The Journal of the

A Specialist Group of the British Computer Socisty

144 pages of Array Programming

« Dyalog APL/M reviewed 37
- APL2000 at Orlando 61
» Tool of Thought X at New York 69
+ Smillie on Weaving Designs 71
» Sullivan on the Windows Registry 98
« Lescasse on QOPS (concluded) 109

British APL Association

ISSN 0955-1433
www.vector.org.uk
Vol.14 No.3 January 1998




Contributions

All contributions to VECTOR may be sent to the Journal Editor at the address on the inside back cover. Letters and
anticles ate welcome on any topic of intcrest to the APL community. These do not need to be limited to APL themes,
nor must they be supportive of the language. Articles should be accompanied by as much visual material as possible
(bfw or colour ptints welcome). Unless othetwisc specified, each item will be considered for publication as a personal
statcment by the author. The Editor accepts no responsibility for the contents of sustaining members” news, ar
advertising,

Plcase supply as much matetial as possible in machine-readable form, ideally as a simple ASCII text file on an [BM
PC compatible diskette (any format). APL code can be accepted as camera-ready copy, in workspaces from I-APL,
APL+Win, IBM APL2/PC or Dyalog APL/W, or in documents from Windows Write (use the APL2741 TrueType
font, available free from Vector Production), and MS Word.

Except where indieated, items in VECTOR may be freely reprinted with appropriate acknowledgement. Please inform
the Editor of your intention to re-use material from VECTOR.

Membership Rates 1997-98

Cutegory Fee Yectors Pasges
UK Private £12 1 1
Overseas Private £14 1 1
(Supplement for Aitmail, not needed for Europe) £4
UK Corporate Membership £100 10 5
Overseas Corporate £135 10
Sustaining £430 10
Non-voting Member (Student, OAP, unemployed) £6 1 4

The membership yeat nommally runs from 1st May to 30th April. Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passes arc required for entry to some association
events, and for voting at the Annual General Mecting, Applications for student membership will be accepted on a
recommendation from the course supervisor, Overscas membership rates cover VECTOR surface mail, and tnay be
paid in sterling, or by Visa, Mastercard or JCB, at the prevailing exchange rate.

Corporate membership is offered to organisations where APL is in professional use. Corporate members receive 10
copics of VECTOR, and are offered group attendance at association meetings. A contact person must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is scen as a method of promoting the
growth of APL interest and activity. As well as recciving public acknowledgement for their sponsorship, sustaining
members reccive bulk copies of VECTOR, and are offered news listings in cach issue,

Advertising

Advettisements in VECTOR should be submitted in typeset camern-ready format (A4 or A3) with a 20mm blank
botder after reduction. Tustrations should be photographs (bfw or colour prints) or line drawings, Rates (excl VAT)
arc £250 per full page, £125 for half-page or less (there is a £75 surcharge per page if spot colour is required),

Deadlines for bookings and capy are given under the Quick Reference Diary. Advertisements should be booked with,
and sent to: Gill Smith, Brook House, Gilling East, YORK YO6 41J. Tcl: 01439-788385  Email:
apl385@ compuserve.com




VECTOR Vol.14 No.3
Contents
Page
Editorial Ajay Askoolum 3
APL NEWS
Quick Reference Diary 5
APL99 — Call for Participation 9
Correspondence 11
News from Sustaining Members 13
APL Product Guide Gill Smith 16
Review of APL97 CD Rom Adrian Smith 30
Review of ComlLog Jon Sandles 36
Dyalog APL/M8.1.2 Bob Hoekstra 37
The Education Vector
Zark Newletter Extracts edited by Jon Sandles 53
J-ottings 15 Norman Thomson 56
CONFERENCE REPORTS
APL2000 Conference Report Ray Cannon 6l
Tool of Thought (X) Ed Shaw 69
GENERAL ARTICLES
The Computer Construction of Weaving Designs  Keith Smillie 71
HTML Basics for APLers — Lists Adrian Smith 82
Using AFL and ] in Conjunction
to Improve System Validity Denald Pittenger 51
TECHNICAL SECTION
Hackers’ Corner: the Windows Registry John Sullivan 98
Technical Correspondence Dave Piper 102
An ODBC Browser Using SQL and Dyalog APL  Richard Smith 105
Object Oriented Programming with APL+Win Eric Lescasse 109
Armstrong Numbers and APL Joseph De Kerf 138
Index to Advertisers 143



[T

software Release 4 from

Iverson Software promises

to be the best ever. This

version brings true Object
Griented Programming to J, making
itmuch easier to write large and com-
plex systems. Extensions to locales
include hierarchical paths and object
locales that can be dynamically cre-
ated and referenced. This allows you
to extend and customize a host of
built-in facilities such as the plot and
grid objects.

The new grid object implements a

ideal for data entry and formamng

Watch for the
Release of J_,
o Wingows CE'

www.jsoftware.com

J + OOP =
J Release 4

SRS ISR e

We have also improved the develop-
ment environment to simplify working
with projects and creating standalone
systems.

Many new Labs, have been added to
get you up and running quicker. We
have also added the ability to create
aLAB in RTF format, for example, to
include standard math symbols.

The documentation has been com-
pletely revised for this release. It will
be available in printed form, and in
Windows Help file format.

Distributed by:

Strand Software Inc.
19235 Covington Court
Shorewood, Minnesota
USA 55331

Tel {612) 470-7345
Fax {612) 470-9202
info@jsoftware.com




VECTOR Vol.14 No.3

Editorial
by Ajay Askoolum

APL. This acronym either evokes a sense of comfort or one of confusion. When
confused (state of lacking information), the typical reaction is “What is APL?".

Indeed, what is APL? It is a commercial language which is available on all
platforms, from mainframes, MACs, Unix to Personal Computers running DOS,
085/2, Windows 3.1x, 95 and NT (including some shareware versions). In the
infancy of personal computers, APL interpreters were available for CP/M
machines too. APL is some 30 years cld, and has offered a core level of
consistency which can only be envied by other major programming languages
which have evolved.

Today’'s APL strives for compatibility with IBM’s APL2, irrespective of operating
system platform. APL2 is a mainframe interpreter. However, the PC offerings,
notably APL+Win from APL2000, Dyalog APL/W from Dyadic and APL.68000
from MicroAPL offer ‘core’ language compatibility with APL2 as well as
Windows {or MAC in the case of APL.68000) established standards. IBM's
Windows 95/INT version of APL2 is in Beta test level 7; the OS/2 version has
been available for a long time.

Therefore, APL, irrespective of its tokens or specialised characters is now DDE,
ODBC and Windows APl compliant. APL can have a conversation with
Microsoft Access, Word, Excel, Lotus123 (to name but a few) and can use third
party add-ons such as FarPoint's VBX (Spread) and Visual Components ActiveX
OCX (Formula One) with remarkable ease. TrueType fonts have eliminated the
frustration of communicating written APL. APL had maturity from the start, in
spite of the adversity of slow CPU, limited memory, storage and expensive
hardware such as custom printer heads and character set chips; it has now come
of age and works seamlessly, without requiring specialist hardware.

With this level of integration, APL is neither the “stick” to be confronted with, nor
is it the fledgling of a protective species which requires a protective environment.
Why is it not more successful? More visible? It would be easy to suggest that this
is entirely due to not having Microsoft as a benefactor. 1 can put forward three
alternative explanations.

First, is the APL publicity organ (the marketing of APL vendors/distributors
as well as the numerous international APL journals, including Vector) in the
wrong hands? Possibly so, because this is an agent preaching to the converted.



VECTOR Vol.14 No.3

If not so, perhaps the medium of communication is not on a wavelength that
reaches the wider world. Indeed the standard clichés that ‘APL works with

you, not against you’ or “APL takes one tenth of any other language, namely,
volume of code and time to develop it’ are only meaningful to the converted.

Second, APL is still in the primitive age when the written word had not been
invented. APL users have vendors’ manuals to hand, usually. The uninitiated
will not come across APL anywhere else or when they do, they tend to read
the epitaph of APL. On the other hand, a novice is spoilt for choice when
attempting to find third party reference on any aspect of the world of
computing, except APL. An APL user ejther no longer needs any reference,
has become stagnant for the lack of it or knows exactly where to find it
through his/her specialist network of contacts, such as Vector’s product
guide. Now | can use all the methods, properties and events of Formula One
OCX version 5.0 but first I had to find out how to by guesswork: its
documentation does not refer io APL, ils help desk does not support APL per
se and APL2000's documentation of if could not be more sparse. A viable
alternative to finding out is to give up ..,

Thirdly, the inherent nature of APL is suicidal. It solves problems very quickly
and therefore its requirements such as mainframe CPU, which can have a
year’s lead time for planning and budgeting, are more immediate. A longer
time cycle can be beneficial because it does nol create a “crisis’; it allows for a
more leisurely approach to planning and development. But, the immediacy of
APL ought to be an asset not a liability. | suspect that it is not the development
cycle but peor APL coding which is the real culprit, APL is the least
prescriptive language 1 know and it is completely oblivious of programmer
abuse. Given that most APL programmers have crafted their skill with a great
deal of personal effort (because you have to do everything, you learn
everything), it is easy to understand not only the individual style of APL
systems in existence but also the political naivety of APL professional in the
midst of computing professionals at large. On balance, APL tends to lose the
battle for survival, primarily because a life span of 30 years has been long
enough to confirm a sense of recurring crisis with the maintenance of APL
systems,

Where Next for APL?

The Vendors’ concession to control structures or keywords is a major step
forward not only for programmer productivity but also for easing the
introduction of APL to other programmers. Core compatibility with APL2 also
allows programmers to move from one interpreter to another but this is severely
jeopardised by departures from the ‘core’ APL2 standards; the different
quadAVs, IBM’s own auxiliary processors, Dyadic’s namespaces and the myriad
of APL2000's quad functions are very distinct solutions to standard recurring
problems. The result? One APL can talk to another APL only via an interpreter!




VECTOR Vol.14 No.3

From the point of view of attracting new members to the APL fold, a major leap
of faith is required of APL vendors: tutorial manuals. These should provide
worked examples and commentary on realistic applications using today’s APL.
The objective would not be to teach but to illustrate techniques. A stock control
or book club application with a GUI front end or indeed other standard exercises
on programming courses would be suitable, Demonstration workspaces such as
APL+Win's REL20 are fine for illustrating the power of APL but they make no
effort in teaching how to harness the same power (reverse engineering is not a
recommended alternative to tutorials).

Vector and other journals need a re-juvenated approach. This can only come
from new people getting involved in writing for the journals, or by simply taking
the way forward. APL needs to be seen, seen not just by decision makers but
especially by passers by. Quite literally, we need to enable APL material to fall
into the hands of casual browers in bookshops, newsagents etc. The emphasis
needs to be on teaching good standards and promoting today’s basic APL where
nested arrays and Windows GUI are no longer specialist topics but integral to
the language.

In future, Vector plans to organise issues by themes such as ‘Windows
Programming With APL’ , ‘APL Basics’ and ‘Sustainable APL Programming
Standards’.  Additionally, Vector will organise a number of
tutorial/demonstration  sessions (see APL News). This requires your
contribution, in fact it requires the wider participation of the international APL
community. Vector will endeavour to make good APL material accessible to as
wide an audience as possible, has considered electronic distribution of material
and has a web site for this and other purposes (www.vector.org.uk). Your
individual contribution is a vital requirement for the continued success of APL. 1t
is imperative to share/publicise APL insight and expertise, and that implies that
the culture for APL development must evolve from being driven by keen
individuals to being team based. That is, APL should evolve from the ‘Here's the
solution, what is the problem? ideology to the ‘For this problem, APL is
demonstrably the effective solution” ideclogy.

Finally, an incentive: Vector will give one year's complimentary subscription for
each article which is accepted for and published in a future issue. The
forthcoming AGM is an ideal opportunity to express your ideas for Vector and
the Assocjation; please avail yourself of the opportunity and come forward.



A World of Opportunities...

Reuters Information Services in Toronto builds and operates one of the largest historicat
databases in the world. It serves the Financial industry through a variety of Reuters
delivery products. Our Toronto unit has recently been overwhelmed with new
requirements to enhance our offerings, while underteking an effort to organise and
catalogue our systems in preparation for Y2000 testing.

Programmer/Analysts

Full time positions will involve many aspects of the software development life cycle,
inctuding writing functional specifications, coding, testing and providing support. The
focus will be on the maintenance of complex database systems, and will involve both
applications and systems programming. You need two years of programming experience
plus a degree in Computer Science, Computer Engineering, or Mathematics, or
equivalent industry experience. You enjoy, and are challenged by, the prospect of solving
complex problems, and your communication skills enhance your ability to work
effectively in a team environment. APL experience, database management and
knowledge of the financial data and information industry would be assets. If you are
interested in fulf time oppertunities, respond quoting file C0918.

Consulting positions are also available at Reuters, and this is one of the best times to
become involved! Learn about the entire system and make yourself an asset for future
contracts too. 1f you already know the Reuters applications then we want to hear from
you. Considerations will be made for remote or on-site consulting. Strong APL skills
(ideally Sharp APL} and experience are & must. Assignments can often be tailored to
challenge and take advantage of the consultants experience and interests, 1f you are
considering consulting opportunities, respond quoting file D0918.

These are superb career opportunities with an industry leader that recognizes
achievement in very tangible ways. To apply, please send your résumé 1o:

Human Resources

Reuters Information Services (Canada) Limited
The Exchange Tower, Suite 2000

Toronto, Ontarie M5X 1E3

Fax: (416) 364-9017

We appreciate your interest and will contact you if a meeting is appropriate.
REUTERS is an equal opportunity employer.




VECTOR Vol.14 No.3

Quick Reference Diary 1998-1999

Date Venue Event
May 22nd RSS, Londen BAA Vendor Forum and AGM
July 27-31 Rome APL98
August 10-14 1999 Scranton, Penn. APL99

Dates for Future Issues of VECTOR

Vol.14 Vol.15 Vel15

No4 No.l No.2
Copy date 10th Aprif 3rd July 4th Sept
Ad booking 17th April 10th July 11th Sept
Ad Copy 24th April 19th July 18th Sept
Distribution May 28 August 98 Cctober 98
Edited by Stefano Anthony Alan Sykes &

Lanzavecchia Camacho Alan Mayer

Vector Back Numbers

Back numbers of Vector are available from:

British APL Association,
c/o Gill Smith,

Brook House, Gilling East,
YORK YO6 4]]

Price in UK: £10 per complete volume (4 issues);
£12 (overseas); £16 (airmail) including postage.




dyalog

dyalog VAJBJ]

The Deﬁmtlve APL for Windows™

Have you ever

Well now you can!

[ 48 o ex von yoot Fom petp Bun Tooks wndow e,
oubeirrlosse

| Z§. Public File As Obiject

T r,'?" B B ’__.*

5l B Xlals| 31:@! wanted to call your
{Namespace Tree [Contents of #.CFiles.File] ¥
CICE Name | Tupe Il APL functions from
i C]CFiles |[#E}F APPEND Function |, . .
|-1; Lo e %FHEHD Function | Excel, Visual Basic,
@@ 0sSE HE FREPLACE Function |
| | = FsizE Function | OF Ci+?
oot Thib (8067220 b5} 397 bytes uoed [0 bykes selected) n G|

P Microsoft Visual Bask.  cliles xls  fhilefns [Cade))

[iceneca __J ]FOpen
Publ:.c CF As ObJect

Sy

Y| Dim Data As Variant

]

,,,m-;:;

4 sub Fopen(}

: Set CF = CreateObject ("dyalog.CFILES” )
f = Cellz(l, 2).Value

Bet File = CF.OpenFile (f)

End Sub

I:' R

} sub PAppend()

bim Rs=lt As Variant

bData = Selection.Value
Relt = File.FAppend (Data} .
End Sub &

That’s why Dyalog APL/W remains the professional

choice. For further information, contact Dyadic or

your local distributor today.

Dyadic Systems Limited, Riverside View, Basing Road, Old Basing,
Basingstoke, Hants. RG24 7AL, United Kingdom.

tepp
.
‘oo,

Tel:+44 1256 811125 Fax:+44 1256 811130 Email; sales@ dyadic.com
Micresoft is a registered mrademark and Windows and the Windows Logo are trademarks of Microsoft Corporation




VECTOR Vol.14 No.3

APL99

On Track to the 21st Century

August 10-14, 1999 — Scranton, Pennsylvania

Call for Participation

Papers

Papers are invited on a full range of topics concerning array processing
languages (APL, ], K etc). Papers which emphasize productivity and
entrepreneurship are particularly desired. Since this will be the last APL
conference before the start of year 2000, when many millennium bugs will
manifest, papers which reflect solutions to year 2000 problems are encouraged.
Paper topics can include but are not limited to:

+ Novel uses of APL in the Business Environment

= APL Legacy Applications

+ Can APL be used successfully with Web applications?
+ APL readiness for Year 2000

+ Distributed APL over a Network

+ Remote Procedures and Workspace Concerns

» Mathematical Algorithms

» APL and J in Education

Abstracts for planning purposes are requested by September 1, 1998, Preliminary
abstracts are welcome now. Final drafts are due by January 15, 1999, Papers will
be impartially reviewed and selected by a distinguished panel of referees.
Pending further arrangements, abstracts may be sent to NY/SIGAPL at P.O. Box
2697 New York, NY; USA; 10163-2697, or to David E. Siegel at
Siegel@ ACM.ORG. The final submission address may well change.



VECTOR Vol. 14 No.3

Tutorials

90 minute interactive sessions lead by a PC-equipped instructor. Abstracts due
by March 1, 1999.

Workshops
Hands-on sessions in PC-equipped lab facilities. Abstracts due by March 1, 1999,

Vendor Forums

Vendors are encouraged to exhibit their products and discuss new
developments.

APL99 is co-sponsored by NY/SIGAPL (a chapter of ACM) and the University of
Scranton,

Stephen Mansour — Conference Chair

David Siegel — Conference Proceedings Edilor

Garth Foster — Conference Program Chair

Susan Trussler, PhD — University of Scranton Liaison

10




VYECTOR VYol.14 No.3

CORRESPONDENCE

Finding an Elephant
From: George MacLeod 8 February 1998

The son of a friend of mine found this item on the Internet. T therefore have no
knowledge of its provenance. I am responsible for the bits on APL and J.

A study was done to find out the different methods computer programmers use
to solve problems. The study consisted of taking different programmers to South
Africa and telling them to go and find an elephant.

The COBOL programmers immediately adopted a simple strategy; they took a
picture of an elephant, faced east and started walking. Each time they
encountered an animal they compared it to the picture, and if it did not match
they tossed it aside and kept walking. When they came to an ocean they took one
step north and started back to the west, repeating the algorithm with each ocean.
The more experienced programmers placed a known elephant in Cairo to keep
themselves from walking off into the Mediterranean.

The Assembly Language programmers used the same method as their COBOL
brethren, but executed it on their knees — insisting it was more efficient that
way.

The Database programmers hired thousands of natives at enormous expense,
and gave them all a picture of an elephant and sent them running off in different
directions. Some of the things they brought back did indeed resemble elephants.

The Artificial Intelligence programmers sat down and developed a complex and
complete definition of what an elephant was, and what were its attributes, and
the procedure one would follow to create a mathematical ratio of “not an
elephant at all” to “absolutely an elephant” for any one animal. At no time did
they actually attempt to find an elephant.

The Object Oriented programmers went to the library and took out the book
“Finding Kangaroos in the Australian Outback”. They carefully changed every
occurrence in the book of the words “Australia” to “ Africa”, and “Kangarco” to
“Elephant”.

11



VECTOR Vol.14 No.3

Because of the power of their language the APL programmers only needed one
instruction to find all of the elephants at once. The instruction was: Africa e
Elephant.

Two ] programmers, who claim to be reborn APLers, unfortunately took a wrong
fork and were never seen again. A planned search had to be aborted as no
further J programmers could be found.

37 Newhouse Road

Bovingdon

Herts HPP3 0E]

Tel: 01442 834015; Email: 100412.1305@compuserve.com

APL Null
From: Ajay Askoolum January 1998

APL character null ' ' (or 0/'anystring') and numeric null & (or 0/any
numeric vector) surprised me. T have checked this with APL*PLUS III,
APL*Win, Sharp APL and Dyalog/APL: all these interpreters behave identically.
Therefore, tempted as I am, [ cannot call this a bug. However, [ would like to be
able to express what is happening in words.

"1e! ABCD! A Returns null
VABCD'e' ¥ R Returns ¢ 0 ¢ 0
'"YelABCD! R Returpns 1 1 1 1
YABCD' ¢! A Returns null

The results are consistent when 1 2 3 4, say, is substituted for ' ABCD"'.
'A'A,=0/"ABCD' n Returns a surprise 1

as does
(G/YABCD')a.='A"

What is APL doing? The surprise result which prompted me to look into this was
2a,=0/1 1

or more generally, 2+.=condition/value which caused my function to
branch to a routine I had not expected. T would have expected the result to be
null or zero.

Can you express what APL is doing in words?

12




VECTOR Vol.14 No.3

News from Sustaining Members

Dyadic Systems Ltd

Dyadic is pleased to announce the successful launch of a new Dyadic Support
Service (DSS) for Dyalog APL. This is primarily an electronic service based on
email and the World Wide Web.

Cne of the key features of the service is that users may download patches
containing enhancements and problem corrections from the Dyadic web site
http:/ /www.dyadic.com. The process of downloading and applying a patch is
completely automated (it's written in Dyalog APL, of course) and convenient to
use. Furthermore, the patch files are updated on a daily basis, so D55 users can
stay absolutely up-to-date with the latest Dyalog APL developments. In additien,
Dyadic’s new change control system issues email messages to DSS users,
informing them of changes, enhancements and fixes automatically as code is
released.

Behind the new service is a totally new incremenial approach to the development,
enhancement and maintenance of Dyalog APL. This technique allows small
changes to be made, tested, and safely released to users in a much shorter time-
scale than was previously possible. As a consequence, Dyadic is able to deliver a
steady stream of enhancements, as well as fixes, that would previously have had
to wait for a new software release.

Since the start of the service, some of the enhancements made for the benefit of
DSS subscribers are as follows:

Grid Comments the Grid object has been enhanced to support comments, (tips
thal appear when the user hovers the mouse over a cell) which
are consistent with the latest edition of Microsoft Excel.

For the : For control structure now accepts multiple variables as
inn:For a b ¢ :in (1 2 3)(4 5 &) ...

MetaFiles making complex graphical pictures using the Metafile object is
now much faster than before.

Tracer You can now trace the execution of ILX on ) LOAD.

ActiveX The OCX support has been extended to cater for ActiveX

objects that expose an object hierarchy (like OLE Servers).

13



VECTOR Vol.14 No.3

Syntax colouring Improvements have been made to the colouring of compound
names {e.g. NAMESPACE . SUB, FOO) and dynamic functions
and operators.

Further enhancements in the pipeline include a facility to reformat a function
during editing, and a significant improvement in the efficiency of cloning
namespaces using [JOR and of making new instances of OLEServer objects.

Naturally, there will still be new major releases of Dyalog APL issued at roughly
12-monthly intervals, and Dyadic intends to announce some exciting new
features at APL9S.

Insight Systems / Adaytum Software

SQAPL Client Version 3.0. Available at APL98. Work on the next release of
SQAPL (previously announced as version 2.1, now renumbered to 3.0}, has now
reached a stage where we can commit to a release date: the release will be
available by the APL98 conference in Rome (July 1998). We hope to see you all
there! Initially, the release will be available for 32-bit Windows (Windows NT, 95
and 98), for the APL systems available in these environments (APL+Win, APL2
and Dyalog APL).

Key features of version 3.0 are:

+ No limits on the size of bind variables or record length, except those imposed
by the drivers themselves (and “Workspace Full” of course).

+ Support for the ODBC ExecDirect, allowing execution of statements without
preparing them first, and improved support for stored procedures.

* Getlnfo and Putlnfo calls, which allow you to inquire about the capabilities of
a particular data source, and set options after connection.

* Support for “BrowseConnect”, allowing the QDBC driver to provide dialog _ _
boxes to guide the user through connection to a data source.

+ Bulk Input, allowing insertion or update of multiple rows of data (sets of bind
variables) in a single operation.

+ For advanced users, we will make the Environment, Connection and
Stalement handles available so that you can extend the product from APL by
making direct ODBC DLL calls,

+ Installation Seript

14




VECTOR Vol.14 No.3

Adaytum Software. We believe that Adaytumn Planning is en route to becoming
one of the biggest APL-based businesses ever. Adaytum Software now employs
almost 100 people world wide. In January, our US revenues exceeded UK
revenues for the first time, after about eighteen months of operation in the U5
market, a period in which the UK has also experienced substantial growth. The
total number of customers world wide is now in excess of 450.

Our development team has grown to about 15 people, our goal is to more or less
double this number during the next twelve months, i you have a knowledge of
APL and C++, Visual Basic or Java (or preferably a combination of these), please
contact mkrom@adaytum.dk or check our Web site: www.adaytum.dk for an up-
to-date list of open positions. We are also recruiting technical writers, produect
designers and testers. Positions will exist in Denmark, the UK and in North
America.

The next major product release is due at the end of 1998. The focus of
development for this release is “large, distributed customers”: Workflow,
Distribution of Reports and Data Entry Tools for erganisations with hundreds of
widely distributed users. A multi-user Server architecture will provide a Web
Server, and an ODBC Server,

Another major theme is “Open Systems”: A COM Automation AP] to allows VB,
C++ and other “third party” developers to call our “Planning Server” and build
custom planning applications.

Causeway Graphical Systems Ltd

The autumn and early spring have been a period of consolidation and plain hard
work for all of us. It may be the approach of 1/1/2000, or maybe the advantages
of array programming are again getting noticed. Either way, the result has been
that the “Products Department” (Adrian) has been lagging behind the software
in getting CPro out of beta and into production.

The good news is that the software itself is proving fast, stable and reliable.
Watch the website (the release notes are posted with every significant update)
for progress on the tutorial and help files. NewLeaf and RainPro updates are also
available for both Dyalog and +Win to all users on current maintenance — email
us for the ZIP passwords, or to receive your copy by diskette if you prefer.

The other good news is that we are now happy to accept both VISA and
Mastercard, which greatly simplifies payment from non-UK customers. Finally,
congratulations to Eric Lescasse who has sold more copies of RainPro and
NewlLeaf than anyone else, including us!

15



VECTOR Vol.14 No.3

The Vector Product Guide

compiled by Gill Smith

VECTOR's exclusive Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups ('poa’ indicates ‘price on application’):

+ Complete Systems (Hardware & Software)
+ APL and ] Interpreters

+ APL-based Packages

- Consultancy

- Other Products

+ Overseas Associations

» Vendor Addresses

- World Wide Web and FTP Sites

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world,

Your listing here is absolutely free, will be updated on request, and is
also carried on the Vector web site, with a hotlink to your own site. It is
the most complete and most used APL address book in the world.
Please help us keep it up to date!

All contributions and updates to the Vector Product Guide should be sent to Gill
Smith, at Brook House, Gilling Fast, York, YO6 4]]. Tel: 01439-788385,
Email: apl385@compuserve.com

16




Vector Product Gulde

Vol.14 No.3

COMPLETE APL SYSTEMS

COMPANY PRODUCT PRICES(E)

Dyadic IEM RS/E000 MD320 14,736
IBM RS/6000 MD320 13817
1BM AS/B000 MDaz0 22,658
1BM RS/6000 MD520 37,114
IBM RS/E000 MDS530 72054
1BM RSJ6000 MD540 122842

Optima IEM Compatibie poa

APL INTERPRETERS

COMPANY PRODUCT PRICES(E}

APL Saftware APL"Plus/PC Relaase 10 450
Run-time poa
APL*Plus Il 1,395
Run-tme poa.
Dyzlog APL 1600-10,000
APL2{FC poa

Beautiful Systems  Dyalog APLW for Windows poa
Dyslog APL for Unix poa

The Bleomsbury Software Company
APL+PC Version 11 260
APLsWin v1.8 1350
Upgrade to Version 1.8 540
Migratlon to APL+Win 820

750

APL+DOS 1300

Migration to APL+DOS 620/ 390

DETAILS

APL POWERswtion (Greyscale) 27.5 MIPS, 7.4 Mliops RISC
Processor BMb AAM, 120Mb Disk

19" 1280x1024 Greyscale Graph Display AlX, OSF Metlf, Dyaleg
APL (1-user)

APL FOWERSstation (Colour) 27.5 MIPS, 7.4 Mflops RISC
Pracessor Bhb RAM, 120Mb Disk

16" 1280x1024 Colour Graphics Display AlX, OSF Mot, Dyalog
APL (1-usat)

Advanced APL POWERSstation 27.5 MIPS, 7.4 Mlops RISC
Processor 16Mb RAM, 320Mb Disk, 150Mb Tape

16" 1280x1024 Golour Graphics Display AlX, OSF Motif, Dyalog
APL {{-user)

APL POWERSsystem (8-users) 27.5 MIPS, 7.4 Mfiops RISC
Procassar 16Mb RAM, 320Mb Disk, 150Mb Tapa CD-ROM
Driva, 16 Ports

AlX, Dyalog APL (2-8 user llcence)

APL PCOWERsystem {16-users) 34.5 MIPS, 10.9 Mriops RISC
Processor 32Mb RAM, 1.34Gb Disk, 2,350 Tape CD-ROM
Driva, 16 Ports

AlX, Dyafog APL (8+ user licence}

APL POWERSsystam (32-users} 41 MIPS, 13 Milops RISC
Processor 64Mb AAM, 1.7Gb Disk, 2.3Gb Tape CD-ROM Drive,
32 Ports

AlX, Dyalog APL (B+ user licence)

Complete networked or stand-alone solutions including
configuration installation, malntenance and commisslening.

DETAILS

STSC's APL tor [BM PCs & compatiblas.Upgrades from eanier
releases also avallable.

Closed verslon of APL"Plus/PC which prevents user expasure o
APL.

All the features of mainframe APL"Plus for your 386PCl

2nd generation APL for Unlx systems

IBM's APL 2 for tha PC,

US Distributor of Dyalog APL products frorm Dyadic,
See Dyadic lIsting for product detaifs.

Upgrade 1o version 11 glves free runtme (£120 from any
version)

A 32-bit Windews-hasted Interpreter that runs under all Windows
platforma Including Windows ©5. Note: Any user purchasing
APL+Win during 1998 wili receive free updates 1o Vn 1.8 and Vn
2.0 {user to pay carage)

Fror sarller versions of APL+Win. Frea updata o Verslon 2.0
(user to pay camage)

from APL*PLUS 1l verslons 445. Free update to Verslor 2.0 (user
to pay carrlags)

from earller versions of APL"PLUS 1
APL*PLUS Il DOS is renamed to APL+DOS.
from APL*PLUS{PC or APL"PLUS I

17



Vector Product Guide

Vol.14 No.3

APL*PLUS Il for UNIX poa
APL*PLUS VMS poa
APL"PLUS Malnframe poa

Dinosoft Oy Dyalog APLIW for Windows: poa
Dyalog APL tor Unix poa
Dyadic Dyalog APL for DOS/386 995

Dyalog APUW far Windows 995

Dyalog APL for Unix 995-12,000
IAC{Human Interfaces
I-APL{Mac 13
FAPL Ltd I-APL{PC or clonas 8
I-APL{BBC Master 8
I-APL{Archimades 8
Strand Software Inc
IEM APL Products  TryAPL2 free
APL2 PC (US Verslon) £830

APL2 PC (Eurapean Version)  £348

APL2 for OS2 Entry Edition $185
APL2 for OSf2 Advanced Edition $650

APL2000's 2nd generation APL for alt major Spare and Risc Unlx
workstatons.

2nd genaration APL for DEC YAX computers undar VMS,

Enhances V5 APL with many high performance, high
productvity features. For VM/CMS and MVS[TSO offers simple
upgrade from VS AFL.

Finnish distributor of Dyalog APL products.
See Dyadlc's lIsting for product datails,

Saecond generation APL for DOS.Runs in 32-bit mode, supports
very large workspaces. Unique “window-based* APL
Development Environment and Sareen Manager. Requires
3BE/4B6 based PC ar PS/2, atleast 2Mb RAM, EGA or VGA,
DOS 3.3 or later,

As above, plus object-based GUI davelopment tools, Requires
Windows 8.0 or [ater.

Second generation APL for Unix systems. Avallable for Altos,
Apello, Bull, Dec, HP, IBM 6150, IBM RS/6000, Masscomp,
Pyramid, NCR, Sun and Unlsys machines, and for PCs and
PCf2s running Xenix of AlX, Cracle intertace avallable for IBM,
Sun and Xenix versiens.

Macintosh verslen of [-APL

I1SO conforming Interpretar. Supplied only with manual (see
‘Other Products’ for accompanying books},

Az above

A3 above

Strand Software Inc has the scle sslling rights to Iversen
Software Inc products. [-APL stocks & Tew of these {malnly
APLIWIN and the perscnal J products and books}, butis no
longer an agent

APL2 for educaticna! or demonstration use, Write, fax or Email to
APL Products; speclty disk slza deslred,

Preduct No. 5789-PGG. PRPQ Number RJ0411.
Order from 1-800-IBM-CALL

Product No, 5604-260. Part number 38F1753,
From &l IBM deglers, including MicroAPL.

Part No 89G1556.

Part No 89G1697. Contains all facilities of the Entry Edition plus:
DB2 interfacs; co-operative processing TCP/IP interface; tools
for weiting APs; TIME facllity

Product No. 5648085,
Product No. 5765-012.

Produgt No, 5688-228. Full APL2 system for 5/370 and S/390_

Product No, 5688-228, Runtime envirenment for APL2 packages
APL systems marketed and supported ..,

trom: Dyadis, Manugistics, IBM

under: Windows, OS2 and Unix

APL2 for Sun Solaris $1500
APLZ for AIX 5000 poa
. APL2 Version 2 _poa___
APL2 Application Envt Vn2 poa
insight Systams APL"PLUSIPC poa
Dyalog APL poa
APL2 poa
Iverson Seftware Inc. J on the Yeb onfine registration ...
J Educational Edition $50
J Standard Edltion $150
J Prolessional $325
Bouks and accessarles (dlscounts for reg usars}
JJ Dictionary $50
o User Manual $50

18




Vector Product Gulde

Vol.14 No.3

J Phrases $40
J Primer $40

Sat of the abova 4 books $160
Cancrete Math $40
Fractals, Visualization & J $50
Exploring Math $50

4 User Conference Proceedings $35
Mugs, T-shirts, Mousepads $10 each

APLIWIN £70
J Austria J poa
Dyalog APL poa
Causeway Products poa

Swuctural Analysis Soltware poa

Lescasse Consuling APL+PC poa
APL+Unlx poa
APL+DOS poa
APL+Win poa
Dyaleg APLIW psa

Masterwork Sottwara Manugistics Products and ISI poa

MicroAPL APL.6800C Level L 2000
APL.6B00C Level Il 2500
APLEBO0OIX 1500-6000
APL.EB000 Level |
Mac, ST, Amiga 87
Mac, Amiga 260

APL.GBOOC Level il
ST

170

Amiga 260

Mac §20

APL*PLUS Rel 1D 450

APL*PLUS Il V4.0 1395

Oasis Systams Dyalog APL poa
APL*PLUS poa

APL 68000 poa

APL2 poa

Optima Dyalog APLIW 85
RE Time Tracker Oy APL+PC (APL*"PLUS{PC) pea

For 386/PC under Windows 3.1
Cistributor for Austria and Switzerand
Distributor

Distributor

Complete package by IG Zenkner&Harrdel to perferm stuctural
analysisfanginaering calculations. Alse suitable for dynamic
problems, e.g, earthquake simulation,

Lescasse Gonsuling is the exclusive APL2000 distbuter In
France and also

distributes In Swizenand and Belgium. Call for price guotes.

French distributet tor Cyalog
New Zealand distributor

First generation APL with numerous enhancements, Multi-user
version (Unix, Mirage, MCS).

Second generation APL. Nested arrays, user defined aperators,
selective spadlication ete. Multj-user version (Unix, Mirage,
MCS)

Second-generation APL. Nested arrays, user definad aparators,
selective speciiication, etc. Multl-user AIX version with full
OSF/Motf support.

First generation APL. Single user, tull windowing interface,
soitware floating point support.

First generation APL. Single user, full windowlng Interface,
hardware fleating pelint.

Sacand generation APL. Full windowing interface, softwars
floating point szpport.

Second generation APL. Full windowing interface. Hardware and
software floating point support.

Second generatlen APL. Full windewing Interface.Hardware and
software floating point support.

Dyadic Systems

Manuglsics

MicroAPL Lid

IBM

Fully fledged Windows development environment,

Complete APL+ and Statgraphles product range and [inks to
various 3rd party products.

19



Vector Product Guide Vol.14 No.3

APL+DOS (APL*PLUS I}
APL+WIn (APL=PLUS 17}, APL+Link

APLHUNIX
APL"PLUS Sharefile
Solilon Assoclates  SHARP APL for MVS poa tor IEM MVS maintrames
SHARP APL for Unix poa for §BM RS/E000 and Sun SPARC
Strand Software Canada
All APL"PLUS Products poa All APL™PLUS products Including upgrades and educational.
Dyadic and IS] products poa
USA
Dyadic and 15! products poa

APL PACKAGES
COMPANY PRODUCT PRICES(E) DETAILS
ADAPTA Software  MPS - Master Production Schadulingpos
FBS - Forecasting and Budgeting System
DRP - Distribution Requirements Planning
Adaplable Systems FLAIR poa Fintte loader and interactve rescheduler. Customisable fufl-

function scheduling system. (Avaltable outside Australia by
speclal arrangement anly.)

Adaytum Sotware  Adaytum Planning poa Full-deatured Budgeting and Finangial Planning system tor
medium 1o large enterprises.
The APL Graup Qualedi $1500-4000 Electronie Data Interchange (EDI} transtation software for the

PC, with strict complianca checking.
APL Saftware Ltd

{matnframe)} RDS poa Relation Data Base System
1PLS poa Project Management System
REGGPAK poa Regression Analysls Package
(microcomputer)
POWERTOOLS 205 Assembler written replacement function for commonly used
CPU-consuming APL tunctions, ineludas & Forms Processor,
REGGPAK poa Regression Analysis Package
RDS o9 Relational Datbase System
Beautiful Systems ~ ASF_FILE $399 Dyalog APL{W auxlllary processor for aceess to APL*PLUSIPG
APL component files (*.ASF).
NAT_FILE $pag’ Dyalog APL/W euxillary processor which emulates the
APL*PLUS/PC guad-N natlve fila subsystem for access to the
DS file system,
CBF_FILE 29 Dyalog APL/W auxliary processor for efficlent block mede

access to dBASE farmatflles, Desligned to get largs amounts of
data In and cut of dBASE, Not sulted for random access to small
amaunts of data ([t deas not handle kays),

SF_READ poa Dyalog APL/W functions to read APL"PLUS data objects of any
type or structura from *.SF style component files created by
APL*PLUS !l or 11,
The Bloomsbury Software Company
{for VSAPL) Enhancemants & Shareflla poa Compenent files, quad-lunctions & nested arays for VSAPL
under VM/CMS & MVS/TSD
Compiler poa The First APL compller!

20




Vector Product Guide

Vol.14 No.3

(for APLZ}

Caussway

Cinerea AB

CODEWORK

H.M.W.

HRH Systems

SharefilefAP

poa

CausewayPro for DyalogW  400/8600

RainPro Business Graphlcs

Newlaal for Dyalog and +Win

ORCHART

HELM

4XTHA
Arbitrage
Basket
Menu-Bar
APL Liilities

APLPLUS Utilites

JACIHuman InterfacesSPARKS

FAPL Ld

IBM APL Products

INFOSTROY

Insight Systems

EPIDEMIC
COINS

FIBONA
Educational workspaces

250

400

250

poa

poa
poa
poa
poa
poa

poa
poa

poa

peca

A Graphical Statistical System  $250

(AGSS)

APL"PLUSIXbass Intertace
{1I/388 Version 2)

(DLL Varslon 1)

IUTILS/XP

ASE

WinCom
520,22D,X2%

$500
$2600

$198

$108

2086

a5

93

STSC's shared access component file system for APL2.
Comparable 1o all APL*FLUS flle systems: malti-user storage of
APLZ2 grrays with efficlent disk usage.

Causeway application development platform for Dyalog APLIW.

The uitimate graphics toolkit for the APL developer. Adds 30
charting capabliity, Web publishing ard ¢lipboard support to the
sharewars producl Charts can be induded in Newleaf reports.
Functicnally compatible across DyaiogW and APL+Win.

Frame-besed reporing tool with comprehensive table-generation
and text-flaw support. Offers multiple master-page capabliity,
bltmap wrap-around and on-screen praview with pan and zoom,
Fully supported on Dyalog/¥¥ and APL+Win (1.8 and above)

Organization chart package for IBM APL2{PC. Full & heavily
commented source cade included - free Integration into cther
applications. NB: ASCIl output with Ine-drawing (semi-graphic)
characters for boxes.

Declslon Suppon system tor top management. Handles jarge
muit-dimensionzi tables, data analys’s, EIS presentations;
generates HTML and Latex output. Platforms; DOS, APL+I,
Windows 3.1/65 for Dyalog APL, LAN suppart. Ideal for AP,
customisation, more than 100 Installed.

Front-end Foreign Exchange deallng / pos keeplng
Arbitrage modelling

Basket curency modelling

pull-dawn menu for APL*PLUS/PC

Software to transfer workspaces between APL*PLUS and Sharp,
end batween APL"PLUS ard I-APL. Sctiware to import IBM .ATF
files to APL*PLUS.

Public demaln software, unlock locked fns, a user-fendly
alternative to locking, fns of mathematical physlcs, menus, and
othars,

Educational simulation of electris clroult {lor Apple Mac,)
Educational simutation of spreading infectlon (for Appla Mac.)

Educational simulation (KS3} of coin-tossing experiment with
simple stats {for Apple Mac.)

Educatlonal simufation of Fibenace!'s rabbilts (for Apple Mac.)

PC fortmat disks with the examples trom:; Thomsen, Esplnasse
(Klis 1-4), Krombetg, Jizba & FinnAPL Al the examples 1o save
your fingers!

for DOS, Product Number 5784009
for Workstatlons {OSf2, Alx, Solaris}, Procuct Number 6754-092
for CMS, Product Number 5764-011

Complets package written In C. Comparabla with the data, Index
& mamoe flias of FoxPro, dBASE, & Clipper, Multi-user suppert.
No DBMS licenss required.

The same in a DLL torm! Glves your Windows applicatiens all
advantages of DLLs,

Cross-platform utility library Including simple OS ealls (DIR,
COPY, DEL, RENAME} and DATE functions. For AFL"PLUS II,
APLZ and Dyalog APL under Windows, O5/2 and Unix.

APL Spreadsheet Interface. *Davice-Independent” spreadshest
drivar supperting Excel, 123 and Quattre-Pro for Dyalog APLAY

Asynchronous comms packaga for Dyalog APLIW

Advanced APL syntax analysls and conversion packages from
Sharp and APL2 1o Dyalkeg, and between any two APLs

21



Vector Product Gulde

Vol.14 No.3

SQAPL Client

SQAPL Server

JAD Software JAD 5MS

Lescasse Cansulting

APL+Win Monthly Training Program$s00

Advanced Windows Programming ...$95

DLL parser for +Win

Delphl Forms Transiator

APL+link Pro
SQAPL Pro
RatnPro

NewLsaf
GraphX and ChanfFx
Formula One and Dyalog APL

Lingo Allegro Internet Server AP

RE Tima Tracker Gy UITAW

AJGRAPH

ECCO PRO with APL

NEWT TCP/IP SDK with APL

DB+

poa

poa

150-500

$250

$165

poa
poa

poa

poa
pea
385

po&

pea

poa

poa

poz

poa

Sollton Assoclates LOGOS
MAILBGX
VIEWPOQINT

Warwick Univarsity BATS

FAB
Zark APL Tuter (PC}

APL Tuler (MF)
Zark AGE

pea

poa
250

frea
5208

$5000

mterace trom APL*PLUS [, APL2 and Cyalog (\Mndows osj2
or Unlx) to mest SQL datab aver oSt

Makes APL*PLUS I, APL2 or Dyalog AFL (Unix) avallable as
Sequelink servers. Can be called from SOAPL clients or cther
applications such as Excel, G++, Smalltalk, Visual Basic.

Software management system for APL*PLUS [l based on
hisrarchical detabases; Includes full-screen Interface ane stand-
alons functlons, Price depends on number of users,

Download S0+ page document about APL+ programming @ach
month. You alse gat one or more workspaces full of re-usable
APL code and semetimes additional files or products.

200-page book plus companion dlsk on interfacing APL and
Dalphl. Cntalng tull eoverage of Delphi-2, +Win and Dyaleg.

Parse any Visual Basic DLL declaration flle Into a set of quadNA
definltions. Turn constants and structuras Into APL variables.
Avallable for APL+Win and Dyalog/W.

Design forms with Delpht and tum them automatically Inte APL
progrems which recreate the same torm {+Win and Dyalog/W).

QODBG Intsrface for APL+WIn
ODBG Interfaca Tor Dyalog APL/W

Highly customisable 2D and 3D publication graphies for
APL+Win and Dyalog APLAW

Paga layout and printing tecls for APL>Win and Dyalog
High-quality business graphlcs for APL+Win

100-page book + companion disk on how to uss the Formula
One VBX with Dyalog APL/W

An internat server for Dyalog APL/W. Vislt www.lingo.com for &
live demo,

Camprahensive high-level Windows User Interfaca llbrary for
APL+WIn and +Il ¥ 5.1. Comprehensive spreadshests, replicated
fields, special fleld types, ete, 16 and 32 bit versions avallable.

Graphpak-compatible 20 graphics package for +Win and +DOS,
(nciudes multi-window suppert, print and metafile support. No
DLLs required.

Leading greup and personal infermation management system
with comprehensive customising. Supplied with sample +Win
workspace o interface to ECCO databases via CDE.

Lead TCP/IP SDK with Interfaces to all pretocols, Suppllied on 3
<D ROMS logether with a sample +Win workspace.

Database interfaca for APL+0OS under Windows. Allows
comblning character-based APL apptications with CDBC-
compliant databases such as Cracle and SQl-server.,

Application Development Environmant
Electrenlc Mail
Report generator with Intertaces ta B2 and MVS cata

Menu driven system for time serles analysis and forecasting
using Bayaslan Dynamic modelling. Price |s reduced to £35 for
academic Institudons.

Tralnlng program for the above.

APL computer-based training. Avallable for APL"PLUS PG &
APL"PLUS 1I. Deme disk $10.

Malnfrema version.

APL continuing education. APL tutor news and hotline phone
support.



Vector Product Gulde Vol.14 No.3

APL Advanced Technigues..., $59.95 488pp. book, (ISBN 0-9649067-07) Inciuding 2-disk set ot utility
functions {APL*PLUS PC farmat).

Communications %200 pc, $500 mt Move workspacas of files between APL environments.

APL CONSULTANCY AND DEVELOPMENT

COMPANY PRODUCT PRICES(E) DETAILS

Adfes Consultancy poa Deavelopment, malntenance, conversien, migration,
documentation, of APL products In all APL envirenments

Alay Askoolum Consuitency poa APL+Win develcpment and migration of actuarial, financlal,
mathamatical applications.

Andrews Consultancy poa APL programming and analysis, Year-2G00 legacy systems,
algarithms, tree-processing,

APL SolutionsIne  Consultancy poa APL systems deslign, development, malmtenanca,
documentatian, testing and training. Providing APL solutions
sinca 1969.

AUSCAN Software  Consultancy poa. APL software davelopment, training

Bloemsbury Scfiware Consuliancy 300-750+VAT

Camacha Consultancy poa Manuals; feasibility reports and estimales; analysis and

programming; APL and MS Wirdows applications; Sharp, I1S1
APL, APL*PLUS, APL2/PC and other APLs spoken. Fixed prics

systems a speciality
Ray Cannecn Consultancy poa APL, C, Assemblar, Windows, Graphles: PC and mainframe
Causeway Consultancy and Tralning poa On-site training for Causeway, RainPre and NewLeal.

Custemisation and enhancement fo meet local needs. Cade
review and pre-implementation check of Causeway appiications.

Faul Chapman Consultancy 250-500 24-hour programmer: AP, Smalltalk, C; Windows front end
design a speciality.

CODEWORK Consultancy poa Development, maintenance, migration, documentaton of APL
applications. Speciality: Infe systems tor top executives, intamet
applications.

Dinosoft Oy Consultancy poa Spedlalfised in very large databases.

Dyadic Consultancy poa APL and Unix system design, consullancy, programming and
ralning.

Eveslic AB Consultancy poa Excellent rack record from 15+ years of APL applications in

banking, Insurance, and education services, All cialects,
platforms and project phases. SQL expertlsa,

General Softwara Consultancy from 120
Giodin Londan Ing Scftware Dovelopment poa We have applications in the food manufacturing fisid, travel
agency and alriine backings field and in product lease
management.
Entopy Software Lid Consuling poa Cormpany reporting, business graphlcs, Windows applicatons
with Dyalog APL/W,
H.M.W. Consultancy poa System design consuliancy, programming. HMYW speclalize in
banking and protatyping work,
Hoekstra Systems Ltd Consultancy poa APL consultancy, programming, etc. Alsa UNIX system
administration
Michasl Hughes Consultancy poa Consultant with 10+ years experience with various APL
Interpraters and C,
IAC/Human InterfacesConsultancy poa APL on Magintosh & PC. HCI design. VDU etgonomics:
EC/Health & Salety compllance.
Documentation 100-200 On-line assistance, product demes & mock-ups, manual writng;
forelgn language soltware localization.
Training poa Using I-APL for courseware & distance leaming materials; Mac

programming in €, APL & HyperCard.



Veetor Product Guide Vol.14 No.3

INFOSTROY Consultancy poa Maving applications between platforms, Cllent/sarver
development. Multilingual user interface.

Insight Systems Consultancy poa Experts in APL conversions between any combination of:
APL*PLUS, APL2, Dyalog APL and Sharp APL. We are also
experlenced right-sizers, comfonable with networks and
relational detabases (that also means when NOT to use SQL}
end dlient/server development in APL, C and Visual Basic,

JAD Software Consultancy poa Systems design and development, project management,
technlcal manuals, linanclal and actuarial expertise In APL.

Fhll Last Censultancy poa APL consultancy, modslling and programming.

Lescasse Consulting Consultancy pca A range of consullants, experts in Windows programming, wit

APL+Win and Dyelog APL/W. More than 100G major APL
applicatiens already developed. We alt have sdditional expaertise
In Farmuta One and Dalphl.

Mackay Kinloch Ltd  Consultancy 200-400 Deaslgn, analysls and programming fer banking, insurance,
financial planning and moedeiling, carporate performance and
tegal reporting

MicroAPL Consultancy poa Technlcal & applications consultancy.

Ellls Morgan Consultancy 250-500 Business Forecasting & APL Systems.

Oasls Systems Consultancy poa Expertise In APL system design, Project management,
conversion, migration, tuning; for all APL verslons
{10+ yoars experlence)

Object Orlented Lid  Consultancy poa General APL consulling, code recycling — malnframa to PC,

petfarmance tuning.

Optima Consultancy poa A range of consultants specialising In all areas of
pharmaceutice!, Industrial and financial systems with 5-15 yrs
experience on both PC and mainframe.

RadSys Technolegles Consultancy poa Areas of expartise: flnanclal systems, risk analysls systems,
healthcare systems.
RE Time Tracker Oy Consultancy poa APL, application converslens, APL Windows Intartaces, APL to

APi-lavel interfacing to any system under Windows, TCP/IP
network and database connectivity.

Rex Swain Censultancy pea Independent consultant, 20 years experlence. Custom software
development & tralning, PC andfor mainframe.

Rochester Group Consultancy poa Speclalise In MIS using Sharp APL

Shepp & Asseciales  Consultancy poa APL applications cevelspment and consulling, especially In the:

travel indusiry, especially on small computers. 25 years
experience In APL programming.

Snake Island Research Inc
Consultancy poa APL interpreter and compiler enhancements, intrinsie functions,
performancs consulting. APL parallal compiler APEX is glving
very goed initial parformance tests with convelution somewhat
faster than FORTRAN.

Strand Software Consultancy -—poa Advice on migratng to and trom all flavours of APL and
hardware platforms. Full-screen interface Implementation, APL
utilides, benchmarking, efficiency analysls, actuarlal software,
system development tools, valuation, pricing and modeliing
systems.

Sykes Bystems Inc  Consultancy poa Complete APL services speciallsing in audit, optimisation and
conversion of APL systems. Excellent design skills. All dialects
and pladorms. 17-23 years experience.

Stephen Wynn Consulancy poa Most experience of finandial planning, and mathematical areas;
operational research, quality control, experimental design.

OTHER PRODUCTS

GCOMPANY PRODUCT PRICES(E) DETAILS
Adles Employment poa Contractors and permanant employees
APL-385 Typelaces poa Varlants cf tha APL2741 typsface avallable to specification.

24




Vector Product Guide Vol.14 No.3

Bleomsbury Software Training poa Contact the company for details.

Comlog Comis-Logger $25.95+pé&p APL*PLUS |l comic-book inventory system. Shareware verslon
available on Amerlea Online.

HMW Employment poa Contractors and permanent emplcyees placed.

HRH Systems APL lessons On-screen Intaractive APL lessons for APL*PLUS, TryAPL2,
Sharp and I-APL —in English or French,

The BBS\APL: $24pa, 703-528-7617, 1200-14400b, N-8-1, 24 hours. APL ecucational
material Is downloadable free. An additional 30 megs of APL
software for APL*FLUS, PLUS L), IBM, Sharp & -APL Is
avallable to subscribers {cost Is $24/yr). Selection avallable on
disk for $15 post-paid. Free on-disk catalogua.

I-APL Ltd An APL Tuterial 3 45pp by Alvard & Thomsen

An Encyclopaedla ol APL (2d Ed}) & 228pp by Helzer

APL in Soclal Studies 3 36pp by Traberman

-FAPL instruction Manual (2d Ed) 3 5bpp by Gamacho & Ziemann

APL Programs for the Mathematics

Classroom (Springer-Veriag) 16 185pp by Thomson

Programming In J 10 75pp by Ken Iverson

Arithmetic 12 11Bpp by Ken lverson

Tangible math -] 35pp by Ken Ilverson

Sharp APL Reference Manual 42 349pr by Barry

APL Press Books poa A comprehensive selection of early AP fitarature

Plozsa note there Is & packing charge of B3 per order

Qasis Systams Training poa Introductory courses In APL
Advanced courses for different APL versions

Renalssance

Data Systems Booksellers The widestrange of APL oks avallable anywhere. Ses Vector
advertisements.

Solltors Associates  MVSLINK poa Interface from Sharp APL {Unix & MVS) to non-APL data and
softwars In the MVS environment.

S8QL poa High-performance DB2 intertace for Sharp APL (Unix and MV'S).

OVERSEAS ASSOCIATIONS

GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub.
APL Bay Area USA N. Califomla  APLBUG Menthly Mestings (2nd Monday) $20
APL Club Austria  Austia - Quarterly Meetings 200AS(indiv), 1000AS(comp)
APL Club Germany Gemany APL Journal Seml-annuat mestings DMEC
Ass, Francophone pour

la promotion d'APL France Les Nouvelles d’APL FFa50 (private) FF2800 (Company)
BACUS Belgium APL-CAM Conferances & Seminars £18 ($30)
Capital PCUG Washington, .C.  Monitor Monthly meetings, cccaskonal classes free
Danish SIG Denmark

Dutch APL Assoc.  Holland - Mini-congress, APL ShareWars Inifative

FnnAPL Helsinkl, Finland  FinnAPL Nawslstter Seminars on APL 100FIM(private), 30(student), 1000 {Ga)
Rome/ltaly SIG Rema, ltaly

RusAPL Moscow, Russla  APL Club Seminars and Annual Mesting 100,000R (shidents 20,000)
SE APL Users GIp Alanta, Georgla  SEAPL Newsletter Cuarterly meatings $10
SovAPL Obnlinsk, Russia

SwedAPL Sweden SwedAPL Nytt Semi-annual mestings, seminars SEKT7S
SWAPL Texas, USA SWAPL $18
Swiss APL (5AUG) Bem Part of Qtly Si-Info SF60 (S1) + SF20 (SAUG)
Toronto SIG Torento, Canada  Glmme Amrayst Manthly Meetings, APL skills databasa, [ 515, Teronto Toolkit $25

25




Vector Product Gulde

Vol.14 No.3

ADDRESSES
ORGANISATION

ADAPTA Soltware GmbH

Adaptable Systems

Adaytum Software
Adize

Alay Askoolum

Andraws
APL-385

APL Bay Area APLBUG
APL Club Austria

APL Club Germany

The APL Group Inc

APL Solutions Inc

CONTACT
Michae! Baas

Lols & Richard Hill

Douglas Rowley
Bemard Smocr

Ajay Askoolum

Dr Anne D Witson
Adrlan Smith

Curtis Jones (Sec)
Harald F. Nelsen
Dieter Lattermann
Stuart Sawabin|

Eric Landau

Assoclation Francophons pour

ADDRESS, TELEPHONE, FAX, EMAIL etc.
Marianhoehe 86, 25451 Quickborn, Germany Tel: +49 4108 60577
Fax: +43 4106 87869 Emall; 101523,1757 @compuserve.com

49 Flrst Street, Black Aock 3193, Australla.
Tel: +61 3 9589 5578 Fax; +61 39689 3220 Emall: adsys@Ibm.net

13 Great George Street, BRISTOL BS1 5RA UK Tel: 0117-921 5555
Dorpsstraat 50, 4128 BZ Lexmond, Netherands.

Tal +31 547 342 337 Fax: +31 347 342 342 Email: adfee @concapts.nl
42 Hanworth Road, Redhlll, Surrey RH1 SHT

Tel:01737 771643 Emall: 106173.3347 & compuserve.com

12 Thomy Hills, Kengal, Cumbria LAS 7AL, UK Tel: 01538-731205
Brook Housa, Glliing East, Yark YO6 44 UK. Tel: 01438-7688385

Fax: 01439-788194 Email: $00331.644 @ compuserve,com

228 South 15th Street, San Jose, CA 95112-2160, USA

Tel: +1 (408) 292-40680 Emall: jenesca@vnet.ibm.com

¢jo N-TECH, Slebenbrunnenfeldg. 4-8, A-1050 Wien, Austria,

Tel; +43 1 5458063 Fax; +43 1 56458063-17

RhelnstraBe 23, D-6918C Wallderf, Germany.

Tel; +49 622763469 Compuserve: 100332,1461

844 Danbury Fioad, WILTON, CT 06897 USA, Tel: +1 (203) 762-3533
Fax: +1 (203) 762-2108 Email: ssawabinl@ acl.com, eshaw &aplgroup.com

1107 Dale Dyive, Silver Spring, MD 20910-1607 USA
Tel: +1 (301) 589-4521 Fax; +1 (301) 589-4618 Emall: elandau@cais.com

174 Boulavard de Charonna, F-75020 Parls, FRANCE

Emall: lemagnen@aol.com

8 Springmeunt Ave, Torento, Ontarie MEH 2¥4 Canada

Tel: +1-416-651-4037 Emall: rjp @ Interlag.com

Wab: hitp:fwww.Interlog.comy~rJp/auscanf

Rooinberg 72, B-2570 Dutie!, Balglum. Tel: +32 1531 47 24

308 Cld Yark Road, Sulta 5, Jenkintown, PA 19048, USA

Tel: +1 (215) 886-2638; Fax: +1 {215) B86-4898

3-8 Alfred Place, Bloomstury, Lenden WC1E TEB UK. Tel: 0171-436 9461
Fax: 0171435 0524 Emall; pd @ bloomsbury-software.co.uk

11 Aubum Road, Redland, Bristol BSE 6LS UK. Tel: 0117-9730036.
emall: acamacho @ dx.compulink.couk Reutemet (Shap): ACAM
21 Woodbridge Rd, Blackwater, Camberley, Surrey GU17 0BS UK
Tel: 01252-874697 Emall: 100430,740 @ compuserve.cam

51B Lambs Conduit Street, London WC1N 3NB UK.

Tel: 0171-404 5401, Compuserve: 100343,3210

The Maltings, Castiegate, MALTON, Nerth Yorks YO17 0P UK

Tel: 01653-596760 Fax: 01653697719
Email: causeway @ compusarve,com

la promation d'APL Ludmila Lemagnen
AUSCAN Scftware Ltd Richard Practer
BACUS Joseph Da Kerf
Beautitut Systems, Ine. JIm Goft
Bloomsbury Software Peter Day
Camacho Antheny Camache
Ray Cannen

Paul Chapman

GCauseway Graphical Adrlan Smith
Systems L.

Cinerea AB Flolf Komermerx
CODEWGRK Italia s Mauro Guazzo
Comlog Software Jelt Pedneau
CPCUG Lynne Swurz
Danish User Group Per Glerav
Dinoscft Oy Pertti KallioJarv
Cutch APL Assoclation Bernard Smacor (Sec)
Dyadlic Systems Lid, Pater Donnelly

Box 61, §-193 00 Sigtuna, Sweden.
TelfFax: +45 855 255 421 Emall rolf @cinerea.se

Corso Cairoli 32, 10123 Toring, Haly.
Tel: +39 11 685168 Fax: +39 11 812 2652 Emaill: codework@Inreta,it

PO Box 5570, Derwood, MD 20855 USA
Tel: +1 (301) 990-7062 Emall; jofl @ softmed.com

Capital PC Usar Group, 51 Monroe Street, Suite PE-2, Rockville,
Maryland 20850-2421, USA. Tal: +1 (301) 762-9372 Fax: {201} 762-9375,

Email: gjerlov@Tbm.net

L&nnrotinkatu 21C, 80120 Helsinki, FINLAND.
Tel: +358 9 TOD2BB20 Fax: +358 9 70028824 Emall: dinosoft@dinosofttl

Postbus 1341, 3430BH Nieuwegeln, Netherlands.
Tel: +31 347 342 337 Fax: +31 347 342 342

FRiverside View, Basing Road, Old Basing, Basingstoke,
Hants RG24 DAL UK, Tal: 01256811126 Fax: 01256-811130

26




Vector Product Guide

Vol.14 No.3

Entrepy Scttware Lid
Evestic AB
FinnAPL

Genaeral Software Lid

George Macleod

COtlla Evero

M.E. Martin

Godin London Incorporated Gadlan Godin

H.M.W.Trading Systemns Lid

Hoekstra Systems Ltd
HRH Systems
Michael Hughes
IAC/Human Interfaces

I-APL Lid

{BM APL Products

INFOSTROY

Insight Systems ApS
Iversan Scoftware Inc.
J Austria

JAD Scoftware

Phil Last Ld

Lescasse Consulting
Lingo Allegro USA, Inc

Mackay Kintoch Ltd

Mercia Software Lid.

MicroAPL Lid.

Ellis Margan
Oasis Systems B.V,
Object Crlented Ltd

Optima Systems Lid

Bob Hoelstra

Dick Holt

lan A, Clark
Anthony Camacho

(for queries, order forms)

J C Business Services
(for pre-pald orders only}

Nancy Wheeler
Alexal Miroshnlkov
Morten Kromberg
Erlc Iverson
Joachim Hoftmann
David Crossley
Phil Last

Eric Lescasse
Stevan J Halasz

Alastalr Kirloch

Garath Brentnall

Richard Nabawl

Ellls Morgan
Thao Zwart, Louis Rijkse
Walter G. Fll

Paul Gresvenor

Bartrum House, Ravens Lane, Berkhamsted, Herts, HP24 2DY UK
Tel: 01442-878065 Emall: gml@ simcarp.co.uk

Bertellusvagen 124, 5146 38 Tullinge, Sweden
Tel&Fax: +468 778 4410 Emall: olle.overo @ mallbox.swipnet.se

Suomen APL-Yhdistys RY, FinnAPL RF, PL 1005, 00101 Helsinkl 10,
Finland

22 Russall Road, Northhoit, Middx, UBS 4Q5 UK, Telffex: 0181-864 9537

12 Gerrard St., London, Ontario, Ganada N6G 4C5
Tel: +1 (519) §79-8290 Fax: +1 (515) 438-6381 Emait: info@godin.on.ca

Hamilton House, 1 Temple Avenua, Victoria Embankment,
London EC4Y OHA UK. Tel: 0171-353 8200; Fanxz 0171-353 3325;
Emall:100020,2632@ compuserve.com

5 Thorsden Court, Guildlord Road, Woking, Sumrey, GU22 7QS UK

Tel: 01483771028 Emall: bob@khamsin.demen.ca.uk

3802 N Richmond St, Sulte 271, Arington, VA 22207 USA

Tel: +1 (703) 528-7624; Email: dick.holt@acm.org

28 Rushton Road, Wilbarston, Market Harbarough, Lelcs, LE16 BQL UK.
Tel: 01636-770098 Email: 101740,1208@campuserve.com

9 Hill End, Frosterley, Bishop Auckland, Co. Dutham DL13 28X UK
Tel: 01388-526803. Compuserve: 100021,3073

11 Auburs Read, Redland, Bristol BS8 6LS UK. Tel: 0417.9760036
emall: acamacho@cix.compulink.co.uk Reuternet (Sharp): ACAM

56 The Crescent, Milton, Weston-super-Mare, Avon, BS22 80U UK
Tel: 01934-826181

APL Products, 1BM Santa Teresa, Dept MA6/D12, 555 Balley Avenue,
San Josa CA 85141, USA. Tel: +1 (408) 463-APL2 (=2752)
Fax: +1 (408) 453-4488 Email: APL2@vnet.lbm.com Csarve; GO IBMAPL2

3 8. Tulenin Lane, St. Petersburg 191188 Russla,
Tel:+7 812 3122673 Fax:+¥ 812 311-2184 Emall:aim@Infesroy.spb.su

Nordre Strandvej 119C, DK-31560 Hellebaek, Danmark
Tel:+45 4976 20 20 Fax:+45 4678 20 30 Emall; Info @Inslght.dk

33 Major Street, Torento, Ontarie, Canada M55 2K9 Tel: +1 (416) 925~
6086; Fax: +1 (416) 488-7556 Emall: Info @jsoftware.com
Minzgrabenstr, 68, A-8018 Graz, Austria. Tel: +43 (0)316 814629

Fax: +43 (0)316 £16683 Email: JoHo@ping.at

5680 Eyer Brive, #81 Pickering, Cntarlo, Canada L1W 3B7

Tel: +1 (505) B37-1885 Fau: +1 (906) 831-65172

148 Crossbrook Strest, Chashunt, Herts, ENB 8JY UK,

Tel: 01692 633807 Fax: 0121 358 0375 Emali: phll_last@compuserva.com
18 rus de la Belle Feullle, 82100 Baulogne, France Tel: +33.1.46.05,10.76
Fax: +33.1.48.04.60.23 Emafl: eric® lescassa.com

1105 Chicago Avenvue, Suita 155, Cek Park, IL 60302, USA.

Tel:+1 708 386 8183 Emall: sjhalasz@Interaccess.com

519 Webster's Land, Edinburgh EH1 2RX, Seottand, UK
TelfFax/Answerphone; 0131 228 3580 Pager/Velcemail: 01426 99 5858
Email: Alastalr_Kinloch @ compuserve.com

Holt Court Nefth, Heneage Street Waesl, Aston Sclence Park, Bimingham
B7 4AX UK. Tel: 0121-35% 5096, Fax: 0121-359 0375

South Bank Technopark, 90 London Road, LONDON SE16LN UK

Tel: 3471-822 8866 Fax: 0171-929 1006

Emall; MicroAPL@ microap!.deman.co.uk

Myrte Farm, Winchaster Road, Stroud, Peterstlald, Hants GU32 3PE UK.
Tel: G1730-265843 Emall: Elifs @ meifrm. demon, co.tk

Lekstraat 4, 3433 ZB Nieuwegeln, Holland Tael; +31 30 60 68 336

Fax: +31 30 60 65 844 Emall: caslsbv@pl.het or zwarl@casis.nt

Am Grendel 2, CH-6004 Luzem, Switzerland. Tel: 41 41 4187070

Fex: 4141 4187077 Emall: info@ object-criented.com

115 Brighton FAead, Purley, Suey CR8 4HE UK

Tel: 0181-763 2490 Fax: 0181-763 2491
Email: 100551.1401 @ compuserve.com

27




Vector Product Guide

Vol.14 No.3

RadSys Technologies AB

Randolph Schrab

Renalssance Cata Systems Ed Shaw

RE Time Tracker Qy

Tha Rochaster Group Inc.
Romejltaly SIG

RusAPL

SE APL Users Group

Shepp & Assoclates LLC

Snake fsland Aesearch Inc

SOCAL {South California)

Sollton Associates

SovAPL

Strand Software Inc
Rex Swaln

SwadAPL

Swiss APL User Group
Sykes Systems Inc
Torento SIG

Stephen Wynn

Zark Incorporated

Richerd Eller
Robert Pullman
Maric Sacco
Boris Makeev
Jehn Manges

Andrew Shepp

Bob Bermecky

Ray Sykes Jr

Laure Howard

Alexander Skomorokhav
Anne Faust
Rex Swaln

Christer Ulfhialm

Aoy Sykes Jr

Richard Procter

Gary A. Bergquist

Lovsangarv. 18, S-756 52 Uppsala, Sweden. Tel: +46 18 32 41 53
Fax: +46 708 1995 11 Emall;100564,2844@compuserve.com

PC Box 421, Georgetown, CT 06982, USA. Tel: +1 (203) 270-8720

Mikankatu 8 A, 2.krs, PL 353, 00101 Helsinkl, Finland.
Tel: +358 8-621 3300 Fax: +358 9-621 3378 Emall: re@rattfi

50 S.Unlon St, Rechester NY 14507-1828, USA,

Tel: not known, Fax: +1 (716) 271-1230

Gasella Postale 14343, 00100-Roma Trullo, laly

Email: mersac@vnet.lbm.com

box 871 {lor Makeev), Dmitrovskoe Sh.,2, 127434, Moscew, Russia
Telffax: +7 95 210-7783 Emall: makeav@atom.al x-atom.net

413 Gomanche Trall, Lawrencavilie, GA 30044, USA
Tal: +1 (¥70) 972-3755 Email; seapldoc@acl.com

1312 Washington Avenue, Bth Floar St. Louis MO 63103, USA

Tel: +1 (314) 621-3272 Fax: +1 (314) 6214267

UK Address: Claridge House, 29 Bames High St, London SW13 gLw
Tel: 0181 8768666 Fax: 0181 8768660

18 Fifth Street, Ward's |sland, Torento, Ontaric M5J 2B8 Canada

Tel: +1 (416) 203-0854 Fax: +7 (416) 203-6999

Email: bamecky @ eecg.toronte.adu

Sykes Systems Inc, 4649 Willens Ave, Woodland Hills,

GA 91364-3812 USA Tel: +1 (818) 222-2759 Fax: +1 (818) 222.6250
Sofiton Associates Lid, Groot Blankenberg 53,

1082 AC Amstardam, Netheriands

Tel; +31 20 645 4475 Fax +31 20 644 1206 Emall;sales@scliton.com
PO Box 5081, Obninsk-6, Kaluga Region, Russia

Tel: +7{00439)31463 Emall:askom2&kaluga.rosmell.com

19235 Covington Court, Shorewood MN 55331 USA

Tel: +1 {§12) 470-7345 Email; amfaust@acl.com

8 Soutn Street, Washington, CT 06793 USA. Tel: +1 (B60) 868-0131
Fax: +1 (B60) 868-9970 Emall: rhswaln @acm.org

Novator Consutting Group AB, Svardvagen 11C, §-182 33 Danderyd
Sweden Tel: +46 B 622 63 50 Fax: +48 8 622 83 81 CServa; 100341,404

Swiss APL User Greup, CH-3001, Bern 1, Switzettand
Email: si@ifi.unizh.ch

4648 Willens Ave., Woodland Hills, CA 91364, USA
Tel: +1 (618) 222-2759 Fax! +1 (818) 222-9250

PG Box 55, Adelaide St. Post Ctfice, Toronto Ontario M5C 2HB, Canada
Email: infoe@torontoapl.org

8 Clarence Gardens, Brighton, Sussex 8N1 2EG
Tel: 01273-327238 Emall: cantre@m/stral.co.uk

23 Ketchbrook Lane, Ellington CT 06029, USA. Tel; +1 (860} §72-7806

28




Vector Product Guide

WORLD WIDE WEB SITES

ORGANISATION
AFAPL

APL20CO

APL-385

The APL Group Ine
AUSCAN

Capital PC User Greup
Causeway
CODEWCRK

COSY {Bob Armstrong)
Dinescft Oy

Dyadic Systerns Ltd
FinnAPL

Gedin London Inc
Hoeksira Systems
1BM APL2

Infostroy

Insight Systems ApS
Iverson Software Inc
Kestrel Consuling
Lescasse Consuiting
Ungo Allegro USA Inc
Mackay Kinloch L
MicroAPL Lid

RE Time Tracker Oy
Shepp & Associalas
SIgAPL

Rex Swaln

The APL Group Inc
Torento SIG

Jim Wefgang

FTP SITES

ORGANISATION
1BM APL2

Torento toclkit
Waterloc Archive
APL-o-ASCII

URL
www.ensmpJif-schererflangletf (Joumal avallable on line)
wenw APL2000,com
www.demen.co.ukfap!385
WWW.BpKJroup.com
www.interlog.com/~rjp/auscan
htip:/fepoug.org

wWww.causaway.co,uk
wyw.codework.de

WWW.COSY.COm

htipijfyritys. kolumbus, fifdinoscft
www.dyadic.com
http:flparsonal.eunet.iifppfapl
www.gedincom
www._khamsin.demon,co.ulfabauthsinoframe. himt
www.torolab.ibm.com/apfaplfapl2. htm!
www.Insight.dkfInfostroy

www. Insight.dk

www.|software,com
www.kestrelconsulting.com
www.lescasse.com

waw lingo.com
urworld.compuserve.comfhomepagesfAlastalr_Kinlach
www.microapl.co.uk

www retl.fi

www.digitravel.com
www.acm.ong/sigapl
www.penet.com/~rhswaln
www.aplgroup.com
www.laranteapl.org

wrw, chllton.comy~{imw

DOMAIN NAME

ps.boulder.lom.comfps{productsfapl2)

see Toronte SIG home page:
archive.uwaterloo.ca/ftperchflanguages/apl
archive.uwaterloo.caflanguagesfapljworkspaces/aplascil

29



VECTOR Vol.14 No.3

APL97 CD ROM

reviewed by Adrian Smith

Introduction

The APL97 CD is much more than just a conference programme in a fancy shape
— it contains many valuable APL resources, mostly with code that you can easily
paste into your interpreter and use in applications. This review is actually more
of a catalogue, really just to give you an idea of whether it is worth a few
Canadian dollars to get the disk for your own use.

In general, the catalogue on the CD is comprehensive and effective; here is the
readme.txt from the root directory:

IF YOU HAVE A WORLD WIDE WEB BROWSER:

Select the INDEX.HTM file on the root directory of this CD. You should be able
fo browse the contents of this CD from here.

IF YOU DO NOT HAVE A WORLD WIDE WEB BROWSER:
Get one,

PROBLEMS VIEWING FILES:

Check the TOOLS.HTM file for useful pointers. Most of the  contributions came
in MS Word format, so we have included the latest Word97 Browser for 32 bit
Windows, plus a poinfer to Microsoft’s website for the rest of the possible
platforms.

... actually you can just root around in File Manager and double-click the
interesting DOCs. In fact not all the hot-links work, so if the index mentions
something then fails to find it, just take an educsted guess and go digging. Don't
try the MSIE Win3.1 browser jnstallation — instant death and loss of about 15
minutes editing on the text below!

30




VECTOR Vol.14 No.3

How to Order It

You may order the APL97 CD ROM from www.torontoapl.org for $C20 +
shipping, via cheque, money order, Visa, Master, or Amex,

Shipping Costs: please add the following amounts to your order for shipping
costs:

Canada/U.S. — $3.00, Other countries — $5.00

You may submit an order from the web site, or for greater security, please FAX
your order to: +1-416-781-5732, or send via postal mail to:

The Toronto APL Special Interest Group
P.O. Box 55, Adelaide St. Post Office
Toronto, Ontario, M5C 2HS, Canada

APL97 CD Contents

The following list includes any material associated with workshops and tutorials,
and a complete set of abstracts of contributed papers, marked “not on CD” if no
extra material is available.

W4: Creating Images In J by CIiff Relter, Lafayette College: This was a hands-on workshop designed to give
participants experience with creating visual images. Exercises for beginners include creation of fractals, plasma
clouds and basic image processing, Intermediate and advanced paricipanis are Invited to explore their own interasts
or use available exercises to creata 3-dimensional images or symmetric chaofic attractors. The exarcisas from the
session are included as (X: = your CD):

XACONFRNCE\REITERWAIMAGES\AIMAGES. TXT

T8: An Introduction to J for APLer’s by Richard Levine: The subject Is the J language and system. The objective
is to assist the participants to understand and assess the basic concepts and details. The observed strong
commanality of J with many dialects of APL will be exploited to ‘jump-start” an understanding of ., espedially for
these who have already made atternpts in this direction. We will make heavy use of existing reference materials,
There will be ample opportunity for discussion within a carefully planned agenda. Participants unfamiliar with APL will
also benefit, and J's unique "non-APL” aspects will not be Ignored.

T10: APL+WIN Tralning Progran, OO Programming, etc. by Erlc Lescasse, Lescasse Consulting: Published In
Vector 14.1 and 14.3. See the workspaces:

X:\CONFRNCE\LESCASSE\QWI.W3
XACONFRNCE\LESCASSE\PLAYMIDI\PLAYMIDI. W3

T12: Electronic Commerce, Electronic Data Interchange, and the Internet by Ed Shaw, APL Group: Electronic
Coemmerca encompasses emall, FAX, and EDI. Business transactions are conducted ever a communications link,
whether it be proprictary, a commen carrier, a value added nelwork, or the Intemet. The tutorial will describe the
specific characterislics of each, with an emphasis on EDI, and the rala of an EDI translator, such as The APL Group's
software product, Qualedi for Windows®. It will also bring you up to date on the involvement of the U, S. Govermnment
in EDI. To gain maximum benefit from these opportunities, companies must Integrate Electranle Commerce with thelr
transaction oriented computer applications and possibly re-engineer their business operations. This implies an
important role for the computer and business consultant.

T13: An APL Toolklt by Richard Levine: Tha primary subject is the new Release 4 of the Torcnto Teolkil, a
colfection of APL freeware APL utilities now approaching 15 years. The expected audience is those who use APLin a

31




VECTCR Vol.14 No.3

prograrmming mode, who use or wish 1o Use a “teclkii” approach. Besides a demenstration of new fundions (e.g.
function development tools) and features, documentation, and architecture of the Toolkit, the tutorial will offer a
unique opportunity to present and discuss the software philosophy guiding the Toronto Toalkit. Gonnections with APL
{various dialects) and J language and system features, and other toolkits will also be covered. This tutorial has
general appeal to those interested in coliections of APL “utility” functions.

T15: Mathematical Roots of J by Roger Hul & Ken Iverson, Iverson Software Inc.: The massive Handbook of
Mathematical Functions [1] has now served mathematicians for over thirty years. For several years, work on a
companion volume of executable functions has spurred many innovations in the J system. This three-hour workshop
provides a review of these developments, presented in a live, interactive manner. Pravious knowledge of both the
Handbook and J would be helpful, but not essential. Items to be treated include:

Extended Precision Integers. A calculus of Inverses, Derivatives, Integrals, and Duals, for & wide range of
standard monadlc functions, including families (such as the power functions » &n) derived from dyadic functions.
Taylor and Weighted Taylor coefficients for a similar range of functions, including rational functions (quotients of
poiynomials) Smoothing (nterpolation) and Quadralure operators for efficlent calculation of integrals of arbitrary
functions. An operator used (in the form A 1. s) to provide generalizations of the *rlsing factoral functions” used in
the definition o! Hypergeometric tunctions (provided by the operator H. ). Elaborate graphic facilities for the
preseantation of mathematical functions,

T16: How to Write an APL Ulility Funclion by Stephen M Mansoor, the Carisle Group: In today's business
climate, reusable code is essential, Bul many programmers ofien don't use existing ulility functions because they find
them difficult to use or not general encugh. Also, they may not know that such functlans exist. Instead, programmers.
often clone lines of code from other functions. This results in sloppy, undocumented code which is tull of errors. To
avoid this, the author of a utllity function must make an extra efort to ensure that his function |s designed propetly,

T17: GUI Programming in APL+WIN by David Slegel, LEX2000: This talk is intended for APLers new to
windows/GUI programming, but famillar with APL. It weuld cover the event-driven model used by windows, and how
to creale simple windows applications in APL+WIN, using hands-on examples with several of the APL+WIN GUI
<ontrols in place, Assoried APL+Win utilities on:

XIACONFANCEASIEGELWUTILSST

(noton CD) P1: SHARP APL Kalnframe and the TCP/IP Revolution by Dave Mitchell, Xerox: Sharp APL at
Xerox has always bean network driven. At Xerox, TCP/IF has brought APL from IPSANET, AJE, TYMNET and SNA
into the world of Internet and the Web. Terminal access, file transfer, mail exchange, network printing, Web serving
and direct application to application support are some of the successiul accesses being done daily. Methodologies,
experiences, pitfalls and plans are presented.

(not on CDj P2: Greating Embedded Applications with the NIAL Tools by Mike Jenkins, NIAL Systems: The
HNial Tools consist of several compatible varsions of the Q' Nial interpreter organized to support the rapid development
and deployment of data-intensive applications. The tools are:

Q’Nial, the interactive interpreter for Nial used for program development;

the Nial Data Englne, a package for activating Nial applications from olher soltware;
RunNial, a runtime version of the interpreter invoked from the command line;
CGl-Ntal, a verslon of the interpreter to support Web applications.

P3: Data Transfer between Java Applets and Legacy APL Applications by Bruce Amos, Gavin Disney and
Duane Sorrey, Reuters: The rise of Internet technologies (particularly Java) provides many bensfits for the
development and deployment of user imerfaces. In many cases, however, the back end system is behind the limes:
Intarnet hostile, no object orientation, ote. How can data be transferred batween the new generation Irant end and the
oid genaration back end withoul compromising the strengths or Integrity of either? This paper discusses the use of
customised Java data serialisalion to achieve this goal against a large IBM MVS Sharp APL system.

P4; APL IDE: A Windows Interface to Mainframe APL Systems by Dennis Paproskl, Reuters: When | joined I.P.
Sharp [n 1988 there were two interfaces to the Sharp APL mainframe:

1. through proprietary terminal emulation software written for DOS called PG108 which emulated an HDS108 terminal
as well as praviding some exira functionality and

2. threugh a 3270 terminal or PC 3270 emulation. In 1997 my choices are essentially the same while other PC
technology has improved immensaly. The goal of the APL IDE project is to provide the Sharp APL programmer at
Reauters with & new inerface to the mainframe that will improve productivity. This will be achieved through:

1. A Microsoft Windows interface. Multiple function editing windows, drag and drop luncticnallty, search and replace,
an improved editor efc. These features are the expected norm for Windows users and are a marked improverment
over the current software. The APL IDE should be comparable in ease of use to IDEs available for other programming

32




VECTCOR Vol.14 No.3

languages such as C, Pascal or even Cobol,

2, The [DE will be closely integrated with features available in LOGOS, a software management environment within
Sharp APL This indludes an Improved intertace to a utllity library available in LOGOS which will promote the
reusability of common code.

3. Improved on-line help for the programmer. Sharp APL manuals will be available through the Windows help facility.
4. Improved debugging tools, a visual step debugger and walch windows.

5. Access 1o pawerful APL tools on the mainframe through a GUI, ie. WSDOCC, or quad FM. The APL IDE will be
mosty writter in Dyalog APL for Windows with some funclions written In Microsoft Visual C4++ avallable through a
DLL. The development of the IDE will also provide additional benefits beyond improving programmer productivity: 1)
‘We can add additional functionality through further upgrades i.e. sockets connections, 2) We can expand the usability
to other plattorms 1., Windows NT or Unlx.

P3: Computer Construction of Weaving Desligns by Keith Smillle, Unlv, of Alberta: J algoritims are developed
for deriving the weave of a piece of clath from the instructions tor setting up a loom, for the converse operation of
deriving the setup instructions from the weave, and for infroducing colour into the weave. Published in Vector 14,3,

P&: About Recurrent Caleuiations In APL by Andrei Buzin, RusAPL: It Is known that APL gives the possibllity to
think globally, in terms of arrays, It has powerful operators which process arrays as a whale. Unferiunately, not all
problems of array processing can be solved elegantly by APL, APL is oriented to regular array processing, which
means that all elements are processed similarly. However from time to time the researcher who uses arrays requires
singular or recurrent array processing, in which the algorithm of single element processing depends either on this
element itself or on the other elements of array. As examples of singular processing we can mention caleulating the
logarithm of a numerical vector or the derivation of a piecewise-smooth function in points among which there are the
points of non-differentiability. It is cbvious that the points where the functicn or operator is not defined must be
excluded from the processing, APL does net da this, nor inform us which element can't be processed. To obtain such
a resull we must use looping, but loops in any interpreter work very slowly. It would be fine if this iteration was
pregrammed as part of the language, as in the case of reduction, scan or each operator. In this article we shalt
discuss the cther type of irregular array processing, namely, the recurrant calculating of the elements of array, See:

HACONFRNCE\BUZINVRECURE\RECURE.DWS

P7; TimeSquare Tables — A New Data Type by Doug Forkes, Solilon Associales: While developing the
TimeSquare project, we found It quite useful to define a special datatype, and a set of functions ta act upon it. The
new datatype is somewhat analogous to an SQL table, so we call It a table. A table can be thought of as essentially
two-dimensional, with & finite number of ordered rows, and an infinite number of identified but uncrdered columns.
The Identifier of a column of a table may be any APL object. Each element of a table may be any APL cbject, or may
ba null. This paper will describe a set of APL functions to manipulate such tables, and provide some examples.

(not on CD} P8: Global Limits Control System at Deutsche Bank by Michael Kornacker, Deutsche Bank AG:
GLCS (global limits control system) is a part of risk management in the business with financial Institutions
counterparty and country risk monitoring In the trading products mm, fra, fx, spot, tx forward and commercial paper;
history, present, future.

P9 Interactive Deslgn of Structures — A Program for Everyone by J. Rlebenbauer & J, Hotfman: We will
present intraplan V2 — a graphical Dyalog APL/W application for the design and analysis of planar member frarne
struciures. We will demonsirale how to input and optimize a load bearing structure using the complete visual and
intuitive GUI of Intraplan. We will also talk about the program development history, e.g. about our experiences we
made during the migration from APL*PLUS |l to DyalogAPL/W, with its object oriented Windows Interface and
namespaces. Published in Vector 14.2.

P10; Alvin Surkan Univ. of Nebraska-Lincoln: A Concise APL Function View ol 8 Constuctive Algorithm for
Neural Networks that Generalize: APL functions are provided as descriptions of constructive atgorithms for
oplimizing the synthesis of neural networks while improving their generalization capabilities. Programs of these
algorithms construct networks of binary weights for classifying or partitioning sets of arbitrarily-high dimenslonal
binary pattems in the closer of two classes, The study of constructive algorithms for identitying such networks is of
direct interest to designers who build amay processing hardware dassliliers from fast two-level digital creuits,
Provided is an APL exposition of a constructive algorithm for synthestzing minimal neural networks. One of our
obieclives is ta Introduce ersalive APL users to this emerging application area and the language's potential for
describing array-based software and hardware, This constriictive method Incorporates a minimum overlap pattern
separation and a target switching algorithm. Prototypes of constructive algorithms implemented with typical , scalar-
based procedural languages typleally require hundreds of statements. Array based formulations with functional style
pregramming languages like APL and J require a few short functions. See ...

X.CONFRNGE\SUAKANIASURKAN.DWS

33



VECTOR Vol.14 No.3

(not on CD) P11: J vs. Mathematica by Murray Eisenberg, Univ. of Massachusetis-Amherst: APL and J have
had limlted succass in penetrating mathermatics education, especially &t the college level. By contrast, in recent years
Mathematica has received increasingly wide acceptance. Why? How do J (as a representative of the APL family of
dialects) and Mathematica stack up against one another — as tools for getling answers; as programming languages;
and as tools of thought? These are among the quastions to be addressed by the presenter, who has laught linaar
algebra for many years using APL or J and, most recently, using Mathematica,

(not on CD) Pi2: Nested Amray Internals and Efficiency by Roy Sykes, Sykes Systems: The advent of nested
arraye has given APL users an even richer repertoire of ways o store and manipulate data, especially for small or ad
hoc problems. But heavy usage of large datasets still demands efficient processing. By examining the internal
architecture and implementation of APL, we can evaluate different storage strategies to predict their efficiency. This
talk will uncover these hidden aspects of APL and use several examples to iuminate cur findings.

P13: APL and Nested Arrays — A Dream for Statistical Computation] by Alan Sykes & T. Stroud, Unlv, of
Wales, Queen’s Unlv.: Many papers have been produced In the [ast 10 or more years extolling the virtues of APL far
statistical computing. Such papers have stressed APL's array-handling operations, the use of user-defined cperators,
and the often transparent flow from mathematical notation 1o APL's equivalent computational notation. The Use of
nested arrays fgures relatively litle in this. (Cf course, the curent Windows-oriented computing medium means that
a function's argurnent may well be, often 1s, a long nested array!) This paper demonstrates why APE with nested
numeric arrays is just what the statistician needs in erder to deal with missing data in a sample survey analysis. One
technique of dealing with missing values is that of multiple imputation in which each missing value Is replaced by a
set of between five and ten 'typical values'. APL with nested arrays provides just the right medium for the efficient
storage cof the resultant database. Moreover, because array operations on nested arrays employ scalar extension, the
paper shows that typleal stafistical functions, such as the calculation of means, standard deviations, regression
estimates, can be programmed, ofien with litle or no change, so that they will operate on the nested database to
provide multiple answers (each answer corresponding o one of the chosen typlcal values reprasenting the missing
values). The multiple answers can then be used to give answers required that truly reflect the variability induced by
the missing data. The statistical knowledge required to appreciate the content of the paper is minimal — the beauty of
APL in the service of Stalistics is considerable! Published in Vector 14.2.

(not on €D) P15: Evolution of CoSy by Bob Armstrong, Coherent Systems: CoSy [s the NoteComputing
environment | have evolved since meeting APL in the mid '70s, for general support in the business of life. Curmrently
CoSy Is constructed in old STSC flat PC-APL in 1984 as an epen-source hypertext browser of its own objects —
although that vecabulary was not yet in use. The target now is to rip the organs of Windows5 (OLEs) openinto a
coherent linguistic structure down 1o tha hardware — creating an environment providing the uset/programmer
complete control over their notebook computer. The practical next step is to integrate CoSy with a competitive APL
language community and ali the algorithms its members are interested in sharing.

P16: War on the Workspace — a Databased Commerclal Application by Ed Shaw, APL Group: How do you
properly suppor! thousands of dispersed users of a PC application without losing control and yet provide imely and
apparently cuslomized featuras? How do you conlinue to maintain and enhance a commerdal application over a
pericd of many years, including a ccnversion from DOS to Windows and the inevitable changes in personnel without
falling off a diff? There are probably as many answers as there are developers to this question. The APL Group has
chasen to ignere the workspace and to stors all control data functions in a highly structured manmner in its propristary
database writlen in APL. it has also adopted a number of procedures and controls which have allowed it to continue
fo succeed over 14 years with a continually evalving product, The technigues adopted will be described with the hope
that some cof them may be of use to athers and also that they may stimulate a discussion of atternatives for the mutual
benefit of all who attend.

P17: J Phrases for Statistics ot a Glance by Glitiro Suzuki, Institute of Statistical Mathematics: In my lalk,
many tunctione for statistical data analysis are presented. These funetions are mainly written by tacit definitions.
These are then convenient as a J primer. Maln contents arg as follows:

mean, median, mid-range, moving average, range

mean deviation, standard deviation, coefficient of varlation
mean difference, quantile deviation

dispersion measure for categarical data

histogram, frequency polygon, stem-and-leaf diagram
correlation ratio, Parsto curve

scatter diagram, correlation coefficient

regression analysls, principal component

analysis of variance, discriminant analysis, etc.

P18: J Installed String Manlpulations Applied to English-Esperanto Machine Translatlon, by Toshio
Hishikawa, Chika Institute of Technelegy (Toshio Nishikawa nisikawa@ism.ac.fp): J has been widely used for

3




YECTOR Vol.14 No.3

mathematical computations. However, it's less often used %o do string manipulations such as machine translation.
The author developed a smali maching translation system using APL, and tested its adaplability through English-
Esperanto and Japanese-Chinase translations. Given the growing popularity of J, we made a plan to converl the
system o J. Firs}, we thought it could be easily converted in line-by-line code, but we soon sealized this to be
impassible. Therefare, we rehuilt it as almest a new verslon, starting from making several function tools for
manipulating character strings, although we aim for machine transtation. We adopt English-Esperanta as a pair of
translation, because of simplicity and regularity. Tharks to the power of J, especially 'box’ and 'each’ codings, we can
expect a cotnpact translation system.

D1: Chaos with Symmetry — a visual exhibit by Nathan Garter, Richard Eagles, Stephen Grimes, Andrew
Hahn, and CIliff Reiter, Lafayette College: In recent years mathematicians have found ways to construct images of
attractors resulting from function iteration, that have both symrmelry and chacs. We extend, explore and refine those
methods to allow us to look at atiractors with rotational symmetries, shift symmetries and tiling symmetries, The
images in this visual exhibit were constructed in J and selected for their proveking appearance. See ...

XACONFRNCE\REITER\CHAOSSYM\FIG?.GIF

APL97 Software Library - coniributions of software
or documentation

Contributor Contents
Mike Jenkins a file-based version of the (Y Nial Web site
Mike Jenkins a demo version of (¥ Nial for Windows, complele with libraries

Richard Levine  programs for transferring functions and data between various
APL systems (some resirictions apply)

Keith Smillie “Beginning ]” — an article in PC Word 6 format, with two scriplt files

Jim Weigang APL Newsreader — the complete archive of comp.lang.apl articles
from Feb 89 to the present, along with Jim Weigang's APL
Newsreader for browsing and searching the articles. (Run-time
APL interpreter included.)

Jim Weigang APLASCII Workspaces — utilities for converting APL symbols to
{keywords} and back. Great for imbedding APL programs in e-mail
and newsgroup postings and for moving workspaces between
different APL systems. Versions are provided for all major
contemporary APLs.

Jim Weigang Jim Weigang's Web Site — described by Vector as the "definitive
APL home Web Site pages”, this website has nearly a megabyte of
useful information, example programs, and amusing diversions.
Browse it from the CD without the usual Internet delays.

The Waterloo Archives
The complete contents of the Waterloo AFL/] Archives, as of July, 1997

35



VECTOR Vol.14 No.3

APL Shareware Review:
ComlLog Comic Logger

reviewed by Jon Sandles

Sometimes I have cast my eye down the Vector product list and seen things that
sound quite interesting, but I have no idea what they are. ComLog’s Comic
Logger is listed in the OTHER PRODUCTS section and is described as
“ APL*PLUS II comic-book inventory system”.

Intriguing stuff, I am sure you will agree, so I thought it would be nice to obtain
a review copy of this software just to see what it was. I e-mailed the creator
explaining 1 wanted to review ComLog for Vector and shortly after 1 received a
review copy over e-mail. Everything installed just great, even under NT4.0,
although 1 did experience some random hangs with the software, but I put this
down to NT’s DOS session being very much not a real DOS box.

The software is a DOS menu-driven system, in fact, rather good for a shareware
DOS product. It is basically a database product for cataloging Comics. What is so
special about comics you might ask - why not use a generic database product?
Comics have some interesting relations in their database structure, things like the
fact that you get the same artists (wrong technical term probably but I do not
want to get into that!} working on the same story lines most of the time, but
every now and again switching to different story lines, the same artists and
writers also tend to stay together in the same “teams” but again not always. The
whole area of re-issues of past stories in different comics also causes great
problems, so cross referencing to old issues needs to be possible. APL was
presumably the perfect tool to provide the search facilities that allow the user to
find given artists, price ranges and story lines.

The product is presumably invaluable to both professional and amateur comic
collectors and although it is DOS-based it is cheap enough to be a good starting
peint in setting up a comic database. You would be hard pushed to produce an
application that has this sort of functionality using just Microsoft Access for
example. And, of course, if it helps publicize esoteric transatlantic comics like the
mighty Silver Surfer it has to be a good thing]!

If anybody else fancies reviewing a piece of APL soffware mentioned in the product guide,
we would be happy to obtain review copies in exchange for a couple of paragraphs.

36




VECTOR Vol.14 No.3

Dyalog APL for Motif Version 8.1 Release 2
for Sun Solaris 2.5
reviewed by Bob Hoekstra (bob.hoekstra@khamsin.demon.co.uk)

Abstract

Dyadic Systems had been a major force in the UNIX APL market for some years
when they left it to concentrate on developing APL interpreters for Microsoft
Windows. With their latest offering they again target the UNIX users, giving
them the benefits of the last few years of Windows development.

Introduction

Those readers who have met me (even only briefly) will know that I am very
enthusiastic about two things in computing: APL and UNIX. When these two
interests combine (as in this case) 1 can become positively fanatical.

At home I run Sclaris 2.5 on a Sun SPARCstation 2 (the SPARC processor
upgraded to a Weitek Power pF). This machine provided the test bed for the
software under review, Dyalog APL/M 8.1.2 for Sun Selaris 2.5. 1 also have PCs
with Linux (the Debian distribution), Windows NT 4 and Windows 3.11. This is
relevant as they provide a basis for comparison — Dyalog APL/M is a UNIX
port of APL/W 8.1, which I use under Windows NT.

In fact, I use several versions of APL on many platforms (including mainframes
when my clients require this}. I have been waiting to get my teeth into this
particular APL interpreter ever since I heard of the APL/M project.

This Review

This is an attempt at providing a comment on a new product. It is targeted at an
audience of APL users, many of whom will probably know little or nothing
about UNIX. T will try to provide adequate notes and explanations where
necessary.

As a separate exercise, I will also be publishing a very similar review in Browser,
the magazine of the Sun User Forum (previously known as the Sun UK User
Group). This will cater for the UNIX (mainly SunOS) users who may be
unfamiliar with APL. Of course, there may be a small number of readers who,

37



VECTOR Vol.14 No.3

like me, use both APL and UNIX. Some time after both publications appear in
print a version of this review will also appear on my web site, and this version
will be kept as up-to-date as my circumstances (and Dyadic Systems) allow. See
www.khamsin.demon.co.uk.

Readers are assumed to be familiar enough with Microsoft products net to
require any explanatory notes,

Please note that the review is not intended as a vehicle for expressing my views
on the qualities of the interpreter itself (which are very favourable) but rather the
implementation of that interpreter under the Solaris 2.5 operating system.

What is UNIX?

Note: This is a quick introduction to UNIX. Those readers familiar with UNIX or
UNIX-like operating systems may want to skip this section. Please feel free to do
80,

UNIX is an operating system with a heritage dating back to the 1960s. Tt
originated in the AT&T laboratories in the USA, but it was a long time before it
was offered as a commercial product, first having been taken on beoard by many
universities, scientific laboratories, ete. Each institution added its own features,
and as a result the standard UNIX distribution has become an interesting
combination of smallish programs, which are not all consistent in their interface.
The general idea in UNIX is to have a smallish kernel which provides essential
services and to have separate simple programs or tools to provide everything
else. This is in sharp contrast to DOS and related operating systems, where all
commonly used functions reside in the kernel.

There was some competition as to what a standard UNIX distribution should
consist of and this eventually concentrated about two rival camps: those who
followed the AT&T line of thought and supported what became known as
System V UNIXes, and those who followed the adjustments favoured by the
University of California at Berkeley and supported BSD (Berkeley Software
Distribution) UNIXes. In many cases, one would use the same or similar
command to perform a task on the two types of system, but the command would
react slightly differently. Sun Microsystems’ operating systems up to and
including SunOS 4 were BSD compliant. However, SunOS 5 (the operating
system that underpins the Sclaris 2 product) is a System V Release 4 {SVR4)
compliant UNIX. SVR4 is becoming the “standard UNIX”, with other vendors
following suit.

38




VECTOR Vol.14 No.3

At first there was no UNIX GUI interface, but soon X Windows (developed at
MIT and descended from work done at the Xerox Palo Alto Research Centre or
PARC) was adopted almost universally. Unlike the Microsoft operating systems,
no UNIX vendor chose to “integrate” the windowing system with the operating
system itself. It remains a separate entity, necessary if support for terminals and
terminal emulators is to continue. Initially there was much diversity between
different vendors’ implementations of X Windows (see Notes 4 and 6) but
recently many vendors are becoming CDE compliant (see Note 9).

Why use UNIX?

I could write a separate article on this subject, but I think I'd better stop at a short
list of some of the reasons why (in my opinion) UNIX is a better choice than any
Microsoft operating system for the APL developer. Note that none of these
features are new but have been in UNIX for years. Some of them are slowly
creeping into Windows NT, but (my opinion again) the implementation under
NT is never as elegant or easy to use.

1. UNIX has always been a multi-user operating system. This means that more
than one user can use the computer simultaneously. Proper account is taken of
the rights of different users and their ability to protect their data from, or
share it with, their fellow users. Only the superuser, root, would normally
have the ability to override this security system.

2. The file system supports decent locking facilities which may be used in
conjunction with the locking capabilities of the APL interpreter, simplifying
the writing of multi-user applications.

3. UNIX is network aware. Proper security exists for logins and resource sharing
across networks (this includes the Internet) and so networked applications can
be written simply.

4. A version of UNIX is available for almost every computer imaginable (please
don’t bombard me with exceptions). Some examples:

a. SunOS5 5 (Solaris 2Y runs on PCs (486 or better) right up to 64-processor
SPARC machines. Sun have announced their intention to provide a far
grealer number of processors (around 1,000!) scon (new hardware, same
operating system). And Microsoft say that NT is scalable?

b. Linux (a free UNIX-like operaling system) will run happily on a 4MB 386
machine, SPARC boxes and Alphas. A Macintosh port is in progress.

c. Talking about Apple, their latest operating system, Rhapsody, is a
derivative of what used to be NeXT5Step, a Mach-kernel UNIX.

d. Even IBM have a UNIX (AIX) and I onice saw a report of an OSF 1
derivative UNIX that [BM had running on a 360 mainframe!

39



VECTOR Yol.14 No.3

5. UNIX systems have a single file system. Devices (hard disks, CD ROMs and
perhaps even floppies) are “mounted” at points in the file system so that the
file system becomes a cohesive single unit. This is extended to remole disks,
where machine A may allow machine B to mount part of its file system, which
then becomes part of B's file system also. Note that this is (to the user) a much
simpler concept than “mapping” a remote machine’s shared direclory to a
logical device name as is done under Windows or NT, and that the security
implications have (in my humble opinion) been resolved in a far more flexible
and satisfaciory way. Along with the ability to create symbolic links (see
Note 8) and automounting (see Note 13) this makes for a very powerful file
system.

6. While there are significant differences between one vendor's UNIX and
another’s, they also share many similarities so that they will very happily
share resources over a network, I have worked with networks where
machines running SunOS (4.x and 5.x}, HP-UX (Hewlett Packard’s UNEX),
IRIX (Silicon Graphics’s UNIX), and Linux all share resources in such a way
that the users were (blissfully} unaware of the physical localion of the disk
they were reading from or writing to.

7. The window system (X Windows) is also network aware, allowing the
running of a program on one machine with the user interface displaying at
another machine altogether. This allows the developer to make full use of the
client-server concept, Note that the “display” machine need not be a UNIX
box — a PC running Windows 3 and an X server will do nicely.

8. Administration is a lot easier on a UNIX machine. I'm not talking here about
opening windows and clicking on buttons to create a new user, but the
resolution of real problems which cccur in real life. In particular, the
unknowledgeable user can be prevented from rendering his machine
unusable (e.g. like deleting parts of the operating system) while retaining the
power to personalise his own working envirenment in a safe way.

9. UNIX is a mature, stable operating system. From a recent survey, it was noted
that no users of Solaris 2 on PCs had ever seen the equivalent of NT's “blue
screenof death”: Not one. Yes, crashes occur, the user may get locked out or
applications die in disgrace, but no-one had seen the operating systemn roll
over and die to the point where the only solution was a physical power cycle
(which is potentially fatal to a cacheing file system like that of NT or almost all
UNIXes). The worst I have ever seen was where I (as system administrator)
had to login remotely and force a user off the system, which closed all his
open files and the system became usable again (I did reboot the system after
this, but this was probably not necessary).

T have really only scratched the surface here. If pressed, I may write a further
article justifying my comments, but that would be of little interest to APLers in
general.




VECTOR Vol.14 No.3

A little fact that may be of interest is the early tie between UNIX and APL.
Apparently Ken Thompson (one of the great names of both UNIX and C) wrote
an APL interpreter, APL/11, while at Bell Labs. I have no idea when this was,
but to quote Michael Cain (who currently maintains APL/11) “...it spent some
time at Yale and finally arrived at Purdue University. Since 1976 it has been
modified by Jim Besemer and John Bruner at the School of Electrical
Engineering, Purdue, under the direction of Dr. Anthony P. Reeves..”. This
interpreter lives on as a free APL for UNIX and Linux, and in its latest
incarnation as FreeAPL, for Windows as well. Any who are interested may
contact the “Licensor” of FreeAPL, Tauno Ylinen, Helsinki, Finland (email:
tylinen@mits.mdata fi).

About Dyalog APL

[ first came into contact with Dyalog APL in 1990, running version 5 under ATX
on an IBM 6150 RT/PC (see Note 1) using dumb terminals. I immediately
realised (despite limitations in the hardware} that this was an excellent
implementation of the language, in many ways superior to the VSAPL, APL2
(see Note 2) and APL*Plus (see Note 3) that I had been using in the past. Shortly
thereafter 1 enjoyed using Dyalog APL/X version 6 under S5unCS 4 with
OpenWindows (see Note 4).

I have subsequently used the Dyadic products under several UNIX variants (see
Note 5) as well as MS-DOS and Windows (3, 95 and NT) and have always been
impressed by the interpreters. Prior to Dyalog APL version 7, Dyadic Systems’
products had been mainly for various UNIXes. They switched their main
development effort on the Windows platform after Version 6. Version 6.x was
ported to DOS and later to Windows, and this developed into version 7. Version
8 came later and is intended for 32-bit Windows (i.e. Windows 95 and NT). As
far as I am aware, there was never a Dyalog APL version 7 for any UNIX
operating system. Perhaps this was not surprising as version 7 saw the
introduction of a GUI programming interface under MS Windows. Nevertheless,
there have been interesting non-GUI-related developments in version 7 and
version 8 . When 1 heard that version 8 was to be ported back to the UNIX
operating systems, I breathed a sigh of relief.

Currently available are version 7.3 for 16-bit Windows (i.e. Windows 3) and
version 8.1 for 32-bit Windows: Windows 95, Windows NT and now some
versions of UNIX using X Windows, with restrictions on the window managers
(see Note 6) in use.

Dyalog APL 6.2 (the character version) is also still available for many UNIX
platforms, though APL/X 6.2 (the X Windows version) is no longer sold — its

41



VECTOR Vol.14 No.3

place in the product line has been taken over by APL/M. I suspect that a non-X
version 8 will appear soon to offer the non-GUI related benefits to those
developers and users whe do not need the Gui.

The Software

The interpreter supplied here is, as far as 1 can tell, identical to the version 8.1
supplied to Windows 95 or NT users. It is an ISO 8485 compliant APL interpreter
and development environment with the usual Dyalog extensions to the 1SO
standard. The latest of these extensions include namespaces, dynamic functions,
coloured function and variable editors and a complete implementation of the
MS-Windows GUI tools as implemented by Dyadic Systems in the Windows
95/NT product.

Some readers may be surprised by the last addition. The Windows GUI tools are
implemented by the use of the MAINSoft Corporation’s MAINWiIn Cross
Development Kit (CDK). This CDX is based upon Microsoft source code ported
to UNIX and is constantly updated as new features are added to Windows.
Dyadic Systems stress that MAINWin is #of an emulator. It executes native
machine language and makes direct calls to Xlib.

Use of this CDK entails paying Microsoft a royalty for the use of their code. This
is part of the purchase price and is done by the suppliers, not the purchaser. This
is no doubt the reason why a freely distributable run-time interpreter, which
cannot be used for development, is nof included in the package. In Windows
versions this run-time interpreter is a big selling point.

The Package

The review copy of Dyalog APL/M arrived on a single compact disk,
accompanied by some 10 A4 pages of installation and setup instructions specific
to the platform. A purchaser would also receive the same documentation that
accompanies an interpreter intended for Windows, which consists of 3 soft-cover
books of good quality as well as some additional material. While this is very
good documentation for those familiar with APL, it is probably inadequate for
those wanting to learn the language, who will have to turn to more suitable
literature or attend a language training course.

Loading the Software

The instructions are clear and easy to follow. The installer should ideally have
root access. A quick cpic command and a little less than 35 MB is installed on

42




VECTOR Vol.14 No.3

the disk (in my case, in /usr/mdyalog, but see Note 8). This took just a few
minutes on my machine, even though 1 was NFS-mounting (see Notes 13 & 14)
the CD from my Linux box over my home network.

Next you are instructed to edit the apl. ini file in order to set the values for
LFTn so printing can be performed. While this may seem disappointingly
“Windowsish” to the readers, let us remember that APL/M is a port of the
APL/W product. Only PostScript printers are supported. Lastly, a shell script
(see Note 7) has to be executed for each user in order to set up their environment,
and you are ready to run.

1 would have been a little happier if the disk had contained a Solaris-style
package, which I think is an extremely neat way to install and remove software:
However, given that this software is available for several UNIXes, most of which
do not support packages, I am quite happy that Dyadic Systems made the
installation as simple as possible.

Running the Software

I symbolic linked (see Note 8) /usr/mdyalog/mapl (a Bourne shell script) to
/bin/mapl so that I didn’t have to adjust my PATH, and entered this command in
a dtterm session (I usually run CDE}. The software immediately started creating
a font cache, analysing each of 1254 fonts installed on my system when running
CDE! (see Note 9). This took several minutes, but fortunately this is not repeated
on subsequent loads, but it may be repeated if the fontpath changes. This
happens to me if I change to the twm, olwm or olvwm window managers.

1= Dyalog APL/H - CONTINGE ] EN
7 Elle Edit Mlew Windows Session  Actlen  Dptians Tools Help . |

Derdae nel Bek v’__j _J@Jéls—z nio] B B \

Dyaleg APL/K Yersion 8.1.2
A T D

Thu Jan 8 23:28:03 1938
ACONTINUE saved Thu Jan B 21:33:08 Dyasiic Systems itd.

. Dyatag APL for Motf
:@ © ' Version B.1 rel, 2.

Bk 1D: aSbhSabd.

. 'rH'nzk L b
fbaut Dualog PPLAR - _ - R e |
Tcurtb s ; o HEEE ;unq o ‘nmnp ]um o’ Ef.ur: 1 iam n

Figure 1: The Session Manager and the “Help/About” box

43



VECTOR Vol.14 No.3

After a short delay, the APL session appears, complete with motif adornments
(see above). The window adornments are hard-wired into the system, although
you do have the option of choosing a “Windows Look” (see below). Even if
using OpenWindows (o1wm, o lvvm or twn), the user sees only Motif or Windows
widgets attached to the APL session manager, and trying something more exotic
by way of window managers (see next section) really brings problems.

] lwalesz rHLoD - LGhIINLE
Feestarn ows 3Jession Action Options Tools Help
Move BES M QQAH 2o &
Stee 1.2

Minimize

Maximize

Close ALT+Fa

Change Look M

g
8 21:39:08 19398

ey, . TRTRLTTT T
lcurobi: } Oby:o “IDTARA” IDSTR0’ JOi6:) DALz

Figure 2: The “Windows Look” — about to return to the “Motif Look”

It surprised me that the “Windows Look” was in fact that of Windows 3 (or
NT 3}, and not Windows 95 (or NT 4) as Windows widgets are included in the
software which are available in APL/W 8 (for Win95 and NT) and not in APL/W
7 (for Win3}. 1 asked Dyadic systems about this, and they explained that future
versions of MAINWin will provide the more modern “look”. This is part of the
continuing development of the product.

Trying Other Window Managers
Dyadic Systems warns that only the following are supported:

Supported X servers
a. X11 Release 4 or b on any supported platform
b. Xnews on Sun with OpenWindows 3
<. Hummingbird PC X WServer eXceed version 5.1.3.0 or greater




VECTOR Vol.14 No.3

Supported window managers

. mwm version 1.2

. olwm on Sun

. vuewm on HP HP-UX
. 4Dwm on SGI IRIX
CDE1.0

L= e W=

From my experience, olvwm (on Sun} also works and I experienced no problem
with twm, although Dyadic Systems tell me that this last window manager has
caused problems.

1 tried to run the software on my Sun box, displaying on my Linux machine
(using XFree86 and several window managers, including afterstep, fvwmz,
kvm, olwvn and wmaker), but failed. The mouse pointer turned into a black
rectangle and the colours were all wrong. In particular, white was sometimes
turned into black, but not the reverse, meaning that I was often left with black
text on a black background! T am told that XFree86 does not implement the
complete set of X intrinsics.

1 would have liked to try an X terminal as well as a PC X Server, but I couldn’t
due to lack of availability. I also cannot confirm whether I would have been able
to display on the other supported configurations, e.g. running on a Sun and
displaying on a Silicon Graphics or Hewlett Packard box because I did not have
access to the hardware required.

Performance

I had been wamned that the hardware 1 was using was not really powerful
enough for displaying APL/M at its best. Nevertheless, as I had run other
versions of Dyalog APL on slower machines, 1 was keen to try it.  had a copy of
APL/X version 6.2.0 at my disposal, and this seemed like the ideal benchmark
for the new product.

It was obvious that APL/M takes a long time to start. Repeatedly timing the start
gave about 35 seconds for the first time after logon, and about 20 seconds
thereafter. I am sure a more powerful machine would have helped here!
However, this is something a user does only once or twice per day, so is
probably not very important. It certainly becomes insignificant compared to the
time taken to start CDE or OpenWindows. By comparison, APL/X was up and
running within 2 seconds on my SPARCstation 2.

Once up and running, differences between the two version on my SPARCstation
evened out. My tests were not exhaustive, but it appears that APL/X is about

45



VECTOR Vol.14 No.3

50% faster on simple arithmetic operations and almost twice as fast on creating
some (not all) X windows. Again, I mentioned this to Dyadic Systems, who tell
me that they are aware of the problem and intend to resclve it. They are
confident that APL /M will soon be as fast if not faster than APL/X.

Bearing in mind that the new interpreter (version 8.1.2) has a lot more
functionality than the older one (version 6.2.0) and that the original version § had
been written for a totally different platform, I had been expecting some
differences. However, these differences were much larger than T had anticipated.

Someone expecting to do development on this interpreter or use it on large
amounts of data is likely to have a more modern workstation and the speed
differences would be less important. Generally, I found it quite usable on my
machine, except for the initial start-up time, and I don’t see executicn speed as a
serious problem, although it might be in certain circumstances.

Porting Code

In the past, porting Dyalog APL code from cne platform to another had been a
problem. Workspaces had an incompatibility over little and big endian machine
architectures and had to be ported between workstations (see Note 10) and PCs.
This version of the interpreter can read either little or big endian workspaces,
transparently converting the workspace on reading from disk. This means that I
could read workspaces saved with APL/X without a problem. However, porting
the opposite way (APL/M to APL/X) is more problematic, as they are not
compatible. However, I doubt that anyone would want to do this (well, not
often, anyway).

Even more useful is the fact that I could swap workspaces with my APL/W on
NT without any problem at all in either direction.

Unfortunately, component files {see note 11) are not portable between
architectures. To me this seems more important than providing workspace
portability, as this means that sites using both architectures will have to maintain
separate data sets for each! Utlity workspaces are provided which make the
porting of component files simple. There are alternatives to this (i.e. creating an
APL data server — TCP/IP code is also built into the interpreter and very easy to
use). I asked about this and was told that Dyadic Systems intend to implement a
platform-independent component file system for both the Windows and the
UNIX product in a future release.

I tried running several workspaces that had been created with APL/X and had
no problem with any except those that tried to implement X11 graphics routines.

46




VECTOR Vol.14 No.3

This functionality is not included with APL/M. Again, this is not surprising
given its heritage, and other ways of producing similar graphics are provided
(see Figure 3). Rain graphics (from Causeway) also worked without problems,

=] G|
= Salsr Rewaras
Dyalog APL Graphics
at

A.N. Other PLC Figure 3
An example of
the graphics
available

Next I tried running code produced using APL/W under NT. This produced few
problems and was, on the whole, surprisingly simple. As a final test, I ported a
large application (the result of about 3 months” work) from NT to Solaris. This
took me about 24 hours, or 3 man-days. The result worked, although rather
slower than on my NT box. It is difficult to be objective about the performance as
my NT machine is a modern, fast PC (Cyrix 686 P150+ with 96MB RAM). I
suspect that, had 1 been using an UltraSPARC machine, the performance would
have been quite similar.

The following are some of the danger areas I ran into:

Path separators

APL/M has to have UNIX (/) rather than the DOS (\) path separators. Readers
may think this obvious, but Dyalog APLs for DOS and Windows understand
both! This meant that, where you were asking the interpreter to parse a text
string that was obviously a path, you could use either forward or backward
slashes.

Of course, code that was meant to run on either platform should be written in a
platform-independent way, but if you are porting code that isn't, it could take

47



VECTOR Vol.14 No.3

some time to correct. Note that both slashes have specific meaning in APL code,
so a simple “search and replace” will not do.

Executing operating system commands

Again, this hazard may seem obvious. In a hurry, I had produced sloppy code
which obtained the name of my current directory by capturing the response from
the DOS ¢d command. When the same workspace did not run successfully under
UNIX, it took just a few moments to find the problem: cd is also a UNIX
command, but the effect on my APL code was quite different!

Reading ini files

One has to be careful with taking these files from a Microsoft environment, as
they contain carriage return/line-feed pairs terminating each line. In a UNIX file
system, the carriage return must be removed (or the code which reads the file
must remove it) since the extra character can cause problems. On the other hand,
I was pleased to find that code using Microsoft utilities to read and write these
files worked without any problems.

Case in file names

This is a tricky one, as many of the DOS utilities that return a file name may do
s0 in upper case. Of course, DOS/Win is not case sensitive, so it doesn’t matter
there, but UNIX is. Furthermore, if T move a file from my PC to my Sun box
using ftp it comes across in upper case, whereas if I boot the PC in Linux and
NFS-mount (see Notes 13 & 14} the NT partition is in lowercase! The whole
problem is not as trivial as it seems!

Conclusions

Dyalog APL version 8.1 provides an excellent implementation of the APL
language, and this port maintains that standard. Consequently, this is a great
choice for sites wanting to port existing APL {especially the most recent version
of Dyalog APL} from Microsoft operating systems to any of the supported UNIX
systems.

For APL development on a UNIX platform, APL/M provides an easy-lo-use
interface which lends itself to high productivity from the developer. The creation
of GUI interfaces is particularly easy, and the code will be easy to port to a PC
should this ever be necessary. Note that the PC version includes a freely
distributable run-time interpreter which is not provided with the version being
reviewed. Developers would benefit from fairly powerful workstations.




VECTOR Vol.14 No.3

For sites which have high power requirements, processing a lot of data, possibly
with a multi-user system running on large UNIX servers, the older APL version 6
may prove more successful as it is faster at present. However, this would mean
missing out on some of the excellent recent developments in the language.
Personally 1 am confident that the performance issue will be solved soon.

Lastly, 1 was expecting just a little bit more from this product. The fact that I'm
limited in my choice of window manager is irritating, as is the failure to let me
display on my Linux machine’s X server. 1 plan to take up this matter with
XFree86, the producers of the X server used under Linutx, and this may still be
resolved in a future release. I like many of the features, and even admire some
that 1 don’t like very much. Fancy making an X application look like an
MS-Windows cne on my X screen!

On balance, 1 feel that Dyalog APL/M is a success. | am confident that it will
become even better as it matures.

Notes

Note 1: AIX and the IBM 6150 RT/PC

ATX is IBM's version of UNIX. This runs mainly on IBM's RS/6000 range of
machines, The 6150 RT/PC was a forerunner to these computers.

Note 2: VSAPL and APL2

VSAPL and APL2 are IBM products. T used them on a mainframe under the
VM/CMS operating system. APL2 is also available for other operating systems,
including other mainframe operating systems, OS/2, AIX and SunOS. A
Windows version is currently in the beta testing phase.

Note 3: APL*Plus

APL*Plus is a family of APL interpreters created by STSC (originally a time-
sharing company that no longer exists). The UNIX and DOS implementations are
now in the hands of APL2000, while the mainframe product now belongs to
Manugistics.

Note 4: OpenWindows

OpenWindows is Sun’s implementation of the X Windows environment of the
Open Look window manager. This was the standard Sun user environment until
Solaris 2 became CDE compliant. It is still an option provided with the Solaris 2
distribution.

49



YECTOR Vol.14 No.3

Note 5: UNIXes where Dyalog APL is supported

Dyalog APL is available for many UNIX variants. I have used it running under
AIX (IBM), SCO Unix, Dynix (Sequent), SunOS 4 & Solaris 2 (Sun), Xenix (5CO),
and I know that it is available for IRIX and HP-UX. There may be other
supported operating systems that I am not aware of. From the supported
window managers listed in the literature provided with the review software, |
gather that at least Sun (Solaris 2), Hewlett Packard (HP-UX) and Silicon
Graphics (IRIX) are supported platforms for APL/M. There may be others that I
am not aware of — interested parties would have to contact Dyadic Systems.

Note 6: Window managers

Just as UNIX vendors do not integrate X Windows with the operating system, so
the windowing systems leaves the window manager unbundled. This means that
auser may conceivably use a different window manager than those provided by
the UNIX vendor (or X Windows vendor) if he prefers it. The window manager
usually controls the look and feel of the interface, e.g. the window adornments
and the buttons on the title bar, the actions performed by the three mouse
buttons, drag/drop and copy/cut/paste implementation, the mapping of the
viewable to the logical screen, icon pesitioning and more. Many free window
managers are available on the Internet, and for a taste of these I recommend
looking at “Window Managers for X", http: //vww. PLiG. org/xvinman/.

Note 7: Shell scripts

Shell scripts are the UNIX equivalent of the batch file in DOS. However, unlike
*. bat, the shell supports a very rich and complete programming language of its
own. The shell itself is the command interpreter (command.com in DOS) and
will, even on the command line, allow the competent user an amazing amount of
power and flexibility. In addition, most versions of UNIX come supplied with
more than one shell and more are available on the Internet, each with its own
features. All UNIXes are supplied with a Bourne shell and the Korn shell is
becoming very popular. Other well known shells include the C shell, bash, rsh
and more. Possibly the most interesting is dtksh, the Desktop Kornshell
(included with all CDE compliant systems) which provides a full GUI
windowing interface.

Note 8: Symbolic links
Symbolic linking is one of the few UNIX file system capabilities that Windows
NT has not managed to copy. This feature is nothing more than a pointer in the

file systemn, but can be extremely useful. On my system, for instance, the main
disk is rather full and the APL/M installation would not actually have fitted in

50




VECTOR Vol.14 No.3

its logical place (in the partition mounted as /usr as /usr/mdyalog) although
this was where I wanted to make it available. I did have more than enough space
on another disk’s partition, which is mounted as /export/home, so I created the
directory /export/home/mdyalog, symbolically linked this to /usr/mdyalog,
and just installed in this last directory. Problem solved!

Note 9: CDE

The Common Desktop Environment, or CDE, is the result of an agreement
between many of the major UNIX vendors to provide a common “desktop” as a
standard. Among other things this includes the use of dtwm as the window
manager (derived from mvm, the motif window manager), dtlogin to provide a
graphical login screen, dtksh (Desktop Komshell) as an optional shell for GUI
interfaces and a variety of desktop tools (editors, shell interface windows, email
teaders, etc)). All these features are (of course) changeable by the user (except
that only the superuser, root, has the ability to change the login interface).

Note 10: Workstations

The term “workstation” was in use in the UNIX community to denote a powerful
desktop machine running UNIX long before PCs started to be described as such.
1 use it strictly in this form. For me, a PC is a PC, and will forever remain a PC,
even if running a UNIX or UNIX-like operating system. A workstation would
typically have at least a 19 inch monitor and a decent frame buffer (advanced
graphics card to the PC users), a fast processor, lots of memory, and a build
quality that PC users can only dream about. Old workstations (like my
SPARCstation 2) may be much slower than current FCs, but are still more than
capable of doing a good day’s work and will probably run problem-free for
another decade at least — now who can say that about the 80286 or even ‘386
based machines that were current when the SPARC 2 was new?

Note 11: Component files

Most APLs provide some form of component file system. These files are the most
natural and convenient way to store data for APL applications.

Note 12: Linux

This is a free UNIX-like operating system named after its creator, Linus Torvalds.
Development was done across the Internet and progressed very rapidly. It is
now a stable system which will run on many platforms and use the system
resources efficiently. Tt is usually distributed with a free X Server from XFree86
and much software from the Gnu stable.

51



VECTCR Vol.14 No.3

Note 13: Automounting

When sharing file resources with other machines across a network, it is often not
desirable to have the other machine’s disks mounted continuously. Many
UNIXes now provide an automounter, which will mount resources transparently
when required. Probably the most obvious (but by no means only) use for this is
to mount the user’s home directory (where his/her personal files are stored,
including all initialisation scripts) so that the user will have the same
environment on any machine on the network.

Note 14: NFS

The Network File System, NFS, originated from Sun Microsystems in the early
1980s. Essentially (and very simplistically} this is a protocol whereby two UNIX
machines may share resources, especially file/disk resources, while maintaining
an acceptable level of security. It has also been ported to PCs (Sun has a product
called PC-NFS}) to allow cross-platform resource sharing as well.

Web Site References

These may be useful for those who want more information:

APL

APL and ] Home Page: hitp:/ /www.acm.org/sigapl/
APL2000: hitp:/ / www.APL2000.com/
Dyadic Systems: http:/ /www.dyadic.com/
Vector: http:/ /www.vector.org.uk/

The Waterloo APL Archives:

Sun

Sun Microsystems:
Sun User Forum:
SunWorld:

Linux
Debian GNU/Linux:
GNU

(Free Software Foundation):

Window Managers for X:
XFree86(TM): Home Page:

The Author
The Author’s web site:
The Author's email address:

ftp:/ / watservi.uwaterloo.ca/languages/apl/
Welcome, himl

hitp:/ /www.sun.com/
http:/ /www.sunuserforum.org/
http: / /www.sun.com/sunworldonline/index.html

http:/ / www.debian.org/
http:/ / www.gnu.ai.mitedu/

http:/ / www.PLiG.org/xwinman/
http:/ /www.sunsite.doc.ic.ac.uk/XFree$6/

http:/ f www khamsin.demon.co.uk/
Bob.Hoekstra@khamsin.demon.co.uk

52




VECTOR Vol.14 No.3

THE EDUCATION
VECTOR

ZARK Newletter Extracts

introduced by Jon Sandles

The ZARK APL Tutor is a computer-based tutorial for learning APL for the PC.
If you bought the tutorial package you would also receive free subscription to
the ZARK APL newsletter for one year. This quarterly newsletter provided
additional tutorial exercises and an excellent series of APL erosswords,

Vector has been granted permission to reproduce extracts from the ZARK APL
newsletter and we have decided to run a series of re-prints in every issue. We
currently have issues from 1989 to 1994 and we will reprint crosswords and
exercises that are still relevant. We welcome letters with new solutions and
comments to the problems presented (maybe in J?) and we will publish the
solutions that ZARK published in subsequent issues.

The training package was an interactive tutorial, teaching you about all aspects
of APL programming, One of the advantages of APL being interpreted is that it
is effectively already an interactive environment for learning the language.
ZARK took this a stage further by providing a number of tutorials explaining
different parts of the language and then prompting for the trainees’ attempts at
solving a number of simple problems. Often when the APL approach to a
problem is non-intuitive ZARK would explain the APL solution by simulating
the arguments that the APL creators would have had when designing the
language. This is both enlightening and amusing (and more than likely involves
a large slice of artistic licence).

Although the tutor was based around the APL*PLUS 1l interpreter it provided a
good grounding for any APL dialect. When 1 worked at Nestlé, the tutor was
used for training both mainframe and PC programmers and seemed to be
reasonably well liked (I happened to just miss out — I was the last graduate to be
trained by the more traditional “sit down and read Gilman and Rose” method).

53



VECTOR

Vol.14 No.3

The newsletter was equally as popular, its arrival being greeted by something
resembling enthusiasm (a reaction the arrival of Vector rarely received).

In this first reprint we present the Crossword from issue 1989:4

11

2%

21

22

7

30

24

25

L

31

32

36

39

Across

1.
8.
10.
14.
15,

17.
18.

37

40

13

38

The indices of the elements in the vector R containing integers between 1 and 9.
MY is a matrix of monthly totals. Annualize them.
The number of dimensions in TABLE,

Identify the elements of the matrix # not found in the list L.

Identify the elements of the integer matrix ¥E that match the elements of the
correspending matrix A, after scaling (dividing) M by the scalar ¥ and truncating

fractions.

The available programs.
It's simpler than 2=4, and gives the same value.




VECTOR Vol.14 No.3

19,
20.
21,
22,

24,
27.

28.
29.
30.
33,
36.
38
39,
40.

Identify the elements of D that are smaller than the corresponding elements of X.
Return all or nene of the columns of ¥, depending on whether BRis1or0.
The pointless inverse of the pointless expression -0,

The rankings of the elements of the vector ¥, 1 for largest, 2 for next largest, and so
on.

(,_I,_FIJIFIBTUIII,‘pIIIlBTlllIllI),l._.l

The end-of-year balances of an investment amount 4, given the annual interest rates
in the vector I,

The area of a circle having radius &.

L2 1p2 1e2 IXR'TUVH',[.21]1"123%°

T2 77 T1z ... T37 Tua.

Round each number in the matrix ¥ to the nearest integer.

Draw one card from a deck of playing cards and then put it back. Do this 100 times.
,8(25,pV)0V

-f32 1 2 3

Five fives

Down

oMW s

be i |

12,
13,
16.
20.

23.

. Are the elements of the vector 4 in ascending order?

4 is a non-negative scalar. Return 1 if 4 is positive, or an empty vectorif 4 is zero.
Throw it all away!

The indices of the rows of a matrix with ¥ rows.

The number of elements of the vector ¥ not in the matrix M.

. Ris a Boolean matrix that flags the non-zero elements of D. Return the quotient ¥+ D,

returning 0 whenever D is 0.

. 4 183 4 p'MY 32XNDBOLT!
. Are any of the elemments of the matrix ¥ negative?
. Multiply each element of ¥ by 250, replicate them ¥ times each and add the scalar T to

the result.

A logical name for a logical array of rank 2.

Are there exactly E 1s in the logical vector BIT?

The value to be subtracted from the scalar AMT to leave just its fractional portion.

If BV1+¥<100, what expression can you insert between the brackets in ¥[1+90 to zero
out the elements of V less than 1007

The indices that will re-order the vector ¥, moving the values above 10 to the front of
the vector and the values below 10 to the end.

. The cosine of 45 degrees.
26.
30.
31
32
. Bx12-9%6#6
35.
37.

All but the last two elements of the vector ¥V,
Re-order 1 3 randomly.

The sign of zero.

[ExZx3)++/t10

The total for each row of the matrix 4.
+/3 4n2

55



VECTOR Vol.14 No.3

J-ottings 15

by Norman Thomson

And now for something totally logical — meaningless maybe, but logicians don’t
give a toss about that! | am indebted to Eddie Clough for setting me off on a trail
through one of the more entrancing by-roads of J.

This piece is about sorties into sorites, which, in case you didn’t know, is a word
which means a string of related premises, for example:

No Vector render eats porridge.
All Englishmen are Vector readers.
No devolutionist ever declines porridge.

Sorites are much associated with Lewis Carroll who published a stream of
delightful nonsense in the format, the gist of which is: given the truth or falsity of
a compound premise such as “pl and p2 and p3” where pl, p2 and p3 are simple
premises such as those above,

{i) what combinations of truth and falsity in the elementary propositions which
underlie the premises are required to legitimise the sorites?

{ii} what further true premises can be made?

A nice feature of ] is b. which, in spite of being called an adverb, takes as its
argument an integer in the range 0 to 15 (actually _15 to 15 with modulo 16
conversion) and produces the corresponding logical binary verbs. The most
familiar binary verbs are

and=.1 b,
or=.7 b,
imp=.13 b. NB. implies
eq=.,9 b. NBE. equals

xor=,6 b, NB. exclusive or

complemented with the unary operator
not=.{:-,1]

The argument of b, when rendered as a four-bit binary number can be read as
the truth table of the corresponding verb, interpreting 0/1=false/true, and
reading the truth table entries as corresponding to the proposition value pairs 00,

56




VECTOR Vol.14 No.3

01, 10 and T1. (The b, verbs can also be used monadically, in which case the
result is the same as for a left argument of zero in the binary case.)

The complete set of sixteen logical operations is given in the following table in
which ' represents “not”, » represents “and”, and alternative meanings are given
in some cases, for example 7 and 11.

0 False G a'ab & nor, a'ab! 1z a!l
1 and, aab & b 9 eq, = 13 imp, a=»b,b'=»a’
2 aah',(a=>b)’ 6 xor, nots 10 b 14 a=»b', b=»a’
3 a 7 or,b'=>a,a'=»>b 11 b=»a,ats»b' 15 True

Observe the distinction between the verbs False and True and the values false
and true. The former always return the latter, regardless of their arguments.

Symbolically the premises in the above scrites, in terms of elementary
propositions are:

A:is a Veclor reader
B: is an Englishman
C: favours devolution
D: eats porridge

and using this condensation, the sorites can be summarised
Aimp notD
Bimp A
CimpD

Write the compound proposition

sl=. (A imp(not D}} and (B imp A) and (C imp D}

Now ask question (i) above, namely — what combinations of true/false values of
A, B, C and D are consistent with the truth of s1? At this point digress to
consider a verb which generates a list of the first 1. 24y. binary numbers:

binlist=,#:81.08(2&A)
Binlist 3
o0

P s OO0 a0
b DO e O
O O O

57



VECTOR

Vol.14 No.3

For presentation purposes it is more convenient to transpose this, hence the verb
bintab:

]
0
2
9

bintab=.}:ebinlis
Jby=.bintab 4

¢ 0

Qo
2

[

cco0

L= =

S

@ R
B o

1
s}
4]
0

o O

2 O

R -

NB. binary numbers Iin ordered columns

NB.

1

1
1]
o]

1

(SR

list of (i.2s8) as 4-digit binary numbers

i

i
1
[

1

R e

b4 is net only a representation in binary form of the integers i. 16, it is also an
array whose columns in order are the truth tables as described above for the
sixteen logical verbs, and whose rows correspond to four propositions, all of
whose combinations of truth and falsity are represented in the array.
Remembering that b. provides all possible logical verbs, the truth of any logical
operation involving twe propositions can be obtained by selecting two rows, and
applying the required operation. For example the logical “and” of the first and
third rows is given by

(¢{bu) and 2{by

000G O00O00O0CO0OOGLII1IO0O0I1I1

A nice device is to define

A=.08{
B=.1&{
C=, 264
D=.3&{

so that the above operation is simply A and ¢, and s1 above now becomes a
directly executable verb:

‘81 by

1101000010060 1000

which can be extended to include the proposition combinations by using a hook
with ,

[l = == I =]

[l == I = I

(== ==

[ S S = I B

SO O O

(=20 "= I ]

(=100 = ST = =)

[ =)

O a O K

[= 2 = I = I

(== =N o

TR b D

B OO

SR RN

== W=y

SIS

58




VECTOR Vol.14 No.3

It is useful also to be able to select only those columns for which s1 is true, or
alternatively only those for which si is false. Recalling that si is a verb, this
suggests the following adverbs to qualify such premise verbs:

true=.1 : "#"i-X.' NB. adverb gives cols for which x. true
false=.1 :"#"i~(not x.} NB, adverb gives cols for which x. false
s1 true bd4

00011

00001

oo ioo

01100

which says in substantive terms that s1 is confirmed provided Vector readers
neither favour devolution nor eat porridge (cols. 4/5), porridge eaters are neither
English nor read Vector (cols. 2/3), and there are no English devolutionists.

Question (if) concerns what further information can be deduced. Confining
attention to pairs of propositions, the original three premises connected AD, CD
and AB respectively. In order to make statements about the other three
proposition pairs, namely AC, BC and BD (glimmerings perhaps of artificial
intelligence here!), first convert a string such as ‘AB’ into numerical indices, and
then apply these to the columns of s1 true bu. Upper-case characters are
selected by

caps=. (65+1.26){a.
and the conversion and indexing processes by
ones=. {: 8{{~capsai.)

{si true bk4)ones 'AC?
\]

(S = I 1

0
i
o]
0

Now determine which of the columns of the truth table for two propositions are
represented in the above columns:

lbin2=,binlist 2
Y

RO

i
[
i

bin2 e.{si1 true b4)ones TA(C!
1110

o9



VECTOR Vol.14 No.3

Converting this binary number to a decimal integer gives the index of the logical
verb which applies to A and C, which can be incorporated into a verb which
locates the truth table number for a given pair of propositions:

ttno=. (25#.)8(bin2&e. }Gones
(51 true bu} ttno VAG?
14

that is A=>C", or in words, no Vector readers are devolutionists. For the recoerd,
the other conclusions are that Englishimen don't favour devolution either, nor do
they eat porridge.

It is a minor irritation that the array bu has to be set up in advance, since as far as
I am aware, there is no mechanism in ] which allows the body of a verb to be
analysed as a text string. One possible way around this is to duplicate the
premise as a character string and count the number of capitals:

pno=, +/@{capsége.)
pno '(A imp(not D)) and {B imp A) and (C imp D)’
4

Here is another sorites:
There is no sense in this article.
Whatever is not sensible is infolerable.
J users are’invariably tolerable.

for which the elementary propositions can be represented:

A:uses]

B: is this article
C:1is intolerable
D : is sensible

The compound premise defining the above is:
§2=. (B imp(not D}} and ({(not D} imp C) and (A imp {(not CJ))
from which it can be concluded that:

{s2 true b&)ttne 'BC! NB. identify truth tabie for A/B gilven s2
13

which is perhaps better not translated!

60




VECTOR Vol.14 No.3

APL2000 User Conference Nov 2-5 1997
Sheraton World Resort, Orlando, Florida

reviewed by Ray Cannon

This was the second year that the APL2000 User Conference was held in
Orlando, and the first that I have attended. As a regular attendee at the annual
International APL conference (which I sadly missed this year) 1 was very
impressed by the organisation, contents and location, and would like to thank all
the hard working individuals at APL2000 who made it all possible.

The conference was held over 4 days, 2 of which were given over to training
sessions, and the other 2 to talks, reviews, “product announcements” and
presentations.

At registration, everyone was given a folder complete with time-table,
conference attendees list, notes for each session (often with complete photo-
copies of the overhead projection foils) and alse a very nice fleece jacket with an
APL2000 emblem on it. In addition to beta copies of APL+WIN (version 3.0) and
floppy disks with additional material from the sessions, we were all given a box
of six “self help” audio tapes by Barry Green (who was one of the invited
speakers).

The overall level was very high, and [ hope to be able to attend again next year.

Training Sessions

Ray Polivka led the “Introduction to APL” course. This was a 6-hour course in
two parts designed for persons with no previous APL knowledge.

Rick Butterworth led the “Introduction to Programming in APL+Win” course.
This was another 6-hour course but for APL programmers “new” to Windows.

Gary Bergquist led the “Computer Based Training for APL” course. This was a
3-hour introduction to ZARK's APL Tutor.

Gary also led the “Intermediate APL Programming” course. This was another
6-hour, two part course, and was designied for APL programmers who wanted
an introduction or review of some of the more advanced features of APL.
(Nested arrays, Control Structures, and performance tuning.)

61



VECTOR Vol.14 No.3

Eric Lescasse led the “Intermediate APL+Win for Applications” course. This was
ancther 6-hour two part course designed to show how to bring all the elements
{control, forms, functions, etc.) of a successful Windows application together.

Finally, there was an “Intermediate Programming in APL+Win” course given by
some of AFPL2000's staff. This course demonstrated some of the Windows 95
controls included in APL+WIN.

As can be seen from the above, the width of training sessions available was very
great, and the courses were given by programmers of {APL) world renown. I was
however unable to make up my mind which I should attend, so played “hockey”
from school, and sneaked off with my daughter to visit Disney’s “The Magic
Kingdom” to see Mickey Mouse on the Sunday, and then to Universal Studios
for the rides, and then on to the Hard Rock Cafe on the Wednesday.

Monday 3rd November

Following an early start at 8am of Registration and Refreshments, Eric Baelen
(the President of APL2000) gave his welcome address. He described APL2000
and its parent company LEX2000, and its roots in GE (General Electric). APL2000
has offices in six states, and in Nottingham UK. It employs 34 pecple {11 at its
startup in 1995) and is a “full service APL Vendor”, a company “Built on APL".

We were warned that last year several laptop computers were stolen during the
conference. One attendee suggested that we could “fit your laptop computer in
the safes in your room” to which another attendee replied “I've already got my
shoes in my safe”. I was a bit puzzled about this, until ] realised that in addition
to the safes being fire-proof, they were also air-tight.

Eric then went on to give a preview of APL+WIN version 3.0

APL+WIN Version 3.0

Initially Eric described the new features in release 2.0 which came out since the
last user conference. These included enhancements to Trees and Lists (Drag and
Drop, In place editing), RTF controls, OCX controls, and APL2 support
enhancements.

Due for final release in February 1998 (along with APL DOS 6.0} we, the
attendees, had already been given beta copies of version 3.0.

This release’s new features include :

« TCP/iP interface (ON T}

62




VECTCR Vol.14 No.3

+ APL+Win as an Inter/Intranet server via ODBC (APL+ODBC)
+ Media Player
+ Numerous Other GUI Enhancements

To my mind, one of the most useful features was also one of the simplest, access
to the time stamp stored within each function.

Quote of the session: “If )OFF YES suppresses the conformation prompt, what
does }OFF NO do?”

Ryder Systems

After the morning coffee break, Scotty Elmslie of Anderson Consulting described
the Financial Modeling Package (FMP) and “OPTIONS” built on APL that Ryder
Systems use.

Ryder Systems are a large (120 locations) company whose primary business is
the leasing and maintenance of vehicles with all the associated logistics. (The
well known yellow “Ryder Truck Rental” part of the business was sold and now
forms no part of their current business.)

FMP was developed for the mainframe back in 1978 and is a multi-dimensional
database with model data and programs in “keyed” files. Scotty went on to
describe briefly how the application/ APL usage evolved from 3 applications and
1 APL programmer with 10 users in 1975 to many mainframe and PC
applications with 6 developers and over 700 direct users (500 users of OPTIONS).

OPTIONS is a package that allows the user to price a leasing and maintenance
contact right through to producing the legal documents and setting up new
customers for billing. I was impressed by its clarity and ease of use. Quote of the
session: “Used Cars Sales Persons using an APL system to price the product in
front of the customer.”

(Note. At one time OPTIONS used “Power Builder” to print the legal reports, but
their users were not happy with this and now printing is done by MS Word.
Moral, use the right tool for the job, not necessarily APL.)

Scotty went on to explain why APL was used and what challenges APL
programmers would have to face in the future.

63



VECTOR Vol.14 No.3

Breakout Sessions

The bulk of the conference was 6 sets of 3 concurrent sessions (a total of 15
different sessions, some of the more popular ones being repeated.) The sessions 1
was unable (unfortunately) to attend were:

« Brian Chizever {AP1.2000) on “Windows Design Guide”;
+ John Walker (APL2000) on “Frequently Asked Help Desk Questions and

Answers”;
« Gary Bergquist {ZARK Inc.) on “Tune-up your APL from an Actuarial
Perspective”;
. ]eff Pedneau (Softmed Systems) on “Code File Management”;
« Rick Butterworth (Peak Software Inc.) on “Business Graphics and APL+WIN";
+ James Wheeler (various) on “Object-Based Applications Architecture”;

- Colyn Phillips {APL2000) on “Difference between Print and Online
Documentation”™;

+ APL2000 Staff in an Open session.

On Monday afternoon, after a well earned lunch, 1 attended Mark Osborne and
Michael Steiner’s (of APL2000) “Introduction to the Network Interface”. This was
an excellent introduction to MS Windows sockets and APLAWIN and
APL+UNIX new O#T system function, and left me wanting to try it out. Quotes
of the session:

“Save your workspace before you do anything”
“Just like any other standard, everybody has got their own”

“If you are talking to yourself, you want to use APL”

After a coffee break, | attended James Wheeler's excellent talk “Internet Client
Application in APL+WIN" which came with some free software {(an OCX of
custom internet tools) and the quote “Kids, it's safe to try this at home”. Amongst
the gems of wisdom James gave out was this on ASCH vs Binary in FIP transfer:
“ ASCII will do you favours for which I was often NOT very grateful”.

James’s session was immediately followed by Michael Steiner and John Walker:
“Making your APL+WIN Application into an ODBC Server”. This session also
came with software, a beta copy of a 32-bit DLL and MS ODBC Driver. With this
software we were shown how ODBC client (non-APL) software using standard
SQL could access data in proprietary (APL) systemns. I considered that this
session had the most far-reaching consequences of all the ones I attended.
(Quote: “ODBC is a standard, which means each implementation is different.”)

64




VECTOR Vol.14 No.3

The final talk on Monday was given by Barry Green of the Pinnacle Group
entitled “Selling APL Applications”. Barry’s talk was most interesting and
enjoyable, as well as being the most interactive. (I am also enjoying his audio
tapes.) Barry — with 25 years’ experience in selling, he started out selling shoes
— proved to us that we are ALL Sales Persons, whether selling a product (an
application written in APL), a language (APL), or ourselves (APL programmers}.

Barry's gems:
“The most important thing about selling is the close.”

“20% of all prospects produce 80% of the sales, the trick is to know which to
avoid.”

“Good sales persons control the environment.”
“Customers buy, Be prepared, KNOW.”
“Know your custemer’s needs, SOLVE your customer’s problem.”

And how to close a sale? Say “We need to know right now.”

Barry gave a host of interesting stats including “87% of all persons who ask for
literature, expect to purchase {(but not necessarily from youl)”.

Tuesday 4th November

Following Monday’s Banquet and Entertainment, the early start on Tuesday
morning was too much for me. I missed the “Continental Breakfast” and
“Opening Remarks” (I did however manage to get a full American breakfast in
the hotel’s restaurant) and arrived just in time for the invited speaker Rick
Butterworth’s (Peak Software Inc.) talk on “Data Warehousing.”

Now “Data Warehousing” was a new term for me, and I am still a bit unsure of
what it is offering, so T will supply a few quotes from Rick’s accompanying
paper/slides,

Why Build a Data Warehouse?

+ Because we can

- Lets you see your Data

« Adds Value to a Product or Service
+ Competitive Advantage

65



VECTOR Vol.14 No.3

Data Warehouse Goals:

« Publish Quality Documented Data
+ High Speed Personal Access
+ Multi-Dimensional Viewpoint

+ User Tools to Analyze, Organize and Present

“The first Data Warehouse goal is to publish usable data. This is more than
extracting and dumping data to the Warehouse. It means the data is cleaned up,
verified, and quality control tested before being released for use.”

This all seemed a bit “eld hat” to me and jargon for the sake of jargon, until I saw
the flyer for

“Highlander” — A Data Mining System for On-Line Analytical Processing, a
product from Peak Software Inc.

and then the penny dropped.

Quotes of the session:
“APL is the only language that lets you walk all over your data.”
“Data Warehousing justifies its own platform.”
“The real cost in cleaning up the data.”

After the mid-morning break, 1 attended Bill Rutiser's (APL2000) session on
“OCX’s (and other things) Exposed”.

Bill's talk cut through the jargon (OLE, OLE2, COM, DCOM, OLE again, COM+,
Compound Documents, Automation, Controls-OCX, Controls-ActiveX ... “more
names than concepts”) and one of his slides was even entitled “Names changed
to protect ...”

Bill's session was very good, but a bit like a Chinese take-away meal, very
satisfying at the time, but half an hour later I felt T could consume it again,

Quote of the session (describing the behaviour of an Object Instance): “They do
something when PREvoked.” {invoked).

66




VECTOR Vol.14 No.3

Tuesday Afternoon

Brian Chizever's “Interfacing to External Procedures” would have been better
preceding Bill’s earlier session rather than following it as it put OCX into context,
but that did not detract from its content.

‘Brian provided an overview of the methods available from APL2000 of accessing
the outside world. He covered €MD, OCALL, DDE, ONA, ONCALL, Custom
Messages, ON I, VBX, and OCX/OLE.

OcMD — Run a DOS command

Avoid using it as it:
+ flashes a DOS window on the screen;
- bypasses security limiting access to DOS subsystem;
-« APL may not wait for completion;

+ and there may well be an APl call available.

CCALL — Call a machine language routine
Very good if you have the machine code but suffers from several problems:

« difficult {for APL’ers) to write;
- machine code differs between APL+ products;

« slow to run the first time it is called, but much faster on subsequent calls.

DDE —~ Dynamic Data Exchange
Limited to Windows 3.1 where it is the standard method of communication
between applications. It can be quite difficult to use.

ONA — Name Association

Executes a command in & DLL {Dynamic Load Library). Works on all Windows
platforms, but is hindered by the differences in 16- and 32-bit DLLs used by
Windows 3.1 and NT. Also it does NOT support filters and callbacks.

OWCALL — Windows call
Similar to ONA in that it executes a command in a DLL, but it does support filters
and callbacks.

Custom Messages
This method uses O¥CALL to pass information between two of your applications
running on the same machine.

67




VECTOR Vol.14 No.3

ONI — Network Interface

This is a high-level Winsock interface (the standard Windows TCF/IP interface
driver), and allows communication between machines and distributed
processing (client/server).

VBX — Visual Basic Extension

OCX — OLE Control Extension (Active X}

These two methods are similar. Both work on Windows 95, but NT will not run
VBX and Windows 3.x does not run OCX (unless it is also running Win32s). Add
new classes to OWI, each with properties, events and methods. {(See Formula One
below.)

I found this session very useful,as it helped put all these terms into context.

Final Breakout Session

Following the mid-afternoon break was the final breakout session, Eric Lescasse’s
second run of his well attended session on “Formula One OCX and APL+Win".

Formula One is an Excel-like spreadsheet control. Note that unlike Dyalog
APL/W, APL+Win does not have its own inbuilt grid object. Eric demonstrated
that the addition of Formula One more than made up for the lack of an inbuilt
grid control, giving in addition to a grid object, the ability to load and save data
as Excel spreadsheets or HTML documents, and a WYSIWYG print preview.
was very impressed by Formula One, and thought it would make a very useful
addition to an APL+Win programmer’s tool box.

PackageWorks

The final invited speaker, Richard Krafchin, gave a demonstration of his
company’s fully integrated system. This system (entirely written in APL)
encompassed all the work done by computer in his company from messages to
order processing to payroll to diary to invoice production.

This was followed by Eric Baelen’s closing remarks.

My thanks once again to Eric and his team (with a special thank you to Sonia
Beekman, the Conference Coordinator). I found the 1997 APL2000 User
Conference in Orlando a most useful and enjoyable experience. Thanks,

65




VECTOR Vol.14 No.3

APL as a Tool of Thought X
Hoboken, NJ, January 31, 1998

reported by Ed Shaw

It was a brisk and beautiful day for the Tenth APL as a Tool of Thought. Held at
Stevens Institute of Technology in Hoboken, New Jersey, at the top of a bluff
overlooking the skyscrapers of midtown Manhattan, NY/SIGAPL could not
have selected a better venue for this latest in a series begun in 1983. As has been
the tradition, nearly every speaker submitted a paper to be published in the
proceedings.

The day began with a leisurely cup of coffee and a Danish pastry or NYC bagel
over which attendees could greet old friends, make new acquaintances, and
peruse the proceedings. The opening plenary session contained two surprises:
Adin Falkoff was invited from somewhere in the depths of retirement to present
the Tverson Award to John McPherson, APL’s elder statesman. McPherson is a
handsome eighty-eight year old gentleman with a ruddy face and twinkle in his
eye who was TBM’s first technical vice president. He brought Ken Iverson (who
was also present) to IBM's System Research Institute, where Ken taught what
was then called the Iverson Notation. John has been a strong supporter of APL,
particularly within IBM, ever since it came into being. He has also provided
consistent encouragement for the Tool of Thought seminars and has attended
nearly all of them.

Eric Baelen gave an enthusiastic plenary talk encouraging all of us to keep the
faith. He presented an impressive list of companies in a variety of businesses that
have used APL as the basis for their success.

From all reports, the quality of the presentations, of which there were fourteen or
30, in three parallel sessions, was generally excellent.

Of those 1 attended, 1 was particularly impressed by what Richard Krafchin has
built for the five person promotional advertising company that he and his wife
run. The functionality is powerful — everything they need to administer their
operation from recording phone messages, planning projects, accessing historical
costs, and maintaining the current accounts. On top of that Rich has
experimented with the user interface to make it as simple, easy to use, and
attractive as someone in advertising might expect. Who needs MS Office, Lotus
Smart Suite, or an Oracle database? Not he. He has built it all with APL.

69



VECTOR Yol.14 No.3

Eric Iverson gave a clear and straight-forward presentation of object oriented
programming (Classes are collections of data and methods. Objects are an
instance of a class. Methods are functions.) and demonstrated how it will be
implemented in J's next release in March. Will others follow suit?

Linda Alvord combined her artistic, mathematical, and programming talents in ]
to do what she calls Derivatives for Dancing and what might also be called
Computational Origami. Writing in J, she created figures such as a boat or a fish
and moved them along a curve so that the figure used the derivative of the
function/tangent to the curve as its base, causing the figure to appear to move in
a natural fashion along the path of the function.

Now that other interpreters such as Java have become accepted as legitimate
programming tools, Fred Waid feels that SGML and its offspring: HTML, XML,
SMIL, and what have you on the Internet, offer a unique opportunity for APL to
shine. With an interactive multimedia web broadcast as an example, Fred
suggested that the rapid development time, computational power, and speed of
APL can give APL a real competitive advantage to those willing to use it in this
seemingly alien environment.

Do you think the Y2K problem is a lot of hype? There certainly is hype, but it
seems to be warranted. Clement Kent suggests that it is even worse than people
think. In an engaging presentation, he demonstrated that not only is the year a
problem, but the leap day, and other days are as well. It's not clear how many
programmers know the rules of leap years, particularly the third rule: century
divisible by 400. Horrible events like the two aluminium smelters that crashed
and burned on February 29, 1988 may occur on a broader scale. Obsolete,
unsupported air traffic control computers, mainframe computers that use as a
reference clocks in Geodesic satellites that will reset to zero (because of a ten-bit
data store) on August 22, 1999, and Internet routers sold as recently as July, 1997
that will crash on January 1, 2000 make one contemplate going back to nature for
a while.

The day ended with an entertaining talk by Gary Bergquist, whose
programming skills are well known, but whose talent as a standup comedian is
not. He had us all laughing with him as he dryly and strongly defended APL as
A Perfect Language!

NB. The Proceedings which include other papers such as Armstrong and
Objects, Bernecky and Compilation, Bhizever and GUI Design, Graham and APL
Zero, Karman and Pension Projections, McCormick and Bayesian Modelling, and
Mansour and Non-looping Mortgages, are available from NY/SIGAPL for $15.

70




VECTOR Vol.14 No.3

The Computer Construction of
Weaving Designs

by Keith Smillie (smillie@cs.ualberta.ca)

I'#'l'#’l'#" ] algorithms are developed for deriving the weave of a
piece of cloth from the instructions for setting up a loom,
:- -ﬁ- -#- o  for the converse operation of deriving the setup instructions
from the weave, and for introducing colour into the weave.

&

L,

Introduction

Weaving is the art of forming a fabric by interlacing threads at right angles and is
performed on a frame called a loom. The threads at right angles to the weaver are
the warp threads, and the threads parallel to the weaver and which are inserted
between the warp threads are the weft threads. The warp threads are alternately
raised and lowered to create a shed through which the weft thread is inserted.
They are fastened to a warp roller at the back of the loom, pass over a back beam
and through the eyes of vertical wires called heddles, and then through reeds
which help keep them paralle] and in the proper sequence. The woven cloth
passes over a front beam and is then wound onto a cloth roller. Each row of
heddles is attached to a hamness, and there may be two, four, eight or more
harnesses. Each warp thread passes through a heddle on any one of the harnesses.
The harnesses are raised and lowered by treadles which are worked by the fingers
on a table loom and by the feet on a foot loom. Harnesses may be tied together so
that more than one may be operated by the same treadle. As a group of warp
threads is raised or lowered by the treadles, the shuttle with the weft thread is
inserted into the shed between the two groups of threads.

Drafts

The instructions for setting up the Ioom with the warp threads are known as
drafts. The threading draft determines the order in which the warp threads are
drawn through the heddles, the tie-up draft gives the connection of the hamesses,
and the treadling draft gives the order in which the treadles are used. The
resulting design is known as the weave draft. A cloth diagram is a rectangular

71




VECTOR Vol.14 No.3

display of these four drafts with the weave draft in the upper left, the threading
draft in the lower left, the treadling draft in the upper right, and the tie-up draft in
the lower right.

The cloth diagram for an upper left corner of the design given at the beginning of
this paper is the following;:

The threading draft shows that the second and eighth
warp threads pass through heddles connected to the first
harness, the third and seventh threads pass through
heddles conmnected to the second harness, etc. The tHe-up
shows that the first treadle is connected to the first and
fourth harnesses, elc. The treadling draft shows that the
= = m, treadles are used in the order first, second, third, etc. Dark

-w ++ squares in the weave draft indicate the visibility of the
- = |, 4 corresponding warp threads.

Constructing the Weave

For computational purposes the various drafts may be conveniently represented
by boolean tables. Thus the cloth diagram of the previous section may be
represented as

e T U +
1L 100100115100 Q)
2001110031010 0]
1001101100001 0]
1100111001010 0]
11100100 1112°00 0]
|60 11 000110j000 1}
{001101100100010]
120011100101 00}
111001001 12{1 00 0]
01100011 0J000 1}
B T T —— - !
1100010001110 0}
[ 001010000110}
100100010 0{0011}
|01 000001O0{100 1}
e T P +

72




VECTOR Vol.14 No.3

where the interpretation of the 0s and 1s is apparent. In this section we shall show
how the weave draft may be very simply calculated from the threading, tie-up
and treadling drafts. For convenience, we shall let these four drafts be represented
by W, H, I and R, representing weave, threading, tie-up and treadling, respectively.

First let us define the logical dot product
both=, +./ . *,

which gives a value of 1 if at least one pair of corresponding items in its list
arguments is 1, and 0 otherwise. Now the expression

R:; (|:I); T=. R both |:I

has the value

o e +
[1000]1001{100 1}
10100(1100(110 0}
100 10(0110({0110]}
10100/0021 11110 0}
i1 6 0 0] i1 0 0 1}
10 0 0 1] {0 011}
10 0 1 0| 10 11 0}
1010 0] (110 0}
1100 0] i1 0 0 1}
10 00 1] (0 011}
et e -+

The rows of the third table T indicate those harnesses activated by the treadles in
the corresponding weft rows of the weave, and, for example, the first row
indicates that the first and fourth hamesses are affected. Consequentially, the
expression T both H, which is equivalent to (R both |:I) both H will give
the required boolean representation of the weave draft. This may be seen from the
expression T; H; T both H which has the value

e +
1100111 000100¢1{11001001 1}
111 00j000101000{10011100 1}
1011000100031 00l00110110 0}
1110001 0000010!10011100 1}
11 060 1} 11001001 1}
16 0 1 1} (01100011 0}
1011 0} 1001101100}
1110 0} 110011100 1}
11 0 0 1} 111001001 1}
10 0 1 1} 101100011 0}
e ———————————————— ot e +

73



VECTOR Vol.14 No.3

where, for example, the first row of third table, which gives the weave draft W,
shows that the first, second, fifth, eighth and ninth warp threads are visible in the
first weft row.

We may define the verb

weave=., (2&get both 1: @ (l&get)) both O&get
where

get=. >@{

whose argument is the three-item list H;I;R of threading, tie-up and treadling
drafts and whose result is the required weave draft. Finally a cloth diagram is
given by

diagram=. {(weave);2&get),: (0&get) ;l&get

whose argument is the same as that for weave. The cloth diagram in the previous
section is given by the verb cdiagram, with the same syntax as diagram, and is
given in the script file in the Appendix.

Analyzing the Weave

In this section we shall consider the comstruction of the threading, tie-up and
treadling drafts from the weave draft. First of all, we note that if a is an arbitrary
table, say,

14171
25282
36393

then the expression <"1 | a gives the list

e +
{11 2 314 5 6|1 2 317 8 9|1 2 3]
e +
of the columns of a,and = <"1 |: a gives the table
10101
01000
00010
of their distribution.

74




VECTOR Vol.14 No.3

For a given weave W the threading draft is simply its column distribution so that
H=. coldis W
where
coldis=. = @ (<"1 & [:)
and the treadling draft is
R=. |: coldis |: W
The tie-up draft is given by
I=. (-.|l: R) either W either -.|: H
where
either=. *./ . +.

is the logical dot product which gives a value of 1 if at least one item in each pair
of corresponding items in its list arguments is 1, and 0 otherwise.

We can use the expressions in the last paragraph to define the verb

drafts=. 3 : 0

W=. v.

H=., coldis W

R=. |: coldis |: W

I=. {~.]: R) either W either -.|: H
H;I;R

)

which gives a threesitem list of threading, tie-up and treadling drafts
corresponding to the weave draft given as the argument. For example, if W is the
weave draft of the example in the previous section, then the expression drafts W
has the value:

75




VECTOR Vol.14 No.3

R +
}1 0001000 111100100 0}
|10 100000110100 1[010 0}
{001000100J|0011|001 0}
000G 101000/0110/010 0]
| | i1 00 0}
| ! 10 0 0 1}
{ ! [0 01 0}
{ ! 1010 0]
| { 1L 00 0}
| i {1000 14
e +

We note that even though some of the rows of the threading and tie-up drafts
have been permuted, they may be used to construct the original weave draft from
which they were derived. Indeed, for arbitrary drafts H, I and R, the expression

W -: weave drafts W=. weave H;I:R

should have the value 1.

Colouring the Weave

The introduction of colour into the weave is a very simple process if we make use
of just a few of the techniques discussed by Clifford Reiter in his book Fractals
Visualization and |. In particular, we shall use his development of the RGB colour
model and the verbs for generating and viewing raster graphics.

In the RGB colour model each colour is considered to be composed of certain
fractions of the three basic colours red, green and blue. For example, if all three
colours are absent, the resulting colour is black; if they are all present with a
fraction of 1, the resulting colour is white; and if red and green are fully present
and blue is absent, the resulting colou-r is yellow,

It is convenient to represent the RGB model as a unit cube with the vertices
representing the following colours: (0,0,0) black, (0,0,1) blue, (0,1,0) green, (0,1,1)
cyan, (1,0,0) red, (1,0,1) magenta, (1,1,0) yellow, {1,1,1) white. There is a one-one
correspondence then between any colour combination and points on or within the
unit cube. Since in a rasler image each basic colour is represented by one byte,
each colour coordinate may be represented also by a triple of integers ranging
from 0 to 255 so that, for example, the combination (255,255,0) represents yellow.
Finally to generate and view the raster images we shall use the two verbs
writebmp8 and viewbmp.

76




VECTOR Vol.14 No.3

When specifying colours for weaving designs we shall represent the eight colours
corresponding to the vertices of the colour cube in the order given above by b, 1,
g, o r, m y and w, respectively. Furthermore, we shall introduce eight
intermediate combinations of colours represented by B, L, G, C, R, M ¥ and W,
where Y represents (128, 128, 0). This representation is given by the list

Colours=. 'blgermywBLGCRMYW' .

The corresponding coordinates are given by the table Palette with rows 0 0 0,
0 0 255,..128 128 128, 0 0 128§, .... The colouring of a design according to
these parameters is handled by the verb BMP given in the Appendix. The details of
this verb need not concern us, and we shall note only that its right argument is a
weave draft produced by the verb weave and the left argument specifies the warp
and weft colours as discussed in the next paragraph.

A coloured weave corresponding to specified threading, He-up and treadling
drafts is given by the ambivalent verb £ront defined as

front=. 3 : 0
('b';'w') BMPview weave Y.

x. BMPview weave Y.

}

where the right argument is the three-item list #;I;R of the drafts. The optional
left argument is a two-item list giving the warp and weft colours, and, for
example, the list 'xg' ; 'y " specifies a warp with alternate red and green threads
and a yellow weft, and the list 'b"; "w" gives the default black warp and white
weft. A similar verb back will specify the reverse side of a coloured weave. The
verb BMPview defined as

BMPview=. 3 : 0

x. BMP y.

IMAGESize viewbmp IMAGEfile
}

generates and then displays the file containing the raster image of the weave. The
window size and the file name are given by the global variables IMAGEsize and
IMAGEname, respectively, whose default values are given in the script file.

An indication of the influence of the sequence of colours for the warp and weft
threads may be seen from the two designs given below which have the same



VECTOR Vol.14 No.3

drafts as the one shown at the beginning of this paper which has an all black warp
and an all white weft. The left weave has a warp and weft given, as a left
argument to the verb frent, by ("bw’;'wb') while the right weave has the
warp and weft given by ('bwbb';'w').

s
s

T
Pl ar N
A
PR AT
A A
LF L LR MY Y

eading . |As hreaded l:!

Filanurmber

. A Windows Loom

Some of the verbs developed in the previous sections have been used in the
construction of a Windows form that shows the weave resulting {rom any one of a
number of combinations of threading, tie-up and treadling drafts and warp and
weft colours. The figure shown on this page gives the appearance of the form for
one of these combinations. The script file is given by anonymous ftp at
ftp.cs.ualberta.ca in the file pub/smillie/loom.js. Documentation is
given in the Help menu which is as follows:

The “Windows loom” permits the generation of the designs resulting from a
number of combinations of threading, tie-up and treadling drafts and warp and
weft colours. Selected designs may be stored as graphics files for later use. The

78




VECTOR Vol.14 No.3

selection of drafts has been taken from “Weaving. A Handbook for Fiber
Craftsmen” by Shirley E. Held (Holt, Reinhart and Winston, Inc., New York,
1973).

The fallowing drafts are available and are sefected from the appropriate menu:

Threading: Twill, Goose eye, Rosepath I, Cord, velveret, Broken twill, Bird's
eye, Wheat

Tie-up: Plain, 2/2 Basket, 2/2 Straight twill, 1/3 Straight twill, 3/1 Straight
twill, Herringbone twill

Treadling: Straight, 2 Straight, Reverse, As Threaded
Either the front or the back of the design may be viewed.

The colour of each of the warp and weft threads may selected from the following:
black, blue, green, cyan, red, magenta, yellow, white and grey with the default
colours being black for warp and white for weft.

The following controls are available:
OK:  Generates the design for a given combination of drafts, etc.

Save: Saves the displayed design as a bit-mapped file numbered 1, 2, ..., 25 and
increments the file number by 1. The file number is attached to the base file
name with a default value

"c:\j303a\temp\ tempxx.bmp"
where "xx" is the file number.

Reset: Resets the drafts, view option, warp and weft colours, and file number, and
the design to the ] logo.

Cancel: Exit program

Help: View this text.

Keith Smillie

Department of Computing Science
University of Alberta

Edmeonton, Alberta T6G 2H1
smillie@cs.ualberta.ca

79




VECTOR Vol.14 No.3

References

Frey, Berta, 1975. Designing and Drafling for Handweavers. Collier Books, New
York.

Held, Shirley E., 1973. Weaving. A Handbook for Fiber Craftsmen. Holt, Reinhart
and Winston, Inc., New York.

Hoskins, Janel A, and W. D. Hoskins, 1981. “The sclution of certain matrix
equations arising from the structural analysis of woven fabrics.” Ars
Combinatoria, vol. 11, (June), pp. 51 - 59.

Reiter, Clifford A., 1995. Fractals Visualization and J. Iverson Software Inc.,
Toronto.

Appendix. Script file

IMAGEaize=; 256 256
IMAGEfile=: ‘'e:\j303a\temp\temp.bwp'

bothe, +./ . *,
either=, *./ . +.

get=. >@{

coldig=. = 8 (<"1 @ |:}
replace=, J { ({&a.)@[

weave=, (2&get both |: @ (l&get))} both O&get
diagram=. (({weave);2&get},: (O&get);l&get

Cdiagram=. 2 : Q

D=. 32 1784replace weave Yy.
H=. 32 254&replace O&get vy,
I=, 32 434replace l&get y.
R=. 32 2B4&replace 2&get y.
{D;R) ,:H;I

}

drafta=, 3 : 0

W=. .

H=. coldis W

R=. |: celdis |: W

I=. {~-. |: R) either W either -. |: H
H;I!'R

}

welaize=, 3 : 0
empty IMAGEsize=: 24§ y.
}

filename=, 3 : O
empty IMAGEfilem: y.
)

front=. 3 : 0
(*h';'w') BMPView weave y.

80




VECTOR Vol.14 No.3

x. BMPview weave ¥.
)

back=, 3 : 0
{'b';'w') BMPyiew —. weave y.

. BMPview -. weave y.

— W

BMPview=. 3 : 0

x. BMP y.

IMAGEsize viewbmp IMAGEfile
}

BMP=, 3 : 0

('b";"w") BMP ¥.

P=. (<"0 y.} {&> ({I.(].5v.) (§&.5) =.)
Palette=: {255*§:i.8),128 128 128, 128*}.%:i.8
Colours=: 'blgormywBLGCRMYW'

(Palette;Coloura i. P) writebmp8 IMAGEfile

}

NB. Drafts for "upper left cornert
HO=. 4 321=/412343214
I0=., |:> 100 1;1 1
RO=. |: 12 34=/1

;

0;
3

N o
N o
[T
e
wo
N o
r o
o

NB. Dzafts for main £i
Hl=. 4 32 1 =/ 24 5 4 3432
Il=a, f:> 100 1;110 11¢0;0 11

qgure
1
0; ;

Rim, }: 1 234=/28 $12321432141234

2
o

(=1 o)

writebmp8=: 3 : 0

{*spal';'sbop')=,$@>"0 x.

xabmpe=, sbmp+ (i,2) *4 | -shmp

ha, 524289 0, (*/xsbmp) ,0 0,28spal=.0{spal

h=. (54+(4*spal) +*/xsbmp)} ,0, {(54+4*spal} 40, {|.sbmp) ,h
head=, 'BM',,a.{~,]."1 (4#256)#:h

pal=. ,{0,%1~[.%1 >{.x.}{a.

bmp=. ,|.{xsbmp{.>{:x.){a.

(head,pal ,bop) 11:2 <y.

}

viewbmp=: 3 : 0
256 256 viewbmp y.

wd 'pc bmpviewer closeok;pn ',y.,‘';’

wd 'xywh 0 0 ', {":<.x.82.5),';ec g isipicture;set g ',y.,";’
we 'pas 0 O0;pshow;’

H

81



VECTOR Vol.14 No.3

HTML Basics for APLers - Lists

by Adrian Smith (causeway@compuserve.com)

Introduction

This is the third article in a series, which is rapidly becoming open-ended as the
HIML ‘standard’ races ahead. Having covered tables in Vector 14.1, I would now
like to back off to something rather simpler and walk through the various kinds of
indented and bulleted list. You can check back to the basics in Vector 13.4 [3] and
I should repeat that all the sample code is available on the Causeway web site
(www.causeway.co.uk/html.zip) in both +Win and Dyalog formats. This code
may be freely downloaded and used with no restrictions.

I'have continued to work with the NewLeaf ‘object model’, although this allows a
good deal more fine control over detailed appearance than can sensibly be
emulated in standard HTML. Partly this is simply for my own benefit ~ it means 1
can use the same application code to target either paper or the Internet. In +Win,
it is a matter of swapping in a different function file, in Dyalog I simply switch
namespace. Mostly however, il is to give the design ideas a potential lifespan of
more than the next few months. HTML is evolving itself rapidly out of existence,
and looks likely to be replaced (in all but name) by the Microsoft Word document
format, complete with style tables and all manner of fancy formatting. By using a
conceptual model built around page, paragraph and text properties I stand a
chance of building something that may still be useful 5 years ahead.

Content vs Layout

As with_all HTML design, you must start from the proposition that you are
describing content; the browser is responsible for the layout. This is absolutely
contrary to the behaviour of packages like Winword, where you control:

* the exact indent point, which is where the text will wrap to if you go on a little
too lcng and your bullet point spills over more than one line in the way (his
one is doing,

*  the negative offset of the bullet
¥ the character used for the bullet symbol

.. in short you can make a complete mess just by pulling a few tab stops around
on the ruler. In HTML you simply say that you want to begin an ‘unordered list’,

82




VECTOR Vol.14 No.3

an ‘ordered list’, and then you provide a sequence of “list items’ which the
browser will arrange appropriately. You have almost no control (yet) over the
indenting and paragraph spacing which will be used, nor do you get much
control over the bullet character.

This is sometimes a little frustrating, and can be got around by extreme measures
such as those used on the APL98 web site (choose ‘View, Source’ and gasp at the
huge strings of non-breaking spaces - &nbsp; - which have been inserted to
enforce the layout); in general it is almost always befter to work with HITML than
to fight it in this way! Your pages will be much smaller, will download
proportionately faster, and will work reliably on all known browsers and
platforms. If you use the ‘Save as HTML’ option from a standard word-processor,
do have a hard look at what comes out of it before subjecting the world’s modems
to several kilobytes of unnecessary junk,

Simple Indents (Blockquote tag)

If you simply want to indent a section of text:

This is probably a quote from somewhere else, or you might have other
reasons to inset a section in this fashion,

... then the accepted approach is to surround the indented section with a pair of
<blockquote> ... </blockquote> tags. You can also cheat and use the ‘unordered
list' tags <ul> ... </ul> but the effect is not quite the same (for example IE3 adds
extra space before the list and reduces the inter-paragraph space within it) and in
future you have no guarantee that all browsers will continue to show your page
as you expect. Continuing the example from Vector 14.2, we could build ...

<HTML><HEAD>
<Title>Annual Summary for Widget #005</title></HEAD>
<BODY bgcolor="#FFFFFF">

<h2>Product Description<br>Widget #005</h2>

<p>Some comple ... oduct. </p>
<p»Key points to note are:«</p>
<blockgquotes>

<p>Firstly it sells lots</p>
<p>Secondly it is superb value</p>
</blockquote>
<p»80 now you know.</p»
«HR noshade size=2>
<p>R#169; Widgets International Inc<br>April i1996</p>

</body></HTML>

83



VECTCR Vol.14 No.3

Which turns out quite nicely as:

[G Annual Summary tor Widget #005 - Microsoft Inteinet Cxplorer
IFie E_d View Go ngomes ]ieb

] ” Addrus: JQ\DATA\WS‘\\'eclor htm

Product Description
Widget #005

Some complete rhubarb about this wonderfil product. Some complete rhubarb about
this wonderful product. Some complete thubarb abeut this wonderful product. Some
complete rhubarb about this wonderful product. Some complete rhubarb about this
wonderfil product.

Key poitits to note are:

Firstly it sells lots
Secondly it is superb value

So now you know.

To continue with my strategy of mirroring the NewLeaf [2] functions ...

v r+Indents;mat;sink
[1] a HTML example for Vector 14.3
(2] a Page title and product info

[a] '"Annual Summary for Widget #00S'htmUse'!

[s] ‘Subhead*htmPlace 'Product Description' 'Widget #005'
[s] htmFlow e5p<'Some complete rhubarb ... product. !

[6]

[7] a Now some more detailed points

[81] htmPlace 'Key points to note are:'

[9] htmIndent 36

{10] htmFlow 'Firstly it sells lots' 'Secondly it is superb value!
[11] htmIndent ©

[12] himFlow 'So now you know,'

[13] htmRule 2

[14] hEtmPlace'n Widgets International Inc' 'April 199s'

[15]

[18] PG+htmClose

[17] r+'1'vector.htm'' htmPut PG n tc see it!

[18]

84




VECTOR Vol.14 No.3

The actual indent values are immaterial - all that we can do is note if an indent
has increased or decreased, and add or remove a level of ‘blockquoting” as
required. We can also check the bullet character, and begin to build an
“unordered’ or ‘ordered’ list if bullets have been specified. Most browsers take
note of a starting point for the numbers, so the syntax might as well include this
possibility, and we can choose from a few basic types of numbering system. What
we cannot do is decide whether we want i or iii. or even (ifi) for our Roman
sequence - that is entirely up to the browser at the moment.

Clearly, the first function in need of attention is kit mF I ow, which must check the
current indent level and patch in the necessary tags:

v r+sty htmFlow txt
[1] a Simple text flow, taking account of style

[2] A Nothing useful to return here

[3] htmOseDflit

[4] 1if 2=(JNC'sty' ¢ htmStyle sty o :end

[s1] a Ensure correct enclosure

[6] 1if 2>|stxt o txt+c,txt o :end

[7] htm_makelist

[al txte(,/'<',"Atmatag, > '), Ttxt, . /(e </ ), (bhtmatag), !
[9] htm_cat txt

[10] :if 2=0NC'sty' ¢ htmStyle 'Body' ¢ :end

[111] r+0 0p0
v

This is almost unchanged from the code shown in Vector 13.4, but note that we
now call htm_makelist before building the paragraph. This switches the style
to ‘Indent’ for anything other than a plain list, which has the effect that the
htmatag variable is set to <li> to get correct formatting of subsequent list items.
It also adds appropriate tags for the other kinds of list, so before locking at the
code in detail ...

Bulleted and Numbered Lists (ul and ol tags)

I think it is safe to assume that most browsers handle bulleted lists in the same
way, and that numbered lists can be indexed 1,2,3 ... or a,b,c ... or i,ii,iii and so
on. A few experiments suggest that you can reliably set the starting point of the
sequence, but probably you should check this conjecture before you use it.

Te turn our simple indent into a bulleted list:

htmBullet '¥' n Simple bullet character (ASCIT 0149)
htmFlow 'Firstly it sells lots' 'Secondly it is superb value:®

85



VECTOR Vol.14 No.3

.. which should generate the HITML source ...

<p>Key points to note are:</p>

<ul type=disc»>

<Ii>Firstly it sells lots</li»
<li>Secondly it is superb value</li»
<ful>

<p>So now you kmow.</p»

(Note that I have hardwired the bullet to the ‘disc” type for consistency. Also the
spaces before the <li> tags are for human readability only, they are ignored by the

browser as is all redundant white space.)

This is the point where you feel like picking up a can of spray paint and daubing
“&*+f Bill Gates” all over the nearest plain concrete surface. Not only do Microsoft
extend HTML in quite arbitrary ways, but they also fail to interpret the standard

correctly! If you view this output in Netscape it looks fine; in IE3 it looks like:

oD A a6

Ad&ess ]C:\DATAW{S\vechr. him

_Eia___.;dt View Go_ Favortes, Help
I & =0

!

[ Annual Summary for Widget 005 - Microsoft Intenet Explorer | _ {33 x]

Product Description
Widget #005

Some complete rhubarb about this wonderful product. Some complets thubarh about
this wonderful product. Some complete rhubarb about this wonderfil product. Some
cemplete thubarb about this wonderfil product. Some complete rhubarb about this
wonderful product,

Key potnts to note arer
+ Firstly it sells lots
» Secondly it is superb valus

So now you know,

;-D‘ong sttty ot = = " o et den s sy e .H,r__ i e “'@'_—::””w

Notice the extra white space above the first bullet! Pah!

The only way to prevent this is to strip the closing </p> from the end of the
preceding paragraph, which adds a nasty inconsistency to the pattern of paired

86




VECTOR Veol.14 No.3

tags we have been using so far. On the whole I prefer to kludge this rather than to
give up the overall symmetry of the <tag>section</tag> pattern, so here is the code
which is required:

v htm_strip tag
(11 n Kludge - remove this tag if it 1s at the end

[2] :if ((-i1+ptag)+thtm_PG)=tag,OTCNL
[3] htm_PG+((-1+ptag)thtm_PC},UTCNL
[} rend

v

v htm_makelist;style;tag

[1] a Process list tags, comparing with previcus indent
[2] a Effect is to step in ard out of <ul> etc
[3] 11f Atm_indents(1)>htm_last
[u] iselect style++it(htm bullete' #@av')/Atm_bullet
[5] rcase ' !
[61 tag«'blockguote!
[71] rcase '¥!
[8] htm_strip '</p>' o tag+'ul' ¢ himStyle 'Indent!'
[s] rcaselist "#@a!
[10] htm_strip '</p>' ¢ htmStyle 'Indent?
[11] tag+'tai'['#@aT1atylel
[12] tag+'ecl type=',tag,' start=',vhtm_bullietct
[13] rend
[1a1] htm level+htm level ,c{"1+tag:' ')ttag
[15] htm_cat 1<, tag,'>"'
[186] htm_last+htm_indents(1] o :return
[17] rend
[18]
[19] :if (Atm_last>0)ahtm_indents[1]1=0 na Reset tc normal text
(20] htm_last+0 o htmStyle 'Body!
[21] htm_cat (='</*), " (¢htm_level), '>!
[z2] htm_level«GUphtm_level
[z3] treturn
[24] rend
[25]
(28] :if htm_indents[il<htm_last
[27] :1f O<phtm_level
[28] EBtm cat '</',(t¢htm_Jevel),ts!
{2393 rend
{30] htm_last+htm_indents[1] ¢ htm_level+ 1+htm_level
(31} :If O=phtm_level o AtmStyle 'Body’ ¢ :end
(a2} rreturn
[33] send
v

87




VECTOR Vol.14 No.3

The bullets having been set/ cleared by:

htmBullet argichar;ct

a Set bullet char for indented paras and optiomally start counter
a Allows strings such as '#.' to insert numeric counter

n and '(@}' to count (a) this (b) that.

n Note the kludge to deal with << htmBullet '@’ 12 »>>

1if 2r|=aryg an Simple
1if B07=0DR arg = Heterogeneocus
arg+(c, tiarg), 1targ
relse
arg+cary
tend
rend
(char ct)+2+arg,1
htm_bullet«¥ char ¢ htm_Bulletct+ct

That really is all there is to it! Here is the test function again with some lines
added to show the multi-level indenting in action:

A Now some more detailed points ...

htmPlace 'Key peoints te note are:!

htmIndent 36 ¢ htmBullet '"#' a Counter required

himFlew 'Firstly it sells lots' 'Secondly it is superd value’
htmIndent 48 ¢ htmBullet '¥' n Simple bullets

himFlow 'cheap to buy' 'low cost of ownership!'

htmIndent 36 a back down a level

htmFlow '"Thirdly it is widely ... ftware stores worlidwide.'
htmIndent ©

htmFlow 'Sc now you know.'

There is a particularly unpleasant kludge in the function to get around the
possibility that someone may request hitmBullet '@' 12 which looks for all
the world like a nested array, but is actually a two element simple vector. The
more I encounter this sor{ of thing, the more I suspect that we must go back to
V5 APL and start all over again with a decent implementation of boxed arrays!

The equivalent Dyalog code fragment is ...

1 If 2> |=arg n Simple
:If 326=0DRK arg = Heterogeneous

.. which is interesting in that here the result from ODR does not distinguish the
heterogeneous from the nested case.

88




VECTOR Vol.14 No.3

... and here is the final result:
L Annual Summaiy for Widget £005 - Miciosoft Internet Expl [ [O]] I

i Fle Edt -View H 3

CADATANW S veclonhim

1 Product Description
| Widget #005

| Some complete thubarb about this wonderfil product. Scme complete rhubarb about
| this wonderful product. Some complete rhubarb about this wonderful product.

: Key points to note are:

1. Fustly it sells lots
2. Secondly it is superb value
+ cheap to buy
+ low cost of ownership
3. Thirdly it is widely available in all the best sofiware stores worldwide.

| So now you know.

Some Other Settings

As you can see from the code, this will also accept AitmBullet '@.' tosetan
alphabetic sequence, and htmBullet '{)' for roman numbering. You can
preset the counter with an additional parameter, such as AtmBullet '@' 3,
for example to resume an interrupted list:

htmIndent 36 ¢ hAtmBullet '(A)' a Roman counter

htmFlow "Firstly it sells lots' 'Secondly it is superb value’
htmIndent 0

fitmFlow e3pe'More complete rhubarb about this wonderful product. '
ftmIndent 36 o htmBullet '(a)' 3 a Roman counter from 3

htmFlow 'Thirdly it is widely ... ftware stores worldwide,®

... although the Roman sequence looks pretty strange without the enclosing
arentheses.

89



VECTOR Vol.14 No.2

Anyway, it works as well as could be expected ...

T Annual Summary for Widget B005 - Miciosoft Intemnel Explorer M=l E3 1

_Eie Edt View: Go- Favnlies ﬂeh

lLﬁ.ﬂrkesx ;E\DATA\W\veJ:&m o

Some complete rhubarb about this wonderful product. Some complete rhubarb about
this wonderful product. Some complete riubarb about this wonderful preduct.

Key points to note are:

i Firstly t sells lots
i, Secondly it is superb value

More complete thubarb about this wonderful product. More cemplete rhubarb about this |
wonderful product. More complete rhubarb about this wonderful preduct. ;

iil. Thirdly it is widely available in afl the best software stores wotldwide. -

S0 now you know,

Do

Coming Scon

The next article in the set will cover simple data-entry forms, in particular it will
show you how to convert from a standard Causeway/AP124 form definition to
something that shows up nicely in your browser, preserving as much of the
layout as is reasonable. If I get around to it, it will also have the code to parse the
resulting ASCII string which arrives over email when some hopeful user fills in
your form and hits <Submil> to mail the request to you.

References
[1] The HTML Seurcebook, lan S. Graham, John Wiley 1995

[2] NewlLeaf User’s Manual, Causeway Graphical Systems Lid, 1996
[3] HTML Basics for APL+Win, Vector 13.4 page 84

90




VECTCR Vol.14 No.3

Using APL and ] in Conjunction to
Improve System Validity

by Donald B. Pittenger (dbpitt@msn.com)

Programming languages are usually seen in terms of opposition or contrast to
one another: FORTRAN vs. Pascal, COBOL vs. PL/1, APL vs. J. Yes, definitely
APL versus . Vector and the Internet comp.lang.apl site are peppered with
comparisons and contrasts as well as outright brickbats regarding the two
languages (or is it dialects — I hope this paragraph does not start yet another
holy war before I have even gotten to my main point).

1 contend that there can be situations where APL and ] can be used in a
cooperative manner where the goal is maximising software system validity. This
article is intended to explain my case.

Validating Software Systems

Give me some slack here: I'm a demographer, not a trained computer scientist.
But I do write a lot of software to generate data to sell to clients, and I get bitten
by software errors more often than I like. No doubt many of you are in a similar
situation.

What is a ‘valid’ software system? For this article, I define it as one that does
what the system designer intended. To take a simple case, a valid system would
have no array indexing errors. I remember an instance where I got males and
females reversed in one equation — just a matter of typing a 1 instead of a 2 by
mistake. The system did not crash, so there was no obvious sign of trouble. The
output looked a little odd, but nothing clearly unreasonable. T discovered the
error months Jlater when going over the code for some reason.

Is there any way to guarantee system validity? I say no, though there might be a
few who disagree. About the best one can do is implement a practical validation
procedure which reasonable observers agree is likely to locate a good many
errors. If the system has any size or complexity, errors are almost certain to occur
no matter what precautions are taken. Eventually, some of these will reveal
themselves to users of the system or its output. Other errors (presumably small
ones) might never be discovered.

91



VECTCOR Vol.14 No.3

Validation procedures can include code review, graphing output, and flagging
results that might be considered questionable. There are others. But, in my
opindon, there is only one best way. Read on.

The Solution is (Gasp!) Writing It Twice

Please calm down. I think I am quite reasonable when T assert that the best way fo
validate soffware systems is to write fwo systems that use the same input and conpare
the output. Admittedly, this is not always practical. The balance of this article
sketches ways this can be done, given certain conditions. In brief, 1 propose that
code be written in both APL and ], and | further claim that it is the use of these
languages that makes the task practical at all. (Okay, I called them separate
languages again. Please bear with me, because 1 will do so for the balance of the
article.)

Where did | get the notion that writing a system twice is a practical proposition?
Well, if you read the last paragraph of my article about the SAS IML matrix
language in the July, 1997 Vector, you will note that I mentioned writing a system
in J as well as IML. Because of my unfamiliarity with IML and SAS, as well as the
lack of anyone to give me advice on how to build IML systems, my strategy was
to restrict the IML systern to core number-crunching chores. A good deal of input
(rates, parameters, etc.} was computed off-line under ], but could have been done
using a spreadsheet. Thus, the core system was small — about a dozen pages of
code in small type. Partly because I didn’t trust my IML skills and partly because
I wanted a backup system in a language I knew, 1 wrote a ] system that used the
same input files as the IML system and which produced the same format of
output files. (The files are *.txt type — the file you get when you save an Excel
spreadsheet as text: basic ASCII with tab delimiters.)

One result of my efforts was that it was now possible to compare output of the
two. systems number-by-number. So 1 did compare numbers, and where there
were differences, 1 checked both systems to try to figure out which one was in
error. There must have been six or eight cases where differences were found, and
the errors were fairly evenly balanced between IML and ]. As T write this, the
numbers agree, so I am confident that the system has been validated. Yes, there
might be design mistakes, and there might be input errors, but the systems
themselves are highly likely to be doing what they are supposed to be doing,

Where This Sort of Validation is Practical

Let me move from a specific case to discuss dual-language system validation in
terms of APL and J, rather than J and TML.

92




VECTOR Vol.14 No.3

I contend that J can be used to validate APL systems and APL can be used to
validate J systems. It is also possible to validate APL by APL and ] by ], but this
assumes different programmers for each version. Where there is only one
programumer, two languages should be used to limit the possibility of code being
subconsciously repeated. Also, a one-language, one-programmer rewrite might
easily include the use of common utility code, which might itself be flawed. (The
IML/] exercise mentioned above revealed one error in my ] utility code toolkit.)

To me, APL and ] are well suited to dual-programming. They have enough
similarities that a programmer of one language does not have to experience a
paradigm shift to learn the other. But the differences are great enough that the
programmer has to think in different terms to code the same process in each
language. I have been programming in APL since 1983, and have become so
proficient that a good many of my coding errors are the result of writing too
quickly — slapdash stuff. T am far more cautious when writing ]. I've been using
it fairly heavily for about a year, and have avoided hooks, forks, etc., because (1)
I have yet to confront a situation where the potential gain seems to exceed the
pain of learning them, and (2} 1 find that even basic, APL-like ] is not easy. I have
a general sense of frames and function rank, yet nevertheless find myself
constantly testing code segments on simple arrays just to be sure I've gotten
things right. And zero-origin counting is not what 1 grew up with, so indexing
always takes thought and maybe even doodling a few numbers or diagrams on a
scratchpad. Indeed, my mind is working quite differently when programming in
one language or the other, and this is exactly what is needed for one-
programmer system validation.

By the way, I ought to make it clear that J cede should not include tacit functions:
the APL and ] ought te be in the form of conventional programs whose listings
can be compared and the behaviour of each variable traced. In tacit
programming, the variable “disappears’ so far as the code is concerned. And you
can’t test the data flow of a tacit expression directly, if I understand the concept
correctly.

One of the most important reasons why I think APL and ] are good dual-
programming tools is coding speed. APLers tend to throw a lot of speed factors
around, especially lines of code compared to doing the same job in a compiled
language. My impression is that the range runs from three to five times coding
speed improvement. To use numbers loosely, assume APL and J can be written
equally quickly by a programmer experienced in both. And take the more
conservative end of the speed range. This implies that, compared to writing in a
compiled language, the same system can be written in both APL and J in fwo-
thirds the time. Or 40 per cent of the time, if the high-end speed advantage is

93



VECTOR Vol.14 No.3

accepted. This, coupled with the payoff of less time spent in the future tracking doumn
systen bugs, means that the array-language programmer still retains the
development-time advantage over competitors using conventional languages!

Potential Problem Areas

Nothing in this world is perfect. There are several practical matters standing in
the way of dual-language validation in APL and ]. These need to be discussed,
lest we get carried away by the prospect of theoretical gains.

Before dealing with problem areas, let us start by describing an ideal dual-
language validity testing setting because, by showing an ideal, we can reveal
what has been abstracted out of practical circumstances. Actually, the IML/]
example mentioned above came pretty close; let's use a polished version of it
Here are salient features:

1. The core computational task is well-structured. There can be alternative
subroutines, but most of the variation is in the input data and parameter
values. Essentially, the core is a batch-process wrapped in some sort of
interface.

2. The identical input must be brought to each language system test run so that
any differences in output must be due to system flaws.

3. The simpler the user interface (UI) the better — at least for testing purposes.
This is an enabling, factor relating to the need to have each system running
identical input. Since Ul's deal with input selection and flow of control, steps
must be taken to assure common systetn control. The ideal setting would have
no interface in the generally accepted sense; it would be a software
‘breadbeard’ or workbench where consistent inputs are introduced as globals,
passed data, or whatever is the design of the production system. In other
words, for testing, all the data/parameter selecting normally done via the Ul
can be assumed to have occurred, and the core routines are now about to
begin their work. For complex systems, modules might have to be isolated in
this fashion for individual testing — particularly if the complete system
requires Ul actions to bridge module operations.

4, Output data should be in the form of tables containing summary data,
descriptive data such as rates or shares, and blocks of raw numbers. Summary
and rate data are useful for spotting the general locations of errors, detailed
data confirm that error fixes work at the lowest level. Demographic data I
have used for testing contained single-year-age data as well as age groups,
population totals, and totals for process outcomes such as births, deaths, and
migrants.

From the above, there are some obvious and not-so-obvious practical problem
areas. But the key item is how well the test systems can be isolated from Ul and

94




VECTOR Vol.14 No.3

language environment peculiarities. Make every reasonable effort to create test-
beds. Otherwise, you are likely to encounter the following problems:

One obvious problem is the Ul. My experience does not extend to mainframe or
minicomputer APL, but I know from experience differences between APL*PLUS
and APL2/PC under M5-DOS, not to mention APL+WIN, Dyalog APL/W,
ISIAPL, and ] under Windows. The Ul, whether it is basically a fancy menu or
something far more flexible, can influence much data selection and program
flow. The dual-language problem is how to get the same input into these
separate code blocs. If the UI was via Delphi or Visual Basic, and the ] and APL
were DLLs chewing on data furnished by the Ul system, there would be little
difficulty. (Few APLs can act as DLL servers as this is written, but in future most
wilL) Problems can occur under Windows if you use a language vendor-based
UL For example, what if the target system was written in Dyalog APL/W and
used the grid object? ] under Windows does not yet have such a thing. A
problem-simplifying Windows Ul solution (though not for grid objects) would
be Causeway — except that there is not yet a Causeway for J.

Another problem is data input — in particular, what can be done with target
systems that make use of APL component files? ] does not read APL component
files. The same applies to data stored as part of an APL workspace. As a practical
matter, dual-language validation systems are best suited to settings where data
flow to and from ‘standard’ file types, be they *.txt or files read from data bases
using ‘standard’ linkage software.

I know this is easy to say but hard to do in the real world, but: if T were
developing new sysiems in APL and hoped to perform dual-language validation
using J, I would try to design the production system (not just a breadboard
system) so as to eliminate all aspects of APL data storage as it was classically
practised. This includes the workspace as well as component files. QOkay, you
can’t run APL without a workspace. But, aside from loading-speed
considerations, why should APL systems be stored as workspaces? The fear of
destroying programs by mistake led me to abandon workspace-based systems
soon after | started using APL. I store programs as individual files grouped
within directories. It is a flexible and safe solution. It also helps facilitate dual-
language validation because specific program sets can be assembled fairly easily
for testing as functional blocs as noted above. If APL is to have a future,
dysfunctional baggage must be ruthlessly abandoned where necessary.

95




VECTOR Vol.14 No.2

Conclusion

Validating software systems by writing them in two different languages can be a
practical matter if those languages are APL and ], provided that identical input
can be brought to each comparative test. The key element in making this
proposal practical is the programming speed of the two languages — writing a
system in both APL and ] to assure validity can be done faster than program-
ming it once (without attempting validation) using a conventional language.

96




VECTOR

Vol.14 No.3

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of

fluency in APL.
Contents
Hackers’ Corner: the Windows Registry John Sullivan
Technical Correspondence Dave Piper

An ODBC Browser Using SQL and Dyalog APL. Richard Smith
Object Oriented Programming with APL+Win Eric Lescasse

Armstrong Numbers and APL Joseph De Kerf

98

102

105

109

138

97



VECTOR Vol.14 No.3

Hackers” Corner: Dyalog APL and the
Windows 95 Registry

by John Sullivan (john@yddraiggoch.demon.co.uk)

Why Use the Windows Registry?

Windows 3.x used initialization files, which had the extension .ini, to hold the
settings for Windows itself and for applications written to run under Windows.
There were two types of initialization file, sysfem and private, although in many
cases programmers were lazy and wrote information that rightly belonged in a
private initialization file into a system file, such as system.ini or win.ini. Since the
largest size .ini file that Windows 3.x could handle was 64k, this caused problems
whenever users installed “too many” of these applications. On the other hand,
some programs used privale initialization files to store system information; for
example Microsoft Publisher stored its font information in a private file. Make the
font unavailable and the program crashes!

With Windows 95 the Registry was introduced in order to keep all initialization
data together, rather than in a succession of fragmented .ini files. Although
support for .ini files is still maintained {(and has even been enhanced) in Windows
95, because, obviously, programs written for Windows 3.xr will require access to
Aini files when run under Windows 95, performance when accessing the Windows
registry is significantly faster than when accessing .ini files in almost all
circumstances. There are no restrictions to the size of the registry, whereas the
functions that write to .ini files fail when the file approaches its size limit of 64k.

Since Windows 95 applications are supposed to write to the registry rather than to
initialization™ files, - developers --who - fail- to use_the registry can produce
applications that are not completely compliant with the Win95 software design
guidelines.

98




VECTOR Vol.14 No.3

The Functions

There are six of these:

Open, which opens a path in the registry and returns a handle
Getlnt, which gets an integer value from the registry
GetString, which gets a character string from the registry
Putlnt, which puts an integer on the registry

PutString, which puts a characler string on the registry

Close, which closes the registry when you’ve finished.

Dyadic Systems have already provided some functions to perform registry
operations: these are in the Workspace Documentation namespace in the session.
We can reduce our workload by making use of them, giving them new names and
putting them in our own namespace for completeness. I put these functions in a
namespace called Reg to keep them together and out of the way. The functions
we reuse {thanks to Dyadic for permission to list these} are:

Open~[1SE.WSDoc .GefRegKeyHandle
GetInt+08E.WSDoc.GeltRegKeyValue
PutInt<{0SE.WSDoc.PutRegKeyValue

v HANDLE+GetRegKeyHandle KEY ;CURRENT_USER;ALL;RegCreateXeyExA
1] an Get a handle to a Registry key as a subkey of HKEY_CURRENT USER
[z] an The key is created if it doesn't already exist
fa]

(4] CURRENT_USER+~2147483649 A HEX 0x80000001
[s] ALL+2035711 n HEX 0xiFOFFF
[el
[71 ONA'I ADVAPI32.dl1l.C32|RegCreateXeyExd U <07 I <0 I I I >U >0°
[8] HANDLE+>2oRegCreateKeyExA CURRENT_USER XKEY 0 '' 0 ALL 0 ¢ ©
v

v VALUE+KEY GetRegKeyValue NV;SUBKEY;RegQueryValueExAd;RC;VAL
[1] n Gets the value of a Registry SUBKEY or default DEFAULT
[2] n KEY is the handle for am existing Registry Key
[a] SUBKEY VALUE+NV
[u] ONA'I ADVAPI32.dl1.C32|RegQueryValueExd U <0T I I >I4 =I4°
[5] RC VAL+2t+RegQueryValueExd KEY SUBKEY 0 0 0 4
(5] +{RC=0)/0
[7] VALUE+VAL



VECTOR Vol.14 No.3

Vv HANDLE PulRegKeyValue NV;SUBKEY;VALUE;RegSetValueExA
[1] A Stores the value of a Registry SUBKEY

[z] SUBKEY VALUE+NY
[3] (ONA'T ADVAPI32.dl11.C32|RegSetValueExd U <0T I I <Iu Iu!'
[4] VALUE+RegSetValueExd HANDLE SUBKEY © 4 VALUE u

'

The syntax of these functions is as follows, where key is a subkey of
HKEY CURRENT USER, and that part of the key does not need to be given.

handle+Reg.0pen key
value+handle Reg.GetInt subkey default
handle Reg.Putlnt subkey value

It is important to close all open registry handles as soon as you've finished with
them, in order to maintain data integrity (what do you do if your system crashes
between updating the registry itself and the time when Windows actually gets
around to writing the updates to disk?) and also to free up Windows resources.

The other functions are easily written, copying the style of the Dyadic-supplied
functions:

vV VALUE+«KEY CetString NV;LEN;SUBKEY;DEFAULT;RegQueryValueExA;RC;VAL
[1] r Gets the value of a Registry SUBKEY or default DEFAULT
[2] n Key is the handle for an existing Registry Key
(3] a Function by J5 based on (JSE.WSDoc.GetRegKeyValue
[u] SUBKEY VALUE+NV

51 ONA'T ADVAPI32.dl11.C32|RegQueryValueExd U <0T I T =0T =I4"

[6 RC VAL LEN+RegQueryValueExA KEY SUBKEY 0 0(256p' ')256

[71 :If RC=22y o More data {(i.e. buffer is not big enough)
[8] RC VAL LEN+RegQueryValueExA KEY SUBKEY ¢ O(LENp' '")LEN

[9] +EndIf

[10] +{RC=0)/0
[11] VALUE+VAL

v {RC}+HANDLE PutString NV;SUBKEY;VALUE;RegSetValueEx4d
[13 A Stores the value of a Registry SUBKEY
fz2] A HANDLE is the handle for an existing Registry Key
{31] A Function by J8 based on [SE.W5Doc.GetRegKeyValue
(4] SUBKEY VALUE+NV
[5] ONA'Y ADVAPI3?.dl11.C32|RegSetValueExd U <0T I I <0T Iy!
[61] RC+RegSetValueExA HANDLE SUBKEY 0 i VALUE(1+pYALUR)

v

100




VECTOR Vol.14 No.3

v {RC}+Close HANDLE;RegCloseKey
[1] a Close an open registry key

f21] ONA'I ADVAPI32.dl1.C32|RegClosekey U
{3l RC+RegCloseKey HANDLE
v
Example

If you want to change the value of your application’s printer top margin to 36
points, saving the old value, you would key something like the following:

handle+Reg.0Open ‘'Software\APLapps\application\Print'
old+«handle Reg.GetInt ‘TopMargin' ©

handle Reg.Putint 'TopMargin' 236

Reg.Close handle

Other Considerations

If you try to open a non-existent subkey it (and all non-existent intermediate
subkeys) will be created. This is a function of the registry interface. Similarly, you
do not need to create a bottom-level container for your data: in the example
above, if TopMargin did not already exist, the default value of 0 would be put
into old, and the result of the PutInt call would be to create TopMargin and
store its value.

Other registry functions are available, for example functions to delete entries. I
have not coded those because up to now ] have not needed them, being content to
use the registry edilor to delete unwanted entries, but those who do need them
should have no trouble coding them yourself. (You would need deletion functions
for an uninstall program, for instance.)

References

Any good book on the Windows 95 registry, or the Microsoft Developer Network
CD-ROMs.

101



VECTOR Vol.14 No.3

Technical Correspondence
From: David Piper 5th March 1998

After many years doing APL, followed by fewer years of retained interest in APL,
I am still amazed by the abysmal quality of some of the code being published in
Vector. One of the major objections to APL in the commercial world is the
production of write-only code. The article in Vector 14.2 on Niven Numbers is a
perfect exemplar of the coding style that creates such negative reactions. Whilst
this article is academic in nature, Vector is a (arguably the) showcase for APL
code. All code published here should be of a high quality, or at least ultimately
form a contribution to high quality code (maybe as part of a learning exercise).
Take the function NIVEN2; it can be criticized for at least the following features:

* use of single character names;
* multiple assignments on a single line;

* complex path analysis (75% of the lines include conditional branches).

The attempt to make the code more efficient (NIVENB) simply exaggerates these
features and gives rise to an unrewarding 4% benefit. Clearly the structure of the
code is not the source of the performance issue, it is far more likely that the
algorithm is to blame. Algorithmically the functions given can be criticized on (at
least) two fronts:

* repeated catenation of new result values to the result vector;

* evaluation of only one candidate result at a time.

Below is a version of the algorithm which avoids the repeated catenation issue.
This is an easy change to make since we know from the right argument how many
result values are required:

vZ+NIVEND W;candidate;digits;pos
Z+({HI0)p0)

candidate«0

pos+1

+{Ws0)/end
next:candidate~candidate+1
digits+{(1+110ecandidate)pio)rcandidate
+(0=z(+/digits)icandidate)/next
Zlposl«candidate

pPOS+pOS5+1

+(W:pos}/again

end:

v

102




VECTOR Vol.14 No.3

In performance terms this version shows a significant improvement (here are
some relative timings for cases > 1000):

Function | 1000 | 10000 | 100000

NIVEN1 |1.07 20.85 | 755.55

KIVEND (114 1592 | 204.33

Ratio 1.07 0.76 0.27

The penalty in performance below 1000 is certainly due to the “style” of the code
- this algorithm implemented in the siyle of NIVEN1 shows a constant
improvement of about 10% over the more readable version presented above. For
the 100000 case, the saving due to changing the algorithin is 73%, the saving from
changing the code style is about 3%.

This illustrates a vitally important point:

as the amount of useful contputation increases as a proportion of the total the overheads
due to “style” or other factors become less important; in general pursuit of algorithm is
more beneficial than sacrificing readability for marginal gains in efficiency.

Despite the effectiveness of the gains made so far, greater gains become available
by implementing the algorithm in a way suited to APL. The solutjons presented
are sealar in nature - each scalar is tested in turn. APL is an array processing
language, so an army based solution should be sought. In contrast to the
statement made in the original article that ...it would be a challenge to find an
algoritimi... the changes required are fundamentally simple:

vZ+A NIVENE W;candidates:digits;hits;max
Z+((WT0)e0)
candidates+14d
+(W<0)/end
next:max+(tpcandidates)-candidates
digits+«((1+l10smax)pl0)rcandidates
hits«0=(+/sdigits)icandidates
Z+Z,hits/candidates
candidates+~candidates+4
+(W»pl)/again
Z+W+Z
end:
v

103




VECTOR Vol.14 No.3

The algerithm implemented in this function generates groups of candidates and
tests the content of each group in parallel. The size of the group is determined by
the left argument to the function. At first sight this algorithm may seem inefficient
since it potentially generates foo muany result values, however the cost of this
marginal inefficiency is far outweighed by the gains resulting from the
parallelism of the algorithm as a whole. The performance of this improved
algorithm is illustrated in the following table:

Function | 1000 10000 | 100000

NIVENL }1.07 |20.85 |755.55

NIVENE 0.06 097 13.91

Ratio 0.06 0.05 0.02

The performance of the algorithm does depend on the value chosen for chunking
size. An optimal choice seems to be a value close to that in the right argument,
though the reasons for this are not clear. Re-writing this algorithm in the style of
KNIVEN1 did not give a noticeable performance benefit (<1% in all cases compared
to NIVENE). The function given can be subjected to a criticism made of the
original - the use of repeated catenation to form the result. Note, however, that
the catenation will be performed far fewer times and a (potentially large) number
of results is appended in each operation.

The point is best made by the principle expressed in Normal Thomson's article in
the same edition of Vector - think, reason, express. Once a simple method has been
thought up, reason it through to create an algorithm suilable for array processing.
Then this can be expressed in a clear and meaningful manner. In my experience,
only rarely is there a need to sacrifice clarity for performance.

David Piper

11 Lingfield Road
Evesham

WR11 6XG

Email: DavidP@SelectST.com

104




VECTOR Vol.14 No.3

An ODBC Browser Using SQL
and Dyalog APL

by Richard Smith (richard@apl-385.demon.co.uk)

Introduction

Having not gone to Morten Kromberg’s workshop on ODBC at APL96, I decided
that I would have a go at it in Toronto, As I was working through the workshop, 1
realised I was having to type in things like SQAInit, SQADo and SgAClose a
lot of times. So I made a basic Windows form with a field and a “Go” button,
which ran SQADo with whatever was in the field, and “Connect” and
“Disconnect” buttons which ran $QACeonnect and SQACIlose; this meant I
didn’t have to type it in each time.

As I continued through the workshop, it became more and more complicated. As
each new function was introduced by itself, naturally T added new controls to the
form for each one. This meant that my form had some fairly unorthodox
behaviour - the dropdown on the left, defining which function to perform,
controlled the items shown in the right-hand dropdown; both together controlled
the actions of the “Execute” button. This led to a rather large ‘switch-case’
statement 'in working out what to do.

Finishing it off

Annoyingly, near the end of the workshop my Dyalog interpreter crashed (the
only time during the whole conference: what a surprise, just as I had a good
program). However, this gave me the opportunity to rewrite the interface rather
more sensibly. Using my father's portable, T wrote a dummy version (he didn’t
have ODBC installed), which let me play with graphic properties. Towards the
end of the conference, I went back into the workshop room to write in the
connections with Merten’s functions and to test it. At this stage, it was a working

product and did not have some of the ‘fancy features’ of the one now, but it was
taking on the look of it.

During the Christmas holidays, my father, Adrian, thought it would be a good
idea if it had a dropedit Combo for the statements, as in web browsers such as
Netscape and Internet Explorer. Having done this, [ was then told that it would
be better as a multi-line field, to allow longer statements; however,  wasn't going
to write that: come on Dyadic, let’s have “Multi-Line Combo Boxes"!

105



VECTOR

Vol.14 No.3

The Final Design

> 50L Session: [disconnected) l =[O i
"i. . i pe— i R = -
: . i

pEwnctionfon =}

i SQL session initialised ...
i

After fiddling with the
attach property and
other such things, [ came
up with this as my main
form. The icon is an
interesting feature: it's
different every time! 1
make it using the APL ex-
pression "1+732 32p16,
producing a  random
matrix of 16 colours. A

useful point about the program is the way the focus moves at different times. At
the start, it is on the “Connect” button. When this button is pressed, it brings up

this window:
% .50L Session. {disconnected] Mk

#0] .~ Connect to SOL E [ Cﬂj’ﬁuﬂ’.ﬁll.h »]
“?Eur;iféﬁ_esjuumé: || B | '

= “irConnecti i | i Cancal
| _—

SO0 Messages.c 1 4 & - LB T
. [saL session inifialised ... -t

The focus is placed in the
“Resource” field. Type in
the name of the resource
and press “Enter” or click
“Connect!” to connect to
the resource. If it cormects
successfully, the fields
will be activated and the
Tables window will be
displayed.

This window shows the names of all the tables in the resource selected - here
there are six ~ and the window can be resized to show any very long names.

L. SQL Tables: AmFrash

0oL e . e . ax] window.

106

By double-clicking on any of the table names, you

Tattainment 31 canbring up the Columns window (see below). You
L|curiculumitems 4] can have as many of these windows open at one
¢[Efiort ;| time as you like; double-clicking on a different table
|HeadnTall Lk , . .

“Phrases ; will bring up another Columns window. Double-
*[Subjects 1] clicking a name for which there is already a

Columns window active will give the focus to that




VECTOR Vol.14 No.3

Pressing “Enter” or clicking on “Show” will give the Return window for the table:

¢+ Columns in table. Phiases . | X l " B .

1 fid + [COUNTE {Unique Phrase By selecting one or

J} Year : BYTE .:4School Year (1-8) more column names
ltem S|ITEXT Curriculum ltem .
JEfiort | TEXT At which grade? ﬁnd th(;z’n pressing
iain “|BYTE “iWhich attainment level? i Show”, the Retumn

window is shown for
just those columns of
the table.

. {Phrase  |LONGTE,{Key Phrase for the above |

This is done by the function Createguery:

tab CreateQuery fields
[1] a Create an 5QL call that shows the values of fields
(2] n <fields» in table <tab>.
[3] :If oepfields
(4] ('Do' 'Normal')Run(‘*Select = from ',tab)
[5] :Else
[6] ('Do' '"Kormal')Run('Select ',( 14e'"' “Flelds,”<'",%)," Ffrom ',tab)
(7] :End

Line 3 checks to see if any fields have been selected. If not, it runs line 4, which
selects all the columns from the selected table. Otherwise, it runs line 5, which
shows just the columns given to the function in the variable fields (Year,
Effort, Atn and Phrase in this example). Run puts the query in the list of
statements and displays the result in the Return window:

-SRI Session Remote System Retum | %]

New Cursor QA

2 R 2 Tries hard, pity he can't read.

is it useful?

OK we can type stuff into this, but
2 And so an (again)

3 Hello, world {once more)
2 8o there!

2 A bit odd, that

LS K
o ww D

107



VECTOR Vol.14 No.3

The display here is a little confusing. The first column, Year, is 22 1 6 2; the
second, Effort, is A A B B D; the third, Effort is 2 2 3 2 2. The text “OK we can type
stuff into this, but is it useful?” is part of the Phrase column of the first entry.

Extras

This mouse interface can’t do every database action: for instance, it can’t do cross-
table queries. However, to do another action via SQL, type in the statement you
want to run in the “Statement” field on the main form, then press “Enter” or click
on “Execute” to run it. If you have typed it in correctly, the output will appear in
the Result window; if not, the error message will appear in the “Messages” field
on the main form:

;50L Messeages - :
i | The Miczosoft Jet database engine cannat find the input table «
|:jor query 'Atn’. Wiake sure it exists and that its name is spelled
correctly.

.[Connacted to “AmTrash" |

To re-use a statement from earlier {including those made using the “Show” button
on the Columns window), click on the drop-down button by the “Statement” field
to bring down the Combo box:

Select * from tn
Select * from Atn

wlect "iear” "Effeet

Pt Fhiaze” fon Phiace: B
) hre rurr u;n—, e

This shows all the statements used since the program was started, the most recent
at the top. If you re-use a statement, it will riffle to the top of this list. When a
statement is selected, use the “Execute” button to run it.

Richard Smith
Brook House
Gilling East, York

Note: The article and the werkspace are available at my webpage at:

www.apl-385.demon.co.uk/ rcs/ odbe.htm

1068




VECTOR Vol.14 No.3

Object Oriented Programming
with APL+Win (Part II)

by Eric Lescasse (eric@lescasse.cont)

I want to thank Chris Lee from Softned who inspired me
with his UDC (User Defined Classes) concept.

Introduction

This long article, published in Vector in 2 parts, is extracted from the Monthly
APL+Win Training Program available on the Internet from the Lescasse
Consulling Web site at www. Llescasse. com. It represents one of 3 chapters
included in the APL+Win Training for May 97.

Inheritance

The way of programming with Qwi described in this Chapter is really Object
Oriented Programming with APL+Win. Te convince you about this assertion,
read on.

First, we are really creating new classes of objects. When you create a new class,
you choose a class name for it (example: Form or Form5 or MaskEdit, etc.) and
then you create one APL function with a name that matches the new object’s class
name you've chosen.

Remember that you can replace existing APL+Win classes (like Form) with your
own class of the same name.

You may also overload existing class properties or methods with your own
behaviour. This is exactly what we have done in all examples so far with the New
method, which does exist for the APL+Win standard Form class, but which we
overloaded with additional functionality in our Form1 to Form5 classes.

Second, we can easily go one step further and use inheritance, one of the basic
concepts of all Object Oriented development systems. We will now describe how
to do that.

Let's suppose that we would like our new Form class to behave exactly like the
Formb5 class except that the Esc key would be a shortcut key used to close the
form. We could change our Form5 function by adding one more line in the

109



VECTOR Vol.14 No.3

ovetloaded New method code and rename Form5 to Formé (which you will find
in workspace QWI . W3), The line to add would be:

[24] R+(Z£,'.bnEsc'){Iwi'Newt 'Bulton'('size' ¢ 0){'style' 2) a Esc butten

This line creates an invisible button (invisible because its size is set to 0 01) with
style 2 on our form. Because this button has style 2, it is known by the APL+Win
system as a Cancel button which is automatically clicked by pressing the Esc key,
therefore closing the form.

So, we have perfectly solved our problem of creating a new class of forms which
would react to pressing the Esc key by closing themselves. However, there are
several drawbacks to this approach:

e first, we are duplicating the Forms code to become Forms and losing precious
workspace room

s second, and more importantly, if we need to make any change in our Form5
class, we must make the same changes in Form6 class, so that Formé objects
continue 1o behave exactly like Form5 objects (except for the added Esc key
functionality}

Could we try to take advantage of the Object Oriented inheritance concept
instead? Yes, and it is very easy. Let's just design a new Form? class as follows:

v A Form? B;R;class
[1] av A Form? B -- User Defined Form? Class
(2] aAv A ++ cgbject rame
[5] AvY B «» 'property’
(4] av or ‘'‘property' value
[5] av or ‘Method’
(6] av or 'Method' argumentl .., argumenth
{7] av Requires: (F) QwiRegister
ral RV Copyright (c) 1997 Eric Lescasse [9mard7]

{9]

[10] :select +B

f11] :case 'New' a constructor

[12] 4 Forms B a inherits Forms class
[13] QwiRegister A n save class name

[1u] Reld,'.bnEsct )Owi'Kew! 'Button'('size' 0 ¢)('style' 2}
[15]

(161 :else

[17] 4 Form5 B a inherits Forms class
[18]

{19] :end

v

That's a very simple and czystal clear way of implementing inheritance.

110



VECTOR Vol.14 No.3

When the Form7 class function is called with an argument starting with ' New!
to create a new instance of a Form?7 kind of a form, the Form5 New method code
is used instead (line 12) and is simply followed by the additional behaviour we
wanted (line 14). Note that we must not forget to register our new class (line 13).

For all other Form?7 class properties and methods, the behaviour is inherited from
the FormS5 class (line 17).

You may want to check if this works OK. Try:

VEFY Qwi2 'New' 'Form7!
ff

click in the form to set the focus to it and press the Esc key: this closes your form.
Then try:

'FEY Qwi2 "New' 'Form?' ('ontop'! 1)
If

VY Qwiz 'Move' 'bottom' 'right!
182 256

The form moves as expected. The ontop property and the Move method are
purely inherited from the Form5 class!

I suppose you see how this brings a terrific power to APL+Win programming!

APL+Win allows you to do Object Oriented Programming and in a manner
which is most simple.

Having understood inheritance as shown above, we could have designed our
Form1 to FormS5 classes as a hierarchy of classes, all descendants from the
APL+Win Form class, according to the following tree:

Form ----—
Forml —
Delete
Form2 -—--
caption
font
scale

m




VECTOR Vol.14 No.3

Form3 -----
other
APL+Win
properties
Form4---—
ontop
Form5———-
Move
Form7
Esc key

In the above tree, 1 have shown at each level of the tree, the changed or added
properties and methods.

Exercise

1leave it as an exercise for you to start a new workspace, copy functions w1,
HANDLERFOR, Formi from workspace QWI W3 in it and rewrite Formz,
Form3, Form4, Forms and Form? implementing inheritance at all levels.

Then add a new property to the New method of the Form1 class, like changing
the default form 51 ze to 10 30, and check that all other classes (Form2 to Form?7)
do inherit correctly from the Form1 class.

Polymorphism
Another unique characteristic of Object Oriented Programming is

polymorphism whereby different objects respond to the same message with their
own unique behaviour.

How can we use polymorphism with our new objects? The answer is simple: if
you assume that invoking an object method is in fact sending a message to the
object instructing it to run a named piece of code (the method), then we simply
need to implement methods sharing the same name in different ways according to
the classes in which they are implemented.

An example will help understand this polymorphism concept. Let’s define 2 new
classes of objects Form8 and Form9 which both inherit from class Form?. In both

112




VECTOR

Vol.14 No.3

Form8 and Form9 classes, we will implement a SetDe faultColor method,
which sets the form background colour to some default class color when it is
invoked. However we will design SetDefaultColor so that it changes the
colour of Form8 forms to black and the colour of Form$ forms to white. Here are
our 2 new class functions:

[1]
[2]
[3}]
[s]
[s]
[6]
[73
[a8]
[sl
[101]
[11]
[121
[13]
[14]
[18]
[16]
{17]
[18]
[19]
[20]
{211

and:

(1]
[21
(2]
[4]
[s]
[6]
[7]
[81
[a]
{10}
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[i8]
[19]
[20]
[21]

¢ A FormB B;R;class
Form8 B -- User DPefined Form8 Class

av? A
AV A
av B
Y
Ay
Ay

A¥ Reguires:

+
+—r
or
or
or

object name
'property!
"property' value
'Method'

'Method! argumentt .

.. argumentiN

(F) QwiReglster

¥ Copyright (c) 1997 Eric lLescasse [9mar9v]

rselect tB
rcase "New! A
A Form? B A
QwiRegister A A
rcase 'SetDefaultcolort a
A OQwi ‘'color' g A
relse
A Form? B A
rend

v A Form9 B;Rjclass
AY 4 Form9 B -- User Defined Form9 Class

AY A
ny B
Av
AY
av

e
B
er
or
or

object name
'property!
'property' value
"Method!

‘Method' argumenti .

A¥ Requires: (P} QwiRegister
eV Copyright (c) 1897 Eric Lescasse [9mar97]

:select +B

tcase ‘New! [
A Form? B [
QwiRegister A ]
tcase 'SetDefaultColor! a

A Owi 'color' {(3p255) a

relse

A Form7 B A

rend

copstructor

inherits Form? class

save class name
SetDefaultColor method

set background color to black

inherits Form7? class

.. argument¥N

constructor

Inherits Form? class

gave class name
SetDefaultColor method

set background color to white

inherits Form? class

113



VECTOR Vol.14 No.3

Now let’s try to creale instances of the Form8 and Form9 classes, which we will
distinguish by changing their caption property and let’s send them a
SetDefaultColor message.

VEfY Qwip 'New'! 'FormB' ('caption' 'Form® Form') ('size' 120 250) ('ontop' 1)
ff
\ff' Qwiz 'SetDefaultColor'

‘ggt @wiz "New' 'Form3' ('caption' 'Form% Form') {‘'size' 120 250} (‘'ontop' 1)
9g
‘gg? Qwi? 'SetDefauitColor!

Here is what you will see.

' Qwll ‘Wew' 'Farm8' {'caption® 'Formé Form') t'size’ 120 250) {‘ontop® 1)
e Qul 'setDefacliColor®
‘gyt avl ‘Waw! 'Form3' {‘capilon' Formd Form') {'slea® 120 250} (‘ontep' 1}
FN ‘ggt Owl YSetDefanliColort

af e e - o : ]
. . B TS T FERTT %)

Al Tl o= e OV e P e mcakea

et AT Gwn | 701 | gy Rt Tl - it F o oL RSLAHSE g

This is exacily what polymorphism is.

Polymorphism refers to the ability of a given message to assume different
functions, depending upon to what object it is sent.

114




VECTOR Vol.14 No.3

Using Superclass Methods

It may sometimes happen that you would like to use not the class definition of a
(possibly polymorphic) method, but its superclass definition instead. A
superclass is simply the parent class which a given class inherits from.

For example, the Form8 superclass is Form?7.

Let’s assume that we have also implemented a SetDefaultColor method in
the Form7 class. Change class function Form? as follows and rename it as
Formio0:

v 4 Forml10 B;R;class
[1] a¥ A Formi0 B -- User Defined FormlG Class
[2] ny A ++ object name
(3] A% B + 'property’'
[ul Ay or 'property' value
{51 AvY  or 'Method!
i8] Av or 'Method' argumenti ... argumentiN
71 av Requlres: (F) QwiRegister
{a) AY Copyright (¢) 1997 Eric lescasse [9mar§7]

{9]

[10] :select B

[11] :case 'New! n constructor

{12} A Form5 B a inherits FormSs class

(131 QwiRegister A n save class name

{14] R+(4,'.bnEsc')OwitNew! 'Button'{'size' 0 0)('style' 2)
{151

{16]. :case 'SetDefaultColor! a SetDefaultColor method

[171] 4 Owi 'color' 2zss a set background color to red
(18]

(18] :else

[zo0] A Forms B A inherits Forms class

f21)

[(22] :end

v

Then change function Forms to Formii as follows:

v A Formll BiR;class
1] Av 4 Formil B -- User Defined Formll Class
(2] AY A ++ object name
{31 a? B ++ 'property!
[4] av or 'property' value
(51 Av or ‘Method’
[&] Av or 'Method' argumenti ... argumenty
(7] AV Requires: (F) QwiRegister
(el av Copyright (c) 1997 Eric Lescasse [9mary7]
[9]
[10] :select 8

115



VECTOR Vol.14 No.3

constructor

£

[11] :case 'New!'

[12] A Formio B n inherits Formid class

[13] QwiRegister 4 n save class name

[14]

[15] :case 'Setbefaultfolor! n SetDefaultColor method

[16] A Owi ‘color' 0 n set background color to black
[17]

[18] :eise

{15] A Formi0 B a ipherits Formi0 class

[20]

[21] :end

v

We now have a new class of forms: Formi11 which knows about the
SetDefaultColor message and inherits the Forml10 class.

The Form10 class also understands the Se tDefaul tColor message, albeit in a
different manner and the Form10 class inherits the Form5 class.

- When we are working with a Form11 kind of a form, sending a
- SetDefaultColor message to the form results in running the
SetDefaultColor method of the Forml1 class.

-If you want to run the Se tDe faul tColor method instead in the Form11 !
superclass (i.e. in class Form10) you should send a super SetDefaultColor
message to the Form11 form.

Examiple:

‘Lf' Qwi3 'New' 'Formil' (‘caption' 'Formii Form')('size' 120 250)('ontep' 1}
£r

Let us first mvoke the Form11 class Setbe faulfColor method:
*fft Quid *SetDefaultGolor!

This results in a black form being displayed on the screen.

And now, let’s call the Form11 superclass SetDefaultCaolor instead:
"ff' Qwil 'super SetDefaultColor!

This results in a red form being displayed on the screen.

For this to work properly, you need to change utility Qw12 to now be Qw1 3, as
follows:

116




VECTOR

Vol.14 No.3

[1]

[2]

[3]

[4]

(5]

[6]

{73

(8]

[9]

[16]
11}
[12]
[13]
[151]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[2u4]
[25]
[26]
[27]
[28]
[29]
[a0]
[31]
[32]
[33]
[an]
[as]
[36]

R+d
Ay
ay
Av
Av
av
AV
AV
Av
AV

el
:if
eif
tif

el

el

ten
i f
E+2
B+,
tfo

ren
R+t

Qwid B3CiDiEsF;GsT:PiTillelx
R+4 Qwid B -- OWI emulator

Owself+'object_name' Qwid 'New' 'class_
Owself+'chject_name' Qwid 'New' 'class_;

res+ ['object_name'] Qwid 'prop'
{'chject_name'] Qwi3d 'prop' value

name"
name' ("proplt valuel)...

['object_name'] Qwid ('propi' valuel)...('propN' valuek)

res+ ['object_name'] Qwid 'Gef_Method'
['object_name'] Qwia ‘'Set_Method®

[arguments]
[argquments]

Copyright (c) 1997 Eric Lescasse [Bmar97]

x+"3HANDLERFOR (DM'

B+{c'New' (),2+B
seif Ozpd Owi'self!
1if 0=C+t+D+d Owi'aclass!' A
Oerror'tise OWI instead of Qwid' =a
:end

2#[(0nc'A' o A+[wself o :end 3
1==B o B+,cB o :end a
'New'a+g A
C+2oB R
A
A

se R
Qerror'tnknown object: ',4 n
d
2==B o B+,cB o :end A ensure
»="H ¢ (E/B)+c"E/B A ensure
B o '#'Owi'awrest (0 8p0) a define
r I :rin 1pB A
:1f 'super '=6tP++IoB a
E+{1+F++/P Oss'super')=P »
G+ (5xF)4p=t 1 a

OWSELF if no left arg

be sure B is nested

if method is '"New!

get specified class name
rebuild argument

else if object A exists

get registered class name
if none signal error

if not "New' & not an cbject
gignal error

B depth is 2z 3
each element is of depth 2
default result

for each element in argument

if argument starts with 'super '
retrieve the super class name
method name

2'4 " E,' G aV{VALUE:ercor'Unknown class: ',E}
relse n else
2'4 1,0, I-gt aV{VALUE :Dercor'Unknown class: ',C}
:end
d
#wi'awres’' a return result saved In Awres

As you can see, it is very easy to implement the super keyword in order to
superclass methods in replacement of the standard class method.

117



VECTOR Vol.14 No.3

Overloading Standard Properties

Another task you may wanl 1o perform for your new objects consists in extending
some standard APL+Win properties, like the properties and methods properties.

It would be nice if we could use a properties property to know which user-
defined properties are available for a given user-defined object and a methods
property to ask about available methods.

For example we could define a Qwi L function that would work as follows:

VEFY Qwilh 'New! ‘Formit!
ff

VE£fF Qwit ‘properties!
ontop

T£f' Qwiy 'methods!
New Move SetbefaultColor

We could try to implement the properties and methods properties into the class
function (here Forms5) as we did for the on top property and the Move method,
However that would mean we would have to implement them in every class
function we develop, for every new object we invent. This would mean an
important loss of time and room in the workspace.

Since we want properties and methods to be available properties for any object
we create, we should find a way to implement these properties within the Qwi
function itself. At first sight, it does not seem too complex when we notice that
every user-defined object property or method has a corresponding : case
statement in a class function. So we just need to write a program that will extract
all lowercase names following each : case in the class function and we will have
the list of properties we are looking for.

But then we are facing another difficulty which is engendered by inheritance: all
the properties that a class knows are not necessarily defined in the class function
pertaining to this class. Some (or all) of them might very well be defined in other
classes from which this class inherits.

In order to best solve this problem, I have taken a design decision: this decision
has been that the 4class user-defined data property should contain not only the
object class, but the whole list of ancestor classes to this class. Let’s take a few
minutes explaining how this helps.

118




VECTOR Vol.14 No.3

Example:

VEFT OQwd taclass!
Formli Forml$ FormS Form

Jdisplay 'ff' Owi 'aclass!

S mm o= B e Y |

| ..

| 1Formi1| | Form10 | | Forms | | Form| |
|

1)

[ LI P [ I LS|

This means that £ is a Form11 kind of a form which inherits from class Form10
which itself inherits from class Form5 which itself inherits from the standard
APL+Win Form class.

The aclass user-defined data property is recorded at each level of the class
hierarchy by the QwiRegister function which I delayed discussing until now.
Here it is:

¥ QwiRegister A;B;C;D;0ic
[1] Av QuwiRegister 4 -- Sets the object A aclass property to B
[2] nv A +« object name
[3] ay Example: QwiReglster 'ff!
[41 aY Copyright (c) 1997 Eric Lescasse [iomar9?]
[s]

[6] Oio+1 a envirenement

[7] B+4 (Owi'class! n APL+Win class name

(8] C+4 Owi'aclass' n class descent so far

(9] 1if Cap n if aclass not yet defined

[10] A Owitaclass' (0+cB) n register APL+Win class name

{11] :end A end

{12] Dec{ 1+D1'{ " YpD+0si[2;] A calling function name (=UDC name)
[13] 4 Owitaclass'(D,C) a append UDC name

v

This function is easy to understand: any user-defined class must derive from a
standard APL+Win class. At the time we create a new instance of class (with the
New method), the 4class property is not yet defined (i.e. is scalar 0) and
therefore we register the APL+Win class from which our user-defined class
derives (line 10). Then we append the user-defined class name (line 13) at this
level of registration by simply getting the calling class function name (line 12).

Recording the whole class descent in variable aclass is a great help in our
search for the complete list of properties of a given class (including inherited
properties), Because now, all we have to do is to write a QwiProperties which
is able to retrieve the properties of one level and then loop calling
QwiProperties atall levels of the class descent.

119



VECTOR Vol.14 No.3

Here is the QwiProperties function:

v R+QwiProperties 4;C;D
[13 ¥ R+QwiProperties A4 ~- Return all properties from class 4
[2] % Example: QwiProperties 'Forms!
[3] r¥ Copyright (c) 1997 Eric lLescasse [10mar97])

[u]

(=] e (0vr{, 4)=1 1)t ¢ n get class function (Ovr & remove blanks
[6] DeC [Iss ']:cagett! s find where :case statements occur

[7] R+7+7D [penclose C a partition Ovr accordingly

(a3 Re{a\"Rz* 1) 0repl™ R a select property (or method) names

{91 Re(e(+ 'R)e'abcdefghijkimnopgrstuvwxyza')/R s keep only lowercase names
[16] ReR-('.'¢"R)/R n remove event preperties

(11} Re=R-((c'private’')="7+"R)/R n remove private propertles

[12) R+R[QaviR:] n sort list of properties

The comments in Qw i Properties function make it self-explanatory.

Similarly we can define a QwiMe t hods utility, which reads:

Vv R+QwiMethods A;Cip
[1] a¥ R+QuwiMethods A -- Return all methods from class A
[2] av Example: QwiMethods 'Forms'
[3) v Copyright {c¢) 1997 Eric Lescasse [10mar97]

(4T

[5] Ce(Ove(,4)-" "}~" 1 n get class fupction Ovr & remove blanks
[&] D+C Oss "J:case'"?' n find where :case statements occur

[v1 R+7+"'D Openclose C a partition Ovr accordingly

[8] Re(a\"Re' V' )repl” R s select property (or method) names

[5] Re2(e{t"R}e'ABCDEFGHIJKLMNOPQRSTUVWXYZ')/R a Kkeep uppercase names
[10] R«RI{OaviR;] A sort list of methods

v
The only remaining task is to change Qwi 3 to Qwiy as follows:

V R+A QWIL H;C;D3E;F.6:15P0elx
[1] n? R+d Qwit B -- [WI emulator
[2] av Qwself+'obfect_name' Qwih '‘New' 'class_npame'
[33 nv Owself«'object_name' Qwi4 'New' 'class_name'{'propl' valuei)...
[ul ¥ res+ ['object_name’] Qwiy 'prop!'

(5] RY ['object_pame'] Qwiy 'prep' value

le6] (3 ['obfect_name'] Qwiy ('propi’ valuei)...({'propN' valueN)
[7] ¥ res+ ['object_name'] Qwis 'Get_Method' [arguments]

L8] v ['obfect_name'} Qwik 'Set_Methed' [arguments]

(9] a¥ Copyright (c) 1937 Eric Lescasse [Bmar97}

[10]

[11] Qelx+'sHANDLERFOR (JDM*

[22]1 :if zz0nc'a' o A+0wself o :end a OWSELF if no left arg
[13] :1f 1==8 ¢ B+,cB o :end n be sure B 15 nested
[14%] :1f 'New'ssB n I1f method is 'New'

120




VECTOR Vol.14 No.3
[15] C+228 n get specified class name
[18] Bv(c'New! C),2+8 n rebuild argument
1471 :elseif oxpi Owi'self! s else If object A exists
[18] t1f OeCetD+d Owi'aclass! r get registered class name
f191] Cerror'Use OWI instead of Qwiu! s 1f none signal error
{20] rend
[21]1 selse rn 1f not 'New' & not an object
f221 Qerror*tUnknown object: ',A n signal error
[23] :erd
[24] :if 2=aB ¢ B+,cB ¢ :rend m ensure B depth is = 3
(251 E«2>="B ¢ {(E/B)«c"E/E a ensure each element Is of depth 2
[26] B+,B o *#'Owatawres’(C 0p0) n define default result
[27] :for I :in 1pB = for each element tn argument
[28] iselect P++I2B o test property/method name
[29] icase 'class' n class property
[30] t#'0wi'sawres' D an list of classes
[31] icase 'methods! n methods property
[32] Es11 n special method pames
[33} Rep,[1.53{QwiMethods ™ "1iD),cF n get methods at each level
[35] t#'0wifawres’ R s save result
[35] tcase 'properties* n properties property
[386] E+'class' 'methods' 'properties’ o special property names
[37] E+sE, ' 7property' '?method!' a {continued)
[38] R+D,[1.5)(QwiProperties”"14D),cE & get properties at each level
[39] t# w1t awres' R a save result
[uo] ielse r else
[41] :1f '7'wtP n tf property starts with ?
[u2] R+A QwiDoc 1+F n get property documentation
[va) '#'(0wiawres' R n gave result
Cuul :glself 'super 'e64P n 1f argument starts With 'super !
[us] E«(1+F++/P [ss'super')ap n retrieve the super class name
(48] Gee{SxF)4P~! r method name
fu7] 114 LE.r n¥{YALUE:Derror'Unknown class: ',E}
(ugel :else n elge
[u9] 2'4 ',C,¢ IaB' v {VALUE:Qerror'Unknown class: ',C}
[s0] rend
[51] rend
[52] :end L
f53] Re'#'0Owz'swres’ s return result saved in Awres

When we query the methods property with Qwiu, lines 31 to 34 get executed and
the QwiMethods is called for each of the object registered classes:

YEFY Qwik ‘methods!t
Formil New
SetbefaultColor
Formit New
SetbefaultColor
Forms Move

121



VECTOR Vol.14 No.3

New

Form
ldisplay 'ff' Qwiy ‘methods'

e it bl -
o mm— B e L b .
|| Formil] s New 1l
e 'lSetDefaultColor|!
| L l]
[ o= A .
[1Form1o!sNew 1
| '=————- '|SetbefaultColorl|
I P e e e e e EI
fow=mmm Lre—-
| |IForms| +Move! !
== 'l New | |
| to-et
lo4=r- .8,
Il Form| | |
Il____i It I
T e e e - m 1

Similarly, when we query the properties property with Qwiy, lines 35 to 39 get
executed and the QwiProperties is called for each of the object registered
classes:

'ff' Qwiu '‘properties!
Formii
Formi0
Forms cntop

Form clags
methods
propertieg
’property
’method

ldisplay *ff' Qwiy 'propertjes!

R L
{Formil| ¢ |
| [ — | QN |

pEEmS—, e,

T o L ISR |

i
|
{
aF————— --- I
|
|
|
|
|

+
|
|
|
|
|
I
I lFormS| 4ontopl
|
|
|
!
|
|
!
1

aEmmm . hmmmo oo N
|Form| +class I
fF—-—-—-' |methods I
|properties| |
| ?2property |1
| ?me t hod It
L 1 i
e e e m e ———— L}

122




VECTOR Vol.14 No.3

This result is a 2-column nested matrix where the 1st column contains the class
descent of the object and the second column contains the list of properties defined
at each level.

Therefore we see that the ontop property is not defined at the Form11 class level,
neither in its Form10 parent class, but only in its Formb grandparent class.

Looking at the methods tree, we see that the SetDefaultColor method is
implemented at the Form11 class level and at the Form10 parent level. This way
we know for example that we could use the super keyword to invoke the
superclass SetDefaultColor method.

This really is great and very very powerful.

Few Object Oriented development systems allow you to have a global vision of an
object inheritance tree and all properties and/or methods defined at each level of
the tree.

This is the kind of example which fully demonstrates the great
power of APL compared to other systems. The great ease of use of
nested arrays combined with the ability to visualize them in the
APL session as you develop an application gives APL developers a
winning advantage over any other development system. This needs
to be kept in mind.

If you look carefully at the Qwit version of the Qwi function above, you see that 1
have also included 2 other enhancements.

One is the class property (see lines 29 & 30):

VEFY Qwiu 'class!
Formli FormlQ FormS Form

This is simply a cover function for:

VEFY Qwi 'aclass'
Formil Formi0 Form5 Form

The second enhancement is the ability to retrieve a property or method
documentation by prefixing it with a question mark (lines 41 to 43) which leads
us to the next paragraph.




VECTOR Vol.14 No.3

Auto-documenting Properties and Methods
We can go one step further with the Qwi4 function and create a Qwis function,

Following the new feature of the APL+Win 2.0 OCX interface which lets you
query an OCX property or method documentation by prefixing it with a question
mark { 7), we would like to be able to do:

VEFY Quwiy TNew' 'Formiz!
ff

TLEY Qwiu 'ontop!
ontop Determines if the form is on top of all other forms or not
Syntax: boolean «'object' Qwi 'ontop!
'object! Qwi 'ontop' boolean

YIfY Qwik ' ?Move!
Move moves the form to a new location
Syntax: ‘'object' Qwi "Move' vertmove horzmove
vertmove: 'top! 'center' 'bottom' or integer (% of screen height)
horzmove: 'left'! 'center' 'right' or integer (% of screen width)

The easiest way I found for auto-documenting our user-defined object properties

and methods is to add comments just after their : case statement in their class
function.

For example, the Forms5 class function has been modified to Formi 2 as follows:

Vv A Formi2 B:C:D:E F;CiH;T;JJ;K LM N1 Ry8;class(ie
(1] a% A4 Formi2 B -- User Defined Formiz Class
[23 a¥ A4 ++ object name
{31 av B +«+ lproperty"
[&] Ay or ‘property* value
{51 av or ‘'Method?
{63 =9 or 'Method' argumenti ... argumentN
{71 av Requires: (I) QwiRegister
(8] a%? Copyright (c) 1997 ¥ric Lescasse [8mar97)

[ed

{10] (io+i a environment

[11] C+1B n property name or metlhod name

[12] D+1+B n property value or method arguments
(133

[14] :select €

[18]

[161 :case 'New! s coastructor

[17} = Create a new i1pstance of & Formi? object
[18] & "New' classname

[19] A Owi'Delete! n delete existing form
[2c] Red [wi "New' 'Form' R create form
[z1] T#'0wi 'awres' R n result returned 1n Awres property

124




VECTOR

Vol.14 No.3

[22]
(23]
f2u4]
[253
[28]
[27]
[28]
[29]
[20]
[31]
[32]
[33]
{aul
fas]
[36]
[37]
[38]
[ag]
[uwo]
[41]
[u21
Tu3]
[4ud
[55]
[us]
[u7]
[ue]
fual,
[s0]
[51]
{521
{53}
[5u]
[55]
[56]
[s71
[s81
[59]
[60]
[61]
[62]
[s3]
[6u]
[65)]
[66]

v

A Owi '‘caption' 'APL+Win Form'
A4 (w2 'font' 'M5 Sans Serift .8
4 (wi ‘'scale' 5

QwiRegister A
case "Move!
w Moves the form to a new location
o 'Move' vertmove fhorzmove

a vertmove: ‘top' ‘center!'

L]

A

default caption
default fent

pilxel coordinates
register class pame

'Bottom" or integer (% of screen he:ght)

a korzmove: 'left' '‘centert 'right' or integer (% of screen width)

z1f 2#pD o
(E ¥F)+D
G+(z1+82=(dr E)2E ©

He(1+82=0dr F)=F ©

(I J)«'#10witsizer

(E L M Ni+4d Qwi'where'

1@ Owi'awres' {K Lx2p'#'[wi'unitst}
Ke{,01x0 50 100 GxI-M)['top’
L+{.0tx0 50 100 AxJ~N)['left'

:return ¢ rend

A (wi'where' X L M N
:case 'ontop'
s Determines 1f the form is &n top of all other forms
n boolean + 'ontop'
a 'ontop' booclean

11f Oepl

t#1 Owi 'awres! {4 Owi ‘aontop!')
relse

S+(1+1=+D)o' hwnd_notopmost!'

S«Qwcall'setWindowPos"’
A Owi taontop' (l=tD)
rend

:else
11F {cCled Owi'properties!
cor1f {(<C)ed Owi'methods!'

:1f Oepl
rg'Qwi'awres' (4 OQw: C)
ielse
A ([Ow1 {<C),D
rend
end

=and

'center’
‘center?

Vhwnd_topmost' =
S«5 0 0 0 0 '"swp_nomove swp_hosize'
(A Owi'hwnd'),$ A

z

o

£

k]

]

s exit 1f pot 2 arguments
get method arguments

A G 15 0 1f 1st arg char
s H is 0 i1f 2nd arg char

»

= get screen dimensicns

e get form position & stze

o return ¢ld form position
‘battom'1<E}
‘right'ieF]

s new vert form pos
a new horz form pos
& move form

n antop property
o not

n if not property value

a guery property

n else

windows constant to use
other arguments

call SetWindowPos
register property value

o

»

process all other properties/metheds
1f a standard property ...

or a standard method

when ne value or arguments passed
return current value

else.. .

apply value or arguments

The utility which knows how to extract the comments relative to a given property
or method is QwiDoc reproduced below:

125




VECTOR

Vol.14 No.3

[11

[2]

[3]

[4]

[51

[s]

[7]

[81

[9]

[10]
[11]
[12]
{131
[14]
[15]
[18]
[i71
[is]
[19]
[zo3
[21]
[22]
[23]
[24]
f25]
[286]
fz27]
[28]
[29]
[ac)
[31}
[az]
[33]
[3u]
[3s5]
[3s]

[az]’

[38]
[3g]
[40]
{y11]
(42]
(53]
[T
[us]
fusl
[u7]
[us]
(1)
(501

v R+d QwiDoc E;F; G H;T i d 4 KL MR P Q8T UVl XsY: 2:0k0

RY Red Quwilioc F -- Return doc for object A property lor method) E

#v Example: 'ff' QwiDoc 'ontop!'

a¥ Copyright (c) 1%97 Eric Lescasse [10mar97]

Oio+2
A, A)=1 2
Me cEw{ E}~1
G+4 [Owiraclass!
tIf OepkE
M~(Osplit QwiProperties #G)~"1
MeM, (Osplit QwiMethods t+G)~""1 !
send
UeteT/ep™d
Ret
tfor E :ino M
:for I :in &
Z+0vr I
SeZwt 7
F+5/Z
Y«F (sg'licase "' ,E, "1
sIf 1eX
Helr1
Fe{HIF)~'012345678%"'
J+F [ss Otend.'[1s
E+F=Q0tcnl
Lot /aNEST
:1f L=0 o :continue e
P+((8\I)11)+Z
Fe(F10tcnl)+F
Fe( 14 {4\F={tenldeL)+F
F«(Fxz{Jtcnl)eF
Fe(F1"lar )4"'F
Fe{+/7a\"F=1
tif 2s5pF
1andif 1e(2>F)0ss' 't
T+22F
¥+tSyntax: *
W+{ '+t eTtuTL !
V+V, Wl
VeV, "0 0pbject' ! Qui *
VeV {efal\Xs' V)4 X+H+T
(23F}+V
send
:1f 34pF

rend

RS

randif 1e{3=aF)0sst?tr g, 111

T+32F

Vet 1
We(tet e alLter
V+V, W+ T
V+¥,' ' tobject!'' Qwi ?

126

BT

T » 3 P B P D

» » = T T » »p P P D B D

»

o

P T b T

] » » p D

- o

» B T

o

environment

object name

property (or method) name

cbject class descent

1f right argument ls empty

find all properties

find all methods

end

length of longest property name
defaulit result

for each property or method

for each level of inheritance

get class function Ovr

find non blanks

Ovr with ne blanks

find where property starts

if found in QOvr

get position where it starts
drop what's before & remove nunbers
find lines starting with comments
find start of lines

# of comment Iines for this property
cantinue 1f no documentation
‘prop’

Ovr starting at first comment
keep only desired comments

Qvr starting at :case

line partition

return vector of comments
remove leading blanks

1f there is a syntax comment
n :f property found 1im line
extract it

brepare syntax statement

1s there a resulty?

catenate result

catenate Qwi

catenate property & value
catenate texts

end

If there 15 a syntax comment
a if property found in line
extract 1t

prepare syntax statement

1s there a result?

catenate result

catenate Qwi




VECTOR Vol.14 No.3

[51] V¥, (+/a\k=t 1)+X+N+T n catenate property & value
[52] (3aF)+V A catenate texts

(53] rend n end

[54] Pe{ctip? '},7F r indentation

[55] (Y+1aF)+I+E n 1pstall property name

[55] R+R.<F n catenate doc to result

[57] rleave » leave :for loop 1f property found
[58] rend oend 1f

[59] :end » end classes loop

[60] :end s end property/method loop
[61] Re«e{R,”"Otenl). Otcnl n make result character vector
[52]

v

Note that once again, this function has to deal with inheritance: it extracts a
property or method documentation at the first level in the inheritance tree where
this property or method is documented. If no documentation is available, the
function returns an empty matrix.

So, it is very easy to document properties and methods: just add one or more
comments in the class function, just after each : case statement, The first
comment should describe the role of the property or method. The second (and
possibly third) comment should describe the syntax: simply use comments like:

bocolean + 'ontop!
or: ‘object' boolean

which will be automatically converted by QwiDec to:

Syntax: boolean +'object' ¢wi 'ontop!'
tobject' Qwi 'ontop' boolean

Additional comments should be used to describe methed arguments, especially
those which must take their values in a list, like:

Syntax: ‘'cbject' Qwi 'Move' vertmove horzmove
vertmove: 'top' 'center' 'bottom' or integer (% of screen height)
herzmove: 'left' 'center' 'right' or integer (% of screen width)

Examples:

FEY Qwis 'New' 'Formi2'
£r

VFET Qwiy ' ?Move!
Move Moves the form to a new locatjon
Syntax: ‘object' Qwi 'Move' vertmove korzmove
vertmove: 'top' 'center' 'bottem' or Integer {% of screen height)

127



VECTOR Vol.14 No.3

horzmove: 'left' 'center' 'right' or integer (% of screen width)

'ff1 Qwiu 'ontop!
ontop Determines if the form ls on top of all other forms or not
Syntax: beooclean +'object' Qwi 'ontop!
‘object’ Qwi 'ontop' boolean

VEEY Qi 2!
ontop Determineg If the form Is on fop of all other forms or not
Syntax: boolean <'object' Qwi 'ontop'
'object' Qwi ‘ontop' boolean

Move Moves the form to a new location
Syntax: ‘object' Qwi 'Move' vertmove horzmove
vertmove: 'top' 'center' 'bottom' or integer (% of screenm helight)
horzmove: 'left! 'cepler' 'right' or integer (% of screen width)

New Create a new instance of a Formi2 ohject
Syntax: 'object' Qwi 'New' classname

Closer to the Final Qwi Utility

There is one more enhancement we can bring to @wil in order to get closer to our
final @wi utility. We will enhance Qwik to Qwis.

Wouldn't it be nice if Qw1 was aware of a system object (#) which would only
represent our user-defined classes, so that we could query the following
properties:

T#1 Qwis 'properties!’
cliildren classes properties

'#' Qwis 'classes!
DemoForm Forml Formi® Formli Formi2 Form2 Form3 Form4 Forms

Formé Form? Form8 FormS QwiNewClass

t#t Qwis ‘children’

¥
‘gg' Owi "New' 'Torm!
g9
'#' Qwis 'chiidren'
ff
'ER' QwiS 'New' 'FormS'
ha

128




VECTOR Vol.14 No.3

T4' Qwis 'children!
ff hh

So @wi5 would only report information about user-defined classes and ignore
standard APL+Win classes.

The next listing shows the new version of Qwi which implements a virtual system
object with 3 properties (properties, children and classes).

v ReAd Qw15 B;CiDiE;F;GiH:I: T3k Oelx;(io
{1] ¥ R+4 Qwls B -- OWI enmulator
[2] ny Qwself+'object_name' Qwis ‘New' 'class_name'
[3] ov Owself~'object_name' Qwis ‘New' 'class_name'('propi' valuei)...
[s1] #v res+ ['object_name'] Qwis 'prop'

(5] RV [object_name']l Qwis 'prop' value

(81 Av [tobject_name'] Qwis {'propi' valuel)...('propk' valueN)

(71 av resg+ ['‘object_name'] Qwis 'Get_Method' [arguments]

[e] av [tobject_name'] Qwis 'Set Method' [arguments]

51 AV Copyright (c) 1597 Eric Lescasse (8mars7]

[10]

(121 Qies«t n envirenment

[12] Qe!x+'"«HANDLERFOR [DH* a set error handling

[13] :1f 230nc'd' o A+(wself ¢ :end a OWSELF 1f no left ary

(18] :if A='#" a If object is virtual system object
[15] :select B n depending on right argument

fie] tcase 'classes! s If 'classes!

{17] ReQwiClasses n return list of UDCs

[18} tcase 'children? m 1f 'children?!

f191 R+~QwiChildren n return list of UDC instances

[2c] tcase !propertles! r 1f 'properties’

[21] R+'children' 'classes' 'properties' s hard coded property list
[22] 1else A If any other property or method
[23] R«C 0p0 R return empty matrix

[24] rend n end

[25] rreturn n exit from function

[26]1 :end e end

[27] :1f 1==B+,B ¢ B~,cB o :end s be sure B is nested

[281 :1f 'New'stB a 2f method 15 'New!

[z93 C+2=B n get specified class name

[30] B+{c'New' C),24B a rebuild argument

[31] :elseif ozpd [wi'self! n else If object A exists

[32] 11f 0uCetDed Owitaclass’ n get registered class name
Lasl Oerror'tse OWI instead of Qwi5s® A If none sigral errer

[34] rend & end

f3s] ielse s If not 'New' & nmot an object
[ae} Qlerror'Unknown object: ',4 n signal error

[37] :end n end

[38) :if 1=24B ¢ B+,cB o :end r If methoed/prop with arg/value
[39]) :if 2=mB ¢ B+,cH o :end s ensure B depth is x 3

[up] E~2»="B ¢ {E/B)+~<"E/B n ensure each element Is of depth 2

129



VECTOR

Vol.14 No.3

[41]1 *#:[w2tawcest(o 0pd)
[4z] :for I :in 1pB+,B

» define defgult resuvit
n for each element in argument

[43] Ke! 'z2Je' 1 13H+IcH » get method/property name
[un] rselect J+14(KvisK,0)/7 a test property/method name
fus] icase 'class? n class property
[u6] '#'0w1tswrest D r list of classes
[u7] icase 'events! r properties property
fus] Eet! n special property names
[u9] ReD,[1.5]1{QuwiEvents""1+D},cE » get properties at eack level
[501] tei0we'awres® R s save result
[51] scase 'methods! a metiods property
[s2] Ee1t a special method names
[sal R+D,[1.5)(QwiMethods ™ “1+D),cE n get methods at each level
[eu] '#1{lwi'awres' R n save resujt
[s5] :cage ‘properties! A properties property
(562 E«'class' 'methods' 'properties' & special property names
[57] E«aE,*Pproperty' !2methed’ a (continued)
[58} R+D.[1.5](QwiProperties "1+D}.<F & get properties at each level
[53] '#'0Ow1'awres! R a save result
{60] selse n else
[61] sAf T2t mer rn 1f property starts with ?
fe2] R+4d QwiDoc 14J =« get property documentation
[63] ‘' 0wl awres! R a save result
[Eul telseif 'super '=z&tJ a If argument starts with ‘super !
[&5] E+(1+F++/J Oss'super' oD n retrieve the super class name
[66] Gee (5xF)sJ-1 1 n method name
[67] 2'4 ' E, " G' av{VALUE:Qerror'Unknown class: ' ,F}{=:0error(~\Oda=z[itcnl)/0dm)
[68] :else a else
[69] 274 V0.0 HY aV{VALOF:Derror'Unknewn class: *,C){»:0error(a\Odm={ltenl) /Odm)
[70] rend a end
[71] rend s end
[72] :end a end
[73] R«'#'0wi'awres! s return result saved in awres

v

The function has also been cleaned up and improved over ¢wi4 in a few places.

The new lines dealing with the virtual system object (lines 14 to 26) are very
simple to understand: they make use of the following subroutines:

v R+QwicChildren

[11 av ReQwiChildren -- Returns the list of user defined class objects
[2) av Copyright {c) 1997 Eric Lescasse [10mar97)

[3]
[4]l R+e'#'Owitchildren’

rn find all system object children

[5] R+R-(0="R Owi{“c'aclass'}/R n keep those which have a sclass property

v

and:

130




VECTOR Vol.14 No.3

v R+QwiClasses;A;B;C:D

[11 AV R+Qwitlasses -- Returns the list of available user defined classes
[2] av Copyright (¢) 1997 Eric Lescasse [10mar97]
(21

(4]l  B+(Qcrl”(C+Ospliit Onl 23),"e'[o]r)~"" 1
[5] D+1¢"B Oss c';class’
[61  B+(Ove A+{D/C)="1 1}="1 1
[71 C+1€”B Oss"c1]:icase' 'Naw!t?!
[8] C+eCate”B Oss c'QwiRegister'
[9]1 R«C/A
¥

get Iine 0 of all ws fns
find those having ;class

get Ovr of those functions
find those having :case ‘New!
and those using QwiReglster
get their names

» » P D » D

The comments in these functions should be enough to explain them.

The Final Qwi Utility
We can still enhance @wi5 so that we get our final Qw1 utility.

Our goal is that Qwi be a self-contained utility and our goal is also to develop
new classes of objects which would also be represented by self-contained
APL+Win functions.

So we will make the following improvements within gwi5:

o first, we will integrate all our Qw1 subroutines (QwiChildren, QwiClass,
Qwiclasses, QwiDoc, QwiMethods and QwiProperties)

o then, we will add a new method to Qwi, called Register, which will
correspond to the QwiRegister subroutine

This way, all you will need in a new clear workspace to start defining and
exploiting your own new classes of objects will be 2 functions:

Qwi
HANDLERFOR

Note that, when using Qw i, the instruction required to register the class of an
object instance should be changed from:

QwiRegister A n regyister class name
to:

A Qwil 'Register' a register class name

131



VECTOR

Vol.14 No.3

Classes Form1 to Form12 will not run with gwi because they use
the former QwiRegister method (supported by gwi1 to Qwis
only) to register object classes. 1 assume that from now on you will
prefer to use the self-contained Qwi function because it is more
convendent, so you should get into the habit of registering object
classes using the 'object' Qwi 'Register! instruction.

So here is the code for the final self-contained g i utility:

T Red Qw1
BiCy D B FaGil I d s Ky LM N 03P Q8 T3 U VW XY 2y QwiEvent s QuiMethods ; QwiProperties;Q
elx;dio
(1] % R+4d Qwi B -- OWI emulator
[2] w9 (wself+'object_name' Qwi 'New' ‘class_name'
[3] nv fuwself«'object name' Qwi 'New' ‘class_name'('propi' valuei),..
[u] a7 res+e [fobject_name'] Qw1 'prop!
(5] Av [robfect_name'] Quwi tprop' value
[61 &v [tobject_name'] Qw1 ('propi! valuei)...('propk' valueN)
[7] n? res+ ['object_name'] Qwi 'Get_Method' [arguments)
[&] av ['obfect_name'] Qwi 'Set_Method!® [arguments]
[9] n? Reguires: (F} HANDLERFOR (only if error occurs)
[10] v Copyright (c) 1997 Eric Lescasse [16mar97]
[11]
[12] [io+1 a environment
[13]1 [elx+'sHANDLERFOR ODH' a set error handling
[(1vl  :1f 2#0nc'd4' o 4+[wself o :end n OWSELF if no left arg
[i5] :1f Aw'#®) n if object is system object
[i6] sselect B ~ depending on right argument
[17] rcase 'classes! e if 'classes!
[15] C+0split Oni 3 a all fng
[19] EvtOerI™c, " [0]1)-"r 1 s get line 0 of all ws functions
[20] D+1e”E [lss"c'jclass! a find those having ;class
[21] Ee(Qvr ™ F+(D/C)=-"1 13" 0 w get Ovr of those functions
[22] - -C+1e”F Ossc']icase! tHew! 't n find those having :case 'New!
[23] CeeCale E (ss"ciQw2' ' Register' ' "a and those using QwiRegister
[24] R+C/F n get their names
[25] tcase 'childrent n I Tchildreat
[26] R+'#:0Owi'children' a find all system object children
[27] ReR~(0="R Owi“c'aclass')/R n keep those with a aclass prop
[28) :case 'propertiest m 1f 'properties'
[29] k+'childrent ‘classes' 'properties' n hard coded property list
[20] relse n 1f any other property or method
[a1] R«0 0pe n return empty matrix
[az] rend a end
faal rreturn s exit from functlon
[3u] :end s end
[85] ;if 1==f+,B o B+,cB ¢ :end o be sure B is nested

132




VECTOR Vol.14 No.3
[36] :if 'New'=+tH a 1f method 1s 'New!
[ar] C+22B s get specified class name
[38] B+(c'New'! C),2+B s rebuild argument
[39) :elseif 'Reglster'=iB s if method is 'Register!
[u0] E+4 Qwi'class! n APL+Win class name
[u1] Fehd [Qwitasciass! n class descent so far
[u2] 1if Fup a if aclass not yet defined
(s3] A (wi'taclass' (Fe<E) & register APL+Nin class name
[54] rend n ead
[u4s5] Gea(T1+G1 [ ) pGsilzs ] a calling fn name (=udc name)
[us]) A Owitaclass'(G,F) n append udc name
(7] rreturn n exit after registration
[48] :elsezf 0xpd Owi'self! rn else If object 4 exists
[49] 11f o=CetD+A [OwiTaclass? n get registered class name
{50] Oerror'lfse OWI instead of Qwi' n if none signal error
[s1] zend a end
{52) :else r If not 'Few' B not an object
(53] OerrortUnknown object: 1,4 n signal error
{54] :end n end
{85] :1f 1==+B o B+,cB o :end a if method/prop with arg/value
{56] 1if z==B ¢ B+,cB o :end n ensure B depth 15 = 3
{57] E-2>="B ¢ (E/B)~c"E/B n ensure each elemert 1s depth 2
[s58] ‘'#'0witawres' {0 Gp0) n define default result
[59]1 :for I :in 1pB+,B n for each element {n argument
(s0] K+V taJet 1| 4oHeIsH x get method/property name
[61] rselect J+i+{Xvi+K,0)/J n test property/method name
{s2] rcase 'class! n class property
(&3] @' 0wz 'awres' D n list of classes
[64] :case 'eventst n properties property
[65] Eet a special property names
[66] F+c'R+QwiEvents 4;C;D'
[s7] FeF,ctCellvr(,Ad~t" 11 )~tt rut
(68] F+F,cipeC QOss *']icasetrrtirit
(691 F+F,c'Re74"D (penclose C'
[rol F*-F.:'R*(A\"R:"""")Drep.l"R'
171] F+F,c'Re(e{4+"R}Ye''abodefghijklmnopgrstuvwxyza® 1/ R!
[72] FeF,c'Rex("',"*'¢"R)/R"
{73] F+~[defaF n fix QwiEvents local fn
[7u] R+D,[1.5](QwiEvents " 14D}, cF » get properties at each level
[75] t#'Owe'awres' R a save result
[r6] icase 'methods! n methods property
(771 Extt n speczal method names
[78] F+c'RegwiMethods A:iC;0°
791 FeF,c'Ce{vr(,A4)~F1 V1)t 20w
{eo] FeF,c'D+C Os5 *'Ticaser'tri1y
[&1] F+F c'R+7+"D Openclose ¢*
[82] FeF,ctRe(a\"Rz' ' 111001 )repI R
(&3] F+F, c'Re>{e(+"R)e' " ABCDEFGHIJKLMNOPQRSTUVNAYZ Y}/ R!
£sy] FeF,c'ReR[NaviR; )
[a5] F+{def=F n fix QwiMethods lecal fn
{86] R+D,[1.5]1(QwiMet hods™ 14D}, cE n get metheds at each level

133



VECTOR Vol.14 No.3

(873 '#'0w1'avres' R r save result

[8e] :case ‘properties’ n properties property

[891] F+«'class' 'methods' ‘properties’ n special property names
[3e] E+sF,'?property! '?method! s (continuved)

[911 Fec'ReQuiProperties A4;C;D'

[92] FeF, ' Coe(Qvr( 4)=11 11}t 111

[s3] F+F,='D«C [Is5 '!]:caser 111111

[9u] F+F,c'R+74"D Openclose C*

(951 FeF, @ Re(a\"Rz? 1 V11 [repl” R

[961] FeF,c'Rele{t"R)e'"abodefghijklmnopgrstuvwxyza® '} /R

[s7] FeF,c'ReR--(""."'¢"R)/R!

[9s] FeF,c'RenR~{{ct'private' ' }="7+"R)/R'

(98] F+F,c'ReRI0aviR: ]!

[100] FedefaF

[101] ReD,[1.5)(QwiProperties”~1+D),cE s get properties at each level
li02] ‘w'0wi'awres' R n save result

[103] :else n else

[10u] t1f 'pruid = if property starts with 7

[105] Mo, cEe{ E+L4J)~T ! s property {or method) name

[1086] G+«A Owitaclass! a object class descent

[107] :1f Gepk a if right argument is empty
[108] Me()splitt(d Qwi'properties')[1;32] n find all class properties
{10%] MeM Osplit+{4 Qwi'methodst)[1;:2] n append all class methods
[110] MeM=T0 0 R remove extraneous blanks

{1111 rend A end

{112] tet+[/ep™™ n length of longest property name
[123] Rert n default result

{114] tfor F in ¥ & for each property or method
[118] ifor I 1in @ rn for each level of inkeritance
[11e] Z-0Ovr I n get class function Ovr

[117] SeZ¥t ! o find non blanks

[118] F+8/L a Ovr with no blanks

[119] Y«F Oss’licase'* ! ,E,"''' o find where property starts
[120] 1f tel & 1f found in Qvr

[121] HeYo1 n get pesition where it starts
[122] F+{H¥F)~'0123L56789' o drop what's before

[123] J+F Oss Otcnl,'{Ja' » lines starting with comments
[124] - -E+P=Qtenl.— — __ _a start of lines

[125] Lo+ /ANKIT r # of comment lines for this prop
[126] :if =0 ¢ :continue ¢ :end n continue 1f no doc

[127] F+{(5\F}11)+2 n (vr starting at :case 'prop!
[125] F«{F10tcnl)sF n Ovr starting at first comment
[129] F+(Ta+{+\F=[tenl)1L}+F =« keep only desired comments
[130] Fe{F«Oteniler a line partition

{131] Fe{F1rat )+ 'F n return vector of comments

[132] Fe(+/"a\"F=' ")+7F n remove leading blanks

[133] 11f 2spF n If there i1s a syntax comment
[134] randif 1e(2aF)0ss'*'' E,'"""" & 1f prop found 1n line
[135] T+23F n extract 1t

[136] Ve'Syntax: ! a prepare syhtax statement

(1371 We{'+'eT}xT1'+«! p j5 there a resulry

134




VECTOR

Vol.14 No.3

[138]
[133]
[1403
[141]
[1y2]
[i%3]
{1441
[1u5]
{aus]
[147]
[148]
[1u49]
[150]
[151]
[1521]
[153]
[15%]
[155]
[1581]
[157]
[158]
[t59]
[180]
{2611
[162]
[163]
[1e64]
[165]
[166]
[167]
[168]
[169]
f170]
[171]

VeV W2 T n catenate result
V=¥,'tlobject'' Qw1 ' a rcatenate Qwi
V+V, (+/A0NK=" ')+X<W+T » catenate property & value
(2oF )V n catenate texts
rend a end
:1f B3<pF a If rthere 15 a syntax comment
sandif 1e(3=F)ss' "' ", E,''"! a if prop found In line
T+3oF a extract it
V! 1 n prepare syntax statement
We(f«'eT)=F1'+! n 15 there a resulty
V¥, 1T a catenate result
¥e¥,!'"lobject?' Qwi ' a catenate Qwi
VeV, (+/a\X=' ')3X+HM4T @ catenate property & value
(3=F)+¥ n gatenate texts
. tend n end
Felafp' "}, F A Indentation
(H+1oF)+U+E » install property name
R+R,cF » catenate doc to result
s leave a leave :for loop If prop found

rend
zend
rend
Ree(R,""Qctend),"Otcnl
Re(-t/a\pR=[Otcnl)+R
"#'0wztawres' R
relseif 'super "mgtd
Ee{1+F++/J (ss'super')sp
Gro(5xF)¢d-1 |
2t4 VL E, T

A¥{VALUVE:Jerrcr'Unknown class:

s end If

n end classes loop

n end property/method loop

n make result character vector

n remove trailing Otenls

& save result

n 1f argument sStarts with 'super '
a retrieve the super class name

n method name

' EY (*:0error(a\Odmz0tcnl) /0dm}

relse n else

$'4 1, C," H' av{VALUE:(error'Unknown class: ',C)}{»:[error(a\Odm=0tcnl)/0dm}
zend n end
rend a end
tend a end

[172] R+'#'0wi'swres’

v

a return result saved in awres

You may be interested in comparing Qwi5 and Qwi, studying how the Qwi
subroutines (QwiChildren,QwiClass, QwiClasses,@wiDoc,
QwiMethods and gwiProperties) have been integrated into Qwi.

Some of them have simply been pasted in at the right place using Ctrl+G in the
editor: this is the case with QwiClasses (see lines 18 to 24 in Qwi).

In a few cases though, we were using some of these Qwi subroutines with the
each (") operator: this was the case with QwiProperties and QwiMethods.
Rather than trying to paste their code into Qw1 and then make complex changes
to implement each everywhere in the pasted code, it is much easier to first define
these functions as local functions into Qwi and then to use them as before,

135



VECTOR Vol.14 No.3

For example, lines 91 to 100 in Qw i are used to define a local copy of
QwiProperties (we must then not forget to localize QwiProperties into
line 0 of Qwi).

Had we shown function Qwi at the start of this chapter, you might have been
frightened by the amount of code! I have chosen instead to start from a relatively
simple version of the Qwi function (Qw 1) which already helped solve part of the
problem and then progressively complement it with additional functionality
finally to reach the ultimate stage of the development of a utility where you can
try to make it self-contained.

This chapter is a good example of how a utility should be built and here is a
summary of the rules:

¢ lry lo first isolate the main fundamental task the utility should perform
» write a first simple version of the utility which tackles this problem

« test the utility fully

» then one after the other, add additional behaviour to the utility

» ateach step, fully test the utility

* when adding new functionality, de not hesitate to write simple subroutines:
APL is made for that; moreover simple subroutines are easier to write and to
test; there is also a chance these subroutines could serve as utilities later,
outside the context of your current development; therefore save them in your
UCcMDOBJ file

* when everything you wanted your utility to cover is coded, then test
everything again

e finally, when you are really sure the utility and all its subroutines are bug-free,
you can start integrating subroutines into your utility to make it a self-
contained utility

It's not that self-contained utilities are better than ones which are not self-
contained (and in fact the contrary is sometimes true), but it is very much easier
to use a self-contained utility in many different contexts because you just have lo
remember and copy one unique function into your workspace.

Qwi may become so important for your Object Oriented APL+Win developments
that it’s important that it is as easy as possible to use. That's why we made it self-
contained. But I did keep a copy of the QwiChildren, QwiClass,
QwiClasses, QwilDoc, QwiMethods and QwiProperties functons in my
UCMDOBJ file because I am pretty sure I could need them one day.

136




VECTOR Vol.14 No.3

Conclusion

Using Object Oriented Programming, one can extend the power of APL+Win by
building the new kinds of objects one needs, and easily use them in a similar
manner as {IWT, with a utility called Qw.i. Once new objects are developed and
fully tested they are easy to use and fully re-usable forever.

But what's more we have seen how to easily exploit the basic concepts of OOP
with our new objects:

« inheritance,
» polymorphism,
+ overriding methods, calling superclass methods

s method/property overloading

¢ encapsulation
Encapsulation?

Yes, we have used encapsulation all throughout this chapter. Remember: think of
your objects as being the APL class functions (Form1, Form2, ... Form12, etc.)
which implement them, Look carefully: with the help of the : select

:cage ... :case :end control structure, all class properties and methods
have been encapsulated into just one class function.

Therefore, we can say that an object IS an APL function which totally
encapsulates all of its functionality (except when inheritance is used, since the
class function could call a parent class function).

Since this document was published in the Monthly APL+Win Training of May
1997, many users around the world have started using Qw1 and creating their
own objects, Some have sent me a copy of their objects.

This Qw1 technology is also available for Dyalog where it adapts as well.

More information about the Monthly APL+Win Training Program can be
obtained from the Lescasse Consulting's Web site at www. lescasse. con.

Fric Lescasse

Lescasse Consulting (SARL)

18 Rue de la Belle Feuille

92100 Boulogne, France. Tel: (33) 1.46.05.10.76; fax: (33) 1.46.04.60.23

137




VECTOR Vol.14 No.3

Armstrong Numbers and APL

by Joseph De Kerf
This paper originally appeared in BACUS 18.4, December 1996
reprinted by permission of the author

In a previous paper we treated niven numbers [1]. In this paper we treat armstrong
numbers [2].

A positive integer or natural number [ is an armstrong number if the sum of the Jth
powers of its digits is equal to the original number, | being the number of its
digits:

=al+bl+a..

For instance, the integer 153 is an armstrong number as 13+53+32 = 153. Starting
with the armstrong number 1, let F(N) be the Nth armstrong number. Armstrong
numbers F(N) for N =1(1)28 are listed in Table 1.

As F(N} strongly increases with N, the frequency of the armstrong numbers
strongly decreases when N increases. The nine digits 1 ... 9 are armstrong
numbers. There exists no armstrong number of two digits. And for ]23, there
exist at most two armstrong numbers; if [ is an armstrong number, then {+1 is an
armstrong number, if and only if the last digit of I is 0. Or, if [ is an armstrong
number, then I-1 is an armstrong number, if and only if the last digit of I is 1.
Examples:

370, 371 and 24678050, 24678051

So far, however, no algorithm has been found to calculate F(N) directly from N.
This means that, to calculate F(N}, the sequence of positive integers or natural
numbers 1, 2, 3,... has to be checked until N armstrong numbers have been found.

138




VECTOR Vol.14 No.3

T

‘\'IO\UIbeJNF-Ag
o
O

NFN) N FN) N F(N)
8 8 15 8208 22 4210818

16 9474 23 9800817
10 153 17 54748 24 9926315
11 370 18 92727 25 24678050
12 371 19 93084 26 24678051
13 407 20 548834 27 88593477
14 1634 21 1741725 28 146511208

NI R O R

Table 1: F(N) for N = 1(1)28

Two APL wuser-defined functions ARMSTRONG1 and ARMSTRONG2 for
calculating the sequence of armstrong numbers F(1), F(2), ... F(N) are given
below:

VZ+ARMSTRONGL N;I;Jd
[1] +{N=0)/0,Z+11+0
[2] LAB:J«p¥I<I+1
[3] +{I=+/((Jp10)TI)}*J)/LAB
[u] +{N>pZ+Z,I}/LAB
v

VZ<+ARMSTRONG2 N:I:J
[1] +{WNs0)/0,Z+I+D
2] LAB:;J+1+[10el+T+1
€3] +(I#+/((Jpl0)}TT)»J)/LAB
f4] +(N>pZ+«Z,I}/LAB
v

ARMSTRONG1 16
1234567 8 9 153 370 371 407 1634 8208 9474

ARMSTRONG2 16
i23 4567 89 153 370 371 407 1634 B20B 9474

In line [1] it is checked if N is negative or 0, a counter T is set to 0, and the
explicit result Z is set to the empty vector 10. In line [2], the counter I is
increased by 1 and the number of digits 7 of I is evaluated, In line (3], using
the function encode, the counter T is split into its digits and it is checked if the
sum of the Jth powers of those digits is equal to I, in which case I is an armstrong
number. Finally, in line [&], if the counter I is an armstrong number, Z is
catenated with this counter, and the loop is closed when the shape of the explicit
result Z is equal to ¥ (or [N). If ¥ is negative or 0, the empty vector 10 is
returned. If ¥ is positive, the vector of armstrong numbers F(1), F(2), ... (TN} is
returned.

139



YECTOR Vol.14 No.3

N ARMSTRONG1 ARMSTRONG2 ARMSTRONGA ARMSTRONGB
0 0.8 ms 0.8 ms 0.8 ms 0.8 ms
4 23 ms 23 ms 22 ms 22ms
8 3.8 ms 3.8 ms 3.7 ms 3.7ms

12 116.0 ms 115.0 ms 111.0 ms 109.0 ms

16 2.97 sec 2.94 sec 2.86 sec 2.80 sec

20 2.98 min 2.91 min 2.87 min 2.77 min

24 55.30 min 54.00 min 53.40 min 51.70 min

28 average: about 13.5 hours

Table 2: CPU times for N = 0(4)28

The difference between ARMSTRONG1 and ARMSTRGNG2 lies in the program
used to count the digits of I. In ARMSTRONG1 this is done by evaluating the
shape of the format of I. In ARMSTRONG? it is done by adding 1 to the floor of
the common logarithm of I.

In ARMSTRONG1 and ARMSTRONG?2, the count | of the digits of ! and checking if
I'is an armstrong number is done in two separate lines, [2] and [3], for
readability. Performance in CPU times may be improved slightly by substituting
a one-liner for lines [2] and [3]. This is done in the user-defined functions
ARMSTRONGA and ARMSTRONGE:

[13
[23
[3]

£1]
2]
L3l

VZ<ARMSTRONGA N;I:;J
+{N<0)/0,Z«1I+0D

LAB:+(I=+/((Jpl10)TI)*J+p¥yI«I+1)/LAE

+{N>pZ«Z,I)/LAB
v

VZ«ARMSTRONGE NiI;J
+(N50) /0, Z«1I+0

LAB:+{T2+/({Jp10)TI)aJ+1+10eT+«T+1)/LAB

+{N>pZ+Z,I}/LAB
v

ARMSTRONGA 16

2 456 7 8 9 153 370 371 507 1634 &208 947y

ARMSTRONGB 16

1238567 89 153 370 371 407 1634 8208 9474

140




VECTOR Vol.14 No.3

log (TN)-T(O))

6 ’d *
4’/
//‘
//
4 ra
!’/
///
4
2 ,"
Y 4
~

0

1] 2 4 ] 8

log F(N)

Figure 1: 1og(T(N)-T(0)) versus log F(N) for N = 4{4)24

To compare the effectiveness of the user-defined functions shown, CPU times
T(N) for N = 0(4)28 have been monitored. Results are reported in Table 2 (cf. also
Figures 1 and 2).

Of coursg T(N) - T(0) is approximately proportional to F(N}. Performance of
ARMSTRONGB versus ARMSTRONG1 increases, for the domain investigated,
from about 3% to 7% with N. Most importantly however, performance of the
user-defined functions given is very poor and becomes impractical for even small
values of N. Just as for the functions reported to calculate niven numbers, it
would be a challenge to find an algorithm that drastically improves the
performance of the functions to calculate the armstrong numbers.

141



VECTOR Vol.14 No.3

The user-defined functions shown conform to the 130 Standard for APL [3].
Programming, calculations, and benchmarks have been done on a MicroLine
Pentium-5 100, with Dyalog APL/W Version 7.1.2, under Windows 3.11 [4].
Benchmarks have been dene using the system function D¥ONI T'OR.

log TN

8 P »
P
Jl’/
v
6 d
‘/
4
/
4 /"
¥y
/)
7
7 rd
e
/
L
"
4}
0 B % 24 32
N
Figure 2: log T(N) versus N = 4(4)48
References

(1] J.De Kerf; Niven Numbers and APL; APL-CAM Journal, Vol. 18, No. 3, 16
September 1996, pp. 388-396

[2] D.D.Spencer; Computers in Number Theory; Computer Science Press, Rockville,
Maryland, 1982, pp. 126-127

[3] International Standard 1S0O8485: 1989 (E), First Edition; 1989-11-01;
Programming Langunges - APL; International Organization for Standardization,
Geneva, Switzerland, 1989,

4] Dyalog APL/W Language Reference - Version 7; Dyadic Systems Ltd.,
Basingstoke, Hampshire, UK., 1994.

142




VECTOR Vol.14 No.3

Index to Advertisers

Dyadic Systems Ltd 8
Reuters 6
Strand 2
Vector Back Numbers 7

All queries regarding advertising in VECTOR should be made to Gill Smith,
at 01439-788385, Email: apl385@compuserve.com.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards, Please send the text of submitted articles (hardcopy with diskette as
appropriate) to the Vector Working Group via:

Vector Administration, ¢/o Gill Smith
Brook House

Gilling East

YORK, YOs 4]]

Tel: +44 (0) 1439-788385

Email: apl385@compuserve.com

Authors wishing to use Word for Windows should contact Vector Production for
a copy of the APL2741 TrueType font, and a suitable Winword template, These
may also be downloaded from the Vector web site at www.vector.org.uk

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard’ material
{e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK YO6 4J]. Please also copy us with all electronically
submitted material so that we have early warning of possible problems.

143



VECTOR Vol.14 No.3

British APL Association: Membership Form

Membership is open to anyone interested in APL., The membership year
normally runs from 1st May to 30th April, but new members may join from 1st
August, November or February if preferred. The British APL Association is a
special interest group of the British Computer Scciety, Reg. Charity No. 292,786

Name:

Address:

Postcode / Country:
Telephone Number:

Email Address:

Category (please tick box) to run from: 1st May O August O Nov Feb Ul

UKprivatemembership . .. ..................... £12 Q
Overseas private membership .. .................. £14 a

Airmail supplement (not needed for Europe) ... ....... £4 Q
UK Corporatemembership .. .................... f100 Q3
Corporate membership overseas .. .. .............. £135 a
Sustaining membership .. ............ ... ... .., £430 .
Non-voting UK member (student/OAP/unemployed only) £6 a

PAYMENT - in Sterling or by Visa/Mastercard/JCB only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Association”, or you may quote your
Mastercard, Visa or JCB number.

I authorise you to debit my Visa/Mastercard/JCB account

Number: v 1 ¢ o yeoma vore v 1 e 00 Expiry dater L [
for the membership category indicated above,
] ' Data Protection Act:
: T : : The informalion supplied may be
Q annually', at the p-rexjrallmg rate, until further notice | - orec on computar arel ronesoed
one year’s subscription only I accardance with the registration
of the British Computer Socisly.
(please tick the required option above)
Signature: Send the completed form to:

British APL Association, ¢/o Rowena Small, 8 Cardigan Road, LONDON E3 5HU, UK

144




The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by a Committee
of officers who ate elected by a postal ballot of Association members prior to the Anhual General Meeting. Working
groups are also established in areas such as activity planning and joumnal production. Offers of assistance and
involvement with any Association matters are welcomed and should be addressed in the first instance to the Secretary.

1997/98 Committee
Chairman Anthony Camacho 11 Auburn Road, Redland,
0117-973 0036 BRISTOL, BS6 618
100612.1057 @compuserve.com
Secretary Ajay Askoolum 42 Hanworth Road, Redhill,
01737-771643 Surrey RHI1 5HT
106173.3347 @ compuserve.com
Treasurer Nicholas Small B Cardigan Road,
0181-980 7870 LONDON E3 5HU
treas.apl@bes.org.uk
Joumal Editor cfo Vector Administration Gill Smith, Brook House,
01439-788385 Gilling Fast
apl385 @ compuserve.com YORK Y06 41)
Projects and Dr Alan Mayer European Business Management School,
Publicity 01792-205678x4274 Swansea University,
a.dumayet @ swansea.acuk Singleton Park, SWANSEA SAZ EPP
Webmaster Ray Cannon 21 Woodbridge Road,
01252-874697 Blackwater, Camberley,
100430.740 @ compusetve.com Surrey GU17 0BS
Activities Jon Sandles 138 Burton Stone Lane,
01904-612882 YORK YO3 6DF
jon_sandles @ compuserve.com
Education Dr Tan Clark 9 Hill End, Frosterley
01388-526803 Bishop Anckland
100021.3073 @compuserve.com Co, Dutham DL13 28X
Administration Rowena Small 8§ Cardigan Road,
0181-980 7870 LONDON E3 5HU
treas.apl @bes.org.uk
Journal Working Group
Editor: Vacant Post see above
Production: Adrian & Gill Smith Brook House, Gilling East, YORK (01439-788385)
Advertising: Gill Smith Brook House, Gilling East, YORK. (01439-788385)
Support Team: Jonathan Barman (01488-648575), Richard and Adam Weber (0121-3546550),

Anthony & Sylvia Camacho, Ray Canncn {01252-874697), Marc Griffiths (01653-691745),
Bob Hoekstra (01483 771028), Jon Sandles (01904-612882)

Typeset by APL.-385 with MS Word 5.0 and GoScript
Printed in England by Short-Run Press Ltd, Exeter




VECTOR

VECTOR is the quarterly Journal of the British APL Association and is distribtited to Association
members in the UK and overseas. The British APL Association is a Specialist Group of the British
Computer Society. APL stands for “A Programming Language” — an interactive computer
language noted for its slegance, conciseness and fast development speed. It is supported on
most mainframes, workstations and personal computers.

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial
support of the following Association Sustaining Members. In many cases these organisations also
provide manpower and administrative assistance to the Association at their own cost.

Causeway Graphical Systems Ltd
The Maltings, Castlegate,

MALTON, North Yorks YO17 ODP
Tel: 01653-696760

Fax; 01653-697719

Email: causeway @ compuserve,.com
Web: www.causeway.co.uk

Compass Ltd

Compass House

60 Priestiey Road
GUILDFORD, Surrey GU2 5YU
Tel: 01483-514500

Dyadic Systems Ltd
Riverside View, Basing Road,
Old Basing, BASINGSTOKE,

HMW Trading Systems Ltd
Hamilton House,
1 Temple Avenue,

Hants, RG24 0AL

Tel: 01256-811125

Fax: 01256-811130
Email: sales @dyadic.com

LONDON EC4Y OHA

Tel: 0171-353 8900

Fax: 0171-353 33256

Email: 100020.2632 @ compuserve.com

Web: www dyadic.com

Insight Systems ApS MicroAPL Ltd

Nordre Strandve] 119C South Bank Technopark -

DK-3150 Hellebaek 90 London Road

Denmark LONDON SE1 6LN

Tel: +45 49 76 20 20 . Tel: 0171-922 B866

Fax: +45 49 76 20 30 Fax: 0171-928 1006

Email: info@insight.dk Email: microapl@microapl.demon.co.uk
Waeb: www.insight dk Waeb: www.microapl.co.uk

Soliton Associates Ltd Dutch APL Association
Groot Blankenberg 53 Postbus 1341

1082 AC Amsterdam 3430BH Nieuwegein
Netherlands Netherlands

Tel: +31 20 646 4475
Fax: +31 20 644 1206
Email: sales @ soliton.com

Tel: +31 347 342 337



