.}v:)3 a.l.
's'(L=.,(10{a.}v:)3
2 A A 10

In Nd the hook CL sticks carriage return and line feed on the end of every line in a
table.

Y. a.i.y. a.i.cL vy. (CL=. ,"1 (C , L)) CL vy
e 101 101 13 10 i |
v 118 118 13 10 Y A\
e 101 101 13 1¢ Jelalifel, |u .
r 114 114 13 1¢ FAI
Y 121 121 13 10 C L

¥ Y

Cup Utility

The Nd utility is mapped with Cup. I introduce Cup with Takle and a tacit verb.
In Case the tie * conjunction forms a gerund from verb arguments. A gerund is a
list of boxed noun atomic representations. The right argument of the agenda @.
conjunction selects one of the three cases for execution.

132

VECTOR Vol.11 No.3

(Case=. J }:*(>@{<;._2))@.((2: <. 1)E(L +/ .= ,}))

@.

$¢Case 99 98 97 10 9% 1o0{a.
23

The Cup utility maps verbs with lines instead of boxes. A gerund is not a verb so
the boxes are retained. Cupped maps are less precise than boxed maps but snug
ambiguous display is not foreign to J or apl.

Cup'Takble Case!
Hod @,
Cut=. <;._2 @
Go=. »>@Cut 1}}: @ 2:<.] Lmmeees,
Go ¥. <;._2 —=
. +/
The Nd Program

There are four explicit verbs but no branches or labels. Explicit reference is
confined to the Jast sentence in each definition. The tacit verbs appear in bottom-
up order but can appear in any order. I expect to find local tacit verbs useful
even within a named locale. The tacit equivalents for monadic Nd, Ndp, Nds and
Ndn are fixed in Exhibit B.

Monadic Nd Edits any seript
Ndp Defaults full DOS name for Nd
Nds Scripls the verb or the line text noun
Ndn Makes a] nour from line text

Dyadic Nd Copies a script that inscribes one object

133

VECTOR Vol.11 No.3

Nd Verb
Four steps make Nd work like APL del:

1 f: File Read inputs a C/L vector

9 s:] Bdit takes and makes a line text

2 f: File Write outputs a C/L vector

3 h: Silent Script inputs a verb or a line text noun

Monadic Nd reads the file named in its argument, purges carriage returns, hands
line text to the] editor, restores carriage returns, rewrites the file, and scripts it.
“Silent” kills the echo of the “keyboard” on the screen. If the file, say Voice ,
does not exist the adverse : : conjunction in Read places Voice=: ¢ IN: at the
top of a fresh screen. If Voiee is to be a noun, not a verb, change 0 to 4. If you
misspell the name and get a fresh screen when you were expecting a definition,
erase the top line to kill an unwanted script. Nd does not fail easily:

Nd';Veolce!
Name? ;Volice

Dyadic Nd copies a file to a new DOS name. It changes the name on the top line
to match the DOS name. For example, 'Fax'Nd'Voice'’ changes Volce=: ¢
IN: to Fax=: 0 IN; . Monadic Nd assumes the name at the top of a script
matches the DOS name.

Cup'Nd’

NB. Nd'mame’ Not Del 'NB.'new'Nd'old' Copy
CL=, ,"1 (C , L} Write=. 1 2 f: <@;@f
Tag=. ;@(CLR.>@(<;._2))

EQL=. _2&}.@Tag@{] , L) Jnames. }.@;@{:@}:@{.
Qut=, EOL 2 f: <@;@[‘From=.] +./\ .= '"='v:

Write=, Out*]@.{0: #@}) With=. [, From #]

Qld=, 1 [:@<@;@{:

View=. 9 s: New=., Jname With 0¢ld
0ld=. 1 f:@<@; -. C Copy=. {. Write New
Jname=. }.@:;@{:@}: Run=. Nds@{. [Copy
New=, Jname , '=: 0 IN:'v: Go=. Run@(Ndp"o@])
Read=. 0ld ::New No=. ('Name?'w: ; J)v:

Go ::{>@No) X.;¥.
Edit=.,] Write view@Read
Go=, {(Nds [Edit)eNdp
No=. 'Name? 'v: "
Go ::No v.

134

VECTOR

Ndp Verb

Ndp extends the argument of Nd with three defaults which complete the DOS file
name. Each part of the name is boxed. Ndp is immune to the length of the first
default. Its argument can override the second and third.
dyadic Nd. Ndp is the only verb that needs to be adapted to a different operating

system.

Ndp 'Table!

I\Jv[\xl\Tab1e|.Js’

N=. 'W\Table.Bak'; 'W\Much\Deeper\Table,'

Ndp"o N

\J7|\W{\Table|.Bak

\NI7[\W|\Much |\Deeper

\Table

;@Ndp"0 N
\J7\W\Table.Bak

NB. DOS names

\J7\W\Much\Deeper\Table.

}1.@;@{:@}:@Ndp"0 N
Table

Table
$Ndp';Voice?
0
Cup'Ndp!

NB.

NB. Ndp'n' Ndp'din.e’

Cut=, e.&*'\." <;.1]
Cull=, ;@(-.®Hit # 1)
Root=., "\J7\'v:

Dir=, TI\'y:

Ext=. '.Js'v:
Default=. Root ; Dir ;

(Dos Default)@(>@])y.

Class=. -@1; < 0 n:@<@).@;@{:@}:
Hit=. +./@([=/ ' \ .'v:)

Dos=. (#~ Class)@Cut@Cull

DOS path

] ; Ext

Nds, Line Text and Ndn

Nds scripts the verb or the line text noun. It executes Ndn when the inscription
defines a noun. Noun cannot be a tacit verb because local names in Nds would

mask global names for the name class 0 n: verb.

135

J names

Ndp"¢ appears In

VECTOR Vol.11 No.3

Ndn cuts and opens a line text to make a J table. Ndn is also applied in my profile
to each noun after all have been scripted, and it appears in the script of any noun
that is not an open table, as seen in Df . Reform cannot be a tacit verb because a
tacit copula =: does not act on nouns.

Cup'Nds Ndn?

NB. Nds Ndp'm! Script NB. Ndn'n!' HNoun from line fext
Script=. 23 h:@<@;@[Reform=., '!' 1 T(<xX.)=: <y.!
Noun=. "' : '2=0 ni<y.' Shape=. (2: <. 1)&(L +/ .= ,)
Form=. €:'(Ndn@J)@.Noun Up=. 3'}:*(>@(<;._2))@,Shape@".
Jname=. }.@;@{:@}: e:@(J Reform Up)y.

{(Script Form Jname)y.

2 h:;<;Ndp'Df' KB.Script 1 f;<;Ndp'Df' NB.Read flle
Df=: 4 IN: Df=; 4 IN:
19940128 19540128
\J7\W\Manu.Js \VI7\W\Manu.Jds
)
Ndn'DI? Ndn'Df!
pr=: (".@{. ; {:)Df Df=; (".@{. ; {:)}Df
Df

199&0123I\J7\W\Manu.Js|

Go=.»@Cut=., <;._2 NB. Tacit copula

Cup’Go Cut!?
>@ <3._2
<;._2
Version 7

In addition to validating script, Version 7 introduces an error stack, suspended
execution, and named locales. Suspension permits sentence execution in the local
environment, and resumpton. Named locales are alternate symbol tables. | have
not used them yet, but [did put all utility scripts in a utility directory and the
scripts for each application in a directory for that application. T expect each
directory will become a named locale. My profile scripts a directory verb, runs it
to get the names in the directory, scripts Ndn, scripts the other objects, and moves
to the next directory. Taken together, these changes make 7 the first version of]
that can be used outside the classroom.

1 would like some additions. A foreign conjunction that edits script with the]
editor and scripts the verb. An inscription which makes an open character noun
of rank 2 or less; T do not inscribe numeric tables. Deletion of trailing blanks from
each line of an inscription. A foreign conjunction that scripts a whole directory

136

VECTOR Vol.11 No.3

into a named locale; I had no conflicts with caseblind DXOS names when [
converted the objects in each version 6 workspace to script but this quirk of DOS
needs to be outwitted. Fix t. as a conjunction instead of an adverb; sentences
like the ones in Exhibit B would be simplified by an additional verb that could
suspend name replacement.

Conclusion

Tacit definition simplifies documentation. After the arguments of a tacit verb are
described it's just J all the way. Further is better. Further enlarges the space
where unexplained data cannot lurk. The name of a tacit verb is more potent
than a comment — it appears more than once. A comment to the right of the
definition can provide an additional hint, but verbs like ¢L cannot be fully
described without turning the program into a haystack. Tacit programs, like]
explicit and APL programs, are best read actively at an open keyboard.

A workspace must be cleaned before you save 2!:2 or) SAVE it. A locale made
from script is never saved. A directory does not get as dirty as a workspace. To
clean it sort on the timestamp and check the scripts at the bottom. Other system
support is available like selective backup and string search and replacement
through all script in a directory. In APL2 1 wrote programs for jobs like these.

When del appears in an APL session the log goes to lunch and all hell breaks out.
After lunch you can display the function but you don't. It's just “paper” you can’t
use. Inscription fills the black hole of del. Session and definition — any definition
— are one.

Unlike APL del, explicit definition permits independent specification of the
monad and the dyad.Is 0 : o the simplest possible way to define a verb?

137

VECTOR Vol.11 No.3

Exhibit A: Booting

Nd edits explicit definition and is produced from explicit definition, so how do
you start? First you need the eight adverbs. A “given” name (a name which ends
in a colon) cannot be reassigned in version 7 until it is erased so put the adverbs
and e: in your profile with DOS. Also Cand L.

Start with Ndp because it is needed by Nd, Key the nine tacit definitions in Ndp
above from Class to Default. If you get an error copy the definition from the
output area to the input with Ctrl/Enter and correct. After all are accepted key
the final sentence substituting 'Table! for y. . If you do not get the right four-
box result Ctrl/Enter single seniences to correct. When 'Table! works try other
arguments. When all work:

g=, <'\J7\I\Ndp.Js' NB. 1 Name script

g 2 hi<'? NB. 2 Beglin script out

Ndp=: 0 IN: NB. 3 Begin inscription
NB. # Ctrl/Enter the 10 sentences
NB. using{ y. }not{('Table')

: NBE. 5 End monad

) NBE. 6 End inscription

2 hiet? NB., 7 End script out

3 h: s NB. &8 Silent script

Display Ndp and try Ndp'Table. Script appends to itself. If Ndp does not work 0
h:'erase ',>s and Ctrl/Enter steps 2-8 correcting as necessary. When Ndp
works repeat with Nd substituting 3 h:@<@; for Nds in Go. Try Nd'Table’.

When Nd works use it to define Nds. When Nds works on verbs substitute Nds for
3 h:@<@; in Nd by keying Nd'Kd'. If you have bad luck you can fix up §d with
DOS edit. As an alternative, copy Nd with DOS first and immediately change the
] name on the top line to match the new DOS name.

Exhibit B: Tacit Definition

] without tacit definition is simpler than APL.] with tacit definition is richer. It is
best learned from the adverb :20 which proposes a tacit definition for its
argument. In this example 3 d: 2 5 sets the maps to boxed 2 and to linear 5.

T><;,_2 ¥o' 3 20

[:f>

138

VECTOR Vol.11 No.3

Tacit definition is the most remarkable animal on the Iverson farm, and the most
rewarding. It may facilitate formal manipulation of the program but it is not just
soft chips. The fix adverb f. substitutes definitions for names. The map it
juxtaposes is the most readable text of any program. Tacit equivalents for
monadic Nd, Ndp, Nds and Ndn are defined by inserting a line in each and
running Nd on some noun {not verb). Each insert becomes the penultimate line in
the definition. TNd is about forty percent faster than monadic Nd.

TNd=: {(TNds [Edit f.}@TNdp ::(No f.)

TNdp=: {(Dos Default)e(>@]) f.

TNds=: Script f. e:f.*(TNdn@])®@.{Noun f.} Jname f.
TNdn=: e:@(] Reform Up)f.

Define €=. 'R'v: and L=, 'F'v: and rerun Nd before mapping the verbs.

Cup'TNd*
b
TNds[]
] d
.0:= _
e] #a)
Q 1112 —a[
@ 1,— <@;
2%}. ;@ F'
—&.;-(._2
"L ——
R*_ P
b QTNdp
c Name? "_
d
8119
—; ’ R" ——Q}:'-: 0 IN:"_
—< —a{:
111 Y.a;

139

VECTOR Vol.11 No.3

Cup!TNdp'
b
@ “,e
— #]
o e.&\. <51 -.@
-1 —e—————a} —a
—_——— +.f [—
—_— =/ N Wt
—a}.
—@x
4i:0
; »>@)
7\ —
N 3
Js'_
Cup'THds’
@r Q. —_—@}:
_—; —: —@{:
—ax< l "_ITNdn@J 2=0 n:<y. }.@;
0l:3
Cup’TNdn'
“-] "
-(<x,)=; <y. Q.
J1}: |89 2:¢,] — —,
<1._2 F'_ —.=
+/

140

Cocking & Drury (Software) Ltd

has changed its name to:

THE BLOOMSBURY SOFTWARE CO. LTD.

has changed its location to:

3-6 Alfred Place
Bloomsbury

London
WCI1E 7EB

Phone and fax numbers have not changed:

Phone: 0171 436 9481 Fax: 0171 436 0524

and neither have we changed what we do:

Sales and support of all APL*PLUS products:

APL*PLUS PC

APL*PLUS 11 DOS

APL*PLUS HI Windows

APL*PLUS U UNIX

APL*PLUS Enhancements & Sharefile Mainframe

* ¥ ¥ N ¥

APL CONSULTANCY

* Bespoke Development
Application Maintenance and Enhancement
Migration from Mainframe to PC

APL TRAINING

VECTOR Vol.11 No.3

Nice One, Microsoft!
from Gérard Langlet via Adrian Smith (Vector Production)

Following the note on fonts in the last Vector, I received a splendid cri de coeur
from Gérard, not un-naturally upset about the lack of the ce diphthong from
APL2741. He also mentioned a problem in using the Windows clipboard to
transfer APL code from Winword back into APL (either Dyalog or PLUS I1I) for
final testing before publication,

Suspecting {as one does) the APL interpreter in one’s life, I set out to investigate.
Sure enough, function lstings from Winword arrived in Dyalog looking very
strange indeed — then I spotted that the execute had come through as a hyphen.
If you lock carefully at page 106 of Vector 11.2 you will see that execute is
opposite en-dash — a vital clue! What the morons of Redmond have (allegedly
— they might read this) done is to substitute what they thought you might have
meant for what you actually put!

So — for * you get " and for ™ you get ", and yet (oh joy) for * you get *, For + you
get o (that’s right, they just knew you meant little letier o when you typed bullet)
and so on. Try this from Winword to Write (or Notepad or Works) and you will
see what I mean.

The work-around is to save your document in Write format and clipboard from
there, or just use a sensible word-processor like MS Works which does not
exhibit this ‘helpful” behaviour. At least we can rule out Winword as a candidate
for Vector OnLine.

142

VECTOR Vol.11 No.3

Index to Advertisers

The Bloomsbury Software Company Ltd 141
Compass R&D 40
Dyadic Systems Lid 2
Lingo Allegro 98
MicroAPL 100
Soliton 6
Vector Back Numbers 121

All queries regarding advertising in VECTOR should be made to Gill Smith,
at 01439-788385; CompuServe: 100331,644.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards. Please send the text of submitted articles (with diskette as appropriate)
to the Editor:

Anthony Camacho,

11 Auburn Road, Redland,

BRISTOL, BS6 61L.S

Tel: 0117-9730036

Email: acamacho@cix.compulink.co.uk

Authors wishing to use Windows Write should contact Vector Production for a
copy of the Vector APL TrueType font and Vector APL typebox.

Camera-ready artwork {e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK Y06 4]].

Tel: 01439-788385 (any time)
Compuserve: 100331,644.

143

VECTOR Vol.11 No.3

British APL Association: Membership Form

Membership is open to anyone interested in APL. The membership year
normally runs from 1st May to 30th April, but new members may join from 1st
August, November or February if preferred. The British APL Association is a
special interest group of the British Computer Society, Reg, Charity No. 292,786

Name:
Address:

Postcode / Country:
Telephone Number:
Email Address:

UK privatemembership £12 a
Overseas private membership £14 Q

Airmail supplement (not needed for Europe) £4 Q
UK Corporatemembership £100 Q
Corporate membershipoverseas £135 (I
Sustaining membership L. £430 Q
Non-voting UK member (student/OAP/unemployed only) £6 a

PAYMENT — in Sterling only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Association”, or you may quote your
Mastercard or Visa number.

T authorise you to debit my Visa/Mastercard account

Number: v vy v 10 b1y a1y Expirydate: i |y

for the membership category indicated above,

Data Protection Act:
| annually, at the prevailing rate, until further notice ;m’gfﬂgx:’:gp’fx:ﬁd
one year’s subscription only i aceordance with the reglstration
of the British Computer Society.
(please tick the required option above)
Signature: Send the completed form to:

British APL Association, ¢/o Rowena Small, 8 Cardigan Road, LOWNDON, E3 SHU

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society, It is administered by a Committee
of officers who ate elected by a postal ballot of Association members prior to the Annual General Meeting. Wotking
groups are also cstablished in areas such as activity planning and joumnal production. Offers of assistance and
involvement with any Association matters arc welcomed and should be addressed in the first instance to the Secretary.

Secretary:

Treasuter;

Journal Editor:

Activitics;

Education:

Technical:

Projects;

Publicity:

Recruitment:

Administration:

Editor:
Production:
Advettising:
Support Team:

1994/95 Committee
|
Dr Alan Mayer Eutopean Business Management Schoal, |
01792-205678x4274 Swansca University,
a.d.maycr@swansca.ac.uk Singleton Parl, SWANSEA SA2 8PP

11 Aubumn Road, Redland,
BRISTOL, BS6 $LS

Sylvia Camacho
0117-9730036

Nicholag Small
0181-980 7870

8 Cardigan Road,
LONDOCN E3 5HU

Anthony Camacho [T Auburn Road, Redland,
01179730036 BRISTOL,
acamacho@cix.compulink.couk BS6 6LS

Duncan Peatson 7 Lynne Court
01483-33329 Chesham Road

100265.1564 & compuserve.com GUILDFORD, Surtey GU1 3LR

D+t Ian Clark
01388-527190
10002 1.3073 @compusctve.com

9 Hill End, Frostetley
Bishop Auckland
Co. Durhem DLI13 28X ;

Jonathan Barman,
01488-648575

Hill Top House,
East Garston,

100116.1030@ compuscrye. oot

NEWBURY, Betks RG16 7THD

George MacLeod Greymantle Associates Lid., Bartrum House,
01442-878065 Ravens Lane, BERKHAMSTED, Hetts HP4 2DY
100412.1305 @compuserve.com
David Eastwood MicroAPL Ld.,
0171-922 8866 South Bank Technopark,
microap] @applelink.apple.com 90 London Road, LONDON SE! 6LN
Jon Sandles 22a Arthur Strect,
01904-411635 Lawtence Strect,
York YOI 3EL
Rowena Small 8 Cardigan Road,

0181-980 7870 LONDON E3 SHU

Journal Working Group
Aunthony Camache 0117-9730036
Adtian & Gill Smith Brook House, Gilling East, YORK (01439-788385)
Gill Smith Brook House, Gilling East, YORK (01439-788385)

Jonathan & Bridget Barman (01488-648575), Ray Cannon (01252-874697),
Richard and Adatn Weber (01302-539761), Sylvia Camacho, Duncan P
John Scarle (0181-858 6811), David Zicmann (0171-267 8032), Jon Sandles (01904-41163%)

Typesct by APL-385 with MS Word 5.0 and GoScript
Printed in England by Short-Run Pross Lid, Exeter

AP o-unau @iybisu) ew3
YL SLOL 2P Sh+ XBY
220L0l 2k Sb+ 18L
yiewuag

¥eeqelieHd 0SLE-Ma

V611 leapuens aipioN
sdy swaishg 1ybisu)

LEEZVIVEQISL
spuepsyieN
uaBemnaiN HEOEYE
LpEL SNQISO4
uoneRossy 1dy yang

8001 826-1L10:xe4
9988 226-1L 10121

N9 13S NOGNOT
peoy uopua 06
syiedouyoa | yueg yinos
PI TdVoiIN

011 18-95210Xe
SZ1118-9521018L

IVO ¥29H ‘siueH
‘INOLSONISYE ‘Buiseg pio
‘proy Buiseg 'maiA spisiaAly
pi swayshs oipeiq

(jeuoneuielu)) WOD NUEW B [UL|EWT
(sn) woo'nuew g sajes|de:|ew3
605786 (1L0€) Xed

21¥5-v86 (L0g) 18l

VSN 29802 ONVIAHYWN
ajjimooy

1S uosiayap1se3 G112

sofs|Bnuepy

Wwo2' uoyjos & Ylj:rew3
80Z| 9 02 Le+!xed
SL¥Y 9v9 02 LE+I8L
spuepayaN
wepisisly Dy 2801
g6 Biaquayuelg j0015
PN sajepossy uojjos

woo anlesndwod &2e92 02000 1wl
SZEE-ESE-1L10°Xed
0068-€5E-LLLOSL

VHO APO3 NOGNOCT

‘anuany sjdwe] |

‘@sSNOH uojjiweH

pi7 swayshs Buipeil MINH

6.220E-E8Y10:XeS
6¥cc0E-EBrI0IeL

aAs gno Aewng ‘QuO4a1IND
Wed yoreasay Aeung

proY Jabueg youapeiq 0L

PIN 8y ssedwo)

'}S00 LUMO JIBy) B LONEBIDOSSY aU) 0] S0UEISISSE BAlRSIUILPE pue Jamoduew epioid
osje suonesiuebio esey) sased Auew uj 'siaquapy Bujureisns uoreossy Buimoljo) sy jo voddns
. [ewueuy snoseusB ey abpajmounce 0] USIM UONEIOSSY Td4Y USHUE auyl jo esiiwwos eyl

SHIEW3INW DNINIVLSNS

‘sieindwod [euosiad pue SUDHBISHIOM 'SallBljulBw 1SOL
uo peyoddns s|) ‘peeds juswdojeAsp 1Se) pue SSeuesiDUoD ‘souebale s) Joj pejou ebenbue|
Jeindwoo sapoeiejul ue — ebenbue Buwwesboid vy, Joj spuels 14y ‘Aleog Jeindwon
ysiug syl jo dnoig isifeeds e si UoNeiossy Tdy USHUE 8UL 'SE8sIeno pue Hn eyl ul sisquiei
uoleo0ssy 0] paINQUISIP Si pue UONEID0SSY 4y Usiiug auj jo fewnor Alepenb ay) s| HOLDIA

HOLO3A

