100+ pages of the best in APL ...

« Hoekstra on Unix APLs {part [l) 48
» Bergquist on ZarkWin 68
» Walter Fil on Migration 91
= MacLeod on Gui programming 83
= McDonnell on Blists in J 110
= Kromberg gets a grip on OLE 121

The Journal of the
British APL Association

A Specialist Group of the British Computer Society

ISSN 0855-1433
www.vector.org.uk
Vol.17 No.1 July 2000

Contributions

All contributions to VECTOR may be sent to the Journal Editor at the address on the inside back cover. Letters anck
articles are welcome on any topic of interest 1o the APL community. These do not need to be limited to APL themes,
nor must they be supportive of the language. Articles should be accompanied by as much visual magerial as possible
(bAw ar colour prints welcome), Unless otherwise specified, each item will be considered for publication as a personal
statement by the author. The Editor accepts no responsibility for the contents of sustaining mernbers’ news, or
advertising.

Please supply as much material as possible in machine-readable form, ideally as a simple ASCII text file on an BM
PC compatible diskette or via email. APL code can be accepted in workspaces from I-APL, APL+Win, [BM APL2/PC
or Dyalog APL/W, or in documents from Windows Write (use the APL2741 TreType font, available free from
Vector Production), and MS Word (any version).

Except where indicated, items in VECTOR may be frecly reprinted with appropriate acknowledgement. Please jnform
the Editor of your intention to re-use material from VECTOR.

Membership Rates 2000-2001

Category Fee Vectors Passes
UK Privale £12 1 1
Overseas Private £14 1 1
{Supplement for Airmail, not needed for Europe)} £

UK Corporate Membership £100 10 5
Overseas Corporate £135 10

Sustaining £430 10 5
Non-voting Member (Student, OAP, unemployed) £6 1 1

The membership year normally runs from 1st May 1o 30th April, Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passes are required for entry to some association
events, and for voting at the Annual General Meeting. Applications for student membership will be accepted on a
recommendation from the cowrse supervisor. Overseas membership rates cover VECTOR surface mail, and may be
paid in sterling, or by Visa, Mastercard or JCB, at the prevailing exchange rate.

Corporate membership s offered o organisations where APL is in professional use. Corporate members receive 10
copies of VECTOR, and are offered group attendance at association meetings. A comtact person must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of promoting the
growth of APL interest and activity, As well as receiving public acknowledgement for their sponsorship, sustaining
members receive bulk copies of VECTOR, and are offered news listings in each issue.

Advertising

Advertisements in VECTOR should be submitted in typesel camera-ready format (A4 or AS5) with a 20mm blank
border after reduction. Iustrations should be photographs (b/w or colour prints) or line drawings. Rates (excl VAT)
are £2350 per full page, £125 for half-page or less (there is a £75 surcharge per page if spot colonr is required).

Deadlines for bookings and copy ate given under the Quick Reference Diary. Advertisements should be booked with,
and sent to Gill Smith, Vector Production, Brook House, Gilling East, YORK Y062 411, Tel: 01439-788385.

Email: apl3 §5@@compuserve corm,

VECTOR Vol.17 No.1
Contents
Page
Editorial Stefano Lanzavecchia 3
APL NEWS '
Quick Reference Diary 5
British APL Association News
AGM & Accounts 7
Vendor Forum Report Jonathan Manktelow 13
News from Suslaining Members 15
APL Product Guide Gill Smith 16
The Education Vector
Zark Newsletter Extracts edited by Jon Sandles 30
Crossword 32
J-ottings 25: The I-spy book of] Norman Thomson 35
Magic Squares Ian Clark 40
REVIEW
Unix APL Power Shootout (Part 2) Bob Hoekstra 48
GENERAL ARTICLES
Introduction to Tree Searching in APL Dan Baronet 55
ZarkWin: Windows Programming without 0¥I Gary Bergquist 68
After the Lord Mayor’'s Show George MacLeod 83
Taking the Migraine out of Migration Walter G. Fil 91
TECHNICAL SECTION
Technical Correspondence I.].Veenendaal 106
At Play with J: Blists in OLEIS Gene McDonnell 110
OOF: Getting a Better Grip on OLE Objects Morlen Kromberg 121
Bell Numbers and APL Joseph De Kerf 131
Index to Advertisers 143

14D/

The Definitive APL for Windows ™

dyalog

% UsNHELF9\GUIREF (Hanual.W.CDocumentsl.[_Documentl.CRangel)... MSIES

bfﬂe Edit ¥iew Windows Session Log Action Opfions JTools Help
1l

[ws D oS S b & flovect BE T VE |1 Q 61 & R flE@BRE ~

Dyalog APL/H Uersion 9.0.0 -‘-U:.’El [03 ReGETXREF i W:REL;F;T:1 ;5 bes

Serial No @ 000042 » Pentium i{ﬁ] [13 DOHLe3 |

[fue Jun 20 14:13:54 2000 A7) (021 OPATHe 't

clear us "fI] |C33 ReQpe'! '"'(0p,c' ")

i JLOAD U:sHELPI9\GUIREF [4] GEY_EUVENT_HAP

J: \HELPS\GUIREF sawved Tue Jun 20 ' [5] 'H'OHC'OLECLIENT" 'Worce ‘
JOBS Al el REL+H.Documents.Open’C:» :

Help HelpFiles Manual R || (C?] H.Uisible«l

| JCS Manual Ak | |EBl ‘Hith REL.Content ;

#.Hanual Al [9] FeFind

i 3FNS] [c103 F.StylecudStyleHear |

ANALYSE _CHRNGES DISPLAY GET HPF‘LI | [F11] iHhile F.FoundAF.Ex»
UPDATE =1 1) ST £5

Readmlg EUENTHAP from U:sHELPINEU jt B e i L

S s =, !.

F‘DFITE ET1d 03

! Debugger - Hanua

[6] H.Uisibleel =l x| UPDHTEESII*F.Stylef-wdS"i,Gw
[71 :Hith REL.Content i
i ce1 F+Find u
LJLS] F.Stule«wdStyleHeading5S '_
| 101 ‘While F.Foundf.Execute"' e
[111 TeText 2
[12] NAHE TYPE«2tC~TeDAUL4 5 »[ii]
[13] :IF TYPEE'Db ject’ IR
[Modiied Functnon JDyadaZUiﬂB.-’UU e J.l.E‘:'.SL 727 P
]

N

l [Curlbd: #.Hanual W (Flpp el [osa:o

_u.

Version 9 - an even better IDE(A)
http:/iwww.dyadic.com

Dyadic Systems Limited, Riverside View, Basing Road, Old Basing, Basingstoke,
Hants. RG24 7AL, United Kingdom.
Tel:+44 1256 811125 Fax:+44 1256 811130 Email: sales@dyadic.com
Microsoft is a registered trademark and Windows and the Windows Logo are trademarks of Micrasoft Corporation

VECTOR Vol.17 No.1

Editorial

by Stefano Lanzavecchia

“A man is born gentle and wenk.
At his death he is brittle and stiff.
Green plants are filled with sap.
At their deaih they are withered and dry.
Therefore the stiff and unbending is the disciple of denth.
The gentle and yielding is the disciple of life.
Thits an armry without flexibility never wins a battle.
A tree that is unbending is easily broken.”
Tao Te Ching - Passage Nuuniber 76

Two years as the editor of Vector: it is hard to resist the lemptation to collect a few
thoughts in form of a balance. The joy and the excitation of working side by side with
the group of nice and competent people composing the Vector Working Group is
mitigated by the apparent lack of participation of our (my?) readers. I remember, back in
the days when I was a young reader, I always enjoyed rteading the letters and it was
particularly intriguing when one thread would span several issues, involving several
people, whose names I learned to recognise and respect. The number of letters sent to
Vector has been dropping steadily and now is very close fo a sad zero on average per
issue. This is hard for me to understand: I am even ready to assume that the articles are
uninteresting. But the reaction I would expect would be to be flooded by messages from
angry subscribers asking for content more appealing. This dead calm is unsettling.

You certainly noticed that thanks to a French contributor, we even fried to revive the
wonderful column of programming challenges, proposing the puzzle of the tessellation
of the cube (see issue 16.3 page 44). After all these months the Working Group has
received only three solutions, namely: mine, Adrian Smith’s, and (hooray!) cne coming,
from a reader. Once again, I cannot believe the challenge was so complex to distract too
much all the busy professionals, lost in the aftermath of the Y2K doom, or so easy to be
tagged as boring.

The funny thing is that it has never been so easy to communicate: in addition to the old
ways (address book, paper and pen, envelope and stamp) we have at our disposal lists
of addresses up-to-date online on the web pages, e-mail, SMS, when Fax and telephone
are not enough. We are very laid back, so there’s no need for formal introductions and
elaborate greetings. We understand English, French, Italian, Danish and would not be
scared by Spanish, Swedish, Nerwegian, Finnish, German.

We have fun with what we do, but it would be much better if you had fun with us.

So, why don’t you let us know what you think?

SHA?P APL for Linux

SHARP APL 6.0 for Linux
+ Full imptementation of SHARP APL for UNIX
= Based on lverson's APL Dictionary '
* Rich in functionality
* Comprehensive documentation

+ Free for personal use

SHARP APL Java Interface

Groot Blankenberg 53
1082 AC Amisterdam
The Netherlands

Tel: +31.20.646.4475
Fax: +31.20.644.1206

44 Victoria Street,
Suite 2100
Toronto, Ontaric,
Canada MAC 1¥2
Tel: 416.364,9355
Fax: 416.364.6159

1100 University Avenue,
Suite 171

Rochester, NY, USA 14607
Tel: 716.256.6466

Fax: 716.256.6469

+ Available for SHARP APL 6.0
for Linux

» Platform independent Graphical
User Interfaces

» Access from APL to Java, including
Java services such as JDBC

* Access from Java to APL

* Free with personé]' use version 6f
SHARP APL for Linux

For'information on the Personal
Edition of SHARP APL for Linux,
see www.soliton.com/Linux.

- For information on the Commercial
- Edition of SHARP APL for Linux,

contact sales@soliton.com or call
taurie Howard at +31.20,646.4475
{for Eurcpe) or Nancy Lamb at
716.256.6466 (for North America)

SOLITON
ASSOCIATES

Enterprise Software Sofutions

VECTOR Vol.17 No.1

Quick Reference Diary

Date Venue Event
24-27 July 2000 Berlin APL Berlin 2000
APL Berlin 2000

APL Berlin 2000 is an Array Programming Languages Conference, to be held in
the Department of Computer Science at the Technical University of Berlin,

The Conference Chairmen are Dieter Lattermann
(dieter_lattermann@compuserve.com) and Conrad Hoesle-Kienzlen
(conrad_hoesle@csi.com).

The Conference has a website at:
http:/ /stat.cs.tu-berlin.de/ APL-Berlin-2000

mirrored at:

http:/ /www lingo.com / APL-Berlin-2000

Dates for Future Issues of VECTOR

Vol.17 Vol.17 Vol.17

No.2 No.3 No.4
Copy date 8th September 8th December gth March
Ad booking 15th September 15th December 16th March
Ad Copy 22nd September 22nd December 23rd March
Distribution October 2000 January 2001 April 2001

Umbilic Torus NC by
Helaman Ferguson, 1986

Umbilic Torus created in Jsoftware

For those who see the elegance in an algorithm, Jsoftware offers an
OLA® programming language ideal for sofving complex problems.

Jsoftware is the modeling tool of choice
17 the art of programminyg.

Jsoftware is an CLAP language. It's highly optimized for operating on whole
high performance interactive nature datasets at a time, allowing you to
allows a programmer fo concisely manipufate data far more easily than
express algerithms when analyzing with conventional software. Also,sparse

complex data sets.

array support provides an efficient
\ form of storage for very large
The core language is based data sets.
on a small set of simple yet
consistent rules with many
powerful facilities fo define new

operations. Builtdn functions a

Make sure to join the JForum
for a lively discussion on a
variety of interesting J topics,
see: www.jsoftware.com/forum.htm
Strand Software, Inc.
19235 Covington Ct.
Shorewood, MN 55331
{612) 470-7345
Fax (612) 470-9202
info@jsoftware.com

‘www.jsoftware.com

VECTOR Vol.17 Ne.1

British APL Association News

Minutes of the Meeting of the Committee of the British APL
Association held on 19 May 2000 at the Royal Statistical Society

It was agreed that the order of proceedings for the AGM would be:
1 Apologies

Minutes of the last AGM (printed in Vector)

Chairman’s report

Treasurer's report

Questions to officers

Ul W

It was agreed that we would not change the membership fees, though it was
noted that the cost of sending Vector to the European members had risen

significantly.

It was agreed that we would make 1000 or more copies of the proceedings CD
which we have agreed to produce for APL Berlin 2000 and send a copy with each
Vector and offer copies to other APL Associations for them to give to their
members. This necessitates an increase in the budget to about £2500. The increase
was agreed. It was suggested that we include on the CD the Vector archive, SAX
for Linux, APL*PLUS/SE, TryAPL2, K-lite, the APL Statistics library, SigAPL free
software, the Canadian utilities library, the FinnAPL idiom library, and maybe

more.

The Chairman proposed that as it looked as if SigAPL/ ACM might not sponsor
APL Berlin 2000 the Chairman for 2000/2001 should offer further sponsorship if it
was needed up to £1500 at risk. This was agreed nem con.

The commitlee agreed to co-opt Dave Phillips.

The Committee agreed that Anthony Camacho should represent it at the BCS
technical board meetings.

The Comunittee re-appointed John Sullivan to audit the accounts for 2000-2001.

Anthony Camacho 20th May 2000

VECTOR Vol.17 No.1

Minutes of the AGM of the British APL Association held at the
Royal Statistical Society from 2pm to 2.15 pm on 19 May 2000

Apologies were received from Ian Clark and Stefano Lanzavecchia.
The minutes of the last AGM as printed in Vector VoL16 No.1 were approved.

The Chairman reported as follows:

British APL Association Chairman’s report on the year 1999-2000

The APL Association survives but is still slowly shrinking. We have about twenty
members less than last year. There are some things we can congratulate ourselves
about and I prefer to recall these.

The jewel in our crown is Vector, widely acknowledged to be the best APL
magazine, worldwide. Vector has appeared regularly and the working group is
confident that we can keep up the work for some while to come. Of course we are
always looking for more and better articles to print and we encotrage everyone to
contribute. To those members (and it is not an empty set) who wish us to print
more APL and APL2 we have to say that the magazine is bound to reflect the
views of its authors at Jeast as much as those of its readers and that it will
continue to do so until the Editor is in the happy position of being able to pick the
best and most suitable half of the articles submitted. Only our members could put
him in that position, so it is up to you.

My thanks to Stefano Lanzavecchia and the Vector working group for an excellent
year's work.

In my opinion, a major reason for the success of Vector is the working group. It is
a large and friendly group of people that meets four times a year. The size of the
group means that the task of obtaining articles is spread among many (a sole
editor might find asking continually for articles becomes tedious) and a large
group has a wider ring of acquaintances that can be asked. The friendliness of the
group makes the quarterly meetings a pleasure to attend - and the Association
does its best to help by paying for appropriate refreshments. It is an open group
and we would be glad to welcome anyone interested in seeing what it is like to
come and see. If you do, you won’t be bullied into doing things that you don’t
want to.

Since the Vendor Forum following last year's AGM, we have not held a meeting.
The main problem is finding a time, place and subject that will attract a large
enough audience to justify the effort our speakers would have to devote to

VECTOR Vol.17 No.1

producing good presentations. If there is a subject on which you would like to
arrange a meeting, please contact Jon Sandles and he will help you, if possible, to
realise your plan.

Your committee for next year is as follows:

Chairman Adrian Smith
Secretary Anthony Camacho
Treasurer Nicholas Small
Editor Stefano Lanzavecchia
Activities Jon Sandles
Webmaster Ray Cannon
Education Ian Clark

Projects and Publicity Alan Mayer

1 thank last year’s committee for their efforts, in particular Ajay Askoolum, who is
retiring as Secretary, for his three years work in that post. Unfortunately I am now
going to have to do the job myself, at least until we can find a volunteer! 1 am also
grateful for the efforts of Rowena Small and Gill Smith who are paid to Iook after
the membership and Vector administration.

This year the APL conference is in Berlin. Your association has agreed to sponsor
the proceedings: we will produce a CD and loose-leaf sheets of paper for the
delegates. As the CD has enough capacity for a considerable amount of further
material, we are hoping to include the Vector archive (to the extent that it is
available in electronic form), one or more free APL interpreters and as much as
possible of the additional and tutorial material from the conference. We are
hoping to send everyone a copy of the CD with the Vector containing the
conference report.

Financially, we continue more than solvent. We have assets of over £40,000. For
some years we have continued to keep the membership rates steady although it
has meant that our expenditure exceeds our income. Whereas this obviously
cannot continue for ever, your committee has felt that so long as we have
sufficient funds to cover all foreseeable needs, we might as well keep our
subscriptions low and encourage people to join.

Anthony Camacho 18 May 2000

VECTOR Vol.17 No.1

Treasurer’s report

Nicholas Small reported: he circulated a short set of accounts:

British APL Association - summary of annual accounts 1999/2000

Summary of income and expenditure/receipts and payments:

199972000 1998/99 1997/98 1996/97
{R&P) (I&E) (I&E) {I&E) (IZE)

£ £ £ £ £
Income/Receipts
Subscriptions 9101 9152 10368 11021 11364
BCS services 278 278 167 0 106
Bank interest 1882 {882 2943 3322 3022
Vector advertising (incl. VAT) 2797 3047 2463 3471 4605
Other 550 366 264 108 351
Total receipts 14608 14725 16206 17922 19448
Expenditure/Payments
Meetings 259 259 704 4] 358
Administration 1227 1344 1423 1152 2135
BCS services 278 278 167 0 106

Vector production and despatech 15903 15802 17086 14584 15315

Education Vector supplement - io8 3446
Projects 470 470 328 501 1117
Other 543 501 246 308 670
Total payments 18679 18653 19954 16653 23148
Assets summary:

Bank and other balances LLoBY 49055 52525 52021
Debtors 858 733 2071 2188
Creditors (4858) {(4776) {5270) {6151)
Net assets 40983 45012 9327 48059
Written of f (100) (568)

Notes:

Pence figures have been omitted, so columns may not add exactly.

The value of stocks of Vector have not been assessed, nor has the value of the
Association’s computing hardware and software,

For 1999/2000, figures are shown both as income and expenditure, i.e. revenues
strictly relating to the activities of that year, and as receipts and payments, i.e.

10

VECTOR Vol.17 No.1

what goes in and out of our bank account. The comparative figures for earlier
years relate to income and expenditure.

The sum written off comprises a cancelled invoice (Devon Systems)
Adjustments to R&FP for 1999/2000 to obtain 1&E.

Add to income:

Subscriptions 452.00 paid in 1998/99
107.50 outstanding 199972000
-508.50 advance payments for 1999/2000

Vector ads -500.00 from Vol 154 (excluding VAT)
750.00 outstanding for Vol 16.4 {excluding VAT)

Other -135.00 cancelled subscription (Towers Perrin)
-49.40 VAT refund, 199972000

Add to expenditure:

Vector -3200.00 production of 15.4 {estimate} (actually 2914.91)
83.33 credit note from 1998/99
-832.31 late expenses claims, 1998/99
3528.53 production of 16.4
320,11 late expenses claims, 1999/2000

Admin -51.70 late expenses claims, 1998/99
168.73 late expenses claims, 1999/2000

Other -31.85 VAT, 1998/99 Q4
43.75 VAT, 1995,/2000 Q4
49.40 VAT due to BCS (1999/2000 Q3)
-104.00 Vector storage 1998/99
-104.00 Vector storage 1997/98
104,00 Vector storage 1999/2000

11

VECTOR

Vol.17 No.1

Membership report

Nicholas reported on behalf of Rowena:

Membership at 30.4.00 (previous year's figures in parentheses)

UK FOREIGN TOTAL

Number Vectors Number Vectors Number Vectors
Sustaining 4 {4} 15 (12} 4o(k) 66 (76) 8 (8) 81 (88}
Corporate» 6 (8} 37 (57) 1 (3) 10 (30) 7 (11} 47 (87}
Corp. Ind~ 20 (22) 2% (26) 2 (1) 2 (1) 22 (23} 26 {27)
Individual 130 (138) 128 (138) 218 (223) 218 (222} 348 (361) 346 {360)
Non-veting 15 (17) 15 (£7) 0 (0} 0 (0} 15 (17) 16 (17)
Life 1 (1) 1 (1) 1 (1) 1 (1) z (2) 2.{2)
Library 1 (1) 1 (1) 6 {5} & (5) 7 (6) 7 (6)
Russians 10 (11) 10 (11) 10 {11) 10 (41)
APL Groups 13 (14) 39 (42) 13 (1% 39 (42)

573 (640}

»Add the Vector numbers in these rows to get the total subscribed

for by corporate members

Further business

There were no questions to Officers nor any other business so the Chairman
closed the meeting at approximately 2.15p.m. and handed over the meeting to Jon

Sandles.

Anthony Camacho 20th May 2000

British APL Association,
c/o Gill Smith,

Brook House, Gilling East,
YORK Y062 4]]

12

Vectlor Back Numbers

Back numbers of Vector are available from:

Price in UK: £10 per complete volume (4 issues);
£12 (overseas); £16 (airmail) including postage.

VECTOR Vol.17 No.1

British APL Association: Vendor Forum
May 19" 2000, following the AGM

reported by Jonathan Manktelow (jonathan@causeway.co.uk)

Dyadic
John Scholes took this opportunity to promote one of his favourite, and possibly
one of the most under utilised features of Dyalog - dynamic functions.

His session was a whirlwind tour of the various techniques he uses to build
powerful utilities built purely in dynamic functions. From the most simple - sink
(a function that simply takes an
argument and does nothing) all the
way through to a powerful workspace
difference tool, which produced a
clear and comprehensive report of the
differences between two workspaces.

The most striking thing about this
- presentation was that dynamic
functions enable us to write
procedural code in APL. Efficiently!
Many classes of problem are much
easier to solve using procedural and
recursive code, than array manipula-
tion. However using a lot of procedural looping code in APL can be quite slow
when compared to the equivalent array based code. But because dynmamic
functions have a very simple syntax, the interpreter can execute them far quicker
than the equivalent traditional APL.

The session clearly showed not only the power of dynamic functions, but also the
fact that we do not have to throw away the procedural paradigm to enjoy the
manipulation of matrices!

13

VECTOR Vol.17 No.1

Soliton

Benoit Paquin, from Soliton, came to the conference to give most of us our first
glimpse of the new SAX for Linux. This is the new Linux port of the Soliton APL
interpreter. He quickly explained the pricing structure (the cheapest option being
free for non-commercial use) and moved on to give us an overview of the
structure of the system. The SAX
development environment consists of a
number of modules, with an APL interpreter
running on a Linux machine at the core.

& . For most of his session Benoit concentrated on
showing us how to build an APL powered
~ calculator. With a Java user interface! This
allows the front end of the calculator to be run
on any Java enabled system that is connected
to the Linux server.

After being shown how easy it was to move
the simple user interface handling out to a
Java GUI, but keep the power of a mainframe
APL interpreter to process the data, it was not
difficult to see how this technology could be
used to produce very powerful multi-user APL systems, with good looking front
ends, that will run on any machine attached to the network.

Causeway

The Causeway session started by showing some of the new features that have
recently been added to CPro, Rain and NewLeaf, including drag and drop
technology in CPro. Many of these new features will be explored in more detail at
the Berlin conference at the end of July.

We then moved on to show a preview of GraPL, server edition (Graphing Power
unleashed). This technology wraps the Rain graphics engine in an OCX, which
allows users to embed quality publication graphics into systems developed in
almost any programming tool under Windows.

To illustrate the power of this technology we showed a couple of web pages
containing graphs generated on the fly by the web server. The server side code
consisted of a few lines of VBScript, which could easily be extended to read data
values from a database on the server before plotting the latest information.

14

VECTOR Vol.17 No.1

Sustaining Members” News

Soliton Associates

Soliton is pleased to armounce the availability of SHARP APL for Unix (SAX)
version 6.0. SAX 6.0 comes in 2 editions: an Enterprise Edition (EE) and a Personal
Edition(PE). Both editions of SAX are technically identical but the Enterprise
Edition offers enhanced connectivity to Oracle databases and to OS/390 services
such as DB2, VSAM and OS datasets accesses. The Personal Edition is only
available for the Linux platform (RedHat, SuSe and Mandrake), is royalty free for
non-commercial uses and can be downloaded from Soliton’s FTP server. The
Enterprise Edition is available for the IBM AIX, SunOS and Linux platforms and
includes comprehensive support and update services.

SAX 6.0 EE will be available on September 4th while SAX 6.0 PE will be available
from our FTP server in the course of August. More than 1000 pages of on-line
documentation is included with both editions. Printed mannals can also be
purchased separately.

SAX 6.0 offers improved performance over its predecessors, a high capacity
Shared Variable Processor, a new file server, enhanced fonts and keyboard
support. It has socket connectivity and excels as a server in a client-server
architecture. In particular, the SAX 6.0 web server offers SSL. encryption for secure
transactions.

SAX 6.0 is the first version of SAX that runs under Linux and enables portability
and scalability across all of its platforms; an application running on SAX 6.0 for
Linux can be migrated to a SunOS or AIX environment at no cost (and vice versaj,
The low cost of entry offered by Linux will enable corporations to introduce SAX
in their infrastructure while keeping their potential for growth through the
scalability offered by SAX on its 3 supported platforms.

To ease development of SAX 6.0 applications, a new integrated development
environment (IDE) is being developed and a first alpha release is intended to be
available in August. The IDE is designed as a client and, being Java based, can be
used across a network as, for example, a Windows client connected to a SAX
server running under Linax.

Visit our web site: www.soliton.com/linux for more information about the
Personal Edition of SAX 6.0. Enterprise Edition inquiries should be made to
Laurie Howard (Europe} at +31 20 646-4475 and to Nancy Lamb (North America)
at (716) 256-6466.

15

VECTOR Vol.17 No.1

The Vector Product Guide
compiled by Gill Smith

VECTOR's exclusive Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services, We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We reserve the right Lo edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups (‘poa’ indicates “price on application’):

» Complete Systems (Hardware & Software)
* APL and Interpreters

* APL-based Packages

* Consultancy

¢ Other Preducts

* Overseas Associations

» Vendor Addresses

* World Wide Web and FIP Sites

Every effort has been made to avoid errors in these Listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

Your listing here is absolutely free, will be updated on request, and is also
carried on the Vector web site, with a hotlink to your own site. It is the most
complete and most used APL address book in the world.

Please help us keep it up to date!

All contributions and updates to the Vector Product Guide should be sent to:
Gill Smith, Brook House, Gilling Fast, York, YO62 4]]. Tel: 01439-788385,
Email: apl385@compuserve.com

16

Vector Product Guide

Vol.17 No.1

COMPLETE APL SYSTEMS

COMPANY FRODUCT PRICES(E)

Dyadic [BM RS/6000 MD320 11,736
[BM RS/6000 MD320 13,817
IBM RS/6000 MD320 22,658
IBM RS/600C MD520 714
18M RS/600C MD530 72054
IBM RS/6000 MD540 122,842

Optima 1BM Compatible poa

APL INTERPRETERS

COMPANY PRODUCT PRICES(E)

Beautiful Systems Dyalog APLW for Windows poa
Dyalog APL for Unix poa

The Bloomsbury Scftware Company
APL+PC Version 11 250
APL+Win v3,0 1350
Migration te APL+WIn 1060
APL+DOS 1250
Migration to APL+DOS 760
APL Link 200
APL Link Pro 500
APL*PLUS Il for UNIX poa
APL"PLUS VMS poa
APL*PLUS Mainframe poa

Dinescft Oy Dyalog APLAY for Windows poa

DETAILS

APL POWERSstation (Greyseale) 27.5 MIPS, 7.4 Mflops RISC
Processor 8Mb RAM, 120Mb Disk

19" 1280x1024 Greyscale Graph Display AlX, OSF Molif, Dyaleg
APL (1-usen)

APL POWERSstation (Colour) 27.5 MIPS, 7.4 Miiops RISC
Processor 8Mb RAM, 120Mb Disk

16" 1280x1024 Colour Graphics Display AlX, OSF Motif, Dyaleg
APL {1-user)

Advanced APL POWERstation 27.5 MIPS, 7.4 Mfiops RISG
Processor 1T8Mb RAM, 320Mb Disk, 150Mb Tape

16" 128021024 Colour Graphics Display AlX, OSF Motil, Dyalog
APL (1-user}

APL POWERsystem {B-users) 27,5 MIPS, 7.4 Milaps RISC
Processor 16Mb RAM, 320Mb Disk, 150Mb Tape CD-ROM Drive,
16 Ports

AlX, Dyalog APL (2-8 user llcence)

APL POWERsystem {16-users) 34.5 MiP5, 10.9 Mflops RISC
Pracessor 32Mb RAM, 1.34Gb Disk, 2.3Gb Tape CD-ROM Crive,
16 Ports

AlX, Dyalog APL {8+ user licence}

APL POWERsystem {32-users) 41 MIPS, 13 Mflops RISC
Processor 64Mb RAM, 1.7Gb Disk, 2.3Gb Tape CD-ROM Drive, 32
Ports

AlX, Dyalog APL {8+ user licence)

Complete networked or stand-alone solutions including configuration
instaltation, maintenance and commissioning.

DETAILS
US Distributor of Dyalog APL products from Dyadic.
See Dyadic listing for product detalls,

Upgrade to verslon 11 gives free runtime (£120 from any versicn)

A 32-bit Windows-hosted Interpreter that funs under all Windows
platferms Ineluding ‘Windows 95. Note: Upgrade for £350 from
version 1.8 or 2, £920 from verslon 1.0

from APL*PLUS/PC APL*PLUS/DOS any versfon,
{rom earller versions of APL*PLUS 1)

APL*PLUS [l DOS Is renamed 1o APL+DOS.
from APL*PLUS/PC

Database Access

APL2000's 2nd generation APL fer all majer Sparc and Riss Unix
workslations.

2nd generation APL for DEC VAX computers under VIS,

Enhances V3 APL with many high perforiance, high productivity
features. For VMYCMS and MVS/TSQ offers simple upgrade from
VS APL.

Finnish distributor of Dyalog APL products.

17

Vector Product Guide

Vol.17 No.1

Dyadic

DynArray

I-APL Ltd

1BM APL Products

Insight Systems

Iverson Software Inc.

Dyalog APL for Unix poa
Dyalog APL for DCS/386 895
Dyalog APLAW far Windows 13
Dyalog APL for Unix 995-12,000
DICE for Windows poa
I-APL/PC or clones 8
I-APL/BBG Master 8
-APUAchimedes 8
TryAPL2 free
APL2 PC (US Version} 3630

APL2 PC {European Verslon) £348

APL2 for CS/2 Entry Edition 5185
APL2 for Q5/2 Advanced Edition $650

APL2 for Windows versicn 1.0 $1500

See Dyadic's listing for product details.

Second generation APL for DOS.Runs in 32-bit mode, supports very
large workspaces. Unique “window-based” APL Development
Environment and Screen Manager. Reguires 386/456 based PC or
PS/2, at least 2Mb RAM, EGA or VGA, DOS 3.3 or later.

As above, plus object-based GUI development tools. Requlres
Windows 3.0 or later.

Second generation APL for Unix systems. Available for Alttos, Apalls,
Bull, Dec, HP, IBM 6150, IBM RS/6000, Masscomp, Pyramid, NCR,
Sun and Unisys machines, and for PCs and PC/2s running Xenix of
AIX. Gracle interface avaitable for [BM, Sun and Xenit versions.

Software development kit which includes an APL inferpreter as a
DLL and the ability to run and link existing and new APL code to non
APL code such as VB, C/C++, Java and integration with various
Windows software applications and database packages such as MS
Office.

180 conforming interpreter. Supplied only with manual (see ‘Cther
Products' for accompanying books).

As above

As above

APL2 for educational or demenstration use. Write, fax or Email to
APL Products; specily disk size desired.

Product No. 5799-PGG. PRPQ Number RJ0411.
Order from 1-800-|BM-CALL

Product No. 5604-260. Part humber 38F 1753,
From ali IBM dealers, including MicroAPL.

Part No 85G1556,

Part No 83G1697, Contalns all facilties of the Entry Edition plus:
DEB2 interface; co-operative processing TGPAP interface; tols for
writing APs; TIME faclity

Product No. 5639-d48, part number 4229558,

Part No. 39L8419 - Packager and runtime CDs. One additional
runtime install $200, 5 additionals $500, $0 $1,500.

Product No. 5648-085.

Product No. 5765012,

Product No, 5688-226. Full APL2 system for S/370 and $/3%0
Product No. 5688-228. Runtime environment for APL2 packages
Leading distributer of APL2000 products in Denmark

Leading distributor of Dyalog APL products in Denmark

Leading distributor of IBM APL & GraphX products in Denmark

APL2 Runtime environment 280
APLZ for Sun Solaris 51500
APLZ for AIX 6000 poa
APLZ Version 2 poa
APL2 Application Envt Vn2 poa
Cognos/APL2000 Inc poa
Cyadic Systems Ltd, poa
IBM pog
4 on the Web online registration .,
J Educational Edition 595
J Standard Edition $205
J Professicnal 3895
Books and accessories {discounts for reg users)
J Dictichary 350
< User Manhual £50
J Phrases 850
 Primer $50
Concrete Math $40
Exploring Math $50

18

Vector Product Guide

Vol.17 Neo.1

J Austria

Lescasse Consulting

MasterWork Saftware
MicraAPL

Casls

Cmega
Optima
RE Time Tracker Oy

Soliton Associates

Strand Software

J Uger Conference Proceedings

$38

Mugs, T-shirts, Mousepads $10 each

J

Dyalog APL

Causeway Products
Structural Analysis Software

APL+FC

APL+Unix
APL+DOS
APL+Win
Dyalog APLIW
Manugistics Products and ISI
APL.68000/X

APL.680CO Level I
Mac

Dyalog APL

APL*PLUS

APL.E3000

APLZ

Zero

Cyalog APL/W

APL+PC {APL*PLUS/PC)

APL+DOS (APL*PLUS II)

B33

$EEEE 3

1500-6000

APL+Win {APL*PLUS Ill), APL+Link

APL+UNIX
APL*PLUS Sharefile
SHARP APL for ©S/35%0
SHARF APL for UNIX
SHARP APL for Linux
Canada

All APL*PLUS Products

Dyadic and |SI products
usa

Dyadic and IS| products

APL PACKAGES

COMPANY
ADAPTA Software

PRODUCT
MPS
FBS

EEE

i

PRICES({E)

poa
poa

Distrivuter for Austria and Switzerland
Distributer
Distributor

Complete package by IG Zenkner&Handel to perform structural
analysis/engineering calculations. Also suitable for dynarnic
problems, e.g. earthquake simulation.

Lescasse Consulting is the exclusive APL2000 distributer in France
and also

distributes in Switzerland and Belgium, Call for price quotes.

French distributor for Cyalog
New Zealand distributor

Second-generation APL. Nested arrays, user defined operators,
selective specification, ete. Multi-user AX version with full OSF/Motif

support,

Second generation APL. Full windewing interface. Hardware and
saftware fleating polnt support.

Dyadic Systems

Manugistics

MicroAPL Ltd

1BM

A “small simple and fast” atemnative to APL

Fully fledged Windows develecpment envircnment.

Complete APL+ ang Statgraphics product range and links to various
3rd party products.

for IBM OS/3%0 mainframes
for SunOS and 1IBM AIX
for Inte} Linux

All APL*PLUS products including upgrades and educational.

DETAILS
Master Production Scheduling
Forecasling and Budgeting System

19

Vector Product Guide

Vel 17 No.1

DRP poa
Adaptable Systems FLAIR poa
Adayturn Software Adaytum Planning poa
APL Group (see Eventra)
APL Software\Services
APL Wtiities poa
Beautful Systems ASF_FILE $309
NAT_FILE 3209
DBF_FILE §289
SF_READ poa
The Bloomsbury Software Company
{for VSAPL) Enhancements & Sharefile poa
Compiler poa
{for APLZ) Shareflle/AP poa
Causeway CausewayFro for DyalogW 400/$600
RainFPro Business Graphics 250
Newleaf for Dyalog and +Win 400
Cinerea AB ORCHART 250
CODEWORK HELM poa
CynAmay DynaWeb Server poa
DynaHarry poa
Oynabink poa

Distribution Requirements Planning

Flnite loader and interactive rescheduler. Customisable full-function
scheduling system. (Available outside Australia by special
arrangement only.)

Full-featured Budgeting and Financial Planning system for medium
1o large enterprises,

Software: mostly AWS for DOS, ulilities for most APL Interpreters.
Public domain APL*Plus v10 with on-screen dogumentation and
Interactive tutorlals. APL Conference Software. Books: APL user
manuals for STSC, IBM, and Sharp. Request emall catalog from
dick.holt@funo.com.

Dryalog APLAY auxiliary processor for access ta APL*PLUS/PC APL
compenent files {*.ASF).

Dyalog APL/W auxdiiary processor which emulates the
APL*PLUS/PC quad-N native file subsystem for access to the DOS
flle system.

Dyalog APLAN auxillary processaor for efficient block mode access to
dBASE format files, Deslgned to get large ameunts of data in and out
of dBASE. Not sufted fer random access to small amounts of data (it
dees tot handle keys),

Dyalog APLAN functions to read APL"PLUS data objects of any type
or structure from *.SF style component files created by APL*PLUS II
orlll.

Component files, quad-functions & nested arrays for VSAPL under
VWCMS & MVYSITS0O

The First APL compiler!

STSC's shared access compenent Mle system for APL2.
Comparable to all APL*PLLS file systems: multi-user storage of
APL2 arrays with efficent disk usage

Causeway application development platform for Dyalog APLAW.

The ultimate graphics toolkit for the APL developer. Adds 3D
charting eapability, Web publishing and clipboard suppen to the
shareware product. Charts can be included in Newleaf reports.
Functionally compatible across Dyalog/W and APL+Win.

Frame-based reporting tooi with comprehensive table-generation and
text-fiow support. Offers multiple master-page capabllity, bitmap
wrap-around and on-screen preview with pan and zoom. Fuly
supported on Dyalog/W and APL+Win (1.8 ard above)

Organtzation chart package for [BM APL2/PC, Full & heavity
commented source code Included - free integraticn into other
applications. NB: ASCII autput with lIne-drawing {semi-graphic)
characters for boxes.

Decision: Support System for top management. Handles farge multi-
dimensional tables, data analysls, EIS presentations, generates
HTML and Latex output, Platforms: MS-DOS, LAN, Windows
3.1/85/NT. Ideal for APL customisation (APL*PLUS |l and Dyalog
APL); more than 150 installed.

A web server providing web based access to applications running on
the DICE interpreter from DynArmray, cr on an [BM malnframe
running APL2.

A 85 systern which offers the next generation capabliities for
current APLDY, IC/E and IC/ users. It comes with ROLAP
capabllities, multisystem access 1o a wide variety of databases and
data warehouses.

An ODBG client interface for DIGE and {BM APL2 programs.

20

Vector Product Guide Vol.17 No.1
Eventra Qualedi $1500-4000 Electronks Data Interchange (EDI) transiatien software for the PC,
with strict compliance checking.
H.MW. 4XTRA pua Front-end Foreign Exchange dealing / pos keeping
Arbitrage poa Arbitrage medeling
Basket poa Basket currency modeling
Menu-Bar poa. pull-dovwn menu far APL"PLUS/PC
-APL Ltd Educational workspaces S PG format disks with the examples from: Thomson. Espinasse (¥its

1BM APL Products

INFOSTROY

Insight Systems

JAD Software

Lescasse Consulting

Linga Allegro

A Graphical Stallstical System
(AGSS)

APL*PLUS/Xbase Interface
(/386 Version 2)

(DLL Version 1)

Causeway

$250

$2500

3198

188

poa

1-4), Kromberg, Jizba & FinnAPL. All the examples to save your
fingers!

for DOS, Preduct Number 5764-009
jor Workstations (0S/2, Ak, Sotaris}, Product Number 6764-092
for CMS, Produst Number 5764-011

Camplete package written In €. Cotnparable with the data, Index &
memo files of FoxPro, dBASE, & Clipper. Multi-user support. No
DBMS license reguired.

The same In a DLL form| Gives your Windows applications all
advantages of DLLs.

Leading distributor of Causeway products in Denmark

A¥ our old products are now either QEM'd, in the public domain, out of date, or af of the above. We¥ be back!

JAD EMS

APL+Win Monthly Training

poa

$600

Advanced Witdows Programming $55

DLL parser for APL

Delph! Forms Transiator

APL+Link Pro
SQAPL Pro
RainPra

NewLeal
Graph and ChartFX
Formula One and Cyalog APL

FRESCO Business Graphics
AP12GIPG

AP127/PC

AP119/PC

FACS

250

2
)
N

BEEEE BE38 TR

JAD SMS is a multi-user software management system 1ot Dyalog
APL™ based on shared, hlerarchical databases. JAD SMS
databases let you keep historicat versions of apl terns as well as
attributes such as timestamp, user name and documentation. The
software includes a graphical user interface as well as specialzed
functicns for inclusion in applications. No charge for single-ser
version;, $100/user for multiple users

Dewnload 50+ page document about APL+ pregramming each
month. You also get one or more workspaces full of re-usable APL
code and sometimes addflional files or products.

200-page book plus companion disk on interfacing APL and Delphi.
Caontains full coverage of Delphi-2, +Win and Dyalog.

Parse any Visual Basic DLL declaration file inte a set of quadNA
definitions. Turn constants and structures inte APL variables.
Available for APL+Win and Dyalog/\W.

Design forms with Delphi and turn them automatically into APL
programs which recreate the same form (+Win and DyalogiWV).

ODBC interface for APL*Win
QODBC interface for Dyalog APLAV

Highly custemisable 2D and 30 publicaticn graphics for APL+Win
and Dyaleg APLANY

Page layout and printing toals for APL+Win and Dyalog
High-quality business graphics for APL+Win

100-page book + companlen disk on how to use the Formula One
VBX with Dyalog APLAW

Fast and easy business graphics DLL

GDDM interface for Dyalog APLW

OCBG interface for Dyalog APLAW

TCPAP interface for Cyalog APLAN

EMMA-like Interface to DBZ or ODBC databases

21

Vector Product Guide

Vol.17 No.1

ISAP poa
RE Time Tracker Oy UITAV poa
AJGRAPH poa
ECCO PRG with APL poa

NEWTY TCP/IP SDK with APL poa

DB+ poa
Warwick University BATS 250

FAB free
Weighahead Systems Weighahead Windows

Weighing System (3wW5} poa
Zark APL Tutor {PC) 5269

APL Tutor (MF} $5000

Zark ACE 359

APL Advanced Techniques.... $59.85

Communications $200 pe, $500 mf

M5 Windows DLL for calling Dyalog APL/W from web pages via MS
Internet Information Server. Visit www.linge.com for a deme,

Comprehensive high-lavel Windews User Interface library for
APL+Win and +{! v 5.1, Comprehensive spreadsheets, replicated
fields, special field types, etc. 16 and 32 btt versions available.

Graphpak-compatible 2D graphics package for +Win and +DOS.
Includes mutti-window support, print and metafile support. No Dkls
required.

teading group and personal information managemeant system with

comprehensive customising. Supplied with sample +Win workspace
to interface to ECCQ databases via DDE.

tead TCP/IP SDK with interfaces to all pretocels. Supplied on 3 CD
ROMS together with a sample +Win workspace.

Database interface for APL+DOS under Windows. Allows combining
character-based APL applications with ODBC-compliant databases
such as Omacle and SQL-server.

Menu driven system for time series analysis and forecasting using
Bayesian Dynamic modelling. Price is reduced to £35 for academic
inslitutions.

Training program for the abave.

Reclpe Weighing System for Manufacturing Industries.
Pharmaceutical, Cosmetics, Fobds ete. Works without keyboard or
mouse. Uses Electronic Balances, Lases scanners, bar codes and
label printers.

APL computer-based tralning. Available for APL*PLUS PC &
APL"PLUS II. Demo disk $19,

Malnframe version.

APL continuing educatian. APL tutor news and hotilne phone
support.

488pp. book, (ISBN 0-9619067-07) including 2-disk set of utilty
functions (APL"PLUS PC format). ,

Move workspaces of files between APL environments.

APL CONSULTANCY AND DEVELOPMENT

COMPANY PRCDUCT PRICESIE)
Adlee Consuttancy poa
Ajay Askoolum Consuttaney poa
Andrews Consultancy poa
APL Solutlons Inc Censultancy poa
AUSCAN Software Consuttancy poa
Bloomsbury Software Consultancy 300750+ VAT
Camacho Consultancy poa
Ray Cannen Censultancy poa
Causeway Consultancy and Training poa

DETAILS

Oevelopment, maintenance, conversion, migraticn, documentation, of
APL products in all APL environments

APL+Win development and migration of actuarial, financial,
mathematical applications. [
APL programming and analysis, Year-2000 legacy systems,
algorithms, tree-processing.

APL systems design, development, maintenance, documentation,
testing and training. Providing APL solutions since 1969,

APL scftware development, tralning

Manuals; feasibifity reports and estimates; analysis and
programming; APL and MS Windows applications; Sharp, 15| APL,
APL*PLUS, APL2/PC and other APLs spoken. Fixed price systems
a speciality

APL, C, Assembler, Windows, Graphics: PC and mainframe

Cn-site training for Causeway, RainPro and NewLeal. Customisaticn
and enhancement to meet local needs. Code review and pre-
Implementation check of Causeway applications.

Vector Product Guide

Vol.17 No.1

Paul Chapman
CODEWORK
Cinosoft Oy
Cyadic
CynArray

Evestic AB

First Derivative
Ananytics Lid.

General Software
Godin London Inc
H.M.W.

Hoekstra Systems Lid

Michael Hughes

INFOSTROY

Insight Systems

JAD Software

Phil Last

Lescasse Consulting

Lingo Allegro

Lucas Sclutiens
George MacLeod

Consultancy
Consutancy
Consultancy
Consultancy
Consultancy

Consultancy

Censultancy
Consuttancy
Software Develepment
Consultancy
Consultancy

Consultancy

Consultancy

Consultancy

Consultancy

Consukancy
Consultancy

Consulancy

Consultancy

Consultancy

from 200

R OB

B

i

E 3

¥

24-hour programmer: APL, Smalitalk, C; Windows front end design a
speciality.

Development, maintenance, migration, documentation of APL
applicationa. Speciality: infe systems for top executives, internet
applications.

Specialised In very large databases.

APL and Unix system design, consuftancy, programming and
training.

DynAray offers consulting in the areas of DSS, Y2K and APL
programs upgrade/conversion to modem Web enabled platforms.

Excellent track record from 15+ years of APL applications in banking,
insurance, and education services. All dialects, platiorms and project
phases. S5QL expertise.

Analysis, design, prototypiﬁg, development & testing of APL
(especially financial) applications: Sharp, Dyalog APLAW.

Over 20 years experience with every version of APL, large malnframe
systems and small PC based programmes.

We hava applicaticns in the food manufacturing field, travel agency
and airline bookings field and in product lease management.

Systern design cansultancy, programming. HMW speclalize in
banking and protatyping work.

APL consultancy, programming, etc. Also UNIX system
administration

APL consultant with 20 years experience with all versiens of APL. |
¢an create your dynamic Yeb sites using the full power of APL
working with Microsaft §1S (Intemet Information Service) on Windows
NT or 2000. |also undertake System design, Programming and
Maintenance on all platforms, particularly MS Windows.

Moving applications between platforms. Clent/server development.
Multilinguai user interface.

We have experience with just about every APL system and platform
in common use during the last 20 years, from SHARP APL under
MVS or Linux to APL+WIin and in particular Dyaleg APL under
Windows Sx, NT or 2000. If you have decisiens to take about
adapting your APL application % take advantaga of emerging
technolcgies, or would like your strategy reviewed, give us a call. We
have extensive experience in all areas of APL development, from
legacy systems, up, down and sideways migrations, to the
development and support of shrink wrapped solutions based on APL.
Even if we don't have time to de the work ourselves, we will know
where to find someone who is an expert in your version of APL and
your application area, on your eantinent,

Systems design and development, project management, technicat
manuals, financial and actuarial expertise in APL.

APL consultancy, medelling and programming.

A range of sonsultants, experts in Windows pregramming, with
APL+Win and Dyalog APLAV. More than 100 majer APL
applications already developed. We all have additional expertise in
Formula One and Delphi.

General APL consulting, intemet website development, migration and
downsizing, performance tuning, educaticn and training.

Rates depend cn task and location,

Design and programming of new APL applleations. Enhancing and
maintaining existing APL applications. Porting existing APL
applications from one APL system to another. Supparting users of
APL applications. Experienced on both mainframe, UNIX and PG
APL interpreters.

Vector Product Guide

Vol.17 No.1

Mackay Kinloch Ltd ~ Consultancy

MicroAPL Consuttancy
Millnta Inc Consuftancy
Ellis Morgan Consuttancy
Casis Consuttancy

Object Oriented Ltd ~ Consultancy
Omega Computing Censuftancy
Optima Censultancy
RadSys Technologies Consultancy

RE Time Tracker Oy Consultancy

Rex Swain Consultancy

Rochester Group Consultancy
Shepp & Associates Consultancy

Snake Island Research Inc

Consultancy
SovAPL Consuttancy
Strand Scftware Consultancy

Sykes Systems Inc ~ Copsuttancy

Weighahead Systems Coensultancy

Stephett Wynn Consultancy

OTHER PRODUCTS

COMPANY PRODUCT

Adfee Employrment
APL-385 Typefaces
Bloomsbury Sofiware Training

from £40/hr

poa
poa

poa

BB

PRICESI(E)

pea
poa
pea

Design, analysis and programming for banking, Insurance and
pensions, financial planning and modeliing, corporate performance
and legal reparting

Technical & applications consultancy.

Deglgn, development, maintenance, eonversion, documentation in alf
APLs, most APs and some specific Sharp products (LOGOS,
ViewPoint, Retrieve). Expetience in mutti-user, multi-task systems,
databases, Windows pragramming.

Business Forecasting & APL Systerns.

Expertise in APL system design, Preject management, conversion,
migration, tuning; for all APL versfons

{10+ years experience)

General APL consutting, code recysling — mainframe to PG,
performance tuning.

APL consultancy, programming, etc.

A range of consuftants speclalising in all areas of pharmaceutical,
industrial and financial systems with 5-15 yrs experience on both PC
and mainframe.

Areas of expertise: financial systems, risk analysis systems,
healthcare systems.

APL application conversions, APL Windows interfaces, APL to AP+
level interfacing to any system under Windews, TCP/IP network and
database connectivity.

Independent consultant, 20 years experience. Gustom software
development & training, PC and/er mainframe.

Specialise in MI5 using Sharp APL

APL applications development and cansulting, especially in the travel
industry, especially on small computers. 25 years experience in APL
prograrmening.

APL interpreter and cotmpiler enhancements, intrinsic functions,
pertformance censulting. APL parallel compiler APEX is giving very
geod initial performance tests with canvolution somewhat faster than
FORTRAN.

Oftshore APL development service.

Advice on migrating to and from all flaveurs of APL and hardware
platforms. Full-screen interface implementation, APL utilities,
benchmarking, efficiency analysis, actuarial software, system
development tecls, valuation, pricing and modelling systems.

Complete APL services specialising in audit, optimisation and
conversion of APL systems. Excellent design skills. All dialects and
platforms. 17-23 years experience.

Speciallsing In Industrial systems. Links to PLCs, faser scanners,
bar codes, weigh scales, label printes ete. Also programmable hand
held seanners.

Most experience of financlal planning, and mathematical areas:
operational research, quality control, experimental design.

DETAILS

Contracters and permanent employees

Variants ef the APL2741 typaface available to specification.
Contact the company for details.

24

Vector Product Guide

Vol.17 No.1

Comlog Comic-logger $25.85+p&p APL*PLUS !l comic-book inventory systern. Shareware version
available on America OnlLine.

HMW Employment poa Contractors and permanent employees placed.

-APL Lid Books poa I-APL stocks bocks written o go with the I-APL interpreter and some
APL Press books. Far 2 list write to 11 Auburn Road, Bristol BS6
6LS, ring 0117 573 0036 or email 1006123057 @compuserve.com.

Casls Training poa Intreductory courses in APL
Advanced caurses for different APL versfons

Renaissance

Data Systems Booksellers The widest range of APL bocks available anywhera, See Vector
advertisements.

OVERSEAS ASSOCIATIONS

GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub.

ACM SigAPL International APL QuateQuad Conferences; APL white pages; web site $30

APL Bay Area USA N. Califernia APLBUG Monthly Meetings {2nd Monday} $20

APL Club Austria Austria - Quarterty Meetings 200AS(indiv), 1000AS(corp)

APL Club Germany Germany APL Journal Semi-annual meetings DMB0

Ass. Francophone pour

la promoticn dAPL France Les Nouvelles d' APL FF350 (private) FF2800 (Company)

BACUS Belgium APL-CAM Conferences & Seminars £18 ($30)

Capital PCUG Washington, D.C. Monitor Menthly meetings, occasional classes free

Danish SIG Denmark

Dutch APL Assoc. Haolland Vector provided Mini-congress, APL ShareWare Initiative

FinnAPL HelsTnkd, Finland FinnAPL Newsletter Seminars on APL 100FIM(private}, 30(student), 1000 (Ca)
Japan APL Assoc Tokya APL Journal Monthly meetings {4th Sat) 10,000yen to join
NY SigAPL New York, USA Big Apple APL Monthly meetings $35/825(ACM)
Rome/italy SIG Roma, Italy
SE APL Users Grp Atlanta, Georgia SEAPL Newsletter Quarterly meetings $10
SovAPL Moscow, Russia - Seminars and Annual Meeting
SwedAPL Sweden SwedAPL Nyt Semi-annual meatings, seminars SEK 75
SWAPL Texas, USA SWAPL $18
Swiss APL (SAUG) Bern Part of Gty Sl-Info SF80 {S!) + SF20 (SAUG)
Torento SIG Toronte, Canada Gimme Arrays! Monthly Meetings, APL skills database, J SIG, Toronto Toolkit $25
ADDRESSES
ORGANISATION CONTACT ADDRESS, TELEPHONE, FAX, EMAIL etc.
ACM SigAPL David Slegel ACM, 1515 Broadway, 17th Floor, New York, NY 10036, USA (Subs only)
ADAPTA Software GmbH Michael Baas Marienhoehe 86, 26451 Quickbomn, Germany. Tel: +49 4106 60677

Fax: +49 4106 67669 Emall; infofadapta.de
Adaptable Systems Lois & Richard Hil 49 First Street, Black Rock 3193, Australla,

Tel: +61 3 9589 5578 Fax: +61 3 8580 3220 Email: adsys@ibm.net
Adaytum Software Douglas Rawley 13 Great George Street, BRISTOL BS1 5RR, UK, Tel: 0117-921 5555
Adfee Bemard Smoor Dorpsstraat 50, 4128 BZ Lexmond, Netherlands,

Tel +31 347 342 337 Fax: +31 347 342 342 Email: adfeefeoncepts.nl
Andrews Dr Anne D Wilson 12 Thorny Hills, Kendal, Cumbria LA9 7AL, UK. Tel; G1539-731205

Email: ADWlIson@kencomp.net

25

Vector Product Guide

Vol 17 No.1

APL-385

APL Bay Area APLBUG

APL Club Austria

APL Club Germany

APL Group (see Eventra)

APL Software\Services
APL Solutions Inc

Ajay Askoolum

Adrian Smith
Curtis Jones (Sec)
Harald F. Nelson

Dieter Lattermann

Dick Halt
Eric Landau

Ajay Askoolum

Association Francophone pour

1a prometion dAPL
AUSCAN Software Lid

BACUS
Beautliul Systems, Inc.

Bloomsbury Saftware

Camacho
Ray Cannon

Causeway Graphical
Systems Lid

Paul Chapman
Cinerea AB

lan Clark
CODEWORK
Comlog Scftware
CPEUG

Danish User Group
Dincsaft Oy

Duteh APL Assoclation
Oyadic Systems Ltd.
DynAmay Corperaticn

Eventra

Eveslic AB

Ludmila Lemagnen
Richard Procter

Joseph De Kert
Jim Goff

Peter Day

Anthony Camacho

Adrian Smitr

Rolf Kornemark
lan Clark
Mauro Guazzo
Jeff Pedneau
Lynne Sturtz

Helene Boesen
Pertli Kalliojarvi

Bemard Smooer {Sec)
Peter Donnelly
Dr James Brown

Stuart Sawabini

Olle Evero

Brook House, Gilling East, York YO62 4JJ, UK. Tel: 91433-788385
Emall: 100331 644@compurserve.com

228 South 15th Street, San Jose, CA 95112-2150, USA

Tel: +1 (408) 2024060 Email: jonesca@@vnet bm,.com

¢/o N-TECH, Siebenbrunnenfeldg. 4-6, A-1050 Wien, Austria.

Tel: +43 1 5456063 Fax; +43 1 545806317

Rheinstraie 23, D-69190 Wallder!, Germany.

Tel: +46 6227-63469 Compuserve: 100332,1461

3802 N Richmond St, Suite 271, Arfington, VA 22207 USA
Tel: +1 (703) 528-7624; Faxc +1 {703} 528-7617; Email: dick.hot@junc.org

1107 Dale Drive, Silver Spring, MD 20010-1607 USA
Tel: +1 (301) 5894621 Fac +1 (301) 583-4516 Email: elandau@rais com

42 Hanworth Road, Redhill, Sumey RH1 SHT
Tel: 01737-771643 Email: ajay@askoclum.treeserve.co.uk

174 Boulevard de Charonne, F-75020 Paris, FRANCE

Emait! lemagnen@aal com

PO Box 39, Mansfield, Ontario LON 1MO Canada

Tel: +1-705-434-1239 Email: rip@interiog.com

Rocinberg 72, B-2570 Duffel, Belgium. Tel: +32 1531 47 24

308 Old York Road, Suite 5, Jenkintown, PA 19046, USA

Tel: +1 (215) BB6-2636; Fax: +1 (215) 635-4686

Bloomsbury House, 74-77 Great Russell $t,, London WC1B 3DA, UK
Tel: +44{0)20 7436 8491 mobile +44{0)8345 254650 Fax: +44{0)20 7436 0524
mabile +44(C)385 850623 Email: pd@bloomsbury-software.co.uk

11 Aubumn Road, Redland, Bristol BS& 6LS, UK. Tel: 0117-973 0036.
email; acam@tesco.net

21 Woodbridge Rd, Blackwater, Camberley, Surrey GU17 0BS, UK
Tel: 01252-874697 Email: ray_cannon@compuserve com

The Maltings, Castlegate, MALTON, Narth Yacks YO17 7DP, UK
Tel: 01653-696760 Fax: 01653-697719

Emall: ¢causeway@compuserve.cam

518 Lambs Conduit Street, London WCTN 3NB, UK.

Tel: 020 7404 5403, Compuserve: 100343,3210

Box B1, 5-193 00 Sigtuna, Sweden.
TeliFax: +46 BS9 255 421 Email rolf@cinerea.se

1, Heifer Mill Cottages, Mosterton, Beaminster, Dorset DT8 3HG, England.
Tel: +44 (07931 370304, Email. earthspot@asl.com

Corso Calroll 32, 10123 Torino, Italy.
Tel: +39 11 885168 Fax; +39 11 812 2652 Email: codework@inrete.it

18726 Bloomfield Road, Olney, MD 20832 USA
Tel: +1 (301) 260-1435 Email: jefl@softmed.com

Caphtal PC User Group, 51 Monroa Sireet, Sulte PE-2, Rockville,
Marytand 20650-2421, USA._ Tel: +1 (30t) 762-0372 Fax: (301) 762-5375.

c/o Insight Systems ApS, Nordre Strandve] 119G, Hellebaek, Denmark

Lonnrotinkatu 21C, 00420 Helsinki, FENLAND.
Tel: +358 9 70028820 Fax: +358 970026824 Email: dinosoR@dinosoft.fi

Postbus 1341, 3430BH Nieuwegein, Netherlands.
Tel: +31 347 342 337 Fax: +31 347 342 342

Riverside View, Basing Read, Old Basing, Basingstoke,
Hants RG24 0AL, UK, Tel: 01256-811125 Fax: 01256-811130

16350 Monterey Rd. Suite 260, Morgan HIll, CA 95037, USA

Tel: +1 (408}-782-6648 Fax: +1 (408)-782-6627 Emall:infoDynAmay.com
Mertitt Crossing, 440 Wheelers Farms Road, Miford, ©T 06460, USA.

Tel: +1(203) B92-9988. Fax: +1 (203) 882-5946

Email; ssawabini@eventra cor; eshaw@eventra.com

Berteliusvagen 124, 5-146 38 Tuliinge, Sweden

Tel&Fax: +46 778 4410 Email: olle.evero@mailbox.swipnet.se

26

Vector Product Guide

Vol.17 No.1

FinnAPL

First Derivative
Analytics Ltd.

General Software Ltd

Gaodin Lenden Ineerporated

HMW Trading Systems

Hoekstra Systems Lid
Michael Hughes
HAPL Lid

iBM APL Products

INFOSTROY
Insight Systems ApS
Iverson Saoftware Inc.
JAD Software

Japan APL Assoc

J Austria

Phil Last Ltd
lescasse Consutting
Lingo Allegra USA, Inc
Lucas Solutions
Mackay Kinloch Lid
George MacLeod
Mercia Software Ltd,

MicroAPL Lid.

Miipnta Inc.
Ellis Morgan
NY Sig

Qasis b.v.

Qlli Paavela
Ken Chakahwata

M.E. Martin

Gagtan Godin
Chris Hogan

Bob Hoekstra

Anthony Camacha

Nancy Wheeler

Alexel Miroshnikov
Helene Boesen
Eric Iverson

David Crossley

Toshie Nishikewa

Joachim Heffmann
Phil Last

Eric Lescasse
Steven J Halasz
Jim Lucas
Alastair Kinloch
Gearge MacLead
Gareth Brentnall

Richart Nabavi

Dan Baronet
Elits Mergan

David Siege!

Thea Zwart, Louis Rijkse

Sucmen APL-Yhdistys RY, FInnAPL RF, PL 1003, 00101 Helsinki 10, Flnland
Email. olli.paavola@@pyr.fi

114 Lemsford Lane, Webwyn Garden City, Herts ALB 6YP, UK

TelFax: 01707-339620. Email: KenChakahwata@dompuserve.com

Little Wester House, Westerhlll Road, LINTON, Kent ME17 4BS

Tel: 01622 749328 Fax: 01622 746365
E-mall; martin@gsoft.freeserve,ce.uk

12 Gerrard St., London, Ontario, Canada NEC 4CS
Tel: +1 (519) 679-8290 Fax; +1 {519} 4385381 Email: Infe@godin.on.ca

Hamilton House, 1 Temple Avenue, Victoria Embankment,

London EC4Y OHA, UK. Tel; 0870-1010-469; Email: HMW & 4xtra.com
Doeminique, Salisbury Road, Woking, Surrey, GU22 7UR, UK.

Tel: 01483-771028 Email: bob.hoekstra@khamsin.cdemon.co.uk

28 Rushton Road, Wilbarston, Market Harborough, Leics. LE{6 8QL, UK.
Tel: 01536-770958 Emait: Michae!@Hughes.uk.com

11 Aubumn Road, Redland, Bristol BS6 6LS, UK.

Tel: 0117-973 0036. Emalk 1006121057 @compuserve.com

APL Products, 1BM Santa Teresa, Dept REN/F40, 555 Bailey Avenue,
San Jose CA 65741, USA. Tel: +1 (408) 463-APL2 [+1 (408) 463-2752)
Fax: +1 (408) 4634458 Email: APL2@wnet ibm.com

3 S. Tulenin Lane, St. Petersburg 191186 Russia.

Tel+7 812 312-2673 Fax:+7 812 311-2184 Email:aim@infostroy.spb.su
Nordre Strandvef 118G, DK-3150 Hellebaek, Denmark

Tel+4570 26 1326 Fax: +45 70 26 1325 Email: info@Insight.ck

33 Major Street, Toronto, Ontario, Canada M55 2K9. Tel: +1 (416} 925-5006,
Fax: +1 {416) 488-7559 Emall: info@]software.com

17% East 96th 5t Apt. 17G, New York, NY 10128 Country: USA

Tel: +1 {212) 3659-6713 Fax +1 (212) 761-0124 Email: jadsms @usa.net
1-8-13 Masujima Buid 6F Higashi Gotanda Shinagawa-ku, Tokyo Japan 141-
0022, Tel; +81 (03) 32800411 Fax: +B1 {03) 3280-0418

Emall: KY'Y00361 @niftyserve,or,jp

Flat 3, 42 Queen Annes Road, Bootham, YORK YQ30 7AF

Tel: 01804-651544 Email: johogBjaustria.freeserve.co,uk

146 Crossbyook Streel, Cheshunt, Herts, EN8 8JY, UK,

Tel: 018992-633507 Fax: 0121-359 0375 Emait: phillast@net.ntl,com

18 rue de |a Belle Feuil'e, 92100 Boulogne, France, Tel: +33.1.46.05.10.76
Fax: +33.1.46.04.6023 Emall eric@lescasse.com

1105 Chisagoe Avenue, Suite 155, Oak Park, IL 60302, LJSA.

Tel:+1 800 546 4621-1 Emall: g|hé@s]halasz.com

Stubbedamsve] 8C, 3.tv,, 3000 Helsingar, Denmark

Tel: +45 49 26 52 42, Email: Jel@danbbs dk

519 Webster's Land, Edinburgh EH1 2RX, Scollard, UK.

Tel: +44 (0)131 228 5235 Email: akinloch@globalret ea uk

37 Newhouse Rd, Bovingden, Herts, HP3 OEJ, UK. Tel: 01442-834(15
Email: GeargeMacl eod@simeorp.com

Holt Court North, Heneage Street West, Aston Science Park, Brmlngham B7
4AX, UIKC Tel: 021-353 BO9E, Fax: 0121-359 0375

The Roller Mill, Mill Lane, Uckfleld, E.Sussex TN22 SAA

Tel: 01825 768050. Fax: 01825 749472

Ernail. MicroAPLµapl.cemon.co.uk

4215 St-Andre, Montreal, CANADA H2J 2Z3. Tel: +1 (514) 5201434
Email: danb@dsuper.net; millntagepost.ca

Myrtle Farm, Winchester Road, Stroud, Petersfield, Hants GU32 3PE, UK.
Tel: {1730-263843 Email: Ellis@mrtifrm.demon.co.uk

PC Box 2697; New York, NY10163-2657, USA.

Emall: NYSIGAPL@ACM.ORG

Lekstraat 4, 3433 ZB Nieuwegein, Holland. Tel: +31 30 60 66 336
Fax: +31 30 60 65 844 Emall: Info@oasis.nl or rijkse@oasis.nl

27

Vector Product Guide

Vol.17 No.1

Object Oriented Ltd
Omega Computing Inc

Optima Systems Ltd

RadSys Technologles AB

Renalssance Data Systems

RE Time Tracker Oy

The Rochester Group Ino,

Romefltaly 5I1G
SE APL Users Group

Shepp & Associates LLC

Snake Island Research Inc

S0OCAL (Scuth Caiifornta)

Soliton Associales

SovAPL

Walter G. Fil

Alar: Graham, Andrew Chou

Paul Grosvenor

Randciph Schrab
Ed Shaw
Richard Eller
Rebert Miller
Maric Sacco
John Manges

Andreve Shepp

Beob Bernecky

Roy Sykes Jr

Laurie Howard

Russlan Chapter of SIGAPL Alexander Skomorokhov

Strand Software Inc
Rex Swain

SwedAPL

Swiss APL User Group
Sykes Systems Inc
Torento SIG
Welghahead Systems
Stephen Wynn

Zark Incorporated

FTP SITES

1BM APL2
Waterloo Archive
APLAo-ASCI

Anne Faust
Rex Swain

Christer Uttieim

Roy Sykes Jr

Richard Procter

Phillp Bulmer

Gary A. Bergquist

Am Grendel 2, CH-6004 Luzern, Switzerland. Tel: 47 41 4187070
Fax: 41 41 418 70 77 Email: info@object-oriented com
3 Columbus Avenue, Edison, NJ 08817, USA.
Tel-+1 (732) 865 9519 Email; alangraham@mindspring com
115 Brighton Road, Purley, Surrey CRS 4HE, UK.
Tel: +44 (0)20 8763 2460 Fax: +44 (0)20 8763 2491
Emaitmailbox@optima-systems.co.uk
Lovsangarv, 18, S-756 52 Uppsala, Sweden, Tel: +46 1832 41 53
Fax: +46 708 1996 11 Email: randolph.schrab@radsys.se
P.0. Box 313, Newtown, CT 06470, USA. Tel: +1 (203) 270-6729
Email: rendata@aplbooks.cnchost.com of orders@aplbooks cnchost com
Mikenkatu 8 A, 2 krs, PL 353, DO101 Helsink, Finland.
Tel: 4358 9-621 3300 Fax +358 9-621 3376 Email: re@rett.fi
600 Park Avenus, Rochester, N 14507-2926, USA.
Tel: +1 (716) 271-1110. Fax: +1 (716) 271-1230
Casella Postale 14343, 00100-Roma Trullo, Raly
Email: marsac@vnet.ibm.com
413 Comanche Trail, Lawrenceville, GA 30044, USA
Tel: +1 {770) 9723755 Email: seapldoc@acl com
1312 Washington Avenue, 6th Floor St. Louis MO 63103, USA
Tel: +1 (314) 621-3272 Fax: +1 (314) 6214267
Emezil: ashepp@compusenve.com
18 Fifth Street, Ward's Island, Toronte, Ontario M5J 2B8 Canada
Tek +1 (416) 203-0854 Fax: +1 (416) 203-6950
Email: bernecky@interiog.com
Sykes Systems Inc, 4649 Willens Ave, Woodland Hills,
CA 91364-3812 USA. Tel: +1 (818) 222-2759 Fax +1 (818) 222-9250
Soliton Associates Ltd, Groot Blankenberg 53,
1082 AC Amsterdam, Netherlands
Tel: +31 20646 4475 Fax; +31 20644 1206 Email:sales@soliton.com

PO Box 5061, Obninsk-5, Kaluga Reglon 249020, Russiz
Tel: +7(08430)31463 Fax: +1 (530) 504 8164 Email:askomEobninsk.com

19235 Covington Cour?, Shorewood MHN 55331 USA
Tel: +1 {612) 470.7345 Emall: sales@jsoftware.com

8 Sowth Street, Washington, CT 06793 USA. Tel: +1 {860) B65-0131
Fax: +1 (860) 668-9970 Email. rex€rexswain.com

Novator Consuiting Group AB, Svardvagen 11C, 5-182 33 Danderyd Sweden,
Tel: +46 § 622 83 50 Fax: +46 § 622 63 51 CServe: 100341,404

Swiss APL User Group, CH-3001, Bern 1, Switzerfand

Email: si@ifi.unizh.ch

4649 Willens Ave., Woodland Hills, CA 91364, USA

Tel +1 (818) 222.2759 Fax: +1 (818) 222-9250

PO Box 55, Adelaide St. Pest Office, Toronto Ontario MSC 2HB, Canada
Email: info@torontoapl.org

Camberiey House, 1 Portesbery Road, Camberley, GU1S 3RB, UK.
Tel +44 1276 20789 Email: sales@weighahead.com

8§ Clarence Gardens, Brighton, Sussex BN1 2EG, UK.
Tel D1273-327238 Email: centre@oweom.net

23 Kefehbrook Lane, Ellington CT 06029, USA. Tel: +1 (860) 872-7806

ftp.software.ibm.com/ps/products/apl2
archive,uwaterloo.ca/ftparch/languages/apl
archive.uwaterlco.ca/languages/apliworkspaces/aplascii

28

Vector Product Guide

Vol.17 No.1

WORLD WIDE WEB SITES

ACM SigAPL
Adapta Software
Adaytum Software
AFAPL

APL2000

APL-385

APL Joumal, Germany
AUSCAN

Eke van Batenburg
Bloomsbury

Capital PC User Group
Causeway
CODEWORK

COSY (Bob Armstrong)
Dinasaft Oy

DMOZ - Open Directory
Dyadic Systems Ltd
DynArray

Eventra

FinnAPL

Godin London Inc
Hoekstra Systems
IBMAPL2

Infostroy

[nsight Systems ApS
Iverson Software Inc
Japan APL Associgtion
Lescasse Consulting
Lingo Allegro USA Inc
Mackay Kinloch
MicroAPL Ltd

Milinta Inc

Qasis b.v.

Optima Systems Ltd
Renaissance Data

RE Time Tracker Qy
The Rochester Group Inc.
Shepp & Associates
SigAPL

Sdliton

Snake Isfand Research Ing,

Strand Software Inc.
Rex Swain

Taronie SIG {for Toolkit}
Jim Weigang
Weighahead Systems

www,acm.org/sigapl/

weew.adapla.de/

www adaytum.corn/
www.ensmp.fri~scherer/langlet/ (Journal available on line)
www. APL2000.com/
www.demon.co.uk/apl3gs/
www.rhombos.de/rb/apljourn.htm

www .interfog.com/~rjpfauscan/
wwwhio.LeidenUniv.nl/~Batenburg/index. htmi
www.bloomsbury.co.uk/software
http:ffcpeug.org/

www. causeway.co,uk/
www.inrete.it/cdwk/eng/homee. html
WWW.COsy.com/

www.dinosoft.fi/
http://dmoz.org/Computers/Programming/t.anguages/APLS
www.dyadic.com/

www.dynarray.com/

www._eventra_.com/

voww.pyr.fifapl!

www.godin.com/

www.kharmsin.demon. co.uk/aboutthsl/moframe.html
www.ibm.com/software/ad/apl
www.insight.dk/infostroy/

www.insight.dk/

www jsoftware.com/
www._naska.co.jp/JAPLA/

wwav, lescasse.com/

wyw. lingo.com/
www.users.globalnet.co.uk/~akinftoch/akinloch.htm
www.microapl.co.uk/
www.dsuper.net/~danb/milinta

www,0asis.nl/

www.optima-systems.co.uk
www.aplbooks.cttchost.com/

www.rett.fi/

www.rochgrp.com/

www.digitravel.com/

www.acm.org/sigapl/

www.soliton.com/

www.snakeisland. com

www.jsoftware.com/

wnw. Texswain.com/

www.lorontoapl.org/

www chilton.com/~jimw/
www.weighahead.com

29

VECTOR Vol.17 No.1

Zark Newsletter Extracts

introduced by Jon Sandles

I hope you are all still enjoying these Zark reprints! Once again, we include a new
crossword for your enjoyment and another classic APL problem. It would be
interesting to see some new solutions to these problems, perhaps using Dyadic’s
dynamic functions, or some J or even K. Solutions will be printed in the next
issue.

LIMBERING UP:
Matrix Searching

(The purpose of this column is to work some flab off your APL midsection. Like
muscles, your APL skills can atrophy if not exercised with adequate frequency
and variety. This column presents a task for you to perform. Set aside a few
minutes from your busy schedule and work the task. Mail in your solution and
stay tuned for the results.)

Dyadic 1 (“index of”) is the principal searching function in APL. The value of
each of the elements in its right argument is searched for in the vector left
argument, The left argument must be a vector. The result is the same shape as the
right argument and contains indices into the vector left argument where the
elements of the right argument are first located.

Not all problems involve searching for values in a vector. Many searching
problems involve matrices. For example, given a len-row, eight-column character
matrix of eight-character identification codes for ten products, locate each of the
ten products in a master list of 1000 products {a 1000 by 8 character matrix). If
dyadic 1 worked on matrices as well as vectors, the solution would be straight-
forward:

INDICES<MASTERLIST PRODUCTCODES

Where MASTERLIST and FPRODUCTCODES are character matrices with shapes
1000 8 and 10 8 respectively, and INDICES is a ten-element vector of row
indices into MASTERLE IST where each row of PRODUCTCODES is first located.

Unfortunately, dyadic 1 requires a vector left argument. Given a matrix, it signals
RANK ERRGR. Until 1 is extended to work for matrices as well as vectors fwe're
optimistic the day will come), alternative algorithms need to be used. Typically,

30

VECTOR Vol.17 No.1

these alternative algorithms hide in sub-functions that have the same syntax as
dyadic 1 and that go by the name IT0T4, MIOTA4, CMIOTA, LOOKUP, ROWFIND,
etc. Some implementations of APL even come equipped with a specially compiled
or assembled function that serves this purpose.

Many different APL algorithms exist for searching character matrices. Your task is
to compose the fastest ones you can muster and mail them in. The syntax should
be:

INDICES+CHMATL CMIOTA CMATR

CMIOTA should work on character matrices. Searching problems that involve
numeric matrices are relatively rare. If your algorithm works on numeric matrices
too, that’s nice, but you get no extra credit!

The quality of the different algorithms will be measured based upon speed alone.
However, all submitted functions will be tested on a variety of different
implementations, and for different argument sizes. We'll try them with left
arguments having 2, 8, 64, 256, and 2048 rows, right arguments having 2, 8, 64,
256, and 2048 rows, and for 2, 4, 8, and 16 columns.

Please send your solutions to Vector Production at:

Vector Production
Brook House
Gilling East
YORK YO62 4]]
UK

Reprinted with kind permission from Zark APL Tulor News, a quarter]y publication of Zark Incorporated,
23 Ketchbrook Lane, Ellington, CT06029, USA

31

VECTOR Vol.17 No.1

Crossword

Crossword

:.z 3] s 3 7 3 G

10 ii

20 21

25

28 2%

33

40

Across

2z

6,
10.
12.
13.
14
16.

17.
18.

The shorterof 1B or 1D

(A-14})

Round each element of P to the nearest tenth

Flag the rows of two-column N for which (AN[I;1)=¢N(I;]
Right argument of ? when dealing a poker hand
BET[11-BLT[2)+BLT{3]-BEP{41+BLTI5]-...

Add K to the first element of the array S. Use the result as the number of counting
numbers from which to select A different random numbers. Add R to these random
numbers but don't allow any to get larger than B. Multiply each resulting number by 5
and use these numbers to fill an array having shape D52. (Put the resulting expression in
5D, 344, 3D, 164, 36D, 39D, 29A and 25A.)

The square root of one-third of AD (first three symbols only)
Future value of 1 per year for N years at accumulation rate I (where A=1+])
{(+\R9pRI=R9)~-~-[0I0 for scalar RS

32

VECTOR Vol.17 No.1

23.
4.
26.
27.
29.
30.
34,
35.
36.
38.
40.
41.
42

(1 0 “1)[71 0 11x45T]

Future value of 1 in N years at interest rate 1
Vip((V=2)Y/1pV),0I0+pV

19 IN(!

See 16 across

Probability of “four of a kind” given five cards from a deck of 52
See 16 across

g,(4-1)p0

Add the scalar A to the singleton T (14 .=pT) returning a 1-element vector
(-V)+1K for X2V

Row-wise addition

A random integer between 1 and 25

Value that compounds in N years to 1 at interest

Down

—t ok

I N N

. Function used to match a vector to the rows or columns of a matrix
. {¥=0)p0IG for non-negative scalar N

See 16 across

The quotient of 191 and 45, rounded to the nearest integer

See 16 across

Present value of 1 per year for N years at the accumulation rate A (A=1-+interest rate)
DNA[;,%(10,1+pDNA)pr14pDNA]

B=0 for numeric B

. A peculiar language

. If TA is a scalar, rave] it; otherwise return TA

. Trandom numbers from the set 1 I, without repeats

. Equivalent of (pR}p on a numeric scalar without using p (see 40D, 16A)
. (xN+ed)

. TI2341 inotiginQ

. Now, what led to this error?

. Present value of 1 per year forever, at inferest rate [

. 2+13 in either origin

. The first Selements of ¥[25 /114+pN;]

IJV(!__(&III)__III)_I_I

. ((S5-pV}+V) where(pV)z5

AR YL AY-TES

. (pT)=0 for vector T

. B 16 24 32 40 ... 8xIinorigint
. »/19inorigin1

. See 16 across

. 1p5

. See 16 across

. The two simplest inverse functions

33

VECTOR

Vol.17 No.1

Solution to Crossword in 16.4

1 2 3 4 5 6 7 g 9
MlayrT) 2|3 13]~10 z .
10 11 12 13
~ | B | Al 3 + |V RE|le | N, 1
14 15
I|l-|~(0l1lo Nlp|2?2|2]0
16 i7
Rl x| 2|5 Ale | 4| B x
18 19 20 21
vIiL|x]] V|+|B ug|lvil
2 23 24
¢ (3 I: . 5] -
25 26 27 28
S|lp| T)T M]|2]|x]2 -
% 30 31
M|R|/|-|T|+I|N Nlp| 1|+
3z 33 34
Y| S| I Il e x 11|+ |V
35 36 kr
S| - X 1 . 5 + 0 -
38 3 40
S| 2 [2N] =10 B . 1
41 42
- H BB VIANnRE

VECTOR Vol.17 No.1

J-ottings 25: The I-spy book of]

by Norman Thomson

Dear J-ohn and J-anet,

How would you like to be a security man or woman when you grow up? It's a
very important job these days on account of the enormous volumes of personal
and business data which fly through cyberspace every microsecond. If this is a
career which attracts you, have you considered telling your teacher what a very
good medium] is for getting started in this area?

Here are a few things you should know before we find you a uniform. First you
should appreciate that cryptographic systems divide broadly into two categories,
namely those based on transposition and those based on substitution. (I'm afraid
you will have to ask your Mummy or Daddy to explain what these big words
mean,) In practice many current coding systems involve both of these techniques.
Your first lesson will concentrate on a subset of the second of these subdivisions,
that is on those in which characters are first converted to numerals and then
replaced by ciphers. The systems concerned work to a general pattern in which
there are keys of two kinds, public and private. I make a public key freely available
to anyone who wants to send me enciphered messages. The relative security of any
cryptographic system is proportional lo the time taken by the “enemy” (that is the
hackers) to determine a private key which allows me, and only me, to decipher
messages. I am aware of course that the enemy will analyse my messages in order
to try and break the code by discovering my private key. This is the process which
is known as cryptanalysis.

The basics of such methods are simple, and] is great for describing them. My first
illustration concerns multiplicative codes which depend on the clock arithmetic
which you do at school. As you know, the world of sums contains only positive
integers and small ones at that. Should any of these accidentally get too big for
their boots, they are simply trimmed down to size by taking away the clocksize.
And should one of them stray into naughty negative regions then adding the
clocksize (¢s) an appropriate number of times is all that is needed to bring it back
into the orderly region of i.cs .

The essence of clock multiplication is the remainder verb | applied to a table
based on 1,

35

VECTOR Vol.17 No.1

cmultab=. |*/~@i. NB. clock multiplication table

cmu b &

O oo o
F Wk O
[N I |
N WO e
=N WE OO

(If you don’t like the column and row of zeros just drop them:

cmtab=.| */~@ }.@:14.

cmtab 5

G -
LIE Nl]

K w3
w0

)

The inverse of a clock number x is that value y for which xy=1 in clock arithmetic,
so that for cs=5 the tables above show that 1 and 4 are self-inverse, and that 2 and
3 are each the inverse of the other.

Now assign a different clocksize :

cs=,26

From this you can guess that | have an alphabetic message in mind, with letters
translated into numbers in the obvious way, A=1, B=2, etc. Encryption consists of
multiplying each message number by the public key, (that is one of the numbers
between 1 and 25 which has no common factor with 26) and then simplifying this
by clock arithmetic

enc=.csk|@x* NB. x.=key, y.=number
5 enc 22 5 3 20 i5 18 NB. encrypt "VECTOR"
6 25 15 22 23 12

To decipher this coded message I need to repeat this process, only now using the
inverse of 5. The restriction put on the key in parentheses above guarantees that
such a number will exist and be unique. To find the multiplicative inverse of a key
with respect to ¢s, multiply the key by all the integers in the field and perform
clock arithmetic using the key. The inverse is the index of whichever of these
values is one:

minv=.i.&1@{J1{*i.)) NB. syntax is ‘'key minv field'
5 minv 24
21

36

VECTOR Vol.17 No .1

Decipherment of “VECTOR” as coded above is simply a further encryption using
the inverse key:

21 enc 6 25 15 22 23 12
22 5 3 20 15 18

I make 5 known to all my correspondents as a public key, and hence implicitly to
the enemy, who is presumed to be smart enough to work out the broad method,
but needs to know cs in order to discover the inverse key which turns code back
into plain text. It would not be a very difficult exercise to find these quantities
using the parameters above, however by using a much larger ¢s, and redefining
the encrypting verb so that letters are dealt with in blocks, 2 modest degree of
security can be achieved:

cs=.2752
enc=.¢s5h | @

379 enc 2205 320 1518 NB. key=379
1839 192 154

379 minv cs NB. multiplicative inverse of 379
1779

1779 enc 1839 192 o4 NB. decipher coded message
2205 320 1518

One step which could be made towards greater security is to use an exponential
cipher rather than a multiplicative one, that is instead of multiplying the code by
the key, it is raised to the power of the key. Uniqueness of inverse requires that cs
be a prime number. Otherwise the only change in] terms from * to 4 in enc :

cs=.29
15(cs&f@na)22 5 3 20 15 18
0 i011 000

The zeros in the above indicate that there is a problem, namely that numbers such
as 157 are very large and exceed the capacity of the computer. This is easily
solved since

{i) exponentiation is just repeated multiplication, and

(ii) multiplication in clock arithmetic follows the rules of multiplication in
ordinary arithmetic, thatis if a and b are the values of A,B and C when
reduced to clock integers, then ab, if necessary reduced 1o a clock integer, is
equal to the clock integer reduction of AB. (In mathematical terminology
a=A(mod n) and b=B{med n) implies that ab=AB{mod n)).

37

VECTOR Vol.17 No.1

So define clock multiplication:
mul=.csh]|@x
and insert this into “key” replicates of the code:

eenc=.mul /@#
5 eenc &> 22 5 3 20 15 18 NB. encrypt "VECTORY, key=5
13 22 11 2% 10 {5

The & conjunction (&> is equivalent to “each”) is necessary due to the non-scalar
nature of the verbmul .

For the purposes of decipherment, mathematics dictates that the inverse key is the
multiplicative inverse of cne less than cs:

5 minv 28 NB. multiplicative inv. of &
17

17 eencd> 13 22 11 24 10 15 NB. decipher message
22 5 3 20 15 18

This improves security a bit, but not by an enormous amount since an enemy
with computers at his disposal would not take long to work out cs and hence,
given thal my key is public knowledge, to work out inv cs. A cryptographer’s
Holy Grail is to find a way in which to make his key completely public so that
anyone can send him messages, while al the same time making the rule for
computing the decipherment key so complex that the enemy has little hope of
finding it, however massive the computing power he has available.

This remained an open problem in the world of cryptography until 1977 when a
major breakthrough was achieved through the invention by of the so-called RSA
ciphers at the Massachusetts Institute of Technology. These are named after the
initials of their inventors R.L. Rivest, A. Shamir and 1. Adelman. Their idea was
that cs should be the product of two primes, say 3551=53*67, following which any
public key must then be coprime to (53-1)*(67-1)=3432, which is also the number
used to calculate the multiplicative inverse. Choosing 191 as the key, and
resetting the eenc verb gives:

cs=.3551
eenc=. (3551&|@=}/e#

191 eencé&> 2205 320 1518 NB. encipher "VECTOR", key=1%1
489 2774 2274

194 minv 3432 N8. multiplicative inv. of 191
575

575 eenc&> 489 2774 2274 NB. decipher message
2205 320 1518

38

VECTOR Vol.17 No.1

Of course the primes used in the above illustration are very small. In practice two
very large prime numbers, say of the order of 10°*, would be chosen. Factoring
products of this size is a very hard problem given the present state of the
mathematical and compultational arts, and so what is available to me is a public
key which I can broadcast to everybody, but for which, provided I keep the two
prime factors a secret,] have a private key which ensures that only I can decipher
my incoming messages.

Now, dear J-anet and J-ohn, just think how little programming you have had to
do to take you from the clock arithmetic which you love to techniques which are
the basis of the day-by-day encryption of millions of business and financial
transmissions. Will it by any chance be one of you who cracks the factoring
algarithm? (For the answer, see Vector volume 99 no. 4).

Some common APL guestions:

Who wrote it?

Where's it stored?

Where's the documentation?
Where's the old version?

The Solution:

AD SMS

Source-Code Management for APL

A multi-user source-code management system based
on shared hierarchical databases. Software includes a
GUI and some non-interactive functions. Use JAD SMS
for organizing libraries of ufility functions and as a
tramework for multi-user development.

section at www.dyadic.com.

For information, contact:
jadsms@usa.net

39

VECTOR Vol.17 No.1

Magic Squares

by lan Clark

In the geocentric cosmology of Ptolemy, the classical seven planets (which include
the sun and moon, but don’t include any beyond Saturn because they hadn’t been
discovered) each sit more or less tightly on their own steadily rotating crystal
sphere surrounding the earth. The fixed stars are attached to an outermost sphere.
Amazingly all the spheres share roughly the same rotational axis, which causes
the planets to confine themselves to a narrow band of fixed stars called the zodiac
(a Chaldean word). The further away the planets are, the slower they creep round
the zodiac, with dull old Saturn being the slowest of all. In fact they can be ranked
from the slowest to the fastest like this:

SERIES+'SATURN' 'JUPITER' 'MARS' ‘'SUN' 'VENUS' "MERCURY' 'MOON'

a fact known from antiquity. Modernists who can’t think back past the helio-
centric theory might care to note that if ‘EARTH’ is substituted for ‘SUN’, and
omitting ‘"MOON’ (which even the heliocentric theory recognises as going round
the earth) then this ancient SERIES describes the planets in reverse order of mean
distance (d) from the sun. Furthermore, d increases with orbital period (t)
according to the formula d3=ki2. This is the Third Law of Johannes Kepler
(1571-1630), who predated Isaac Newton (1642-1727) by over a century.

Do you know how the days of the week got their names? In ancient times the
Chaldeans actually assigned them to planets in the following sequence, based on
their order in SERIES:

(7 3pSERIES)[;1]
SATURN SUN MOON MARS MERCURY JUPITER VENUS

The Chaldeans, not possessing computers, or at least computers running APL,
employed the ancient sacred geometric figure known as the heptagram to compute
the above expression. The original planetary god-names are most clearly seen in
French, Spanish and Italian names for the days of the week, but if you map the
Roman gods onto corresponding Germanic gods, you can see it in English too.
Thus: Mars = Tiw (war god), giving Tuesday; Mercury = Woden (smart god),
giving Wednesday; Jove = Thor (thunder god), giving Thursday; Venus = Freya
(love goddess), giving Friday; and Saturn, Sun and Moon of course giving
Saturday, Sunday and Monday respectively.

40

VECTOR Vol.17 No.1

Not only did the planets get their very own days of the week in antiquity, but
they also got their very own magic squares, Seven magic squares of orders 3 thru
9 were assigned lo the planets in terms of the rate they orbited round the zodiac
(i.e. in the sequence of SERIES), thus Saturn got the smallest order (3) and Moon
got the Jargest (9). Here they are:

SATURN JUPITER MARS SUN
4+ 9 2 Y 14 15 1 11 24 7 20 3 6 32 3 3w 35 1
585 7 g 7 6 12 Y 12 25 B 16 7 11 27 28 & 39
8§16 511 10 8 17 5 13 21 9 19 i4 16 15 23 2%
16 2 313 10 18 1 14 22 18 20 22 21 17 13
23 618 2 15 25 29 10 9 26 12
36 5 33 4 2 31

VENUS MERCURY MOON
22 47 16 41 10 35 & 8 58 59 5 u 6% 63 1 37 78 29 70 21 62 13 54 §
§ 23 48 17 42 11 29 49 15 14 52 53 11 10 56 6 38 79 30 71 22 63 1L 46
30 B 2% 49 18 36 12 41 23 22 4k 45 19 15 48 47 7 39 80 3t 72 23 55 15§
13 31 7 25 43 18 37 32 3% 35 29 28 38 89 25 16 LB 8 40 BL 32 B4 24 58
38 14 32 1 26 w4 20 40 26 27 37 36 30 31 33 57 17 49 9 41 73 33 65 25
21 39 & 33 2 27 45 17 47 46 20 21 43 42 24% 26 5B 18 50 1 u2 74 34 66
Y6 15 40 9 34 3 28 9 55 54 12 13 51 50 16 &7 27 59 10 51 2 43 75 35
64 2 3 61 60 6 ? 57 36 68 19 6O 11 §2 3 4y 76
77 28 69 20 B1 12 53 4 45

A magic square of order n is an arrangement of the first n? natural numbers in an
n-by-n square, such that each of the n rows, n columns, and 2 main diagonals,
sums to the same total: m. If you look at the function listing in the appendix, you
see that the function: magic (which returns 1 if a given matrix is a magic square, 0
otherwise) computes these totals in order to check they are all the same,

Without knowing anything else about the magic square, what must the number m
be? Well, since there are n rows, each totalling m, and furthermore the grand total
of the whole square is the sum of the first N natural numbers (¥2N(1+N)), where
N=n2 it follows that (in ordinary arithmetic notation):

mn =% n? (1+n?)

or, dividing through by n:

m = ¥%n(l+n?) = Vi{n+n3)

which in Dyalog version 8.2 can be defined as an in-line function like this:

total+«{0.5xw+wx3}

41

VECTOR Vol.17 No.1

The main use of magic squares from the Chaldeans cnwards was in the drawing
of talismans. Thus to inscribe the matrix SUN say, was to enshrine in the talisman
the special virtues of the sun, namely: strength, majesty, imperium, etc. But in
place of the whole magic square, you could use just the grand total, called its
magic number. These numbers have an important significance in the occult art
known as gemmtria. For example, summing along each row of SUN we get:

+/SUN
111 111 1131 1311 111 1311

and sumuning the row sums themselves we get the grand total, or magic number:

+/+/8UN
666

..the number of the Beast! Would you have guessed it had anything to do with
the sun?

It seems these seven magic squares were passed on down through the ages in
exactly the same layout, so that occultists talk of ihe magic square of order 7, or
the magic square of Venus. But are these the only magic squares of a given order?
Cf course not. Clearly you can transpose a magic square and this preserves the
magic property, since rows become columns and vice-versa, but more
importantly the two diagonals are mapped onto themselves, Thus:

magic {RVENUS
1

You can also find permutations of rows and columns which preserve the magic
property. Applying the same permutation to rows and columns will map the first
diagonal onto itself, but if the permutation is its own mirror image this preserve
the second diagonal also. One such permutation is (¢17)}: In fact all rotations,
transpositions and reflectons will work, because the contents of any row, column
or diagonal keep together, so they will always sum to the value they did before.

(¢17)rc VENUS

28 3 34 95 40 15 U6

45 27 2 33 8 39 21

20 4y 26 1 32 1y 38

37 19 %3 25 7 31 13

12 36 18 49 24 6 30

29 11 4z 17 %8 23 &

b 3% 10 %1 16 47 22
magic {$17)rc VENDS

42

VECTOR Vol.17 No.1

Notice too that you can make an essentially new magic square by replacing the
highest number (49) with 1, the next highest with 2, and so on. In fact this is
equivalent to calculating (50-VENUS), and so we can verify:

magic 50-VENUS
1

Does this work with any magic square (using 1+n2 in place of 50)? Yes. We'll
prove it by using APL notation itself. (How often do you see APL used for
mathematical proofs? Why not? It’s a formal language, isn’t it?)

Let n be the order of the magic square (n=7 for VENUS) and let a be any vector of
1 elements summing to the row-total {call it: N) So:

F=+/a

Now replacing every element a[1] of a with (1+n+2}-a(], and summing it
all, is equivalent to the expression:

+/{1+n+*2)-a

The subexpression in brackets, {1+n*2), is scalar, but combining it with a
makes it behave like a vector of n equal elements. So, by simple arithmetic
operations, the following equivalent lines can be successively derived:

+/{i+n+2)-a
(+/np(i+n=2))=-(+/a)
(n=(14n*23) -(+/a)

(n¥n=3) -(+/a)
(2xN}) -N
N

You'll recognise the bracketed subexpression {n+n+*3) in the last line but-one as
equalling 2= ¥ from the definition of fn: tot al. Since this applies to any vector of
n integers summing to ¥, it applies to every row, column and diagonal of any
given magic square of order n.

But let us ask: how many distinct magic squares are there of order n, if we don’t
distinguish row/column permutations, rotations or reflections of a given square?
For n=3 there is only one, namely SATURN. To see this, run the fn: comb with arg
3 (the order of the magic square). A listing of: comb is appended to this article. Fn:
comb returns a set of Boolean vectors, each designating a choice of 3 numbers
from 1 3*2 which happens to sum to (total 3).All such vectors are found. If

43

VECTOR Vol.17 No.1

you want to see the numbers this corresponds to, run fn: ros on the result of
comb.

SO0 o QO
COOR MO O
(=R o e~ I = I = =]
HORDOOOWw
O OoOP OFH O RO
(== B = e =R

0
o] omb 3
159 168 2 45 % 258 2 6 7 3 L8 357 4 5 b

kPO KH OO

You see that there are only 8 possible distinct magic triples (let’s call them) -
combinations of numbers which add to (total 3) =9 Yet SATURN contains 8
distinct magic triples, 3 rows, 3 columns and 2 diagonals. So SATURN contains
every possible magic triple.

In my university course on Computing 1 occasionally used this fact to cause a
student with no intellectual pretensions to win a best-of-three contest against one
of the self-acknowledged brighlest students in the class {to the latter’s exquisite
chagrin!). I had them ‘volunteer’ to challenge each other to ‘Number Scrabble’, a
game played with 9 counters numbered 1 to 9 placed face-up between two
players. Each player take one counter in tiurn, The aim is to be the first to exhibit a
selection of three counters summing to 15. Deceptively simple. Here's a sample
game to illustrate some of its subtlety:

1. Player 1 takes 5 holds: 5
2, Player 2 takes 2 holds: 2
3. Player1 takes 8 holds: 58
4. Player 2 takes 9 holds: 29

2. Player 1 takes 4 holds: 584 stopping Player 2 from laking 4 to win with
2+9+4

6. Player 2 takes 3 holds: 293 stopping Player 1 from taking 3 to win with
8+4+3

7. Player 1 takes 6 holds: 5 8 4 6 winning anyway with 4+5+6.

Number Scrabble places an enormous cognitive load on the player, who must be
continually making trial additions of various combinations of counters: his own,

VECTOR Vol.17 No.1

his opponent’s, plus what-if selections from the pool. However, as Newell and
Simon show in Human Problem Solving, the game is mathematically isomerphic to
Tic-Tac-Toe - as you'll see if you arrange the nine counters into the magic square
SATURN. Accordingly I surreptitiously equipped my ‘weaker” student with a Tic-
Tac-Toe board marked with the numbers of SATURN, plus instructions to play
Tic-Tac-Toe as player ‘O, simply calling out the number of the square he placed
an ‘0’ in, and mark his opponent’s chosen numbers on the board with an ‘X'.
Flayer ‘O’ gets to start first, and should always choose 5.

Here's the state-of-play in the above game after step 5:
4/0 9/X 2/X
i 50 7
8/0 1 6

from which you can see straightaway that ‘X’ cannot win, because ‘O’ can select
either 3 or 6 to win. Even to spot this fact is a difficult task in Number Scrabble.
But not in Tic-Tac-Toe.

What was the purpose of this class demonstration? That talismans really work?
Yes, but not in the superstitious sense. The design of any interactive computer
system should display its information in a choice of cognitive domain that the
user is most proficient in. In the present case, one which demands simple spatial
awareness is demonstrably better than one which demands mental arithmetic on
simultaneous expressions. You might go so far as to say that, whatever the
application, if the programmer can discover a ‘magic square’ for it, he or she may
have the key to enhancing the end-user’s productivity quite significantly.

It’s obvious when you put it like that. However many programmers think it's best
to present the information to be manipulated in a “traditional’ form, i.c. one which
might have been used by the operatives before the task was computerised. Taken
to its extreme, such programmers would force swiiching logic designers to work
with a display of Aristotelian syllogisms (a mediaeval form of symbolic logic).
Perversely, that might be just the interface to use if you had to recruit your logic
designers from a pool of classics graduates!

Returning to magic squares, might it be that JUPITER (order 4) holds the key to

playing an extended Number Scrabble with 16 counters, from which Jour must be
selected to add to 34 (34=total 4)7 Alas, no.

45

VECTOR Vol.17 No.1

Let us run fn: comb once more to find all sets of 4 distinct integers taken from
1..16 and adding to 34:

pcomb 4
a6

Now JUPITER exhibits only 10 of these 86 ‘magic quadruples’ (4 rows, 4 columns,
2 diagonals), Which makes me suspect that there are several quite distinct magic
squares of order 4, which cannot be transformed into each other by permuting
rows, columns, or transposing the matrix.

Is it feasible to generate magic squares systematically? Yes, it's not at all difficult
to generate a magic square of any choice of odd order. The fn: genl (listed below)
does so, but only works for odd arguments. The magic squares it generates are
equivalent to the classical ones under row/column permutation. Thus, using the
fn: rc {also listed) to permute the output of genl we can show that all these APL
expressions yield the value 1 (true):

SATURN=geni 3

MARS=4 1 3 5 2 rc gen1 §

VENUS=2 5 1 4 7 3 6 rc genl 7
HOON=7 2 6 1 5 % 4 B 3 rc genl 9

The fns listed below form the beginnings of a toolkit to search for magic squares
of any order. The new Dyalog feature dynamic function definition is used for the
first 5 functions (but these can be readily rewritten as conventional ‘del’
functions):

ispatural«{{ip,uw)={, w)l4,wl}
eg+{{,1)=pv,u}
total+{0.5xw+u*3)
dia«{{{"1+1=2pu)ewl)[1; 1)
ald+{{(-1opulew)l1;]1}

v Boolemagic z
[1] a=1 iff z Is a magic sq

21 Bool+(isnatural z)aeq(total=>pz),(+/2),(+42),(+/dia z),(+/aid z)
v poll sec

[1] nlook at pz at: sec Intervals

[2] rRepeat

[3] 'rx> pz='(pz}

fu] 0ODL sec

[5] fntil o

46

VECTOR Vol.17 No.1

[11
[21]
(2]
[4]
[51
[61
[71
[8]

[1]
[21]
[31]
[u4]
[51
[6]
[71
[8]
[el
[10]
[11]
[12]

[11
[2]
[3]
[4]
[51
[6]

[1]
(2]
[31

[1]
[2]
fs]
fy]
[5]
(&1

[11
[2]

v z+comb orderiact;sh
aways of combining: (order) nos from: order+2 to add to: (total order)
actractl n--for different actions on all combinations
sh«{} a--nc trace
ash++ a--to trace the combinations tried
z+& a--used as an accumuylator by: act
poll&l
glorder comb_sel act)iorder»2
DTKILL OTWUMS a--terminate: poll

v Jk(order comb_sel act)in;i;j;ijk;me
napply act to all combinatlions or order nos im:. in
me+p - 'order'{>05r) act' a--forms a recursive fn from this op
A...850 you can safely change the op rame and it will still recurse!
J+21k
tFor I :In j+in a--only bother with i>) in jk
sh 11k+i,Jk a--form new left arg
11§ orderspijk a--then recurse,,,.
ijk me in
1Else a--deepest recursion: call the working fn,..
order actil 1jk in
(Endif
+EndFor

v order actl xy;x;y
nperform the chosen action inside: comb
X y+xy n--X: vec of {order) combinations chosen from vec: y
:If (total order)=+/x
sh'>»>'x{yex)
Z,+vcyex
1 EndIf

vV Z+ros set;n

areturn nos cerresp to bitstrings set
n+p>set
z+get/"cin

Vv z+genl niyv;i;j

agenerate magic sq: ist strategy
j+lh+2 p--mid-pt ne
Z+n rpin a--shaped array
z+(J-1n)oz n--upper latin sq with 1ss property
y+$z n--reverse it to get lower latin sq
Z+y+nxz2-1 a--combine z and y

vV zep rem
rapply perm: p to rows/cols of m
z+=mlp;pl

47

VECTOR Vol.17 No1

APL Power Shootout: APL+Unix vs
APL/M vs SAX (Part 2)

By Bob Hoekstra (Bob.Hoekstra@khamsin.demon.co.uk)

Abstract

Continuing from last issue’s article, we compare the compatibility, performance
and features of APL+Unix wversion 5.3.2 from ATPL2000, Dyalog APL/M wversion 8.2.2
from Dyadic Systems and SAX (SHARP APL for UNIX) version 5.0.0 from Soliton.

Introduction

This article is the second of a two-part series, and completes my reviews of Unix
APLs (at least for the moment). It follows on from the article in Vector Vol. 16
Ne. 4[1].

For those who missed the previous instalment, it is available on the Vector web
site at www.veclor.org.uk/v164/bobl64.htm .

More on the Installation

Solaris 8

Since part 1 went to press 1 have upgraded my Sun Ultra 5[3] workstation with a
new 20GB hard disk containing Solaris 8, the latest version of Sun Microsystems’s
version of the Unix operating system. Naturally I was curious about any
performance differences, so immediately installed the APL interpreters under this
new OS5,

Both APL/M and APL+Unix installed under Solaris 8 exactly as they did under
Solaris 7, but I had great difficulty with SAX: I never did get the NSVP processor
running and thus could not run SAX under Solaris 8. I suspect the problem may
be that Solaris 8 is more critical of daemons running on it. I tried installing SAX
while running Solaris 8 in 32-bit mode, but this did not help. 1 did not spend too
much time on this, or I would not have made the deadline for this article.

I completed this article working in Sclaris 7. I did some brief comparisons
between the two OSes using the other two APLs though, and found no significant
differences in performance or any other aspect. | am confident that Soliton will

48

VECTOR Vol.17 No.1

address this problem soon, and I do not see this as a major problem with their
interpreter.

Solaris 2.6 on a Tadpole

I have also recenlly come into possession of a Tadpole[4] SPARCbook 3GX
running Solaris 2.6. All the interpreters seemed to install on this machine
satisfactorily, but with a previous generalion MicroSPARC processor running at
only 110 MHz and a mere 32 MB of memory, performance is less than ideal. 1 did
not use this platform except to confirm that it works.

APL speed comparisons

Tests were created specifically to compare execution speeds and file system access
speeds of the three interpreters. Because of other system activity and the state of
workspaces, timings were not constant when tests were repeated, bul all tests
were repeated enocugh times to ensure that the results were representative.

In all cases,] was very careful to run identical APL code on the three interpreters,
which meant “standard” APL was used. [also tried to level the playing field by
creating approximately the same size of workspace throughout: 4 MB.

Code performance

I spent quite a lot of time timing various bits of standard APL code, but there
were few conclusive results. Generally, APL+ seems to be the fastest on most
code, with APL/M following close on its heels {differences in time taken are
typically less than 10%).

SAX generally came last, but again the difference in expired time (between
APL/M and SAX) was only of the order of 10%, and frequently less. SAX seemed
to perform worse when there was more looping involved. Some code examples
showed a slightly different picture, with SAX coming almost level with APL+,
followed closely by APL/M.

The differences shown here are not conclusive. After the comparison was
completed 1 tweaked some of the APL/M code, converting some of the code to
dynamic functions. In all cases I got a significant speed-up with dynamic
functions: a minimum of 10% and one case (which lent itself to tail recursion) a
reduction in processing time of nearly 50%! I am sure that much of the code could
have been improved for the other interpreters as well, but I didn’t pursue this as
deadlines were looming,.

49

VECTOR Vol.17 No.1

Furthermore, Soliton is due to come out with a new version of SAX shortly. I have
heard that some of the work that has gone into the Linux version has meant that
they have got significant performance improvements in the next generation
Solaris version. If this is true, then my results could be back to front by the time a
reader of this article makes a purchase.

In any case, I would be very surprised if the differences in performance between
these interpreters were significant. By that I mean that these differences would be
swamped by the effect of hardware improvements, say adding memory,
upgrading the processor speed, or getting an extra processor. Even a new disk
drive (say a 10,000 rpm disk replacing a 7,200 rpm disk) could make a difference
which would make these performance differences seem irrelevant.

If there is a lesson here, it is that all three of these interpreters perform
adequately. If you have to choose which to buy, basing your choice on
performance is unlikely to be a wise decision. Let's face it, if performance were
that critical, you would probably want to think about compiling at Jeast part of
the APL code to maximize performance.

File performance

Here differences were far more marked. I timed (a) the creating, “stuffing” and
untying, (b) tying, reading and untying and (c) tying and erasing of component
files in a tight loop. To get a reasonable idea, there were two basic file types:
“small”, where the component contents consisted of the atomic vector, and
“large”, where the components comprised a 20%20x20 numeric matrix. The loop
was such that the product of the number of components and the number of files
was 3,000.

In all cases, APL/M was significantly faster than the other two APLs. APL+ came
close on the “small” files, but fared less well when the components were larger.
SAX was tested with the two extreme synching modes: no synchronising
(fsync=0) and “full” synchronising (fsync=2): The latter was very slow indeed,
generally taking 2 to 3 times as long as the former, which in turn was significantly
slower than the APL+ performance in most cases. The only exception was the
tie/read/untie test, were APL+ and SAX (with fsync=0) were more or less level,
but both still slower than APL/M.

No doubt a very small part of the poor performance of SAX is that it performs less
well in loops, but this cannot possibly be all the difference (or even a significant
part of it), Perhaps more interesting is a comment in the manual that, after a file
has been created, SAX has this as a shared tie, rather than an exclusive tie. I

50

VECTOR Vol.17 No.1

suspect this carries a performance penalty. Note that the He/read/untie cycle
compares quite favourably with APL+, But this does not explain the difference in
the tie/erase cycle,

An interesting point about APL/M's good performance is that the resulting files
seem much smaller. I cannot explain why, but a component file containing 100
“large” components was 1,603,788 bytes in the Dyalog component file, bul
3,227,428 bytes for SAX and 3,203,856 bytes with APL+.

This points to a slightly different conclusion than the code performance because
the differences in performance are so much greater. For an application where file
system performance js critical, APL/M might be a good choice.

Features

Dyalog APL/M

This appears at first sight to be the most feature-rich of the three interpreters.
Immediately obvious is the GUI development environment. For the developer
this is absolutely wonderful, and once you have grown accustomed to it, it is
difficult to do without. However, T did come across a few glitches: editing
windows would suddenly {and for no good reason) disappear behind the session
manager when I opened a traces window on a variable, and my only crash
happened while I had many windows open (I think it was more than 30}.
Furthermore, the syntax-sensitive colouring doesn’t seem to work quite as well as
it does in Windows.

The GUI environment stretches into the code as well, with the very easy creation
of GUI objects which can be used during run-time. Attractive and intuitive
applications can result from this, and perhaps the greatest strength of the APL/M
GUI area (which neither of the other interpreters have) is that code for Microsoft
Windows is so easily ported to Unix (well, actually Motif). Even this has a few
little buggettes though, as the Motif widget sizes are not quite the same as those
of Windows, ported applications need a little tweaking to get positioning right.
Sometimes the automatic positioning gets it a little wrong as well. But these little
problems should not detract from what is a great feature.

Dyadic’s APL interpreters are known for their support of namespaces. This is an
integral part of APL/M as well, and can help keep code neat, as well as allowing
code imports with Jess fear of name clashes. GUI objects are namespaces in
themselves, as are TCP/IP interfaces (the existence of which is a feature in itself).

51

VECTOR Vol.17 No.1

But the features do not stop here. My personal favourite is dynamic functions,
which could be seen as Dyadic Systems’s response to] and direct definition all in
one. It can give code which is extremely elegant, easy to maintain and lightning
fast.

There are several other great features, not least the ability to create user defined
operators. Personally, I do not use this much, but one feature that T do use
constantly while debugging code is the ability to step through code using the
windows that can be set up to appear automatically when code crashes. Even the
fact that function editors are separate windows (Le. the session manager is
directly available while you are editing a function) can be a great productivity
aid.

APL/M also supports a very full implementation of control structures. This is
largely the same as the control structures in APL+,

Then there is the high degree of compatibility between the different versions. APL
written for any Microsoft operating system will usually just run, Of course there
are things like different naming conventions for files that might be a problem, but
the code (including GUI generation) will run. Component files will have to be
ported, but Dyadic Systems provide the tools to do this.

Lastly, many people might value the compatibility with other APLs. Using the
migration level system variable, the developer can tailor the compatibility to
APL2, which sets the standard in many ways.

APL2000's APL+Unix

By comparison, APL+ seems almost devoid of features. However, this is not quite
true. No GUI, no syntax colouring. In fact, a bit like the STSC APL*Plus for DOS
many years ago.

Of course, this is unfair. While there are few cosmetic features, there are many
really useful ones, like a good TCP/IP socket interface. The editor has hardly
changed since the early STSC days, but it works well. There are several features
which point towards compatibility with APL2, and the language features are
slowly being extended, e.g. scalar dyadic functions with axis are supported, as is
n-wise reduction and APL2-style function attributes.

There is also support for control structures, more or less identical to those in
APL/M. Also, component files have the same structure between Unix, DOS and
Windows, meaning that one has data portability between platforms. Note that

52

VECTOR Vol.17 No.1

this is the opposite of Dyadic Systems’s implementation, where the workspace
has the same format but not the component files.

The user commands are a very useful feature. One of the many useful sub-
features that this creates is the concept of packages. This is somewhat different
from the packages of SAM and SAX, but many of the concepts are similar.

To me the most important thing was that, while there were no features that
APL/M didn't have, every feature worked perfectly every time. APL+Unix did
not crash once. Not even a hiccup.

Soliton’s SAX

SAX also has fewer obvious features. But then, SAX is a slightly special case as the
APL is somewhat different. It shows a family resemblance to] in many respects,
introducing the concepts of rank, frame and cell which the others don’t have.

The existence of the NSVP is a very strong plus point. This could be invaluable to
those who want to access say a DB2 database on a mainframe from a Unix APL
Se55101.

The concept of “intrinsic functions” - essentially an easy interface to compiled
code - is also a very strong feature. This can be done in both the other
interpreters, but it would appear that the SAX implementation allows the greatest
flexibility.

As yet, there is no GUI implementation, but with the recent announcement of the
Java interface for SAX/Linux, I suspect that the other Unix versions will get a
Java interface as well.

SAX is highly compatible with SAM, the mainframe version. This extends to the
use of the same rather clumsy editlor. This takes some getting used to, but
eventually becomes quite usable {although ! am still not fond of it). The other
powerful feature that both share is packages, which can be used to squeeze large
workspaces into only a small amount of space. This might not be all that useful
now that memory prices have decreased, but like APL/M’s namespaces, packages
can also be used as a name clash preventative.

I suspect that this interpreter will have many enhancements soon and will become
a very strong contender indeed. Having said that, it has a language
implementation which many will like - it took me a while, but it is definitely
growing on me.

53

VECTOR Vol.17 No.1

Recommendations

It is impossible to recommend purchase of one APL above the other. All of the
interpreters reviewed are “good”, though not necessarily in the same areas.

If you have used a Dyalog interpreter in the past and liked them, then APL/M is
definitely the right choice. You will feel at home immediately. The portability of
workspaces from DOS or Windows is also a very strong point. This interpreter
might also have some additional benefit if file system performance is critical.

Alternatively, previous users of STSC, Manugistics or APL2000 interpreters
would get on much better with APL+Unix. A particular strong point here is
compatibility of component files across architectures. This means that one could
keep APL running on multiple operating systems with a single data source.

Last, but by no means least, SAX would suit those who want to port from SAM on
a mainframe. It might also be better for those who have been using] and don't
want to give up all the benefits of this advanced APL derivative.

The only suggestion I can give to the prospective purchaser is to read the features
section above carefully and decide which points are applicable in the situation,

Thanks

I thank the manufacturers of the 3 interpreters reviewed. All have helped me at
some stage.

Notes, References and Web Sites

1. Refer to APL Power Shootout, Part 1, Vector Vol. 16 No. 4, My SAX Experience,
Vector Vol. 16 No. 3, and Dyalog APL for Mofif Version 8.1 Release 2 for Sun
Solaris 5.5, Vector Vol. 14 No. 3, all by Bob Hoekstra.

2. The web site for Soliton js hitp:/ /www.soliton.com, APL2000 have a web site
at http:/ / www.apl2000.com/ and Dyadic Systems's web site is at
http:/ /www.dyadic.com/.

3. The web site for Sun’s Ultra 5 page is
http:/ / www.sun.com/desktop/products/ ultra5/ .

4. Tadpole and RDI now share their web prescence at http:/ /www.rdi.com/.
"They were competitors in the portable SPARC market, but joined forces some
time ago. Unfortunately my SPARCbook 3GX (being an older machine) gets no
mention on the site.

VECTOR Vol.17 No.1

Introduction to Tree Searching in APL.:
Using the Tic Tac Toe Game in 3D

by Dan Baronet (danb@dsuper.net)

Introduction

This article deals with tree searching using a popular game as medium. The code
described here can be used in many situations to traverse a “tree” of possibilities.

Keywords

This document discusses computer science subjects including recursivity, tree
searching, heuristic evaluation and sequential machines.

Examples

Tree searching is a technique that can be used to solve large-scale problems. Many
situations can use tree searching, some more interesting than others. Possible
examples are permutations, where all possible combinations of a set are being
produced, and calling tree analysis, where all identifiers of a program are
enumerated. This technique is used effectively in situations where others, even if
possible, may not be practical, typically because they involve a large number of
possibilities,

Notions and Terminology

To better understand the concept of tree searching, consider the permutation case.
If we were to show all the possible permutations of the letters A, B and C we
would get 6 cases. The result would essentially consist of each letter followed by
the permutation of the remaining letters in a “tree like” fashion, in a repetitive,
recursive process.

Schematically it could look like the picture below, where we first generate all
possible letters, then the remaining letters and, finally, the last letter.

55

VECTOR Vol.17 No.1

4B|»rcC This picture represents the whole free. Each
b ' box is a node. Each combination of arrow/box
"4 C]» B, is a branch. The point where all branches
i originate is the roof and where they end is a
4Af»C leaf. The length of a branch from the trunk is its
» B depth.

el ra

v A

Not all trees are shaped like this one. Like

4A|l»B biological trees, most have branches of various
4 C- L depths. Unlike biclogical trees, they don't
'{ B I - A grow while you search them because they are

static, at least the kind we will be dealing with.
Assuming that no setup is necessary, searching a path consists of two steps:
1. check for a solution and generate new branches

2. search each one of the new generated branches

This is a recursive process.

Permutations

The previous example can be solved many (and even better) ways but we'll use
the tree technique as this is a good example.

Here we know we have a solution when no more branches may be generated. So,
1. check for solutions and generate new branches

The following code will do just that.

v unused+check_generate used
(1] unused+'ABC'~used s return letters not in the branch

[2]1 :i1f 0=punused a are we done?
{31 (QO+~used a show the result
f4] rendif

v

This code merely consists of generating the letters NOT used in the branch. If the
branch we are dealing with is a solution we display it.

This is it!

56

VECTOR Vol.17 No.1

2. search each one

Vv trybranchk branch; new; br
(1] newscheck_generate branch a the new material
(2] :for br :in tpnew m try them alll
[(3] trybranch branch,new(br]
(4] :endfor
v

As we see, the function calls itself for each new branch generated.

If we run this code as is, all permutations of the 3 letters ‘ABC’ will be displayed.
To display other permutations the function must be modified or a global variable
used to hold the set to permute.

Many other problems can be solved with this technique. There is the 8 queens
problem, the knight's tour, the “knapsack” problem where, given a layout of
pieces and rules for moving them, we must find the moves to put them in another
configuration (Rubik’s cube could also fall in this category).

A more practical use is to generate the calling tree of programs, where all of the
elements needed to run a program are identified.

All the above require their own generation function,

Let’s have a quick look at the 8 queens problem.

The 8 Queens Problem

This problem is often assigned to computer science students to solve,

The idea is to put 8 queens’ on a chess board in such a way that none can capture
another. There are 864 ways to put them on the board (4,426,165,368) but far
fewer unique solutions? Trial and error is an unlikely recipe for success. A
possible solution is shown on the next page.

We could, of course, generate all combinations and screen out unwanted ones but
with today’s machines it would take a fair amount of time (not to mention space if
done all at once, the APL way). This is another good example for using tree
searching techniques.

UIn a chess game the queen may move in all directions: horizontally, vertically and 'diagona]ly.
2 Exactly 37 unigue solations.

57

VECTOR Vol.17 Ne.1

A method

We put one queen down, note all the places
Q where another queen can be placed without
being captured, try the second queen on one
of these, note the remaining positions, etc.,
Q] continuing in this manner recursively.

Even with this method we're not guaranteed
Q a timely success. There are 64 possible
squares for the first queen, 42 for the 2nd, 30
for the 31rd, etc. This can rapidly get out of
Q hand. What we need is fast discriminatory
technique.

What do we know

One thing we know is that each queen will appear only once per row AND
column, We can reduce the number of searches like this:

* try the 1% queen on each square of the 1* row

+ try the 2 queen on each square of the 2" row (except where the 1¥ queen can
capture it)

* try the 3™ queen on each square of the 3 row (except where the 2 other
queens can capture it)

* and so on

We know we have a solution when the branch is 8 steps long (when all the queens
have been successfully placed on the board).

The generation function could look like this:

vnewssearch_generate br; n a Oio 1
{1] mew«{(18)~br,{br+n),br-n+¢1pbr n 411 safe squares to try
[2) :if 8=pbr n Do we have & solution?
fal O+«br rn Display the solution found

ful :end
v
When to stop searching

This is an important point. Do we want to search the ENTIRE tree or do we prefer
to find only ONE solution? In the second case we must signal the end of the

58

VECTOR Vol.17 No.1

search and code for it. Naked branch is only good if no result must be returned. A
better way to do this is either to Osignal and trap or set a global variable and
use il in the trybranch function as in

:if SolutionFound :return :end®

An even more interesting example: Tic Tac Toe

Overview

Everybody should be familiar with the 2-dimensional

% version of this game. This is the game of 9 squares (3 rows

and 3 columns) where two players try, in turn, to acquire 3

% squares {slots) lined up in a row. Like on this picture, to the
left.

X All positions (slots) a player acquires are marked with a
symbol different from the other player. Typically, X and O
are used as symbols.

The version we'll be using is bit more elaborate but with the same rules.

Model

The game discussed here is a 3-dimensional model (a cube) where 2 players try to
line up 4 squares in any spatial direction.

The ctbe consists of 64 positions, or slofs, of 4 planes of 4 rows by 4 columns where
players make their moves alternatively, marking a new slof of their choice each
time.

The siate of the game changes from move to move. A typical game starls from an
initial state where typically none of the slofs are used to a final state where one of
the players has acquired 4-lined up slofs and the game is over.

3 hardcore APLers may wish to use the expression +Solut fonFound/ o' instead.

59

VECTOR Vol.17 No.1

Examples of possible lineups are:

In this example 4 Here the slotshave Here the slots have

slots have been lined been lined up been lined up from

up vertically and 4 “sideways”. one top corner to the

others horizontally. opposite bottom
corner.

There are 76 different possible ways to line up 4 slots in this cube.
Each slot may be part of 4 or 7 of these lines.
There are 18 different planes* and each line may be part of 2 or 3 of them.

‘X’ and ‘O’ to represent the 2 players.

Discussion
In computer terms a typical game consists of
* Initialize the game
* Repeat
1. your turn
2. my turn
3. display the state/cube
4. Until the game is over

The game interface is of little interest here. It can be line by line, or with graphics.
Graphics may be Windows-style or even openGL (see the various implementations
listed below)®.

44 on the Z axis (those we see in the pictures), 4 on the Y axis, 4 on the X axis and & more tilted.

60

VECTOR Vol.17 No.1

The section of interest for us is where we atiempt to determine, from the state of
the game, if a winning solution is possible. This is where tree searching comes in
handy.

Implementation

1t is possible to detect a winning state by simulating
moves. For example consider a single® plane of the Im | 12 |13 | M4
cube like the one to the right where each slof has
been attributed a name (number} and the ‘O’s 11 | 1 24
occupy positions 41, 43 and 23.

31 | 32 33 34

42 44

If it is ‘O¥s turn to move then it can win within 6

moves by playing, for example, 14, 33, 44, 24, 22 and
either 11 or 21.

The other player's moves are predictable. S/he will be forced to play, at each
corresponding move, to 32, 13, 42, 34 and either 21 or 11.

We need a function such that
Winningmoves_ FindWinningMoves gamestate
will find a winning solution.
Or, since gameslale is a function of X and C we can use:
Winningmoves_ X FindWinningMoves O

Winningmoves contains all the moves to play in the order they were found in order
to produce a winning situation. Its format may also include the opponent's move
for practical reasons.

With such a function defined the bulk of the work will consist of building an
interface around it. That part will not be covered here.

5 For those who cannot wait go to www.dyadic.com’s web server page or directly to
195.212.12.1:8081 /t40.htm for an example of an interface.

6 There are many other planes in the cube, For the sake of this example the other cube slots are not taken
in account.

61

VECTOR Vol 17 No.1

Details

The state representation

We must be able to represent the state of the game in a practical manner. Marking
the 64 positions with X and O will uniquely represent the state of the game but is
of little use.

Since we're looking for complete fines a better representation of the stafe of the
cube would be to code the number of X and Os on each line, This will require 76
integers {one per possible winning alignment) but will provide us with more
valuable information, namely whether we {or the opponent) have lined up 4 slofs
or not.

For example a line with 4 Os could have the value 4 and a line with 4 Xs the value
40. A line with 1 X and 3 OS the value 13 and so on, i.e. exactly the number of Os
on the fine + 10 times the number of Xs7.

Initially, since the 76 lines have no X or Os in them, we have a stafe of 76 zeroes.
At the end there will at least one 4 or one 40 in them but not both.

The tree searching function

This one is easy. All we need to do is generate new branches and run them
through the same function. Like the trybranch function above. This time it must
deal with matrix results:

v Runbranch node; newbranches; br
(1] & Get <Generate> to provide the new branches for this node
[2] newbranches+« Generate node
(3] :for br :1in \ispnewbranches a For each newbranch
[#]1 Runbranch node,newbranches(;br] a ?ry it
[5] +SearchOver/o n» Are we done? Then destack.
(6] :endfor
v

The function must also be able to slop searching when we decide so. After all,
we're only interested in ONE solution. Line [5] takes care of this.

The new branches generating function
This function is responsible for generating all possible branches.

7 The value 10 s for visual appearance only. In fact, any value above 4 would do.

62

VECTOR Vol.17 No.1

The idea is to generate moves which continually line up 3 slofs and effectively
force the opponent until s/ he has to play at more than one place at once. We then
win at the next move.

We start in a specific state with Xs and Os laid out. The two variables ‘FREE(Q and
‘STATE(' contain information related to this initial state. These are used to create
their local varying counterparts ‘Free’ and ‘State” at each level of the search.

After any series of moves, if ‘State” contains 30 we know we can win right away. I
‘State’ contains 20 we know we can further try as we have 2 slofs on at least one
line and we can force our opponent to play on each one of the remaining pair of
slots on each one of these lines,

There is also a special case where we might be forced ourselves to play but which
is of no consequence if our response also further forces the opponent to play.

Here's the code to do the above. ALL is all the 64 slots, LINES is the 76x4 table of
slots {for each line.

view+« Senerate xo;State;Free;sl;li
[1] new+0/x0 n assume no possible new move
(2] Free«FREEGa~ALLexo n free slots=original free minus those used so far
[2] State+STATEO+stateof xo n state of each line=original plus branch state
(4} :if 30 € State n Can I win? {3Xs, no Os on a line)
[5] Sequence+xo.2tfrees sline 30 n Yes, take note of the winning sequence

[6]1 Searchover+1 n End the search
[7) :elseif 3 e State n Can s5/he win? If so WE are forced to play.
[8] :1f 1=pslefrees sline 3 n If at mere than 1 place then
this is hopeless
[9] 11f v/ll«(State=20)av/LINES=5] n Can we also force opponent

when we play there?
[10] new+2 1p (sl=1+11) ¢li+frees,liALINFSn Indeed. Find where g/he
is then forved.

[11] :end n And keep'on searchin®
[12] :end a Ke were In a fork 8- forget this branch
[13] :elseif 20 ¢ State n we canhot win but we might be able

te further force opponent to play
[14] new«State BEST frees sline 20 # Order all slots where
we forte opponent
t15] :end » no more possible move
v

<sline> returns the ravel of the lines whose state is the same as its argument.
‘sline 30 returns the lines with state 30.

8 A fork is when one must play at several places at once in order NOT to lase.

63

VECTOR Vol.17 No.1

<frees> returns the slots which are free in a list. Thus ‘frees sline 30’
returns the unused slots in the lines X which have 3 slots lined up.

<stateof> returns the state of Xs versus Os as defined previously.

How to find a solution fast

We must find a way to get rapidly at the solution otherwise we could spend a
very long time traversing the tree. One way is to altribute a weight to each
position. To do that we can first attribute weights to lines, and for each slot sum up
the values of each line it is used in. For example, if position P1 is member of 3
lines whose values are 10, 0 and 20 then P1's weight is 30. If another position’s
weight is more than P1, it will be tried first.

For example, in the following picture, X can force O at 7 places, only one of which
will ensure a quick win. All the others may lead to a winning situation but only
position 34 can create a fork and will do so in 2 moves.

Each slot is traversed by 2 or 3 lines here. Slot
11 is in lines 11-14, 1141 and 11-44. But

11 | 12 | 13 playing there is obviously not optimal.
‘2‘7 29 2; On the other hand, slot 34, which is only in
e | LT lines 31-34 and 1444 is the best choice,

ﬁ 132 M because lines where X already has 2 tokens
e] lined up are more valuable than those where

X only has 1 token. By choosing the right
A1 | 42 | 43 | M | yeights for each state we can achieve the
desired result. These weights must be guessed
or evaluated heuristically. In the following
code, the function <BEST> finds the best slot this way.

B

Making the best choice

The <BEST»> function orders the slots to reduce searching. It puts the “best” slots
first according to the state of the lines. There are many ways to do this. The
method used here is simple.

Tt first attributes a value to each line according to its state. Here a line gets the
value 1 if it has 2 Xs on it, 0 otherwise. It then attributes a value to each slof by
summing the value of all the lines it belongs to (a slof may belong to 4 or 7 lines in
this cube, information held by variable ISL).

VECTOR Vol.17 No.1

Thus:

ysl+State BEST slots; value; ord

[1} value+0,State=20 s value of each line

(2] value«+/valuelISL{slots; 1]

[3] ord+¥Yvalue n which ones first

(4] sl+slotslord,[-.1lord+ 1»ord] a alternate pairs
v

Even with this method the tree it generates can be enormous. We must be able to
“prune” it by specifying a minimum value for each slot and/or a maximum
number of branches. Both can be specified at each level of the tree. To keep things
simple we'll use a maximum value of 4 such that line [3] now becomes:

{31 ord+«(4lpord)+ord«yvalue

Putting it all together

We now need a cover function for this. We need to initialize the STATEQ, FREEQ
and the SearchOver variables, as follows:

v Sequence<«X FindWinningMoves O;FREEQ;STATEQ;Searchover
[1] s Find a winning sequence for X over 0
[2] STATEQ+(+/LINESe0)+ 10x+/LINESeX
[3] FREE0+~ALLeX,0
(4] SearchOver<o
£5]1 Runbranch Segquence+2Z 0p0
v

Sequence, the result variable, is set prior to calling <RunBranch> just in case
no solution is found. In the event that we DO find a solution, <Generate> will
take care of setting it properly.

This is where the ability to see and reset localized variables, on the stack, can be
useful. In J, for example, this would not be possible, Instead the solution can be
temporarily stored elsewhere, in a locale for example,

65

VECTOR Vol.17 No.1

NN, Let’s try it on a simple case:
qu {lh 2 3

0 1 11 15 FindWinningMoves 7'
37
4 (s |7 I

s | 9 | 10 \li: Meaning “I will play 3, O will play 2, 1 will play 7
£ {and win)”.

2|l |u Y
F

OK. Let’s try something more serious. In the following picture we have

¥«15 9 2% 18 57 40 42 22 1 56 4 59 53
O+«12 3 48 51 60 O 63 41 2 52 8 §5 58
(cell 0 is the top leftmost ane).

To see if X can win we do:

X FindWinningMoves ¢
5 37 26 6 38 25 32 36 39
13 21 30 7 54 27 L7 4y 0

and X is assured victory in 9 moves or less. BUT! If
it’s O's tumn to play s/he can win in 3 moves:

¢ FindWinningMoves X
38 35 4nu
25 19 0

Improvements

There are many ways to improve the search. We can
* fine-tune the pruning algorithm with better weights and functions
* allow the program to find a shorter solution
* specify a maximum search level to limit “infelligence”

To name a few possibilities.

66

VECTOR Vol.17 No.1

In the various implementations below, some of these improvements have been
made. Among others, the “BEST” algorithm uses values that have been reached
after trying several evaluation methods thence the term heuristic evaluaiion).

Conclusion

There are many ways to tackle problems.

This tree searching technique is very good at going through large amounts of
cases or situations.

Like every other technique one must exercise judgment when using it. If used
without preparation it can be slow to produce results, if at all.

Various Implementations

My first attempt at writing this game goes back over 20 years! The first version
was line by line, with quote-quad for input. A similar version exists for SHARP
APL, APL*PC and J.

After graphics became popular [ported the game to APLPLUS*II then Dyalog
APL. A] version now also exists using graphics.

All the code can be found at www.dsuper.net/~danb/milinta.

67

VECTOR ' Vol.17 No.1

ZarkWin: Windows Programming
without OwI

Gary A. Bergquist
This paper was presented at the APL2000 Users” Meeting, Orlando, Nov. 1999

Summary: ZarkWin is an application development tool developed in APL+Win
for building Windows-style user interfaces. The mission of ZarkWin is to enable
you to build user interfaces as quickly as you can design them. The author
believes that a disproportionate amount of time is being devoted to implementing
fancy user interfaces. ZarkWin shortcuts the implementation process by fighting
fire with fire, A robust full-screen interface is used to build robust full-screen user
interfaces. Naturally, ZarkWin was built with ZarkWin.

The Concept

Experienced APL programmers tend to take for granted the magic of APL. Sure,
they appreciate the power and productivity of APL, and enjoy working with it,
but they don’t often stop to wonder why it works so nicely, Is it because of its
mathematical orientation? Its symbolic nature? Its array-handling? Its immediate
execution mode? Its obsessive consistency?

Yes to all of the above. But, more generally, what gives APL its glow is its
similarity to a straight line: it is the shortest distance between two points. The two
points, of course, are the start and end of the job. APL is the shortest distance
from the statement of the problem to the implementation of the solution.

This is no accident of nature. Rather it is APL’s simple adherence to the laws of
nature. In particular, APL abides by what we might call nature’s Law of
Abstraction:

If yout can devise a reasonable abstraction of reality (vectors, matrices, nested arrays)
and of the needs of the real world (reductions, selections, sorting, relations, inner
products), you can design a mechanism (symibols, argtunents, resulls, operators,
defined functions, immediale execution mode) that aifows ot to solve real world
problems rapidly becanse of the direct translation from reality to the mechanism, by
way of abstracton.

In other words, the more closely the mechanism reflects the characteristics of the
problem, the more rapidly you can solve the problem.

68

VECTOR Vol.17 No.1

The Reality

Frankly, I miss the days when the user interface was implemented in APL like
this:

[1] "Enter name:!
[2] NAME+

[3] 'Enter age:‘'
(4] AGE+O '

There was no excess baggage. You could implement the “user interface” as
quickly as you could imagine it.

No longer.

Now we talk aboul classes, properties, styles, events, and so on. We converse in a
jargon that has nothing whatsoever to do with NAME and AGE. We become
intimately familiar with a system function named 0¥ I, which has a vast syntax
and which is pronounced “Quad-we” (as in, “We submil”) but which should be
pronounced “Quad-why” (as in, “Why me?”). Clearly, the line from problem to
solution is not a straight one.

Don’t get me wrong. 1 don't think OWI should be abolished. On the contrary,
since we live in a world of Windows, and since OWI is our doorway into the
jungle of Windows functionality, such a mechanism is a necessity. It's just not a
necessity I want to look at every day. It's too tedious. Using [1¥I slows me down
and detours me from the straight line.

Instead, we should let OWI be the foundation upon which our straight-line
abstraction is built. Just as APL is built in assembler, or C, or whatever other
language is currently appropriate for implementing APL in the real world, let our
tools be built in OWI. But let’s begin the design of these tools by evaluating the
user interface at a higher level, from the point of view of what we want it to do,
not from the point of view of the system-level functions available to do it.

The Plan

Compared to the simple interfaces of yesteryear, such as the quote-quad and quad
code above, the user interfaces of today are quite complex. They look so much
nicer and do so much more. This is great for the user but is a major headache for
the programmer.

69

VECTOR Vol.17 No.1

The concept of defining an interface via a function editor is inadequate. With a
function editor, you take these steps:

1.
2.

4,

Imagine how the form should look.

Translate that picture in your mind to the needed commands, and type them
into the function editor.

Run the application, or at least the interface part of it, to see whether the
commands are doing what you want.

If it’s not quite right, return to step 1 and repeat.

While these steps get the job done, they are too round-about. A more direct
approach is to use a visual form editor instead:

1.

2.

Imagine how the form should look compared to the form you are looking at on
the screen,

Use your mouse to drag, click, or double-click the form into shape.

The Design

If it is possible to edit a form, as described above, it is possible to define it. By
“define,” I don’t mean define it in terms of the OWI commands required to build
it. I mean define it as an array of parameters that have nothing to do with how it
will be built. For example, here are some form parameters:

The caption on the title bar, if any;
The colour of the form;
The font used on the form;

Whether or not the form can be resized by the user and, if so, how Lhe objects
on the form will respond to the resizing;

Whether the form will have menu items and, if so, what their captions and
shortcut keys will be and what they will do if clicked;

What objects, such as buttons, edit fields, labels, check boxes, options, lists, and
50 on, will appear on the form, and where, and how they will behave.

If you are familiar with OWI, you are probably contemplating the syntax you
would use to set each of these parameters.

Please don’t.

70

VECTOR Vol.17 No.1

Instead, imagine yourself sitting with a user as he describes the desired form.
With a piece of paper in front of you, make a sketch of the form and annotate it
with all the necessary details. Once you have the form’s complete specifications in
front of you, design a nested array that contains all of these specifications. For
example, the first item can be the form’s title bar caption; the second item can be
the form’s colour, or empty if the default colour is to be used; the third item can
be a nested list of the parameters that describe each of the objects on the form, one
item per object, where you define the object’s parameters any way you want; and
50 o,

In the process of designing this nested array, try to keep the structure general so
you can use the same design for other forms. As you do this, you will find
yourself making assumptions and establishing restrictions so you can keep the
design simple. By simplifying, yon will be limiting the capabilities of forms that
can be defined within the confines of this nested structure. Nevertheless, you will
likely be surprised at how few those restrictions are and how easily they can be
eliminated by tweaking the design of your nested array.

Once such a nested array is documented, it is possible to write a function (using
OWI of course) that constructs and presents the form defined by that array. Here's
how it would work:

zwShow formbefn

The argument of the zwShow function is the nested array thal contains
everything there is to know about the form. zwShow does the tedious work for
you. It figures out what [WI calls are needed to build the form and make it
respond appropriately to the various possible user actions.

Unfortunately, even with such a function, the task that remains is formidable.
You must construct the nested array. Since the definition of such a nested array is
non-trivial, building or modifying it will be difficult, time-consuming, and
fraught with mistakes. However, it is possible to write a function that presents a
set of forms that allow you to interactively modify the contents of the nested
array:

zwbhef 'formDefn!

The argument of the zwDef function is the name of the nested array. The
argument is provided as a name rather than as the nested array itself so that
zwDe f can reassign the named variable. The aim of zwDef is to present the form
as it is currently defined in its named argument, and to allow you to use the

71

VECTOR Vol.17 No.1

mouse to move form items or to trigger pop-up forms that enable you to add,
delete, or modify form items.

This, then, is the design principal of ZarkWin: Design and document a nested
array that can contain the definition of any conceivable (reasonable) form. From
that documentation, write a function (zwShow) that will build and present the
form, and a function (zwDef) that will allow you to easily modify the nested
array. Once zwShow and zwDef are wrilten, you never again need to get sucked
into the intricacies of JWI. Furthermore, since forms can be held in your hand as
independent nested arrays, you can easily manage them, copying them into the
workspace, erasing them from the workspace, or saving each ome as a file
component.

The Specifics

Up to this point in the description of the ZarkWin approach, the comments have
been kept general. When the Zark folks sat down to discuss the design of the
nested array form definition, specific assumptions and decisions were made. The
resulting design reflects the mental model of what a form is to us. The remainder
of this section describes the salient features of that model. The details of the
nested array definition are too lengthy to be included as part of this paper.

Control Objects

A form consists of a set of rectangular user controls, called “Control Objects.”
These objects are defined for the convenience of the ZarkWin user, and don’t
necessarily correspond to APL+Win control objects. For example, a set of six
options (radio buttons) and their captions can be viewed as a single Control
Object in ZarkWin, though they are six control objects in APL+Win, A group of
three buttons (perhaps labelled OK, Cancel, and Help) can be a single Control
Object in ZarkWin, though they are three control objects in APL+Win. A set of
three edit fields and their labels (say, Name, Age, and Salary) can be a single
Control Object in ZarkWin though they are six control objects in APL+Win (three
edit fields and three labels).

Values and Reference Names

Each Control Object is generally defined to have a “value” and is given a
reference name to refer to that value. The reference names are like APL variable
names. For example, a Control Object of six options is defined to have a value that
is the scalar index (origin 1) of the selected option. The reference name might be,
say, DEPT or MARITAL. A Control Object of six check boxes is defined to have a

72

VECTOR Vol.17 No.1

value that is a six-element bit vector, flagging the boxes that are checked. The
reference name might be CHKS or BITS. Here again, the ZarkWin meaning of
“yalue” doesn’t necessarily correspond to the APL+Win meaning. This is an
advantage, since you don’t have to remember whether you want the “text”
property, the “caption” property, or the “value” property, as you do when
working with (W I.

Subsets

A Control Object can have “subsets.” For example, suppose the Control Object
whose reference name is EMP contains three edit fields labelled, respectively,
Name, Age, and Salary. The “value” of EMP is a three-item nest (e.g. ‘John Smith’
35 25000). You may provide reference names for each of the three edit fields {e.g.
NAME, AGE, and SALARY), so you can refer to the value of each field
individually. In this event, the fields are called “subsets” of the Control Object. If
you do not provide subset names, you can still refer to the subsets one at a time
by using “pick notation” {e.g, 2>EMP for AGE).

Datatype Conversion and Field Validation

When you refer lo the value of a Control Object or one of its subsets, you can
expect il to be in whatever form is natural for that Control Cbject. For example,
the value of the AGE field will be a numeric scalar, even though the value is
presented in what you know to be an APL+Win Edit field whose ‘text’ property is
the character vector representation of the age. Likewise, the value of a date field
will be an integer scalar in the form yyyymmdd (e.g. 19981103). Datatype
conversions and field validations are handled automatically by the Control
Objects. If the user tries to enter a non-numeric age or an invalid date, he sees an
error message appear and is required to provide valid input. You do not have to
do any programming to enable this datatype validation.

You do, however, have lo provide validity checks that go beyond datatype
validation. For example, if the employee’s salary must be under $100,000 when
the employee is single and male, you must say so within the form’s definition. In
ZarkWin parlance, you would say something like this:

(SALARY2100000) A (MSTATUS=1)+8EX=1 s Single males can't earn
more than $100,000

Other than such application-specific validations, ZarkWin handles the field
validation process on its own, without programming or further specification by
you.

73

VECTOR Vol.17 No.1

In general, the field validation process does not take place at each keystroke or
when tabbing to the next field. Rather, ZarkWin wails until the form is closed.

Closing the Form

There are two ways to close a form: the OK-close and the Cancel-close. In the
former (OK-close), all field validation checks take place. If any checks fail, an error
message displays, the focus moves to that field, and the form remains open. In the
Iatter (Cancel-close), the form is immediately closed, whether or not the values
are valid. The closing of a form can be triggered by a user (e.g. closing the form by
clicking on the system menu), by user action on a Control Object (e.g. clicking on
the button labelled “OK”), or under program control, given any condition the
programmer deems worthy of closing the form,

Event Handlers

While the aim of ZarkWin is lo minimize the amount of APL programming
required to implement the form, you may still include any amount of special code
by providing expressions that are executed in response to various events. For
example, you can provide an expression that is run after the form is constructed
and just before it becomes visible. You can use this expression for any last-minute
modifications to the form, such as disabling (greying out) certain fields based on
the values in other fields, or for resetting lists of available choices, and so on.
Another expression is run after the form is OK-closed and the fields have been
validated, but just before the form is removed from the screen. You can use this
expression to read the data from the form and file it or to do other processing. The
result of the expression tells ZarkWin whether or not to go ahead and close the
form. Likewise, you can provide expressions to be executed when buttons, or
options, or checks, or list items, or menu items are clicked or double-clicked or
changed, and so on. In general, the result of the expression should be 1 to have
ZarkWin OK-close the form, or -1 to have ZarkWin Cancel-close the form, or 0 to
leave the form open.

Program Control of Control Objects

There are three common ways to pass values into the form, and to retrieve them
back from the form.

1. Via global variables:

AGE+«35 o NAME«'Smith!
R+zwShow formDEFN

74

VECTOR Vol.17 No.1

If the left argument of zwShow is omitted, zwShow uses the values of all
existing global variables whose names match those of Control Objects or their
named subsets. The global values are used to initialize the values of these
objects on the form. Conversely, when the form is OK-closed, the form assigns
the values of its Control Objects to the like-named APL variables. The result of
zwShow is 0 if the form is Cancelclosed, or 1 if it is OK-closed.

2. Within expressions executed at certain events, while the form is open:

VAGE NAME' azw ‘value' (35 ‘'Smith';
{AGE NAME)+«'AGE NAME' azw ‘'value’

The first expression writes the values given in the second item of the right
argument of 4zw to the Control Objects or subsets named in the left argument.
This expression could be included in the expression that is run just before the
form displays. The second expression reads from the form and explicitly
returns the values of the Control Objects or subsets named in the left argument.
This expression cotld be included in the expression that is run just before the
form is removed from the screen.

The & zw function can also be used for setting or retrieving or otherwise
controlling other properties of Control Objects. Its left argument is always a list
{vector, matrix, or nest) of the reference names of the Control Objects or subsets
being manipulated. Here are some examples:

Grey-out the second and third subsets of the CHKS Centrol Object:

'V2oCHKS' '33CHES' azw ‘enabled' 0

Set the choices for the COLORS Contro! Object to Red, Green, and Blue:

"COLORS' azw 'list* ('Red' 'Green' 'Blue'}

Make the SALARY Control Object invisible; make the DEPT Control Object

visible;
VSALARY DEPT' azw ‘'visible' {0 1)

3. Via arguments and resuits:

N+1"AGE NAME'
R«(N ('value'(35 'Smith'))) N zwShow formDEFN

75

VECTOR Vol.17 No.1

When the left argument of zwShow is provided, it has two items. The first item
is a nest with an even number of items. The first item of each pair is a suitable
left argument to 4 zw; the second item is the corresponding right argument.
These pairs are passed to 4zw by zwShow prior to displaying the form. When
the form is OK-closed, the zwShow function explicitly returns the values of the
Centrol Objects named in the second item of its left argument. The result of
zwShow is the scalar 0 if the form is Cancel-closed, or is a vector of Control
Object values if it is OK-closed.

The result of zwShow is empty (¢ 0p0) if the form is presented non-modally,
i.e. if processing continues without waiting for user interaction.

ZarkWin Implementation

The behaviour of each ZarkWin Control Object is defined entirely by a single pre-
defined APL function. For example, the function zwaBut tons defines how sets
of Buttons will behave; zwaChecks defines how groups of check boxes will
behave. These functions are written to respond appropriately to a variety of
possible arguments. Such functions always begin with zwa (e.g. zwaList,
ZwAOptions, zwaForm, ...). If certain Control Objects are not needed in a
particular application, the corresponding functions may be erased from the
workspace. Likewise, new Control Object functionality comes from simply
copying in the new zwa___ functions.

Parents and Children

Some Control Objects can contain other Control Objects. For example, the Control
Object known as a Selector can contain Control Objects known as Pages. Likewise,
Pages can contain any Control Objects except Pages, including Selectors. A
Control Object that can contain other Control Objects is called a parent. The
Control Objects contained within a parent are called children. A form is always
considered a parent.

In general, children inherit certain traits from their parents. For example, the
colour and font style used by the text on a Control Object is the same as that of its
parent unless you specify otherwise. Likewise, if a parent is disabled (greyed out)
or made invisible, all of its children are disabled or invisible. If an input field on a
Control Object is modified, the parent of the Control Object is also considered
modified.

Parent Control Objects have reference names, just as their children do. The
“value” of a parent is a nest of the values of its children. As such, you may set or
retrieve all of the values of the children Control Objects of a parent by referring to
the parent’s reference name.

76

VECTOR Vol.17 No.1

Groups

One of the most interesting of the parent Control Objects is the Group. A Group is
defined as a set of Control Objects that are each positioned relative to one another.
For example, suppose we have a Group that contains three Control Objects. The
first is a large-font bold label; the second is a set of three one-line edit fields
centred below the label and separated from it by two lines; and the third is a set of
two buttons centred below the one-line edit fields and separated from them by
three lines. The Group derives its size from the sizes and relative positions of its
children.

What makes Groups interesting and powerful is that they remove much of the
burden of placing Control Objects on the form. For example, suppose you decide
to decrease the size of the big bold label mentioned above. After doing so, you
will probably have to move the other two objects to maintain the aesthetics of the
form. However, if all three objects are “glued” together as children of a Group,
when one object changes size or shape, the others quickly hop into place to
maintain their relative positioning (e.g. “centred and below by two lines”).

Groups can contain any Control Objects as their children except Pages (since only
Selectors can have Pages), including other Groups or Selectors.

Because of a Group's ability to keep its children automatically positioned to Iook
good, it is nol uncommeon for a Form or Page to contain all its Control Chjects in a
single Group. Once that Group is defined, it is then natural to want the Form or
Page to derive its size from the size of the Group, being just large enough to
contain its children. When this is the case, you can take a shortcut by simply
declaring the Form or Page to be an “implicilly grouped” Form or Page. Then,
you don’t have to define an explicit Group. Instead, you place the Control Objects
directly on the Form or Page and define their relative positioning. The size of the
Form or Page is automatically derived from its children.

Resizing
By specifying the type of border a form has, you can determine whether or not the

user can “resize” the form by dragging its borders. Forms that can be resized may
have any one of the following “resize behaviours:”

* Remgain - The Control Objects on the form stay the same size and remain at the
same location (from the upper left hand corner of the form).

* Stretdt ~ The Control Objects, including any text, grow or shrink in height and
width by the same proportions the form grows or shrinks. This can result in
short-fat or tall-skinny objects.

VECTOR Vol.17 No.1

* Grow - The form maintains the original proportion of its height to its width.
For example, if the user makes the form 50% wider and 30% taller, the'width of
the form snaps back to just 30% wider. The Control Objects, including any text,
grow or shrink by the same proportion in both directions.

* Keep Cenfred - The Control Objects remain the same size and the same relative
distance from one another. As the form grows or shrinks, the extra space is
added or subtracted from both edges of the form equally,

* Realign — The Control Objects realign themselves independently in any way
they see fit. For example, the Buttons might remain the same size and distance
from the bottom right edge of the form, while the List, Tree, or Multi-line Edit
objects might grow to allow more lines/columns to display. The text sizes do
not change, in general.

Miscellaneous

ZarkWin functionality tends to expand as APL+Win provides additional
Windows functionality and as users demand more from their user interfaces.
Here are some additional ZarkWin capabilities:

* Status Bar support. A status bar can be requesled at the bottom of a Form. The
status bar may be defined to include CapsLock, NumnLock, and/or ScrollLock
panes, which are placed to the far right and which use the text ‘Caps’, ‘Num’
and ‘Scroll’, In addition to these panes, you can define the status bar to contain
any number of standard panes, one of which can be designated to display a
different message when the focus is located in each Control Object. In addition
to CapsLock, NumLock, ScrollLock, and standard panes, you can enable an
“overlay” pane which (temporarily) replaces the entire status bar and which
you can use, for example, to display messages that tell the user the status of
lengthy processing.

¢ Shortcut keys, Within a ZarkWin form, you can define any number of
“shortcut” keys. For each specified keystroke (e.g. Ctrl-T or Cirl-Alt-R), you
can provide an APL expression.

* Context-sensitive help. You may provide a “help” document for each Control
Object on a form. If the user presses F1 or Cirl-H, the help document for the
Control Object that currently has the focus is displayed in a pop-up window.

* Menu bar. ZarkWin allows you to easily construct a menu bar of arbitrary
complexity. The menu items can be checkable or not, enabled or not, visible or
not, can have shortcut keys or not, can have associated APL expressions or not,
and can be changed dynamically at will.

78

VECTOR

Vol.17 No.1

Niustration

Suppose we want to implement the following input form:

Contract | Address | Activities| ‘
Policy Numter [[EESE P Qualified?

: “ T Tax Exempt?
Hame [Jobn Q. Smith
‘Contract Date [11/13/1998 "Tax Rate' (5.5 '

Frequéncy Quarterly "]
Contract Type lPIatinum 'l C pedunAbls I ek

ITI Cancel I

Policy Form [l

-d’_"“?m Mdm ,Amluhiag] .

i 123 Main
: Anytown, NY 10234

31F

- Remember to .ente'r':

"

a Zip Code-

l_m Ca;\cai i

79

VECTOR Vol.17 No.1

Cnntract] Address Activities]

Golf e LU fgging « Male

Bowlint Hockey " Female
Sky-diving Tennis " Unknown

0K l Cancell

With ZarkWin, the first step is to name each of the input fields. Let’s use the
following names:

+ PNUM Policy number {characler vector)
» NAME Policyholder name {character vector)
* CDATE Contract date (yyyymmdd)

+ FREQ Payment frequency (1=Monthly, 2=Quarterly,
3=Semiannually, 4=Annually)

*« CTYPE Contract type (1=Premium, 2=Gold, 3=Platinum)

* CHKS [1] Qualified? {1=Yes, 0=No)
[2] Tax exempt? (I=Yes, 0=No)
+ RATE Tax rate as a percent (if not tax exempt), e.g. 5.5
« DED Deductible amount in dollars (if a Gold contract)
+ ADDR Policyholder address (newline-delimited character vector)

+ ACTIV Activities (vector of any of these: 1=Gelf, 2=Bowling,
3=Sky-diving, 4=Baseball, 5=Hockey, 6=Tennis, 7=Jogging)

« SEX Sex (1=Male, 2=Female, 3=Unknown}

The second step is to write a companion function for this form. The purpose of the
function is to gather the needed information for the initial presentation of the
form, to present the form, to handle any other call-backs from the form, and Lo
save any changes made to the information by the user. If the information
displayed on the form is being saved on file, it is the job of this function to read it

80

VECTOR Vol.117 No.1

from the file when presenting the form, and write it back to the file when the form
is OK-closed.

The following is a typical companion function for the above form:

g 2+L POLICY R;ACTIV:CHKS;D;DATA;RATE;SEX;T
[13 a Presents the “Policy" form. Used like this:
(2] [formPCL POLICY 'Go!

[31 n Other right arguments are callbacks:

{41 [POLICY 'Exempt’ 1f Exempt check box is clicked
[5] A POLICY 'Comtract' I1f Contract Type is clicked
[6] n POLICY 'Errchi? for error chks when CK-closed
[71 A

[el a Branch by right argument:

(5] +('Go" '"Exempt' 'Contract' 'ErrChk'e¢cR)/Li,L2,L3,Ly4
{10] OERROR 'Unknown argument'

[111 »

(121 a

{13 o Initial call; read data from file; present form:
[14] IL1:'8 DATAFILE' [JFSTIE § o DATA~OFREAD 9 1 o OFUNTIE 9
{151 T+'PNUM NAME CDATE FREQ CTYPE CHKS RATE DED ADDR ACTIV SEX'
f16] D+{T ('value' DATA 1))} T zwShow L w 1=Trigger onClicks
[17] ~(Da0}/0 n Exit if Cancel-close; else file data:
fisl ‘6 DATAFILE' (OFSTIE 9 o D OFREPLACE 9 1 o OFUNTIE 9 o =0
[18] &
[20]
[21] =a Click on 'Exempt'; make tax rate Invisibhle if exempt:
[22] [L2:'RATE' azw 'visible' {~'22CHKS' azw 'value')
[23] +Z+0 a 0=Don't close form
f2u]
[25] &
[26] n Click om 'Contract'; erable Deductible only If type 2:
[27] [L3:'DED' azw 'enabled' (2='CTYPE' aszw 'value')
[28] +Z+0 a 0=Don't close form
[29] =&
[30]1
[31)] a Error checks at 0OK-clogse:
[32] Lu:(CHKS RATE ACTIV SEX)}+'CHKS RATE ACTIV SEX' azw 'value'
[33] Z+"RATE:10% Is the maximum rate' ¢ +{{RATE>10)a~2>CHKS)/0
[3ul I+*8SEX:0nly males play hockey® o +((SEX#1)a5¢ACTIV])/0
[35] Z+'' o +0 a Fmpty {f all is well

v

The final step is to construct the form as a nested array. This process is begun by
typing: zwDef ‘formPOL’. Then click, drag, and type until the form looks right.

To run the application, type: formPOL POLICY ‘Go'.

81

VECTOR Vol.17 No.1

Final Comments

This the fourth generation of ZarkWin. While the software continues to evolve, it
seems to have reached its final form. As such, it has become everything we hoped
for, and more, Our aim was to develop a tool that can be used to implement a
user interface in something comparable to the time it takes the user to define and
describe it. In other words, we wanted to be able to sit with our fingers poised
over the keyboard as the user describes the desired interface. While we knew we
could never return to the simple and speedy development of the quad/quote-
quad interface, we nevertheless wanted to return to & time when we could wait
for the user to make up his mind, rather than the user waiting for us to “program”
the interface.

We also wanted to bury our Windows programming knowledge as deeply as
possible within sub-functions, so we could purge if from our brains and go back
to being the APL programmers we prefer to be.

With ZarkWin, we're pretty close.

82

VECTOR Vol.17 No.1

After the Lord Mayor’s Show

by George MacLeod (george.macleod@simcorp.com)

Introduction

For the benefit of non-British members of the BAA I probably need to explain the
title of this paper. Every year the City of London (the financial part of London)
elects a new Lord Mayor. His inauguration is celebrated by a procession of golden
coaches and floats, many of them pulled by horses. At the back of the procession
is the man wheo clears up after the horses.

1 earn my keep as an APL contract programmer, which means that T spend most
of my time porting systems that have been around for years or maintaining legacy
systems on IBM mainframes. Many of these systems are ten or more years old and
have been worked on by a host of people of varying abilities in different styles
and different standards, or sometimes, no standards at all.

The advent of APL interpreters that can run in the Windows environment has
encouraged the use of APL to build GUI systems. Programming GUI objects
using the system functions provided by the interpreter can be a boring job which
has to be done with some precision if the result is going to look good. This has
caused some programmers to build their own tool kits so as to increase the speed
with which GUI programs can be written. These tools are often very effective in
speeding up the program writing though they tend to produce rather regimented
GUI layouts. The real downside is that these tools become part of the application
program. It can mean that layouts are controlled by a number of global variables
which if changed can have strange effects all over the system. The other type of
tool tends to consist of many small functions which the developer laces together
and which are an integral part of the application. The programmer who comes
along later has to understand the functions (which generally are not documented)
in addition to understanding the application itself.

1 have written most of my GUI code using the system functions (OWC, OWS etc.)
provided in Dyalog/APL. This has been fine but I have always envied the speed
with which the developer with a GUI tool kit has been able to create GUI code. If
you care about the look of your Windows screen you can spend a lot of time
fiddling about with the position and size of objects so that they look good.

83

VECTOR Vol.17 No.1

GUIBuilder
So I decided to build a meta-language that would do the following:

generate APL code that would produce a populated Window.
not use any global or local variables in the generated code.
not use any sub-functions in the generated code.

compute the Position property of every object.

compute the Size property of most objects

generate composite objects to provide a Caption property where one is not
usually available.

allow the height of List, Edit and some other objects to be specified in Rows.
assist in centring and aligning objects relative to other objects.

allow the programmer fo tweak the layout so that the programmer has final
control.

This system I call GUIBuilder. GUIBuilder consists of a number of functions that
produce GUI objects, functions involved with locating them on a form and a set of
functions to change the spatial relationships between objects (like centring,
aligning, spreading etc.). Creating a GUI form by this process generates a function
which will produce the form with all its objects and containing only APL system
functions to generate them.

Example of GUIBuilder
This is all best illustrated by example.

VECTOR Vol.17 No.1

Let us imagine that we wish to build the following form.

%5 Bug Monitoring System - Browser _ 0] %]

Bug No] Pr”inritgrarl » Status I 1

Title |

Description

-
Arca] Space i F.um:ﬁnn i |

- cap“o“ [S ;

Ned | Back | Setect | Sot | Bat |

RcsetJ oK. l Cam:el] Dnl:tel [npﬂf

[0] MakeVector
1] a This is an example for Vecter
(21 StartBullder'Example for Vector!

This is the start of a function called MakeVeclor, The function name is chosen by
the user,

The first function invoked is StartBuilder which initiates GUIBuilder and
whose argument will be used as an initial comment in the created function.

[3] 'Bug!Form'C Bug Monitoring System!'

This creates a Form whose name is Bug and which has a caption of Bug
Monitoring System. The C in the parameter indicates that what follows is a
Caption (an F would have indicated a Font Name and T a Tip - there are others
which are described below).

The size of the Form is not specified as this will be calculated.

When an object is created it becomes the currently Selected Object and the next
object will be located relative to it.

85

VECTOR Vol.17 No.1

[4] 'Bug.L1'Edit Topleft*C Bug No'(0 100}'R 1°'

This line creates a composite object called 'Bug.I1' consisting of an Edit cbject
called 'Bug.LiEdit' and a Label object called 'Bug.LiLabel!. As the
Selected object is the parent of the object being created it will be the container of
the object being created. Therefore the new object will be inside the form in the
top left hand corner. The contents of the parentheses indicate the size of the edit
field. The height is specified as 0 because it will be specified later. The width of
the Edit object will be 100 pixels.

Normally an Edit object does not have a Rows property but GUIBuilder allows
the number of rows to be specified and calculates the height in pixels taking into
account the font being used. 'R 1' indicates that there is one Row.

The Label object will be placed to the left of the Edit object. This is the default.

fs5] 'Bug.Lk2'kdit Right'C Priority' 'R 1'(0 110)
[81] 'Bug.L3'Edit RIight'C Status' 'R 1'(0 100)

Specifying 'Bug.Li'caused it to become the Selected object and therefore
'Bug.L3' is specified as being to the Right of it. 'Bug.L3* is to the Right of
'Bug.Lz2',

[71 Select'Bug.L1"'

The next object we wish to place below *Bug.L1' so we make 'Bug.L1! the
Selected object.

[8] 'Bug.E1'Edit Below'R 1' '¢C Title!

This is another single row edit field. This time the size is not specified at all. The
Row property specifies the height and we will calculate the width later.

[9} 'Bug.E2'Edit Below'R 7' 'l Above Centre!
'C Description' '§ Multj!

The line defines a multi-line edit field. Again there is no size specification, the
height is 7 rows and the width we will calculate later. The L phrase defines the
placement of the Label with regard to the Edit object. It specifies that the Label
will be centred above the Edit object. The S phrase specifies a Style property and
indicates that the Edit object will have a Style property of Multi.

86~

VECTOR Vol.17 No.1

[10] 'Bug.E2Edit'Props('VScroll 1)('ReadCnly' 1}

This line contains the Props function which makes it possible to specify
additional properties. These properties are added to the OWC statement in the
Vector function which makes it possible to use properties that may only be
specified when the object is created.

[11] 'Bug.Luw'Edit Below'C Adrea'(0 100}'R 1!
[123 'Bug.L5'Edit Right'C Space'(0 10Q)'R 1!
[13] 'Bug.L6'Edit Right'C Funmction'{0 106)'R 1'

These three objects are similar to ‘Bug.L1’ through “Bug.L.3

[1k] Select'Bug.L4'
[15] 'Bug.G'Group Below'C Caption'

Change the Selected object and below it place a Group object of no specified size

[16] 'Bug.G.Bi'Button Topleft'C Next' 'E 30 Exit!
[(17] 'Bug.G.B2'Button Right'C Back' 'E 30 Back'
[18] 'Bug.G.B3‘Button Right'C Select' 'E 30 Select!
[19] 'Bug.G.Bu'Button Right'C Sort' 'E 3¢ Sort'
{20] ‘'Bug.G.Bs5'Button Right'C Exit' 'E 3¢ 1!

This places five push buttons across the form. No size is specified as push buttons
have a default height and a default minimum width. The width of the Bulion
Caption property is calculated and the width of the button is increased if
necessary. The E phrase allows the specification of Events.

[21) Select'Bug.G.B1!

(22) ‘'Bug.G.B6'Button Below'C Reset' 'E 303 Reset'
[233 ‘'Bug.¢.B7'Button Right'C OK' 'E 30 OK!

[24v] ‘'Bug.G.B&'Button Right'C Cancel' 'E 30 1°'

(251 'Bug.G.B9%'Button Right'C Delete' 'E 30 Delete!
[261 'Bug.G.B10'Button Right'C Input' 'E 30 Input’

This defines five more buttons beneath the first five.

£27] 'Bug.Li' 'Bug.La'SpreadObject_H'Bug.Ei'
f28] 'Bug.Li' 'Bug.L3'SpreadObject_H'Bug.E2'

Now we come to a function that changes things. SpreadObject_ H (H for
horizontal) changes the width of *Bug.Ei' and Bug.E2 so that they stretch
from the left edge of 'Bug.r1' to the right edge of 'Bug.L3'. This makes the
two wide edit fields line up with the three edit fields above them.

87

VECTOR Vol.17 No.1

(28] 'Bug.Li' 'Bug.L3'SpreadGaps H'Bug.L4' 'Bug.LS' 'Bug.L&’

SpreadGaps_H increases (or decreases) the gaps between objects so that the edit
objects at the bottom of the form line up with the other edit objects.

[3c] FitContainer'Bug.G'

Now we can calculate the size of the group so that it fits nicely around the
buttons.

[31] FitContainer'Bug'

and now we fit the form to the objects it contains. If you trace the MakeVector
function this is the first lime that you see what you have created, because up to
now the size of the form has been 0 104. (it was specified as 0 0 but the minimum
width of the user area of a form is 104 pixels.

[32]1 CentreHorizontal'Bug.G!

This centres the Group containing the buttons.

{33] 'Bug.G.Bt' 'Bug.G.Bi10'SpreadGaps_H...
».-'Bug.G.B1' 'Bug.G.B2' 'Bug.G.B3' 'Bug.G.B4%' 'Bug.G.B5'

This spreads out the top row of buttons to match the bottom row.

[34] 1'Bug'PlaceForm TopMiddle

This places the Form at the top middle of the screen (taking into account the
Screen Metrics so that the Title bar does not disappear off the top of the screen).

[35}3 ‘*a Extra'Function'Vector'

Finally we execute Function which creates the function Vector which we will use
in our application to create the GUI The left argument is optional and specifies a
line of code to place at the end of Vector. In this example we will call a function
called Extra, or we would if it were not preceded by a lamp. This is what I choose
to do as usually the Function Extra (or whatever it is called) has not been written
on the first runs of MakeVector.

Finally the function Vector is run so that the final object you will see has been
created by the created function.

88

VECTOR Vol.17 No.1

And this is what Vector looks like.

Yector
n Example for Vector
n Created by GUIBuilder from MakeVectorTest
‘DefaultFont'OWC!Font' *System' 16 0 0 & 700 O
'Bug'(lWC'Form' 'Bug Monitoring System - Browser'(20 149){364 502)
(‘Foent* 'DefaultFont'){'Tip' 'Bug.Tip')
'Bug.I1Label'OWC'Label’ "Bug No'{13 8)(16 u8)
'Bug LAES ¢ 'OWC'Edit ("Posn' 8 Eu)({'Size' 2% 100)
'Bug.L2Label'OWC'Label' 'Priority'(13 172}(16 47)
'Bug.L2Edit'ONC 'Edit ' ("Posn' & 227)('Size' 2y 110)
'Bug,.Lalabel'OWC'Label' *Status*(13 3u5){16 41)
'Bug.L3Edit'OWC'Edit'('Posn' 8 3G4)('Size' 2% 10¢)
'Bug.FtLabel'OWC ' Label' '"Title'(us 83(16 28)
'Bug .EAiEJdit'OWC'Edit ' ('Posn' 40 uy)({'Size' 24 450)
‘Bug.E2Label'[INC'Label' ‘Description'(7z 214)(16 74)
'Bug E2Edit'OWC'Edit ' ('Posn' 96 B){('Size' 120 LW86) (' Style' 'Mulfi')
(t¥8croll' Ti)('ReadOnly' 1)
'Bug.LuLabel'OWC'Label' "Area'(229 B)(16 29)
"Bug LsEJit'OWC 'Edit'(1Posn' 224 45)('S§ize' 24 100)
'Bug.L5Label'(JWC'Label' 'Space’{229 16u)(16 40}
'Bug LsEdIE'OWC Edit ' ('Posn' 22% 212)(*Size' 24 100)
'Bug.LtLabel'OWC*Label' 'Fupction'(229 331)(16 55)
'Bug . L6Edit "OWC'Edit ' ("Posn' 22y 39y4)('Size! 24 100)
'Bug ,G'OWC'Groupt 'Caption'(256 63)(100 376)
'Bug.G.51'0OWC'Button! '"Next'(2u B8){(30 BO)}('Event' 30 'Exit*')
'Beg.G.B2'(0WC'Button' 'Back'(2y 81)(30 60)('"Event' 30 'Back')
'Bug .G, B3"0WC'Bution! *Select’ (24 154%)[380 68){'Event' 30 ‘*Select')
'Bug.G.By'(IWC'Button' *Sort'(2u 235)(30 60)('Event' 30 'Sort')
'Bug.G.BS5'0OWC'Butten' 'Exit'(2y 308)(30 60)('Eventt 20 1)
‘Bug.G.B6'OWC'Button' 'Reset'(62 8)(30 E66)
'Bug.G.B7'UWC'Button' 'OK'(62 B2)(30 BO)('Event' 30 1)
'Bug.G.B8'OWC'Button' 'Cancel'(62 150){30 72){'Event' 30 1){'FCol' 128 12a 128)
'Bug.G.B9'[(JWC'Button' ‘'Delete'(62 230)(30 70)('Event' 30 'Delete!)
'Bug.G.B10'WC Button’ 'Input'{62 306)(30 60)('Event' 30 'Input')
a Extra

This GUI code has been produced without having to specify any position
properties and very few size properties. There is no detritus and the code is very
easy to understand.

If the original developer has to make changes then this can best be done by
modifying the meta-code and re-running it.

There are a number of functions not described in this paper but they mostly do
similar things to those described.

89

VECTOR Vol.17 No.1

One exception is Rat ciet, which moves an object in a specified direction.

'Bug.G'Ratchet Down 10

This code would move the Group object down by 10 pixels. It is important that
such a line of code is placed in the correct place in the function. Clearly it has to
go after the line creating the group and putting it immediately after is a good
idea, It must be before the line that fits the Form to its contents or the Form will
be too small. The function Ratchet is provided so that the programmer has the
final say in the location of any object.

Final Thoughts

I started using GUIBuilder before it was finished and thoroughly tested. Every
time I made a window GUTBuilder fell over or showed that it needed additional
functionality. Finally I built a window that went smoothly and writing the meta-
code was extremely rapid. [am very pleased that I built the system and will use it
in all future work,

GUIBuilder is not yet complete as not all objects are handled. I would like to
handle PropertySheets and PropertyPages. These are interesting as Lhe size of all
PropertyPages is controlled by their parent PropertySheet. Unfortunately
specifying the Size property is unreliable at this time.

Finally, best of all, 1 will not be providing material for the man who follows the
horses!

If anybody is interested in trying GUIBuilder then contact me on:

george.maclecd@simcorp.com

90

VECTOR Vol.17 No.1

Taking the Migraine out of Migration

by Walter G. Fil
This paper was presented at the APL2000 Users’ Conference, Orlando, Nov. 1999

Interesting Times

“May you live in Interesting Times” - goes the old Chinese curse. Well,
Interesting Times are finally here. With Y2K issues hopefully safely over, but
between the Redmond-mandated disappearance of DOS and 16-bit Windows, to
the disappearance of numerous European currencies to give way to the Euro, life
could not be more interesting. Qur customers have quite a bit to do. With the
introduction of Windows NT a few years ago, our customers somehow can't help
but migrate - not an unreasonable decision in the face of remaining current.
Nevertheless, one of the things which simply does not work reliably under
Windows NT is APL+DOS, previously known as APL*Plus 11/386.

And for good reason. The world has changed considerably from those heady days
in the late 1980s when the Intel 386 processor and APL*Plis/Il ware first
unleashed. From the point of view of an APL programmer, finally, hete was a
platform which could realistically handle mainframe-sized applications which
would run at reasonable, or compared to VSAPL on an overloaded VM machine,
excellent speed. Nonetheless, with the astronomical growth of Windows usage,
APL applications could only survive as Windows applications, thus
APL*Plus/IIl, forerunner to APL+Win, was born. Among other things, the
mechanics of managing large amounts of memory, amounts well over the long-
forgotten 640K barrier, were different and not entirely compatible between
Windows and DOS applications. Windows took over control of all peripherals,
everything from the mouse to the printer. Where previously these sorts of things
were handled in applications, Windows now usurped this responsibility. The fact
that some DOS applications worked in Windows at all was a minor miracle.

DOS, Windows 3.1, and everything in between were 16-bit operating systems.
Windows NT is largely a 32-bit operating system. Windows 95 and Windows 98
are in fact bridges between the 16- and 32-bit worlds, containing a compromised
mix of features, designed to facilitate the incremental migration of your
applications from one world to the other. As for DOS emulation, Windows 98
contains enough vestiges of DOS and the 16-bit world for APL+DOS to run
reliably. Windows NT does not.

91

VECTOR Vol.17 No.1

Welcome to Windows

Windows requires numerous changes to your applications. First, there are the
Windows themselves - volumes on GUI design and programming are the things
that line bookstore shelves. The Windows GUI offers an incredible choice of
contrels and various gadgets and incredible flexibility for the finished product.
Not surprisingly, compared to the old way of doing things, it requires
considerable programming effort. With ODBC, a completely new perspective on
how and where to put your application’s data is available. Coupled with the SQL
database of choice, your data is no longer subject to entombment in APL
component files - in an SQL database, it is available for other applications to use.
No longer is application data stuck in something some people might call
“proprietary”. Finally, the mechanics of true Windows printing are rather
different, in fact, an application developer might opt to have another preduct
handle complex printing tasks, With Windows, connectivity between different
products allows your APL applications to be true team players with respect to
everything else running on the computer.

When you look at different APL systems and the way they evolve with time, you
seldom see language features taken away. As Windows is conceptually superior
to DOS, it was not surprising that many DOS-specific features of APL+DOS had
been removed. Some of the things, like the [J@ suite of graphics functions, were
easily and readily rewritten with Windows. Other things, such as the OWIN suite
of functions, are somewhat more difficult to replace, the ideal solution being to
rewrite the application in Windows. We considered the lack of a OWIN
replacement to be the only real obstacle in migrating APL+DOS applications to
APL+Win when it needed to be done expediently. Other changes, such as the
remaval of JARBIN as a facility to do printing, were minor, and often required a
small amount of rethinking. One application used Hewlett-Packard-specific
escape sequences to change printer fonts - this was easily changed with simple
Windows programming,.

DOS5-style APL applications brought with them a style of full screen input which
was implemented with the OWIN suite of functions: these included the functions
OWGET and OWPUT for reading and writing text and attributes to the screen,
QINKEY for accepting characters, and OWI¥ and OED for full featured data
display and entry. This DOS style of full screen input and the suite of system
functions themselves have been rendered obsolete by Windows. Consequently,
they have not been included in any version of APL+Win. Clearly, the Right Thing
to do is to rewrite any application making heavy use of obsolete language
features,

92

VECTOR Vol.17 No.1

There are many times when the Right Thing just is not possible to do. Either
rewriting the application in question is not economically feasible or justifiable, as
the plan is for it to disappear soon. Or maybe it's just too hard to do in a short
time. Cr maybe there’s not the time to do it now, with the Euro just around the
corner. But whatever the reason, the application must run under Windows NT,
and soon! For whatever excuse, our solution was to implement a usable subset of
the JWIN suite of functions for APL+Win, collectively known as Qwin.

Our philosophy. is, where applicable, to try to accomplish the migration
incrementally. Do the work a piece at a time, such that if anything goes wrong,
you are only one step away from something that worked. Our {eeling is that all
systems migrated with the aid of Qwin should eventually be rewritten to use a
proper GUI interface. Good GUI design and programming is a lot of work and
could easily be the single most difficult item on the migration agenda. Qwin was
designed to help you get your application working now, giving you the freedom
lo concentrate on the GUI later.

Finally, a good migration will guarantee the success and staying power of your
application. Your application contains a lot of knowledge, collected over time.
When you migrate your application from APL+DOS to APL+Win, you have at
your disposal a large number of new facilities that can add incredible value to
your application. On the surface, there is the GUI of Windows, but don't forget
about ODBC, Open Database Comnectivity, or TCP/IP, providing access to
services on your network or over the Internet continents away. Products like
Microsoft Excel and Word can assist in document preparation and data import
and export. Your APL application can re-emerge in Windows NT and look and
feel exactly like a Windows application should. The heart of the application, the
valuable application knowledge, the code which comes up with the right answer,
could remain relatively undisturbed.

Qwin replaces some missing functions

Looking at the APL interpreter when migrating from APL+DOS to APL+Win, the
core features of the language have hardly changed. With the exception of support
for long file names, the OF file functions are fundamentally unchanged. Files
written with APL+Win can be repd with APL+DOS, providing backwards
compatibility that offers some interesting options for running your application in
parallel during its migration. Native file supporl is the same. Event handling is
unchanged.)EVLEVEL, the evolution level, is set higher by default, but that too
can be set lower if needed.

a3

VECTOR Vol.17 No.1

However, several groups of functions are conspicuously missing. First and
foremost are the suite of functions to do the DOS style of full screen input, such as
OWwIN, OWGET, OWPUT, and so on. Included in this group are the functions to do
keyboard input, JINKEY and [JI¥BUF. The functions to allow graphics are gone
but do not pose a significant barrier to migration since their functionality is
relatively easily duplicated with the native Windows GUL

Some functions are there but need extra attention - [ICALL has been carried over
from APL+DOS to APL+Win, but its argument - the representation of a compiled
program - will have to be changed as the original program will have to be
recompiled for the new environment. Many utility functions which use [JCALL
have 100% APL replacements. JCALLs are accompanied by STPTR, a clear
indication of a system dependency.

For our migration work, the lack of the [IWIN suite of DOS full screen function
was the Jargest single obstacle to getting APL+DOS applications over to Windows
NT, where they would be safe for at least the next few years. Qur workload was
far too much to even consider rewriting the applications in Windows, and the
customer’s priorities were more oriented toward instant ODBC connectivity. The
solution was clear ~ although the ideal thing would be to rewrite the application
with Windows, the lack of ime and funding dictated the regressive yet practical
approach of emulating QWI¥ in APL+Win.

False Starts

When we first started development of Qwin, we were of the opinion that we had
to use a lower-level language to do the job, on the account of execution speed. We
knew enough Windows programming to design a form, execute a callback, and so
on, but little else. The first goal was to implement the OWGET, OWPUT and
OINKEY functions, that is, be able to do rudimentary screen painting and
keyboard input.

The first attempt was with the Microsoft Visual Basic language. We found the
environment friendly enough, but in the end, cumbersome, as VB was designed
to insulate the developer from details of Windows programming to speed
application development.

Our second attempt was with Microsoft Visual C++, where the goal was to
produce a custom control (.OCX) which was to be integrated with an APL+Win
Fornt object. In the end, we had a working .OCX control, however a few things
became very clear. Firstly, development in this environment was painfully
expensive. In the end, we had a facility to paint a screen and accept keyboard

94

VECTOR Vol.17 No.1

input, but to add any complex functionality, such as OWIN, OED, or JEDIT was
going to be much too expensive and would take too long with this approach. The
productivity we had come to expect with using APL all those years just wasn't
there, even with an extremely experienced and competent developer doing all of
the C++ work. Secondly, and perhaps more importantly, the isolation of the .OCX
control from the APL environment was technically inappropriate. For QINKEY,
the emulation of DINKEY, the control returned key scan codes but required a
high level of interaction , i.e. a large number of repetitive calls, to accomplish this.
To be able to support a facility like CMOUSE would require even more close
interaction. A KeyPress or a MouseClick event needed to be handled somewhere
locally in the APL environment, not in a distant .OCX control, only to be passed
back to APL to be dealt with. In short, all of this really needed to be happening
much closer to the action in the APL workspace.

In the end, we chose to stick with a 100% APL solution. One problem which
popped up at a customer’s site was that installing and registering the .OCX
control required more privilege than the user had. A needless complication was
the requirement of configuring and using installation software such as
InstallShield for what amounted to a small component. It was clear that fewer
disparate moving parls would be better.

During a talk in the summer of 1999, Eric Baelen, president of APL2000,
demonstrated the APL+Man game, an example of where APL+Win is
convincingly used in a real fime context with excellent all-around performance.
Qwin is very much a real time programming exercise. Best of all, with APL, Qwin
is easy to extend and maintain, as we do not rely on third party support of non-
APL software.

The Window

Just how hard can it be to write a function that displays a 24 by 80 window of
characters? First of all, it's a 25 by 80 window or a 50 by 80 window, depending
on the video mode used in DOS. Secondly, it's only part of the problem -
keyboard input has to be done as well. Third, absence of little details such as a
blinking cursor, render the emulation unusable. A little knowledge is a litile
dangerous, but fortunately for us, we had no real knowledge of grass roots
Windows programming whalsoever.

The Qwin main window is a program not entirely unlike the APL+Win function
editor. With syntax colouring, different items in your APL programs are
displayed in different colours depending on the type of token the text represents.
Turning insert mode on or off changes the style of the blinking cursor. Not to be

95

VECTOR Vol.17 No.1

taken for granted, these features are implemented by programs working behind
the scenes of the APL+Win function editor.

As our Windows programming experience was limited to dialog boxes and the
like, our first idea was to utilise the existing Windows controls, such as Edit and
RichEdit, to handle the application display area. The Qwin window would
contain a single edit field which occupied the entire window. This couldn’t work
for several reasons. First, neither the Edit nor the RichEdit controls allowed you to
atbitrarily change both the foreground and background colours of the text
displayed. With a RichEdit control, you could change the foreground, but not the
background, colours of the text. With an ordinary Edit control, you could not vary
the colours at all. The blinking cursor was inflexible to the extent that only one
shape was available, a vertical bar, and it could not be made to disappear. Any
edit control had simple program logic behind it, which was to accept a keystroke
and insert it wherever the cursor was, which could be at the end of the last
character in the field. Although you could alter this somewhat with [J¥RES, for
use with Qwin, character entry and display are best completely divorced from
each other.

In the end, the Qwin main window is a featureless window with no controls at all.
Text is written, or more accurately, painted, a line at a time, with complete,
explicit control of the foreground and background colours. The Windows font
used with Qwin is the same as the Windows font supplied with APL+DOS, with a
few minor modifications. This is a bitmapped font where all characters are exactly
the same width - this means that characters can be drawn a “strip” at a time. This
also means that the APL code to repaint a screen is fairly simple and efficient. The
APL+Win system also supplied a bitmapped font which is typically used for the
session manager and the editor - it is usable except that it is missing many of the
line drawing characters!

Ordinary character input is accomplished collecting keystrokes in a buffer, then
using them when needed. The Qwin main window invokes a callback for every
keystroke. These are in turn mapped into the familiar numeric codes returned by
(INKEY and placed into a buffer, or discarded if invalid. When the next character
is needed, the first character is removed from the buffer. When a character is
needed but the buffer is empty, the JI¥XEY emulation loops, with the help of a
generous [JWGIVE, until a character appears in the buffer. Qwin translate tables
were reconstructed from the documentation available from APL+DOS. Although
a few differences exist between the APT+DOS and Qwin keyboards owing to
various differences in low level keyboard handling in DOS, Windows NT, and
APL+Win, the Owin keyboard is a faithful reproduction of the APL+DOS
keyboard.

96

VECTOR Vol.17 No.1

Other details, such as cursor handling, are accomplished with OWCALLg to Win32
API functions. The cursor, known as a ciref in Windows parlance, is called into
existence when the Qwin window is active, moved as characters are typed, and is
wiped out when the Qwin window is inactive. When Qwin is first invoked, the
Caps Lock and Num Lock keyboard states are checked by calling the appropriate
API functions. These things are not supported in the various OWI properties, and
since this type of programming is probably so far away from the mainstream of
Windows programming in APL+Win, language developers have not included
these sorts of features.

On the surface, the Qwin main window would appear to be a modal dialog box,
meaning one which causes all application activity to cease until the input in the
dialog box is complete, at which time it goes away. The problem is that the Qwin
main window cannot go away until the entire application is finished. The dialog
box you see when you finish editing a function reminding you that the text of the
function has changed and asking if you want to save the changes is a canonical
example of a modal dialog box.

With details of screen painting and keyboard entry out of the way, the remainder
of the functions are the most difficult ones, namely OWIN and JED. OWIN is the
backbone of many complex screen entry programs, it provides the ability to break
up a screen into separate fields, validate input, change the colour of a field
depending on whether it is active, and so on. [ED allows you to browse a
character matrix in your application, or even have a cuslom editor session going,
possibly integrated with other fields entered by [IWIN. Further, utility functions
such as the screen design workspaces supplied by Zark Incorporated and
delivered with the APL+DOS system combined the functionality of OWIN and
others functions to provide APL application programmers a truly comprehensive
set of building blocks which are difficult to replicate with native Windows
features. JWIN and OED display their fields and take care of, keystroke by
keystroke, entry into fields, moves between fields, and the return codes upon exit
of the respective function.

Migraine-free Migration Strategy

Qur APL application migration strategy, used with many different combinations
of APL systems, is:

» Where it makes sense, start making changes in the old environment, as soon as
possible.

+ Do as little as possible to make the application work exactly as before in the
new environment.

97

VECTOR Vol.17 No.1

s Add new features, one by one, to the application in the new environment,
taking care to make sure one task is finished before starling another.

When migrating from APL+DOS to APL+Win, many of the old problems related
to moving the APL code, variables, and data from the old environment to the riew
environment simply disappear. Workspaces from APL+DOS can be freely
JLOADed, plus the component file system is identical, to the extent that file
system data written with the newer APL+Win can be read with the older
APL+DOS. This feature makes it much easier to run your application in parallel.

In a more traditional migration, such as from a mainframe APL2 system to
APL4+Win, you still have the problem of physically moving the code and data
from one place to the other. Once you have the code over, there are countless
language differences which need to be detected, isolated, and solved. Some
facilities exist for doing some of these jobs and are usually easy to use, but
nothing beats the ease of movement from APL+DOS to APL+Win.

Back to the strategy - when you know that certain conditions will exist in the
deslination APL system, you can start making changes as early as possible to
accommodate them. If you know that eventually your system will read its data
from an SQL database, and that APL variables in the workspaces will correspond
to S5QL field names, but that a few of these variables are SQL reserved words
(such as SELECT, INT, UPDATE, FLOAT, and so on), change them now. If you
are moving an APL2 (or VSAPL) workspace which uses the system function [JE4,
and nearly all uses are of the trivial case, typically used to supply a default value
to the left argument of a dyadic function when used monadically, change it now.
With APL+DOS, maybe now is the time to change your code so that it operates
with the highest, rather than the lowest, evolution level in APL+Win, At this
stage, you are probably more familiar to the old environment than the new and
making changes would be less risky. The point of this is to increase productivity
and reduce overall migration stress by carefully spreading the activities over
time.

When you run into a non-portable feature, it usually is best to code a cover
function to provide duplicate functionality in the destination system, at least
initially. Cover functions have the following design advantages:

* You can make mechanical replacements in the destination system
* You can use it over and over again
* All of the knowledge is contained in one function

* ltis easy to prove it correct

98

VECTOR Vol.17 No.1

o Ttis easy to fix

s Changes to the cover function are not intrusive with respect to the rest of the
application

The only design disadvantage to using cover functions in this manner is that they
may be slightly slower than a more direct solution. Qur Qwin product is built on
the design principle that it should be possible to) COPY the Qwin functions into
your workspace, make the appropriate mechanical replacements, make a few
changes, and be pretty close lo finished.

Once the application, in its preliminary form, has been moved to the new
environment, the only thing to think about and do is fo get if fo work. Now is not
the time to add GUI features or ODBC support. Instead, the application should be
tested thoroughly to uncover whalever surprises may be hurking. If circumstances
permit, the application should even be put into production. This is also not to say
that you should work slowly, just that you should focus only on one problem at a
time before moving on to the next one.

One of the pleasant surprises which awaits you in the new environment is a
significant increase of the available workspace - OWA. Back in the early days of the
386, it was not uncommon to have just 4 or 8 megubyles of memory in your
computer, leaving you with a corresponding number of megabytes of workspace.
That seemed like a lot, especially when you just moved your application from
APL+PC or even some of the timesharing services. Later, when Windows arrived
on the scene, 16 megabytes was not an unreasonable amount of memory to have.
Today, for Windows NT, 64 megabytes is the lower boundary for an acceptable
amount of memory for a typical NT computer. As for your application, the added
memory can make your programming job easier and more productive. Your
application will run faster, Be sure to use it.

Our migration toolkit consists of a search and replace facility which goes through
all of the functions in a workspace, and a collection of Q... functions we've
written over the years to emulate many different functions from many different
systems. Good migration productivity has amounted to:

e Underslanding as much as possible as early as possible about the differences
between the two systems

¢ Having the tools to isolate calls usage of certain primitives or code fragments
and to replace them with calls to functions

+ Having those replacement functions on hand

VECTOR Vol.17 No.1

Since Qwin functions directly replace [J-functions, converting applications is fairly
straightforward. We supply a migration function with the Qwin functions, There
are, however, a few differences which may have to be dealt with on a case-by-case
basis. As the majority of our applications we had experience with used the Zark-
supplied screen functions, our primary emphasis was to insure that the utilities
worked correctly, Also, the SITDEMO workspace supplied by Zark offers a
convenient migration demonstration.

To modify your application to use Qwin, you have to:
* Run the supplied conversion program lo make all Qwin-related replacements
¢ Insert code in the application to start and stop Qwin
* Test the application
¢ Check for and deal with known problems and special cases, such as setting
[(OMOUSE to iota 0, hard-coded JAV references to line drawing characters, and

S50 0on.

o Test some more

Qwin supplies replacements for the following system functions:

(JARBIN OcrT 0pL OeD OEDIT
(partial)
OFI OINBUF OINKEY OPEEK OPOKE
O0SoUND CvI OWGET OwIN OWKEY
OwpUT

Qwin respects the settings of the following variables:

QCcURSOR OMOUSE OWINDOW OWKEYS

Using Qwin

As Qwin runs in a separate execution window, it must be initialised at the time
the application is started and cleared at the time the application is exited. This is
accomplished with the QWININIT and QWINCLOSE functions. These would be
typically placed in the function started by (LX. For developing and maintaining
these Qwin applications, life is made much more agreeable by the fact that the

100

VECTOR Vol,17 No.1

APL session window is separate from the Qwin execution window. Any errors
are visible and not artistically fused into the application display.

Qwin does not add any additional global variables to application execulion other
than variables which were system variables in APL+DOS. All Qwin variables are
neatly tucked away inside Qwin as user-defined properties and will not interfere
with variables inside of your workspaces or applications.

An important difference of Qwin versus APL+DOS is that the display screen is
refreshed for display only at the time it is actually needed, with is usually
immediately before a QINKEY. In application programs, screens may be built up
by successive calls to QWPUT. As a performance measure, no actual screen output
takes place during a QWPUT. This technique fails, for example, when a message is
to be displayed with QWPUT for a short duration then removed. The sclution is to
use QDL, which first forces a refresh of the screen, then behaves like an ordinary
ODZI. Users of IBM's GDDM and numerous AFP124 versions should remember
similar behaviour where by default, the screen would be refreshed immediately
prior to character input. Only by executing an FSFRCE command in GDDM, or
using an immediate write in AP124, would you get the desired effect of seeing
everything on the screen prior to any input.

A second important difference is that system variables such as JCURSOR and
OWINDOW in APL+DOS are ordinary variables named QCURSOR and QWINDOW
in Qwin. True system variables are subject to passthrough localisation whereby
values in a function which localises these names are inherited from the function
which called it. Crdinary variables are not subject to passthrough localisation and
have no value unless assigned. Qwin attempts to duplicate passthrough
localisation for its key variables by assigning the last values il has seen if it
encounters what would have otherwise been a VALUE ERROR. If a function
reassigns one of the key Qwin variables, then immediately calls a function with
the key Qwin variables localised, those latest values will not be propagated to the
called function. Again, the solution is to use QDL 0, which has the beneficial side
effect of refreshing cached variables for emulating passthrough localisation.

Replacements for JPEEX and OPOKE are supplied with Qwin. Strictly speaking,
you will be able to QPEEX and QPOKE into a 1000 element integer vector but
relatively few of these locations have any meaning or effect. Reading and writing
into the workspace, i.e. QPEEK and QPOKE with QSEG set to something other
than iota zero has no effect.

Incidentally, the DINKEY function exists in APL+Win. This OINKEY, however, is
separate from the QINKEY supplied in the Qwin package.

101

VECTOR Vol.17 No.1

Using Windows 95 and Windows 98

Qwin was developed with only one goal in mind - to facilitate’ emergency
migration of legacy APL+DOS application to APL+Win under Windows NT.
Windows 95 and Windows 98 both run APL+DOS reliably, thus we consider
them a stepping stone to a proper migraton to Windows NT. There is
considerable appeal and practical migration value, however, in having APL+DOS
and APL+Win applications running side-by-side on the same computer, Our
priority is to concentrate on Windows NT first, and Windows 95 and Windows 98
second.

The reality of the situation is that although all of the 32-bit Windows platforms
share a common application programming interface, they have subtle differences.
The application programming interface is the library of Windows programs
available to APL programmers using the OWCALZ system function. Workarounds
exist for many differences, but incorporating them may compromise the quality of
the Qwin product. Known differences include:

¢ Cursor keys repeat in 95 and 98 but not in NT
* Differences in KeyUp and KeyDown

¢ Different Shift+Ctrl+Alt combinations with Caps Lock will set the Shift Lock
state differently

+ In NT, OCMD operates synchronously, i.e. 0CMD wails until the other program
is done; under 95 and 98, JCHD returns immediately

* QSOUND does not work

Our tactic with Windows 95 and 98 is to concentrate on Windows NT, while
attempting (o maintain as much functionality as is practical to include in
Windows 95 and Windows 98.

On to Printing

One other major topic of migrating to APL+Win is the issue of how to do printing.
In APL+DOS, the technique was usually something like this:

¢ DPrepare text to be printed as a character matrix
* Add titles, headings, page numbering, etc.

* Add a carriage return and line feed to every line

102

VECTOR Vol.17 No.1

» Write this text to a DOS file and issue PRINT command, or write directly to
LPT, or use 3 JARBIN

Qwin includes a QARBIN function which emulates some of the features of
GARBIN. A replacement for 3 (GARBIN is provided, and can send text containing
device-specific codes (such as PostScript or HPCL) to your default Windows
printer without interference from whatever printer driver you may have installed.

Due to the wide variety of styles of printing, this problem does not easily lend
itself to mechanical solutions. To use Windows facilities, APL code which does
printing will have to be examined and replaced manually. If you can modify your
application while you're still in the old system to use a small number of print
utilities for printing a page of output at a time, then this becomes much less of a
problem in the new environment. Windows printing is page oriented. If your
application already prints pages of text through a cover function in APL+DOS,
then your task is to write a replacement printing function in APL+Win. If it
doesn’t but can, the time to do this 1s now.

Strictly speaking, you can still write your text to be printed to a file then print it
with the PRINT command, or write the text directly to LPT with ONAPPEND.
However, you lose the ability to route your printout to the Windows printer as it
is set in the Windows Control Panel. Also, on some networks, it will take some
work to have the network software “capture” whatever is being sent to LPT1 and
to redirect it to wherever it is supposed to go. Lastly, a JARBIN function is
supplied with APL+Win, but has few of the features of the JARBI¥ function
from APL+DOS,

If you have printing which requires use of device-dependent codes to change
fonts, switch to bold, change sizes, and so on, you should consider farming out
your printing to Microsoft Excel and Microsoft Word, With the advent of
APL+Win Version 3.5 and ActiveX, it is possible to have either of these products
silently do your printing for you. Microsoft Excel is extremely well suited to
doing tabular-style reports, and best of all, you have the option of delivering
machine-readable output to your users instead of or in addition to paper
hardcopy. Microsoft Word is suiled to letter writing, where you have letters
which consists of blocks of text where your application “fills in the blanks”.

Don'’t Bother

Certain features of APL+DOS and other APL systems do not lend themselves well
to emulation. In APL+DQOS, you can write directly into the workspace - JPEEK
and (POKE with (SEG set to something other than jota 0 immediately come to

103

VECTOR Vol.17 No.1

mind, where you directly peek and poke into you computer's memory. Another
DOS casualty is the OCALL function where an integer representation of a
compiled routine is supplied as its argument. True, ICALL does exist in the new
environment, however the compiled routine must be recompiled and rebuilt to
work. Unless execution speed is critical, these might be best to replace with a
straight APL solution. [IN4 exists in a variely of systems, but they are all different,

Conclusion

When migrating APL+DOS applications to APL*Win, things should go pretty
smoothly as the core language is very compatible. Peripheral features of
APLADOS5 will be different or not present in APL+Win, features such as DOS-
style windowing, printing, and interfaces to low-level facilities. In our migration
work, we have isolated the OWIN suite of functons as a realistic chunk of
APL+DOS which could be duplicated in APL+Win. Qwin enabled us to move
quite a few applications to Windows NT which could have otherwise been
discontinued, abandoned, replaced, rewritten, or would have caused problems for
customers who otherwise had no plans to maintain DOS, Windows 3.1 or
Windows 95/98 workstations on their Windows NT networks. Other missing
language features or different migration items are smaller in scope and often
don’t lend themselves to mechanical replacement - these you have to develop.
Finally, once your application is working in Windows, a wide range of services is
available to you, the application developer, which will enhance your productivity
and improve the perceived quality of the application.

And remember, Qwin, as described here, is experimental in this version of
APL+Win; it may be changed, replaced, or removed in future versions.

References

(1] Richard J. Busman, Walter G, Fil, and Andrei V. Kondrashev, Recycling APL
Code into Client/Server Applications, AP1.95 Conference Proceedings, APL Quote-
Quad, Volume 25, No. 3, 1995

[2] Gary A. Bergquist, The Zark Library of Utility Functions, APL99 Conference
Proceedings, APL Quote-Quad, Volume 29, No. 2, 1999

[3] APL*PLLIS 11/386 Version 4 Reference Manual, STSC Inc,, 1992

[4] APL+Win Version 3 Reference Manual, AP1.2000 Rapid Application
Development, 1997

[51 APL+Win 3.5 Update Manual, APL2000 Rapid Application Development, 1999

104

VECTOR Vol.17 No.1

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of
fluency in APL.

Contents
Technical Correspondence H.J.Veenendaal 106
At Play with J: Blists in OLEIS Gene McDonnell 110
OOF: Getting a better Grip on OLE Objects Morten Kromberg i1
Bell Numbers and APL Joseph De Kerf 131

105

VECTOR Vol.17 No.1

Vector Jan 2000: Utility Corner (pp. 27-35)

From: H.].Veenendaal (H.Veenendaal@wxs.nl) 16th March 2000

Remarks by the solution on disk: (workspace VECTOR)

1.

2.

1did not understand the purpose of the mixed use of ANALYZE and
ANALYSE.

Tused ANALYSE for testing of ANALYSE1 (= modified given function with
same line-numbers) (this makes testing much easier and you don’t create extra
global variables in the workspace)

. The given function doesn’t work if FNAME has no local variables!!!

(but see for my correction the lines [42] and [55]).
The correction in line [31] accounts for a function that doesn't exist or is
locked.

4. In line [60] a character ‘s’ must be changed in ‘z’ {but T used (J4V)

9.
10.

A display of FNS is not given because it concerns a analyse of FNAME and not
of the workspace!

I removed duplicate names from IDS (a SORT should also be useful) by adding
lines [86] and [87].

The function SUBFNS gives the indices for the subfunctions in FNS and uses
the subsubfunction BIJMAT.

You should (for completeness) have added a similar analyse for global
variables used in FN4

Juse APL*PLUSSE.

The workspace VECTOR contains also the function DOEALL (using
TEXTREPL for '"MMM').

You can test ANALY SE for alle functions in the WS by excecuting :

{OKL 3) DOFALL 'ANALYSE ''MMM''!

[Second letter dated 18th March]
Herewith an improved version of my workspace “‘VECTOR’ (my letter dd. 16/3)

The improvements concern:

A display of FNS is added to function ANALY SE

An error-message is given by function “ANALY SE’ for function-names
shadowed by local variable-names, locked functions and not existent fns.

(see ANALY 51]0] and [31] for corrections concerning your ANALY SE-
function}

106

VECTOR Vol.17 No.1

A sort of the IDS-list is added to ANALYSE1 (see [88]).
Function BIJMAT (called in SUBFNS) is renamed in TNMAT.

A part of my function DOEALL was (very) superflous and is now removed.

Remarks:

After ANALYSE 'TEXTREPL' &midenﬁﬁerTEXTREPLVOBJisnﬁsﬁng(nvﬁ@
to'[drt,

Line [B7] of ANALYS1 doesn’t work (in APLS*PLUS SE) for large functions with
many identifiers, do you have a better solution?

NB: You can test the ANALY SE functions for all functions in the workspace by
executing:

(O¥L 3) DOEALL 'ANALISE ''MMM' 1)

H.J.Veenendaal
Barnsteenhorst 304 2592 ER
Den Haag (NL)

Code Listings (see www.vector.org.uk/v171/hjv.zip)

vV ANALYSE FNAME;FNS;RESULT;ARGS;L0CALS;LABELS:IDS;IDS1;COLS;CR;
HDR; I;LEN;LET ; MAX ; N: NUM:OK; START; YO ; WID
f1] n ANALYSE the Identiflers within the function named in FNAME.
Ez] L |
[3] FNAME V3!
[ul (1+pFNAME)p T ="
(5] +(0=14p00CR FNAME}/ERR
(6] ANALYSEYL FNAME

[71 'FNS: The names of functions in the workspace!

[a] LI |

[3] FRS

[10] v

[11] 'RESULT: The name of the result variable (0 rows if none)’
{121 Yommmmm !

[13] RESULT
[24] 1{0=1+pRESULT)/' "' [(nonel* !

f15] toe

[16] TARGS: The names of the argument variables (0, 1 or 2 rows)'
(171 71----1

18] ARGS

{19] 2{0=14pARGS) /' ' "[nope]''"

[2e] '

[21] 'LOCALS: The names of the variables localised in the header'
[22] fommm - '

[23] LOCALS

[2y] 2(0=1+pLOCALS) /"' ' [(none]l' "

[251 L

107

VECTOR Vol.17 No.1

[26]
[27]
[28]
[2¢]
[30]
[31]

[22]
[33]
f3u]
[35]
[36]
{371
[38]
[39]
[40]
[411]
{42]
[43]
[uu]
[us]
[46]
[47]
[4B1]
[nel
[50]

f1]

f21

[3]

(4]

[5]

[27]
[283
[29]
[30]
[31]
[az]
[33]
[34]
[35]
[36]
[a7]
[383
fag]
4ol
[42]
fw2]
[43]
[44]
[45]
[46]

'LABELS: The names of the labels®

LABELS

+(0=14pLABELS) /"' "' [nonelt'!

] 1

'IDS: The names of all identifiers within the boedy of
the functions'

-

IDs

2(0=1+pIDS)/ " ""[nonelr"!

ot

'SUBFNS: Indices of sublfunctions!'

SUBFNS
+{0=pSUBFNS) /'OCURSOR[11+ 1+[0CURSOR[1]"
2 (0=pSUBFNS)/'''[nonel' !

[

'SUBFUNCTIONS:!

FNS[SUBFNS5;:]

2 {0=pSUBFNS)/'''[none]l' "

-0
ERR:

[

'ANALYSE NOT POSSIBLE FOR: ',FNAME
n ANALYSE: H.J.Veenendaal 18/03/00 11:29

v ANALYSE1 FRAME;QI0O

n ANALYSE the identifiers within the function named in FNAME,
n The ANALYSE1 function creates six glebal character variables
a Wwith one left-justified name per row:

a FNS, RESULT, ARGS, LOCALS, LABELS and IDS (see alsoc ANALYSE}
R

01«0

FX5+0NL 3

COLS+514pFNS

+{(0=14pCR+[JCR FNAME}v(3«0NC FNAME))/0 a Quit if FNAME not available
WID+pHDR«CR[03]

A

CR+1 04CR

LEN«('+t eHDR)wHDR1 '+ o Length of the result-var If any

a Rasult s 0 or 1 reow matrix (0 if te long)
RESULT«+(((LENSCOLS)YAxLEN),COLS)pCOLS+LEN+HDR

HDR+(LEN+=LEN)+HDR

HDR+(+/v\¢HDR=»"' '}4HDR n Delete trailing blanks
LEN+HDRy' ;!

ARGS+LEN+HDR

HDR«(LEN+HDR),";:' n Drop syntax leaving semicolon!!!!l
I+(ARES=" '} /oLEN

NepLEN«(I ,LEN)-0,T+1 an Length of names in syntax
MAX~{/LEN a Length of longest pame

a Convert to matrix;

108

VECTOR Vol.17 No.1

{u7] ARGS+(N,COLS)+ (N, MAX)p(,LENe.> MAX)\ARGS-"' !
(48] ~a Select args, not fn name, unless to long:
[ug] ARGE«((LENsCOLS)}A(N23 1 2)/1 0 1)44RGS
fso] I+{HDR="{")/\LEN+«pHDR n Indices of semicolon
fs511] N+pLEN+(1+I,LEN)-I+1 n Length of localised name
fsz2] MAX«[/LEN n Length of longest locallsed name
[53] & Convert to matrix:
541 LOCALS+(N,COLS)+ (N, MAX)p(,LENe . > \MAX)\HDR~" "'
[s5] LOCALS«™1 0+ (LEN<COLS)#LOCALS n Igncre long ones (and extra one)
{58] OK+=\CRz'''' p Flag code NOT within gquotes
{57] a Flag code NOT within comment or guotes:
[58] OX+OKAAN\OK<CR="n!
[59] & Chars that can begin ldentifler-names:
[60] LET+0AVI (654¢256),(87+126)0),"an’
611 o Other valid chars:
[62] NUM+'0123456789"
[62) o Flag any valld chars, adding col for ending IDs:
fey] VC+, {OKACReLET NUMY, 0
[65] o Flag start and end (+1) of each rum:
{661 YC+¥C2T140,VC
[67] NepIDS+¥C/1p¥C n Convert to Indices .
feal IDS«((N+2),2)pIDS n TWo col-mat of start/end Indices
{65] CR+,CR," ' n Ravel code and pad to match ¥C
[70l STARF~IDS[;0] a Start of indices
[711 LEN«IDS[;1]1-START n Length of names
[72] n Must start with letter not be too long and not be preceded by '[I':
73l a
{781 OK+(CRISTART] eLET)A(LEN<COLS)A'0"#CR[O[START~1])
[75] START+OK/START a Squeeze out bad ones
[76] N+pLEN+OK/LEN
[77] IDS+~(N=GCOLS)p" ' n IDS In raveled form
[78] & I«(:LEN[0]1),(«ZEN[1]),(xZEN[12])...:
[79] I+LEN/T1+0,+\LEX
Lac] I«(1pI})-I
[81] ~ Insert IDS where they belong:
[82] IDS[I+LEN/COLS 1\ N}+«CR{I+LEN/START]
[83] IDS+(N,C0L8)pIDS n Reshape to a matrix
[84) n Labels start a lipe and are folowed by a colon:
[85] LABELS+{(0=(WID+1)|START)ACR[START+LEN]="':'}4#IDS
[86} IDS1+1DS
[871 IDS+(0 0&<\IDSA.=81DS)AIDS n IDS without double Items
[aa] IDS+SORTHAT IDS
[89] n ANALYSE1: H.J.Veenendaal 1B/03/00 11:2%
v

109

VECTOR Vol.17 No.1

At Play With J: Blists in OLEIS

by Eugene McDonnell

This article discusses a kind of list I call a blist. The first part defines a blist, and
covers material that is well known in combinatorial circles, and reported on by me
in an earlier article [McD77], and also gives an actual use of }'s Weighted Taylor
Coefficients adverb t:. The second part breaks new ground, providing a
tabulation that hasn’t been seen before.

Part 1: What is a blist?

A basic list, or blist, is a list of length n with at least one of each of the items of i,
k, where 1 <: kand k <: n.Forexample, 0 2 t 0 is a blist, since it has at
least one eachof 1.3, bul1 0 1 3 is nol, since it has a three but no two. There is
a many-to-one correspondence between the infinite number of arrays of n items
and the corresponding finite number of blists of length n. The finitude of the
number of blists of length n comes from the finitude of their permitted items.
Since J's grade functions are omnivorous, the grade of any rank array can be
found, and any array can be sorted, whether scalar or structured, boolean, integer,
real, complex, literal, or boxed, and thus the blist of any array can be determined.
The blist of an array can be determined by the function:

bl =2 F i.~ [¢ /o~ =~

This finds the indices of the items of the array in the sorted nub of the array. For
example, given the list:

I list =2 7 10 # 15
712007 10051 6

Its nub is

~.Llist
71201051 6

and its ordered nub is

fr~—.List
01567 10 12

110

VECTOR Vol.17 No.1

and its indices in the ordered nub, that is, its blist, are

List i.~ /3~ ~, Llist
b 6 0045021 3

and this has each of the values in i. 7 at least once.

A blist has the useful property that it has the same ordering relations as infinitely
many other, more complex, lists and arrays, and thus can be substituted for those
other lists and arrays in discussions of such properties. For example, an array and
its blist have the same upgrade:

List
712 00710051 6
bL List
Y 600450213
/r List
23687904%5 1
/t bL List
23687T93%30%51

Other common properties of arrays and their blists are the same, for example their
cycle structure, the number of operations needed to sort them, and their number
of runs (up or down).

BLT is a brute-force function to give tables of all the blists of a given length. There
is only one blist of length 1, since the only permitted item is 0.

BLT 1
o

The blists of length two are:

BLT 2

0
0
i

S0

The blists of length three are:

T3

oo o0
- s OO
Lo = N = N

111

VECTOR Vol.17 No.1

SIS Ul el i =]
-OoON OO ON
O OO RO

The number of blists of the first three orders can be counted easily: 1, 3, and 13.
On the other hand, the function BLT soon runs out of space on my computer,
requiring 4*n*n"*n bytes to build the table from whose rows the blists are selected,
and 1 can’t use BLT beyond n=7. The space in bytes required for the tables for the
first few values is given by:

Jeid3 1 they wy Ayt
3123456
% 32 324 4096 62500 1119744

and for a few larger values:

»-] 789 10 11 12x
23059204
536870912
13547137604
400000000000
12553713506884
427572821516288

Although it is difficult to determine the values of blists of length n for large n, the
number of such blists is much easier to find. The answer to exercise 5.3.1-3 in
Kouth's Searching and Sorting volume gives a variety of ways for doing this. We
can write a function F to give the number of blists of length n, based on Gross's
formula Ty k"/2"*%, n> 1. A version of Gross's formula in J is easy to write:

Gross =: 13 : "+/{x.ry.)}%24>1x,"'

The formula implies an infinite number of values of k are required, but in practice
1find that using the first 101 positive integers suffices.

k=: »>:i,101
F =: k&aGross

112

VECTOR Vol.17 No.1

The number of possible blists for arrays of ranks 1 through 15 are:

n Fn n Fn n F n
i 1 6 4683 11 1622632573
2 3 7 47263 12 28091567595
3 13 8 545835 13 526858348381
4 75 9 7087261 14 1064434297043
5 544 10 102247563 15 230283190977853

The terminal digits of the values repeat in the patterni1 3 3 5,sothatifk|nis i
2 3 0, then 10|F nis 1 3 3 5, respectively, for positive n. This series is
number A000670 in N. J. A, Sloane’s magnificent website, On-Line Encyclopedia of
Integer Sequences (OLEIS):

http:/ /www. research. att. com/ ~njas/ sequences/

I shall be referring to Sloane’s OLELS numbers frequently in what follows.

This sequence of numbers arises naturally in a variety of areas, in addition to
sorting, including trees with nt1 leaves, combination locks, compositions of
numbers, and left arguments to APL's transpose dyad, bul it is the sorting topic
that is most interesting. It allows one to say in exactly how many ways an
arbitrary list of length n can be arranged. For example, three items A, B, and C of
any value can be arranged in thirteen ways, depending on their size
interrelationships, using the relations = and < and the convention that A=B<C
means (A=B)x, (B<C). Next to each relation list I've placed the corresponding
blist, to show the kinship of the two forms.

A=B=C 0 0 0
A=B<C 00 1§
A=C<B 01 0
A<B=C 01
A<B<C 0 1 2
A<C<B 0 2§
g=C<A 100
B<A=C 1 0 1
B<A<C 1 0 2
C<A=B 1 1 0O
C<A<B 1 20
BeC<A 2 0 1
C<B<A 210

Gross's formula, even after increasing the number of terms in the left argument,
begins to lose accuracy after length 14. To obtain accurate values for P , the
number of blists of length n, one can use the identity

2Pn=Zy (kin) * Py, forn> 0

113

VECTOR Vol.17 No.1

Instead of obtaining just one value, we obtain a iist of all the valies up to the one
we're seeking, given that the first value is 1, and that all successive values can be
appended to this value by a sum of the products of the list and a conforming list
of binomials. For example, assuming we have the list 1 1 3, we can get the next
two longer lists by:

113 .+ 113~ ((1.3)13)
11313

11313, +/ 11313 = ((i.4}Iu)
1131375

The function LPA encapsulates this strategy:

LPA =2 13 ¢ 'y, ,+/y. »{i.11)4y."
LPA ¢
i1
LPA LPA 1
113
LPA LPA LPA 1
11313
LPA~z3[1
11313

To produce the list of the first n terms, one would write LPAA:n 1. Because the
terms grow large quite rapidly, it is necessary to use extended arguments if terms
of high degree are wanted. We can thus obtain arbitrarily large values.

LPA =: 13 ¢ 'vy.,+/y.x{i.!])#y."’
,.28 29 30 J1{LPA~:31[1x
629756206495006603351837393533L4635
263478385263023690020893329044574861
11403568794011880483742464%196184901963
51000803657426938843084+1024075918118973

Approximate values can be obtained by the function L, built around the powers
of the logarithm of 2 (this isn’t in Knuth, I found it accidentally by playing with
the series):

L=: 13 = "(ly,}E+:(a,2)a>:1y."’
L 8

545834,99790748546
L9

7087261.00162299Q22

114

VECTOR Vol.17 No.1

Rounding Lo the nearest integer, this function will give accurate results up to 13,

<.0.5+L 13
526858348381

but is off by one for 14:

<.0.5+L 14
1064134297044,

We know this can’t be right, since if 4{1l is 2, then 10| L 1% must be 3, not %.

Another way to gel the number of blists for a given n is to use its exponential
generating function (egf). I look back wistfully on myself at the age of 19 learning
the calculus necessary to understand exponential generating functions, but in the
55 years since the knowledge has somehow departed from me. Now I can’t tell
you how to derive it, but will merely state it. If you have the necessary
mathematical background to understand it (which 1 don't any more), you can
read the answer to exercise 7.44 in Knuth, et al.’s Concrete Mathematics. In commanon
mathematical notation the egf for the number of blists is 1/(2-€"), and the]
version can be written directly from this:

paegf=: T@(2:-a)

The values don't seem to have much of a pattern:

paegf .11
1 _1.3%22 _0.18556 _0,055293 _0.019012 _0.00683 _0.0024911
_0.00091355 _0.00033569 _0.0001234% _4,540%e_5

However, if you apply J's Weighted Taylor Coefficients adverb to it, it becomes a
marvel:

(paegf t:) .11
113 13 75 544 4683 47293 545835 7087261 102247543

Lastly, and something else I discovered by playing with the series, if we divide
the n-1th value by the nth, and multiply this by n, we get a number which more
and more closely approaches the natural log of 2.

qq=:LPA~r (20}1
(1+1.20) =~ ,.2 %/\qq
1

0.66666666666666663
0.69230769230769229

115

VECTOR Vol.17 No.1

0.69333333333333346
0.69316081330868762
0.69314541960281872
0,69314697735394%248
0.69314719649710999
0.69314718337591907
0.69314718043695578
0.69314718052316582
0.6931{4718056053715
0.69314718056040159
0.69314718055994917
0.69314718055993996
0.69314718055994518

0.69314718055659L54
0.69314718055994529
0.69314718055954529
0.69314718055994529

Compare this with the machine-precision value of the logarithm of 2:

A2
0.69314718055994529

Part 2: How many blists of length n begin with k?

Inspecting the tables of blists of various lengths, I began to wonder how many of
each table began with each possible number. I wrote this function to count how
many times each leading digit appeared.

CLo=: [+ #/.~ [+ {."1]

I began building an upper triangle matrix (analogous to the Pascal triangle),
where an entry in row i, column j gives the number of blists of length j+1 that
begin with integer i.

CL BLT 1
1
CL BLT 2
21
CL BLT 3
65 2
CL BLT &
26 25 18 6
CL BLT 5
150 149 13% 84 24
CL BLT 6
1082 1081 1050 870 %80 120
CL BLT 7
9366 9365 9302 8700 4600 3240 720

116

VECTOR Vol.17 No.1

The last one took a looong time. With these I was able to create table t1:

t
26 150 1082 9366
25 149 1081 9365
18 134+ 1050 9302
6 8w 870 8700
0 24 4BO 6600
Q0 0 120 3240
0 0 0 720

OO0 O
OSSO N
cCoCcC OO

Portions of this table appear in OLEIS. Its sum is A000670. The first row is Series
A000629. The second row is one less than the first row, and is Series AU02050. The
third row is the first row minus 2*n, and is twice Series A002051. The lowest
counterdiagonal is 'n. The penultimate counterdiagonal is A038720. I massaged
the numbers in varicus ways, the fruitful one being to take its first difference,
providing a new last row of all zeros to preserve the data:

1 t2=:2-/At1,0

111 {1 1 i i
013 715 31 63
0C 2 12 50 180 602
000 6 60 390 2100
000 0 2k 360 3360
000 0 0 120 2520
0G0 0 0 0 720

This is series A028246 from OLFIS. It looks promising, but I want to remove the
factorials from the rows:

] t3=ct2%!4. 82
i111 1 1 1
041371531 63
0016 25 90 30t
0001 10 65 350
0000 1 15 140
o000 0 1 21
o000 0 0 1

And this brings me to familiar territory. It is the table of the Stirling numbers of
the second kind, also called subsef nmimbers, and is series A008277 from OLEIS. It
is usually displayed transposed from the table above, and with an added first row
and first column.

117

VECTOR Vol.17 No.1

((1+#t3){.1),.0,]:t3

10 0 0 0 0 0 0
01 0 0 0 0 0 0
01 1 0 0 0 o 0
01 3 1 0 0 o0 o
01 7 6 1 0 0 0
01 15 25 io i 0 0
01 3t 90 65 15 1 0
01 63 301 350 140 21 1

The reason these are called subset numbers is that entry (ij) gives the number of
ways to partition a set of i items into j nonempty parts. Thus, the value 7 in row 4,
column 2, says there are 7 ways to put 4 items into 2 nonempty parts:

(abe,d};({abd,c);{acd,b);(bcd,a):{ab,ed);(ac,bd);{ad,be)

+/t3
1 25 ({5 52 203 877

These are the Bell numbers (series A000110), which give the total number of ways !
of placing n distinct objects in n boxes. This is to be expected, since the subset

number in item (n;k) gives the number of ways to partition a set of n things into k
nonempty subsets. The Bell numbers thus summarize the subset numbers.

But now 1 know how to create my table of numbers. I can use the nonrecursive
function s2nr from Iverson’s Concrete Math Companion to generate the subset
numbers.

This may be a bit mysterious at first, so I'll show you how its parenthesized
central portion works.

s2nr=: [:@(a/~ %, Al._t/~)@5."0
1 vo =. §.7x
01234%65%

Form the table of powers tl4

T th =, A/~ vO

0 0 0 1] 0
i i 1 1 1
4 8 16 32 (.23
9 27 81 243 729
6 b6k 256 102% LQ%S6
5 125 625 3125 16625
6

216 1256 7776 46656

s b ek A e s
CDNDFLWON—-D

b

118

VECTOR Vol,17 No.1

and the table of falling factorials t5

] t6 =. al._t/~ v0
it o0 0 o 0 0 0
11 0 o 0 0 0
t2 2 0 0 0 0
13 6 6 0 0 0
%12 2% 2% 0 0
16520 60 120 120 0
1 6 30 120 360 720 720

and make these the left and right arguments to matrix divide, yielding the table of
subset numbers.

1

6= | t

(2
[+4]

t
¢
0
1
3

o000
OO0 0 o .

~J

15 25 10

N
0
0
0
0
0
1

31 90 65 15

QOO OoOO O
OO0 00 O

0
i
i
1
i
1
1

I now can produce the table of leading digits versus length of splits. The first step
is to build a table of subset numbers.

J a=. sZnr 10x

10 0 0 0 0 0 0 00
01 0 0 0 0 0 0 00
o1 1 0 0 0 0 0 00
01 3 1 0 0 0 0 00
01 7 6 1 0 0 0 00
01 15 25 10 1 0 0 00O
01 31 90 &5 15 1 0 00
04 63 301 350 140 21 1 00
0 1 127 966 1701 1050 266 28 10
0 1 255 3025 7770 6951 2646 462 36 1

Drop the leading row and column, then transpose.

}Jb=.1:11} a
1111 1 1 i 1 1
0137 1531 63 127 255
0016 25 90 301 9466 3025
0001 10 65 350 1701 7770
0000 1 15 140 1050 6951
0000 0 1 21 266 2646
0000 0O 0O 1 28 4462
o000 0 0 0 1 36
coQ00 0O 0 0 0 i

119

VECTOR Vol.17 No.1

Multiply row i by factorial i,

Jc=.b=x1! i, #b
1141 1 1 1 i 1 1
013 7145 31 63 127 255
00212 50 180 602 1932 6050
G 00 6 60 390 2100 10206 46620
000 0 2% 360 3360 25200 166824
000 © 0 120 2520 31920 317520
000 O ¢ 0 720 20160 332640
000 0 0O 1] 0 5030 {Biuw40
0G0 0 0 1] o 0 %0320

Sum from the bottom up.

T d=.+/ 1\ ¢
& 26 150 1082 9366 94586 1091670
5 25 149 1081 9365 94685 1091669
2 18 134 1050 92302 94458 1091414

8% 870 8700 92526 1085364

24 480 &600 82320 1038744
0 120 3240 57120 871920
0 0 720 25200 554400
0 0 0 5040 221760
Q 0 0 1] 40320

COoO0OOOOO M
COoO0O0O000O N

COoO0oOoOOoOOo
OO OO

And this is the table I wanted to be able to create.

I've told you the series numbers in OLEIS of parts of my table. What about the
table itself? I'm pleased and proud to be able to tell you that when 1 emailed
information about it to Neil Sloane, proprietor of OLEIS, he agreed it was new,
and assigned the number A054255 to it, with credit to me. I feel as if Fve gained a
speck of immortality. We now have blists in OLEIS. You can look it up!

Reference

[McD77] McDonnell, Eugene; “How Shall I Transpose Thee? Let Me Count the
Ways”, APL Quote Quad, vol. 8, no. 1, September 1977

120

VECTOR Vol.17 No.1

OOF: Getting a better Grip on OLE Objects

by Morten Kromberg (mkrom@insight.dk)
This paper was first published in FinnAPL Netws.

Introduction

During the last few years, I have made a few short experimental trips into Object
Land, primarily from Dyalog APL, and each time I ended up feeling intensely
frustrated. 1 seemed to have to go through endless steps in order to access
functionality which, judging from code examples in magazines, seemed to be
much more accessible to users of “inferior” tools like Visual Basic. All the code
exampiles 1 found in magazines, on the web, or using the Excel Macro Recorder,
required a real translation effort, and turned into somewhere between three and
ten times as many lines of code as the original. This article describes the resulls of
my attempts to improve this situation; a tool which is freely available to anyone
who is interested (see under Acknowledgements below).

For several years, 1 successfully evaded the issue by assuming the guise of a
manager (apologies to those of you who are not familiar with this term; try
looking it up on the web). Finding myself unable to keep this up indefinitely,
have now accepted that it is inevitable that 1 must try to understand objects a bit
better. Being an APL’er, the next step is obviously to build a tool which maps the
world into my preferred co-ordinate system. I named the ool “OOF” because, in
addition to being a TLA (Three Letter Acronym) for OLE Object Functions,
“OO0F” is “FOO” backwards, and symbolises the struggle of an ageing developer
who wants to get rid of all those statements which simply manipulate objects, and
get back to the functon calls which he understands.

The OLE Server that I needed to use is one of the most common: Microsoft Excel.
As an example, if the task is to retrieve the values in the range [A1;D3] from the
first sheet in a particular book, the “raw” Dyalog APL code required o do this is:

*XL' OWC '0OLEClient' 'Excel.Application'
'WBS' OWC 'XL' QWG 'WorkBooks!

'BOOK' [WC 3 ONQ 'WBS' 'Open' 'MyBook.xls'
'SHEETS' OWeC 'Boox' WG ‘'WorkSheets!'
'SHEET1' [WC 'SHEETS' OWG 'Itemf1]!
'RANGE' (WC 'SHEET1' OWG 'RangelA1;D3]1!
p'RANGE' OWG ‘Value:

121

VECTOR Vol.17 No.1

With OOF, the corresponding code is:

#.00F.Add '#.XL' 'Excel.Applicatien’®

#.00F.Add '#.BOOK' '#.XL.Workbooks.Open' 'MyBook.xls'

¢#.00F . Prop '"#.BOOK.Sheets[Sheeti].Range(Ad1;D3].Value!
34

Acknowledgements

Many thanks to Carlo Alberto Spinicci of APL Italiana, who paid for the work
described in this article, and graciously agreed not only to allow me to publish
this article, but also to make the tool available te anyone who is interested. If you
would like a copy, write to cof@insight.dk. I can heartily recommend this
approach: save printing costs and get an APL publication to print your internal
documentation for you!

Thanks also to Peter Donnelly and John Daintree of Dyadic Systems Ltd. for
patiently answering stupid questions about whether “Item” is a property or a
method.

A Map of The Battle Field

Any OLE Server exposes an Object Model, which you must understand in order
to use it. Microsoft Excel has a huge and complicated (sorry, “provides a rich”)
hierarchy of objects. The following picture illustrates my understanding of the
very tiny fragment of the Excel Object model which we “navigated” in the
introductory example:

At the top of the hierarchy is the ExcelLApplication, the object to which we
connect when we create our OLE Client object. Each object has properties and
methods. A property can be simple, like the Name property which contains the
string “Microsoft Excel”. Alternatively, the property can be another object, with
its own properties and methods. Methods can have no result, simple results, or
retun objects. For example, the “Range” method of a worksheet returns an object
which contains the cells in the range.

In the case of Excel, the operations that we would like to perform on the objects
are things like:

* Open our favourite book containing spreadsheets:
WorkBooks,Open "MyBook™

* Query or set the value of a range
WorkBooks [MyBook] .WorkSheets [Sheetl] .Range[Al;D3].Value

122

VECTOR Vol.17 No.1

* Execute methods, like
WorkBooks [MyBook] . Save, or
WorkBooks [MyBock] . PrintOut

Introduction to the Dyalog APL OLEClient

Before talking more about OOF, let's take a look at the native mechanisms
provided by Dyalog APL for manipulation of object models:

Connecting fo an OLE Server
Or, seen from the APL side, creating an OLE Client:

‘XL' OWC 'OLEClient! "Excel.Application'

This creates a namespace which represents the object in the APL workspace.

Accessing Properties and Methods

Dyalog APL provides no less than 3 mechnisms(f) for accessing properties and
methods, once you have created a namespace representing an object:

* By setting the 'AutoBrowse' property of a new object to 1, you can get APL
to scan libraries and immediately define all properties as APL variables and all
methods as APL functions within the new namespace:

'XLt OWC 'OLEClient' 'Excel.Application' ('AutcBrowse' 1)
XL .Name

Microsoft Excel
XL .InchesToPoints 1

72

Unfortunately, this is too slow for runtime applications, our original example
could easily take 30 seconds to execute using this technique.

e 2 ONQ 'SetPropertyinfe' and 'SetMethodInfe! allow you to
contro] the creation of individual properties or methods:

'XL' OWC 'OLECiient' 'Excel.Application'
2 ONQ 'XL' ‘'SetPropertyInfo' ‘'KFame!'
2 (NQ 'XL' 'SetMethodInfo' 'InchesToPoints'
XL .Name (XL.InchesToPoints 1)
Microsoft Excel 72

This runs quite fast, but adds one statement for each property or method you
wish to use.

123

VECTOR Vo!.17 No.1

¢ Finally, OWG and 3 [¥Q give direct access to properties and methods without
‘creating” them first:

'#.XL' OWC 'oLEClient' ‘'Excel.Application’
'# . XL' OWG 'Name'

Microsoft Excel
3 ONQ '#.XL' 'InchesToPoints'! 1

72

Building the Hierarchy in your Workspace

If a property or method returns an object, OWC is used to creale namespace for
next level:

XL OWC 'OLEClient: ‘Excel.Application®
WS OWwC 'XL' OWG ‘*WorkBooks!
'BOOK' (OWC 3 0ONQ 'WBS! ‘Open' 'MyBook.xls?

This allows you to reach your way through the hierarchy, creating a new
namespace for each object you need to pass through. You can choose whether to
create all these namespaces at the same level, as in the above example, or reflect
the hierarchy by creating the objects inside their parent (this makes it easier to
tidy up: simply delete the object at the top):

'XL* {WC ‘'OLEClient' 'Excel . Application’
'XL.WBS' OWC 'XL' OWG 'WorkBooks'
'XL.WBS.BOOK' Owc 3 ONQ 'XL.WBS' 'Open' 'MyBook.xls'

Just be careful that you do not use names which conflict with any properties or
methods at each level.

Collections

In object oriented terminolegy, a collection is an object which has a Count
property and an Item property or method: '

'#.XL' OWC *OLEClient' 'Excel.Application’
‘#.WBS' OWC *#.XL' [IWG 'WorkBoocks!
'#.WBS' OWG 'Count!

z+3 [ONQ '"#.WBS' 'Open' 'MyBook.xls'
'#.WBS' OWG 'Count:

'#.BOOK' OWC '#.WBS' OWG ‘'Item(1]'

124

VECTOR Vol.17 No.1

Note thalt we used WG to read the Item as a property. In environments like
Visual Basic, the distinction between a “parameterised property” and a method is
blurred (at least with my eyesight). This can cause quite a bit of grief, since you
are never sure which it is. OOF contains nasty trap statements to try first one then
the other, to hide this - just how well this works in practice remains to be seen.

If T understood it all correctly, a collection will also have Item defined as its
DEFAULT method, so that a Visual Basic expression like Workbooks[l] is
equivalent to calling Workbooks.Item with an argument of 1. Many Item
functions also support string arguments, allowing indexing by name.

Doing Something

We now know enough to understand what the example code in the introduction
does. It creates 6 objects, corresponding to successively deeper levels of hierarchy
(Excel-WorkBooks-Bookl1-Worksheels-Sheet1-Range). Finally, we can access the
Value property of the range, which the Visual Basic developer might tefer to as
WorkBooks{MyBook]. WorkSheets{Sheet1].Range|A1;D3]. Value:

'XL' OWC 'OLEClient*® ‘Excel.Application’
‘WBS' (OWC 'XL' OWG ‘'WorkBooks'

'BOOK' OWC 3 (ONQ 'WBS' 'Gpen' 'MyBcok.xls!
'SHEETS' OWC 'BOOK' 0OWG 'WorkSheets!
'SHEET1' DWC 'SHEETS' OWe 'Item[1]"
'"RANGE' (WC 'SHEET1' DWe 'Rangel[A1;D3]"
p'RANGE'0OWG ' Value

'RANGE' OWS 'Vvalue' (3 Yp112)

In my opinion, it is a bit hard to see the forest for the trees.

Introducing OOF

With OOF, APL expressions correspond much more closely to the expressions
which a Visual Basic developer would be able to use, The above example could be
written as:

#.00F.Add ‘'#.XL' 'Excel.dpplication’

#_00F.Add '#.BOOK' '#,XL.Workbooks.Open' 'MyBock.xlIs"'

p#.CO0F.Prop '#.BOOK.Sheets[Sheet1].Range(A1;D3].Value!
ay

(3 4p112) #.GGF.Prop
'#.BOOK.Sheets[Sheet1].Rangel[A1;D3].Value'

125

VECTOR Vol.17 No.1

The big difference is that you do not need to explicitly create all the intermediate
objects required to reach into the hierarchy. QOF does this for you, exactly as
Visual Basic does for its users. The function OOF.Objects shows the objects which
OOF is managing for you:

#.00F.0bjects

#.XL #.XL
#.XL .Workbooks Xo001
#.,BO0OK #.BOOK
#.BO0OK.Sheets Xo002
#.BOOK.Sheets(Sheeti] X0003

#.BOOK.Sheets[Sheet1] .Rangel41;D3] Xo0004

In other words, OOF has created Dyalog APL namespaces X0001-X0004
because these intermediate namespaces were required in order to reach into the
hierarchy as requested. The two objects #.XL and #.BOOK were named by us,
using the functon #00F . 4dd.

Internally Visual Basic does the same thing; but it immediately disposes of the
temporary objects. Apparently, many VB developers write quite ineffective code
because they do not realise that they are causing an enormous amount of creation
and garbage collection of objects, and that they would be better off explicitly
assigning frequently-used objects to named variables. OOF keeps objects until
you explicitly dispose of them using 00F.Close (you only have to close objects
you created yourself, when you do, OOF will close any related objects it created
on your behalf}.

OOF consists of about half a dozen functions:

#.0O0F.Add
Adds a new object in one of three ways:

¢ Attach to new OLE Server (second element or argument does not start with #,
and contains a single “.”)

#.00F.Add '#.XL' "Excel.dApplication'

» Create an object from property of existing object (second element does start
with #)

#.,00F . Add '#.WBS' '#.XL .WorkBooks'

» Creale an object from the result of Method (argument has more than 2
elements}

#.00F.Add '#.BOOK' '#.XL.Workbooks.Add' o

126

VECTOR Vol.17 No.1

#.O0F.Prop

Queries or sets a property of an existing object, or an object which can be reached
from an existing object by extending the hierarchy:

+ Monadic calls query a property:

#.00F ,Prop '#.XL.0OperatingSystem’'
Windows (32-bit) NT 5.00

» Dyadic calls set a property. The previous setting is always returned:

1 #.00F.Prop '#.XL.Visible!
0

Note that Prop also works with array properties like the Value of a Range.

#.00F.Invoke and InvokeNil

Invoke a method in an existing object, or an object which can be reached from an
existing object. If the method does not return a result, you must use the function
InvokeNil, Examples:

= Get Exce] to multiply by 72 for you:

#.00F.Invoke '#.XL.InchesToPoints' 1
72

Close the workbook without saving it (set Saved property to avoid Excel asking
the user whether to save):

1 #.00F.Prop '#.BOOK.Saved!®
#.00F.InvokeNi1l '#.,BOCK.Close' @

If you use Invoke instead of InvokeNil, you will get a value error. Note that,
if a method takes several arguments, the third element of the argument must be a
list of all of the arguments. Do NOT use elements following the third element for
additional arguments.

#.00F.CollProp

Being APL developers, we must have a way to manipulate the properties of
multiple items of a collection in a single calll OOF.CollProp is a user-defined
operator which allows us to:

127

VECTOR Vol.17 No.1

¢ Read value of one or more properties (right operator argument) from one or
more items (left operator argument):

(1 #.00F.CollProp ‘'Name')'# BOOK, Sheets !
Sheeti -

» Set the value(s) - returns old value(s):

‘Demo' (1 #.00F.CollProp 'Name'}'#.BOOK.Sheets!
Sheeti

s Query or set property or properties for all items:

("' DOF.CollProp 'Name'} '#.ROOK.S3heets'
Demo Sheet2 Sheets

Note that the left operator argument can have any value accepted by the Item
function of the collection, we could have used 'Sheeti1' as an index in the
second example. t+! is special-cased, using the function 00F,GetIndexSet
(see below).

#.00F.GetIndexSet

The “index set” of a collection is not always a dense set of integers from 1 to the
value of the Count property of the collection. The function GetIndexSet
returns the full index set of a collection:

#.00F,GetIndexSet '#.BOOK.Sheets'?
1 2 3

Is the collection is indexed by an enumerated fype, Get IndexSet retumns a vector
of enclosed two-element vectors, containing the names and values of the
constants defining the set:

+#,00F.GetIndexSet '# .RANGE.Borders!
xlInsideHorizontal 12

xlInsideVertical 11
x1Diageonalbown 5
x1Diagonallp &
x1EdgeBottom 9
xlEdgeleft 7
xlEdgeRight 10
xlEdgeTop 8

128

VECTOR Vol.17 No.1

If you don’t want to check the depth of the result, use a left argument of 1 to state
that you want numeric indices only:

#.00F.GetIndexSet '#.RANGE.Borders!
12 11 5 6 9 7 10 8

#.00F.Close
Close an object, plus all associated objects which OOF has created on your behall.

#.00F.0bjects

#.XL #.XL
#.BOOK #.BOOK
#,SHEET #.SHEET
#.B00K.Sheets X0001
#.BOOK.Sheets[1] Xoo002

#.00F.Close '#.BOOK'
#.00F.0Objects

#.XL #.XKL

#.SHEET #.SHEET

You can close associated objects at any time, if you know that you will not need
them again. For example, we could have made the call:

#.00F.Close '#.BOOK.Sheets!

If we knew that we did not want to work on sheets any more. This would have
expunged X001 and X0002, since X0002 was a child of X0001, but left #.BOOK
intact. Future versions of COF may incorporate some kind of automatic garbage-
collection mechanism (suggestions welcome)!

#.0O0F.Investigate (experimental)

This is an experimental function which, if applied to an object which has
‘AutoBrowse” set to 1, “tastes” all the properties and attempts to let you know
something about them.

129

VECTOR Vol.17 No.1

#.00F . AutoBrowse+1 n Applies to all 00F-created objects
#.00F.Add '#.XL' 'Excel.4pplication'
#.00F.Investigate '#.XL'

_Default Microsoft Excel 0 Normal
ActiveCell 2 Object
ActiveChart 0 0 KNormal
ActiveDialog 0 0 Normal
ActiveMenuBar 2 Object
ActivePrinter A\SRVLAN\HPLOS50 PCL 6 on Ne0O: O Normal
ActiveSheet 2 Object
etc
Conclusion

Dyalog APL provides most of what you need to use OLE Servers from APL, but
in my opinion, they could be significanlly easier to use. The “OOF” tool allows
APL developers to use expressions which are closer to that which they can find in
documentation and cther literature, which is usually aimed at Visual Basic or
Visual C developers.

However, 1 can’t help feeling that I should not have had to build this tool - it
should have been part of my APL system! It will soon be time to re-launch APL to
a new generation of developers. The people with an “attitude” to APL (good or
bad) are moving on, and I think we will soon have an opportunity to try to sell
APL again. This will not be possible if the new audience feel that the mechanisms
we provide for inter-application communication are significanily inferior to the
environments they are used to. On the other hand - if we have it, there is no
reason why we should not be able to go out and sell APL to people who need to
compute something, all the other languages are still far behind APL in this
respect.

If the vendors are not already working on it, this seems to be the next big
challenge which we need to address as a community. I think I would go as far as
to say that the long term survival of APL depends on support for objects at the
“language” level.

130

VECTOR Vol.17 No.1

Bell Numbers and APL
by Joseph De Kerf

Abstract

In 1934 E.T. Bell introduced what he called the exponential numbers. Defined
functions for calculating those numbers, as well as for calculating the rows of the
so-called Bell triangles, are given. Results of benchmarks, comparing the
efficiency in cpu time, are reported. The relation with the Stirling numbers of the
second kind is treated in an Appendix.

Bell Numbers

In 1934 E.T. Bell [1], [2], author of several detective stories under the name John
Taine, introduced what he called the exponential numbers By, By, By, ... as those
defined by the Maclaurin expansion of the generating function (g*e*x) + e:

e X
e —EEBNE
2 3
=E[BO+BIH+BZT_2+B3 :‘3 +. J
with B, = 1
B, = 1
32 = 2
B, = 5
B, = 15
BS = 52
B, = 203
B, = 877
B, = 4140
By = 21147
By, = 115975

131

VECTOR Vol.17 No.1

Bell showed that those numbers may be calculated by binemial expansion of the
form B, =(1 +B)"_1 and substituting B by B;, giving the recursion formula:

Bu =1
ulip-1

BM = Z [.]Bz
=0 ?

Bell also showed that the numbers may be calculated explicitly by the form (i>0):

5—

B n 1 rfs—1 _rnfl
B 2 '(s—l)[z(K (Sr)(S)]

s=1" r=0

Finally, L.F. Epstein [3] showed that the Bell numbers may be defined by the
infinite series:

Imkﬂ

B i
etk

n

as such extending the domain to real and complex numbers. He also gave several
asymptotic formulas, as well as the values of B, for = 1(1)20.

More elaborate tables were published for n=0{1)50 by H. Gupta [4], and for
n=0(1)74 by]. Levine and R.E. Dalton [5].

Bell numbers are rather unknown, even in the mathematical community. In most
books on number theory and numeric analysis they are not mentioned, and this
notwithstanding their practical importance. For instance, B, specifies the number
of thyming schemes in the stanza of # lines; the number of pattern sequences for
words of n letters, as used in cryptology; the number of trays 1 unlike objects can
be placed in 1(1)n like boxes, allowing blank boxes; and the number of ways a
product of n distinct primes may be factorised. References are given in [5].

The purpose of this paper is to give some defined functions for calculating those
Bell numbers, as well as for calculating the rows of the so-called Bell triangle.
Results of benchmarks comparing the efficiency in cpu time are reported. The
relation with the Stirling set numbers of the second kind is treated in an
Appendix.

Accuracy of the software is approximately 15 digits throughout. It should be
noticed that, if print precision is set 1o 15, for n 21 the numbers are displayed as

132

VECTOR Vol.17 No.1

integers, while for 1222 the numbers are rounded off and displayed in
exponential notation:

B, = 474869816156751
B,y = 4.50671573844732F15

Defined functions shown conform to the proposed new standard ISO APL-
Extended, prepared by the ISO APL Working Group ISO-IEC/JTC1/SC22/WG3
{8]. Benchmarks have been done on a Microline Pentium 5-100, with
mathematical co-processor, using Dyalog APL/W Version 7.1.2 under Windows
311 [9]. Migration Level ML was set to 2, the default value being 0. CPU times
were measured, using the system function OMONITOR.

Defined Functions

APL defined functions BELL1 and BELL2, returning as explicit result the Bell
sequence By, By, ..., B, and based on the recursion formula

are for instance:

vZ«BELL1 W

[1] +(N=0)/0,Z«,1

f21] Z+BELL1 N-1

£31] ZeZ,+/Zx(T14+1pZ)! "14pZ
v

BELE1L 10
1125 15 52 203 877 4iu0 21147 115975

vZ+BELL2 N
[1] +(N=0)/0,2+,1
[2] END:Z<Z,+/8x{"14+1pZ)! " 14pZ
[3] +(N2pZ)/END

v

BELL2 10
1125 15 52 203 877 4140 21147 115875

133

VECTOR Vol.17 No.1

BELL1 uses implicit recursion. BELL2? uses a programmed recursion loop.
The maximum of the domain of the right argument N is N = 218 as
By = 6.10130983387532E308 and By, exceeds the largest number representable
1.79769313486232E308.

Recursion may be avoided by direct calculation of the numbers, for instance
through appropriate truncation of the infinite serjes of Epstein:

1 [+ N
Sy
€j=o 'k

fo*r 1" 27
=S o e
eltg 11 12

Successive partial sums may be calculated and compared, the process being
ended when two successive partial sums are equal within the accuracy desired
(15 digits). However, this needs a loop.

The defined function BELL3 avoids the use of such a loop by calculating a priori
the number K of terms needed to achieve the desired accuracy (15 digits):

VIZ+«BELL3 N;X
[11] +({N=0}/0,Z«,1
[2] END:K«(212pZ)x 0. UB41.36xpZ
[3] KE+E+(22spZ)=x|21.83+{0.407-0.000616xpE}xpZ
[4] +{NepZ+Z, [(+/(KxpZ)+!E+1K)2x1)/END
v

BELL3 10
1 1 2 5 15 52 203 877 4140 21147 115975

The ceiling of the partial sum is taken such that for N = 0 only 1 term instead of 18
terms is needed, for N = 1 only 1 term instead of 19 terms is needed, for N = 2
only 2 terms instead of 19 terms are needed, etc. Minima K,, of K in the function of
N were determined. Using the method of least squares, a straight line was drawn
through those minima for the domain # £21 and a second degree polynom for the
domain n222.

Finally the parameters were adjusted so that the calculated K, is greater than or
equal to K, and the overhead A=K, -K,, is minimised, from 0 to 2 terms
maximum:

n<21, K.= [148+1.36xN
nz222; K.= [22.83+(0.407-0.000616xN)xN

134

VECTOR Vol.17 No.1

Values of K, and K, , as well as the overhead A=K, -K,,, are listed for
N =10(10)160 in the table below:

N K, K. A N K, K A
1 15 15 0] % 52 54 2
20 28 28 0] 100 56 57 1
M M4 A4 0] 110 58 60 2
40 36 38 21 120 61 62 1
50 39 4 2 130 63 65 2
60 44 45 1| 140 67 67 0
70 46 48 21 150 70 70 0
80 50 51 1] 166 71 72 1

Finally, K is set to K.—1, as for N>0 the first term of the series must not be
calculated, this term being 0 (0*N = 0 and 10 = 1).

It should be noticed that the maximum of the domain of the right argument N is
N =165 instead of N = 218, with B,z = 1.5641005513217E217, as for N = 166 the
minimum K, is 73 and 72*166 exceeds the largest number representable
1.79769313486232E308. If N>165, an error report is generated.

In most applications, the Bell numbers are only requested for a selected set of the
sequence By, By, ..., B,. A modified form BELLY of the defined function BELL3,
that only returns the scalar By, is given below:

VIZ+«BELLY N K
[1] K+«(N<21)xl1.48+1.36xK
[2] K+K+(Nz22)x122.834(0.507-0,000616xN)xN
[3] Zes(+/(KaNY2 R+ 14 1K)2»1

v

BELLY 0O

BELLY 10
115975

BELLY" 0,110
112 5 15 52 203 877 4140 21147 115975

135

VECTOR Vol.17 No.1

Of course, just as for BELL 3, the maximum of the domain of the right argument
Nis N =165, instead of N = 218. If N>165, an error report is generated.

Note: In some implementations, as N increases, the accuracy of the results
decreases from 15 to 14 digits. This is due, in those implementations, to the lack of
accuracy of the monadic function factorial IR for higher values of the argument R.
The discrepancy may be removed by substituting:

in BELL 3 the expression ! K«
by x\K+1K

in BELLY the expression ! K+~ 1+1K
by x\1,1+E«" 141K

Benchmarks

Benchmarks on cpu time have been done for N = 40(40)200. Results are shown
below {in ms):

N 40 80 120 160 200
BELL1 N 29 106 270 557 999
BELL2 N 25 100 261 545 984
BELL3 N 42 102 180 271 -
BELLL N 2.01 240 275 3.06 -
BELLL™ 0,1N 42 103 181 272 -

As N increases, BELL2 is from 16.0% to 1.5% more efficient in cpu time than
BELL1, the difference becoming negligible for higher values of N. For lower
values of N, BELL 3 is about 56% slower than BELL1 and BELL?2, but 2.0 times
more efficient for N = 160, the breakpoint being at about N = 80. Finally, as
expected, the overhead usoing BELLY4 instead of BELL3 for generating the
complete sequence By, By, ..., B, is negligible.

136

VECTOR Vol.17 No.1

The Bell Triangle

In 1980,]. Shallit [6] defined what he called the Bell Triangle T(r,k) with k = 1(1)n,
as generated by the recursion algorithm:

T(1,1)=1
Tn1)=Tn-1,n-1) (2<n)
ToLky=T{mk-1)+Tn-1,k-1) (2<k<n)

The inconvenience of this algorithm is that, for calculating T(m,k), the predecessor
T(n,k—1) in its row must be known. This inconvenience may be removed by
transforming the algorithmn to the form:

T(Lh=1
T)=Th-1n-1) (2<nm)
k-1
T(n,k)=Tn~1,n-1)+> T(n-1,1) (2<k<n)

r=1

such that the elements of the nth row T(n,k) may be calculated from the elements
of the previous row only.

The defined function BELLTR1, based on the algorithm in its transformed
version, returns as explicit result a nested vector of vectors containing the N first
rows of the triangle:

YZ+BELLTR1 N

21 +(N=1)/0,Z+1pc,1

[2] Z+BELLTR1 N-1

[3] Z«Z,c{+040Z)+0,+\2+4Z
v

The expression >¥"BELLTR1 N transforms the nested vector of vectors
generated by BELLTR1 N to a simple character matrix containing the N rows of
the triangle, adjusted to the left, and padded with blanks up to the character
length of the last row. The defined function CENTER rotates the rows of this
character matrix such that those rows are centred. The function CENTER has been
taken from the book APL2 in Depth by N.D. Thomson and R.P. Polivka [7].

YZ+CENTER MR
[1] Ret/aANT TudM
[2] Z+{-10.5xR)dM
v

137

VECTOR Vol.17 No.1

CENTER =>3¥ BELLTRL 8
S
102
2 35
5 7 10 15
15 20 27 37 52
52 67 87 1iL4 151 203
203 255 322 409 523 674% 877
877 108C 1335 1657 2066 2589 3263 LiL0

The nth row contains n elements. Rows are not symmetric. The left side of the
triangle is the Bell sequence By, By, By, ..., Bpincluded, and the right side of the
triangle is the Bell sequence By, By, Bg, This means that the algorithm may be
used to generate the Bell sequence:

By,B, ... By = 4+ BELLTR1 K+i
= 1,+ ¢ BELLTRL N

and this for up to N = 217 and 218 respectively. Indeed, the Z19th row starts with
By but ends with Byg and this exceeds the largest nmumber representable
1.79769313486232E308. Examples:

+"BELLTR1 10+1
11 25 15 52 203 877 L41%0 21147 115975

1,+"¢6"BELLTR1 10¢
14 2 5 15 52 203 B77 4140 21147 115975

Shallit reported several properties of the elements of the triangle, for instance that

the sum of the elements of the nth row is B, —B,,:

iT(n,k) = T(n 1) +T(1,2) + -+ T(,m)
k=1

=B,,1—-B,
Examples:

+/"BELLTRL 10
1 3 10 37 151 674 3263 17007 94828 562595

(2+4BELL3 11)}-L+BELL3 10
1 3 1¢ 37 151 674 3263 17007 9LB28 562595

138

VECTOR Vol.17 No.1

BELLTR1 uses implicit recursion. A defined function BELLTR?2, based on the
same algorithm, but using a programmed recursion loop, may be:

VZ+BELLTR2 N
+{N=1)/0,2+1pc,1
END:Z+Z2,c{+04d23+0, +\o+dZ
+{N>pZ)/END

v

Bell Numbers and the Bell Triangle

The question arises, if generating the Bell sequence by using the defined functions
BELLTR1 or BELLTR2 may compete in cpu time with the direct calculation
from BELL1/BELL2 or BELL 3. Benchmarks have been done for N = 40(40)200.

Results are shown below (in ms}):

N 40 80 120 160 200
+"BELLTR1 N+1 28 62 114 183 269
+"BELLTR2 N+1 20 47 22 154 233
1,+ ¢ "BELLTRL N 28 65 121 195 289
1,4+ ¢ "BELLTR2 N 20 50 99 166 251

i
As N increases, BELLTRZ is from 40% to about 15.3% more efficient in cpu time
than BELLTR1. The second form is about up to 7.6% slower than the first form,
but, as already mentioned, it works for up to N = 218 instead of N = 217. Most
important, however, is that the cpu times reported are drastically lower than
those for BELL1 /BELL?2 and BELL3.

In addition, the process may be considerably accelerated by incorporating the
deduction of the Bell numbers from the rows of the Bell triangle in the defined
functions themselves, such as is done in the defined functHons BELLA and
BELLB:

VI+BELLA ¥
[1] +(Ns1)/0,Z«(1+NL1)pR+1
[2] Z+BELLA N-1
£3] Z+Z, 14+R+(T14R)+0,+\R
v

139

VECTOR Vol.17 No.1

BELLA 10
11 25 15 52 203 877 4140 21147 115975

vZ+BELLB N:R
1] +(Ns1)}/0,Z+«(1+N11)pR«1
[z2] END:Z+2, 14R+{T14R)+0,+\R
(31 +(Nz2pZ)/END

v

BELLB 10
11 2 5 15 52 203 B77 4140 21147 115975

Both functions cover the domain N =0(1)218. BELLA uses implicit recursion.
BELLB uses a programmed recursion loop. Benchmarks have been done for
N = 40{40)200. Results are shown below (in ms):

N 10 80 120 160 200
BELLA N 18 39 62 89 118
BELLB N 13 28 46 67 91

As N increases, BELLB is from 38.5% to 29.7% more efficient in cpu time than
BELLA. As N increases, BELLB is from 3.2% to 4.0% more efficient in cpu time
than BEZL3 and from 2.1 to 10.9 times more efficient than BELL1 and BELL 2.
Apparently, this substantial improvement is mainly due to the fact the algorithm
only uses addition. It is doubtful if an algorithm that performs considerably better
can be found.

References
[11 E.T. Bell: Exponential Numbers; American Monthly, Vol.41, 1934, pp. 411-419

[2] E.T.Bell: The Iterated Exponential Integers; Annals of Mathematics, Vol.39, 1938,
pp- 539-557

[3] L.F. Epstein: A Function Relaited to the Series e*e*x; Journal of Mathematics and
Physics, Vol.18, 1939, pp. 153-173

4] H. Gupta: Tables of Distribution; East Punjab University Research Bulletin,
Vol.2, 1950, p.44

[5] J. Levine & R.E. Dalton: Minimum periods, Modulo p, of First-Order Bell
Exponential integers; Mathematics of Computation, Vol.14, No.80, October 1962,
pp- 416-423

140

VECTOR Vol.17 No.1

[6]]. Shallit: A Triangle for the Bell Numbers; A collection of Manuscripts Related to
the Fibonacci Sequence; 18th Anniversary Volume; The Fibonacci Association,
Santa Clara, California, 1980, pp. 69-71

[7] N.D. Thomsson & R.P. Polivka: APL2 in Depth; Springer-Veriag, New Yeork
1995

(8] ISO Document CD13571: Progranmnnting Language APL - Exfended; Committee
Draft prepared by the APL Working Group ISO-TEC/JTC1/5C-22/WG3
Version 1; International Organization for Standardization IS0, Geneva,
August 1993

[9]1 Dyalog APL/W Reference Manual ~ Version 7; Dyadic Systems Ltd, 1994

Appendix

\ As mentioned in the paper, Bell showed that for #n>0 the exponential numbers
may be calculated by the form:

| o1

| _ r 1 -1

‘ Z’(s 1)[2)(Sr)(H)n }

| In fact, the form is the sum of the Stirling set numbers or Stirling numbers of the
second kind 5(n,s):

with 5(n,s) —_[Z([5;1] (S_r)n~‘1:|

A defined function BELLS, based on this algorithm, returning as explicit result
the Bell number B,, may be:

VZ«+BELLS N;R;S
£1] +(+/N=0 1)/0,Z+5+1
(2] END:R+"1+15¢5+1
[3] Z«Z+(~-/(RIS-1)x(8-R)*xN-1)+!5-1
[u] +(8<N}/END
v

BELLS ¢

141

VECTOR ' Vol.17 No.1

BELLS 10
116975

BELLS 0,110
11 2 5 15 52 203 B77 U140 21iu7 115975

The maximum of the domain of the right argument N is N = 137, with
Bisy = 1.36593938472514E172, as for N = 138 the alternate sum, before having been
divided by 15-1, exceeds the largest number represenable 1.79769313486232E308.
Benchmarks have been done for N = 40(40)129. Results are shown below (in ms):

N 40 80 120
BELLES N 34 127 311
BELLS"0, 1N 551 3536 11967

As N increases, BELLS is from 17 to 113 times slower than BELL 4. The algorithm
is only of theoretical importance, but it is totally unsuited to the calculation of the
Bell numbers.

Note: The algorithm treated in the Appendix may also be formulated as:

n 51 T n-1
-1} (s—r
5,3 5 W)
S5 n(ls—-r-1)
It looks simpler, but a defined function based on this form is even slower than
BELLS, by 24% to 33%.

Joseph De Kerf
Rooienberg 72
B-2570 Duffel
Belgium

142

VECTOR Vol.17 No.1

Index to Advertisers

Dyadic Systems Ltd 2
JAD SMS 39
Soliton 4
Strand Software 6
Vector Back Numbers 12

All queries regarding advertising in VECTOR should be made to Gill Smith,
at 01439-788385, Email: apl385@compuserve.com.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+1 and discuss themes for issues n+2
onwards. Please send the text of submitted articles (hardcopy with diskette as
appropriate) to the Vector Working Group via:

Vector Administration, ¢/ o Gill Smith
Brook House

Gilling East

YORK, YO62 4]]

Tel: +44 (0) 1439-788385

Emaik: apl385@compuserve.com

Authors wishing to use Word for Windows should contact Vector Production for
a copy of the APL2741 TrueType font, and a suitable Winword template. These
may also be downloaded from the Vector web site at www.vector.org.uk

Camera-ready artwork {e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK YO62 4]]. Please also copy us with all electronically
submitted material so that we have early warning of possible problems.

143

VECTOR Vol.17 No.1

Subscribing to Vector

Your Vector subscription includes membership of the British APl Association,
which is open to anyone inlerested in APL or related languages. The membership
year normally runs from Ist May to 30th April. The British APL Association is a
special interest group of the British Computer Society, Reg. Charity No. 292,786

Name:
Address:

Postcode / Country:
Telephone Number:
Email Address:

Category (please tick box) to run from: 1st May Q August d Nov O rebU

UK private membership ..., £12 Q
Overseas private membership oot £14 0

Airmail supplement (not needed for Europe) ...ocveeervnecnnins £A Q
UK Corporate membership .o, £100 d
Corporate membership 0Verseas ... £135 d
SUSHAINING MEIDETSRIP . cevrvveveversessmesecrocssreressomessesmsaesssessossins ga30 QA
Non-voting UK member (student/ OAP/unemployed only) £6 Q

PAYMENT - in Sterling or by Visa/Mastercard/JCB only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Asscciation”, or you may quote your
Mastercard, Visa or JCB number.

1 authorise you to debit my Visa/Mastercard/JCB account

Number: i1 0 1 Lt 1t Lo Li1 11 Expirydate:rct |1

for the membership category indicated abave,

Data Protection Act:
(W] annually, at the prevailing rate, until further notice | The information supplied may

[:] one ye ar’s subs cription only he stored oj-n computer and _
processed in accordance with

the registration of the Brilish
Signature: Computer Sacisty.

Send the completed form to:
BAA, ¢/o Rowena Small, 12 Cambridge Road, Waterbeach, CAMBRIDGE CB5 9NJ, UK
Fax: +44 (0) 1653 697719

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by a Committee
of officers who are elected by a postal ballot of Association members prior to the Annual General Meeting. Working
groups are also established in arcas such as activity planning and journal production, Offers of assistance and
involvemnent with any Association matters are welcomed and should be addressed in the first instance to the Secretary.

Chairman

Secretary

Treasurer

Journal Editor

Projccts and
Publicity

Webmaster

Activities

Education

Administration

Editor:
Production;
Advertising:

Support Team:

2000/2001 Committee

Adrian Smith
01439-788385
apl385/@compuserve.com

Anthony Camacho
0117-973 0036
acami@tesco.net

Nicholas Small
01223-570850
treas.apliibes.org.uk

Stefano Lanzavecchia
stitdapl.it

Dr Alan Mayer
01792-205678x4274
a.d.mayerfiswansea.ac.uk

Ray Cannon
01252-874697
100430.740@compuserve.com

Jon Sandles
01904-612882
jon_sandlesi@esi.com

Brook House
Gilling East
YORK YO62 411

11 Auburn Road
Redland
BRISTCOL, BS6 6LS

12 Cambridge Road. Waterbeach,
Cambridge CB5 9NJ

¢/o APL Tialiana
Corso Vercelli 54
20145 - Milano
Haly

Eutopean Business Management School,
Swansea University,
Singleton Park, SWANSEA SAZ 8PP

21 Woodbridge Road,
Blackwater, Camberley,
Surrey GU17 0BS

138 Burton Stone Lane,
YORK. YO30 6DF

Dr lan Clark 1, Heifer Mill Cottages,
07931 370304 Mosterton, Beaminster,
earthspot@aol.com Dorset DTS 3HG.
Rowena Small 12 Cambridge Road. Waterbeach.
01223-570850 Cambridge CB5 9NJ
treas.apl@bes.org.uk
Journal Working Group
Stefano Lanzavecchia see above
Adrian & Gill Smith Brook House, Gilling East, YORK (01439-788385)
Gill Smith Brook House, Gilling East, YORK (01439-T88385)

Jonathan Barman (01488-648575), Anthony & Sylvia Camacho,
Ray Cannon (01252-874697), Marc Griffiths.
Bob Hoekstra (01483-771028), Jon Sandles (01904-612882)

Typeset by APL-385 with M5 Word for Windows
Printed in England by Short-Run Press Ltd, Exeter

VECTOR

VECTOR is the quarterly Journal of the British APL Association and is distributed to Association
members in the UK and overseas. The British APL Association is a Specialist Group of the British
Computer Society. APL stands for “A Programming Language” — an interactive computer
language noted for its elegance, conciseness and fast development speed. It is suppored on
most mainframes, workstations and personal computers.

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial
support of the following Association Sustaining Members. In many cases these organisations
also provide manpower and administrative assistance to the Association at their own cost

Causeway Graphical Systems Lid
The Maltings, Castlegate,
MALTON, North Yorks YO17 7DP
Tel 01653-696760

Fax: 01653-697718

Email; sales@causeway.co.uk
Web: www.causeway.co uk

Dyadic Systems Lid
Riverside View, Basing Road,
Old Basing, BASINGSTOKE,
Hants, RG24 DAL

Tel 01256-811125

Fax: 01256-811130

Emall; sales@dyadic.com
Web: www dyadic com

Insight Systems ApS
Nordre Strandvej 119G
DK-3150 Hellebask
Denmark

Tel +45 7026 13 26
Fax: +45 70 26 13 25
Emall: info@insight.dk
Web: www.insight.dk

Saliton Associates Lid
Groot Blankenberg 53
1082 AC Amsterdam
Netheriands

Tel: +31 20 646 4475
Fax: +31 20 644 1206
Email: sales@soliton com

Compass Lid

Compass House

B0 Priestiey Road
GUILDFORD, Surrey GU2 5YU
Tel: 01483-514500

HMW Trading Systems Lid
Hamilton House,

1 Temple Avenue,
LONDON ECA4Y OHA

Tei: 0870-1010-489

Email: HMW@4xtra.com

APL2000

Rapid Application Development
6610 Rockledge Drive

Suite 502

Bethesda MD 20817

USA

Email: sales@apl2000 com
Web: www.api2000 com

Dutch APL Association
Postbus 1341

3430BH Nieuwegein
Nelherlands

Tel: +31 347 342 337

