o
[O

A Specialist Group of the British Computer Society

The Journal of the
British APL Association

100+ pages of APL News & Views

Including ...
+ Timo LLaurmaa on TCP/IP 38,119
» Jon Sandles on JAD/SMS 47
- Rex Swain on APL2 Migration 64
» Lew Robinson on Circulant Matrices 81
« Thomson on Confidence Limits 98

ISSN 0955-1433
Vol.12 No.4 April 1996

Contributions

411 contributians to VECTOR may be sent to the Journal Editor at the address on the inside back cover. Letters and
wrticles are welcome on any topic of interest to the APL community, These do not need to be limited to APL themes,
1or must they be supportive of the language. Atticles should be accompanied by as much visnal material as possible
‘bjw or colour prints welcame). Unless othetwise specified, each item will be considered for publication as a personal
satement by the anthor. The Editor accepts no responsibility for the contents of sustaining members’ news, ot
idvertising.

3ease supply as much material as possible in machine-readable form, ideally as a simple ASCII text file on an IBM
PC compatible diskette (any format). APL code can be accepted as camera-teady copy, in workspaces from I-APL,
APL*PLUS, IBM APL2/PC ot Dyalog APL/W, or in documents from Windows Write (use the Vector TrueType font,
wailable free from Vector Production), and Winword-2.

Bxcept wheze indicated, items in VECTOR may be freely reprinted with appropriate acknowledgement. Please infotm
e Editor of your intention to re-use material from VECTOR.

Membership Rates 1995-96

Category Fee Vectors Passes
UK Private £12 ; 1 1
Overseas Private £14 1 1
(Supplement for Airmail, not needed for Europe) £4

UK Corporate Membership £100 10 5
Qverseas Corporate £135 10

Sustaining £430 10 5
Non-voting Member (Student, OAP, unemployed) £6 1 1

The membership year notmally runs from Lst May to 30th April. Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passes arc required for entry to some association
events, and for voting at the Annual General Meeting. Applications for student membership will be accepted on a
recommendation from the coutse supetvisor. Overseas membership rates cover VECTOR surface mail, and may be
paid in sterling, ot by Visa, Mastercard er JCB, at the prevailing exchange tate.

Cotpotate membership is offered to organisations whete APL is in professional use. Corpotate members receive 10
copies of VECTOR, and ate offered group attendance at association teetings. A contact person must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of promoting the
growth of APL interest and activity. As well as receiving public acknowledgement for their sponsorship, sustalning
members receive bulk copics of VECTOR, and are offered news listings in each issue.

Advertising

Advertisetnents in VECTOR should be submitted in typeset camera-ready format (A4 ot A5) with a 20mm blank
border after reduction. Hlustrations should be photographs (bfw or colour prints) or line drawings. Rates (excl VAT)
ate £250 pet full page, £125 for half-page or less (thete is a £75 surcharge per page if spot colour is required).

Deadlines for bookings and copy arc given under the Quick Reference Diaty, Advertisements should be booked with,
and sent to: Gill Smith, Brook House, Gilling East, YORK YOG6 4JI. Tel: 01439-788385 CompuSetve: 100331,644

VECTOR Vol.12 No.4
Contents
Page
Editorial Anthony Camacho 3
APL NEWS
Quick Reference Diary 5
APL96 Invitation and Abstracts &
News from Sustaining Members Gill Smith 12
The Education Vector Ian Clark 17
APL Product Guide — Updates Gill Smith 33
AP119/W - a First Look Timo Laurmaa 38
The JADS/SMS Utility Management System Jon Sandles 47
Dyalog-8 Control Structures and Native Files:
some Timings Adrian Smith 56
RECENT MEETINGS
Causeway at the Toronto APL/SIG Mare Griffiths 58
GENERAL ARTICLES
Migration From APL2 to APL/W Rex Swain 64
Multiprecision Arithmetic Part IV John Sullivan 73
The Random Vector
Pelynomial Multiplication with Circulant Matrices:
Insights Using APL Lew Robinsen 81
Confidence Limits Norman Thomson 98
TECHNICAL SECTION
Hacker's Corner: A New Frock for IRMA Adrian Smith 108
Technical Correspondence 112
A Different DDE Application John Sullivan 116
An Internet Extension to 3D Noughts and Crosses Timo Laurmaa 119
At Work and Play with]: Year’s Digits for 1996 Gene McDonnell 123
Linear Recurrences and Matrix Powers Roger Hui 113
Roger and the Amazing Technicolor Ballelock Norman Thomson 127
Index to Volumes 1-12 131
Index to Advertisers 143

dyalogHIBJ|

The Definitive APL for Windows™

A Exploring - OSE.HSDoc Mi=] K3

-Fils Edt Miew Iools o
[31 cill=y (e

‘@&l 8| xQlE] & nlk

Namespace Tree IContents of OSE.HSDoc _ \
B o8 [Name | Tupe | SizelHodified on =
= =) O0SE i B Close Function 116b 15-02-396 11:38
B {=] mb | Z]|Footer Fumetion 284b 15,02/94 11:38
" oy NumEd Z|FormatFn Function 796b 15-/02/36 11:38
[=) popUP ‘ =2 FormatUar Function 176b 15-/02-96 11:38
B (=) sb I E GetPrefs Fupction 308b 15,02,96 11:3B:
F (=) th : 2 GetRegkeuHandle Function 344b 15-02/36 11:38
Oy TEL -[2lGetRegkeulalue Function 304b 15/02,35 11:3B
- tip L l KEY_ALL_ACCESS Uariable 16b
£ HSDoo : 3 MNewPage Function 276b 15.02/36 11:3B
'Kl PageSetup Function 8B8b 15-/02,/36 11:38..4,
: ’f“" bt - e Qs --.-_r.?-i'-ﬁ- e e a r-:’——l,
{19 object(s) 111816 bytes used (0 bytes selested)

Dyalog APL Namespaces let you ...

e Organise your workspace into self-contained sub-systems
® Encapsulate functions and variables within GUI objects
e Isolate utilities from your application code

Q\‘}s The new Version 8 Explorer lets you browse namespaces,
drag-drop objects from one to another, and a whole [ot more.
That’s why Dyalog APL/W remains the professional

choice. For further information, contact Dyadic or
your local distributor today.

Dyadic Systems Limited, Riverside View, Basing Road, Old Basing,
Basingstoke, Hants. RG24 7AL, United Kingdom. %{V;Ng%"é‘“
Tel:+44 1256 811125 Fax:+44 (256 811130 Email: sales@dyadic.com

Micresoll is a registered trademark and Windows and the Windows Logo are trademarks of Microsoft Corporation

VECTOR Vol.12 No.4

- |

EDITORIAL

by Anthony Camacho

I am handing over the Editor's chair to Duncan Pearson from Volume 13
onwards. 1 shall continue helping him as a member of the Vector Working Group
and, 1 hope, subsequent editors. For the record, the roll of Vector's editors is:
Robert Bittlestone, David Preedy, Adrian Smith, Jonathan Barman, me and now
Duncan Pearson.

The working group is the thing that keeps Vector going. That, far more than the
editor, deserves your thanks for twelve years of the best in APL. How it came
about is hard to explain. It wasn’t planned, with the social dynamics carefully
worked out. It was started by David Preedy and still has some of the original
members. Current membership is: Adrian and Gill Smith, David Ziemann,
Jonathan Barman, Richard and Adam Weber, Duncan Pearson, John Searle, Ray
Cannon & Jon Sandles. Editors for education Vector have not always attended
the working group meetings. Nevertheless, Norman Thomson, Alan Sykes, Alan
Mayer and lan Clark also deserve your thanks.

And while I am thanking people I also thank the authors, especially those wha 1,
or others, bullied into writing,.

I just looked at the Vectors and editorials I've been responsible for. There are
quite a lot of editorials about conferences and how I think they should be run —
so many that I have been accused of riding a hobby-horse. One good thing to
note was the reduction in price (in Vol.10 No.3) which should have put Vector
into everyone's reach.

The two best editorials (my cheice} are in Vol.11 (Nos 1 & 2).

Now I shall have (as they say of Tory ministers that get caught) more time to
spend with my family. Alison gave birth to Gemma on 24th February and we
expect a second grandchild later this year.

Saladin

High Energy APL Developer

Saladin is a successful and rapidly growing company with a niche marke in
the supply of information services and software to the energy trading
business. Our business is truly global, with 200 customer organisations
supported from our offices in the UK, USA and Singapore.

Saladin’s most widely used product, PAWS, is set for a new period of
intensive development following its successful conversion to MS Windows
using the Dyalog APL/W environment, and we are now looking for a talented
and enthusiastic individual to complete the product development team at
our headquarters in Walton-on-Thames, Surrey.

The successful candidate will have extremely good APL skills and, ideally,
experience of developing in a Windows environment. Knowledge of other
programming languages (particularly C/C++) would also be welcome.
Applicants should have a track record in APL development of at least two
years, but candidates with a substantially greater level of experience should
not hesitate to apply.

With its excellent road and rail links (25 minutes from Waterloo), Walton-
on-Thames is in comfortable commuting distance of both London and the
M4 corridor.,

Salary will be dependent on experience and ability, but is likely to be highly
competitive, Benefits include private medical cover and life assurance.

Please call Hugh Hagan on 01932 243233 to discuss the position, or send
full career details to Hugh at Saladin Ltd, Walton Court, Station Avenuye,
Walton-on-Thames, Surrey, KT12 INT.

Saladin — experis in energy information solutions

VECTOR Vol.12 No.4
Quick Reference Diary 1996
Date Venue Event
17th May London AGM and Vendor Forum
1996 Royat Statistical Soc. Provisional Programme ...
1.30pm Annual General Meeting
2.00pm Bloomsbury Software
2.40pm Causeway Graphical Systems
3.20pm --- Tea break ---
3.40pm MicroAPL
4.20pm Dyadic Systems
5.00pm Close
24-25 June Toronto J User Conference
1996 Canada For more information, contact Anne Faust
email: amfaust@aol.com
July 28 - Lancaster APL96 - Designing the Future
August 2 University See Preliminary Programme and Abstracts
1996 UK on pages 6-9

The Annual General Meeting and Vendor Forum will be held at The Royal
Statistical Society on Friday 17 May 1.30 p.m. to 5.0 p.m. Details will be sent to
all members as an independent mailing.

Dates for Future Issues of VECTOR

Vol.13

No.l
Copy date 24th May 96
Ad booking 31st May 96
Ad Copy 7th June 96
Distribution July (at APL9E)

Vol.13 Vol 13
No.2 No.3
6th Sept 96 6th Dec 96
13th Sept 96 13th Dec 96
20th Sept 96 20th Dec 96
Oclober 96 January 97

VECTOR Vol.12 No.4

APL96

Programme Highlights
and Abstracts of Accepted Papers

report on Programme Committee Meeting by Adrian Smith

APL96 Programme Committee Meeting at Lancaster
Saturday 16th March 1996 at the Lancaster House Hotel

Present were:

Adrian Smith (Causeway)

Philip Benkard (IBM, retd)

John Scholes (Dyadic Systems)

Dr Alan Sykes (University of Swansea)
Morten Kromberg

Gitte Christensen (both of Insight Systems)

Note that this followed a preliminary meeting in New York between Adrian
Smith, Mike Kent, Philip Benkard and Lynne Shaw on Saturday 2nd March,
where the general shape and content of the conference were also discussed.

Programme Outline

The meeting began by discussing the basic layout of the programme grid, and
agreed on a standard format for each day of a morning plenary, followed by a
Vendor forum, followed by a short session when each workshop leader would
spend no more than 15 minutes introducing the material to be covered that
afternoon. This takes the morning through to coffee break, after which we
allocated two parallel tracks for submitted papers. Where possible, these papers
will be programmed to support the material in the afternoon workshops.

Lunch was intentionally left clear, as several of us had received feedback from
San Antonio that delegates had missed out on valuable ‘networking’ time
because of the complete loss of lunchtime to vendor forums.

VECTOR Vol.12 No.4

In the afternoon we worked with four parallel tracks: two of these were allocated
to ‘hands-on’ workshops, one to a more traditional ‘classroom’ tutorial, and one
to submitted papers and ‘APL Success Stories’ run sequentially. Not all the
afternoon paper slots are currently filled with accepted material, so we would
encourage potential authors to contact us with any ‘“late-breaking” APL stories.

The afternoon programme is scheduled to run until 7.00 (with a half-hour break
for tea) with the option for enthusiasts to resume in the hands-on labs later in the
evening. If workshops are heavily over-subscribed, we will need to lock at the
option of hiring more lab space and repeating sessions as required.

In general, the programme committee did not react favourably to the suggestion
of ‘panels’ or "debates’, although the possibility of some “panel-led’” workshops
{for instance on portability issues) was left open if suitable topics are suggested.

Strategy for Proceedings

It was agreed to provide delegates with a ring-binder containing refereed papers
in the normal proceedings format, and workshop notes as they became available
during the conference. The final proceedings will appear as the Autumn or
Winter QuoteQuad, and will include additional material arising during the
conference.

Programme Highlights

ATLY6 is planned to be the best training opportunity this year for anyone
involved in designing, migrating or implementing the APL systems of the future.
We have major "hands on” workshops on GUI programming in Dyalog and J3
from Dyadic, Strand and Causeway. We have Timo Laurmaa running a full
afternoon session on TCP/IP programming (APL over the Internet); Morten
Kromberg will be running tutorials on ODBC access and setting up APL as an
ODBC server; Norman Thomson and Philip Benkard are sharing a tutorial
stream on nested-array programming.

Heinz Roggenkemper of SAP AG will explain why one of the world’s largest
software companies has chosen ATPL for graphical configuration tools, and Jack
Rudd will show us how APL2 has been used to achieve unheard-of accuracy in
civilian GPS systems. With submitted papers on everything from whale songs to
economic modelling in Russia to the use of | as a teaching language - we plan to
have something for everyone at APL9%.

VECTOR Vol.12 No.4

Abstracts of Accepted Papers

At the time of writing, we still have a number of papers under review. This list
probably represents just over two-thirds of the papers which will be presented at
APL96, The sequence numbers have been allocated in no particular order.

[002] Stephen M., Mansour
How to Write air APL Utility Function (Workshop)

In today’s business climate, re-usable code is essential, But many programmers often don’t use
existing utility functions because they find them difficult to use or not general enough. Also, they
may not know that such functions exist. Instead, programmers often clone lines of code from
other functions, This results in sloppy, undocumented code which is full of errors. In order to
avoid this, the author of a utility function must make an extra effort to ensure that his function is
desighed properly.

APL is easy to learn because its primitives behave consistently, work on arrays as well as scalars,
can handle edge conditions, often use default values, and are totally encapsulated from the user.
We can leamn from this by designing utility functions in the same way, allowing them to become
an extension of APL and its set of primitives. This workshop will show some design techniques
and examples, Attendees will be encouraged fo bring in their own examples.

{003] Manuel Alfonseca
Representation of Fractals by means of L-Systems

Fractals can be represented by means of L-systems (Development Grammars), together with a

graphic interpretation, Two families of graphic interpretations have been used: turtle graphics

and vector graphics. This paper describes an APL2/PC system able to draw fractals represented

by L-systems, with both graphic interpretations. A theorem is proved on the equivalence

conditions for both interpretations. Another point shown is the fact that supposed deficiencies in r
L-systems that have prompted proposals of extensions are really deficiencies in the graphic

translation scheme.

Joint Deterministic/Adaptive Method for Economic Forecasting

Economic forecasting is of great importance when some economic mechanism is changed rapidly
as in Russia nowadays, Any economic system is a deterministic/ stochastic entity of great
complexity. Because of this, informative medels which offer the interplay of the most significant
factors are inadequate for satisfactory long-term forecasting,

[004] S.M.Obraztsov et al "
I
[
|
|

The paper describes a forecasting procedure based upon the joint use of formalized method
{numerical simulation) and adaptive method {simulation with neural network) when the model
structure is formed by incoming information. Combination of forecasts selected by experts allows
Lo make the most likely forecast from the “fan” of probable tracks. APL-implementation of this
procedure has been used for the forecasting of municipal expenditures.

[006] Alan Graham
0: @ Simple Modern Array Programming Language System

0 is a programming compiler/interpreter and envirornment for Microsoft Windows 95 and NT.
The session manager is written in Microsoft Visual Basic. Microsoft Word or WordPad can be
used as a program editor. The 0 compiler is written in 0 and the runtime interpreter is J.

0is a descendent of APL, AP12, and APLO. ¢ preserves the qualities that made original APL
great: fast array-based compulation, compact symbolic mathematical notation, simple
expression-oriented functional language, scalars (character and numeric) are abstract (internal
details are hidden), computer management (declarations, space management, compile and link,

VECTOR Vol.12 No.4

{007]

[o10]

;2]

ete.} is automatic.

0 eliminates deprecated and redundant features. Rank and Depth are merged: a vector of vectors
is identical to rows of matrix. Many modes are eliminated: no selectable index origin, print
precision, comparison tolerance, or print width. Shared variables and auxiliary processors are
removed: files are arrays, asynchronous processes are controlled by function calls.

0 extends the simplified APL2. New classes of scalars: expression, string, fault, and nil. New
operators: apply, axis, compose, power. New functions: count, convert. New library functions: if,
else, do, while, until, for take expressions as arguments and provide, using C-like syntax, control-
flow functions. An APL/ASCII one-to-one mapping is built in for transfer and for devices that do
not support alternate character sets, for example _i is a verbose form of iota.

John E. Howland
Using | as an Expository Language in the Teaching of
Computer Science to Liberal Arts Students

APL.and J are seldom, if ever, used in the teaching of college or university courses. As a result,
students ravely experience the benefits of learning and using these languages which are well
known to expert practioners of APL and]. One cutcome of this alarming fact is that APL and]
are destined to be nothing more than, perhaps, obscure languages used only by a small number
of experts in a few selected fields. Since few new people are being trained, uses of APL and] may
cease completely because companies cannot afford the risk of systems based on a technology
which has ne skilled labour force.

Recently, the author has developed a new laboratory-based computer science course for liberal
arts students in which students are introduced to 13 core computer science topics, Programming
language is used in an expository fashion to describe each topic by building simple working
models of each topic. These models are then used as the basis of laboratory experiments in a co-
requisite laboratory course. Students are not taught programming in this course, but rather, are
taught just enough of the syntax and semantics of the Janguage to be able to read and understand
the exposition and models, Initially, Scheme was used in the lecture notes and laberatory
materials developed for this course. Recently, however, an experiment is under way to replace
the use of Scheme in this course by], The development of this course and laboratory was funded
by the Meadows Foundation and NSF grant DUE 9452050.

Linda Alvord
The Derivative is for Dancing

This paper uses] to illustrate the meaning of the derived function or a derivative whichis a
fundamental concept in the study of calculus. To make the idea more understandable we can
demonstrate the notion using visual representations. First fill polygons and consider them as
graphic objects. Then present them at successive intervals along, the curve. Next, rotate each
polygon by an angle obtained from the derivative. This will cause the object to appear to turn in
as it appears to move along the curve. Using animation techniques of drawing and erasing the
figure, it will appear to move appropriately along the curve. When the derivative is incorrect, the
figure will appear to spin aimlessly along the curve. Hopefully this aspect of the “slope of the
curve” will motivate and enliven the study of the derivative, In addition, it may provide an
interesting twist to a study of animation.

Johann Mitlhner
Classifier Systems and Economic Madeling (possible workshop)

Human economic decisions are characterized by a number of factors which make them difficult
to model with standard mathematical tools. Decisions can be more easily deseribed by a set of
rules, and some of them may be ‘rules of thumb’. Economic behaviour is adaptive, in that people
are able to adjust to a changing environment. It is argued in this paper that the classifier system
framework is a suitable means of modelling human economic decisions, A case of a simple
economic decision of finding an optimal price is discussed, which is later made more complex by
introducing an input variable that affects the optimal price. It is shown that classifter systems can

VECTOR Vol.12 No.4

[013]

[014]

(08]

be used in both tasks, and their performance is compared to human decisions in the same set of
circumnstances.

Jack Rudd
Real-time APL Prototype of a Wide Area Differential GPS System

The power of APL2 was applied to design and prototype a wide area differential GPS system in a
matter of months. This system is designed to have all the capabilities of the GP5S control segment,
but with dramatically more accurate geolocation estimates for civilian users. The prototype was
implemented on a single workstation and demonstrated in real tme with live GPS satellite

signals.

An APL2 simulation of the main elements of the system was created in two labour months. This
included precise simulation of satellite orbits, sensor measurements and the randoem walk of
atomic clocks, as well as measurement processing and state estimation. A full APL simulation,
including user algorithms, was completed in two more labour months. Then the simulation was
evolved to process recorded GPS salellite measuremenits instead of simulated measurements.
Particularly complex processing of the actual measurements was found necessary. This evolution
was completed in less than three months.

An effective graphical demonstration using AP207 was created on a laptop computer for
marketing the system Lo potential customers in the international market. Real-time processing of
measurements simultanecusly gathered from five GPS receivers was achieved, demonstrating
user location accuracy of a very few metres.

Manual Alfonseca
Liser Interfaces with Object-Oriented Programming in APL2

The power of general arrays is used to provide APL2 with object-oriented capabilities, which are
used to generate user interface object classes such as windows, menus, dialeg boxes and
messages, among others, all of which can be created as persistent objects. This makes very
straightforward the development of user interfaces for real applications,

Robert Bernecky
APEX: The Pedk of APL Parallel Performance

APEX, the APL Parallel Executor, is a high-performance parallel compiler for an extended subset
of ISO Standard APL. APL programs compiled with APEX run up to 1300 times faster than
interpreted APL, and are often competitive with FORTRAN and C. APEX also automatically
parallelizes code for execution on mulki-processor platforms including the CRAY C90 and the
Silicon Graphics SGI Power Challenge.

This tutorial will be given in two 11/2 hour segments. The first half be of general interest. The
second half will be more technical, and explore APEX internals. If all goes well, attendees will
receive a floppy containing compiled versions of pepular APL utilities. If time permits, we will
compile a few simple applications.

‘Who should attend?

- Managers who are responsible for large APL projects

- APL programmers who are interested in high-performance APL
- Power APL users who need parallel computing capability

- Interpreter and compiler designers interested in compiled APL

What will 1 learn?

Part 1t

- What is APEX?

- How does APEX perform compared to interpreted APL?
- How does APEX perform compared to FORTRAN and C?
- How much parallel speedup does APEX get?

10

VECTOR Vol.12 No.4

[019]

[020}

foz1]

- Why does APEX-generated code run so fast?

- What can APEX do for me?

- What can’t APEX do for me?

- How do 1 link APEX code with C or FORTRAN?
- How do [build DLLs with APEX?

- What platforms does APEX run on?

- What is the future of APEX?

Part 2;

- How does APEX work?

- Why is holistic destgn required?

- Where does all that speed come from?

- The role of SSA and SISAL in APEX

- APL design issues — semiglobals, functional control structures, value error
- The role of synergy and loop fusion

Phil Chastney
Multi-dimensional Databases at Eurostaf

At Eurostat we are developing a Mulli-dimensional Database using APL for the front-end with
an SQL interface to a relational DB at the backend. There will be a presentation of the concept of
“dimension” and the underlying ideas and techniques of MDDs,

Gérard Langlet
The Least-Ackion Principle (LAF) in APL

The least-action principle, one of the fundaments of Physics, has never been given a definition for
computer science. APL is the best notation to try to reformulate it in modem terms.

Per Gerlov
Song of the Whale {Parallel Processing using APL2}

At the Technical University of Denmark APL2 has often been used in a credit course. The
cobjective of the course exercise has been to analyse the vocalisations of Sperm Whales. In January
1996 the course was run again, this time using the IBM SP/2 supercomputer to solve the
problem. An additional objective in this course was to utilize the possibilities of this powerful
parallel compuler.

During the three weeks of the course the students learned the APL language, solved a nontrivial
problem, used a very powerful computer for the solution and wrote a detailed report.

11

VECTOR Vol.12 No.4

News from Suistaining Members
Compiled by Gill Smith

APL2000 Inc (Bloomsbury Software Ltd)

We are busily working on release 2.0 of APL+Win and expect to release it at the
end of March 1996. This new release will allow your APL+Win applications to be
used under Windows 3.1, Windows 95 or Windows NT so as a developer, you
only need worry about one set of code for your application. We are adding new
controls that will allow your applications to have the new “look and feel” that
users have come to expect, and give it to them in any Windows environment.
This means less complexity, reduced documentation, simpler training and easier
support.

Among the controls we are adding is a single selector control that will enable
you to easily create Tabbed Property Sheets, Application “Wizards”, and button
driven input forms. You will like the “ease of use” of this particular feature. In
addition we are adding ListView, TreeView, Progress bar, TrackBar, and more to
enhance your applications and speed development. You will also enjoy speedups
and enhancements to the interpreter (such as Take and Drop along Axis).
Applications written using 32 bit DLLs will work fine in all environments and 16
bit DLLs can be accessed in Win%5 or 3.1. A second release providing OCX
support is expected to be demonstrated at the international APL96 conference in
July. With this group of APL enhancements your development tools will be
expanded to include virtually all of the widely available programming and
utility packages, and allow you to smoothly integrate APL with other tools and
environments.

We said our mission goes beyond keeping the interpreter up-to-date. With this in
mind, we're pleased to announce the creation of some workspaces called
APL+Widgets. These are workspaces of tools or application fragments that can
help you add features to your application, or perhaps see new approaches to
using APL+Win, The collection currently includes a calendar control (which
locks remarkably like the calendar in Quicken for Windows) and a video control
for showing AVT files. Over time, we’ll add additional workspaces to showcase
the features of the language.

We believe APL+Unix is important to your long-term Client-Server strategy. We
will be improving our UNIX product to make it a better tool for Server
applications. APL+Unix is being upgraded to incorporate control structures and

12

VECTOR Vol.12 No.4

to consolidate all of the bug fixes and changes given out on a per request basis
for the product. You will find the addition of control structures to be especially
useful in developing Server applications. In addition to this major change, we are
adding Take and Drop along Axis to bring us closer in line to the APL2
language. This release is expected to be ready for beta distribution in the second
quarter of 1996.

To ease the flow of code among all three platforms, we are adding control
structures to APLADOS in the third quarter. This will allow computational
routines to be easily moved without having to be rewritten.

Any license purchased in 1996 will be eligible for free (with the exception of
shipping charges) upgrades to all releases of that product during the calendar
year. This will include all improvements and fixes to that product. That means
that if you purchased APL+Win in January, you will receive all of the APL+Win
improvements as they are available. To order any product in the UK call
Bleoomsbury Software on 0171 436 9481.

To help in that communication effort we are now on the World Wide Web
located at httpy//members.aol.com/APL2000. Our site has information about our
products and services and innovative ways to use them. In addition, a section on
technical tips will give you examples you may find useful in improving your
business application.

Insight Systems / Adaytum Software

Adaytum Planner for Windows

Development of version 2.0 of our multi-dimensional business planning product,
previously known as the Kunzle Planning System (KPS), is finally completed.
Rolling the product out to 200 customers will take up a considerable amount of
our time over the next several months, but even so we can now schedule new
releases of our Client/Server product range.

SQAPL Client 3.0

Development of a new version of the SQAPL or APL Link client will be
completed in the 2nd quarter of 1996, with general availability planned for
August/September. The primary goal is to take advantage of enhancements to
SequeLink (version 3.0), and to ODBC drivers. In particular, we would like to:

- Remove the object size limitations of previous versions of MiddleWare

products, by supporting “ partial bind” calls. The only remaining limits on
object size will be workspace size and limits imposed by the hest database.

13

VECTOR Vol.12 No.4

+ Suppeort SequeLink 3.0 functionality, making ODBC-style dictionary calls and
data type support available under Unix and ©S/2. This will remove most of
the differences which exist between the SequeLink and ODBC versions of
SQAPL.

+ lmproved “Data Set” functions, supporting multiple keys.

+ Support for ODBC calls to interrogate the list of installed drivers, driver
options, and to support interactive logon panels provided by ODBC drivers.

+ Implement workarounds for errors in popular ODBC drivers, in particular the
Microsoft Office drivers.

We invite all our existing customers to write to us to suggest features to be
included in the new release,

SQAPL Server 3.0

No new release of the SQAPL Server is planned for the immediate future. We do
expect that our own use of the product in the Client/Server version of Adaytum
Planner will lead to the development of a number of new features, which will
find their way into a new version of the SQAPL Server later this year.

APL Pipes 1.0

We finally have the time to complete the packaging and documentation of APL
Pipes, our TCP-based communications product. We will also add support for
non-APL applications, so Pipes can provide access to APL services from Visual
Basic and other application development tools, and access to TCP services like
FTP, telnet and the World Wide Web from APL.

APL96

This year's APL conference, to be held at Lancaster at the end of July, is
promising to be an APL training event of the highest calibre. Judging from the
APL consulting work we have been asked to do during the last 6-12 months,
downsizing of APL applications is now really happening. At APL9% you can
learn about all the relevant technologies: using enclosed arrays, moving from one
APL system to another, using remote databases and building distributed systems
using TCP/1P and other communication tools.

Together with APL 2000, Dyadic, IBM and Scliton, we will be there to show you
how to use our software in combination with their APL systems. See you in
Lancaster!

14

VECTOR Vol.12 No.4

Dyadic Systems Limited

Dyadic is pleased to announce that Dyalog APL/W Version 8.0 is finished and
should be shipping by the time this edition of Vector is printed. The last few
pieces of the jigsaw, including Control Structures and support for 32-bit OLE
Controls, were added during February and issued to Preview Program Sub-
scribers in March. The new OLE Control support is worthy of special mention.

Version 7 of Dyalog APL has, for a long time, supported Visual Basic Custom
Controls (VBX). Whilst a well behaved VBX is indeed a valuable tool in the Dyalog
APLet’s armoury, VBX technology is (a’hem) not exactly a rigorous science, and
has now all but been abandoned by Microsoft. Its replacement, OLE Controls,
provides similar functionality, but is based upon sound object-oriented
technology. OLE Controls are constructed from a properly defined set of
funetion calls and a prescribed set of rules and protocols. In Microsoft
terminology, Dyalog AFL/W Version 8 acts as a fully fledged OLE Control
Container and can therefore access any OLE Control that adheres to the rules. The
good news is that so far, Dyadic has not found an OLE Control that doesn/t
work with Version 8.

When an OLE Control is installed on your computer, all of the information
needed to access and marnipulate the Control is recorded in the Windows
Registry and Type Library. This information includes a list of Properties, Events
and Methods provided by the Control together with information about the data
structures they use. For example, not only does the system record that the Crystal
Reports OLE Control has a property called Destination, but it also records that it
may be set to 0, which means “To Window”, or 1 which means “To Printer” or 2
which means “To File”. Pointers to on-line help topics are also available and all
this information is directly accessible in Dyalog APL.

One test of a true OLE Control Container is whether or not it can act as a
browser. The proof is a Version 8 workspace named OCXBROWS which lists all
of the OLE Controls installed on your system. Select one and it will create an
instance of the Control together with a hierarchical view of its Properties, Events
and Methods. Click on a property name and it will give you a brief description of
the property, its data type and, if appropriate, a list of the values it may take.
Click again and you will get full on-line help. You can also experiment with the
Control directly through a standard property sheet interface.

OLE is in fact a set of technologies of which OLE Controls is just a part. In terms
of its implementation, OLE Controls utilises all of the other technologies and isin
a sense the most difficult to achieve. With the hardest part completed, Dyadic
plans to add suppeort for the other OLE technologies in future releases.

15

VECTOR Vol.12 No.4

Causeway Graphical Systems Ltd

The highlight of this quarter was our trip to the USA and Canada, where we had
the opportunity to address keen and interested APLers in Toronto and New
York. At both meetings the emphasis was on the principles behind the Causeway
environment, and we were able to show how our approach helps developers to
manage complexity, even in very advanced Windows applications. We will also
be talking at the GSE/APL Club of Germany meeting on April 23rd in Frankfurt,
as well as participating in the BAA’s Vendor Forum in May.

We were very encouraged by the positive news from APL 2000. We have
resumed development of Causeway for APFL+Win, this time with the goal of
producing a much lighter-weight implementation which is very interpreter-
specific. This gives us speed at the expense of cross-platform compatibility. So
far, the results are quite startling — on a P90 laptop a collection of 20 forms, all
watching the same text variable, can be set to notify/refresh on keystroke. All 20
keep up with normal typing speed.

We shall, of course, support the existing Causeway “shareware” platform on both
Dyalog 7.2 and 8 — the Windows 95 version includes many of the new Gui
controls (trackbar, tree etc.) as Causeway objects.

The NewLeaf printing namespace is now functionally complete, and is
undergoing pre-release testing at a number of Dyalog APL sites around the
world. By the time you read this, it will also be available for APL+Win users to
download and test, as the code has been writlen for maximum cross-platform
compatibility. The beta programme has resulted in several useful addiions, for
example NewLeaf tables now support tree-structured column titles and HTML-
style tags for bold, italic, sub- and super-script text both in the titles and in the
table cells. Decimal alignment was also introduced for numeric columns as a
result of a specific user-request, as was spooling to file for large reports (several
hundred pages}. NewLeaf will be priced at £400 per developer, with unlimited
runtime and discounts for major APL sites. Watch for details on our web site at
www.causeway.co.uk.

We are now working with a number of companies who are beginning to migrate
existing APL code to the Windows platform. So far we have been able to help
with advice on choice of platform, migration issues for mainframe or APL*PLUS
1l code, and detailed interface design. We are also continuing to work with SAP
to extend the ‘Organisational Architect’ configuration tool to cover the entire
process of setting up a company structure in the SAP R/3 system. If you would
like to know more, please call Adrian or Duncan at +44 (0) 1653 696760 or Email
us via 100265.1564@compuserve.com and ask for a copy of our brochure.

16

The Education Vector

Vol.12 No.4

THE
EDUCATION
VECTOR

April 1996

Editor Ian Clark

This Education Vector has been reprinted from VECTOR Vol.12 No.4. VECTOR
is the Quarterly Journal of the British APL Association. For more information
about the British APL Association, please contact: Sylvia Camacho,

11 Auburn Road, Redland, BRISTOL, BS6 6LS. Tel: 0117-973 0036.

Contents
Editorial lan Clark
Jot Dot Min: Jacquard Looms lan Clark
J-ottings 9 Neortnan Thomson

Towers of Hanoi (from CrabAPL, March 1981) Adrian Smith

lan Clark

IAC/Human Interfaces,
9, Hill End, Frosterley,
Bishop Auckland,

Co. Durham DL13 25X,

Tel: 01388-527190
Email: 100021.3073@compuserve.com

17

18

20

27

32

The Education Vector Vol.12 No.4

Editorial

Not long ago, all teaching activity ceased at our village primary school. Songs
were practised, decorations were cut out and pasted, flowers were planted and
the place generally spruced-up by an assortment of willing litle hands. Better
than boring old reading and writing and ‘rithmetic. A visit of royalty? A
princess, perhaps, or some other endangered species?

Not at all. The school was due for an OFSTED visit. In deference to the
dangerous power of these unpredictable people, the preparations were painfully
OTT. In the event one teacher, the best in the school by common agreement
among the consumers (the pupils and their parents) decided she couldnt be
bothered fooling about at her age. She had more important things to do. Like
teaching the children. Lacking the lily-white paperwork on That Day, she was
bound hand and foot and cast into the exterior darkness. That is, she was
declared inefficient and promptly took early retirement in an attitude of disgust
tinged with relief.

I recall Hemingway's account in “For Whom The Bell Tolls” of the dying days of
the International Fifth Brigade. According to Ernest, what really finished it off
was not Franco and his merry chums pounding hell out of it, for all their support
from Hitler with the latest weaponry and aircraft, but an inspector sent round by
the high-ups to report on people and practices which were sapping the fighting
power of the embattled volunteers. The fellow had the eye of a kite-hawk for
growing tips, strong fibre and firm loyalty. Wherever he came across it he made
absolutely sure it was lopped off, stripped out and rooted up.

But of course there are those who do, and those who inspect. Belief in the efficacy
of more and more voluminous paperwork is a measure of the gap of confidence
between the two. | remember, when T was part of a Home Office inspection team,
encouraging police forces to pursue their plans to have all beat-officers’ reports
phoned-in to a team of audio typists. The idea was to enhance their effectiveness
by relieving them of inessential paperwork. No sign of any comparable insight
by the architects of OFSTED and the National Curriculum, even post-Dearing.

Talking about paperwork reminds me of the passport application I've had to fill
in for my daughter recently. Not at all onerous, as official forms go, until you
come to the bit where it says “...Section 11 should be completed by a Member of
Parliament, Justice of the Peace, Minister of Religion ... and your heart sinks. You
begin to wish you'd accepted that invitation to come Or The Square all those
years ago, when — ah! — it goes on to say “Doctor, Engineer, Lawyer, Teacher”.

18

The Education Vector Vol.12 No.4

So that’s all right then. Even | know one or two of those. But observe! There it is,
in black and white. Her Britannic Majesty’s Government giving formal
recognition to the fact that a Teacheris a respected professional person, of similar
standing to M.P.,].P., Revd.,... and a cut above Tinker, Tailor, Soldier, Sailor,

Observe something else, too. Nowhere on the form does it say “OFSTED
inspector”. When a teacher acquaintance saw that, she whooped with joy. She
realised she could knock an OFSTED inspector into the gutter, because they're all
just nuttin's, aren’t they? Is there a professional qualification leading to OFSTED
inspector? — let alone a national procedure for measuring their efficiency,
feeding into published league-tables? I haven’t heard of one. No more than I
have for Members of Parliament, much less Government Ministers. But just
imagine the exams they’d have to go through. The dissertations they’d have to
sweat over, All those neatly-clipped folders full of photos of school lackers, and
lists and lists of things to be snooped into.

Now I imagine that some OFSTED inspector will read this and ery “Unfair! My
team is hardworking and dedicated. It consists of respectable individuals all
highly experienced in their own various fields.” All right, simmer down. I'm sure
you and your colleagues do the job to the best of your ability. But what is the real
nature of your job? Does the teaching profession want its fruits? Even (or
especially!) if it is performed with zeal and dedication? Is OFSTED a sort of
spiritual leaven to improve the quality of the nation’s teaching? Or is it a political
commissariat?

It cannot, by its very nature and constitution, be the former. Teaching in our
(state) schools is performed, as HMG itself admits, by highly qualified
professionals, on a par with Doctors, Engineers and Lawyers. Like these they
merit exclusive accreditation and review of their competence by independently
constituted professional societies of their peers. Not to be paraded and inspected
by official appointees, graded and marshalled worse than the hapless infants
they're supposed to find time to be teaching. That is treatment which even
soldiers and sailors wouldn't stand for, let alone tinkers and tailors. And other
local businessmen, who, by the way, are having a say in the running of schools
out of all proportion to their professional standing. If they want to help, use them
for what they're good for — putting their hands in their wallets, not their noses
outside their own businesses.

Some people have told me that this page is too strong on politics and not strong
enough on IT, APL in particular. Now I'm not responsible for the politicisation of
education. That agenda has been set by others. So what has all this got to do with
IT? What's it got to do with APL? OrJ? Quite a lot, as | hope to show next time.

19

The Education Vector Vol.12 No.4

Jot-Dot-Min

an outer product of rock-bottom APL matters

In a previous JDM 1 let slip that one of the joys of APL for me was replacing loops
by bit-arrays. Bitting instead of knitting, you might say. Throughout the ages
philosophers have built calculating engines, talking heads and other logical
machines, but the real father of commercial data processing isn't any of these —
it’s the Jacquard Loom, an engine which can weave beautiful intricate pictures in
silk like the one I possess of the Kinkakuji Temple in Kyoto. Visitors think it is a
photograph, until they examine it with a magnifying glass. The loom is driven by
a deck of punched cards and considerably predates the Hollerith punched card
popularised by IBM before electronic compulers came along. Joseph Marje
Jacquard produced his design in 1805; it was in some sense just a mechanical
improvement on Basile Bouchon's 1725 concept, which draws an endless loop of
petforated slats across the tops of the so-called needles which raise each
individual warp thread, letting some rise and others fall.

You can illustrate the principle like this. Let WARP stand for the threads and CARD
stand for a card {or a Bouchon slat). Choose a string of 25 pretty APL symbols to
stand for the different coloured threads (if you've never used them all, now’s
your chance}:

WARP«'s%¢[lesv0[les38[les38[los78 la!

Make CARD a string of 25 Os and 1s, as many elements as there are in WARP. A
quick way to do this is to generate them at random by putting 7 in front of a
vector of 25 2s. But this ends up with a string of 1s and 2s. So we make a
comparison out of it {a so-called ‘logical” expression) by putting 1 < in front. That
gives us a sequence of FALSE and TRUE results, which happen to be 0 and 1 in
APL.

CARD+1<725p2
CARD
000101011121 1010001010¢90010

ot something like that (it will be different each time).

20

The Education Vector Vol.12 No.4

Now we can apply CARD to WARP to raise all those threads where CARD is 1 and
lower them where CARD is (. The raised threads show on top of the cloth, the
lowered threads get hidden underneath.,

WARP
+¥78[lesy0esvofasvo(osv0[]e
CARD\NCARD/WARP
M s efeser [8 e M

CARD/WARP would simply knock out the O-positions and close up the gaps.
CARDA\ ... puts the gaps back again.

Let’s make a function out of the expression which makes CARD (just cut and paste
from the session, if your APL lets you). We call it: nex tcard, because it acts like
it's getting the next card in the endless belt. This function is clever enough to
count the number of threads in WARP so thal you don’t have to fix it at 25.

vnextcard

[o0] nextcard

[1] CARD+«1<?{pWARP)p2
v

Now there must be loads of ways of turning a sequence of numbers (or characters,
or threads, or anythingl) into a sequence of 0s and 1s. That’s the principle of
Bitting. We like it the way we've shown because you can tinker with the numbers
1 and 2 to get any proportion of 1s and 0s you like in the random stream. How?
Just try some examples..,

LCARD+5<225p10
1010120011011011100100010
+CARD+1<225p10
1111190111111 1110111111101

Get the idea? It's like tossing a weighted coin. The ‘weight’ is that first number, 1
or 5, in the expression.

The comma in front is just a lazy way to kid APL it's computing an uncommitted
expression (which it outputs) rather than an assignment {which it doesn’t). It
simply saves us typing CARD each time. Be careful what you use it on, because it
strings the result out flat.

21

The Education Vector Vol.12 No.4

Now we write a short function to behave like the working loom:

vweave
[0] weave
f1] nextcard
[2] CARDN\CARD/WARP
[al +1
v

It's a good use for a loop here (uncommonly, for APL). As you see, the function:
[1] Gets the next card CARD
[2] Applies it to WARP to weave a row of cloth
[3] Goes back and does it again

S0 here we go:

waave

+ [lesy ex 6oty [le

¢ Bfesve ¢ ® 8 379 B

v [lessof] *& es¥ [ler o0

w1efle sef] g ¢+ 81 ¥ =
M & efleses [8 ® [

Press the Interrupt key (<Ctrl+Break> perhaps, or <Esc>) when you've had
enough. Then type a branch to clear out the suspended function:

>

There are cleverer ways to stop a function, but they just clutter the discussion
here.

Now let's change the pattern of the cloth it weaves. If we change the function:
nextcard, that's like changing the endless belt on the loom. Make up a
collection of nextcard’ functions, nextcardi, nextcard2.. and alter the
function nex t card to simply run any one of them:

vnextcard

] nextcard

1] nextcard?
v

The Education Vector Vol.12 No.4

vnextcardi

[0] nextcardi

[11] CARD+"1+?(pWARP)p?
v

vnextcard?
fo] nextcard?
[1] CARD+14CARD
v

So, to change the endless belt on the loom, edit nextcard to slot in a different
nextcard» function, The version: nextcardz is a bit of a cheat, because it
needs a valid result in CARD to work, which you can get by running nextcardi
once. It simply alters the existing pattern by ‘rotating’ C4RD, ie. moving the first
element to the end. Here's what it looks like with nextcardz...

weave
6 a 18[les O ¥ [e
¥ [N svofle ¥ + B ¥

+ 8 oav@[] » ® 7 [
v Mlasvg @ Y ® [
t oflesy [g & M il
volles 8 * [] g e
:236(Ne » + 8 v F
236 = w7 + + 8 e
2178 @ 0 a ® o ¥ [Na
27 [8 @ M M + efls
& ¥ [[+ e e vofle
L) + B ¥ ¥ [M 2volls
¢ @ ¥ e + & save[]
M = e o v [eeve o

0 e M M s eflexr]

(Once again, press Interrupt when you're tired of it.)
Well, it’s not the Kinkakuji Temple, but Rome wasn’t built in a day. Read on...

Not long after the Jacquard loom revolutionised weaving (and nearly got its
inventor drowned in the river Rhone by furious Lyonnaises, who thought it
would put them out of work) the theory of Cellular Automata arose in
mathematicians’ minds. Don’t let anyone tell you that mathematicians dream up
new things all the time. Often they just sweep up the philosophical droppings of
technological innovation. The original challenge was this (the Napoleonic Wars
not long over): imagine a line of musketeers in the mist. Each man is only able to
communicate with his two neighbours, which he does once a second. Each man is
an automaton and goes into a different state as a result of giving or getting

23

The Education Vector Vol.12 No.4

messages. Thanks to parade-ground drilling, all the automata are identical.
(Remember that the drill for loading and firing a musket had something like 131
steps, so the National Curriculum had nothing on the common soldier.) Devise a
system of messages and states which allows the line to get messages from one
end, and this to result (several seconds later} in them all firing at the same time.

Now this problem is actually quite difficult. At least it is if you aren’t allowed to
build in the number of soldiers inlo the system, or let the end-soldier recognise he
is at the end. But just to show how you might tackle the problem, let’s give each
soldier only two states, called 0 and 1, and a repertoire of one message which he
sends exclusively to the soldier on his right. He switches to his other state when
he receives the message, and he sends the message when he’s in state 1 and has
just been switched to state 0. Speak up at the back there... Yes, we've just turned
him into a Binary Flip-Flop and constructed a Shift-Register, but you're in the
wrong class, my lad.

Now let's be clever and use our Jacquard Ioom to model the situation. Here’s the
‘program’ to do it, called nextcards. But now it's not the ‘next card” but the
‘next state’ for each of the soldiers, i.e. what's to happen one second later. People
who write simulations call this a ‘discrete simulation” and the step of one second
they call an ‘epoch’.

vnextcard3l

(0] nextcard3l

[11] CARD+CARD# (" 1+0,CARD)
v

Not-equals behaves like ‘exclusive-or’ in this conlext, or ‘non-carrying addition’
as the pioneers used to call it. Line [1] says: “Add CARD to itself shifted along one
position using non-carrying addition”. That corresponds to each soldier passing
the message to the right.

Now let all the soldiers start in state 0...

CARD+=25p0
weave

And there they’ll stay... until we give the first soldier the order (ie. the one
message he understands), by setting CARD to 1 for that position.
(...endless blank lines, until you press Inlerrupt...)

weavel[2]

24

The Education Vector Vol.12 No.4

5o give the first soldier the order and re-start the simulation...

CARD[1]+1
+LC
s
¥
+ B
+%8[
* ®
[¥
* 8 & ¥
278[lasv o
4 0
+¥ MNe
+ 8 0 =
s7 8 Fless

* @ M)

+¥ es [le &

+ B e v 8 @
s3elesvoflosvgfles

.

¥ 30

..efc.

Very pretty. A Binary Tree. Still not the Kinkakuji Temple, but we've only just
started. Computers themselves may have started with Jacquard looms, but what
nobody tells you is that a Jacquard loom with self-generating cards could in
principle handle any computing task. Tripping over boxes and boxes of printout
at my old place of work, 1 came to that conclusion myself, and I'm not Alan
Turing. If they had only used a loom and some silk instead of forests of paper and
a lineprinter, it could have made someone a nice kimono,

A less well-known fact about Alan Turing was that he was an expert at knitting
(as well as bitting). He once got the whole department at Manchester trying to
knit a Riemann Surface. This piece of intelligence was told me by my mother-in-
law who worked there as a Computer.

No joke! ‘Computer’ was a job-title, like ‘navvy’, until the steam-navvy came
along. Ma-in-law was an expert knitter too, but she never went as far as drowning
Alan in the Mersey. Meanwhile, back at the Battle of Waterloo, if you want to give
your soldiers more than 2 states, as you’ll need to, you'll have to replace the bit-
string: CARD with a string of integers and make the loom a little more elaborate.
I'll publish the most interesting solution I receive in a future issue.

But until then, as you play with the Ioom, remember... you are experimenting

25

The Education Vector Vol.12 No.4

with Cellular Automata, the forerunner of the fashionable Neural Network. Yes, if
you consider each of your soldiers to be a neurone {a nerve cell), it can ‘fire’ (ie.
send a message) when it’s leaving a particular state, and its next state depends
solely upon its current state and the messages it receives from other neurones.

In 1968, in my first job and faced with my first computer (an IBM 1130 —
remember it? — and it sported APL, tool) I wrote a simple neural network
simulation. Then I sat and stimulated it with the sense-switches. (Why doesn’t my
PC have sense-switches any more?) 1 was fascinated by the walipaper that came
off the lineprinter. Young as 1 was, I even wondered eerily if it might be ‘thinking’
in there, and whether it might be wrong to switch it off. Happily a perusal of the
printout showed the activity gradually descending from conscious to comatose, so
I reluctantly switched off the machine and caught the late train home.

You think I'm being funny? What if I had been an embryologist?

In the classical situation, each cell can only receive messages from next-door
neighbours. In animals, this is probably only true for jellyfish (which have
neurones almost like ours). The more advanced applications of neurones in the
animal world collect bundles of fibres into cables for making trunk calls to distant
parts of the network. This is the ‘white matter’ beneath the ‘grey matter’ of the
human brain.

But there’s plenty of mileage in a nearest-neighbour topology. If you abandon bit-
strings in favour of bit-squares, you can play Conway’s Game of Life (which
we're coming to in the next issue). And of course, if you go to higher dimensions
in the form of an n-dimensional hypercube, you can make every one of n cells a
next-door neighbour of every other...

n+15
z+«{np2)pl

Or you can put 3 instead of 2 and try developing cellular automata to play Tic-
Tac-Toe.

How high does your version of APL let n go until it complains: LIMIT ERRGR?
Dyalog APL lets n go up to 15. The celebrated Connection Machine goes up to
32767, 1 understand. Just imagine 32767-dimensional Tic-Tac-Toe. You'd have to
have your wits about you.

26

The Education Vector Vol.12 No.4

J-ottings 9

by Norman Thomson

This is the most powerful article yet in this series; I can say this with confidence
because the starting theme is the power conjunction »: .

The sequence “verb conjunction noun” as in +a: 2 defines a new verb. A very
simple example is that of finding the nth term of the series 1,3,7,15,31,63,... This
can be obtained either using the power verb:

p=.<: B8(284) NB. (y.th power of 2) - 1
p 5
a1

or by using the power conjunction:

step=.>: 8+; NB. 2y, + 1
{stepna:5)0 NB. Iteration using power conjunction
31

A more sophisticated use of a: is in standard algorithms for evaluating Fibonacci
terms and series.

First the verb fa describes the essential Fibonacci operation, which transforms
the number pair (4,5} into the pair (b,(a+b)):

fa=.{: ., (+/) NB. Update rightmost terms in
Fibonaccl series

The power conjunction can be used to execute it any required number of times:

{far:15)0 1 NB. terms Index 15 and 16 in series
starting o 1
610 987

If it is the whole series which is required, define

fb=.1 , +/@(_2&{.) NB. Join sum of last 2 terms onto
the series
(fba:15)0 1 NB. Add 15 terms to the series
which starts o 1
0 112358 13 21 34 55 8% 144 233 377 6i0 987

27

The Educatlon Vector Vol.12 No.4

These examples show clearly how strongly the power conjunction »: is
associated with iteration.

Now compare the above with a recursive approach. The Fibonacci problem is
amenable to the technique which Hui and Iverson call “tail recursion”, which
they discuss extensively in [1], and which is also discussed in J-ottings 3. It is
worth thinking initially about general techniques for converting iterative verbs to
recursive ones, for which purpose return to step which is used below both
iteratively and recursively.

step=.>: @+: NB. 2y. + 1
(stepn:5)0 NB. Iteratlion using power
conjunction
31
(0: " (Step@%$:@<:)@.*}5 NB. Recursion using gerund and
agenda
31

This simple case can be used as a general prototype. For tb, if the left argument
is the number of terms required, the stopping condition is determined by the
hook ~: % . To obviate a rank error following agenda, a conversion from a 1-item
vector to a scalar must be included, leading to the stopping function

stop=.{.8{~:3%)
and thence to the recursive form

fbr=, 3 * ([%$:1b8]) @&. stop

In a similar way the recursive equivalent of fa can be obtained as:

far=. 1 ° (<:8[%$:fa@l) @&. (=@[)
15 far 0 1
610 987

Another illustration of the power conjunction is Sylvester's algorithm, which
takes a vulgar fraction in the range (0,1), and expresses it as a sum of best-fitting
unit fractions. For example, 0.67296 is well approximated by

1A + Vg + 1459 + 1has43s

The result of the algorithm can thus be expressed as a series of increasing
integers, in general of indefinite length. In the above example, the series would

28

The Education Vector Vol.12 No.4

be (2,6,159,248438, ...). In the realisations which follow, the result series has at its
head the error term, that is, the remaining fraction which has to be decomposed,
so that successive results are:

0.17296, 2 (017296 = 0.67296 - 15)
0.00629,2, 6 (0.00629 = 0.67296 - V2 - Us)

APL and J renderings of this algorithm were published by Donald Mclntyre in
the IBM Systems Journal APL Anniversary edition [2], and a further APL
implementation of this algorithm is given in a Vector Technical Note |3]. An
iterative approach in J using : is significantly different in style. Taking f as a
fraction, first define a verb nig to mean “next integer greater than 1/ 'f", so that,
forexample nig 0.333is4,and nig 0. 334 is 3.

nig=.>, &% NB. Next integer greater thar reciprocal

The next steps in the algorithm are to use the hook -% to derive x. -1/ y.,and to
apply this following (atop) nig, which in turn is applied to the current error
term. This leads to the verb

srr=. {-%@nigle{, NE. Subtract reciprocal from
outstanding remainder

which is the core of the algorithm.

Finally adjust the result series to its standard form, ready to start all over again:

syl=.srr,(}.,nige{.) NB. Update remainder, and add new
integer to right

Thus the original problem is solved by

(syla:u}o.67296
B,1009%e.12 2 6 159 248438

Here is the result of applying three Sylvester steps to the fractional part of pi:

z=.{0.1)-3 NB. Fractional part of pi
{syla:3)z NB., Numerical error, ist 3
Sylvester terms
7.77959%9e_9 8 61 5020

— and s0 3 + ¥k + Y1 + Yeox gives pi correct to 7 decimal places,

29

The Education Vector Vol.12 No.4

The Technical Note [2] also describes a somewhat similar algorithm which
reduces a decimal fraction to its equivalent in a different number base. Again the
power conjunction suggests an iterative approach in J. The arithmetic required to
find the fractional digits of 0.67296 in base 5 is:

67296
3eLs
824
12

3

0

W oW

At every step, the decimal fraction to the right of the vertical bar is multiplied by
5, and the integer and fractional parts of the result are written to the left and
right of the bar on the following line. The required digits in base 5 emerge down
the column to the left of the bar. Take the number base as left argument and as
right argument the fraction to the right of the bar, joined to the series so far.

The actions left and right of the bar imply that two verbs are required to supply
fractional and integer parts. These are 18] and <. respectively which combine as
a gerund following (atop) the multiplication:

g=. 1&}‘<./.@x NB. fractnl and Integer parts
following multn by base

The verb /., makes the gerund to its left executable, and can also be written
HE

5 g 0.67296
0. 3648 3

For steps after the first, it is necessary to pick off the fractional part using {.
(head), so define the fork

t=.{ g {.@]

5 f 0.67296
0,3648 3

5{fa:3)0.67296
0,12 4

30

The Educatlen Vector Vol.12 No.4

In order to complete the goal of carrying forward the digits as they are found,
amend f to the final form

fdiv=.([g {.91}),}.@] NB. apply g to fraction and
append digits so far
5(fdiva:3)0.867296
0,12 4 1 3
5{fdiva;5)0.67295
0304 13

Conversion to recursive forms can readily be applied to both syl and fdiv to
obtain

sylr=. 1 '(p6{<:@%$:]1})8, (*x6[} NB. Recursive syl; x.
is countdewn parm

4 sylr 9.67296 NB. cf. (syla:4)0.67296
8,10094e_12 2 6 159 248438

fd=. (({:@0)g (.@]),}.@] NB. Countdown parm
to left of x.

fdivr=.3"([fd-&1 0@[%:])6.(#8{.@[) NB. Recursive fdiv

3 5 fdivr 0.67296 NB, cf., S{fdiva:3)0.67296
0,12 4 1 3

In the illustrations above the verbs conjoined to a: have all been monadic.
Dyadic verbs raise some interesting questions, such as:

(1) +is a commulative verb, thatis {a+b)-: b+a for all numeric a, b. Is +A: 2 a
commutative verb?

(2) Does 2{+A:2)3 mean 2+2+3 or 2+3+357

The answers depend on the general property of dyadic verbs that the left
argument “binds” more strongly than the right. This means that. 2+3 means
{2+)3, that is the noun left argument acts like an adverb and creates an
intermediate verb “addtwo”, say, which then works on the right argument. This
device is known as “currying” after the American logician H.B. Curry, and it
makes it easy to answer both the above questions:

(1) No, since “addiwo” applied twice to 3 is 3+2x2, which is not the same as
“addthree” applied twice to 2, which is 2+2x3.

(2) <2{+~:2)3 means “addtwo” twice to 3, so the first of the two alternatives is
correct.

31

The Educatlon Vector Vol.12 No.4

References

[1] Representations of Recursion, Roger KW Hui & Kenneth E Iverson, Proceedings

of APL95 Conference, pp.91-97

[2] Language as an Intellectual Tool: From hieroglyphics to APL, D.B.McIntyre, IBM

Systems Journal, Vol.30 No.4, 1991, pp-562-563

I3] Technical Note: Fractions as Sequences of Integers, Norman Thomsen, Vector Vol.

12, No. 3, pp. 130-131

Towers of Hanoi from 15 Years Ago
by Adrian Smith

For historical amusement, here is a rerun of the Hanoi Tower solution from Crab
APL, Issue 10, page 11, March 1981. This recognises the binary pattern in the
moves, and builds a boolean array, which it then adjusts and indexes to get the
sequences of moves. Note that in modern APLs, the use of the ~~ sequence
should not be necessary, as they do this sort of thing for you.

£1l
[2]
[2]
£n]
sl
[&]
[71
rsl
9]
[10]
[11]
[12]
[13]
[1u]
[151
[163
[17]
[18]
[19]
£20]

¥ R+«HANOI N;DISC;PEG;INT

n NON-RECURSIVE SOLUTION TO THE HANGI TOWER PUZELE

L]

a FIRST SEY UP THE MOVE NUMBERS IN BINARY FORM; ONLY THE

n TOPMOST <ONE> BEING LEFT ON. {THE ~~ SPEEDS THINGS UP A BIT!)
INT+<chou~(Np2)T 14 12xN

» THE DISC TO BE MOVED IS GIVEN BY IHE PUSITION OF THE CNES
DISC+(1N)T.»INT

n MAKE ALTERNATE ROKS +f- TO FGRCF DISKS TO

A CYCLE WITH ORPOSITE HANDEDNESS

INT«INT«q((14pINT} . N)pNe 1 71

TEE POSITION OF EACH DISK AT ANY TIME IS TRE CUMULATIVE
VALUE OF THEIYS, BUT EXPRESSED IN MODULO-3.

T6 GET YRE WEW PEG AT EACH MOVE, WE INDEX BY DISK NO. FOR
PHE RONS: MOVE NO. FOR THE COLUMNS. THIS EFFECT CAN
BE ACHIEVED EITHER WITH A SCATTERED-PT SELECTION FUNCTION
DR (AS HERE) WITH A 1 1% TO GET THE DIAGORAL OF AW
INTERMEDIATE OBJECT,
PEG+ 1 1 {(1+3|4\INT)[DISC;]
R+DISC,[0.5]1FEG

T » P P D D o™ D

32

VECTOR Vol.12 No.4

APL Product Guide - Updates

compiled by Gill Smith

VECTOR's exclusive APL Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

Pressure on space occasionally prevents us from printing the complete guide,
however updates will always be listed, We do depend on the alacrity of vendors
to keep us informed about their products. Anyone who is not included in the
Guide should contact me to get their free entry — see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages,

For convenience to readers, the product list has been divided into the following
groups (‘poa’ indicates “price on application’):

« Complete APL Systerns (Hardware & Software)
+ APL Interpreters

» APL-based Packages

» APL Consultancy

+ Other Products

+ Overseas Associations

+ Vendor Addresses

+ World Wide Web and FTT Sites

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

All contributions and updates to the APL Product Guide should be sent to Gill
Smith, at Brook House, Gilling East, York, YO6 4f]. Tel: 01439-788385, Email:
100331.644@Compuserve.com

33

VECTCR Vol.12 No.4
APL INTERPRETERS
COMPANY PRODUCT PRICES(E) DETAILS
Dinesoft OY Dyalog APLAW for Windows poa Finnish distrlbutor of Dyalog APL products.
Dyalog APL for Unix poa See Dyadic's listng for product detalls.
APL PACKAGES
COMPANY PRODUCT PRICES(E) DETAILS
UNIWARE Execucalic - Withdrawn
{for Dyalog 7.2 & 8) DLL Parser version 2.0 FF1450 Auto-generates ONA instructions for DLLs and gets constant

values and structures.

DELPH! Forms Generator FFO50 Takes & Delphl form and wms itinto a Dyalog APL program

which bullds an Identical form.

Uniware ToolkitW Vn. 24 FF3S000 Fast relational database system, and complete set of Windows

tools for RAD In Dyalog APL/W.

APL CONSULTANCY

COMPANY PRODUCT PRICES(E) DETAILS

Dincsott OY Consultancy poa Sp d in very large datab

OVERSEAS ASSOCIATIONS

GROUP LOGATION JOURNAL OTHER SERVICES Ann.Sub,
SE APL Users Grp Atlantas, Georgia ~ SEAPL Newslelter Quarterly mestings $10

WORLD WIDE WEB SITES
ORGANISATION URL

APL 20C0 members.acl.com/APL2000
APL-385 www.demon.co.ukfapl3gs
Causeway WYOW.CAUS BWRY. GO, UK

Dyadic Systems Ltd
IBM APL2

Mackay Kinloch Ltd
MicroAPL Lid
SigAPL

Rex Swain

Torento SIG

Jim Welgang

FTP SITES

CORGANISATION
IBM APL2

Torento tooikit
Waterlco Archive
APL-ta-ASCII

www.dyadic.com

www.torolab.lom.com/ap/aplfapl2.himi
ourworld.compuserve.com/homepagesfAlastair_Kinloch
www.microapl.co.uk

www.acm.org/sigap!

www.pcnet.com/~rhswain

www.sigap! minlaks,com/sigapl/walcoma himl
www.chilton.com/~jimwfwelcome.html

DOMAIN NAME
ps.boulder.ibm.comipstpreductsfapl2f

sea Toronto SIG home page

archive uwatarioo.cafftparchflanguagesfap!
archive.uwatarioe.caflanguegesfaplfworkspacesfaplasci

Vol.12 No .4

VECTOR

VENDOR ADDRESSES
COMPANY CONTACT
ACMISIGAPL Deonna Baglio

Active Warkspaes Lid
Adapiable Systems

Adaytum Systems
Adfes

Andrews
APL-385

APL Bay Area Users Group

APLBUG

APL Club Austria
APL Club Germany

The APL Group Inc

Ross D Ranson

Lois & Richard Hill

Bernard Smocr

Dr Anne D Wilson
Adrian Smith

Lewls H. Robinson {Sec)

Erich Galt
Dieter Lattermann

Stuan Sawablini

APL Interest Group, South Afrlea

APL Pecpla [Software

Mike Mentgomery

Jill Moss

Assoclation Francophone pour

la promation d'APL
Atlantis Scftware
BACUS

Beautiful Systems, Inc.,

Dr. Gérard Langlet
Arthur Whitney
Joseph de Kerf
Jim Goff

The Bloemsbury Software Co Lid

Camache
Aay Gannon

Pau! Chapman

Peter Day

Antheny Gamacho

Causeway Graphlcal Systems Ltd

Chicago 5IG
Clnerea AB
CODEWORK

ComlLog Software
CPCLK

David Crossley
CYBEX AB

Peter Cyrlax Systems
Danlsh User Greup

Adrian Smith,
Duncan Pearson

Larry Mysz
Rolf Kernemark
Maura Guazze

Jeff Pedneau

Lynne Startz

Lars Wentzel

Petar Cyriax
Per Gleriof

ADDRESS, TELEPHONE, FAX, EMAIL etc.
ACM, 1515 Broadway, New York, NY 10036 USA Tel:+1 (212) 626-0608
Emall; baglio @ acm.org

Maulsham Mifl Centre, Parkway, Chelmsford, Essex, CM2 7PX, UK.
Tel: 01245486647, Fax: 01245-496646.

49 First Street, Black Rock 3193, Australia.
Tel: +51 3 589 §578 Fax: +61 3 589 3220

13 Great Geaorge Strest, BRISTOL BS1 5RR UK Tel: 0117-821 5555

Darpsstraat 50, 4128 BZ Lexmond, Netherlands,
Tel +31-3474-2337, Fax; +31-3474-2342

23, The Green, Acomb, YORK YO2 6LL, UK Tel: 01904-762670

Brock Houss, Gilling East, York YOG 40 UK. Tal: 01439-786385
Fax: 01438-788104 Email: 100331.844@ compuserve.com

110G Gough St, Apt 14A, San Francisce, CA 94109, USA
Tel: +1 (415) 928-2058 Emall; frgp21a @ predigy.com

1BM Osterraich, Obere Donaustrassa 95, A-1020 Wien, Austla

Rheinstrale 23, D-69150 Walldorf, Germany.
Tal: +49 6227-63489 Compuserve: 100332,1461

644 Danbury Road, WILTCN, CT 06887 USA.
Tel: +1 (203) 762-3833 Fax: +1 (203) 762-2108

Private Bag X$1, Rivonia 2128, South Africa
Tel: +27 (11) 803-7200 Fax: +27 (11} 803-9134
Emall: mikement@spl.co.za

The Old Malthousa, Clarence St, BATH, BAt 5NS UK. Tel: 01225-452602

SCM, C.E, Saclay, F-81191-Glf sur Yvetta, France, Fax;+33 1 69-08-79-63
1105 Harker Avenue, Pala Alto, CA 94301 USA
Rocinberg 72, B-2570 Duffe!, Belgium. Tel: 432 15 31 47 24

308 Old York Road, Sulte 5, Jenkintown, PA 19048, USA
Tel: +1 (215) 886-2636; Fax: +1 (215} 8854888

3-G Alired Place, Bloomsbury, Lendon WC1E 7EB UK.
Tel; 0171-436 9481; Fa; 0171-438 0524; CompuServe: 100010,1467

11 Auburn Road, Redland, Bristol BS6 BLS UK, Tel: 0117-9730035.
emall: acamacho @dx.compulink.co.tk Reuternet (Sharp): ACAM

21 Woodbridge Rd, Blackwater, Camberlay, Surrey GU17 0BS UK
Tel: 01252-874597 Email: 100430.740 @ compuserve.com

518 l.ambs Conduit Streat, London WC1N 3NB UK.
Tal: 0171-404 5401, Compusarve: 100343,3210

§ Tha Maltings, Castlegate, MALTON, North Yorks ¥Q17 0DP UK
Tel: 01653-696760 Fax: 01653-69771% Compuserve: 100266,1564

836 Highland Drive, Chicago Halghts, IL 80471 USA C'serve:73040,3032
Skyttegatan 25, 5-183 00 Sigtuna, Sweden.

Carso Calroli 32, 10123 Toring, Italy,
Tel: +39 11 885168 Fax: +39 11 812 2652

PO Box 5570, Derwood, MD 20855 USA
Teal: +1 (301} 800-7063 Emall: |ol@ softmed.com

Capital PC User Group, 51 Monroe'Street, Suite PE-2, Rockville,
Maryland 20850-2421, USA. Tel: +1 (301) 762-6372 Fax: (301) 762-9375.

187 Le Tour du Pont, Quartier Le Mourre, 84210 ST DIDIER, France
Tal: +33 90-66-08-87

Gruvgatan 358, S421 30 V. Frélunda, Sweden.
Tel: +48 31-45 57 40. Fax; +46 31-45 24 23,

22 Hereferd Road, Lendon W2 4AA UK. Tel: 0171-229 5344
Emall: glerper @ Inetuni-c.di

35

VECTOR Vol.12 No.4
Datatrade Lid. lan Tamtin 1 & 2 Sterling Business Park, Salthouse Road, Brackmills, Northampten,
NN4 QEX UK. Tel: 01604-760241
Dinosoft OY Perttl Kalliojarvt Loénnretinkatu 21C, 0012¢ Helsink, FINLAND.
Tel: +358 0 70028825 Fax: +3588 070028824
Dogen Research Dick Bowman 2 Dean Gardens, London E17 3QP UK Tel: 0181-520 6334
Emall:bowman @api.demon.co.uk
Dutzh APL Association Bernard Smaor (Sec) Posthus 1341, 3430BH Nieuwegeln, Netherlands, Tel: +31 3474-2337
Ovyadic Systems Lid, Peter Donnelly Riverside View, Basing Road, Old Basing, Basingsioks,
Hants RG24 0AL UK, Tel: 01256-811125 Fax: 01266-811130
E & S Asstcialas Frank Evans 19 Homesdala Road, Qrpington, Kent BRE 1JS UK. Tel: {1589-524741
Evestic AB Ofle Evero Bertellusvagen 12A, S-146 38 Tullinge, Sweden Tel&Fax: +46 776 4410
FinnAPL $uomen APL-Yhdlstys RY, FinnAPL RF, PL 1005, 00101 Helsinkl 10,
Finland
General Soitware Lid M.E. Martin 22 Aussell Road, Northhoit, Middx, UBS 4S5 UK. Tel: (181-864 9537
Graymantle Assotlates Georgs Maclecd Bartrum House, Ravens Lane, Barkhamsted, Herts, HP24 2DY UK
Teal: 01442-978065 Emall: 100412,1305@ compuserve.com
Hariferd CT Group Bob Pomeroy Mass Mutua! Lite, 1295 State St, Maildrop F485, Springfleld,

H.M.W Trading Systams Lid Stan Wikinson

HRH Systems
Michael Hughes
|AC/Human Interfaces

I-APL Lid

IEM APL Products

Impets Ltd
INFOSTROY
Insight Systems ApS

Intelligent Programs Ltd

interprocess Systems Inc.

Iverson Software Inc.
JAD Software

Japan APL Assoclation
Kestrel Consulting

Lingo Allegro USA inc,

Mackay Kinloch Ltd

Mastervvork Scftware Lid

Melbourne AFL Group

Dick Holt

tan A. Clark
Anthony Camacho

{for queries, order farms}

J G Business Services
{for pre-pald orders only}

Nancy Wheeler
Cedric Heddle
Alexei Miroshnikov
Morten Kromberg

Mike Bucknall
Stella Chamberiain

Eric tverson

David Crossley

Mark Harris
Vietorla H, Fll

Alastair Kinloch

Fraser Jackson

Harvey Davies

MA 01111 USA Tel: +1 (413) 788-B411x2838

Hamiliton House, 1 Temple Avenue, Victorla Embankment,

Londonr EC4Y OHA UK, Tel: 0171-353 8900; Fax: 0171-352 3325,
Emall: $00020.2632@® compuserve.com

3802 N Richmand St, Sulte 271, Arington, VA 22207 USA

Tel: +1 (703) 528-7624; Emall: dick helt@acm.org

28 Rushton Road, Wilbarston, Market Harboraugh, Leics. LE16 8GQL UK.
Tel; 01536-770999

9 Hlll End, Frosteriay, Bishep Auckland, Co. Durham DL13 28X UK
Tel: 01388-527190. Compusarve: 100021,3073

11 Aubum Read, Redland, Bristol 856 6LS UK, Tel: 0117-5760036
emall: acamacho @cix.compulink.ce.uk Reutenet (Sharp): ACAM
54 The Crescent, Miltlan, Weston-super-Mare, Avon, BS22 8DU UK
Tel: 01934-625181

APL Products, IBM Santa Teresa, Dept M46/D12, 555 Bailey Avenue,
San Jose CA 85141, USA. Tel: +1 (408) 463-APL2 (=2752)
Fax: +1 (408) 463-4458 Emall: APL2@vnet.lbm.com Cserve: GO IBMAPL2

Rusper, Sandy Lane, vy Hatch, SEVENOAKS, Kent TN15 0PD UK
Tel: 01732-885126

3 5. Tulenin Lane, St. Petersburg 191186 Aussia.
Tel:+7 812-812-2673 Fax:+7 812-311-2184 Emall:aim @infostroy.spb.su

Nordre Strandve] 119A, DK-3150 Hellebaek, Denmark
Tal+4542 107022 Fax: +45 4210 75 74 Email; Insight@inst.uni-c.dk

9 Gun Wnarl, 130 Wapping High St, Londen E1 9NH Tel: 0171-265 1120

11860 Alpharetta Highway, Sulte 455, Roswell, Georgla 30076, USA
Tel: +1 (404) 410-1700. Fax: +1 (404) 410-1773 Csetve: 70373,2676

33 Malor Street, Toronto, Gntarlo, Canada M55 2K9
Tel: +1 (416) 925-6096; Fax: +1 (416) 488-7559

580 Eyer Driva, #81 Pickering, Ontaric, Canada L1W 387
Tel: +1 (905) 837-1895 Fax: +1 (305) 831-5172

23-2-302 Hiromichl, Adachi-ku, Tokyo 120, Japan

Business & Technology Centre, Bessemer Drive, Stevenage,

Herts SG1 20X UK. Tel: 01438-310155 Fax: ¢14358-310131

413 McHenry Read, Suite 161, Buffale Grove, IL 60089 USA

Tel:+i (708) 458-7520 Fax:+1 (708) 459-8501 Emall: Info@lnge.com
519 Webster's Land, Edinburgh EH1 2RX, Scotiand, LUK
TeyFax/Answerphone: 0131 228 3580 PagerfVoicemall: 01426 98 3858
Compusaerve: 10001032

PO Box 56-036, Tawa, Wellingtor, New Zealand.

Te! and Fax: +84 (4} 232-4440 Emall; 100242.2835@ compuserve.com
CSIRC Div Atm Res, Private Bag No.1, Mordiallos, Victoria 3195, Australia
Tel: +61 3 566 7574 Fax: +81 3 586 7600 Email; hid @ dar.csiro.au

36

VECTCOR

Vol.12 No.4

Mercia Scftware Lid.

MicroAPL Lid.

Ellis Morgan

New York SIG APL
Casis Systems

Qptima Systerns Lid
Potonac APL SIG

QB On-Une Systems

Gareth Brentnall

David Eastwood

Ellis Morgan

Nestor Nelson
Theao Zwart

Paul Gresvenar
John Martin

Philip Bulmer

Renalssance Data Systems Fd Shaw

RE Time Tracker Gy
Rochester APL

The Rochester Group Inc,
Rome/ltaly SIG
SE APL Users Group

Shandell Systems Ltd.

Snake Island Research Inc

SOCAL (South California)

Soliton Associates

SovAPL

Strand Software Inc
Rex Swaln

SWAPL

SwedAPL

Swiss APL User Group

Sydney APLUG
Sykes Systema Inc

Toronte SIG
Unlwarse

Wicklitfe Computer Ltd
Warwick Unlversity

Zark Incorporated

Richard Eller
Gary Dennis

Robert Pullman
Maric Sacco

Jahn Manges
Maurice Shanahan
Bob Bernecky

Roy Sykes Jr

Laurle Howard

Alexandar Skomerekhow
Anna Faust

Rex Swain

Stuart Yarus

Christer Uithlelm

Reb Hodgkinson
Roy Sykes dr

Ben Best
Eric Lescasse

Nick Teiter
Prot. Jeft Harrlson

Gary A. Barggulst

Holt Geurt North, Heneage Street West, Asten Science Park, Birmingham
B7 4AX UK. Tel: 0121-359 5096, Fax: §121-350 0375

South Bank Technopark, 90 Lenden Road, LONDON SE1 6LN UK
Tok 0171-922 8866 Fax: 0171-928 1006
Emall: MicreAPL @ microapl.demon.co.uk

Myrtle Farm, Winchester Road, Stroud, Petersfleld, Hants UK.
Tel: 01730-263843

PO Box 138, NY 10185-0002, USA

Lekstraat 4, 3433 ZB Nieuwegeln, Holland Tel: +31 3¢ 60 66 338
Fae: +31 30 60 65 844 Email: 100447,431 @ compuserva.com

Alrport House, Purley Way, Croydon, Surrey CRO OXY UK.
Tel: 0181-781 1812 Fax: 0181-781 1599

51 Monroe Street, Plaza East Twa, Rockvilie MA 20850-2421 USA
Tel: +1 (301) 762-9372 Fax: +1 {301) 762-8375 Emall;jam@acm.crg

5 Surrey House, Portsmouth Rd,, Camberley, Surey, GLME 1LE UK.
Tel: 01276-855880 Fax: 01276-855301

PO Box 421, Georgetown, CT 06962, USA. Tel: +1 (212} 864-3078
PO Box 363, FIN-00101 Helsinki, Finland. Tel: +358-0-400 2777

Saliton Associates, 1100 University Avenue, Rochester, NY 14607 USA
Email: gsd @ipsalab.tor.soliton.com

50 S.Union St., Rochester NY 14607-1828, USA.
Tel: +1 (716) 454-4360, Fax: +1 (716) 454-5430

Caselia Postale 14343, 00100-Roma Trulle, Haly
Emalf; marsac@vnet.ibm.com

413 Comanche Trail, Lawrencaville, GA 30244, USA
Tel: +1 (770) §72-3755 Email: seapldoc@ aol.com

Chiltern House, High Streat, Chalfont St Giles, Bucks HP8 4QH UK.

18 Fifth Street, Ward's Island, Toronto, Cntario M5J 2B2 Canada
Tel: +1 (416) 203-0854 Fax; +1 (416} 203-6999
Emall: bernecky @ secg.toronto.edu

Sykes Systems Inc, 4649 Willens Ave, Woodland Hills,
CA91364-3812 USA Tal: +1 (B18) 222-2759 Fax: +1 (818) 222-9250

Soliton Assoclates L1d, Groot Blankenberg £3,
1082 AC Amsterdam, Netherlands
Tel: +31 20846 4475 Fax +31 20644 1206 Emall;sales@soliton.com

PO Box $061, Cbninsk-5, Kaluga Reglon, Russla
Email:askem @ apl2.obninsk.su

19235 Covington Court, Shorewood MN 55331 USA
Tel: +1 (612) 470-7345 Emall: amfaust@aol.com

8 South Street, Washington, CF 0G793 USA. Tel: +1 (86C) 868-0131
Fax: +1 (860) B58-9970 Emall: thswaln @acm.org

PO Box 210387, Bedford, Texas 76095, USA Tel: +1 (817) 577-0165
Compuserve; 73700,2545 Email:syarus @unlcomp.net

Novator Consulting Group AB, Svardvégen 11C, S-182 33 Danderyd
Sweden Tel: +46 8 622 63 50 Fax; +4G B 622 63 51 CServe: 100341,404

Swiss APL User Group, CH-3001, Bemn 1, Switzerand
Emall: sl@Hl.unizh.ch

PO Box 1511, Macquarle Centra, NSW 2113, Australla Tel:+61 2 267 6313

4849 Willans Ave,, Woodland Hllls, CA 913584, USA
Tel: +1 (818) 222-2759 Fax: +1 {8148) 2228250

PO Box 55, Adelalde St. Post Cifice, Terente Ontarle MSG 2J5, Canada
Emall: benbest@lo.org hitp:ffwww.sigapl.minlake.com/sigaplhvelcome.himi

Tour Neptune, Cedex 20, 92086 Paris la Defense 1, France.
Tel +33 (1) 47-78-78-00, Fax: +33 (1) 40-90-04-11

76 Mctorla Rd, Whitehaven, Cumbiia, CA28 8JD UK. Tel: 01546-692888

Dept of Statistics, University of Warwick, Coventry, CV4 7AL UK
Tel: 01203-523369

23 Ketchhrook Lane, Ellingten GT 06029, USA, Tel: +1 (203} 872-7806

37

VECTOR Vol.12 No.4

AP119/W - a First Look

by Timo Laurmaa (100316.3367@compuserve.com)

Introduction

API19/W is a product which hooks Dvalog APL/W to TCP/IP, today regarded
as the communications protocol to connect computers together. It was written by
Andrei Kondrashev of Lingo Allegro, Inc. The product sells for US$300, but early
birds attending APLY5 were able to get a price of just below $80. Prices as low as
these are not likely to generate significant revenues for Lingo Allegro, but that
does not necessarily create a problem: Lingo’s main business is in consulting, and
the primary purpose of tools like AP119/W or GDDME (see Vector 10.2 and 10.3)
is to leverage their consulting business, in which connections to the mainframe
APL2 world are valuable.

AP119/W was apparently designed to be fully compatible with AP119, IBM's
TCP/IP auxiliary processor, with a target of providing the communication
between APL user interfaces in Windows and APL2 legacy applications on the
mainframe. However, judging by the enhancements that have been implemented
in 8 months between version 1.0 beta and 2.1 beta (my current version), AP119/W
is developing into a sophisticated but easy to use package, which connects
APL/W with other APL versions and non-APL environments such as Internet
servers and browsers.

Installation and Documentation

The installation and invocation of AP119/W are almost identical to those of
GDDME, a GDDM emulator by the same author (Vector 10.2 pp. 45-48). ap119.exe
is an independent task, and it uses DDE to communicate with APL/W. It is
enough to copy apli9.exe into the directory of your choice, indicate the location
by the PATH variable and call an APL function such as:

38

VECTOR Vol.12 No.4

v TCPSHARE ;R
[1] an Sign on to AP119/W using Tcplp

(2] +(2=08Vv0'TcpIp')/0
[3] aSet initial value
ful TcpIp+'!

[5] R«'DDE:'[]SVO'TcpIp'
[6] s Load and run AP119
[71 OCMD(PATH,"AP119 -',OWSID,' -TcpIp '})*'!
L8] « Be sure that APi11% has answered
(9] Wait:»(1»2>(SVS'TecplIp!')/Wait
[1c] w Set full interlock
[11] R«1 [OSVC'Tcplp:®
v

Provided that a TCP/IP stack and the file winsock.dll are present, a Teplp icon
pops up {(unless hidden by a startup parameter) and the shared variable TcpIp
can be assigned AP119 commands. The use of a cover function is recommended:

v Z+TCP X;APRC;TCPRC
[11] nPass a request to TCOP/IP via AP119

(21 TepIp+X

[al Z+TcpIp

[s] (APRC TCPRC Z)}+2Z

{51 +{APRC=0)/0

[&1] ('AP119 error: ',¥APRC TCPRC)[ISIGNAL €66

v

The Programmer’s Reference follows Lingo Allegro’s tradition of high quality
documentation. It is a useful combination of a 30-page function reference and a
20-page introduction to TCP/IP and sockets. I learned the basics of socket
programming by reading IBM’s APL2 System Services Reference, and I am
convinced that the AP119/W manual is at least equally suitable reading for
TCP/IP beginners.

Working with Sockets

In TCP/IP, a socket is the fundamental concept onlo which all protocols {such as
FTP or HTTP) are based. AP119/W supports stream sockets and datagram
sockets, of which I will only discuss the former. The following AP119 call
allocates a new socket:

[(+TCP 'SOCKET' 'STREAM!
o]

Since sockets are used for two different purposes, communicating with a known
pariner, or waiting for new connections initiated by so far unknown users, I found

39

VECTOR Vol.12 No.4

the following piece of code to be useful, because it combines the AP119 calls that
are always required:

Vv Z+L TCPSOCKET V;A;IA;PN;PT;5

[1] A Get a new socket

[2] n For listening If L=1

[3] (TA PN)<V a IP address, port nr
[4] Z+8«TCP'SOCKET'" 'STREAM' A Gel a new socket

[s] +L/LB a Jump 1f LISTENing
[6] A«TCP'BIND'S 0 70.,0.0.,0" n Bind the socket

[7] A«TCP'CONNECT'S PN T4 a Address Id4, port PN
[8] -0

[a] LB:A«TCP'BIND'S PN'0.0.0.0" n Bind to port PN

[101 A+TCP'LISTEN'S 5 a Socket for listening

v

If you want to create a client connecting to the World Wide Web server of
Statistics Finland, the IP address of which is 193.166.0.71, the connection to their
WWW port 80 is established by:

J+0 TCPSOCKET '193.166.0.71' BO
1

The result 1 indicates that socket number 1 is successfully connected to port 80 of
wune.stat fi. If the IP address or port number are incorrecily specified, AP119
blocks for about halfl a minute and then returns an error code:

AP119 error: 1 10061

AP119 has an optional error display facility which shows the error codes together
with a description in a message box:

YECT11S - Teplp

TCPAP error 10061 occurred:
Connectlon refused.

Message boxes are very useful when designing and testing an application, but the
possibility to turn them off is invaluable in production systems, particularly
servers, where the application is intelligent enough to trap non-zero error codes
and take the necessary action.

40

VECTOR Vol.12 No.4

If instead of connecting to a known server you want to create a server of your
own, you allocate a socket by:

[J+1 TCPSQCKET '‘' 3850
2

The result 2 indicates that socket number 2 is now listening to port 3850 (a not-so-
well-known port of your choice). A client can now connect to this socket by
knowing your TP address and your port number 3850, There are several ways to
proceed and find out if a client wants to connect:

J+TCP "ACCEPT" 2
d 1256 158.,152.217.93

The server has accepted the connection from socket 2 and created a new sockef
number 3 for the communication that will take place belween your server and the
client, whose IP address is 158.152,217, 93, The original socket 2 remains
listening for new connections. The problem with ACCEPT is that the system
blocks until a client requests a connection. This is where the SELECT command
will be useful:

1>TCP 'SELECT' (2 3) '' '' 15
o1

AT119 will wait at most 15 seconds (the last item in the vector is timeout) for data
to be read from sockets 2 or 3, and rehurns a 1 for each socket where an event has
taken place. In this case, there has been no activity in socket 2, but data can be
read from socket 3, which was created above for the communication between this
server and user 158,152,217,93 . SELECT can be set to wait indefinitely
{timeout 0) or return immediately (timeout negative).

The data sent by user 158.152.217.93 cannow be read:

f+TCP 'RECV' 3 0 'N'
Hello, are you there?

and a response can be sent:

O«TCP 'SEND' 3 0 'N' 'Yes I am, Who are you?'
22
n 22 characters were sent

41

VECTOR Vol.12 No.4

These examples show that to get going with AP119/W is quite easy. Building full
scale applications with multiple users, possibly working on different platforms, is
more challenging but by no means terribly difficult.

Building Real Applications

Considering that AP119/W is an APL interface to a standard winsock.dll, the
application designer needs to be aware of pitfalls such as:

= Data is sent and received as simple character strings. Unless only APL/W
users are involved, the application must convert numeric, nested and
multidimensional to and from a transfer form. I developed a simple (ITF
emulator for APL/W in order to exchange data between APL2/370 and
APL/W.

» If APL characters are sent across different platforms, the application must
convert between different J4Vs.

+ TCP/IP chops the data into chunks of 2 kb or less. Even though the SEND
command may accept very long strings, on the other side the RECV command
only returns one chunk at a time, and the application must catenate them
together and know when end-of-data has been reached. If only APL/W users
are involved, AP119/W goes quite a bit further (in release 2.1).

AP119/W Release 2.1

For some weeks now 1 have had a beta version of the new release of AF119. Some
of the enhancements make the application designer’s life just a little bit easier,
some of them are bound to revolutionise the way of APL programming with
sockets,

= The new conversion option ¥ allows for an autematic conversion from any
APL array into a character string (when sending) and vice versa (when
receiving). This option also caters for catenating small chunks together before
returning the full APL variable.

« Andrei has been clever encugh to notice that this approach may have its
downside: if AP119 receives a large variable using the ¥ format, the execution
of the RECV command does not terminate until the wheole variable has been
built from possibly hundreds of small chunks. Network failures or problems
on the sender’s side may even lead to a case where AP119 never receives the
entire data. The solution is to receive the data without conversion as character
strings and at the end apply a new command CoN¥VERT which returns an APL
array.

42

VECTOR Vol.12 No.4

« The commands GETHOSTID and GETHOSTHAME have been extended to use
Internet name servers to convert between host names and Internet addresses.
You can now query II* addresses by specifying host names such as apl-
385.demon.co.uk or wunw.stat fi.

« The gem of release 2.1 is the introduction of event driven socket programming.

Event Driven Socket Programming

The traditional approach to detect - typically in a server - if any of the active
sockets has pending client requests is to call SELECT with a reasonable timeout.
The longer the timeouts, the less the application can do other things. With the
availability of the new NOTIFY command API19 is now able to make the
TCP/IP kernel interrupt the APL application when an event of interest occurs in
the network.

The TCP/IP events get to the APL workspace via an invisible form, from which
APL/W is able to catch the information related with the events. Therefore, the
invocation of AP119 should be followed by statements like

*TCPF'(WC'FORM' 'APL-119' ('COORD' 'PIXEL')
YTCPF'WS{"EVENT' 5 'TCPEVENT')('VISIBLE' 0}

The sockets allocated later on will notify this form about their TCP/IP events if a
statement like this is called for socket S:

TCP'NOTIFY'S('TCPF'OWG'CAPTION'){+/1 8 32)

Whenever socket 5 is ready for RECV (1), ACCEPT (8) or CLOSE (32), the callback
function TCPEVENT is executed, for example:

v TCPEVENT MSG;A;EVENT;ERROR;TIA;P;S;(10
[1] n A simple TCP/IP event handler
[2] 0Io+1

[3] (ERROR EVENT)}+0 256T3oMSG p Get event nr
(4] SN+4oMS8CG a Socket number
[51] +(EVENT=1 8 32)/READ,ACC,CLS a Jump to event
[6] READ:A«TCP'RECVY'SN © 'N! A Receive chunk
[71 2V DATAY, (¥8N), " ,+4"! a Append to data
{8] -+0
[9] ACC:(82 P IA)+TCP'ACCEPT'S a Get new socket
[10] &'DATA ,{352),'+IA" n New data variable
[11] =0
[12) CLS:A«TCP'CLOSE'SN a Close socket
[13] STOREs'DATA',¥SN n Store data

v

43

VECTOR Vol.12 No.4

This is all it takes to implement a simple TCP/IP protocol, which in the example
above collects data sent by clients and, when the client closes the socket, calls
STORE to save the collected data further to a suitable place. The beauty in the
functionality of NOTIFY is that when ACCEPT creates a new socket $2 based on
the listening socket S, 52 inherits the properties of S, including the NOTIFY
settings.

Suggestions for Improvement

The new version leaves little to be desired. Nevertheless, a full-blown TCP/IP
product might well offer additional goodies such as:
« standardisation of the TCP/IP solutions of different APL vendors would be

necessary to allow for the effortless transmission of APL arrays between
different APLs.

» a built-in data compression facility could reduce transmission times
dramatically. Standardisation would be an issue here, too.

» it seems that APT19/W does not work well with all versions of winsock.dll. An
additional warning in the documentation about this might be useful.

Who is AP119/W for?

Yor any company or institution, where TCP/IP is in place, AP119/W is an easy
and inexpensive starting point for solving APL connectivity problems. It is not
(and is not intended to be) a turnkey solution, but it provides all facilities for the
rapid development of cross-platform connectivity between APL2 and APL/W -
or within a network of APL/W PCs.

AFP119/W is particularly attractive for APL2 shops, where Windows has been
selecled as the standard PC operating system and where the unavailability of
05/2 excludes the use of IBM’s built-in co-operative processing facilities across
different platforms. Instead of APL2/2 and its AP119, Dyalog APL/W with
AP119/W can provide a nice path to program-to-program communication. This
typically means accessing mainframe data from PCs, but a less traditional
approach would be to let mainframe programs have real time access to PC or
LAN based data.

AP119/W offers attractive possibilities for home users, too. I installed the new
WinCim 2.0 for integrated CompuServe and Internet access, and was excited to
see that the setup allowed me to establish an AP119/W connection from my home
PC in Switzerland to an APL2/370 workspace that Jaakko Ranta had)L 04Ded in
Finland. Using the same concept, any computer connected to Internet can be used

44

VECTOR Vol.12 No.4

from almost anywhere in the world, for a price close to what a local telephone call
costs. Quite a tool for a travelling APL consultant who can use, design and
maintain applications far away from the customer.

Conclusion

AP119/W release 1.0 was a solid piece of programming, which provided the
means for building client/server applications across different APL platforms.
Release 2.1 goes several steps further by introducing the concept of event driven
socket programming and by facilitating the exchange of APL arrays across the
network. Unlike GDDME, which was Lingo Allegro’s solution for the declining
market of old APL2/370 applications run on PCs , the company now has a
product for an exploding (1 hope) market of Internet and intranet connectivity.
The ideal place, however, for AP119/W would be as an integral part of Dyalog
APL/W.

Vector Back Numbers

Back numbers of Vector are available from:

British APL Association,
c¢/o Gill Smith,

Brook House, Gilling East,
YORK YO6 4]]

Price in UK: £10 per complete volume (4 issues);
£12 (overseas); £16 (airmail) including postage.

Renaissance Data Systems
P. O. Box 421 -V
Georgetown, CT 06829
(212) 864-3078

Books on APL and J and other curiosities
of merit!

Renaissance Data Systems announces a change in its
mailing address. Please note that the telephone number
remains the same.

If you would like a copy of our latest catalog, please send us
a self-addressed legal sized envelope with one first class
stamp (if in the U.S.},

Included are such titles as: APL is EASY, APL - An
Interactive Approach, APL2 at a Glance, APL - the
Language and its Actuarial Applications, APL as a Tool
of Thought proceedings, I-APL publications and
software, Boolean Functions and Techniques, The
FinnAPL Idiom List, The Toronto APL Toolkit,
Mathematical Experiments on the Computer, Probability
in APL, APL - Stat: Do it yourself guide to computational
statistics, A Source Book in APL - Approximately 80 titles
in alll

We also carry J publications, including Programming in J,
An Implementation in J (structure and source code),
Arithmetic, and Calculus.

Shareware and commercial APL interpreters and J2
interpreters are available as well.

VECTOR Vol.12 No.4

JAD SMS - An Object Management
Environment for APL*PLUS II V5

reviewed by Jon Sandles

Introduction

In the last Vector I wrote about problems I had maintaining objects within the
Causeway environment for Dyalog APL. There seemed to be a need for some sort
of object management system and version control management system to allow
maintenance of objects across different releases of Causeway.

Well over a year ago Vecior was sent a copy of JAD SMS - “System Management
Software for APL” - to review. For some reason, which now escapes me, I found
problems getting the software going, but then I decided to look again inte the
whole topic of “Object Management”, and as a result I mailed the creator of JAD
SMS - David Crossley - and asked him for the latest version. Fortunately I had no
problems getting the software going this time, so I began to explore what it could
do for me

What Does JAD SMS Do?

JAD SMS is written in and used to manage functions/ variables (referred to in the
rest of this article as objects) in APL*PLUS 11 v5, although there are plans to port it
to other APLs. The evaluation copy came bundled with the Toronto toolkit, which
is a useful place to start in seeing how the software works. The system is made up
of a bunch of APL functions (unfortunately locked) which can be)copy’ed into
your workspace when you need them. They can be run interactively or embedded
into your own functions. Also supplied is a DOS-based pop-up windows interface
which calls all the lower-level functions for you. In this review I concentrate on
this full screen interface, but bear in mind a great strength of this system is that all
the lower-level code is well documented and you can build your own
interface/routines based on it.

Why do we need JAD SMS5? You've probably tried to organise your workspaces
before. Namespaces have been helpful for this purpose. Indeed, the way JAD SMS
stores functions in a hierarchical tree structure is much the same as storing your
functions in a bunch of namespaces - so what more does it give us? Having stored
your functions in namespaces, you've also probably used that same structure in
many different workspaces - indeed all you needed to do was)copy the

47

VECTOR Vol.12 No.4

namespace tree to profiferate whole chunks of working systems from one
application to another. But what happens when you find a bug right in the core of
one of these proliferated functions? All of a sudden you need to update all the
different occurrences of the function - remembering where they all are could be
quite tricky. In a multi-developer environment the problem is even worse -
there’s always someone who Likes to ‘fiddle” the utilities to work the way they
want them to. If you do a wholescale update of every workspace you can lay your
hands on with the fixed function you could create three different problems
(and probably more).

(i) You fix the bug - bul maybe introduce new problems since the original
developer had already worked around the problem - the work-around could
now have undesirable effects.

{ii} You fix the bug - bul you lose any fudges other developers have built into
specific applications over time.

{(iii) You fail to fix the bug - none of your workspaces work anymore!

Thus, implementing the bug-fix could be very time consuming, and testing the
bug-fix could be even harder. An object management utility should enable the
development team to work together and share the same utility set - but be
flexible enough to allow developers to adjust them in a controlled manner. It does
this by providing information about the status of utilities in different applications,
and the status of the master utilities. This information allows developers to
update common code across a number of applications in such a way that they can
have a high degree of confidence that the change will not introduce new bugs.

A Test Example

To illustrate how far JAD SMS takes us towards this goal I developed a test
example. 1 have a set of functions which provide reasonably advanced print
capabilities from DOS - allowing the user to select printers and define the printer
type and select the paper orientation etc. (if the printer is capable). The
functionality is quite simple - OPEN 'FRED' opens a channel for printing, APR
MAT sends data to the open print channel ~ and CLOSE 'FRED!' closes the print
channel and spools the print to the printer. The functions - although quite simple
~ rely on quite a lot of standard utility code and when I tried to isolate them from
the rest of the workspace [was surprised that I actually needed a lot more than
just the 3 functions to make them run. In fact I needed a monstrous 37 functions!
Only two of these were specific to the print - all the others were utility functions
which are used hundreds of times in hundreds of workspaces.

48

VECTOR Vol.12 No.4

This should illustrate how dependent code is on the standard utilities that you
take for granted. Not only that, but if a bug was to crop up in one of these utilities
(it does happen) how important it would be to identify where you need to
upgrade your workspaces.

To help illustrate further here is the calling tree of the function GPEN

OPEN

1
I T f T T T F i [1

CAT CHKALPTS TF NEXIST WINAPICK WINAUNDO ADOIF AIOTA ASETUP ATAB

Some of these functions have their own calling trees calling other lower-level
utilities.

JAD SMS allows us to store our utilities in a structure very similar to the DOS
directory structure. A top-level utility library is in effect an APL sharefile (called a
database in JAD) SMS) storing all the utilities, but within that you can break the
utilities up into a hierarchical structure made up of directories of objects. This is
not the only way of grouping utilities in JAD SMS but it is the most important as
directories are the level at which security is defined — and hence the level at which
most of the JAD SMS utility functions work.

Security is an important aspect of JAD SMS and it works using an access matrix
approach similar to many APL sharefile systems. It means you can give read-only
access to utilities to all but the few who are actually responsible for the utility
code, but also create new ‘development’ areas where you give access to
completely different people. You may even want to prevent people from
accessing areas of the utility set completely. Security is very well defined in JAD
SMS and it seems to provide all the functionality you would want from such a
system.

So what does it lIook like7

(Remember you don't have to use the full screen interface - all the lower-level
functions are provided and fully documented - but I found the full screen
interface very useful to get the hang of what the system can do.)

49

VECTOR Vol.12 No.4

TEST Tree

Esc Quit F1 Help FZ Users F2 Files F4 Search F5 PermTab f6& OFdup

F8 Print F9 Export Fl2 Ver Bg +/+
Js Dir Actions: Make Delete Rename HMove Attributes Enter
TEST GEN

PRINTER

WIN

Here I have created a database file called TEST in which I created 3 directories
called GEN, PRINTER and WIN. This was simple enough to do - press <F3>
‘Files’ and add the file ‘TEST'. Then press <M> ‘Make’ and type in the name GEN
etc. I made these 3 directories to store my printing utility code. In GEN I was
going to put any general utilities that come in useful all the time, in PRINTER the
utilities specific to printing, and in WIN the utilities specific to windowed output.
I then loaded my printer workspace and copied in JAD SMS and populated the
directories with the appropriate functions.

This was also very simple to do - 1 selected the directory 1 wanted to populate
and hit Enter ~ this takes you into the directory screen (shown later) - hitting F2
<Add> brought up the additions screen. Here you can manually type in the
names of the objects you want from your workspace adding into this directory.
Far easier, as long as the workspace is not too big, is hitting F4 <AlIWs> to get all
your functions/variables from the workspace and deleting all the ones you dont
want in this directory. (It also only picks up those objects that aren’t already in the
library.)

1 did this for all three directories and the PRINTER directory screen locked like
this

50

VECTOR Vol.12 No.4

TEST.PRINTER Directory OPEN edited

Esc Cancel F1 Help F2 Add F3 OK F4 Search F5 Action F6& Restore
FY7 Sort F8 Print F9 Attribs F10 Select Fll Cmpre F12 Tree Pg 1/%

1 of 10 Is Keys: ALT+A..Z, BCDEHTL OQOPRS

Name Type Date Time Class # of Ver Rel User

Ver # #

CHKLPTS £ 96-02-29 21:16 1 L o Js
CLOSE bl 96-02-29 21:16 1 1 0+ Js
CPEN £ 96-02-29 21:16 i 1 o+ Js
OPTIONS £ 96-02-29 21:16 1 1 0% J5
APDESC v 96-02-29 21:16 1 1 0% J8
APR £ 96-02-29 21:16 1 1 o~ Js
APTYPE v 96-02-29 21:16 1 1 o~ I8
ASETUP £ 96-02-29 21:16 1 1 0 75
assprdest v 26-02-29 21:16 1 1 0+ s
Addpreset v 96-02-29 21:16 1 1 0* a5

This screen shows all my functions and variables that are directly related to
printing - the v and the f for functions and variables. You then have the
timestamp of when that object was last changed. On the right hand side is the
user who last made a change to the object. The 3 columns of 1s and 0s represent
the number of versions - the version number and the release number of that
particular object. "Wity do you need all those?” you are probably thinking.

Remember what we are trying to do here - to manage a bunch of functions that
are in use in a variety of systems. When the utility developer upgrades/fixes a
utility you don’t always get your system administrator to pull in the new version
immediately. So, although you have fixed the bug, some of your users may well
be running old versions. If you do not keep a copy of the old version you might
get very confused when they re-discover the bug you have just fixed in 5 years’
time. JAD SMS allows you to maintain both old production versions of code and
new development versions of code all in the same database directory.

By Way of 1llustration ...

To illustrate let’s assume 1 have need to fix the top-level function OPEN. After
editing, JAD SMS reports the following for that function ...

Name Type Date Time Class # of Ver Rel User
ver #
OPEN £ 9€6-03-06 19:41 2 2 O+ IS5

There are now two versions of the function (I elected not to overwrite the original
but create a new version). The current version is 2. (These are always the same
urless you delete old/unwanted versions - version numbering is always

51

VECTOR Vol.12 No.4

absolute.) The previous version is kept unless you elect to overwrile - and is read
only for all versions bar the most recent. You can easily scroll between versions to
compare any changes etc.

The release number is stll 6*. What does the * mean 7 Well - the release
mumbering scheme is a way of protecting versions of code that you have released
to your application developers. Once you release a set of utility code from JAD
SMS you apply a release number and all the latest versions of code get the *
removed and the new release number is applied (unless it already is released
status in which case it would already have had its * removed and it would keep
its original release number). Once the latest version of an object is released it
cannat be changed any more. To change the function definition you must create a
new version of the function. Application developers must then retrieve either the
latest versions of the functions (if they are developing new code} or the latest
releases of the functions (if they are updating production systems).

To show this in action 1 applied a release number of 0.1 to all my printer functions
(1 would then communicate to all teams that the latest release is 0.1). This clears
all the *s from the latest versions of each object (indicating that they can no longer
be edited). To check this I then edited OPEN again. When 1 saved it, JAD 5MS
automatically created a new version and re-added the * to the release number (to
indicate that it is an unreleased object).

Name Type Date Time Class # of VYer Rel [User
Yer # #

CLOSE f 96-02-29 21:1¢ 1 1 0.1 IS

GPEN f 96-03-06 20:26 3 3 0.1 g5

Notice it is still part of the 0.1 release set - that is because JAD SMS always
applies the latest release number to any new versions - and because 1 hadn’t yet
defined the next release number it used the most recent existing one. I'm not sure
Ilike the way it does this - I think it is confusing. To get the functionality I was
expecting you always need to create a development release level that gets applied
1o all changes following the last release you did.

In JAD SMS applying a release protects the latest versions of all code - but allows
you to create new versions of code that still get attached to that release number.
Hence application developers might get different sets of code depending on
when they pull it the latest release of the code. It would be better if code changes
after a release were flagged as ‘unreleased’ until the code is next released. Thus
developers have the choice of pulling in the released set of code or alternatively
all the latest versions of the code if they want the development set. In reality it
does this with the * - the latest released code is the highest release

52

VECTOR Vol.12 No.4

number/version combination that does not have an *. (But this is a bit too
confusing!)

The JAD SMS version/release mechanism illustrates that you need quite a
complex method of tracing utility code effectively.

Associating Objects

The final aspect of JAD SMS I'm going to talk about (and I'm skipping over quite
a lot of functionality) is how you associate objects with each other to ease
retrieval. Going back to my PRINTER example: the 0PEN function had quite a
complex calling tree and some of the lower functions had calling trees themselves.
When a developer retrieves 0PEN he would ideally like the option to retrieve all
the required sub-functions to make that function work ~ rather than having to call
the function 20 times until he has copied all the required functions identified by
20 VALUE ERRORs!

JAD 8MS provides a method of achieving this by defining associated objects. Each
object has an optional list of associated objects - these are objects that will also be
retrieved/printed if the base object is selected. The association lists have to be set
up manually - so if you add a call to a new function in an object you need to
remember to add it to the association list. Some object management systems
provide association automatically by lexically analysing the function every time
you save it/ retrieve it.

There are other aspects of the JAD SMS method of associating that are fairly
crude. When you retrieve an object (whatever version) which has associated
objects you only ever get the latest versions of the associated objects - this could
lead to inconsistencies - in reality it ought to search for the latest version from the
same release as the retrieved object. Also associated objects need to reside in the
same directory ~ if you look back at the calling tree for OPEN it called functions
that resided in all three of the directories that I defined. Fortunately JAD SMS
provides a second mechanism for this ...

Object linking allows you to reference objects in multiple directories whilst only
really storing them once. Thus, going back to the OPEN function again, we need
all the functions it calls linked into the PRINTER directory. To do this you have to
highlight the functions you want to link to the PRINTER directory in their source
directory, and then press <F5> and select ‘link to another directory’. (I then tried
changing the source of one of the linked functions and the link appears to be lo
the latest version always rather than to a specific version - again this could cause
inconsistencies?)

53

VECTOR Vol.12 No.4

I was now in a position to associate all the sub functions of OPEN - 1 did this - a
simple case of typing in all the names on the association screen that comes with
every object/version. (This isn’t validated so typing errors could be costly!) My
PRINTER directory now looked like (first page only) ...

TEST.PRINTER Directory OPEN edited
Esc Cancel Fl Help Fz2 Add F2 OK F4 Search F5 Action F& Restore
F7 Sert F8 Print F9 Attribs F10 Select Fll Cmpre F12 Tree Pg t/%
1 of 18 Js Keys: ALT+A..Z, BCDEHLOF R 5
Name Type Date Time Class # of Ver Rel User
ver # #
CHKALETS f 96-02-29 21:16 1 1 0.1 Js
CLOSE £ 96-02-29 21:16 1 1 0.1 78
+OPEN £ 96-03-07 20:4% 4 4 0.3% Js
OPTIONS £ 9g6-02-29 21:16 1 10.1 Js
4PDESC v 96-02=-29 21:16 1 1 0.1 Js
APR e 96-02-29 21:16 1 1 0.1 Js
LPTYPE v 96-02-29 21:16 1 1 0.1 I8
ASETUP £ 9€6-02-29 21:16 1 1 0.1 PE
aarsprdest v 96-02-29 21:16 1 1 0.1 Js
saspreset v 96-02-29 21:16 1 10.1 as
CAT £ 1 %6~03-07 22:39 2 2 0+ Js
IF f 1 %§-02-2% 21:12 1 1 0+ Js
NEXIST £f 1 96-02-29 21:12 1 1 0* Js
ADOIF £ 1 96-02-29 21:12 1 1 0* J5
sTOTA £ 1 96-02-29 21:12 1 10~ Js

Classes: none defined

Notice the ‘+’ beside 0 PEN - this indicates that there are associated objects. Notice
the ‘I against the functions towards the bottom of the screen - these are the
objects 1 linked in from other directories - they are read only when viewed from
this directory - but notice that CAT has had its version incremented even though I
originally linked version 1 of CAT. 1 subsequently created a new version of CAT
just to see what happened to the linked version.

To illustrate (a) the power of some of the low-level functions provided with JAD
SMS and also the point of all this messing abeout

JCLEAR
CLEAR WS
)FNS

JCOPY 2 SM523
SAVED 04/12/1995 15:38:37
JENS
jcompare jdelete jfile jprint jselect jsms jsurrog

jcopy jedit jgei jretrieve jsetup jstore

VECTOR Vol.12 No.4

'+A' jretrieve 'PRINTER; CPEN!
11 objects retrieved
OPEN CAT IF CHEALPTS NEXIST NINAPICK HINAUNDO aDOIF
4I0TA ASETUE ATAB

The “+a’ in the left argument requested all the associated functions - you can see
that this worked fine - but some of these functions had sub-functions as well - to
pull back all these] would have to repeat the process I went through for OPEN .
This would be very time-consuming and difficult to maintain for a large utility
sct. However, in the list of possible to extensions to the system there is a mention
of being able to retrieve called functions automatically - this would remove the
need for typing in all the asscciated function names. (Although I expect you'd still
need to do the object linking bit?)

Summary

JAD SMS provides a sound multi-user environment for sharing multiple versions
of utility code and allowing multi-user development and retrieval. It also
provides a good method of defining the status of code via the release codes and
status symbol (*). There are many features I haven't reviewed - printing, code
searching, multi-user access and function creation, and the lower-level functions
that are available. The lower-level functions could be embedded within your
workspaces to automatically retrieve latest versions of utility code. Also
developers can use them to automatically add their own changes to utility code.
The full screen interface was reasonably good and the online help also pretty
good. The only real gripe I had is that I found the manual exceptionally difficult
to dip into - you really have to read the whole thing from cover to cover and even
then I found it very difficult to look things up quickly.

JAD SMS is currently being ported to Dyalog APL’'s GUI world. A limited-
functionality prototype will be available this summer. The main visual difference
is that the first two screens shown in this article will be combined in the style of
Windows File Manager/Explorer. Further information can be requested via email
to “crossle@io.org” or mail the address for JAD Software in the product guide.

55

VECTOR Vol.12 No.4

Dyalog-8 Control Structures and Native
Files: some Timings
by Adrian Smith

Summary

In a previous Vector (“Review of APL*PLUS Il Control Structures”, Vol.11 No.1 p&H1
celebrated the arrival of control structures in APL*PLUS as a generally good
thing, and it is a delight to report that not only have Dyalog followed suit, but
that they have faithfully copied the exact syntax of the Plus TII model. The table
below reruns in Dyalog-8 some timings I did to investigate the speed of iteration
{as against each) in Plus III.

I have also done some rough timings on the new native file support, as [was
interested to see whether it would be a worthwhile speed improvement for
NewLeaf to spool pages “native” rather than buffering them in the workspace or
using component files, The second table simulates a report of between 12 and 600
pages, each of 4567 bytes (this needs a 12Mb workspace to complete the times in
column-1), and you can see that (a) native files a very fast indeed, and (b) turning
off the ASCII translation makes almost no difference. All times were taken on a
Dell P90 with a fast IDE hard disk.

control Structures {vvy+5000p'fat' 'cat')

APL*PLUS III Dyalog/W Vn-8
process’ VVv 0.335 0.385
loopy vvv 0.49s 0.683

Native Files (all times in ms)

Pages PG+FG,pg pg Ofappend 1 pg Omappend ~1
—————————————————————————— ASCIT raw
12 u2 521 220 212
o 234 800 330 a1s
100 1250 1615 673 570
200 6900 2840 1099 960
400 19000 5500 1854 1750
600 43000 7400 2691 2570

The file timings all involved creating a new file, appending each page to it, then
erasing it. The times are marginally reduced if you tie and clear an existing file.

56

VECTOR Vol.12 No.4

RECENT MEETINGS

This section of Vector documents all British APL Association meetings, and any
other events of interest to the APL world. If you have recently attended any
gathering which you feel would be interesting to Vector readers, please let the
Editor have a brief note, and we will include it here.

Many thanks to Marc Griffiths of the Toronto APL SIG for sending us a prompt

and thorough write-up of Adrian Smith’s presentation to the Canadian APL
group on 26th February.

57

VECTOR Vol.12 No.4

Causeway and NewLeaf in Toronto
notes by Marc Griffiths

Background

Adrian Smith took advantage of a business trip to New England to visit Toronto
and talk to the Toronto APL SIG on February 26. The meeting took place in a
lecture theatre in the Medical Sciences Building at the University of Toronto, the
site of the APL'93 Conference. This contributed to a pleasant combination of déja
vit and anticipation.

Adrian had organised his presentation into three segments: (i) an introduction to
Causeway, (i) a demonstration of the Organisational Architecture application
software written in Dyalog APL/W version 7.1 for SAP AG, and (iii) a look at the
NewLeaf report designer, the latest product from Causeway Graphical Systems.
Unfortunately, the LCD display panel and Adrian’s laptop computer were
unwilling or unable to communicate.

Unfazed, Adrian produced some markup pens and proceeded to illustrate the
first part of his talk through the older medium of acetate on an overhead
projector. Parts (if) and (iii) were conducted later in scrums arranged around the
lectern to look at the screen on the laptop.

Causeway

Adrian sketched the ‘Flipper’ form to illustrate the principles underlying
Causeway. The Flipper consists of a Windows form with a single text input field
together with two control buttons, Flip and Close. Clicking on the Flip button
reverses the text which the user has typed in the input field (see the notes from
Adrian’s Helsinki workshop in Vector Vol.11 No.3). For the benefit of those in the
audience who hadn’t seen Flipper or any Causeway application before, Adrian
distributed handouts which showed the form and the Event Action table
associated with the Flip button.

It was apparent that the audience contained people with a wide range of
familiarity not only with Causeway, but also with graphical user interfaces
(GUls) and the concepts behind object-oriented programming. Questions were
asked almost from the outset of the presentation, and the evening was highly
interactive. For some in the audience, the failure of the LCD display panel was a
blessing in disguise.

58

VECTOR Vol.12 No.4

Without the distracting magic of a live demonstration, we were able to reflect
upon the simplicity of Causeway’s structure, and appreciate how far Causeway
goes towards removing the need for a lot of low-level coding in prototype
development and application programming. In fact, one could say that it does
for GUI design and implementation what APL does for application
programming; it conceals the low-level detail to allow the analyst/programmer
to focus on both designing an application that solves a business problem, and
enabling the user to interact as effectively as possible with that application.

In the course of answering questions, Adrian offered a number of insights and
tips with respect to using Causeway:

* Think of forms and applications in terms of the events and actions
(conditional and unconditional) which are associated with the constituent
objects.

Don’t be afraid to use global variables in the application. Because each form
has its own execution stack, there is no central control within the application,
but forms must occasionally share data. Localise vatiables within a form when
they must be shared by its children but are not needed outside the form.

* The model used to control the ‘watching’ and ‘hollering’ associated with
changes to variables is that of a centralised monitor rather than a network of
direct object-to-object messages. The monitor maintains lists of the variables
being watched, and of the objects which need to be notified when any of the
variables is changed. When the monitor is told about a change to a variable, it
notifies each of the objects which had previously registered an interest in any
changes to that variable. In circumstances where the notifications may be
cyclical, using an appropriate condition in the Event/ Action tables will
terminate the updates,

Normally, the ‘holler’ message is sent when the focus leaves a field. To refresh
either a large number of inter-related fields, or a field which involves time-
consuming calculations or file [/O, remove the variable name from the “holler’
list in every object in the form. Then, provide the user with a Caleulate or
Refresh button which need do nothing other than holler the variable name, or
which executes an APL function which performs the calculations before
hollering. This is analagous to switching off automatic repagination of a
lengthy Word document and selecting Repaginate Now from the Tools menu.

Causeway is being rewritten for Dyalog APL/W Version 8. It will take
advantage of namespaces to avoid workspace name conflicts and to provide
some performance improvements.

59

VECTOR Vol.12 No.4

Organisational Architecture Application

This is a user interface developed by Adrian and Duncan Pearson using the
Causeway development environment. It is PC-based and supports the
configuration of the R3 client/server integrated business system written by SAP
AG in Germany. It is particularly significant because it is not a form-filling,
button-clicking, chart-drawing front-end which many people view as a standard
GUL. The Organisational Architect application is a direct manipulation interface
which allows the user to construct a graphical model of the firm’s business
processes from a pre-defined collection of business entities. The entities can be
seen as classes which range from reporting (cost centres) and legal (subsidiaries)
to the physical (factories, distribution points).

Bl8] [

B

[B]t w1 [« J¥]e)=]a]

(T

The user creates an instance by selecting a business entity from a vertical palette
of icons located at the left edge of the screen and dragging it into the main
window. The user fills in a few fields of a small pop-up information form to set

60

VECTOR Vol.12 No.4

certain properties of this instance, such as its name. The user then proceeds to
link it to other icons already in the window by using the mouse to draw lines
between them. Where necessary, another small form may appear to allow the
user to describe certain characteristics of the relationship between the connected
instances.

When the model is complete, the information about the business entities and
their connections is transmitted to the SAP configuration module in a form
which it can understand. The performance of the application in redrawing the
icons and links was certainly acceptable on the Pentium laptop. The fact that the
Organisational Architect application has been distributed worldwide by SAP on
CD-ROM is a tribute to its robustness.

NewLeaf

To greatly understate its functionality, NewLeaf is a reporting utility. More
accurately, it is a page description package which uses collections of page
description objects/elements to describe the layout of individual pages which
together comprise a report, much as Causeway uses collections of GUI objects to
describe forms.

Information about downloading a Dyalog APL/W beta-test version of NewLeaf
from the APL385 Website (see Product Guide) had been provided in the meeting
announcement, so some of us had been able to give it a test drive beforehand.
Still surrounded by quite a crowd, Adrian provided a quick overview of
NewLeaf on his laptop by running a few of the demonstration functions in the
workspace and displaying the output on the screen,

He explained that the NewLeaf package comprises three namespaces: class
contains the element descriptions; leaf, the principal namespace, contains the
functions which are used by the application to construct the report; and ps
contains functions which translate the report, held in an ASCIH-text page
description format, into a form which can be viewed on-line, saved to file, or sent
to a printer.

The main object is the frame which bounds a rectangular area on a page. Text
can be placed in a frame, in which case any text which extends to the right or
below the edges of the frame is clipped. Alternatively, text can be flowed into a
frame. Each flowed text vector is treated as a paragraph. Each paragraph is
wrapped automatically between the sides of the frame and, if it extends beyond
the bottom of the frame, it will flow into the next frame, which may be on
another page (this “autoflow” property can be switched off).

61

VECTOR Vol.12 No.4

As well as frames, NewLeaf handles objects such as rules, timestamps, page
numbers, drop caps, bitmaps, and graphics from Rain. The programmer has
control over font selection, font size, style (plain, bold, italicised), and leading;
paragraph indents left/right/first line, space before/after, and alignment.

In addition to facilities to handle text as standard paragraphs, NewLeaf allows
bullet-formatted text with a choice of bullet from a solid circle, numeric or
lowercase alphabetic character (the latter two are incremented automatically).
The big contribution is a special group of functions specifically designed to
handle tables. Provided they can be expressed in a tree structure, the text for
column titles can span more than one column. Lengthy tables are broken
between rows and the titles appear automatically at the top of the next page.

Summary

Despite the equipment failure, no one left the meeting disappointed. After being
shown two products which manage low-level, detailed coding of the user
interface and report generation, many in the audience were able to breathe more
easily at the prospect of once again concentrating on higher level business and
system design problems.

A demonstration of a direct manipulation interface was a bonus in terms of
providing a good deal of food for thought, and reminding us what GUIs can and
ought to be for certain types of application.

62

VECTOR Vol.12 No.4

(GENERAL ARTICLES

This section of Vector is intended for general readers who have a working
knowledge of APL or]. Authors are encouraged to submit articles which
illustrate effective APL applications.

In this issue, we have a comprehensive catalogue of likely migration problems,
which should be considered by anyone who needs to move from a mainframe
environment to Windows on a PC. We also have the final part of John Sullivan’s
series on arithmetic with large integers, where he explores some of the
applications of these techniques to data encryption.

Errata

In Duncan Pearson’s 3DTTT article, astute readers will have noticed that at the
bottom of page 101, function DravPoints appears to refer to a non-existent
sub-function called ref. This is actually a catbar 5 which Winword interprets as
some kind of field code when it appears adjacent to a circlestile ¢. Beware!

While we are on the subject, two readers have noticed that back in Vector 10.1 we
suffered from the notorious + problem. The line of code on page 120 should read:

changefont<l5446 0 0 ptr ¢ flags{0 128 128 0)

- and it is a good idea to throw in a Globallnlock before the GlobalFree
on page 122,

63

VECTOR Vol.12 No.4

Migration From APL2 to APL/W

by Rex Swain (rhswain@acm.org)

Introduction

I've recently spent a fair amount of time migrating workspaces from IBM’s APL2
to Dyadic System’s APL/W. This article, a review of various features that will
require conversion, is an effort to help anyone else who is either contemplating or
actually charged with a similar migration task.

Of course, all us techies know that what really should be done is a complete re-
design and re-coding of the entire application! Segregate the logic, user interface,
and database stuff, create a proper event-driven GUI, and so on. But sometimes
project funding realities require compromise, typically spelled p-o-r-t.

APL is remarkably portable in general. But if you are considering an APL2 to
APL/W migration, there are many issues that will slow down whal you may
have thought would be a quick job. Hopefully the advice here will enable you to
anticipate the full scope of a migration effort, save you a bit of work, and help you
react calmly to errors in code that used to run just fine.

1should point cut that Dyalog APL doesn’t purport to be identical to APL2, and
considering the circumstances, it is surprisingly similar. Dyalog was based on
STSC’'s NARS version of the language. APL2 {even the pre-release IUF version)
wasn’t released until they had fixed the language specification and coded most of
the product. It is Dyadic’s intention to develop closer compatibility with APLZ,
and they have already made good progress.

My specific experience involved moving from APL2 version 2.2 under VM/CMS
(sometimes called “APL2/370") to Dyalog APL/W version 7.1 under Windows
for Workgroups, but 1 believe that the bulk of these issues would be relevant with
other releases.

Types of Differences

There are several classes of differences that will require changes:

1. Many differences are easy to find with a simple workspace searching tool. For
example, JTF is not supported in APL/W, so scan all functions for any
occurrence of TF, and replace with an emulation function. In this case, you
can find every instance without ever actually executing the application code.

64

VECTOR Vol.12 No.4

2. Some differences require a more sophisticated search that may not find 100%
of the cases. E.g., optional left arguments must be encilosed in braces in
APL/W function headers. So search all dyadic functions for ONC of the left
argument, and where found, wrap the argument in braces. This will almost
always suffice, but one can easily imagine tricky cases where the argument is
never referenced in any obvious way.

3. Some differences are very difficult to find mechanically. E.g., 1 0 1/7u4pe3
works in APL2 but causes a LENGTH ERROR in APL/W; you need to enclose
the left argument to get this working,

The good news about these first three classes is that they blow up with errors
when executed, so even if you can’t find them all programmatically, at least if you
exercise your application long enough they will announce themselves. The bad
news, of course, is that this assumes that your application is straightforward
enough thal you can test all possible execution paths and data cases. (More
probably, your end-users will eventually become conversion beta testers.)

Unfortunately, there are two more classes...

4. Some differences are a nightmare! E.g., the spacing of results from monadic
format may be slightly different in APL/W, depending on the depth and
structure of its argument. In the workspaces I worked on, there seemed to be
1E6 uses of monadic format, and of course the structure of the argument is not
always immediately obvious. These are the worst kind of differences, because
the code execules just fine and the result is only subtly different, and the
difference may or may not be significant in the context of your application.

5. Finally, there is all the operating system dependent stuff. Some of this can be
extremely difficult (or impossible) to emulate, and may require you to
implement a totally different (but more appropriate) solution.

Following is your migration task list...

Getting Started

¢ Transfer your workspaces from APL2 to APL/W. Dyadic supplies a
workspace WDYALOG\WS\AFL2IN that helps to read APL2 transfer files
created by) OUT. I wrote an enhanced version which Dyadic distributes in
workspace WDYALOG\ OUTPRODS\ TOOLS\APL2 IN2.

e Set APL/W’'s migration level with [MZ+3. This will immediately solve several

compalibility issues:
Z+eR Enlist (not Type)
Z++R First (not Mix)
Z+>R Mix (not First)

65

VECTOR Vol.12 No.4

Z+=R Absolute value of depth
Z+LcR Partitioned enclose
Z-{T1C Order of terminal control characters

» Check for dependence on any APL2 invocation options, especially:

DATEFORM Format for timestamps
DEBUG Suppress (L X, etc.

INPUT Queue input strings

QUIET Suppress output

RUN Auto-invoke function via ON4

TERMCODE (-1} Controlled invocation

Character Sets

» Beware of the atomic vector {(any reference to [J4V)! The order of characters is
very different.

s Remember that the EBCDIC and ANSI character sets are quite different. Even
characters that seem straightforward may not be — single quotes, vertical bars,
and exclamation points should be examined carefully. Watch out for national
language characters and currency symbols,

Also remember that characters read from PC files into APL/W may pass
through Dyalog’s APLT=WIN.DOT translation mechanism. So you really have
at Jeast three character sets to worry about: EBCDIC, ANSI and A V.

» Watch out for four overstruck APL2 symbols not present in APL/W's JAV:

BE O

Luckily, they don’t actually do anything in APL2, so they probably won't
matter much.

Different Syntax
» Wrap braces around optional left arguments. For example, if in APL2 you
had:
v R«A FCO B
[1] +(0zONC '4'")pLl1 n Left arg supplied?
[2] A+t 0 a Default left arg
[3] Li:

In APL/W you need to change to header to:

Vv R«{4A}F00 B

66

VECTOR Vol.12 No.4

Twas able to automatically convert 99% of these cases by writing a workspace
searching tool that inspects all dyadic functions forQNC*leftarg' and
makes the appropriate change in the header.

¢ You cannot assign “read-only”system variables in APL/W. 5o if your APL2
functions use them as a sink (e.g., [JW4+) you will have to convert. I never liked
this technique anyway; I always define a “no-op” function called STNK:

v SINK A
11 n Throw away argument
v

Then globally change all 'JWA«" and '[JTS+«!' and etc. to ' SINK *.

Or, you may be able to exploit APL/W’s “shy” explicit result feature — if you
find JWA+F00 X, you can change F0O's header to ¥ {R}+F00 4 and then
justexecute ¥GO X.

s Trace and stop controls are different. Use APL/W’s JTRACE'F00 " and
O0sTeP'FOO" rather than APL2's TAF00« and SaF00+. (Note that APL/W
alse has a much fancier interactive trace facility; see Trace on the Action
menu.)

Same Syntax, Limited Capability

¢ Some complex forms of selective assignment are not permitted in APL/W. For
example, with a 3 by 4 matrix ¥, something like:

{1 0 1/M[;u])+0

works in APL2 but generates a DOMAIN ERROR in APL/W. You will have to
re-code this as:

QeMI;4] o (1 0 1/Q)«0 o M[;h1«q
Similarly, {A>8) [I'J+«X does not work in APL/W.
+ Some APL/W primitive functions generate errors when reduction is applied
fo an empty array. For example, in the case of , /10 APL2 returns <1 0

whereas APL/W signals a DOMAIN ERROR.

» Does your code use {]DL to delay? APL/W does not permit fractional
arguments, so something like DL 1.5 will generate a DOMAIN ERROR.

67

VECTOR

Vol.12 No.4

Same Syntax, But Works Differently

Watch out for the rank of the result of some system functions. In APL2,

ONC 1A' returns a scalar, but APL/W returns a one-element vector. This can
escalate into a depth problem if you execute IN¥C ™" 4. Monadic GSV0 also
exhibits this behaviour.

Compress-each is interpreted differently. For example, in APL2:

1 0 1/ V«lhpci3
1 3 1 3 1 3 1 3

With APL/W, you will need to enclose the compression vector:

10 1/7V
LENGTH ERROR
{e1 0 1)/7V
13 13 13 13

Strand indexing is interpreted differently. For instance:
X r Z[I]

In APL2, the T indexes just Z, but in APL/W, the I indexes the three-item
vector (X ¥ Z).So for APL/W you will have to convert this to:

£r (2lh

Strand assignment of an enclosed scalar is treated differently:
(X T)ectABC!

is treated as:

X+Y« ' ABC' a APL2
X+¥+ctABCY n APL/W

APL/W’s name class does not like system functions and variables. In APL2,
O¥c 04V reports 2 and JNC '[JCR!' reports 3, whereas APL/W reports
“1 in both cases.

Also, in APL/W it is possible for [J¥C to return a 9. So watch out if you have
tools that do something like Z«'TULVFO'[T1 0 1 2 3 4:0NC 4]

Beware of applying a user-defined function to an empty array with each. In

APL2, if you execute Z+F00° 10, FOO is never actually executed, and the
result Z is based on the prototype of the FO0’s argument. In APL/W, FOO is

68

VECTOR Vol.12 No.4

executed once with an argument based on the prototype of ¥00's argument,
and the resull Z is based on the prototype of FO¢’s result R.

V R<F00 A
[1] O«'4rg is:' A
[2] Re2 4 8

v

DISPLAY Z+F00"10 wa APL/W
Arg is: O

B
I
| 10 0 ol |
[t
|€ ________ t
DISPLAY Z+F0010 a APL2
.8,
10|

tt

This is a nasty one to detect in advance. Your function may not be prepared to
handle a zero or empty argument.

¢ When monadic format is applied to a nested array, the spacing of the result is
sometimes different. I first noticed this in mainframe code that composed short
messages with format, such as (using « to represent blanks):

D« 'FOUND' 9 'DOCUMENTS?
oFPOUNDo 090 o DOCUMENTS o a APL/W
o FOUNDeQeDOCUMENTS o an APL2

There are also subtle differences when some more complex nested arrays are
formatted. So if your code relies on a certain number of blanks, beware.

Emulation (or Re-Coding) Required

¢ Format-by-example is not available in APL/W. So every time you see
something like '550.03333% ' ¥4 you have some work to do! (And don’t
forget that in APL2, IFC[1] might be sneaky and change the decimal point to
some other character!)

¢ The index function [] {(sometimes called “squish-quad”) is not supported in

APL/W. Dyalog APL does have plenty of ways lo do indexing, so conversion
should not be too much of a problem.

69

VECTOR Vol.12 No.4

¢ APL/W does not support n-wise reduction (as in 2 +/4). The 2-line user-
defined operator NWISE that Dyadic supplies in workspace WDYALOG\WS\OFPS
can help to emulate this feature. I wrote a more complete version that is also
somewhat less prone to WS FuLp.

¢ Scalar functions over an axis are not supperted in APL/W, so if your APL2
code does things like MATRIX+[2 1VECTOR you will have to change them. 1
use a user-defined operator called AXTS.

s Write emulation functions for missing APL2 system functions, as required:

OAF Atomic Function

AT Attributes’

fNEA Execute Alternate

Oec Execute Controlled

Ors Event Simulation

Grx Fix (dyadic: with execution properties)
nrr Transfer Format

aucs Universal Character Set

e Write emulation functions for missing APL2 system variables, as required:

OEM Event Message

gET Event Type

nrec Format Control

0L Left argument

(ONLT National Language Translation
ger Prompt Replacement

Or Right argument

Orz Time Zone

ovL User Load

e Name associate is very different. Write emulation functions for anything
involving (¥4, including:

10 [OFA REXX
11 KA Access external routines
12 [IN4 Files as arrays

+ Write emulation functions for APL2 external supplied routines, including:

LFM, AFV, AF File read /write /query
LEXEC Execute REXX

ATR, CTN, CAN, DAN Data conversion routines
EXP, PACKAGE, QNS Namespaces and name scopes
IN, OUT Like)IN and YOUT

EDITOR?2, EDITORX Interface to editors

70

VECTOR Vol.12 No.4

Development Environment

e The APL/W session manager is totally different. Inspect your workspaces for
use of APL2's AP120.

¢ The APL/W function editor is totally different, so it's time for you to learn yet
another editor. (At least it supports cut and pastef)

System Commands
* Note that APL/W does not support some APL2 system commands:

JCHECK JEDITCR JHOST JIN

YMCOPY JMORE JNMS your
' JPBS JPIN IQUOTA)SIC
')5IS)SYMBOLS

I

= Also note that some APL2 system command arguments are not supported in
APL/W:

|

YFNS,)VARS, and) OPS do not accept a range of names
!)JRESET does not allow an argument

* Are you using APL2 utilities that execute system commands via the stack and
capture their “results”? If so, you'll need a different technique. APL/W
generally makes this easy — it has many more matching system functions that
return explicit results (like 1/ SID, which is inexplicably missing in APL2).

External Communication

s Anything involving shared variables will probably need conversion.

+ Anything invelving auxiliary processors will probably need conversion,

The Operating System
¢ Don't forget all operating system dependent non-APL facilities, such as:

The CMS stack

System command language (REXX)
System editor (XEDIT)

Document composition (DCF/Script)
CMS Pipelines

System file 1/O (flat files, etc.)

Other data access methods (VSAM, elc.)
Database (SQL), Graphics (GDDM)
VM Backup/ Archive,VM Schedule

71

VECTOR Vol.12 No.4

Network Commmunications

+ Review your application’s use of your mainframe communications network.
Will remote users be able to access the new system through the same network?
Can you dial in from home? Are you sending jobs te an MVS system?

User Interface

* And, last but not least, there’s the user interface! The procedural vs. event-
driven issue is a huge topic in its own right. Suffice to say that unless you want
to do extensive re-coding, you will probably be forced to make some
compromises here,

Conclusion

This list is, of course, not necessarily complete — these are just the problems |
have run into so far, and I'm sure there are mote lurking.

It would be a mistake to come away from reading this with the impression that
Dyalog APL/W is missing a lot of APL features — in fact, it’s just missing some
APL2 features, and it has many compensating and additional features that APL2
does not have. I mean for all this to be free of value judgments — I'll leave it to
you to decide whether one system does things “better” than the other.

Rex Swain Tel: {(+1)860-868-0131

Independent Consultant Fax: (+1) 860-868-9970

8 South Street Email: rhswain@acm.org

Washington, CT 06793 WWW: http://www.pcnet.com/~thswain
USA

! The user-defined operators ¥#¥ISE and AXIS may be downloaded from the “Dyalog APL/W

Tools and Utilities” section of my WWW home page.

: Dyadic is adding [14T to APL/W versions 7.2 and 8, so function timestamps should be available

by the time you read this.
3 For more details, see my paper “Namespaces: APL/W vs. APL2” in the APL95 conference

proceedings.

72

VECTOR Vol.12 No.4

Multiprecision Arithmetic: Part IV
by John Sullivan (jos@scuk.demon.co.uk)

Applications of Multiprecision Arithmetic

In parts 1 & 2 of this series, 1 introduced the basic functions for performing
multiprecision arithmetic. But why do we need to perform arithmetic to such
precision? The day-to-day operations of your bank account, or even of the world’s
money markets, require no more precision than that supplied by APL for its
ordinary arithmetic operations. Scientific measurements no matter how small or
large are usually accompanied by some (small or large) error, so accuracy to more
than 4 significant figures is usually unnecessary.

In an article in Scientific American[1], Fred Gruenberger points cut that in using
arithmetic with only a small number of significant digits, repeated squaring of a
number only slightly greater than 1 will soon result in inaccurate results, He then
gives the result of squaring 1.0000001 seven times (equivalent to raising it to the
power of 128), which results in 1.0000128000812803413... (896 decimal places). Try
it with the multiprecision functions. Even on my 486,/33 the calculation is quick.
Set ()PP to 15 and enter 1.0000001x128, and you will see the problem. The
result, 1.00001280008129, is wrong in the last displayed place. And as the power
gets larger the results become less accurate. Don't think that this is a silly exercise:
some problems invelve iterated multiplication like this; can you really trust the
results your computer gives you?

Next, Gruenberger discusses the continuing search for larger prime numbers.
Before the development of computers, the largest known prime was 2'“ -1, which
has only 39 digits. This activity requires the multiprecision arithmetic of parts 1
and 2 of this series, and the primality testing and factoring of large numbers from
part 3. But, having discovered a few 100-digit primes, and found the factors of a
few 100-digit non-primes, you may be wondering what sort of practical applica-
tion there is for these numbers.

Gruenberger mentions some other problems which require high precision arith-
metic, such as the solution of simultaneous equations where the determinant of
the associated matrix is close to zero, and a couple of mathematical recreations
which lead to very large numbers. However, he makes no mention of what is
considered by many to be the only commercial application of number theory in
the modern world: data encryption and decryption.

73

VECTOR Vol.12 No.4

This algorithm for public-key cryptography was described in the late 1970s by
Rivest, Shamir and Adleman[2], and it is called the RSA system after them.
Although all of the number theory behind it has been known for the last couple of
centuries, it is the advent of the digital computer that has made the calculations
practical. Two numbers, the encryption key ¢ and the modulus » are published,
and anybody can use them to encode a message, which they then send to you.
The idea is that n carmot be factored without a lot of effort, so the code-breaker
cannot easily calculate the encryption key d to decipher the coded message. There
are many books and articles on the RSA algorithm: I obtained my inspiration from
chapter 6 of Riesel[3], although I have not used his examples.

Some number theory

Before we can go merrily encrypting and decrypting our secret text, we need
some number theory. 1 am not going to prove any of the following statements:
look in any good textbook on number theory, such as those mentioned at the end
of part 3. These statements are the key to what follows, All of the numbers con-
cerned are, of course, integers,

H GCD(a,n)=1 then there exists a number b with 1 <5 < 1 such that ab =1 mod n.
For example 2 x 4=1 mod 7. We call & the multiplicative inverse of 2 modulo 7.

For any integer a4 with GCD{z,n)=1, a*™ = 1 mod n, where g(n) is the number of
positive integers not exceeding n that are relatively prime to n (¢(n) is known as
Euler’s totient function). Not only that, but if # is squarefree #**™*! = 4 mod n for
all integers a and k. If # is prime then ¢n) = # - 1. If GCD(b,c}=1 then ¢fbc) =
(b} #(c). However, thanks to a theorem due to Carmichael we can do better than
this. There is a functon, called Carmichael’s function, denoted by A(n), such that
AMn) divides ¢(n), and @™ = 1 mod n, with GCD(a,m=1 and a**¥"* = 4 mod # for
all integers @ and k and squarefree n. In general, to calculate Carmichael’s function
{for a composite number one requires all the prime factors of its argument, which
is a beyond the scope of this article; all we need here is that if p and g are primes
then Afpg) = LCM(p -1, 4-1).

The algorithm

The algorithm for what we are about to do is simple. As mentioned above, we
need three numbers: the encrypting key, the decrypting key, and the modulus,
We represent our plain text as a number by some means, raise it Lo the power of
the encrypting key modulo the modulus, and send the result to the recipient of
our secret message. The recipient then raises this number to the power of the
decrypting key modulo the modulus, and the result of this is the original

74

VECTOR Vol.12 No.4

message. To make this work, we choose two primes p and g, and multiply them
together to get the medulus n. Choose an encrypting key e such that it is relatively
prime to A{n). Then the decrypting key d is just the multiplicative inverse of e
modulo Afn). (Some books suggest using ¢(n) here, instead of A{n}, but this just
means raising to a larger power and doing more work for the same result.)
Effectively, since de = 1 mod A{n), then de = kA{n), for some k, and we are raising
our original number to the power of ki(n) + 1 mod n, which, as menticned above,
restores the original number.

The multiplicative inverse function

This is put in namespace mp along with the other multiprecision building blocks.
It is based on the Euclidean Algorithm: if GCD(g,b)=1 then there exist m,n such
that am + bit = 1. This can be rearranged as am = 1 - bn, which immediately gives
am =1 mod n, thus m is the multiplicative inverse of @ modulo n. If the GCD is not
1 then this function returns 0, which is an impossible value for the inverse.

As with the GCD function (see part 3) this function is divided into two paths,
depending on whether we are processing scalars or multiprecision numbers, The
first thing we do is find the GCD of the input (I use x here to represent g, and n is
the modulus). The Euclidean algorithm says that when we start with 7 and b, we
obtain the following sysler of equations:

a=gb+r,0<r<h

b=qgr +r,0<r,<n,

n=ght n,0<n<n

ru-Zﬁ qrr rn-] rn’0<rn<rn-1
Yol ™ qlnl T +0

We start off by generating all of these quotients and remainders, storing the
quotents in vector a:

v z+x Inv_mod n;a;b;N;rn;ro;ri

[1] a+e ¢ N+n

[2] »(1v,={px),pn)/a10
[3] Z+0 ¢ X+N[x

[4] al:a+3,ob+{0,x)TH
[5] n+x ¢ +{0=zx+12h}) /a1

At this point n holds the GCD of the original n and x. If this is not 1 then there is
no multiplicative inverse

(6] =(1=#n)/0

75

VECTOR Vol.12 No.4

Now we have to go back recursively. We calculate r, in terms of r (= b} and 7,. The
recurrence relation we calculate is

LA F Rl RPN

[71] ro+l 0 o ri+0 1
[81] A3:srn+r0-rixsa
(9l ro«ril ¢ riern ¢ a«i+a

(1ol +(1<pal/a3
And our result is the coefficient of r, modulo #.
(111 z+Nli>rn ¢ =0

And now for the multiprecision version. This part of the function is the same as
the scalar version, with minor differences to allow for the way the multiprecision
functions have been coded.

{12] a10:2+0 ¢ ¢ Xx+Xx Imod N
{131 airi:a«a,{ben Idiv x)[0]
[1u] n+x o =(~0 0 Fequal x+1=b)/a11
(151 +{(~0 1 Fequal n)/0
[16] rFo+«(0 1)(0 0) o ri+(0 0)(0 1)
{171 a43:rp«r® Fsub''ri1 Fmul'alol
[18] ro«ri o ri<rn o a+isa
[19] +(1<pal/als
{z20] z«(1=>rn)Imod N

v

Testing the Method

For demeonstration purposes it is not necessary to search out abstruse prime
numbers, At the back of Riesel[3] there are tables of large prime numbers of
various types, and I have chosen some of those. You will notice that when using
the factoring function I showed in part 3, the factors of 1 fall out in no time at all.
This is O.K. for demonstrations, but is not supposed to happen in reality!

p=9x 2% 1= 83010348331692982271
g =9 x 2% + 1 = 83010348331692982273
g =27 x 2 _1 = 31875973759370105192447

Since p and gq are primes, A(pg) is just LCM(p - 1, g - 1). From this we can calculate
the decrypting key:

d = 2591880212318106415703971813838725054463

76

VECTOR Vol.12 No.4

I created another namespace to hide these away, called rsa. It seemed a good
idea to use a setup function to generate these numbers:

v setup;d;e;n;p;q;F

[11] s+JC5' #.mp!

[z1] p+«0 71 Fadd 0 9 Fmul 0 2 Fspow 63

(3] g+«p Fadd 0 2

[u] n+~p Fmul g

(51 g+0 ~1 Fadd © 27 Fmul 0 2 Fspow 70

[61 dve Inv_mod(0 ~1 Fadd p)Lcm 0 1 Fadd g
[71 gcs s

[8e] Ded ¢ E+e o N+n ¢ P+p ¢ Q=g

v

The LCM function (in namespace mp) is very simple. As with other functions it
has two paths, one for scalars and one for multiprecision numbers.

Vv z+a Lem b

[11] +{ia.=(pa),pb)/s1
[z21] ze>{a Fmul b)Idiv a Ged b
[a] +0
[u] sal:z+(axb)+a Ged b
v

In order to test the method, I made a function called test. It is sufficient to use a
single number, smaller than , to generate an encrypted version, and to decrypt it
again. If the decrypted version equals the original version then the process works.

v test;M;C
[1] M«#.mp.Fexec'1234567890123456789012345678901234567890C"
fz3 'original Message is ',0 #.mp.Ffmt M
[3] 'Encrypted Message Is ',0 #.mp.Ffmt C«M #.mp.Impow E N
[4] 'Deerypted Message is ',0 #.mp.Ffmt C #.mp.Impow D N

v

And the following output should surprise nobody.

test
Original Message is 123L567890123456789012345678901234567890
Encrypted Message is 631819554104B362681928930668568439899876
Decrypted Message is 1234L567890123456789012345678901234567890

Practical Matters

How you implement this algorithm is very much up to you and your correspon-
dents. Here is one method that 1 devised for testing purposes. Again, this is
different from the examples in Riesel.

VECTOR Vol.12 No.4

First of all we determine what characters we are going to allow in cur messages. 1
added this line to the end of the se tup function, above.

ALf«? 00,04, 7. 5120
Now you need your normal capitalization function, something like this

v x+«(Caps x:a
[11] a+<[JAV o allA4Vi'abcdefghijklmnopgrstuvwxyz'][4
[2] x+alJAvix]

v

Convert your plaintext to caps, and replace characters not in the “alphabet” with
blanks. Generate a set of origin-zero indexes into this alphabet, and treat them as
a radix-p 41 f multiprecision number by catenating a zero at the start (this is a
beneficial side-effect of the variable-radix design of the multiprecision suite).
Since the first character in our alphabet is a blank this has the effect of stripping
leading blanks from the message, which is probably a good idea. Convert this
number to a multiprecision number in our default radix, then use encode (7) on it
to ensure that we break it into parts that are not greater than the modulus n of our
encryption algorithm. Each of the resulting numbers is then encrypted, and the
reverse process is carried out on the result, although this time we just use an
alphabet of the usual capital letters. Then we split the output into the 5<character
blocks, so beloved of espionage systems in the 30’s to early 50’s,

v z+Encrypt x;a:b

(1] x+,Caps ¥
{21 x[(~xedlf)/px]let
[3] z«(#.mp.base,pAlf}# . mp.chbase 0,Alfix
[yl z+N #.mp.enc z
{51l z«z #.mp.Impow 'cE N
(6] z+N #.mp.dec z
{71 z«<1+(26,# .mp.base)# mp.chbase z
[8] z+[(4lz]
[9] Z+{5xbe[0.2xp2Z)42Z
[10] z+«((6xb)p1 1 1 1 1 0)\z
v

The decryption process is just the reverse of this. First we eliminate all non-
alphabetical characters from the ciphertext, then we compare it with the cipher-
text without the blanks. Obviously, if these are not the same we are working on
the wrong text, so we signal an error. Then the process continues as for Encrypt,
except that we do not format in 5-character blocks at the end.

78

VECTOR Vol.12 No.4

Vv z+Decrypt x;a;b

1] z+xn(]4

[2] OSIGNAL(z#x~' ")/11

[al z+(#.mp.base,26)#.mp.chbase 0,041z
[u] z+N #.mp.enc z

[5] z+z #.mp.Impow’cD X

[&] z+N #.mp.dec z

[7] z+14((pAlf),#.mp.base)# .mp.chbase z

3 z«Alflz]
v

And finally, here are the functions dec and enc from namespace mp. dec is
similar to the primitive functon Decode (1) except that the left argument is a
single multiprecision number, and the right argument is a vector of multi-
precision numbers (so it must be enclosed if there is only one). enc is similar to
the primitive function Encode (7} except that it only works on one multiprecision
number at a time, the left argument is a single multiprecision number which is
assumed to repeat as often as required

v z+b dec x

[1] z+0 0
[2] Al:z<{(ox)Fadd b Fmul z
[3] +(0ZpX+1ivx)/al

v

v z+b enc x

[13 F2a]
[2] Al:»{b Fgt x}/a2
[3] x+x Idiv b
4] z+x[11,z
{51l X+DX
[s] a1
[71 AR :Z+(cX),2
v
Exercises

You haven’t got off scot-free: now it's your turn to do some work. Using the
values of the parameters and the encryption and decryption functions above,
decipher the following message.

LFWBG CXLSF EBSPg JNROT MPAKI VWHOG URVYIB DHGFY LOQBH JXCOR
YVFHL ZGWRT XYPRB GCKUT BOPHN ILFHQ MZS0M OHMJCG ILEXK XYVSHK
QZXLC JGKED ZKWTR SCHXU GNPHV MYGGE VUXCP EAGTB M

79

VECTOR Vol.12 No.4

Finally

I'have enjoyed writing this series of articles, and I hope you have enjoyed reading
them. T am always interested in hearing about multiprecision arithmetic and its
applications, and if you wish to correspond you can get hold of me through the
editor, or via email on jos@scuk.demon.co.uk.

The workspace that Iused for the examples in this series is available by one of the
following methods:

If you are on the Internet you can get a vendor-independent version in Jim
Weigang's APLASCII format by anonymous ftp from archive.uwaterloo.ca,
called /languages/ apl/workspaces/mult.prec/sullivan/MP

Otherwise send me a blank diskette (you can get hold of me via the Editor).
You can either have MP as above, or a Dyalog APL/W 7.1.2 workspace
which contains my originals and a lot more.

References

[1] Fred Gruenberger, How to handie nunsbers with thonsands of digits, and why one
might want to, “Computer Recreations”, Scientific American, April 1984,

2} R L Rivest, A Shamir & L Adleman, A method of obtaining digital signatures and
public-key cryplosystems. Communications of the ACM, Vol. 21 No. 2, 1978

[3] Hans Riesel, Prime wmbers and computer methods for factorization (Birkhéuser,
1985).

Not specifically referred to in the text, I have quoted from and made use of
some of the items in Peter Merritt’s articles in Vector, Vol. 11 Ne. 1 p.108, and
Vol. 11 No. 3 p.119.

In addition to Riesel, there are some other books that contain detailed descriptions
of the RSA algorithm, amongst which are the following:

C Bondi {(editor), New Applications of Mathematics, Penguin Books, 1991

H Beker & F Piper, Cipher Systems, the Protection of Communications, Northwood
Books, London, 1982,

D E Knuth, The Art of Computer Progrannming, Vol. 2, Seminumerical Algorithus,
Addison-Wesley, 2nd edition, 1981

80

VECTOR Vol.12 No.4

THE RANDOM VECTOR

Polynomial Multiplication with Circulant
Matrices: Insights Using APL

by Lew Robinson
frgp21a@prodigy.com

A "Hook” to Get your Attention

" Here is a puzzle. Show how to use nothing to make something out of nothing,
Impossible? Read on and at the end of this article learn how to do it with some
plain old APL.

In his book “APL Programs for the Mathematics Classroom™, Norman Thomson
gives the following APL one-liner to accomplish the multiplication of two
polynomials,

Thomson algorithm: 14+/8&(-19L)¢Le . xR,L2L

Two minor problems occur with Thomson’s code if either or both arguments are
simple scalars or if Oio is zero. These are easily corrected however with
judicious use of commas and parentheses, thus, Thomson algorithm, modified,

TAMP: 13+/8((1-0i0)-1p,L)$(,L)e.%xR,L2L

TAMP stands for (Tjhomson (A)lgorithm for (M)ultiplying (P)olynomials. (As
modified — A further modification might be to replace & with #.) Here in APL is
a different algorithm to multiply two polynomials,

Circulant algorithm,
CAMP: ~1+L+.x(0io-1p,L)¢({(p.L),pR,L}pR,L#L.

CAMP stands for (C)irculant (A)lgorithm for (Mjultiplying (Pjolynomials. Note
that to test these programs one must interpret L and R as the vectors of
coefficients of two (different or the same) polynomials in ascending power order.

81

VECTOR Vol.12 No.4

A two-line dyadic APL function named TAMP that incorporates the Thomson
approach might have generic form and usage as follows,

P+L TAMP R,
Example usage: P+1 0 1 TAMP 1 2 0 3

A two-line APL function named CAMP that utilizes the Circulant algorithm
would have the same generic form and usage, except only that the name of the
- function changes to CAMP. Both functions would return the same result in F, the
list1 2 1 5 0 3.The listis exactly the coefficients of the polynomial product
in ascending power otder, so that the last item in the list multiplies the highest
power term of the result, etc.

Thus letting X stand for the indeterminate, the highest power term in the product
polynomial is 3xX x5, the next highest is 0xX=u, the next is 5xX*3, the next is
1xX«2, the next is 2x%X and the lowest power term is 1%X+*0, the constant
term, 1.)

Circulant Matrices

Circulant matrices have a key property: write down the first row and you know
the entire matrix. The second row is a clone of the first, except all members have
been shifted one position to the right. The last element is simply “wrapped-
atound” into the first position. Obtain every succeeding row from its immediate
predecessor by repeating the “shift and wrap” operation. The shifted clones all
contain the same numbers but in different columns.

Suppose someone gives us a linear list of numbers. Then clearly one can obtain a
circulant matrix from the list. The following is a useful shorthand notation for
that operation; denote a circulant matrix as: circ(list) = circ(c1,c2, . . . ,cn)

Alternatively let the vector v = cl, ¢2, . . ., en. Then for any vector v, cire(v;n)
denotes the corresponding n by # circulant matrix, A precise definition of a
circulant matrix is required at this point. In APL notation, the I, J element of the
N square, possibly complex matrix Cis C[I; J].

Nowform: X <« N | {J-I) + 1 ConsiderT « C[I;J] = C[1;K]

1f boolean T is true for all I and ¢ from 1 to N, then C is a circulant matrix. Note
that the dyadic use of stile is the APL residue function, in this case the right
argument modulo the left argument §¥. Note also that C[1; K] is just the element
in the Kth position in the first row.

82

VECTOR Vol.12 No.4

Time-out for a Discussion about Jargon

Previously X was called an indeterminate and not a variable. This choice was
deliberate and the distinction is useful to algebraists. For those APLers who
remember their studies in abstract algebra, the indeterminate X is fraught with
non-meaning. The abstract algebraist considers it to be the “universal
abstraction” — sort of a surrogate place holder that assumes whatever non-role
would be useful to generalize the results of studying a particular algebraic
structure. (If this sounds confusing, it is. Fortunately there are approaches to
abstract algebra that dispense altogether with such a notion about X. It is no
longer an indeterminate; instead it takes on concrete meaning in a formal
definition of a polynomial. See for example page 127 of the text “Applied Abstract
Algebra” by R. Lidl and G. Pilz.)

Undoubtedly some APLers either have never encountered abstract algebra or
have been sufficiently traumatized by its study that they wish to forget the
experience! Please do not be put off by references to the concepts and jargon of
the discipline in what follows. If you wish, just ignore or skip over comments
about “indeterminates”, “rings”, “ideals”, “integral domains”, “fields”,
“isomorphisms”, etc. However the reader will certainly benefit from
remembering several things taught in high school algebra. These include
multiplication of matrices and multiplication and long division of polynomials.
In any case, the listings of APL functions and their usage should be familiar and,
I hope, interesting. Fortunately, given the array-like nature of the language,
APLers know how to multiply two matrices with the “+.x” operator, even
though they perhaps never studied matrix or linear algebra.

Back to the Discussion of Polynomial Multiplication
with Functions TAMP and CAMP —

Function TAMP has taken one polynomial with highest power 3xX*3 and has
multiplied it with another polynomial of highest power X 2. Function CAMP has
done the same thing. Both give the same the result, a product polynomial with
highest power term 3xX=5. Further, as required, the product list contains the
correct coefficients for the remaining powers. The APL expressions

1pP {(0io<0} {tpP}-1 (Oio+1},

give the ascending power order of the powers for each coefficient. What is going
on here? Why does the Thomson program work? Why does the Circulant
algorithm work?

&3

VECTOR Vol.12 No.4

In his book “ALGEBRA, An Algorithmic Treatment”, Kenneth Tverson explains the
“inner workings and hidden mechanisms” of program TAMP. He asks the reader
to consider two example tables,

Ti+1 0 1 o.x 1 2 0 3 (Use theleft and right arguments from the
earlier example for function FAMP.)

T2+0 1 2 o.+ 0 1 2 4 (Notethe “plus” sign. Exponents add.).

The results are

120 3 6 12 3
T™T ©0 00O and T2 12 34
1203 2 345

All the counter-diagonals of table T2 are constant. Read from upper left to lower
right, the constants increase from 0 to 5. This is exactly the order required for the
ascending powers of the result. Scan and add along a fixed counter-diagonal in
table 71. Verify that the sum gives the desired coefficient for the “power” found
on the corresponding counter-diagonal in table I'2. The idea behind program
TAMP now stands revealed. (A caution — the preceding argument is a heuristic
one; it is not a proof and may leave room for doubt. For a formal proof that
function TAMP produces the polynomial product, see Iverson’s book and his
convincing usage of APL notation to achieve the result.)

Can something similar be going on with the circulant approach? Notice that the
primitive dyadic function “rotate” (¢) is centrally embedded in both TAMP and
CAMP. Check this out as follows. Use as inputs the previous example’s
arguments (left and right). Stop both TAMP and CAMP just after the completion of
dyadic $ to get these results,

01206300 1203000
TAMP 0 ¢ 00000 CAMP 01290300
¢ oo 1203 0ci12023°¢0C

No clear overall pattern is apparent for table TAMP, although summing down the
its columns gives the polynomial coefficients (except for an extraneous 0).

In contrast, a very useful pattern has begun to emerge for the CAMP result; it
looks like the first three tows of a 7 by 7 circulant matrix. But where are the
polynomial coefficients? They appear when the left argument, vector L+1 0 1,
multiplies table CAMP, considered as a matrix, on the left. Carry out the vector-
matrix multiplication specified for the completion of algerithm CAMP and
obtain the correct result. (Ignore the extraneous 0 that appends itself to the end.)

84

VECTOR Vol.12 No.4

Warning: Detour into Abstract Algebra, this Section Skippable

Is the apparent pattern in table CAMP a clue to the existence of a more general
result? Given the title of this article, the reader will not be surprised to learn that
the answer is an unqualified “yes”. In the language of abstract algebra, a certain
isomorphism exists. Here is the relationship in all the “terminology-as-jargon”
words of abstract algebra.

“The commutative ring of n by n circulant matrices with entries in the complex
field is structurally the same thing as the commutative ring of polynomials with
complex coefficients, modulo the ideal generated by the indeterminate
expression (X*n - 1). This latter is usually written as K|X]/(X*n - 1)

Stated more briefly, the ring of circulants is isomorphic to the polynomial
‘residue class’ ring modulo the principal ideal (3*n - 1).

Here the notation X*n means the indeterminate raised to the nth power.
Presumably the practitioners of abstract algebra know how to multiply together
n times the universal abstraction emboedied in X. While one might consider that
such a talent is more theological than algebraic, algebraists can define away the
need for a “leap of faith” that such exponentiation is possible. They do so by
appealing to linear algebra and invoking the notions of a complex vector space
spanned by a prescribed basis set.

The basis is taken to be the infinitely many elements X*1 where n ranges over the
non-negative integers. The symbol # at this point has lost its property of being an
exponent. Rather it merely acts to index the basis elements. As the development
proceeds, # manages to re-acquire its exponential character. This is achieved by
making the product of two vectors meet the specifications of a bilinear mapping
and defining the value of an ordered pair X*m, X*n to be X*(m+n). The details are
a diversion, but the result is that the index # ends up acting like an exponent
again. Some may find this use of definition to be egregious and the whole
business rather like a ‘self-fulfilling prophecy’.

In any case the mystery can be avoided because all that really matters are the
polynomial coefficients and #, the number of times X multiplies itself. However
mysterious those multiplications of X might be, no details are needed, other than
#1, the number of factors involved. Why talk about the “ring” of circulants instead
of an “integral domain” or “field”? Because in general “divisors of zero” exist
for circulant matrices. This abstract algebra “jargon-phrase” means only that the
cancellation law of multiplication does not hold. Later, an example is provided
where the produet of two non-zero circulants is the zero matrix.

85

VECTOR Vol.12 No.4

Can the phrase “..modulo the ideal generated by the indeterminate expression
(X*n - 1)” have some tangible implementation in the world of APL functions? To
put some operational meaning to the words, first multiply two polynomials
using either CAMP or TAMP. Then multiply the same two polynomials using
CAMS. (CAMS is a oneline APL function to multiply two circulants. It is
described in a later section.) But before using CAMS, if one list of coefficients is
shorter than the other, make the matrix multiplication conformable. To do this,
pad the shorter coefficient list on the right with as many zeros as it takes to get
exactly as many total entries as in the longer list. Take 1 to be the length of either
list, now both of the same length.

The first result, using CAMP or TAMP, is the product of two polynomials. The
second result, using CAMS, is the product of two circulant matrices. Except
possibly for zero padding, in both results the coefficient lists used as input are
identical.

Next generate a coefficient list corresponding to X*n - 1. If for example, n is 10,
the list will have 11 entries. All items in the list will be zero except the first and
the last. The first will be -1 and the last will be 1. This list is just the coefficients of
the polynomial X*10 - 1, with zeros in place of all the intermediate missing
menomial terms.

Now divide the CAMP/ TAMP result for the product of two polynomials by the
polynomial X*10 - 1. Do this with an APL function that implements polynomial
long division by using polynomial coefficient lists as inputs. This is the
“modulo” operation, so focus interest on the remainder list, not the quotient list
from the long division. (Note: two APL functions, one named POLY¥DIV and
another named PDIVEBY, both described later, accomplish polynomial long
division. They do the same division operation, but POLYDIV does it with
recursion while PDIVBY uses looping.)

Compare the remainder list of coefficients with the list from the CAMS product of
the two circulants. The two lists should be identical. This result is the tangible
quantification of the words and symbols describing algebraically the structural
relationship between polynomials and circulants.

Why in the world should this work? In particular what “magic” is involved in
identifying the ideal generator (X*n - 1) as the proper choice for the modulo
calculation? In my judgement this is just one of many instances where the
theorems of abstract algebra shine with considerable glory. The interested reader
should consult a text on modern abstract algebra for complete details. {The
matter is partially clarified in a later part of this report.)

86

VECTOR Vol.12 No.4

One book on the subject that I particularly like is “Rings and Ideals” by Neal H.
McCoy, 1948. It is published by the Mathematical Association of America as one
of the Carus series of Mathematical Monographs. Those not familiar with the
Carus Monographs might like to know that their stated purpose is “..to
contribute to the dissemination of mathematical knowledge by making accessible
- a series of expository presentations of the best thoughts and the keenest
researches in pure and applied mathematics.”

Chapter VIII, Rings of Matrices, is most helpful, as is the discussion on page 162 of
that chapter about the fundamental theorem on homomorphisms. A number of
other good texts on modern abstract algebra are also available. I suggest, for
further investigations, “A First Course in Abstract Algebra” by John Fraleigh and
“Applied Abstract Algebra” by Rudolf Lidl and Gunter Pilz.

Back from the Land of Abstract Algebra:
the Polynomial-like Structure of a Circulant Matrix

There is a fundamental polynomial structure to circulant matrices that is
surprisingly easy to display. It supports the existence of a useful pattern in
program CAMF's table of intermediate results. It also validates the claim of
structural equivalence between circ(v;n) and the residue class ring K[x]/(X*n - 1).

Consider the matrix cire(v;n) expanded into the matrix polynomial as follows,
circ(on)= c1/EA™0 + c2AEA + 3EA*2 +. . . + cnEAYNn-1),

Does there exist an n by n circulant matrix A for which this tentative
reformulation is true? The answer is yes. The so-called “fundamental
permutation matrix” — FPM for short — handles the job. This remarkable
matrix is the innocent looking circulant defined as,

FPM = A =circ(vn) = cire(0,1,0,...0)
Note that vector v in APL is simply v+0, 1, {n-2)p0 and that pv is just .

Here A*nis I, then by identity matrix of all ones along the main diagonal and
all zeros elsewhere, clearly also a circulant. Further all the powers of A, from 0 to
(n-1) span the space of circulants. For want of a better word the FP matrix A may
be called “cyclopotent”. The choice reflects the influence of the terms
“idempotent” and “nilpotent” used to describe other special behaviours of the
powers of matrices.

87

VECTOR Vol.12 No.4

The n by n matrix of all zeros is the additive identity matrix in the ring of
circulants. Note that it is also a circulant. The symbol

Ax0

is taken to be the multiplicative identity matrix 1in the ring of circulants. APLers
beware — any matrix raised to the zeroth power in APL will replace every
element, even zero elements, with ones. The result is NOT the identity matrix.

The expansion in powers of A is clearly a polynomial in A whose coefficients are
the elements of the vector v (which may be complex). The left hand side of the
expansion relation is just as clearly a circulant matrix generated from the
coefficients of the polynomial. Its first row is identical to the vector v of
coefficients.

For two “circulant polynomials” constructed as above from two different
defining vectors v, the operations of addition and multiplication follow the usual
rules, with one important modification,

When multiplying two such polynomials, powers of A exceeding the (#-1)st may
result. In those cases, rewrite the power of A as A*n x A*m and substitute 1 for
A*n. This leaves only the “residue” matrix A*m, multiplied by its coefficient.

Complete the multiplication by collecting all similar powers A*m together and
adding up the common coefficients. Do this as necessary for every m from 0 to
{n-1).

Note also that multiplication under these conditions results in powers of A that
range only from m = { to m = n-1. Because A is cyclopotent, these n “residue
classes” make up the only possibilities. In effect any power p of A is reduced
modulo n, by utilizing the result that for A taken as the FPM, A*n is 1, the n by n
identity matrix. (Although not explicitly stated so far, one needs to use also the
property that the product of two circulant matrices is also a circulant matrix.)

A clue is now manifest regarding the rather mysterious choice of X*n-1 as the
ideal in the residue class ring discussed in the previous ‘Abstract Algebra’
section. Notice that A*n - T can be rewritten as A*n -1=10.

Here A is the FPM, 1 is the identity matrix and the right hand side is the zero
matrix. Replace A with the indeterminate X, 1 with the multiplicative identity
unity, and the zero matrix with the additive identity 0 to get X*n - 1 = 0. Then
check some theorems in the cited texts about mappings and kernels and some
definitions of ideals. At this point, the perceptive reader should begin to have
doubts about algorithm CAMP. Multiply two n by n circulant matrices and you

88

VECTCR Vol.12 No.4

get as a result another # by 1 circulant matrix. Assume there are no zero elements
in the two original matrices. Then the coefficients in the first tow of the result
cannot be the polynomial product. Why? — because multiplying two
polynomials with n non-zero terms will inevitably result in a polynomial with
many more terms than n. Yet as just described, multiplying two circulant
polynomials causes a “folding” of coefficients of powers greater than {n-1) into
lower powers. No power of A greater than (n-1) occurs in the result.

Before proceeding, the reader needs to have an APL “one-liner” for mulliplying
two circulant matrices. The sceptic who has an APL interpreter can then check
out the several calculations to come. The only tools needed are algorithms TAMP,
CAMFE, and CAMS — and CAMS is given next. ’

Circulant product algorithm, CAMS:
Le.x(0io-1p,L+{p,R)*+,L}4(2pp,R)p.R

CAMS stands for (C)irculant (A)lgorithm for (M)ultiplying Circulant(S). Compare
CAMS with CAMP to see that they are obviously closely related. CAMS does not
produce the full circulant matrix, just the first row. Now here are some examples
to clarify the workings of CAMS and CAMP and restore any lost faith in using
function CAMP to produce polynomial products.

Use CAMP to multiply the quadratic polynomial whose coefficients are 1 1 2 by
the quintic polynomial with coefficients 1 2 0 3 1 4. Get the seventh degree
polynomial whose coefficients are 13 4 7 4 11 6 8. (Sceptics; check this with an
ordinary paper and pencil multiplication of the two polynomials if you like.)
Note that all coefficient lists are written in ascending order of powers and that if
a power is missing its coefficient must be present as a zero in the list.

To continue, use CAMS to multiply the following 6 by 6 circulant matrices,

circ{l1 1 2 0 0 0) +.% circ{1 2 0 3 1 Y]

to get the 6 by 6 product

cire(7 11 4 7 4 11)

Take the first (CAMP) result and rewrite the single list of 8 items as two lists,
folded after the sixth item and with zeros appended as necessary. This imple-
ments the necessary “powers of A modulo 6” calculation and gives table T3,

r3; 1 3 47 4 11
6 8000 0

89

VECTOR Vol.12 No.4

Now add down the columns of table 73 toget thelist 7 11 4 7 & 11.Bingo!
The summation has reproduced the first row in the circulant product, as required
when the powers of a product of two circulant polynomials are reduced
modulo n.

Pretty neat, huh? Yeah except that there is little likelihood that very many
APLers are interested in multiplication in the commutative ring of circulant
polynomials with a program like CAMS. CAMP however seems as if it might
actually be useful. How does algorithm CAMP reproduce ordinary polynomial
multiplication? The perceptive reader may have already noticed the trick from
close examination of the above example. The list of three coefficients for the
quadratic polynomial was extended by three zeros to get a circulant matrix
conformable with the circulant matrix corresponding to the list of six coefficients
for the quintic polynomial. One has then two 6 by 6 circulant matrices, which
being now conformable, can be multiplied together with function CAMS.

What happens if both lists, the quadratic and quintic lists, are extended with
enough zeros to avoid the reduction of powers of A modulo n? The answer is
that one then gets the desired ordinary polynomial multiplication. Algorithm
CAMP accomplishes this extension very neatly by starting its calculation with the
expression K, L#L.

This in fact is a slight over extension of zeros, one too many, but the modest
inefficiency is tolerable for simplicity of the APL expression. Algorithm CAMP
has taken advantage of the zero padding to simplify the expected circulant
matrix times circulant matrix operation. The nature of the zero padding allows
the product to be performed instead as a greatly truncated circulant matrix (a
vector) times a truncated circulant matrix.

APL Functions for Long Division of Two Polynomials

As promised earlier, here are two APL functions for polynomial long division, or
PLD for short. PLD requires only the division of monomial terms with positive
integer powers, the division of scalars selected from the real or complex number
fields, multiplication of two polynomials, and subtraction of two polynomials.

Recursive APL function POLYDIV implements PLD for two polynomials L and
R. The left argument L is the divisor and the right argument R is the dividend.
Enter as a vector only the coefficients for polynomial L, in order from lowest to
highest degree. If a monomial term is absent, an entry of zero is required in
proper order for the missing term. Enter the polynomial R the same way. Do
NOT pad any zeros after the coefficients of terms of highest degree!

S0

VECTOR Vol.12 No.4

If the coeffictent list in L exceeds the length of the list in R, then the degree of the
polynomial divisor exceeds the degree of the polynomial dividend. In this case
only the trivial result, quotient equal to (0 and remainder equal to dividend, will
be returned.

POLYDIV works just as well when it is fed polynomial coefficients from the field
of complex numbers, but only for those APL interpreters with complex numbers
as the default variable type. The function also works with real coefficients.

POLYDIV displays results for the quotient and remainder as coefficient lists.
These are in the same ascending power order as the input list; embedded zeros in
these results represent absent monomials, the same usage as for input lists.

¥ L POLYDIV R;K;QV;LXQV:Z
[1] +(2=0Onc 'Q')/NORESET n DO NOT RE-INIT GLOBAL VARS ON RECURSIVE CALLS.
[2] Q+0 o DD+ 14L ¢ LL+p,L ¢ RMLXQV<«,R m GLOBAL VARIABLES.
[3] NORESET:
[4) +(LL>p,R}/ECJ a QUIT IF DIVIDEND OR REMAINDER SHORTER THAN DIVISOR.
[83 Q@+(X+(T1tR)+PD),Q » SCALAR DIVISION, ALWAYS WITH DD.
[63 Qv+kx=$1,LL+ {R*R} » ZERD PADDING ON RIGHT.
£7] LXQV+ 14L+.x(0fo-1LLY$(LL,pQV.L}pQV, L=l n LxQ¥ IS NORMAL POLY PRODUCT.
[8]1 RMLXQY+R-LXQY w ZERD PADS HAVE ASSURED CONFORMABLE SUBTRACTION.
(9] +(i=n/0Oct[RMLXQ¥)/E0J a QUIT IF REMAINDER ALL ZEROS,
[10] L POLYDIV(RMLXQV< 1+RMLIQY) = RECUYRSE ON DECREASING REMAINDER.
[11] =+o0
[12] EoJ:
[13] ‘'QUOTIENT'
[141 ({T1x1#pQ)+Q n CAREFVULLY DROP SUPERFLUOUS ZERD.
[15] 'REMAINDER' © RR+RHMLXQV
[16] {T1x0#pRR}+RR, (0=pRR)*pRR n CAREFULLY BANDLE RR IF A ZERC LEN VECTOR.
[17] Z+0ex 4 6 p'Q ', tDD Y41 !, 'RMLXQV!
v

1 wrote the preceding recursive function for this article. Because it employs
global variables, the user must insure that global variable @ has been erased from
the workspace before execution. Alternatively, the user can execute cover
function POLY to handle all initialization and execution duties. Left and right
arguments are self-documenting.

¥ DIVISGR POLY DIVIDEND

[1] » EXPUNGE GLOBAL VARIABLES BEFORE RECURSION.

[2] Z+{lex 4 6 p'Q ', thp "W 'LL ', 'RMLIQV'

£a] LIVISOR POLYDIV DIVIDEND s POLYNOMIAL LONG DIVISION BY RECURSION.
v

Here is a second function for PLD that does not use recursion. It is function
PDIVBY, as found on page 260 of U. Grenander’s book “Mathematical Experiments

91

VECTOR Vol.12 No.4

on the Computer”. Note: Unlike function POLYDPIV, function PDIVBY uses
coefficient input lists and returns restlt lists in DESCENDING order with respect
to the powers of X. Correct answers resulted from limited tests of PDIVBY with
complex input lsts. It probably would produce correct results for those APLs

with a complex variable type as the default, but the user should first verify that.

capability. Aberrant results occurred for certain special cases of no operational
interest, for example

(0j1) PDIVBY {1 0j 1)and1 PDIVBY 1.

v Z+P1 PDIVBY P2;LFAD;SHIFT

[1] » RIGHT ARGUMERT: THE VECTOR OF CCEFFS OF THE

C2]1 a DIVISOR IN DESCENDING ORDER WRI THE POWERS OF X.

[31 & LEFT ARGUMENT: VECTOR OF COEFFS OF THE DIVIDEND IN
(4] = DESCENDING CRDER WRT THE POWERS CF X.

(5] a RESULT: A 2xN ARRAY HEERE N=1+DEGREE OF DIVIDEND.

{61 =« THE 1ST ROW IS THE VECTOR OF COEFFS OF THE QUOTIENT,
[7] & ORDERED TEE SAME AS THE INPUTS.

(8] = THE 28D ROW IS THE VECTOR OF CUEFFS OF THE REMAINDER,
[9] = GRDERED THE SAME AS THE INPUTS.

[10] +{(((pP1)-(P120}t1)z(pP2)-(P2x0)12}/DIVIDE

[11] Z+(2,pP2)p({pP2}p0).P2

[12] ¢

[18] DIVIDE:Z+{pP1)p0

[14] LEAD+P2[DEGP2+(0#P2+(~pP1)1P2)11]

[15]1 P2+{SHIFP<{DEGP2-{P120)t1)}$F2

[16]) LOOP:P1+P1-P2xZ[(pP1)}-SHIFT]+PLDEGP2-SHIFT]+LEAD
[173 P2+ 1422

(18] ~+(0sSHIFT+SHIFT-1)/LOOP

[18] Z+(2,pPi}pZ,P1

The Isomorphism in Action — It Performs as Advertised

Previously CAMP was used to multiply the quadratic polynomial whose
coefficients are 1 1 2 by the quintic polynomial with coefficients 1 203 1 4. The
result was the seventh degree polynomial whose eight coefficients are1347 411
6 8. Also previously, CAMS was used to multiply the following 6 by 6 circulant
matrices,

cire(l1 12 0 0 0) +.x girc{1 2 0 3 1 4)

to get the 6 by 6 product

circ(7 11 % 7 4 11)

92

VECTOR Vol.12 No.4

How now to relate the seventh degree polynomial 13 4 74 11 6 8 to the circulant
product 7 11 4 7 4 117 Answer — consider the sixth degree polynomial X+6 -1
and its related ceefficient list of seven items,

1000001

Use the polynomial division program POLYDIV to divide the seventh degree
polynomial by the sixth degree polynomial X+6 -1, as follows

"1 000001 POLYDIV 1 3 4% 7 U 11 & 8.

Examine the remainder, not the quotient, because a “modulo” calculation is
desired. Another Bingo! The remainder is 7 11 4 7 4 11, the same as the CAMS
product. This result is not accidental. It is exactly the result that one should
obtain from the structural relationship — the isomorphism — between circulants
and polynomials.

A Danger and an Opportunity — Divisors of Zero

The Chinese ideograph for danger is the same as for opportunity. One dangerous
aspect of matrix multiplication is that the matrix product can be zero. In such
systems, mathematicians talk about “divisors of zero”. In my judgement one
could equally well phrase it as the “factors of zero”. Two “somethings”
annihilate each other and produce “nothing”. Is there opportunity here as well as
danger? Can one turn things around and opportunely use “nothing” to avoid the
danger of “somethings” annihilating each other? Developed next is an answer
that will also answer the puzzle posed at the beginning of this article. First, as
promised earlier, here are two circulant matrices that annihilate each other when
multiplied together. With CAMS, check that

circ(T1 1 0) +.% circ{1 1 1)

produces the null circulant matrix, circ(® ¢ 0).Hencecirc{™1 1 0) and
circ(1 1 1) factor zero (are “divisors of zero”). “Something” times
“something” has produced “nothing”. Now pad each coefficient list with
“nothing”, actually a single zero, and try again. With CAMS, check that

cire{(™1 1 0 0)} +.%x cire(1 1 1 ¢)

now produces “something”, the non-zero circulant circ(™1 0 0 1}. Does
this construction “use nothing to make something from nothing”? Well, it
certainly uses zeros (“nothing”) to make a circulant matrix (“something not
zero”) out of the null circulant matrix (circ{(0 0 0), which is “nothing”)
produced by the product of the circulant factors of zero.

93

VECTOR Vol.12 No.4

How to Factor a Circulant Matrix

Polynomials have roots. Then what sense, if any, can be made out of the
following procedure?

- Treat the first row of an n by # circulant as the coefficients of a polynomial of
degree n-1, the coefficients being in ascending power order with respect lo X.

- Assume the coefficients are from the real field. (Could equally well assume
they are from the complex field. Actually almost any field will do. Finite fields
will lead to some unusual happenings.}

« Factor the polynomial into its linear and possibly quadratic polynomial forms.
To do this, solve for all the roots of the polynomial.

+ Pad the coefficient list of two items of each linear factor with zeros on the
right, until the list contains n items.

+ Pad the coefficient list of three items of each quadratic factor with zeros on the
right, until the list contains 1t items.

« With CAMS, multiply all the factors back together.

Does the product reproduce the original coefficient list for the polynomial of
degree n -1 and thus the original circulant? The answer is yes. In other words the
original circulant matrix has been factored into a product of n - 1 simpler
circulant matrices.

An example. Consider the 3 by 3 circulant with generating vecter v = 1 ¢ 1.
This list corresponds to the quadratic X*2 + 1 with two imaginary roots £ and - i

The two linear factors are (X - i} and (X + I1).Padding a single zero to
each list, calculate (=i 1 0) CAMS (I 1 0).Theresultis1 01, the original
circulant. The linear lists are circulant matrices whose product is the original
circulant matrix. The original matrix has been factored. Note: Caution, APLers
who try this using APLIWIN must write the imaginary number I as 0f1 and -1
as 07 1.

How about a tougher problem? Consider the quintic polynomial of an earlier
example. Its coefficient list is the first row of the 6 by 6 circulant generated by
v=(7 11 4 7 4 11). T. C. Chen’s SCARF function in his SCARFS workspace is a
robust and accurate root finder. Tt gives generally good results, but the iterative
interaction involved requires patience and some experience in making a correct
decision. The process appears to be somewhat tedious and not very practical for
circulants of any significant size, say 20 by 20.

94

VECTOR Vol.12 No.4

For the quintic example with coefficients 7 11 4 7 4 11, Chen's SCARF function
returned these five roots:

one real » “0.59948564304709
Imaginary pair » 0.62914BUEGBY6TI +/-1ix0.83550042957063
imaginary pair » ~0.51122382119136 +/-Ix0.B4205466588059

The reader may wish to check the roots with dyadic ‘base’ (1). Use root 1 7
i1 4% 7 4 11, where root is one of the five listed. Results are fuzzy zeros,
close to, but not quite zero. They are generally in the range of 10x[ct, or less,
for the APLIWIN system default for comparison tolerance. How about a
different approach, say finding the greatest common divisor of two circulants?
Progress might be easier because there exists a known algorithm to find the GCD
of two polynomials. Further, with a polynomial division function available, this
Euclidean algorithm for polynomials can be programmed with little difficulty.
These facts unfortunately are not enough to provide a quick answer. The quest
requires, among other things, a good understanding of the meaning of division
in a commutative ring.

Pressing On

I began a search for the (possibly non-existent) Euclidean algorithm for circulants
on the Internet. The hunt turned into quite an adventure on the ‘net’. The full
story is rather long and best told as a separate tale. One result is obviously the
present article. Another result is the existence of a follow-on to this report.
Presently only a draft, the investigation expounds upon the meaning of division
in a commutative ring, affirms the existence of a Euclidean algorithm for
circulants and pursues a tangible implementation thereof in APL.

The original motivation for the present article was not to find, pose and solve
puzzles that seem to violate common sense. The larger purpose was to
investigate ways to factor a particular kind of matrix, a circulant. One path led to
the subject of Euclidean algorithms and their existence in general and in
particular for circulant matrices. Another path led to finding roots of
polynomials using Chen’s SCARFS workspace.

At every turn, I ran into the need to learn more about modern abstract algebra
and had to engage in a crash course of self-study of the subject. The topic seems
ready-made for APL. I suggest there exists an opportunity for someone to author
a book, perhaps titled “APL and Modern Abstract Algebra”. T believe both APLers
and algebraists would benefit. (The latter to the extent that they have access to or
are even aware of APL))

95

VECTOR Vol.12 No.4

Recapitulation

These APL programs have been displayed and discussed: long division of two
polynomials, function POLYDIV and its associated cover function POLY
(functions not relisted). Long division of two polynomials, function PDIVBY,
{not relisted).

Thomson algorithm, medified,
TAMP: 1++/8((1-Dio)-tp,L)é(,L)=.*R,L=L.
PAMP stands for (T}homson (A)lgorithm for (M)ultiplying (P)olynomials.

Circulant algorithm, CAMP:

T14L+.x(0io-1p,LY¢((p,L},pR,L)}pR,L2L.
CAMP stands for (C)irculant (A)lgorithm for (M)ultiplying (P)olynomials.
Circulant product algorithm, CAMS:
L+.x(0io-1p,L+(p.R}t.L}é(2pp,R}p,R
CAMS stands for (C)irculant (A)lgorithm for(M)ultiplying Circulant(S).

CAMP produces the product of two polynomials as a linear list of coefficients,
lowest degree term to highest degree. The internal working of the algorithm is
essentially just to multiply two circulants. Because of the effective use of zero
padding inside the algorithm, no reduction modulo # occurs. The result can also
be interpreted as the product of two circulant matrices, but this is not generally
very useful because of the extensive zero padding used to avoid reduction
modulo 1. CAMP does not expect that in general the input lists of polynomial
coefficients will be the same length. It will produce correct results for left and
right argument lists of different lengths. Because circulants and polynomials
commute, CAMP produces the same answer if the left and right arguments are
exchanged, even if they are of different lengths.

CAMS produces the first row of the product of two circulant matrices. Such a list
is equivalent to polynomial multiplication modulo the ideal generated by (X*n -
1). The exponent # is the order of the circulant matrices. CAMS right argument
list can be longer than the left argument, but not vice-versa. Unequal input list
lengths are generally not a good thing. Even though the function will zero pad
the left argument to match the right’s length, the user may inadvertently mix up
inputs and so violate conformability requirements for matrix multiplication.

96

VECTOR Vol.12 No.4

CAMS guarantees commutativity of its left and right arguments only if both lists
are of equal length. Both arguments are best input with the same length, say n,
which is also the exponent in the expression X*n - 1. Otherwise n is the length of
the right argument.

Polynomial Long Division has produced verification in a specific example of the
isomorphism between the ring of circulants and the domain of polynomials over
a field, modulo the ideal generated by (X*n - 1). Judicious use of zero padding
provides the key for solving the puzzle posed at the beginning of this article. If
two circulant divisors of zero are so padded with the use of “nothing”, they will
produce “something” from “nothing”.

Considered as a polynomial with real or complex coefficients, one can factor the
first row of a circulant matrix. Just determine the roots of the polynomial, then
judiciously pad the linear or quadratic coefficient lists. Treat these lists as
circulant matrices, multiply them all together and they will reproduce the
original circulant. One needs a very accurate root finder such as Chen’s SCARFS
workspace and even then the procedure is not practical for larger circulants. An
alternative possibility would be to develop a Euclidean algorithm for two
circulant matrices and so find a greatest common divisor eirculant.

Note: All APL functions are designed to run under Windows 3.1 using Iverson
Software’s APLIWIN interpreter. Because almost all expressions are in upper
case, the functions can be easily converted to run under IBM’s APL2. The only
“case changes” required are to convert all quad functions from lower to upper
case. Thus [io, (nc, Oct and [Jex need to become OI¢, ONC, OCT and DEX,
respectively, in functions POLYDIV and POLY.

Readers interested in experimenting with the functions can type them in from
“scratch” with little difficulty. The author would like to be advised of any
interesting results or aberrant behaviour. Email him at: frgp2la@prodigy.com

Acknowledgement

1 thank Gerhard Niklasch of the Mathematical Institute, Technische Universitit,
Munich, Germany for his encouraging internet dialogues, valuable criticisms and
cogent comments. As a novice, I often had to struggle with one or another of the
various concepts of modern abstract algebra. 1 particularly appreciated his
patient forbearance and helpful guidance in these instances.

97

VECTOR Vol.12 No.4

Technical Note on Confidence Limits

by Norman Thomson

I begin this note by thanking Dietrich Trenkler for his contribution to the Random
Vector in Vol.12 No.2, entitled “Computing Clopper-Pearson Confidence Limits by the
Hlinois Method” [1]. However 1 regretted that Dietrich did not exploit APL
operators which greatly enhance the ease of the underlying programming
problems, nor does his article make immediately clear the considerable
application generality of the techniques he describes. These come under two quite
separate headings of numerical analysis and statistics. Accordingly this note is an
endeavour to rewrite, expand and clarify Dietrich’s material.

Numerijcal Analysis

As Dietrich says, the Illinois Method is a refinement of Regula Falsi (sometimes
called the Method of False Position), which in turn is a variant of the Secant
Method, an operator-based algorithmic technique for which is described at length
in “APL2 in Depth” [2]. All these methods are non-linear root-finding algorithms
which have the objective of solving the equation f{x)}=0 given two start values ¥,
and x,. All the methods use linear interpolation to obtain a further approximation
x; based on the formula

Y. =x _yo(-rf'xu)
B WY

as quoted by Dietrich. The situation is illustrated graphically by

"

W

X, X,

¥,

VECTOR Vol.12 No.4

The basis of the Tllinois method is that if, as in the case shown above, the graph of
f(x) shoots up to the left, it helps to accelerate the process by using ¥2 y, at the next
step, thus:

improved

2 original

B X

NG
AN

In programming terms an algorithm is required which processes a large range of
functions, and this is one of the things which an APL operator provides. An
operator should be thought of as a function generator. In the present instance an
operator ILL takes a specific function, say f(x)=cos(x) - x exp(x) (this was the one
chosen by Dietrich for his illustration), and generates an appropriate function
F ILL to locate one of the roots of F. The calculation of x, shown above is
fundamental, and this, following a small amount of elementary algebra, can be
expressed as the cross-product function:

Z+«X cp Y
Z+({0X)-.xY)+~-/Y n cross product {x2.yi-x1.,y2)/(yi-y2)

{I adopt a convention of using lower-case names for APL functions and upper-
case names for operators.)

All the apparatus is now in place to define a single step for the operator ILL
whose (single) operand is a function P:

fol Z«{P ILL}X.:T

1] Z+«X ¢p P°X

f£21] +{1=xx/P"(14X),2)/I1

(3] I+«Z,D cp PUT(14X),Z o =0
4] L1:Z+Z,T cp 0.5 1xP"Pe(+X),Z

generate a new x-value

branch if Yi.,Yi-1 »¢

obtain second new x-value
ditto using .5xYi-2

P D D I

VECTOR Vol.12 No.4

The final requirement is to repeat the process until a pair of successive solutions is
within the desired tolerance as defined by the global variable EPS:

[o] Z+(F RETYX

[1] I«F ILL X a Illinois method F=fn, X=start value
[2] Li:~{(EPS>|F “1+Z)/0 s Result is intl, 2nd item=best approx
[31] Z«F ILL Z ¢ »L1 a Further step if Z not near enough 0

Taking the function f{x) above as an example, define

[o] I+F X
[1] Z+(20X)-XxxX

The final two Ilinois valutes for the root are then found, using the Dietrich’s two
start values of 0 and 1, by

F RPT 0 1
0.5177573636 0.5177573637

The above is a completely general root-finding method, and if this is what you
seek, the above eleven lines of APL are all that you require.

Statistics

Suppose that you have carried out an experiment in which you believe that the
conditions of a binomial probability model prevail, that is, the probability of
achieving, say, a 1 (as opposed to a 0) at each trial is constant, although possibly
unknown. (Such a trial is often called a Bernoulli trial) An observation is thus
expressed as R out of N, for example 3 right guesses out of 10, 3 heads out of 10
tosses and so on. An observation could come about in the presence of any one of a
whole range of underlying Bernoulli probabilities P, and so the probability of
obtaining the observation can be described as a function of P. The observed result,
R out of N, thus generates a function, which, as in section 1, suggests an APL
operator. With ILL above the generator was a function, in this case it is a vector
N,R. Anticipating the fact that the objective is to generate confidence limits, 1
combine the required confidence level in the form, say .95, with ¥ and R to define
an operator GB analogous to Dietrich’s function G_BINOM:

[0] Z+{(LNR GB}YP;L;N;R;T

[1] (L N R)+LNR ¢ I+0,:R a R out of N is an obsvn;LelD,1]
[2] Z+(#/(P+T)={{1-P)+K-T)xT!N)-L

(3] n Z is cum binom prob(P,N;R) - L

100

VECTOR Vol.12 No.4

By setting L to 0, G5 can be used to obtain the cumulative binomial probability
for any given P. For example:

0 6 3 GBE .5
0,.65625

gives the probability of up to and including 3 heads in a toss of 6 coins. The
experiment which Dietrich describes is one in which 13 out of 17 are cbserved,
and so the estimate of P is 13/17 = (.7647. The lower confidence limit is that value
of P which is sufficiently small that the observation 13 out of 17 begins to become
implausible. This, according to the Clopper-Pearson methodology, is recognised
by the cumulative probability reaching 0.975 (for 95% confidence limits) for R=12
{n.b. not 13). So using Dietrich’s start values of 0 and 1, use ILL to find this
probability as

T1+{0.975 17 12 GB)RPT 0 1
6.50101

Similarly the upper limit is that value of P which is sufficiently large that the
cumulative probability up to R=13 reaches no more than 0.025.

T1+{0.025 17 13 GB)RPI 0 1
0.93189

Generalising the method, define a function clb which takes a result and a
confidence level and produces a Clopper-Pearson confidence interval:

(o] Z+«L clb NR;P;S8I

[11 w Z is binom conf lims given obsvyn (¥,R), level is eg. L=.95
[z] Z+0 1 o P++/¢NR o L+0.5x1+L a Adjust I for 2z-sided
[3] SI<OCTI{L/|P-0 1) L{{Px1-P}34+NR}*0.5 n Set Start Interval
[4] -+(0=t¢NR)/I2 A £[1]=0 if R=0

[5] Z[11+71+(L,NR-C 1)GB RPT 0[P-3 1xSI n solve for low lim
(61 Li:=(=/NR)/O a E[{2)=1 if R=N

(7] Z[21+<1*((1-L)},NR)GB RPT 1|P+1 3xSI a solve for high lim

Dietrich uses 0 and 1 (the extremes of the probability range} as start values
throughout. This not only fails to use the knowledge which is already present in
the observation in order to speed up the convergence of the Mlinois method, but
also can cause failure of convergence in the case of N out of N, since the two start
points must not be identical. I have tried various ideas for a universal start value
formula, and my current best thinking is reflected in line [3] of the function c1b,
and in the corresponding lines of the matching functions for other distributions
which are given below. I have not penetrated the matter of start values deeply,

101

VECTOR Vol.12 No.4

and it is possible that there are better formulae for them, or indeed that the ones
given may not always work. So long as the user has at least some degree of
numerical and programming awareness, this need never be a severe problem in
practice.

Dietrich gives the results of all confidence intervals for the case N=10, but
declines to show the programming he needed to get there. Under my scheme of
things this is achieved neatly using the each operator:

T,,[10]0.95¢c1p10, " T+0,110

0 0 0.3085

1 0.0025286 0.4450Z
2 0.025211 0.5561
3 0.C66739 0,652u45
4 0.124155 0.73762
5 0.18709 0.81291
6 0.26238 0.87845
7 0.34755 0.33326
8 0.45439%91 0,97479
9 0.55L498 0.99747
10 0.6%15 1

Dietrich concluded his article by saying that this approach could be extended to
the Poisson and negative binomial distributions. Rather than hand-wave, here are
the corresponding operators:

Poisson:

[o] Z+(LR GPYX;L;R;T
[1] (L R)+LR ¢ T+0,R A R Is an integer obsvnp; Lel0,1]
re] Ze((+-X)x+/{X+T)+!T)-L n Result is cum Poisson prob(X;R)-L

[0l Z«L clp R;P;51

[1] =w Z is Poisson conf lims for obsvn R, level is e.g. L=.95
[2] Z+0 1 ¢ L+0.5x1+L n Adjust L for 2-sided
[31] =+(0=R}/L1 a Z[11=0 ff R=0

[4] Z[1]+"14(L,R}GP RPT 0.5 0.9xR

[51 L1:Z[21+«"14((1-L),R)GP RPT 2 3xR

Negative Binomial:

[o] Z+(LXR GNBYP;L:;X;R;T

[1] (L X R)+LXR ¢ T+0,:R a R = no. of 0s before X is; Lel[0,1]
[2] Z+(+/ (P*XIx((1-P)*T)xT1X+T-1)-L

[3] n 2 is cum neg bin p(P,X;R) - L

102

VECTOR Vol.12 No.4

[o] Z+L clnb XR;P;5T
{11 @ Z=neg binom conf lims for obhsvn (X,R), level is eg.L=.95

[2] Z+0 1 ¢ P+{+XR)++/XR ¢ L[+0.5x1+L s Adjust L for 2-sided
{3] SI+{Jctf{l/I1P-0 1 n Set start Interval
[4] +(0=+¢XR}/L1 a Z[11=0 if R=0

[5] Z{1)+714{{1-L),XR)GNB RPT 0[P-0.2 0.5x57T
[617 L1:Z{2]+«"1+{L,XR-0 1}GNB RPT(1-0CT)LP+0.2 0.5xS5I

Dietrich talks about the “coverage probability c(p)” meaning the probability that
the true binomial probability lies within the confidence limits. In my view, c(p) is
either 0 or 1, that is the confidence interval either does or does not include the
true probability - the problem is that since you don’t know the latter you don’t
know which of these two values ¢fp) possesses. In short, I do not understand
Dietrich’s coverage probability, which is a pity, because by not giving his
program, Dietrich has missed an opportunity of using APL to describe his
intentions in a situation where verbal communication by itself has proved
inadequate, Also the diagram on page 93 has presumably suffered greatly in
transcription, and so this doesn’t help either.

What is meaningful is to compute the relative likeliiood associated with the
confidence interval, that is the average probability of the observation for P values
within the limits, relative to the overall average probability. To compute this
requires integration of the various probability functions, which in tum requires
some more numerical analysis. For those readers who wish to persevere further
this is where the next section returns.

More Numerical Analysis

A complete operator-based APL package was described in detail in [3]. A
summary version is given here which contains the operator SIMPSON, which
implements Simpscn’s Rule, and ROMBERG which builds on SIMPSON, and
extends it satisfactorily for definite integration for a wide range of functions. In
each case P is the function to be integrated and R is the range of integration. The
number of Simpson intervals, L must be an even integer.

103

VECTOR Vol.12 No.4

(o] Z+L(P SIMPSON)IR;T
(11 Ee{Tx+/{1,({L-1)pk 2),1)xP"{+R)+(T+«-R-.+L)x0,1L)%3

{o0] R«+V refine 8§

[1] +(0#p,V}/L1 ¢ Re§ o >0

(2] Li:R«,(T1+V)refine §

[3] ReR,(T14RY+({T1+R-V)+ 1+2+L4xpR

[o] Z+{(P ROMBERG)YR;T;N

[11] Z+T+(1+N+0} (P SIMPSON}R

[2] I1:Z2«(T«"14Z2)refine(2+N«N+1)(P SIMPSON}R
[31 +(EPS<|T-1+Z)/L1 o I+ 1+tZ

There are situations in which what is called adaptive integration works where
ROMBERG fails, and so an operator ADAPT is also given. ADAPT works by
repeatedly distributing the tolerance between half-sized intervals, and so it is
necessary to provide the initial tolerance, E, explicitly at invocation, whereas
ROMBERG uses the global value EPS.

[ol Z+E{P ADAPT)R

[11] Z+u (P SIMPSON)R

[21] +({EPS>|Z-2(P SIMPSOK}YR)/0O

(3] Z++/(0.5xEPS)Y{P ADAPT} 0 1¢"R,"0.5x+/R

The above fourteen lines of APL provide a complete general-purpose package for
definite integration — a good example of a small amount of APL code providing a
great deal of function.

More Statistics

Following the above, we are now in a position to compute the relative likelihoods
for the binomial and negative binomial distributions by integrating over both the
Clopper-Pearson range, and the maximum possible range, which is (0,1). The
operators PYB and PYNB supply binomial and negative binomial probabilities.
Expressing the parameter pairs ¥R and XR as operands allows their arguments P
to be set up as suitable variables for integration.

104

VECTOR Vol.12 No.4

[o] Z+(NR PYB)P
{11 Z«x{(L1/¢NR),(P,1-P)*("14NR),-/NR

(o] Z«L rlb NR
[1] Z++/(NR PYB ROMBERG) (L cilb NR){0 1)

{o1l Z+(XR PYNB)YP;X:R
[1] (X R)+XR ¢ Z+{P»X}x({1-P)*xR)xR!X+R-1

[0] Z+L rlrb XR
[11 Z++/(XR PYNB ROMBERG) (L clnb XR)(0 1)

There is no point in supplying corresponding operations for the Poisson case since
mathematics guarantees that the relative likelihood is exactly equal to the
confidence level,

It is interesting to evaluate the relative likelihoods for some sample binomial
observations.

.95 r1b”(10 3)(100 230)
0.98385 0.96238

.85 rlb 1000 300
0.953854

Once N becomes large, say of the order of several hundred, the user needs to be
sensibly aware of what is going on in the program. The problems arise because
the functions being integrated eventually have values of the same order of
magnitude as EPS. Some breathing space can be obtained by recognising that
since rlb produces relaifve likelihoods the results of PYB and PYNB can be
multiplied within the APL function by arbitrary constants. Swilching from
ROMBERG to ADAPT is another possibility, which was necessary in the last case
above, although for simpler cases ROMBERG is faster,

In each case the relative likelihood is greater than the confidence level, which
leads to the paradox that for a low N such as 10, the odds are better than 49 to 1
on the confidence limits including true p, even although the confidence level was
only 95%. The explanation is that the probability of obtaining precisely the
observed result is excluded from both summations in c1b. As N increases the
relative likelihood (which is what you should put your money onf) moves closer
to the confidence level. However even with N=1000 there is still quite a bit to go.

105

VECTOR Vol.12 No.4

Relative likelihood is also observed to exceed confidence limits in the negative
binomial case.

.95 riInb™(2 1)(2 3)(5 20)
0,99595 0.98218 0.95367

In a teaching context, this provides striking illustrations of the differences
between confidence, probability, and relative likelihood.

1 would like to emphasise the practical nature of such calculations. At work I was
often asked what should be believed following an experiment in which small
numbers of failures were observed, for example 2 out of 1000, The appropriate
confidence limits are

.95 ¢clb 1000 2
0.00024 0.007

Using a Normal approximation the 95% confidence limits would have been
quoted as -0.0008 to .0048, the former of which is ridiculous, while the latter leads
to a falsely optimistic view of the true quality.

Norman Thomseon
Finnock House
Cliff Terrace Road
Wemyss Bay
Inverclyde

PA18 6AP

References

[1] Computing Clopper-Pearson Confidence Limits by the linois Method, D Trenkler,
The Random Vector, Volume 12, No.2, pp. 87-94, October 1995,

[2] APL2 in Depth, ND Thomson and RP Polivka, Springer-Verlag, 1995.

[3] Integrating with Insight, Norman Thomson, Vector Vol 9 no. 3, pp. 113-116,
January 1993.

106

VECTOR

Vol.12 No.4

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of

fluency in APL.
Contents
Hackers” Corner: A New Frock for IRMA Adrian Smith
Technical Correspondence
Divided Differences Norman Thomson
Linear Recurrences and Matrix Powers Roger Hui
A Different DDE Application John Sullivan

An Internet Extension to 3D Noughts and Crosses Timo Laurmaa
At Work and Play with J: Year’s Digits for 1996 ~ Gene McDonnell
Linear Recurrences and Matrix Powers Roger Hui

Roger and the Amazing Technicolor Ballclock Norman Thomson

108

112

116

119

123

113

127

107

VECTOR Vol.12 No.4

Hackers” Corner: a New Frock for IRMA

by Adrian Smith (100331.644@compuserve.com)

Motivation

I find it helpful to be able to read my own APL code occasionally, but essential to
read other people’s code which [am trying to maintain. As I write this, I am a
few days into a short contract which involves changing over some quite complex
mainframe code to run with a new set of input sources, while maintaining a lot
of existing output structures. The first day — having got through the routine
pay-and-rations stuff — was spent browsing workspaces and generally trying to
understand what the existing system was doing. | found this to be a lot harder
than it should have been, at least in part because of the quite awful rendering of
the APL font by the IRMAWIin software I was using. It seems as if the people
who designed (if that is the word) the APL characters had set out to make APL
nearly as hard to read as J! Here is the sort of thing I was faced with ...

- IRMA WorkStation: 3270 Terminal - [standard.emu® [B]}
i} File Edit Controls Settings Yindow Help
[EDIT 4.8: FSMAR {U1dth=08; Mulls on ... Compress on)

+[e] MAT+FSMAR FLDS; FMT; INDEX;LEN; SHAPE,DELX

[11 ADIG QUT FIELD CONTENTS FROM FSHAKEEF,

[21 RANDG RESHAPE TO LOO¥ LIKE THEY UERE ON THE SCREEN.

£3] FR.. Saved ocn 27/82/84 ot 089.12.

[4] GELX+ "QERROR ' 'FULL-SCREEN **,(1+[JDM1OTCNL) tO0N'

[5] t(~B=lTﬂpFLUS)/‘FLﬂStl[-65+ﬂ&Ui(~FLDSB" it /RLDS!
b [6] EMT+FSHAPTRC; 2 31

f (7] +{1=pFLDS+ FSMAPTRL; 111, FLOS) {NULT

[8] SINGLE:MAT+FSMAKEEPEFSMAPTRLFLOS41+1x/ENTLFLDS; 1]

f93 SHAPE«+{SHAPEL11=1) 4SHAPE+ FMTLFLOS;]

{18] ~+{1=ppHAT+SHAPEpHAT) {8

[11]1 AYECTOR FIELDS HAVE TRAILING UMDERSCORES STRIPPED OFF.
(121 B, pHAT«(—+/ANGHATE" _*J4MAT

[13] MULT:INDEX+FSMAPTR[FLDS:41,.+1[/LENex/ENTFLDS;]

| [14] MAT+FSMAKEEPT1[INDEXXLENs.2L[/LEN]

v

Notice that almost all the APL symbols cccupy far too much of the available
width, that there is no differentiation of height so that [J Tl do not show
clearly, and that 1 and p look like nothing on earth, If I was finding this hard to
read, what about all the other poor mainframe users out there, who have had
their nice old terminals taken away and replaced by ‘modern” Windows-based
PCs. If you are suffering as I did — read on.

108

VECTOR Vol.12 No.4

Investigation

Well, a font is a font is a FON — even if it has some 32 different sizes in it so
IRMA can pretend to be every known type of 3270 device. I already had a little
APL*PLUS/PC workspace for maintaining font files, which I used to build the
CAUSEWAY.FON that Duncan designed in the style of the old mainframe
character set. I settled on 15 by 7 and 15 by 8 as nice sizes to work with, so the
challenge was on to find the right place in the DCAAPL.FON file to patch. Now
15 is a good number to look for if you have a hex-dump utility for DOS files, as
the file is listed in 32-byte sections so you get a very clear diagonal pattern from a
15-character repeat ...

| e6ap: © © © O 7c B0 BO MO T 0 O O O 0 0 O

| ©6b0: © 0 © 7B B4 BL GBS B4 TB 0O O 0 0 O O O

! ©Bcd: & 0 10 20 fe 2010 0 O O O 0 0 O fc O

j c6dd: ¢ © ¢ 0 O © 0O O © 0 O 0 O O O O

| cEed: 38 L4 LB Lk 4u %u 0 0 9 0 § O O O & uL

| cBfO: 44 44 Lu L4 38 0 D D 9 O O O O O € 10

! =7e0: 10 10 10 10 7¢ O 9 O O © O a8 20 20 20 26

| €710: 20 20 20 20 38 0 ©® © O O 0O O cO 30 ¢ 30

! ©720: g0 0 fc 0 © 0 O O ©O O © 0D 3C LB 48 30

| erag; 0 0 © 0 © © © O O O 0 6% 94 88 88 88 H"

1 e7uo: 74 0 4 0 0 O 0 O O 0 dc LD 7B MG IC O | |
! €750: 0 0 O 0 9 O O O 0 GO 20 20 20 24 18 O | . !
! ¢760: 0 0 0 0 O O O O 18 20 L4 LL B4 58 L0 UO . .+« $DDdX88 |
] c770: 40 0 O O 0 O 0 O 44 97 92 92 6C O O O L S weDieolens
} ©780: 0 0 0 0O O 4% 2B 10 28 4% © ©C 0 O O O - Blal(Devanas |
! eo790: © O 40 20 20 1010 B8 B L & & O 0O O 0 [
! c7ac: 0 0 30 30 0 fc © 303 L O O O O O 9 [P - U] - P
! eo?bo: 0 0 0 7o 4w 28 2B 10 1C & 0O O 0 0 O O VowesID{lennvannas |
| o©7c0: 0 10 20 20 28 44 ?7¢c © 0 ©C O O O O 0 O Poaes (0D e anavnnes |
| e©7d0: 0 7c 10 410 40 10 10 © 0 © 0 0 O 38 8 & I alensoesunaseBan |
| c?e0: B8 8 8 B8 B 8538 ¢ 0 0 0 0 O 4 B fo | vaceesBasuenenns |
| e7f0; 30 fc 46 B0 © © © © 0 0 10 10 10 10 10 10 | OaBautunnnnnenn .l

If you don't have a suitable hex-dump utility, this one (written in C, by me, in
1988) is included on the DOSFP page on APL-385s web site at
www.demon.co.uk/apl385. Now, each character in a .FON file is made up of n
bytes, where n is the depth of the character cell. What we would expect to find
here is a collection of integer vectors, each 15 long, having the pattern of the
character represented as the topmost 7 bits (for the 15 by 7 set). All we need to do
is read the file into the workspace (using rget from Vector 11.1 p126) and dig
into it around the ¢700 spot to see what we find ...

pff+rget'dcaapl.rfon’
215040
1617 1+'0123456789abcdesf ' 1'c700"
50944

109

VECTOR Vol.12 Ne.4

CLO'[1+8{Bp2)T154509444 1]
RPN N P

........

... looks hopeful. We have a straddle across what might be a base and what might
be the top of a ceiling! Now to have a look at the font ordering in charmap, and
sure enough we find that the 1 is one character before the [, on the positions
normally given to N and O in the font. A little gentle arithmetic yields the base
point of the font as base15+50232 (incidentally the 15 by 8 set is based at
87096) and we now have the following function to browse the characters:

Vseei5{0]1V

Lol r+seels ch;pos

[1] a 7 wide by 15-deep chars

(23 pos+dcavich

[3] r<'.0' [1+&(8p2) 7154 (basel5+15xpos}tifL]
v

... where dcav was simply read off charmap and typed in. Now all we need to
do is to read in the causeway font, lift the definition from there, trim unwanted
rows or columns, and patch it in to the DCA font ...

vput1s[O1V

Lol ch puti5 def;pos

[1] =« replace 15-deep char

£2] pos<«dcavich

[3] (154 (base15+15xpos)+Lf)+{(8Bp2) Lg~defe' .'
v

vPatch[OIV
[ol Patch ch;cs
r1] =~ Substitute baselined causeway char
[2] cs+1$”1e” 1 O¢see ch
[3] ch putls cs
v

110

VECTOR Vol.12 No.4

Results

The proof of the pudding is in the eating, and 1 am glad to report that my
mainframe screen now looks like this ...

ARMA VorkGta 3271 T al -1 standatd.emu [B]) -

File Edit Contrels Settings Window Help
[EGIT 6.8 FSMeR {Uidth=99; Mulls on ... Compress on}
&[B] MAT+FSHaR FLDS, EMT,; INDEX; LEN, SHAPE :EJELX
' [13 aDIG DUT FIELD CONTENTS FRGH FSHaKEEP,
i {21 mAND RESHAPE TO LOOK LIKE THEY WERE oN THE SCREEN.
| [3] meo Saved on 27/82/84 st @9.12,
| [4] BELX+'OERROR ' FULL-SCREEN C T EHODMOTENL y A0
 [5] !(~B=ITBpFLDS)/'FLUS+1[h65+DﬂUL(~FLDSE" /LS

{6] FRT+FSWAPTRL; 2 31

[7] +(1=pFLDS6FSNAPTR[;1]L,FLDS)+EULT
| [8] §INGLE:HAT+FSHQKEEP[FSHéPTR[FLDS;4}+LX/LHT£FLOS;]]
- [9] SHAPE*(SHAPE[1]:1)&SHAPE+,£HT[FLDS;]
(18] ~+(1=ppHAT<SHAPEQNAT) 48
[[111 AYECTOR FIELDS HAVE TRAILING UNDERSCORES STRIPPED CFF
F 121+, pHAT+{~+/~\BIEATE" ') 4IAT
F [13] EULT:INDEX+FSNAPTR[FLDS;4I°.+L[/LEN+*/£HT[FLDS;]

[14] MAT+FSMAKEEP[1] INDEXXLENo =1] /LEN]
v

- which I find very comfortable to work with, and very nearly as readable as the
original (excellent) 3179 fonts of 10 years ago. Moral: if your job is chopping
down trees, there is always time to stop and sharpen your axe.

Getting Hold of this Stuff

It is probably not sensible for me to put the patched DCAAPL.FON up on the
Web, as it has at least 37 copyright statements embedded in it, and 1 dor’t want
to upset anyone. However the Dyalog workspace is absolutely tiny, so you can
grab it from www.demon.co.uk/apl385/ragbag and save yourself some typing.

Next issue: Making | Readable (no, sorry ... even for the April Vector that was a
joke in very poor taste - perhaps a Neural Net application to discriminate
between] and line-noise would be more interesting?).

111

VECTOR Vol.12 No.4

TECHNICAL
CORRESPONDENCE

Divided Differences: Reply to Hui & Iverson
From: Norman Thomson March 1996

I should like to thank Roger Hui and Ken Iverson for contributing the elegant
solutions for divided differences, Choleski and QR decomposition in the January
Vector [1]. 1 would make the point that the MWY solutions reflect my empirical
observation that most mathematicians, faced with a programming task, find it
more comforting and secure to work at the cell level, rather than to “think
array”. I don’t applaud this, but it does seem to be a fact that mathematicians,
like teenagers, do not always do what they are told is good for them! Cell-level
working is also the style of most numerical analysis algorithms given in the older
classie text-books.

I used the Choleski algorithm because 1 wanted a simple, but non-trivial
illustration of an algorithm which demanded a loop. Clearly 1 should have
looked further for my example! | can only plead that my upbringing on the
books of the pre-computer era has shielded me from the Choleski and QR
algorithms in J which Ken and Roger give. These are built on results which are so
delightful that 1 consider it worth while “drawing” them below in ways which
make the recursive algorithms seem almost inevitable! C(X) means the Choleski
matrix of the square symmetrical matrix X, and is the extension of the idea of
“square root” to a matrix. Dashes represent transpose. The matrices are divided
into halves either by both rows and columns in the case of Choleski, or by
columns in the case of QR. Where the number of columns is odd, the extra one is
to the left of the dividing vertical bar.

x|y)] 0
(of¢) =
Y| 2 -1 -1
Y'X C(X)I C{Z-Y'X Y}

112

VECTOR Vol.12 No.4

R{AQ} Q(A0)TAL

QR{AO|AL) = Q{A0) Q(G}

0 R(G}

where G = Al- Q{A0).Q(A0) . Al.

Thope that this further note may encourage others to revisit the } algorithms.

Reference

[1} Hui, Roger KW and Iverson, Kenneth, A Note on Programming Style, Vector,
Volume 12 no. 3, pp.117-121, January 1996

Linear Recurrences and Matrix Powers
From: Roger Hui 26th February 1996

1 read with enjoyment and admiration accounts of Eugene McDonnell’s excellent
adventure in “Heron’s Rule & Integer-Area Triangles” in the January Vector (12.3
pp 133—142). The article discusses Sloane’s sequence 700, s=: 1 2 7 26 97 362
... with recurrence relation

A{n} = 4A{n-1} - A(n-2}

where (2+s)+/_1 ¢ 1 are the sides of integer-area triangles. Computing the
sequence using the double recursion is found to be extremely slow, and is made
faster using generating functions, Taylor's series, and partial fractions.

There is another fast solution, based on array operations. The recurrence can be
written as the matrix equation:

0 il l[m-z)]

1 4
i

-

[A(n—l) i

A(n) | - [Aln-1)
E L

This form makes clear why it's called a linear recurrence. In J,

113

VECTOR Vol.12 No.4
X=1 +/ .= Matrix multiplication
M=: 0 1,:.1 &
Ab=; 1 2
M x AO
27
M x Mx A0 {M x M) x AC
7 286 7 26
MxMxMzx AD {(M x M x M) x AO
26 97 26 97
MExa: (1.5} AQ {M&xa: (i.5) =i.2)} x AOD
1 2 1 2
2 7 2 7
7 26 7 26
26 97 26 97
97 362 97 362

Thus the n-th element of the sequence obtains by n repeated multiplications by M
or, equivalently, by multiplying by the n-th power of M. The n-th power of a
matrix can be computed by repeated squaring, with a consequent reduction from
O{n} operations to O(log n) operations.

We illustrate the process for M to the 30-th power:

[b=:#:30
111141i0

b# i.-#b
g 3 2 1

_4 15

X~n:ld4 3 2
~109552575
_408B855776 1

2911
_10BBG

.18
.56

1M
HJQBAS5776
525870529

10864
40545

56
209

Binary representation of 30
Powers corresponding to 1sin b

Squaring a matrix

Powers with squaring as the function

114

VECTOR Vol.12 No.4

-1 3
-4 15
(M&xa:16 8 4 2 =1.2) -: X~a:4 3 2 1 M
1
X/ ¥~Ar4 3 2 1M Product of selected powers

~1,114%01el6 Y4,15753e16
_H,15753e16 1.55161e17

pow=: 4 : Tx/ xX-a:{b#i.-#b=.#:y.) x.'

M pow 30
_1.11401e16 4,15753eg16
_4.15753e16 1,55161e17

M pow O
10
01

Mexa: 30 =1.2 Power by repeated multiplication

-1.11403ielb 4,15753e16
-4.15753e16 1.55161ei?

x/ 30# ,:M Insert x between 30 copies of ¥
-1.11u4¢iel6 4,15753el6
_4.15753e16 1,55161ei7?

The three techniques for computing matrix powers are applied for various n,
with the following timings (milliseconds; J3.01 on Windows 3.1 on 80486/50):

a0 60 a0 12
Mexa:m =i.2 10,4 17.6 26.4 33.5
x/n#,: M 8.3 17.5 25,8 34.0
M pow n 6.6 9.4 9.9 9.3

It remains to define a function to compute the n-th element of the sequence:
seq=: [: {. M&pow x AQ"_

seq"0 1,10
127 26 27 362 1351 5042 18817 70226

seq 30
7.20106e1s6

The preceding techniques are applicable to any linear recurrence (on any number
of terms). For example, the Fibonacci sequence obtains from M=:¢ 1,:1 1 and
Ag=:0 1.

115

VECTCR Vol.12 No.4

A Different DDE Application

by John Sullivan

Regular readers will remember my diatribe on p.7 of Vol.11 No.4 concerning the
mangling of Welsh grammar and spelling in an earlier issue. As a postscript 1
suggested (with some tongue in cheek) that it might be an idea for the Vector
production team to obtain the new Welsh spell-checker from the Welsh Office, in
Cardiff.

The version for Windows, called CySill, was released in August, 1995. Being
interested in most things from west of Clawdd Offa (sorry, Offa’s Dyke), 1
ordered my copy and after a short while it arrived. I read the manual, and
configured it to work with my word processor. As I read on, 1 came across a page
headed “DDE Interface to CySill”. Text is put into the clipboard, the spell-checker
is called from another program via DDE, and the corrected text is then rescued
from the clipboard and put back into your application. This sounded like an ideal
opportunity to show that DDE is not restricted just to APL and the MS Office
suite of programs, and that it will work with others as well.

When CySill is installed its directory must be included in the DOS path, so to starl
it up all you need is the name of its executable file, with no directory path. Only
one instance of CySill can run al any one time: trying to start it a second time from
the desktop just makes the exisling instance active. This makes programming
very much simpler because if we suspect that CySill is not already running we
just try to start it up and if this fails we can’t go any further so we exit gracefully.
Of course we could check to see if CySill is already running (see [2] for how) but
there seems little point.

For the purposes of this exercise I have written some simple functions with lots of
verbosity to enable me to see what's happening. In any real application the
functions would be much more terse. The ideas were obtained from Adrian
Smith's paper at APL93[1}.

The algorithm I used is

Can we share with CySill?
If No then
Assume that Cy5ill is not running so try to start it up
If the return from our start-up attempt implies that CySill is already running then
Exit gracefully

116

VECTOR Vol.12 No.4

Can we share with CySill?
If No then
Exit gracefully

Put the text into the clipboard
Request CyS5ill to check the text
Do until CySill has finished

Ask CySill 1f it has finished
Obtain the corrected text from the clipboard
Minimize CySill and wait for its next call.

The main function looks like this:
v z+Check z;CL;command;reply

[11 A Perform Welsh spell checking on the text in <z>
[z] +{2="DDE:CySilllarchwilio'(1SV0'command s')/A1

[3] '‘CySill will not accept DDE, Maybe it is not running. Irying
to start it up.!'

(4] +{32<reply+StartMin'CYSWIN') /a3

[5] +{16=reply)/a3 n If we tried to start it a 2nd time

[6] "Upable to start CySill, return code is ',yreply ¢ -0

[71 a3:+(2="DDE:CySilllarchwilic'Q§VY0'command &')/Al

f8] 'CySill will still not accept DDEl' ¢ -0

[9] a1:'CL'OWCClipboard’
[101] VCLOWS ' Text'2
[11] command+'GwiricClipboard!
[12] a2:+{0=reply+CySillRequest'Cyflwr')/finished
[123] +(0=p,rceply)/a2
[14] 'You closed CySill before it finished. Cannot continue.' ¢ +0
[15]1 finished:z+'CL'[JWG'Text'
[1E] s('fe'=CySillRequest'Caut)/"''You requested Close on the file
menu. '
[17] s{'na'aCySiliRequest "Newid')/'"'No change."'"'
[18] command+'Minimize' n Keep open for next time
v

There are two called functions, one to make the DDE requests and the other to
start up the application if it is not already running.

v z+CySillRequest x;y
[11 an Send a reguest to CySill and return its reply

(2] z+'! a Default if CySill is incommunicade
[3] +{2="DDE:CySill|archwilio'0Q8VO'y ',Xx)+0
{41 zZ+y

v

117

VECTOR Vol.12 No.4

v z+StartMin x;WinExec

[1] n Start a Windows app. and minimize it, domn't make it active
[2] [NA'T kernel.exe,Pi6|WinExec <0T !
(3] z+WinExec x 7

v

In this last function I could have used z+«[CMD x ‘minimized’', but this fails
with a Domain Error if it can’t start CySill, rather than giving a return code to
help you determine what is wrong.

There is no need 1o kill the task, because the chances are that having used it once
you'll need it again soon, so you might as well keep it alive.

Note that, unlike the applications in MS Office, you do not enclose the DDE
commands to CySill in square brackets (in fact, if you do they will not be

recognized!).

References

[1] Adrian Smith, Co-operative progranmming with Windows DDE, AP193 Conference
Proceedings (APL Quote Quad, Vol.24, No.1} p.244.

[2] Duncan Pearson, A Windows Task-Killer for APL, Vector, Vol.10, No.2, p.126.
Cy$Sill, The Welsh spell-checker, is available from:
Welsh Language Board
Market Chambers
5-7 St Mary Street
Cardiff CF1 2AT

Telephone 01222-224744,

118

VECTOR Vol.12 No.4

An Internet Extension to 3D
Noughts and Crosses

by Timo Laurmaa (100316.336 7@compuserve.cont)

Introduction

The competition announced in Vecfor 12.3 depicted a situation, where instead of
me playing against one of my children sitting next to me, the PC could be the
opponent - probably annoyingly skilled, always concenlrating, never failing to
take advantage of my mistakes. Although the programming task sounded like a
challenge, I wanted to approach the problem in a different way by enabling two
people, both using their own PCs, to play against each other via the Internet.

Duncan Pearson’s original game is based on three events. The Internet extension
needs a fourth event and some additional steps into the original three (all
enhancements are marked with italics) to be introduced:

« New Game (a ment event) initialises the variables, draws the grid and gives
the turn to the red (i.e. the client).

« Place (2 mouse event) converts the mouse co-ordinates into the ball index (0 to
T1+n=23), sends the ball index to the oiher player, checks for a win and swilches to
the other player’s colour.

= Spin (a keyboard event) rotates the grid; no change - both players may spin
their grids independently and do not know about their opponent’s viewing
angle.

« Recetve (TCP/IP event) takes place when the other player has placed a ball, The Place
event is then created, with the exception that since the ball index is already known, the
contversion from mouse co-ordinales is skipped.

Communication Protocol

The TCP/IP protocol, which creates the conmection between the two players and
sends the ball index after every move, is built using AP119/W by Lingo Allegro,
Inc. (see review on page 38). The event-driven approach to TCP/IP programming
is particularly useful in an application like the 3D Noughts and Crosses, which is
inherently event-driven.

119

VECTOR Vol.12 No.4

The first player selects the menu item Netw (as Internef Server), AP119/W creates a
listening socket and waits for “clients”. Nothing else happens until the second
player selects the menu item New (a5 Internet Clieni}, and is prompted for the
server’s IP address. A socket with a connection to our not-so-well-known port
number 3333 is established, and the game starts with the client’s turn to place the
first ball. The socket remains open to the end of the game.

Each placement of a new ball is communicated to the other player with the
TCP/IP SEND command, detected by the READ event on the other side. When
either player has won, the socket is closed and the server is free to play with other
clients.

Changes to Duncan’s Original APL Code
Only three essential changes to the programs listed in Vecfor 12.3 were required:

1. Two new menu items allow for starting the game as a server or a client:
Makel28-20]

tferm.menu.game.new2'JWC 'menuitem'
'New {as Internet &8Server)'
(levent' 'Select' 'scolourl[]«0 ¢ Connect 1 ¢ Draw')

‘form.menu.game.newd'OWC'menuitem!’
'‘New (as Internet &Client)’
('event' 'Select' 'scclourl[l<0 ¢ Conmect 0 ¢ Draw')

2. If the ball index is received from the other player, the code that handles mouse
co-ordinales is skipped:

Placel11]
+Lb1/ hismove+G==hit+msyg

3. The playet’s own move has to be communicated to the opponent:

Placel24-26])
Lbi:

+0/Zxcolour(hit)

Message hismove+hit

120

VECTOR Vol.12 No.4

Other Issues

Since there is, apart from yourself, nobody around to say “Wake up, it’s your
turn”, I recorded two .wav files yourturn.wav and plsewait.wav (the names are self-
descriptive), one of which is played after a move took place. I modified the
standard PLAY program to replay the last sound file every 30 seconds to simulate
a real-life situation where intensive thinking is interrupted by a reminder “Come
on, it’s your turn”.

1 also took advantage of the open socket and allowed the players to send
comments to each other. Whenever a character string, which clearly is not a ball
index, is transmitted, it is simply displayed in the APL session.

Cheating is possible as it is in real life. There is nothing to prevent you from
placing a ball on the other player’s tumn. However, if you have a sound board and
the speakers are on, you will hear that something went wrong,

Conclusion

Of all client/server applications that I have designed, this one demonstrates the
most literal participation from the server. A crucial difference with a single-PC,
two-player game is that once the grid gets populated, it is increasingly difficult to
see where the opponent placed the new ball ~ it may pop up just as you are
looking elsewhere.

Networked 3D Noughts and Crosses can be played at APL96, and the complete
workspace can be downloaded from hHpyfunvw.demon.co.uk/fapl385. (But you need
to have AP119/W rel 2.0 in order to play the game.)

121

VECTOR

Vol.12 No.4

Program Listings
The TCExxx programs are not listed here.

Coinect nia

aStart game as a client (n=0) or a server (a=1)
nTimo Laurmaa 23.2.1996

~n/Lh2

nPlaying as a client

2 (0=(JNC " IPADR' }/'IPADR+''X . X X X"
LB1:IPADR+IPADR Win_input'IP address of server'
+0/"0epIPADR+"' '~ IPADR

+LB1/Z X'« IPADR

a+0 TCPSOCKET IPADR 3333 'ThreeD!'
a+PLAY'YourTurn.wav!'

-0
Lb2:a+PLAY'PlseWairt.wav!

~Lb3/ Mode=0

+0/% (< PhreeD! JePROTOCOLS
Lb3:a+1 TCPSCCKET'0.0.0.0' 3333 'ThreeD’

Message vinis
sTell the other player what your move was
aTimo Laurmaa 23.2,1996

o Jump if server

Tnitial IP address mask

Prompt for server's IP address
Quit if nothing entered

Jump if elearly wrong 1nput
Port 3333, protocol ThreeD
Client starts always

ERE - I

Wait until a client joins

Jump if single FC so far

Exit if already walting/playing
Wait for clients

T © DD

+Lb1/0epv n Jump If he moved

+0/"Mode=0 n Fxit 1f single PC mode

s+{ ($PROTOCOLS) 1c* ThreeD')24S0CKEDS n The last "3D" sotket 1s for sepding
a+s TCPSEND'N'(%v) n Send without conversicn
a+PLAY'PlseWait.wav’ a Now waitlng for his move

+0

Lbl:a~PLAY'YourTurn.wav' s Your turn.

ThreeD V;EViSN:;VAR:T

3-D Noughts and crosses TCP/IP event handler
(EV SN}=<¥

+1 (EV=1 32)/EEAD CLOSE
READ:A<TCP'RECV'SK 0 'N!

+MOVE/=(1 2v.=pd)an/Aec'1234567800"
a{Ta'x1 A)/[O+A o »0?

Exe 1+4 o +0
MOYE:PCPINFO'The other player's move: ',A
Placesd o 0
CLOSE:celour[1+0 ¢ Draw

» n D3 D ®™ D D D

zeMode ;L; SN

Event nr, socket

Select the event

Read without translation

Qther piayer’s move: n or nn
Display if not to be executed
Execute with error trapplng
Write log infe abouz the move
Call Noughts and Crosses, exit
Initialise game if socket lost

aIndicated whether the game Is played In a single-PC, Server or Client Mode

nZ ++ 0 (Single-PC) or 1 (Client) or 2 (Server,
eTimo Lsurmaa 3.3.1996

playing) or 3 (Server, waiting)

zZ+0 n Default: Single FC
+0/={0=[NC " SOCKEIS)v2¢[]S¥0' TcpIp® n Exit If single PC mode
+0/51#z+2|+/L+PROTOCOLS=""c' Threepn’ n How many "3b" sockets open

SH+SOCKETS[L1]

z+z+2x1 (=2 el12TCP'SELECT'SN SN SN "1 w Return 3 if only listening socket open

122

VECTOR Vol.12 No.4

At Play with]
Year’s Digits for 1996

by Eugene McDonnell

This problem is a variation of an old one that originated as a Fortran puzzle in
the MIT alumni magazine, adapted for use with J. Here it is:

Create a character table T, having 101 rows, each row representing a J expression,
according to the following rules:

(a) The result of executing row i must be the atom i, and
{b) The characters ‘1", ‘%, ‘Y, and ‘6" must appear in that order in each row, and
no other digits may be present. (In the Fortran puzzle, the digits could appear

in any order.)

Expressed in], (a) each row

r=.1{T
must satisfy the requirement that
I -e " r

for i anitem of i. 104 {and thus an atom), and (b)
'19%67 -z © -, a, -, '01234567897

There are two additional requirements, suggested by Roger Hui:

{c) Character constants are not permitted. If they were then all solutions would
need no more than two tokens. For example 7 could be represented by
#'1 9 9 B,

{(d)] allows 'b” form constants, in which a decimal integer base appears to the left
of ‘b” and the digits to the right of ‘b’ may include not only the digits 0
through 9 but also the letters a through z, representing digits 10 through 35.
For example, the octal representation of 63 is 8b77 and the hexadecimal
representation of 255 is 16bf f and the decimal number 100 can be written as
1buzz. The b form of constants is allowed, but the digits a through z are
excluded, aswell as 023 4 5 7 8. If a through z were not excluded almost all
solutions would be one token long,

Here are some examples of invalid rows. The reason each example is
unacceptable is given directly after it.

19+6+9 The digits are not in the prescribed order.

1+96+1 The digits are not 1996.

123

VECTOR Yol.12 No.4

a=19[96 It contains a 3",

1{.99 6 It yields a list result, not an atom.
#e 1996' [t uses a character constant.
ibzp9gs It uses the digits z and p.

As a valid example, row 19 might be

+/1 9 9[&
and this satisfies the test 13 -: ". '+/1 9 9[6".

The objective of the problem is to use the minimum number of tokens in each
row, as measured by the] "Word Formation’ primitive (; :). The foregoing list for
row 19 has 5 tokens, and it is thus superior to:

1+9+9[86

which uses 7 tokens, but it is inferior to

19<, 96
which uses only 3 tokens.

Entries will be judged in the following way: if L is the list of the number of
tokens in each row of a given entry, and M is the list of the minimum number of
tokens in all entries submitted, then the entry which minimizes +/L-M is the
winning entry.

To ease your minds, T should say that yes, a complete set of solutions is always
possible, and this has been demonstrated mathematically by Donald Knuth and
Roger Hui, among others. Since #1996 is 1 then 4, x1996 is a solution for 0; and
since A. 0. 1 is between 1 and 2, then applying floor or ceiling gives solutions for
1 and 2. Using more instances of o. provides solutions for larger numbers, ad
infinitum. Clearly, this shows that a solution is always feasible. Most derived
using this method are not, however, very short. Coming up with a short solution
for each integer is your problem.

To help you get started, let me suggest that you use a strategy like that employed
by Roger Hui. He used a] session in the following way to develop his table:

He worked with two windows present on his screen: an executable window, and
a script window called “1996. 7s” which contained one solution per line.

124

VECTOR Vol.12 No.4

Initially, each row is set with the row number, a comma, some spaces, and a 0.
For example, row 25 would look like this:

25, 4

You can write potential solutions in the script window, and have them executed
in the execution window to see if they are correct:

25, 1+9+9+6

Roger provided himself with a suite of utility functions:

mat=: (58},);..2 @{11:1) @{(<'31996.js"}"_}
lens=: Lo~ (. #Y/ .~)0: (HE;:)

check=: =./8(0&= +. {=i.@#}}e&:",

pfx =+ [: ": #6;: ,. 1.8#

tab =: [: \:~ pfx ,.]

“mat” reads the script file and constructs a matrix from it. As it stands, it is
suitable for use with TBM-compatible PCs. To change it for use on Unix or
Macintosh systems, you should replace the text “(5&}.8}:}" with ‘58}.7,
“check” checks that each row is either zerc (unsolved) or has the correct
number. “len” makes a two-column table with the first column giving a length
and the second column giving the number of solutions with that length
(unsolved numbers have a length of 0). “tab” makes a table of the solutions
sorted in decreasing length, and thus is handy for attacking the really bad
solutions.

1 wrote the following, to check that only the digits ‘1998 appear, in that order, in
the solution:

d1996=,#, /B([: {'1996""_ -:] -. a."_ -. "T01234567897"_}"1 1)

To see what these utilities can do for you, after you've created your 1996, js file
and filled in a few entries, experiment with expressions like:

tmat ©

check mat 0

len mat ©

+/*/"1 len mat ¢ KNB. total number of tokens
tab mat o0

And after you've filled in all the entries,

d1996 mat ©

125

VECTOR Vol.12 No.4

This problem should help familiarize you with some lesser-known parts of], like
b-form constants, the new p: and q: primitives, and the monadic, or base-2 form
of the base primitive (#.). For example, the following five-token expression:

#.p:iq: | _19b96
91

creates the number _19b396, which has the decimal value 165 (in base _19 the
values ¥ and 6 evaluate to _171 and &, with sum _165); takes the magnitude of
this number, yielding 165; finds its prime factorization with q:, yielding 3 5 11;
uses p: to find the third, fifth and eleventh primes in the O-origin series 2 3 5 7
11 13 17 ... ,yielding7 13 37; and applies the primitive #. to evaluate this
list in base-2, yielding 91 (+/4 2 147 13 37). Another five-token expression for
the same value is:

>t 1#.,49; 996
91

There is a solution to 91 which is shorter than this, by the way.

Send your solutions to me either by electronic mail at: eemed@aol.com or by
regular mail to:

Eugene McDonnell
1509 Portola Avenue
Pale Alto, CA 94306
USA

If you think you have a particularly good solution for a given number but don’t
want to do the whole problem, send it to me anyway; it may merit a special
commendation.

126

VECTOR Vol.12 No.4

Roger and the Amazing
Technicolor Ballclock

by Norman Thomson

This note arises from Roger Hui’s article on the Ball Clock Problem [1], and is
addressed to readers who may have been overwhelined by the amount of the
material covered, the speed with which Roger swept through it, or possible
difficulties in obtaining copies of the references.

It would be a pity if such readers were to miss out totally on some of the
marvellous things which Roger sped through on his voyage to solve the ACM
Programming Challenge, and so in the spirit of slow-lane], I shall try to expound
some of Roger’s nuggets in greater detail.

First, here is Roger's basic suite of] verbs which I have not amended, except by
re-ordering them in a hierarchical fashion, excluding references to the debug
verb 131: 8, and adding the adverb each.

powl=, {a: (3 (i.@#e[)) NB. perm x. raised to the power vy,
pow=.1.@#@f C.~(#&z>2C.@[]1)#C.e[NB., alternative lorm of povwi

ord=.». /@{#5>"_)8&C, NB. corder of perm = gcd of cycle lengths
log=. {:@(cr/}e(C.2[mr J) NE. inverse of povw - logs are modulo ord
cr=. [f/*.6{. , ,&{: +/ .» ab NB, Chinese remainder algorithm

ab=, l.@(ged/ » [%+./38(,&{.)
god=. (}.@{.}a({ita: (wv@{,8{: }A: _}Rg0O NB. gcd in form {(a,b) where gcd-ax.+by.
ft=.{s ¢ (. ={: * <.B%&{./

go=,, ,. =@i.@2:
mr=.#5>0[,.{resg><) NB. x.=C, a generating perm; y.=a perm
res=. <; @#@[-{i.{:8[NB. each rov of mr=#cycle,posns in cycle
each=. 4>

This note is primarily about permutations. A permutation is an arrangement of
objects, and this discussion will be restricted to those permutations which can be
obtained by executing the expression n?n . A permutation is thus a vector such
as the following which Roger used as part of his illustrations:

p=-2 3 4 567 8 190

127

VECTOR Vol.12 No.4

The verb €. converts a permutation into cycle notation thus
C.p
7 1 35|90 2 4 6ES8

Cycle notation can be thought of as a “permutation process” that is C.p is a
description of the process which generates the permutation p starting from i. 10
in the following way. Regard p as a sequence of items numbered from 0 to 9, the
first cyele should be read as follows:

position 7 is to contain item 1,
positien 1 is to contain item 3,
position 3 is to centain itemn 5,
position 5 is to contain ilem 7, thereby completing the cycle.

Read the second cycle in the same way. The overall permutation process is the
result of doing both these cycle operations at every step.

The cycles themselves are disjoint and exhaustive, and each cycle is rotated so
that its largest item appears first. Also the boxed cycles are arranged in
ascending order of their leading elements. All of this is detailed in the]
dictionary, and it guarantees that the cycle representation of the permutation
process is unique.

Repeating a permutation process n times can be alternatively described as raising
the permutation to the power n. This is the basis of Roger’s two verbs pew and
povl. They both have the same function — pov should be easy to read and
understand for anyone reasonably familiar with J; pow1 is a little less so, but is
more efficient. Any permutation raised to the power 0is i.n wheren = #p.

Thus raising p to the power n is achieved by p pov n, and the results of raising it
to the powers 0,1,.5 is

»{<plpow each i.6
012 3 456.7829
234567819090
4 56 7 8B 19 302
6 78193065 2%
8 1% 3052746
9 3052741638

The columns headed 1 3 5 and 7 each contain these digits in repeated 4-cycles,
and the remaining columns each contain the remaining digits in repeated 6-
cycles. This means that whenever a power is reached which is a multiple of both
4 and 6 the permutation i.10 will recur. The smallest such power is 12, and

128

VECTOR Vol.12 No.4

more generally it is the least common denominator of the lengths of the cycles.
This quantity is called the order of the permutation and is given by Roger's
function ord.

ord p 12

log p is the inverse of power adjusted to modulo ord p. It addresses the
problem: given one of the rows of the above table, what is the power to which p
must be raised to generate it. Again, Roger supplies the verl;

plogsi193c0s527¢y4e6E
[i8

More generally

p log p pow 99
3

since 3 is the 12-remainder of 99. In mathematics this is expressed as 3=99(mod
12);inJor APL as 3=12]99. Since permutations of n are obtained as a primitive
vetb in], experimentation is extraordinarily easy, for example:

u=,87
2

8
5407

o
€2 M
= w

>{<u)po ach i.s NBE. Table of & powers of p
2 34 7
3265 7

F o

e
01 6
§ 1 0
... repeated four times

>{<u)log each(<u)povw each .8
01010101

Ju=.878

>{<u)log each{<u}pow each i.a8
01230123

Roger uses an algorithm associated with the so-called Chinese remainder
theorem. What this delivers is solutions to simultaneous congruences such as

x=2(mod 3) x=3(mod5) x=2(mod?7)

129

VECTOR Vol.12 No.4

or, in simple English, it finds numbers which have remainders 2, 3 and 5 when
divided by 3, 5 and 7 respectively. The verb which Roger supplies is called cr. If
there are just two congruences, say the first two above, the solution is

3 2cr 53
15 8

that is, § is the smallest number whose remainders on division by 3 and 5 are 2
and 3 respectively, and the number formed by adding any multiple of 15 to 8
will also possess this property. If there are more than two congruences, use each:

»cr each/3 2:5 3;7 2
i05 23

50 23 and 128 are the smallest numbers satisfying all three congruences.

Thus equipped, problems such as the following, beloved of puzzle book writers,
become trivial:

When eggs are removed from a basket 2,3,4,5,6 at a time, the numbers left
eventually are 1,2,3,4,5 respectively, but when 7 eggs are removed at a time
none are left over. How many eggs are there in the basket, given that there are
less than 200?

17 pirates decided to divide the booty of gold coins, but when they did so, 3
coins were left over. In the ensuing brawl, one pirate was killed, so they
started again. This time 10 coins were left over. Another pirate perished
violently, and the remainder were able to share the coins equitably. What is
the smallest number of coins they had to share?

The answers to the above are:

>cr each/2 1;3 2:;4 3:5 L;6 5;7 @
520 1149

>c¢r each/17 3;16 10;15 ¢
Lo80o 3930

A condition for cr to deliver the correct answers is that the moduli of all the
congruences must be co-prime in pairs. Roger demonstrates a test for this which
depends on having the debug facility 13!: & available.

Reference
[1] The Ball Clock Problem, Roger KW Hui, Vector Vol.12 No.2, pp. 56-66, 1995.

130

index to Vols 1 - 12 Vol.12 No.4

VECTOR

INDEX TO BACK
NUMBERS

Vols 1 - 12 inclusive
Alphabetical by Author

APRIL 1996

Acknowledgements

Index to Vol.1 and Vol.2: David Preedy

Index to Vol.3 and Vol.4: Gavin Schwarzenbach
Index to Vol.5: Adrian Smith

Index to Vol.6 to Vol.12: Adrian & Gill Smith

Copyright © : The British APL Association 1996

131

Index to Vols 1 —12

Vol.12 No.4

Author(s}
Adams, John

Adams, Martyn
Adams, Martyn

Atfonseca, Manusl
Alls, David
Anssll, Jake

Ansell, Jake & Sykes, Alan

Ansell, Jake
Ansell, Jake
Ansall, Jake

APLOZ (St. Petersburg)

APL93 (Toronto)
APL93 (Toronts)
APLYA (Antwerp)
APL94 (Antwerp)
APL9% (San Antonio)
APL9% (San Antonio}
APL98 (Lancaster)

Appleton, David
Appleton, David
Applaton, David
Appleton, David

Askoolumn, Alay
Askoolum, Ajay

BAA-GUI
BAA-GUI

Barman, Jonathan
Barman, Jonathan
Baman, Jonathan
Barman, Jonathan

Barman, Jonathan
Barman, Jonathan
Barman, Jonathan
Bamman, Jenathan
Barnmian, Jonathan

Barman, Jonathan
Barman, Jonathan
Barman, Jonathan
Barman, Jonathan
Baman, Jenathan

Barmnan, Jonathan
Bammnan, Jonathan
Barman, Jonathan

Barnatsan, Paul
Bassatt, Mark

van Batenburg & Prins
van Batenburg, F.H.D.
van Batenburg, et al

van Batenburg, F.H.D.
van Batenburg, F.H.D.

Bann, David
Blddlecombe, Peter
Bittestane, Robert
Bittestone, Aobert

Bllestong, Robert
Binlestone, Robert

Title
Appropriate Use of APL In Al (1988}

Why GKS Is Unsultable ...
APL Experiences and Visual Basic for Windows

APL/PG2 with Auxillary Precessors
Threugh IRMA to IMS

APLIM . Generalized Linear Models
Beaton's Heclpe for Least Squares
ASL: The Basic Statistics Volume
ASL: A Basic Statistics Velume Tutorlal
Reliability Data Analysls

Conterence Reports
Absiracts

Confetence Reports
Abstracts
Conference Reports
Abstracts
Gontersnce Reports
Abstracts

Some Questions ¢f Programming Style for the APL Stallstical Library

Stirling Numbers - a Case Study
Curve Fiting in APL

Understanding Statistical Theory through Simulation

APL*PLUS I} Keyboard Configuration
To Sutfer the Sfings and Vectors of the BAA

Workshop: Dyalog APL Sessions
Workshop: APL"PLUS |l Sesslons

AFPL and Paritioned Data

The CIPS APL Toolklt {raview)
Namespace Play

Review: APL*PLUS/PC Felease 10

Notes an "Panel - is J a dialect of APL?" at APLO1
Notes on *Panel - APL a5 an Entrepreneurial Tool® at APLS1

Editorial: Maximising the Ra-use of Cede
Edltorial: APL, Windows and GUls
Editarial; Commerdial APL

Meeting at Morgan Stanley: Smalitalk and .4
Editorlal: ¥hat You Know Is What You Love
Review: APLIWIN and JWIN

Raview: Sharp APL Reference Manual
Update on APUWIN

Revlew: Dyalog APL Verslon 6.3
Hacker's Comar: Flylng Windows
Inner Preducts for Rrange Tests

The Chartton Chase Package
APL Trivia - Loopy, Quine & Turing

QUAPL - a leap forward or back?

How Expensive Is APL?

ASW! Programming Standards

ASWI Programming Standards: Some Whys
Font For The Future

Turtle Graphies In J

Errer Trapping Tutorlal for JPSA APL
Why APL?

FGL: Fifth Generation Language

XPL - an Expen Systermns Framework
Re-inventing Man

132

Vol No Py
5 56

3 a3
4 100
2 12
61

-

63
38
45
37
37

66
13
55

T
63
10
42

&

o ©oomoh w w o N

o= RO e N AN LR e ot

90
44
23

109

107
131

- -
T
- KR —

-
o0
<
9

iy

COWOOo e oo b B =

- bt W= MM IR = =
£5l

ey

Qo0

b=
g

133

iy
.
3

124
15

i
101

Moo

=]

s
FEYPren
®
o

Carmichael, Michae!

Quotitlon Jottings

Index to Vols 1 - 12 Vol.12 No.4
Author(s) Title Yol No Pg
Bohter, Douglas Is APL a Team Sport? 12 2 &7
Bohrer, Douglas Tilting at Windmills: a New Attack on Nested Arrays 2 2 135
Booth, Desmond Are 4GLs Klling APL? 1 2 49
Bowman, Dick APL and Graphlcs Standards 1 2 75
Bowman, Bick The Outside World 3 4 58
Bowman, Dick Coming cut of the Closet 3 4 a7
Bowman, Dick APL Trivia - Wimbock APL 3 4 141
Bowman, Dick Review: IBM's APL2 on the PC {16-bit)] 2 45
Bowman, Dick Selze the Time: The APL Programmer’s Toolkit g 3 BG
Bowman, Dick Hooking Up to the tntemet 9 4 143
Brand, Pauline Errar Trapplng Tutorial in Dyalog APL 6 1 100
Branson, Peter Workspace Managemsnt 4 2 99
Branson, Peter Managing Multi-currency Accaunting [3 73
Branson, Peter Full-screen Methods with APL2 7 4 26
Brennan, Jerry M Printing APL Mairices § 1 64
Brewster, Christine Large Commerclal Databasa 2 3 61
Brewster, Christine Whitbread: Large Scale Database 2 4 2l
Brown, Jim Talk: Putting & GUI Intertace on Legacy Systems 12 3 &1
Brown, Richard Functonal Programming in J for Operations Research i 4 13¢
Burke, Chis Locales in J 11 4 9
Burike, Chris Elegant Programming 12 2 123
Camacho, Antheny Public Domain Interpreter (Proposal) 3 2 127
Camacho, Anthony FAPL: History & Achlevements 4 3 89
Camacho, Anthony A Demonstration of Direct Defn 4 a a5
Camacho, Anthony The Ideal Sereen Editor 7 4 78
Gamacho, Anthony Notes on "Panel - a 25-year Perspective” at APLO 8 2 at
Camacho, Anthony & Goodman APL Printing on some Star Printers with I-APL g 3 29
Camacho, Anthony Another Use of Not-Equals-Scan 10 4 138
Camacho, Anthony Editorial: A Language for the Elital 1 1 3
Camacho, Anthony Editortal: Monslaur Langlet's Enterprise 11 2 3
Camacha, Anthony Review: "Making APL Readabls” by Christoph von Basum 12 1 a3
Camacho, Sylvia Sharper Focus on APL 3 1 79
Camache, Sylvia Tha Road not Travelled 3 4 102
Camache, Sylvia Bell's Inequallty 4 1 73
Camachgo, Sylvia What's in a Name? 10 4 7B
Camacha, Sylvia Hare be Dragons kal 4 69
Camacho, Sylvia Voyages in Dragon Country 12 1 €0
Cannen, Ray Review: the STSC Campller 7 3 84
Capnen, Ray Mandelbrot Sets 7 3 123
Cannon, Ray Mice do It on the Mat T 3 134
Cannon, Ray Mandelbret Sets (2) 7 4 10
Cannon, Ray Suggested Standards for a Component Flle System a8 2 105
Cannon, Ray How STSC's quad-MF can help In Testing Workspaces 8 2 135
Cannon, Ray The 1 ZELP Command g 1 80
Cannon, Ray Review: APL*PLUS Il Interface to Windaws 9 3 44
Cannon, Ray Windows BMP Files and APL 10 1 50
Capnen, Ray When is Easter? 10 3 &7
Cannon, Ray No 5X Please - Wa're APLers ki 2 143
Cannon, Ray Letter: Understanding your Flle Timestamps 1 4 121
Cannon, Ray Hacker's Comer: Driving MS Daisy-wheel 12 1 114
Cannon, Ray Hacker's Comer: Gremlins, Pixels and Brawnle Plonts 12 2 102
3
4

Carmichael, Michael
Chang, Bill

Moving Data from 1-2-3 t0 APL

Propiosed Common APL Coding

133

A
L]
L]
~

Index to Vols 1 =12

Vol.12 No.4

Author(s)

Chapman, Paul
Chapman, Faul
Chapman, Paul
Chapman, Paul

Clark, lan
Clark, lan
Clark, fan
Clark, lan
Clark, lan

Clark, lan
Clark, lan
Clark, fan
Clark, lan

van Cleave, Phll
Clough, Eddie

Cocking, Remilly
LCocking, Romilly
Coeking, Romilly
Cocking, Romilly
Cocking, Romilly

Gaoper, Tony

Crosslay, David
Crosslay, David
Crossley, David

Cyriax, Peter

Day, Mike
Day, Mike

Delmotte, Alain
Deimotte, Alain

Doherty, David

Donnelly, Paiar
Bennelly, Peter
Donnelly, Peter
Donnelly, Peter
Donnelly, Peter

Douglas, J.B.
Dumentler, Michel
Diiren, Dieter

Eastwood, David
Eastwood, David
Eastwood, David
Eastwood, David
Eastwood, David

Eastwood, David
Eastwood, David
Eastwood, David
Eastwood, David

Emms, Ted
Emms, Ted
Emms, Ted

Title

Piea for Naming Conventions
Dlary of an Implementer
1-APL: Under the Bonnet
Cross Clocks In J

Graph Plotting in S-APL/Mac 1.2

APLomb: The View through Quad-Shaped Spectacles
Jot-Det-Fioor: Working with Large Integers
Jot-Dot-Floor: Comino

Jot-Dot-Floor

Jot-Cot-Min

Jot-Dot-Min: Steree Vision

KPS: Beyond the Spreadsheet

Jot-Dot-Min: Weaving Patterns and Gellular Auicmata

APL Lap-sized Computer
Stereograms inJ

Serting up a Company .C.

DiF-file intartaca

Developing Business Systems
Interfacing APLte C

Tha Bensfits ol Function-point Analysls

Computing Environments for OR

The Imporiance of being Nested
Panel Dasign: an APL Programmers’ Toolkit
Review: APL*PLUS |l Version 4

Perfarmanca of Large APL Systems

Sharing the Spoils, or Circling the Sguare
The MAGIC Goes Away - Cpening the Boxes

Training the ktouse (in AFL*PLUS/PC)
Warkspace Usting in I-APL

SCREENIO: IBM full-screen manager

Duck a la Carte

CGI Graphics in Dyalog APL

Future Plans for Dyalog APL.
Programming for Events in Dyalog

Tha Use of Namespaces for Encapsulation

Polynmlal Curve Fitting
French Visitors In Napclean's Footsteps
Gonverslon from APL2 to APL*PLUS LIl

GL/APL - popularising APL

GDDM { AP126 on APL.BBO0OC
Attiwudes to APL in Higher Ed'n

Error Trapplng Tutorial tor APLE8000
Working with Windows

ASL Standards

Cptimising your APL

APL Glub Germany, Schwetzingen
Meeting: The Toronto Teolklt

Backiracking, Queens and Parmutations

Cows and Bulls: A Selution
A Note on Primes

134

Vol

@K o thhon = —

-
L]

-
[+

-
ok - - Lol es]

W W

N

A N BWaShE WA @O0

P I S Y T W= s

e ash W a2 B WSb=h

FRANARA)

o=

Pg
115
129

124

123
132

32
i

65
59

107

117

Index to Vols 1 —12

Vol.12 No.4

Author(s)
Evero, Qlie

Falkoft, Acin
Fleldsend, Graham
Fortar, D.G.
Franksen, Ole
Fray, Roben

Gay, Allan
Gay, Allan
Gay, Allan
Gay, Allan
Gay, Allan

Gay, Altan
Gay, Alfan
Gay, Allan
Gay, Allan

Gieller, Martin
Gfeller, Martin & Kromberg, Morten

Gray, Dick
Gray, Dick
Gray, Dick

Griffithe, Marc
Griffiths, Marc

Harvay, Christopher
Harvey, Christopher

Haussmann, H.

Hawkas, Alan
Hawkes, Alan
Hawkas, Alan

Hayward, |ain
Hayward, lain

Hilt, Richard
Hingley, Peter
Halt, Dick

Hul, Acger & Iverson, Ken
Hui, Roger
Hul, Roger
Hul, Rager
Hul, Roger

Hul, Reger
Hui, Roger
Hui, Roger
Hui, Roger & Iverson, Ken
Hui, Roger

Hultin & Hagger
Hultin, Per

Iverson, Etic

Title
NED: a Nesting Editor far APL*PLUS/PC

Comments on the APL2741 Typeface
My first dats with TRMA

APL for Financla Calculations

Mr Babbage's Secret

Oblect Oriented Exlensions to APL and J

Dissembling

AP12T; An Intarface from APL to DB2

Missembling

Yriting Assembly Language Functions for quad-NA
Migrating Mainframe Appllcations to AFL*PLUS I

A GDOM Simulation for APL*PLUS Il

A VSAM Simulation for APL*PLUS I

Defined Operater Simulaticn for APL*FLUS II
Bracket Axis Simulation for APL*PLUS I

Review: APLIWIN Beta Release
Standardisation Beyond the Language

APL for the Teacher
De you Dig Keywords?
Comparison Telerance

APLE3 Canference Evaluation Survey
Meeting: Causeway and Newleal In Teronto

PATTIE: a Practical Expert System(1}
PATTIE: a Practical Expert System(2)

Loops in APL2

Complex numbrers in APL
Statistical Gomputing with APL
Numeric Integration & Probability

APL Printing from APL.BBO00
Review: APLBS000 Lave! I

Desk Top Publishing an the Cheap
Non-inear Regresslon Medelling in APL
A Baglnner's Guide to Low Cost APLs

J Questions Answared

Verb Tables

Three Commbinatoric Puzzles
Talk; An Implementation of J
An Exchange on Primes

Latter; J Compositions

Letter: The Common Mean

The Balt Clock Problem

A Note on Programming Style In J
Linear Recurrences and Matrix Powsts

Powar tc APL
An APL Banking Appilcation

APLS3: Using the ISIAPL GUI

135

o ~m

-

b MW L ~] ~n (5]

- Lt I - MRy w B b R -

BONAMN L) E-Y

Py

N

Pg
116

116

101
[e:]

106
107
13
17

127

130
109
29
“
139
130

124
123

"7
113

123
65

B7

Index to Vols 1 - 12 Vol.12 No.4
Author(s) Title Vol Neo Pg
Iverson, Kan The Splitin APL a 2 47
Iversen, Ken A Commentary an APL Development 5 1 78
Iverson, Ken J: an Informal Introduction 7 1 67
Iverson, Ken A Dictionary of J 7 2 o9
Iverson, Ken Teaching with Executable Notation - Part 1 11 4 76
Iverson, Ken tetter; ASCIt Represantation of APl Characters 11 4 131
Iverson, Ken Teaching with Executable Notatlon - Part 2: Linear Functions 12 1 74
Jensen, J.R & Beaty, K.A An Intarfaca batween APL2 and the X Window System 8 1 125
Jizba, Zdenek Generic Local Chjecis] 3 103
Jizba, Zdenek Problems for APL Bufis (I} 6] 109
Jizba, Zdenek Provlems for APL Bufis (1D 5} 4 117
Jizba, Zdanek Object Crlentad Programming and APL 7 3 108
Jizba, Zdenek Problems for APL Buffs (11I) 7 3 140
Jizba, Zdanek Science Education in Callfomia B8 2 22
Jizba, Zdangk Introducing APL to Teachers 8 3 19
Jordan, Maurlce Supporting AFL in a Large Organisation 5 1 68
Jordan, Maurice Function-point Analysis at Britlsh Alrways 5 3 82
Jordar:, Maurica Thougntson J « f ¢ & 7 4 118
Jordan, Maurice Citerencas in Second Generation APLs 8 3 52
Karman, Jan + It or Leave I1in Dyaleg APL/W 1 1 1249
Karman, Jan A Windows-Driven Menu Driver 1 1 139
Karman, Jan Experiancas with the use of Causeway 12 3 a7
Kekaldinen, Kimmo Namespaces: Just ancther Means to Multlply your Chaos? " 3 92
Kelly & Thomson Welghted Least Squares 4 3 115
Keppel & Kropp APLZ2or LISP 2 2 97
Do Kert, Joseph Fast Fibbing 3 4 120
De Kerf, Joseph Logic & the Algebra of Propositions 5 4 299
De Kerf, Joseph Punctation in APL 6 2 123
De Ketf, Joseph A Note on Quad and Quote-quad 6 3 122
De Kerf, Joseph A Survey of Quad-NC 7 1 127
De Kerf, Joseph What's Wrong with Parentheses? 7 2 125
Ds Kerf, Joseph A Note en the Match Function in APL 7 4 133
Do Kerf, Joseph APL-Defined Functicns for the Calculaton of Determinants 10 3 2%
De Kerf, Joseph The Common Mean and APL 1 3 21
De Kerf, Joseph The Complete Eillptic Integrals and APL 12 1 102
Da Kerf, Joseph The Incomplete Elliptic integrals and APL 12 2 85
Kremberg, Morten APL - A Client-Server Language 10 4 114
Langlet, Gérard APL "HISC Programming Style”] 2 23
Langlet, Gérard The Steam Hammer and the Fly 7 4 138
Langlet, Gérard Recreation with Transcendental Numbers 8 2 25
Langlet, Gérard From the Vital Execute to Fractals and 5-4old Symmetry 8 3 a1
Langlat, Gerard The Fractal MAGIC Universe 10 1 137
Langlat, Gérard The Ultimate Turing Proct 10 3 124
Langlet, Gérard APLS4: Binary Algebra Workshop i1 2 60
Langlet, Gérard Chagtic Behaviour Revisited i 2 82
Langlet, Gérard Tha APL Theory of Human Visicn 11 3 42
Langlet, Gérard The Axlom Waltz - cr When 1+1 make Zero 11 3 101
Langlet, Gérard A Quite Differant New Primitive 12 1 923
Langlet, Gérard Letter; More Thoughts on Dragons 12 1 121
Langlet, Gérard Letter: Nan-Syllogistic Mathematical Preof 12 1 125
Last, Phil Writng Operators for Dyalog APL 8 4 119
Laurmaa, Timo AP119/W - a First Look 12 4 38
Laurmaa, Time An Internat Extansien to 3D Noughts and Crosses 12 4 119
Les, Chris APL93: Solving Wicked Problems with APL 0 2 63
Lenthan, Mark Migration to APL2 2 4 123

136

Index to Vols 1 ~12 Vol.12 No.4
Author(s) Title Yol No Pg
Lescasse, Eric Windows Development in APL*PLUS 1!l (Part 1) 1" 1 109
Lescasse, Eric Windows Development in APL*PLUS 1] (Part 2) 1 2 88
Lescasse, Eric Namespaces ki 3 75
Litdefohn, Gary Visit to APL Centres In Russla 10 4 44
Livingstone, David Develapment of APL through Standardization 3 2 115
Uewellyn-Jones, L APLpip 1 4 109
Lochran, Brian APFL and Relational Databases 5 3 74
Luksha, Pavel & Cleg APL enh Kronstadt Island 9 4 82
Lyus, Steve Financlal Planning at Imperial 2 4 93
Meyer & Sykes Teaching Stats in Univ. Coll. Swanses 4 3 74
Mayer, Alar Local Varlables and the State indicator 8 2 27
Mayer, Alan How Much Water Under the Bridge? 8 4 25
Mayer, Alan Pass Me Another Diagonal Slice, Pleasal] 4 26
Mayer, Alan Soma Notes on Direct Definition 9 2 27
Mayer, Alan Step by Step Analysls of Varlanca 10 ki 27
Mayer, Alan Cows and Bulls 10 1 39
Mayer, Alan Review: "Intreduction to APL*PLUS/PC* by Maurice Dalols 10 2 19
McCrea, Christine Membership Survey 4 1 78

McDonnell, Eugena
McDonnell, Eugene
McDonnell, Eugena
McDonnell, Eugene
MeDennell, Eugene

McDonnell, Eugene
MeDonnell, Eugene
McDeonnell, Eugena
McDonnell, Eugena
MeDonnell, Eugena
McDonnell, Eugene

Meintyre, Donald B.
Mclntyre, Donald B.
Mcintyre, Donald B.
Meintyre, Donald 8.
Mecintyre, Donald B,

Mcintyre, Donald B.
Melntyre, Donald B.
Metntyra, Donald 8.

McLean, Bl
McLean, Bill

McLean, Bill & Emms, Ted

McLean, Blil

Maclecd, George
Maclecd, George
Maclsad, George

Merritt, Peter
Merritt, Peter

Miroshnikoy, Alexel
Moftat, David
Morgan, Eliis
Mass, Jill

Muller, Anfie etal

At Play with J: MIMD Machines

Date of Easterin J

At Play with J: Tadit Definitiorr

At Play with J: The 10,000,000,000th Prime Number
At Play with J: Control Structures

At Play with J: Jacobi's Method

Al Play with J: Cribbage 15s

At Play with: J: Representing a Permutation

At Play with J; The Bauer-Mengelberg Problem

At Play with J: Heron's Rula and interger-Area Trlangles
At Play with J: Year's Dights for 1988

Hooks and Foris and the Teaching of Elermentary Arithmeatic
Using J with External Data

Uslng J's Boxed Arrays

Jacobi's Method for Elgenvalues

Amendment: A Changa for the Better

J: A First Lesson

Ji A Second Lesson

Perils of Subtractior:

Raviaw: "APL for the Maths Classroom" by Thomson
The MAGIC Puzzle

AN APL Scrabble Bag

Ward-search Squares in [-APL

GS5 Graphics with APL*PLUS{PC

Meeting: Business Graphics

Drawing tha Line

T Ba or Not To Ba - That is The Gazodenplatz
Bodyguard of Lies

Saviet APL: a Histerical Cutline

One Small Stap for APL

ASLGREG: Predictions with Confidence Limits
Membearship Questionnaire

Polynomial interpolation

137

-
o
o0 W A
-

Q
<

i1 3 i
1 4 138
12 1 126
12 2 116
12 3 133
2 4 123
8 3 101
] 4 7
g 1 92
g 3 125
9 3 134
0 4 18
it 1 36
1" 4 93
8 2 0
9 t 25
9 4 41
11 K] 23
7 4 7%
10 1 70
0 4 83
1 1 108
11 3 119
7 3 100
3 t 75
0 3 a1
& a 36
12 2 26

Index to Vols 1 - 12

Vol.12 No.4

Author(s) Title Vol No Pg
Nabavi, Richard Networking APL micros 1 b 49
Nabavi, Richard GKS - Opportunity for APL i 2 78
Nabawl, Richard APL and GKS] 4 83
Nabavi, Richard WIMPS and Bach on the Amiga 4 1 60
Nabavi, Richard Interfacing to tha Appie Macintosh 5 1 113
Nabavi, Richard The Legacy of the Typewriter ;] 2 99
Qates, Richard Span Representation: Improving the J Display of Verbs 9 4 135
Oates, Richard J Inscription AR 3 130
Oates, Richard A Fractal Verb in J 12 2 131
C'Hagan, Tony Symbeolic Computation and Recursion & 3 80
O'Hagan, Tony et af ‘The APL Statisties Library Project 7 b 80
O'Hagan, Tony The Genesis of ASL 7 a 36
O'Hagan, Tony WAGS: a Graphics Specification Language for ASL 7 3 Ll
O'Hagan, Tony The Genesls of ASL (2) 7 4 36
Qlavi, Gosta Menu-griented Dialogua 1 3 x|
Olsen, Thomas M. AMCRTIZE: a Windows Application inJ 10 4 92
Parkhouse, Graham Future Directions of APL 3 3 a7
Parkhouse, Graham Origins 4 3 67
Parkheuse, Graham APL Graphles frem First Princlples 74 83
Parkhouse, Graham Power Reduction 8 2 9%
Parkhouse, Graham An Example of Intranslhivity in Prabability 9 3 14
Paarson, Duncan Review; APL*PLUS || Release 3 8 1 73
Paarson, Duncan Hacker's Corner: Using DOS File Functions g b 124
Pearson, Duncan Letter: Cloning *After Dark" 9 1 131
Pearson, Duncan Reaview: Dyalog APL/W g 2 55
Pearson, Duncan The Ghallangs of the New: Object Proegramming and the Windaws GLY [4 120
Paarson, Duncan A Standard Font Dialogue Box using ONA 10 i 117
Pearson, Duncan Hacker's Comer: A Windows Task Killer 10 2 126
Pearson, Duncan Review: the APL"PLUS Il GUI 1 1 75
Pearson, Duncan Causeway: a Tachnicai Architecture 1 2 126
Pearson, Buncan Guest Editerial; Namespaces 1 3 3
Pearsen, Duncan "Cormect” Windows File Management 12 1 129
Pearsen, Duncan Werkshop Notes: DDE from APL*PLUS Il 12 2 50
Pearson, Duncan Threa-Dimensional Noughts and Crosses 12 3 g8
Peelle, Howard Teaching Mathematies with APL: Workshop Deslgn k] 3 29
Paslle, Howard A Little J Homer g 3 89
Peella, Howard Waorkshop: Leaming Maths with APL. g 4 36
Peella, Howard Towers of Hanel, Simplifled in J 12 3 27
Perkns, Frad The Global Information Centre 1 1 45
Perkins, Fred Information Centre as Strategy i 4 90
Ferry, Tim 1BM-based APL communlcatons 1 1 62
Phillips, Hasry Assurance Quotation Services 5 K| 88
Piper, David GODM and AP126 2 3 109
Plper, David Using VSAPL under TSO 2 4 127
Pipar, Davld Guad-WIN in APL*PLUSIPC ¥n.5 3 1 119
Piper, David Using quad-FX with Aux Processors 3 2 123
Plper, David Command-criven Interface for BDAM & QSAM 3 3 118
Fipar, David Using quad-NA for Data Translation 3] 123
Plper, David Using quad-NA to Eliminate WS FULL 4 4 107
Piper, David Paralle! Gomputing and APL 5 4 113
Piper, Cavid Semantlc Class and Arrays of Functions 6 1 118
Piper, David A Design Framewoark for APL Systems 5] 4 78
Piper, David Packaged Workspagas and their Implications for Application Design 7 2 63
Piper, David STSC's Double Whammy 9 4]
Plper, David Letter; Strands In FLUS 11 9 1 130
Piper, Davld DOIF Consldered Harmful 2} 1 133
Piper, David Review; APL"PLUS Il Version & g 4 55
Plper, David Meeting: AnOOFL - An Object-Oriented Programming Language b 1 96

138

Index to Vois 112 Vol.12 No.4
Author(s) Title Vol No Pg
Ponomaryov, Victor Intagrated System for Demographic Investigations 8 1 85
Preedy, David Graphics for Decision-makers 1 2 83
Preedy, David Recursion Hevisited 2 2 47
Preedy, David Graphics In the Boardroom 4 1 63
Prys-Willlams, Allan Random Contingancy Tables 1 3 160
Prys-Williams, Allan {BM's Logic Algorithms in Dyalog APL 4 1 104
Prys-wWilliams, Allan The Limits of Ferward Chaining 5 2 88
Prys-Williams, Allan Using APL to Front-end Existing Software 5 3 57
Pullman, Sob Generic Head & Replaca In IPSA 1 3 128
Pullman, Bob Qulek & Dirty Apportianment 3 1 108
Pullmen, Bob The Programmer as Desigrer ... 3 4 100
Pullman, Bob Text Inequalities 4 1 103
Pym, Johr Interfacing Viewdata & APL 1 1 59
Reiter, Clifford Fractals RYIJ 11 2 B85
Rigg, Malcolm Review: APL ard J: Sotme Benchmarks 8 3 70
Raberison, Grasme A Gtaphic Vision of APL 1 1 36
Pobertson, Graeme An APL Dialogus 1 3 135
Robertson, Graeme APL Linguistics 2 2 118
Robinson, Lew Pelynomial Muldplication with Clrculant Mairices: Insights Lising APL 12 4 81
Audd, Jack APLO3: APL in Satellite Survellance 10 2 a5
Rushton, Patrick Sales Forecasting System 2 3 B0
Samson, Denls A Control Operator 10 3 113
Sandles, Jon Review: ASLGREG - Regresslon and Linear Models 9 2 a2
Sandles, Jon Genetic Algorithms 9 3 Fal
Sandles, Jon Review: Helm - A Company-oriented DSS 0 2 49
Sandles, Jon Meeling: APL in Business " 2 44
Sandlas, Jon Workshop: APL In 2 Client-Server Environment 11 4 82
Sandles, Jon APLS5: Two Machine-Leaming Seminars 12 1 51
Sandlas, Jon Managing Objects In Causewe! 12 3 51
Sandles, Jon Review: The JADS/SMS Litity Management Systemn 12 4 45
Scholes, John Operators & Nested Amays 2 1 117
Scholes, John et af Warkshop cn Defined Operators & 4 64
Scholes, John A New Dovelopment Environment in Dyalog APL 5 4 101
Scholas, John Meeiing: Dyalog APL Namespaces " 1 101
Schwarz, Walter Complled APL for Supercompters 9 3 at
Searle, John APL In the Soviet Unlon 7 2 a1
Searle, John Review: Dyalog APL/X 8 1 &8
Salby, David Futwre Plans: APL2 tor the PC 5 4 82
Selfridgs, R.G. The N-Queens Problem in Cne Line 10 3 84
Selfrldge, R.G APL-Fortran calls using quadNA 12 2 108
Small, Nlcholas Review: IBM's APL2 on the PC (32-bit) 6 2 &2
Small, Nicholas Packaged Workspacss in APL2 7 2 50
Smali, Nicholas The BAA Membership Databass " 1 118
Smali, Nicholas Letter: Chaas - Cemputer Ertor not to Blame 1 L) 128
Smillite, Keith Book Review "Programming In J* by Iverscn 2] 3 67
Simillie, Kelth Book Review "Arlthmetic” by Iverson 3] 4 87
Smiliie, Kelth Making & Calendar i J g 1 85
Smillle, Keith Review: "An Introduction: to J" by Ken Iversen g 2 53
Smillle, Kelth Some J Verbs for Qrthogonal Factorlal Experimants § 3 117
Smillie, Keith A Note on the Easter Algorithm in J 10 3 78
Smillle, Kelth Aeview: "Calculus” by Ken tverscn 10 4 30
Smillle, Keith A Note on Prebabilities In the F Distribution 10 4 124
Smlllis, Keith Primes, Spirals and Coffes Tables 1 4 104

139

Index to Vols 1—-12

Vol.12 No.4

Auther(s)
Smith, Adrlan
Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrian

Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smith, Adrian

Smith, Adrlan
Smith, Adrian
Smith, Adrian
Smith, Adrlan
Smith, Adrian

Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smikh, Adrizn

Smith, Adrian
Smith, Adrian
Smitk, Adrian
Smith, Adrlan
Smith, Adrian & Richard

Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrlan

Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrlan
Smith, Adrlan

Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrian & Pearson, Duncan
Smith, Adrlan

Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smith, Adrlan
Smith, Adrlan

Smith, Adrian
Smith, Adrian
Smith, Adrlan
Smith, Adrlan
Smith, Adrlan

Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrian
Smith, Adrian

Smith, Paul

Title

"Matchmakers* Simulation
‘mperlal Group Graphics
Towards a Teachzble Interface
Getting the Best out of GDDM
WSPC: for whom the bell tolls?

Modelling Fuzzy Declsions
Camecting the UK APL*PLUS/PC Kbd
Windows and Pop-up Menus

Poking the DOS Keyboard Buifer
Custom Banners In APL*PLUS{PC

Icon Design for EGA and VGA
Vax-Cracle 10 APL*PLUS/PC
Reading the TSO Session Screen
DOS Envirenmant Varlables
Typesstting APL

Reviews of Myrlade [APL"PLUS/PC) & AFM for APL2/PC
A Vector Construction Kit

Revlew: APL*PLUS/PC Releass 9

A Hypertext Interface 1o the Oracle

The Falkoff Dual Keyboard

Review: Dyaiog APL for MS DOS

Review: Powertools/CUA

A Partial Implementation of PostScript In APL
PostSeript Graphics In APL

Why | ke MS Windows

Proportional Tables in PostScript
Fast Flling with spack
Exploiting VGA Colours

Arrays with Style

Stonewalling in APL

Shared Variables and Windows DDE
Hacker's Comer: Talking to PROGMAN
Building a TrueType APL Fon! for Vector
Coast to Coast - Designing with Objects
Review: GDDME - A First Look

Mineswooper - GOTO Consldered Futile
Revlew: GDDME - Update

Hacker's Cerner: Minding Your INIs

A Commen Approach to the Windows GUI
In Search of Contexts

Veotype: Preparing APL Code for Publication

Raview: APL*PLUS 1l Control Structures

Hacket's Comer: Native Files In Dyalog APL {Without Tears)
Review: "Les APLs Etendus” by Bemard Legrand

One Fent to Rule Them All

Hacker's Comer: Making Nolsss in APL
Guldelines fer Vectar Authors
Pitospuut GUlsuon Yl

Making Menus with Causeway

APL95: Business Graphlcs Workshop

Emulating APL"PLUS/PC Native Flles

Review: Dyalog APL for Windows 95

Pawerful and Easy Graphlcs; a First Response
Review: Dyalog-8 Gentrol Structures and Native Files
Hackers' Comer: A New Frock for IRMA

From Mainframes to Smaller Machines

140

<
-g
=
[~]

oA WN M =

LN o [I s] (e R ol) (s RN EE N

[N SR N AR - AR SN N LS SRS

-0 A =

AW WM N == ES ARG R N = bl

(2] of R

Pg
7

128

114

98
106
14
126
105
18

Index to Vois 1 — 12 Vol.12 No.4
Author{s) Title Vol No Pg
Spunde, Walter G. Function Sampling with IFAPL 7 1 20
Spunds, Walter G. Shape, Ravel and Roll 7 4 19
Spunde, Walter G. Hero vs Ors - A Battle Saguence in APL 9 3 15
Spunde, Walter G. Taylor Arithmetic 10 3 23
Spunde, Walter G. Review. "AFL Notes" by Jim Weigang 11 1 57
Spunde, Walter G. J - Where Have All the Varables Gone? 12 1 30
Sulllvan, John Fast Abbing 3 1 13
Sullivan, John Faster File Inputin TSO 4 1 59
Sullvar, John VSAM Processing in APL 5 1 104
Sullivan, John An Undocumented APLZ AP 5 3 112
Sullivan, John Using the GEM flle selector In APLBS000 B 3 113
Sullivan, John Multiprecision Asithmetic - Part | 12 1 74
Sulllvan, John Multiprecision Arithmetic - Part I 12 2 76
Sullivan, John Mulipracision Arithmetic - Part I 2 3 70
Sullivan, John Multiprecision Arithmetic - Part IV 12 4 3
Sullivan, John A Dilterent DDE Applicaticr: (Welsh Spell Checker via DDE) 12 4 116
Sutcliffe, Gardon Letter: Adverb/Conjunction Gombinations in J 1 1 134
Sutton, J[.A, Muore about Fractional Series 11 2 a0
Sutton, J.R. Fractnomials? 1 4 30
Swain, Rex Migration From APL2 to APL/W 12 4 64
Sykes & Ansel! When Domine Is not Sufficient 1 4 185
Sykes, Alan Fast Fibbing 3 4 21
Sykes, Alan A Character Scatterplot in APL 5 3 116
Sykes, Alan Numbers and Bases 6 1 3
Sykes, Alan From Cein-tossing 10 the Weather -] 3 24
Sykes, Alan Doing Useful Things with Stings 8 4 24
Sykes, Alan More String Manipulations 7 1 27
Sykes, Alan Searching for Strings in Strings 7 2 27
Sykes, Alan An APL SCRIPT Function 7 3 24
Sykes, Alan AteBornst Ato B? 7 3 27
Sykes, Alan Execution Time 7 4 25
Sykes, Alan The Regresslon Shelf 7 4 Ll
Sykes, Alan ist's Integrata - Lising APL 8 1 a2
Sykes, Alan Labelling L:] t a0
Sykes, Alan APL and the Birthday Problem 8 4 20
Sykes, Alan The Age of the Vicar (Puzzle) 11 3 99
Sykes, Alan The Age of the Vicar (Solution) i1 4 18
Sykes, Alan Caleulating Prebabilities tor Elementary Distributions 12 1 86
Thomson, Norman Guide to APL2 Nested Arays 2 1 108
Thomson, Nommar: Using Cperators In APL2 2 3 118
Thomson, Norman Go Pack your Knapsack 4 2 103
Thomson, Norman Tuterial on Emor Trapping in APLYPC & 4 105
Thomson, Norman Comparison Telerance Explained 7T 2 135
Thomson, Norman Letter: Non-inear Gurve Fitting g 1 126
Thomson, Norman Integrating with Insight 5 3 13
Thomson, Norman J-ottings 1 2 21
Themsen, Norman J-otiings 2 10 3 29
Themson, Norman J-otings 3: Atop and Agenda kb 2 24
Themson, Norman Letter; J Compositions 11 2 123
Thamsoen, Norman J-ottings 4 11 a 17
Thomson, Norman J-ottings 5: Append ltems 1 4 27
Thormson, Noman Letler: Answers to J Problems from Vector 11.3 1 4 127
Thomson, Norman J-otiings §: Indexing Amrays In J 12 1 25
Thomsan, Nerman J-ottings 7: Control Structures 12 2 21
Thomson, Narman Matrix Decompasition 12 2 A
Thomson, Narman Letter: Calculating Probabilities 12 2 109
Thomsen, Norman J-cttings 8: Transcribing from APL ta J 12 3 27
Thomson, Norman Letter; Fractions as Sequences of Integars 12 3 130

41

Index to Vols 1 - 12

Vol.12 No.4

Author(s)
Thomson, Normman
Themson, Norman
Thomson, Noman
Thomson, Nofman
Tickner & Oswald
Timson, Emify
Toop, David
Trenkier, Dlstrich
Trenkler, Dietrich
Trenkler, Dietrich
Trenkier, Dietrich & Gotz
Trenkler, Dietrich
Waters, Keith
Waber, Adam
Webster, Barie

Wheeler, James
Wheeler, James

Whitehouse, Diane
Whitney, Arthur

Willams, Mike
Willams, Mike

Wiliams R.G. & Green R.A.

Willlamson & Wells

Wilson, Anne
Wilson, Anne

Wilson, Derek
Wiison, Derek

Winfield, M.J.

Wartherm, P.
Wortham, P.

Wynn, Stephen
Wynn, Stephen

Zenth, Allan

Ziemann, David
Zlemann, David
Ziemann, David
Zlemann, David
Ziemann, David

Zlemann, David
Zizmann, David
Ziemann, David
Zlemann, David
Zismann, Dave

Ziemann, Dave
Ziemann, Dave
Ziemann, Dave
Zemann, Dave

Zppel, Michae!

Title
J-ottings 9: The Power Conjunction
‘Technical Note: Confldence Limits

Technical Latter: Divided Differences: Reply to Hul & Iverson

Roger and the Amazing Technlcolor Ballelock
Mata-APL: an APL. Pre-processor

ZARK: an APL Tutor

PC to Malnframe Communications

Densities well-suited for Statistics Problems

Slmulating Sampling Distributions
Implamenting Cardano's Rule

The Commen Mean, Non-Negative Definlte Matrices, and APL

Clopper-FPearsan Confldence Limits
3D Facial Anlmation

Review: APL"PLUSIPC Verston 11
Flnished Goeds Inventory Control

A First Look at APL*PLUS [l
Meeting: Presentation of APLYPLUS Il

Meating: APL In Business
K

Expcheack; Intelligent Diaghastics
Persenal Consiruct Analysis in APL

A note o Comparison Tolerance
External Databases

Tree-procassing Algorithms
Cows and Bulls - A Saluton

Sweeten your Combinations {Comp)
Sweet Combinations (Result)

Expert Systems

Interfacing to PC Assembler {3}
PC Assembler (Il}

Experimental Dasign
A Look at Resldues

A Case Story about Moving an APL Application

International APL standard
150 Standards update
APLES Competition Review
APLBS Standards Report
APL Trivia - Funny Dates

I-APL Technlcal Speciiication
Efficlency in APL

Error Trapping Tutorial for APL*PLUS
A Direct Definition Handler

Exploring MAGIC

Smalltalk, APL and &

J Solutlon to Enigma 685

Review: J Release 2

Revlew: J Rslease 2.05 for Windows

An Application of APL in The Roofing Trade

142

10
11

11

-
B -5 4] (= [«

-

[-] (el P

Lielie i - A

SISy L] - - N o bbbaD

-

- N

] P = WM (4] [~ L L= £y -k [\¥]

(SRR R

€a E . 3\t L I o]

Pg
27
98

112

127
72
62
70

118
a7
43

107
87
60
&1
70

80
82

50
74

83
73

123
79

92
20

114
109

43

107
119

VECTOR Vol.12 No.4

[

Index to Advertisers

Dyadic Systems Ltd 2
APL Booklist (Renaissance Data Systems) 46
Saladin 4
Vector Back Numbers 45

All queries regarding advertising in VECTOR should be made to Gill Smith,
at 01439-788385, Compuserve: 100331,644.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards, Please send the text of submitted articles (with diskette as appropriate)
to the new Editor:

Duncan Pearson,

Keeper's Cottage

Firby

YORK, YO6 4LH

Tel: 01653-618900

Email: 100265.1564@compuserve.com

Authors wishing to use Windows Write or Word for Windows should contact
Vector Production for a copy of the Vector APL TrueType font, a suitable
Winword template and the Vector APL typewriter.

Camera-ready artwork (e.g. advertisements) and diskettes of “standard’ material
(e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK YO6 4]]. Please also copy us with all electronically
submitted material so that we have early warning of possible problems.

Tel: 01439.788385
Compuserve: 100331,644.

143

VECTOR Vol.12 No.4

British APL Association: Membership Form

Membership is open to anyone interested in APL. The membership year
nermally runs from 1st May to 30th April, but new members may join from Ist
August, November or February if preferred. The British APL Association is a
special interest group of the British Computer Society, Reg. Charity No. 292,786

Name:
Address:

Postcode / Country:
Telephone Number:
Email Address:

Category (please lick box) to run from: 1st May o August Q Novd reb U

UK private membership £12 Q
Overseas private membership £14 Q

Airmail supplement (not needed for Europe) £4 O
UK Corporate membership £100 a
Corporate membership overseas £135 Q
Sustaining membership £430 d
Non-voting UK member {student/OAP/unemployed only}) £6 a

PAYMENT - in Sterling or by Visa/Mastercard/JCB only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British AFPL Association”, or you may quote your
Mastercard, Visa or JCB number.

Tauthorise you to debit my Visa/Mastercard/]JCB account

Number: __e 11 L 5.0 b vy L1y Expirydater L a1
for the membership category indicated above,
Data Protection Act:
P . . The information supplied may be
8 annualiy', at the p'rex'rallmg rate, until further notice storo o compiter apelprocessed
one yeat’s subscription only in accordance with the reglstraton
of the Britisk Computsr Society.
{please tick the required option above)
Signature: Send the completed form to:

British APL Association, ¢/ o Rowena Small, § Cardigan Road, LONDON E3 5HU, UK

144

The British APL Association

The British APL, Association is a Specialist Group of the British Computer Society, It is administered by a Committee
of officers who are clected by a postal ballot of Association members prior to the Annual General Meeting. Working
groups arc also cstablished in areas such as activity planning and jowtnal production. Offers of assistance and
involvement with any Association matters are welcomed and should be addressed in the first instance to the Secretary.

1995/96 Committee
Chaitman: Dr Alan Mayer European Business Management School,
01792-205678x4274 Swansea University,
a.dmayer@swansca.ac.uk Singleton Park, SWANSEA SA2 8PP
Secretary: Sylvia Camacho 11 Auburm Road, Redland,
0117-973 0036 BRISTOL, BS6 6LS
100612.1057 @ compusetve.com
Treasurer: Nicholas Small 8 Cardigan Road,
0181-980 7870 LONDON E3 5HU
treas.apl @bes.orguk
Journal Editor: Anthony Camacho 11 Avbumn Road, Redland,
0117-973 0036 BRISTOL.,
acamacho @cix.compulink.co.uk BS6 6LS
Activities: Vacant Post
Education: D1 Ian Clark 9 Hill End, Frostetley
01388-527190 Bishop Auckland
104302 1.3073 @compuscrve.com Co, Dutham DL13 28X
Technical: Vacant Post
Publicity: David Bastwood MicroAPL Ltd.,
0171-922 8866 South Bank Technopark,
MicroAPL @microapldemon.couk 90 London Road, LONDON SE1 6LN
Recruitment: Jon Sandles 138 Burion Stone Late,
01904-612882 York YC3 6DF
100257,1756 @ compuserve.com
Administration: Rowena Small 8 Cardigan Road,
0181-980 7870 LONDON E3 5HU
treas.apl @bes.org.uk
Journal Working Group
Editor: Anthony Camacho 0117-973 0036
Production: Adrian & Gill Smith Brook House, Gilling East, YORK (01439-788385)
Advertising: Gill Stith Brook House, Gilling East, YORK (01439-738385)
Support Team: Jonathan Batman (01488-648575), Duncan Pearson (01653-618900),

Richard and Adam Weber (01302-539761), Sylvia Camacho, Ray Cannon (01252-874697),
John Seatle (0181-858 6811), David Ziemann (0181-348 4039), Jon Sandles

Typeset by APL-385 with MS Word 5.0 and GoScript
Printed in England by Short-Run Press Lud, Exeter

VECTOR

t

VECTOR is the quarterly Journal of the British APL Association and is distributed 1o Association
members in the UK and overseas. The British APL Association is a Specialist Group of the British
Computer Society. APL stands for ‘A Programming Language” — an interactive computer
language noted for its elegance, conciseness and fast development speed. I is supperted on
most mainframes, workstations and personal computers.

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial
support of the following Association Sustairing Members. In many cases these organisations also
provide manpower and administrative assistance to the Association at their own cost

Causeway Graphical Systems Ltd

5 The Maltings, Castlegate,

MALTON, North Yorks YO17 0DP

Tel 01653-896760

Fax: 01653-697719

Email: 100265.1564@ compuserve.com
Web. www. causeway.co.uk

Dyadic Systems Ltd
Riverside View, Basing Road,
Old Basing, BASINGSTOKE,
Hants, RG24 DAL

Tel: 01256-811125

Fax: 01256-811130

Email: saies @ dyadic.com
Web: www.dyadic.com

Insight Systems ApS
Nordre Strandve] 119A
DK-3150 Hellebaek
Denmark

Tel: +4542 107022

Fax: +4542 107574
Email: insight@ inet.uni-c.dk

MicroAPL Lid

South Bank Technopark

90 London Road

LONDON SE1 8LN

Tel 0171-922 8866

Fax: 0171-928 1006

Email: microapl @ microapl deman.co.uk
Wab: www.microapl.co.uk

Dutch APL Association
Postbus 1341

3430BH Nieuwegein
Netherlands

Tel: 03474.2337

Compass R&D Ltd

10 Frederick Sanger Road
Surrey Research Park
GUILDFORD. Surrey GU2 5YD
Tel: 01483-302249

Fax; 01483.302279

HMW Trading Systems Ltd

Hamilton House,

1 Temple Avenue,

LONDON EC4Y OHA

Tel: 0171-353 8900

Fax; 0171-353 3325

Email: 100020.2632@ compusernve.com

Manugistics

2115 East Jefferson St

Rockville

MARYLAND 20852 USA

Tel: +1 (301) 984-5412

Fax: +1 (301) 9845094

Email: apisales @ manu.com (US)
Email: intl'®@ manu.com (International)

Saliton Associates Ltd
Groot Blankenberg 53
1082 AC Amsterdam
Netherlands

Tel: +31 20 646 4475
Fax: +31 20 644 1206
Email: sales @ soliton.com

