APL2002 at Madrid ...

« Cannon & Smith on Pocket APL
= Madrid Conference Reports

= Coxe on Fractals

» Eke thumps the Gui Quad

* Taylor on RTF generation

Bcs + Daintree on APL.Script and .NET

The Journal of the
| British APL Association

ISSN 0955-1433
www.vector.org.uk

46
60
65
76
95
114

A Specialist Group of the British Computer Society Vol.19 No.2 October 2002

Contributions

All contributions to VECTOR may be sent to the Journal Editer at the address on the inside back cover, Letters and
aniicles are welcome on any topic of interest to the APL community. These do not need to bfa limited 0 APL 1herr‘1es.
not must they be supportive of the language. Anicles should be accampanied by 2s much visual Amat.enal as possible
{b/w ot colour prints welcome). Unless otherwise specified, each item will be considered for publication as 2 personal
statement by the awhor. The Editor accepts no responsibility for the contents of sustaining members’ news, er
advertising.

Please supply as much materizl as possible in machine-readable form, ideally as a simple ASCII text file onan IBM PC
compatible diskette or via email, APL code can be accepted in workspaces from [-APL, APL+Win, IBM APL2/PC or
Dyalag APL/W, or in documents from Windows Write (use the APL2741 TrueType font, available free from Vector
Production), and M3 Word {any version).

Except where indicared, items in VECTOR may be freely reprinted with appropriate acknowledgement. Please inform
the Editer of your intention to re-use maierial from VECTOR.

Membership Rates 2002-2003

Category Fee Yectors Passes
UK Private £20 1 1
Overseas Private £22 l 1
(Supplement for Afrmail, not needed for Europe) £4

UK Corporate Membership £100 5 5
QOverseas Corporate £135 5

Sustaining £300 10 5
Nen-voting Member (Student, OAP, unemployed) £10 1 1

The membership year normally runs from {st May to 30th April. Applicaticns for membership should be made to the
Administrator using the form on the ingide back page of VECTOR, Passes are required for entry to some association
events, and for voting at the Annual General Meeting, Applications for student membership will be accepted on a
recommendation from the course supervisor. Overseas membership rates cover VECTOR surface mail, and may be paid
in sterling, or by Visa, Mastercard or JCB, at the prevailing exchange rate.

Corporate membership is offered to organisations where APL is in professional use. Corporate members receive 10
copies of YECTOR, and are offered proup attendance at association meetings, A contact person must be identified for
all communications,

Sustaining membership ts offered to companies rading in APL products; this is seen as a method of promoting the
growth of APL interest and activity. As weli as receiving public acknowledgement for their sponsorship, sustaining
members reczive bulk copies of VECTOR, and are offered news listings in each issue,

Advertising

Advertisements in VECTOR should be submitted in typeset camera-ready format (A4 or A5) with a 20mm blank border
afier reduction. [llustrations should be photographs (bfw or eelour prints) or line drawings, Rates (excl VAT) are £250
per full page, £125 for half-page or less {there is a £75 surcharge per page if spot colour is required).

Deadlines for bookings and copy are given under the Quick Reference Diary, Advertisements should be booked with,
and sent te Gill Smith, Vector Production, Brook House, Gilling East, YORK Y062 4)J, Tel: 01439-788385.

Email: ap!385@compuserve.com.

VECTOR

dyalog Vi8]

The Definitive APL for Windows ™

v USHELPSSGUTREF (Hanual W, [Documerts]d.(_Dacument].{Rangel). ..
Fie Edt View MWindows Session Log Action QOptions Jooks Help
WDE R EE | B VE|[wQ @S HR jelEr

=] E3

Dualog APL-W Uersion 5.0.0 Al =Mre) R+GETXREF; H;RELIF T p»2
Serial No : 000042 ¢ Pentium " [11 0OHL«3
Tue Jun 20 14:13:54 2000 (21 QPATH«"1"
clear ws [i [¥<] ReQpe™® "*(CP,c"")
JLOAD U:NHELPIGUIREF [4] GET_EUENT _HAP
UisHELPINGUIREF saved Tue Jun 20 (51 "H'OHC"OLECLIENT " "Herce
088 (61 REL+H.Documents.Open'C:»
Help HelpFiles Hanual R {73 H.Uisible+l
JICS Manual tHith REL.Content
i . Hanual FeFind
JFNS F.Style+wdStyleHeacr
ANRLYSE_CHANGES DISPLAY GET_APPLI | :Hhile F.Found*fF.Ex»
UPDATE 15 TeText E
Reading EUENTHAP from U:~HELPIWEU 19 -
| o | Y[F — DyadicBt/.. [Pos 5,14
" Debugger - Hanual .UPDATE {Tid:0] - — =[] x|

(61 H.Ulsibleel B
| ‘Hith REL.Content
€3] FeF ind _|
F,lotule-udliuleleadings
‘Hhile F.FoundAF.Execute'’
TeText
NAME TYPE«2t(~T€¢ORUL4 S »
TYPE="0bject’

UPDARTELI]=F . Style+rwds:

SR LEE

| [Corp T3 8- Harwal i c: _App! [1<w§aoq':‘0};_[urama [ps1:1; JoTo:1 . [OMess

Version 9 - an even better IDE(A)
http://www.dyadic.com

Dyadic Systems Limited, Riverside View, Basing Road., Old Basing, Basingstcke,
Hants. RG24 7AL, United Kingdom.
Tel:+44 1256 811125 Fax:+44 1256 811130 Email: sales @dyadic.com

Microsoft 15 a registercd trodemark and Windows and the Windows Loga are trademarks of Microsalt Comporation

Vol.19 No.2

VECTOR Vol.19 No.2

Contents
Page
Editorial Stefano Lanzavecchia 3
APL NEWS
Quick Reference Diary
APL2003 Information and Call for Papers
British APL Association News
News from Sustaining Members 6
APL Product Guide Gill Smith 12
The Education Vector
Zark Newsletter Extracts edited by Jon Sandles 26
Crossword 35
J-ottings 34: Greed — Patterns for the Imminent
Collapse of Western Capitalism Norman Thomson 38
REVIEWS AND CONFERENCE REPORT
Dyalog APL CE {beta} - First Impressions Ray Cannon 46
If You Go Down to the Woods Teday ...
First Experiences with PocketAPL Adrian Smith 52
APL2002 Conference Reports Camacho, Clark &0
GENERAL ARTICLES
Inner Product Fractals from Fuzzy Logics Angela Coxe 65
A Gui-quad for Graphical User Interaction van Batenburg et al 76
TECHNICAL SECTION
Technical Correspondence 90
Perfect Printing Stephen Taylor 95
A Girl’s Best Friend Phil Chastney 109
Dyalog.Net: APLScript and Things Textual John Daintree 114
Index to Advertisers 143

VECTOR Vol.19 No.2

Editorial

by Stefano Lanzavecchia

“What is it?” asked Arthur

“The Hitchhiker's Guide {o the Galaxy. It's a sort of electronic book. 1t
tells you everything you need to know about anything. That's its job.”
Arthur turned it over nervously in his hands.

1 like the cover,” he said. “ ‘Don’t Panic.” It's the first helpful or
intelligible thing anyboedy’s said to me all day.”

Douglas Adams — The Hitchhiker's Guide to the Galaxy

The kind and enveloping warmth that greeted me and kept me company while in
Madrid for the APL2002 conference was not enough to hide the fact that I felt
something wrong. It was not the venue, although something could be said about
the lack of a place where attendees could sit and talk together; it was not the open
and pleasant atmosphere of the European capital, despite its distressingly high
rate of thefts, attempted and succeeded; it was not the Spanish language that, it's
no secret,] am not very fond of, one of those hard to explain, irrational dislikes.
felt as if there was something missing, something that made even the purely social
aspects of the gathering somewhat duller than expected.

1 am biased but I must admit once more that the highlight of the conference was
Dyadic’s presentation: the not so new anymore but still exciting Dyalog.NET, on
one side, and on the other, project X, finally revealed to be a port to the PocketPC
platform of the full-featured interpreter. Now that we are used to high-resolution
screens it is unclear to me how people will be able to exploit the possibilities of the
ultimate portable device with its cranked screen estate, but it was not so Jong ago
that IBM's CGA ruled in the PC world and there are very bright programmers in
the community of array-oriented programming languages.

It would be unfair to forget APL2000’s blazing introduction to Web Services and
not to congratulate MicroAPL for their reborn APLX, or IBM for their steady
introduction of new features in APL2 and their new pricing policy for educational
purposes. It would probably be fair to forget Soliton’s pathetic presentation on a
feature just introduced in their Sharp APL, a very long hour and a half spent
describing with a detail not even a reference manual gets into, the so-called
control-structures. Still T don’t feel like forgiving the speaker simply because he
warned the audience before he started that it was going to be boring. Let’s face it:
even if some purists still haven’t accepted them, more for academic reasons than
because they would not bring real benefits to APL programs, control-structures

VECTOR Vol19 No.2

are part of the daily routine of most of the APL programmers who attend APL
conferences, so it's hardly a topic worth more than a five minute announcement.
What is really sad is that Soliton is doing a lot of interesting work based on their
Java interface and that they allowed themselves to commit public suicide by
making believe the unaware audience that there’s nothing more exciting in Sharp
APL than “:if” and friends.

In fact, just like Soliton’s show, the conference turned out to be a bit of a let-down,
not because of a real lack of interesting topics that the community could have
brought up, but because of the poor choice. I would not blame the organisers for
this, since even a genius artist would have trouble shaping a masterpiece out of
bad raw materials, and also because the program committee (1 was part of it) did
not do anything to improve the situation when they noticed that the content
would not be up to standard.

Since we cannot change the past, it would be a good idea to at least try and make
the best out of this unsatisfying experience and learn from our mistakes. In fact
those who were disappointed by this year’s conference should be looking forward
to better occasions in the future. Maybe because of its youth, APL2000"s user
conference is still in the improving phase, despite its already good quality, and
has pretty much substituted the SIGAPL conference in the heart of very many
American users. Even Dyalog APL’s users have started attending it, and would
probably welcome a European event, similar in content and organisation, better if
centred around their favourite interpreter. Does this mean that it is time to retire
The (capital “T”} APL conference? I don't think so, at least not without giving it
another chance. 1 believe that fragmenting the community more than it already is
would be detrimental to the future development of array oriented languages. It's
only through the exchange of experiences and ideas that there can be progress.
This is one of the reasons why I am very much in favour of expanding the scope of
the conference to other array oriented languages: J, K and the old but new A+,
which are closest to APL but also the other ones. Berlin2000 featured a few,
academic but promising ones, and the paper by Paul Cockshott on Vector Pascal
was the best research paper presented in Madrid2002. Now that the rest of the
computing world, outside the laboratories of abstract research, is starting to see
the benefits of the think-array philosophy when providing solutions for everyday
business issues, now is the time to mix our experience, hopefully still supported
by an ageless enthusiasm, with their new and fresh approach.

VECTOR Vol.19 No.2

Quick Reference Diary

Date Venue Event

27-28 March, 2003 Helsinki, Finland Forests in Finland
2 day meeting, details to be announced.

11-14 June, 2003 San Diego, USA FCRC:APL2003 joint event
See Call for Papers on page 6

November 2003 Naples, Florida APL2000 User's Meeting.
Date to be announced
Location Naples Beach Hotel as usual.

Dates for Future Issues of VECTOR

Vol.19 Vol.19 Vol.20

No.3 No.4 No.l
Copy date 6th Dec 7th March 20th June
Ad booking 13th Dec 14th March 27th June
Ad Copy 20th Dec 21st March 4th July
Distribution January 2003 April 2003 July/Aug 2003

4
Vector Back Numbers

Back numbers of Vector are available from:

British APL Association,
¢/o Gill Smith,

Brook House, Gilling East,
YORK Y062 4]]

Price in UK: £10 per complete volume (4 issues);
£12 {overseas); £16 {nirmail) including postage.

Plense note that Vol,1 No. 2 I now at of stack.

VECTOR Vol.19 No.2

APL2003: Stretching the Mind!

FCRC: APL2003 Call For Papers

SIGAPL is pleased to announce that APL2003 will be held in San Diego, California
from Wednesday June 11 through Saturday June 14, 2003. This year we will
participate in the 2003 Federated Computing Research Conference,

FCRC is an umbrella for over a dozen ACM-sponsored conferences, Other FCRC
events span June 7-14, 2003. Quoting from the FCRC Web page:

The Federated Comtputer Research Conference (FCRC) assembles a spectrum of
affitiated research conferences and workshops into a week lang coordinated meeting held
at a contmon thne in a common place. This model retains the advantages of the smaller
conferences, while at the same time, facilitates commumication among researchers in
different fields in computer science and engineering. Mornings of FCRC week will
begin with joint plenary talks on topics of broad appeal to the computing research
commumity.

FCRC offers a broad canvas for the exchange of ideas, development experiences,
and tools. Compare yours to the world! If you have an application, this is the
place to compare notes with others who have done it in other ways, and bring
their own perspectives and experience. !

APL2003 provides us with the opportunity to showcase APL and APL
applications to our professional peers; we believe a number of the other
conferences at FCRC offer exceptional opportunity to exchange knowledge and
ideas with our professional peers:

- EC'03: The Fourth ACM Conference on Electronic Commerce
MOD/PODS: ACM SIGMOD/PODS 2003 Conference

* PLDI: ACM SIGPLAN Conference on Programming Language Design and
Implementation

PPoPP: ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming
+ PADS; Parallel and Distributed Simulation Workshop

- SPAA: ACM Annual Symposium on Parallelism in Algorithms and
Architectures

If you want to see how APL really measures up, contribute your best experience,
and see how others really react. Serve up the best you can at the food court of
ideas from the APL kitchen.

VECTOR Vol.19 No.2

The FCRC web site is located at http:/ /www.acm.org /fcrc.
The SIGAPL conference committee invites you to submit papers for review on

applications
techniques
education

+ history

language design and enhancement

and other topics related to APL, A+,], K, Matlab, Mathematica, Nial, S-Plus and
other array programming languages. The users and advocates of different
language that are heavily oriented toward array programming have many
common values. APL2003 can be an event where we come together and face the
future.

Themes you may wish to explore include (but are not limited to) are the following:

Practical applications using arrays
Interfaces between APL and other languages
« Array-based programming in the classroom
+ GUI Programming using array-based languages
APL on various platforms (Windows, Unix, Pocket PC})

« Similarities and difference among array programming languages

Please submit a 1-page abstract by January 31, 2003. Final drafts for review are
due by March 1, 2003. We also invite those interested in preparing workshops,
tutorials, poster sessions, panel discussions and other items of interest to contact
Kevin Weaver, program chair:

Kevin Weaver - 14849 Horseshoe Trace - Wellington, FL 33414
(561) 790-6419 - fax: (561) 790-6425 - e-mail: kevin@modelfitness.com

VECTOR Vol.19 No.2

APLX .

MacOS 9 Windows 95/98/ME Linux
MacOS X Windows N 00/XP AlX

%y

¥ APLY Sesston; EXPLOREHELP [=] (3]

File Edit Debug Toolz Window Help

RPLK for Windows

Copyright (C) 2001 MicroRPL Ltd o

WS Size = 20.5MB, Verston = £.00

CLEAR WS

JLOAD EXPLGREHEL#
q

SAVED 2001-0f
FIND_TONE L]

File Edit Debug Toolz Window Help

éi‘& Breakpoint hit HEﬁm m @ E @]

|PEEEAA Co1 RCLEVEL FIND TOPICS N;F ILE;COMP;COMPZ;C;1;000 -
i 11 A Loop through the Help file finding all topics [}
|
\
I

£2] AN i1s file number to start at
L31 n LEVEL is (optional) starting level
[43] A Returns nested matrix of (Topic name) (Level) ¢

YV WS Explorei el A Recursiuve

File Edit Tod 81 a i
> [71s% R«0 3Ipr0
o (8] Cel o OI0e1 '
¥ . €91 +fO#OMC 'LEVEL'JAKL+l & LEVEL«O |
—FIND_TOP] (107 & |
 HAKEHTHU L3117 n Read the component.]
: ~TRANSLAT] [121 A MNumeric scalar = nsw fila number to search on u
B Yar iables C13] a Character matrix = list of topics, at
= APL_OFF [141 p Character vecter = the asctual help
~ APL_ON C15] L1:COMP+BCHELP_VOLIM,C
1 I~ APL_PROD) [16] -(2=DR COMP)/NUMERIC
- APL_STHB] (171 +(1 2=pRCOMPI0,LIST :
] ~HDR_OFF [181 'Invalid help f1le’' OERS 99 ¥
- HDR_ON £191 =
- HEADER 24 £207 NUMERIC:ReR, C1ILEVEL FIND_TOPICS COMP b

[KB SidAFL J[Fr: ReLEVEL

M
{m—”?n R+HAKESTHL B] T -

The cross-platform, full-featured, user-friendly,
GUl-enabled, cost-effective APL. New! Version 1.1
Check it out at hitp://www.microapl.co.uk/apl

APLX and MicroAPL are trademarks of MicroAPL Ltd. Other trademarks acknowledged.

VECTOR Vol.19 No.2

BAA: Sustaining Members’ News

MicroAPL Ltd

The new version 1.1 of APLX, which was previewed at APL2002 in Madrid, is
now shipping on all platforms (Windows and MacOS, plus server editions for
Linux, AlX, and Windows servers). The full list of new features is too long to
detail here, but highlights include:

+ Support for the ‘structured control’ programming keywords (: I'f etc).

+ Support for using the double-quote as an alternative to the traditional single-
quote character for delimiting APL character vectors.

» ODISPLAY and }DISPLAY, as well as a new Display window which shows you
the structure of an APL array with just a click of the mouse.

+ Powerful graphics drawing, bitmap and picture display, and animation
facilities, using the Draw method.

* Support for Windows OCX/ActiveX controls, embedded OLE documents, and
OLE servers. For example, you can control and exchange data with Excel, or
include a Word document inside a W I window and program it from APL.
There is also a Control browser which allows you to browse through the
external classes installed on your machine.

+ The maxsize and minsize properties allow you to put constraints on OWT
window sizes.

» The RichEdit control is now available under MacOS as well as Windows.

+ A new keyboard-customisation dialog allows you to edit your own keyboard
layout by dragging symbols on to the keyboard picture.

» Speed-ups to various primitives, especially matrix divide under Windows.

» Improved documentation, with fully searchable HTML help now available
under MacO5S as well as Windows. Context-sensitive help (using FI or the Mac
Help key) is also improved, recognising OvI keywords and not requiring the
word at the cursor to be selected.

In addition, we have included the promised ‘packager’ feature which bundles
your workspace with a free runtime edition of the interpreter. To make an
executable application from your APL workspace, just choose Save As... from the
File menu, and select ‘Executable (packaged) ws’ as the file type. {Under
Windows, you also need a DLL, downloadable free of charge from our website).

VECTOR Vol.19 No.2

APLX Version 1.1 runs on all Windows operating systems from Windows 95
through to XP, and on all MacOS versions from 8.6 onwards, including the new
MacO5 10.2 ‘Jaguar’,

To find out more, you can download documentation on the new features, or the
complete new manuals in PDF form, from http://www.microapl.co.uk/apl.
Time-limited evaluation versions of the full product are also available.

Many of the version 1.1 improvements have been in response to the excellent
feedback we have received from APLers around the world. Please keep the
suggestions coming - the next major release will be version 2.0, which will include
some unique new development-environment features as well as important
language enhancements and new OWI classes.

Causeway Graphical Systems Ltd

At Madrid, APL2C and Causeway agreed that it would be good for both of us to
work more closely together. The APL2C engine is ideal for delivering Causeway’s
GraPL.net server product as a single lightweight DLI, on the Windows piatform,
and also allows us to ship a command-line EXE file on any of the common Unix
systems. The RainPro source can be automatically converted to run in APL2C, and
then compiled and linked to make a COM server, which is much lighter to load
than a full APL system with interpreter and workspace.

We also see the potential to offer APL developers a service which will take
existing V5 APL or APL2 code and wrap this as a single-file DLL with the
appropriate COM wrapper automatically constructed. Before we can do this, we
would like to prove the technology as thoroughly as we can, and the best way of
doing this is to ship a good subset of RainPro and NewLeaf in this format. We will
also be quietly working through the test examples in the ISO APL Standard (and
Extended APL Draft Standard) which will ensure that the service we offer can
reliably compile any standards-conforming (Gui-free) APL code.

Please do not expect any quick results from this project. We already have a single-
file DLL version of RainPro which runs all our test charts correctly (and fast) but
there is a long way to go before APL2C will be available as a fully-supported
Causeway product for general-purpose use in compiling arbitrary APL2 code, We
need to design the structures which will automatically generate the COM
interfaces from your public functions, and test and retest the engine before we feel
we can offer it for use to the APL community.

10

VECTOR Vol.19 No.2

Jsoftware Inc. n“no“ncl“g
— 19235 Covington Ct,
Shorewoed, MN 55331

info@jsoftware.com lsnﬂware
Tel {952) 470-7345
Fax (952) 470-9202 -
- Version 9.01-

3 Watch our weh site for the most
& advanced Isoftware release
| yet— version 5.011

@ . Session Manager, window driver,
i IDE, and GUI support in Unix and
. Linux
+ GUI event support now extended to
B closely malch VB and Java
3 + Improved online documentation
3 . Performance improventents
. Online documentation availahle in
| hardcopy hooks
+ New dehug facilities for Pro users

www.isoftware.com

VECTOR Vol.19 No.2

The Vector Product Guide

compiled by Gill Smith

VECTOR's exclusive Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups ('poa’ indicates “price on application’):

* Complete Systems (Hardware & Software)
* APL and J Interpreters

* APL-based Packages

+ Consultancy

s Other Products

» Overseas Associations

* Vendor Addresses

* World Wide Web and FTF Sites

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

Your listing here is absolutely free, will be updated on request, and is afso
carried on the Vector web site, with a hotlink to your own site. It is the most
complete and most used APL address book in the world,

Please help us keep if up to date!

All contributions and updates to the Vector Product Guide should be sent to:
Gill Smith, Brook House, Gilling East, York, Y062 4]J. Tel: 01439-788385,
Email: apl385@compuserve.com

12

VECTOR

Vol.19 No.2

APL INTERPRETERS

COMPANY
APL Borealis Inc.

APL Systems IDC SL

Beauliful Systems

Dinosoft Oy

Dittrich & Pariner

Dyadic

DynArray

FAPL Lid

IBM APL Products

Insight Systems

J Austria

PRODUCT PRICES(E)
Dyalog APL poa
APL2000 poa
APL+WIn v3.6 Full version 1895
Upgrade to v3,6 from v3.x 474
1o v3.6 from APL+Win v2.x 5034
to v3.6 from APL™Plus lll wl.x 1249
Migration to v3.6 from APL*Plus (I

or APL+Plus PC 1464
APL+Unix

Dyalog APLW for Windows poa
Dyalog APL for Unix poa
Dyalog APL/W for Windows poa
Dyalog APL for Unix poa
APL+Win poa
Dyalog APL poa
IBM APL products poa
Dyalog APL for DOS/386 595
Dyalog APLAY for Windows 995
Dyalog APL for Unix £95-12,000
DICE for Windows poa
I-APL/PC or clones 8
I-APL/BBC Master &
{-APLIArchimedes B
TryAPL2 free
Workstation APL2 V2 $1500
Version 2

APL2 Version 2 poa
APL2 Applicatlon Envt ¥n2 poa
Cognos/APL200C Inc poa
Dyadic Systems Lid. poa
1BM poa
J poa
Byalog APL poa
Causaway Products poa

DETAILS
Distributor of Dyalog APL products from Dyadic
Distributor of APL2000 products

A 32-hit Windows-hosted interpreter that runs under Windows
O5/SBIMEINTIXP

(Please contact us for details,)

US Distributor of Dyalog APL products from Dyadic.
See Dyadic llsting for product detafls.

Finnish distributor of Dyalog APL products.

See Dyadic’s listing for product details.
Cognos/APL2000 Ing products

Dyadic Systems Ltd. products

Second generalion APL for DOS.Runs in 32-bit mode, supports
very large workspaces. Unique "window-based” APL
Development Environment and Screen Manager. Reguires
386/486 based PC of P5/2, at least 2Mb RAM, EGA or VGA,
DOS 3.3 or later.

As above, plus object-based GUI development tools. Requires
Windows 3.0 or later.

Second generatlon ARL for Unix systems. Available for Alos,
Apolio, Bull, Deg, HP, IBM 6150, 1BM RS/6000, Masscomp,
Pyramid, NCR, Sun and Unisys machines, and for PCs and
PC/2s running Xenix of ALX. Oracle interface available for IBM,
Sun and Xenix versions.

Softwara development kit which includes an APL interpreler as a
DLL and the ability to run and link existing and new APL code to
non APL code such as VB, C/C++, Java and integration with
various Windows software applications and database packages
such as MS Office.

LSO conforming interpreter. Supplied only with manual (see 'Other
Products' for accompanying books).

As above

As above

APL2 for educational or demenstration use, Write, fax or Email to
APL Products; specify disk size desired.

AlX, Linux, Solaris, Windows
Product 5724-874, Part Number 45P75314

Product No, 5688-228. Full APL2 system for 5/370 and 5/380
Product No. 5688-229, Runtime environment for APL2 packages
Leading distributer of APLZ000 products in Denmark

Leading distributor of Dyalog APL products in Denmark

Leading distributor of IBM APL & GraphX products in Denmark
Distributor for Austria and Switzerdand

Distributor

Distributor

13

VECTOR

Vol.19 No.2

Structura) Analysis Soflware poa

JSceltware Inc, J on the Web online registration ...

J Prefassional {onfine reg.) 3885
J Standard {online reg.) Free
Bocks and accessories
J Dictionary 350
J Phrases 350
J Primer 350
Fraclals, Visualization and J $80
Concrete Malh $40
Exploring Math 350
Lescasse Consulting APL+PC poa
APL+Unix pea
APL+DOS poa
APL+Win poa
Ovyalog APLIW poa
MasterWark Software Manugistics Producls and IS] poa
MicroAPL APLX for WindowsiMacOS 499
APLX Server Edition poa
Oasis Dyalog APL poa
APL*PLUS poa
APL.E8000 poa
APL2 poa
Omega Zeto poa
Optima Dyalog APLAW 985
RE Time Tracker Oy AFL+PC (APL*PLUS/PT) poa

APL+DOS (APL*PLUS)
APL+WIin (APL*PLUS 1II), APL+Link

APL+UNIX
APL'PLUS Sharefile
Soliton Asscciates SHARP APL for 0S/390 poa
SHARF APL for UNIX poa
SHARP APL for Linux poa
Strand Software Canada
Al APL*PLUS products poa
Dyadic and JSoftware products poa
USA

Dyadic and JSoftware products poa

Complate package by I1G Zenkner&Handel to perform struciural
analysisfengineering calculations. Also suitable for dynamic
prablems, e.g. earlhquake simulation.

includes manual set and one year of updates

Free tor download only

Lescasse Consulting is the exclusive APL2000 distribulor in
France and also distributes in Switzerland and Belgium.
Call for prica quotes.

French distributor for Dyalog
New Zealand distribuior

Cross-platiorm APL development envircnment with GUI
programming facilities. Interpreter modelled on APL2. Available
for Windows 95/98/ME/NT/2000/XP, Mac ©S 9 and Mac OS X,

For running large multi-user APL applicalions on x86 Linux,
RS/8000 AlX, and Windows NT/2000.

Dyadrc Systems

Manugistics

MicroAPL Lid

IBM

A "small slmple and fast® alternative to APL

Fully fledged Windows development envirenment.

Complete APL+ and Statgraphics product range and links 1o
various 3rd party products.

for IBM OS/290 mainframes
for Sun0S and IBM ATX
for Intel Linux

All APL*PLUS products including upgrades and educational,

14

VECTOR

Vol.19 No.2

APL PACKAGES

COMPANY PRODUCT PRICES(E)
ADAPTA Softwara MP$ poa
F85 poa
CRP poa
Adaplable Systems FLAIR poa
Adaytum Adaylum e.Planning poa
APL Software\Services
APL Ulilities poa
APL Systems IDC SL APL+Linkpro 3.0 New System 646
Upgrade o v3.0
from APL+Linkpro-32 280
from APL-Link or APL+Linkpro 474
GraphX {Includes Chartx) 599
GraphX Lite (No distribution) 340
SPREAD (An APL grid control) 86
QPLOT {x.y plotting in APL) 47
QWIN 215
Beautiful Systems ASF_FILE $399
NAT_FILE $209
DBF_FILE 299
SF_READ poa
Causeaway CausewayPro tor Dyalog/w 400
RainPro Business Graphics 250
Newleaf for Dyaleg and +Win 400
Cinerea AB CRCHART 260

DETAILS

Master Production Scheduling
Forecasting and Budgeting System
Distribution Requirements Planning

Finile loader and inleractive rescheduler. Customisable full-
function scheduling system, (Available outside Australla by
special arrangement only.)

Adaylum e.Flanning offers a Web-based sclution that combines
planning, forecasting, budgeting, modelling and reporting in a
single, integrated application.

Software: mostly AWS tor DOS, utliittes for most APL
interpreters, Public domain APL*Plus v1{) with an-screen
documentation and interactive iutorials. APL Conlerence
Software. Books: APL user manuals for STSC, IBM, and Sharp,
Request email cataleg from dick.holt@juno.com.

Database Access SQL Clent for OBDC

{Runs APL+DOS functions In APL+Win)

Dyalog APLAY auxiliary processor for access to APL*PLUS/PC
APL component files {*.ASF).

Dyalog APL/W auxiliary processor which emulates the
APL*PLUS/PC quad-N nalive file subsystem for access to the
DCS file systern.

Dryalog APLW auxiliary processor for efficient block mode access
to dBASE format files. Designed to get large amounts of data in
and out of dBASE. Not suited for random access to small
amounts of data {t does not handle keys).

Dyalog APLAY functions to read APL*PLUS dala objects of any
type or structure from *.SF styla component files created by
APL*PLUS [l or lll,

Causeway application development platform for Dyalog APLAW,

The ultimate graphics toolkit for the APL developer. Adds 3D
charting capability, Web publishing and gliphoard support to the
shareware product, Charts can be included in NewLeaf reports.
Functionally compatlble across Dyalog/W and APL+Win.

Frame-based reporting toc! with comprehensive lable-generation
and text-flow support, Offers multiple master-paga capability,
bitmap wrap-around and on-screen preview with pan and zoom.
Fully supported on Dyalogh and APL+Win

Organization chart package for IBM APLZ/PC, Full & heavily
commented sourca code included - free integration into other
applications. NB: ASCI output wilh line-drawing (sami-graphic)
characters for boxes.

15

VECTOR

Vol.19 No.2

CODEWORK

CoSy

DynAmray

HMW

FAPL Lid

1BM APL Products
Insight Systems

JAD Scftware

J-way TANGRAM

K.CoSy

DynawWeb Server

DynaHarry

Dynialink
4XTRA

Inca

Maya

Aztec

Educationa! workspaces

poa

$30 % yrsub

poa

poa
poa

poa

poa

poa

A Graphlcat Statistical System $250

Causeway

poa

Z-way TANGRAM is a DSS-OLAP product, basically a powerful
and versatile handler of multi-way tables {also known as
hypercubes). It entails 46 analysis modules, including
camputations, cuba merging, sensitivity analysis, time
Inlefligence, free format queries, HTML and LaTeX outputs.
Current version is 7.0 At the lime of writing, the product is
available on Dyalog APL 8.3.1 for Windows 95/88/NT. Future
plans include an APL+WIN version and later a LINUX versior.

K.CoSy is 2 general purposa computing and pregramming
environment constructed, all in open code, in Arthur Whitney's
very high level, yet structurally transparent Array Pragramming
Language, K, and its tightly coupled User Interface. K.CoSy is an
extremely productive environment in one of the mast powerful and
fastes! of APL's progeny, and therelore, lixewise, of all languages.
K.CoSy provides a workspace-like interaclive development
environment pravicusly impessible in K. Because of its unlque
apen construction within the language itself, this environment is
clearly compstitive in a large domain with the APLs from the other
vendors. K.CoSy notepad nature, interactivity, and open K code
vocabulary make leaming Arthur Whitney’s K far less daunting
and far more preductive than Its raw console, or any external
seripting method. i you are a client of Kx Systems , orare
Investigaling the possibiliies, Contact us. See CoSy/K/CaSy for
more information.

A weh server providing web based access to applications running
on the DICE interpreter from DynArray, er on an IBM mainframe
running APLZ2,

A DS8 system which offers the next generation capabilities for
current APLDI, IC/E and IC/1 users, #t comes with ROLAP
capabifilies, multisystem access to a wida variety of databases
and data warghouses,

An ODBC client inlerface for DICE and IBM APL2 programs.

Networked, Windows/Unix based Front End and Middle Office
Foreign Exchange and Money Market Dealing System. Scalable
from 1 user to 120+,

Software Change Management System. Enables the user to co-
ordinate development work from several sources, resolve
clashes, promote work items for testing and conflgure releases to
a live environment.

APL cede fila manager. A comprehensive suite of lools giving a
muli-window IDE style interface to fite based APL code. Ofters
features such as copying from file to file, object comparison,
string search, style formatting, hot-spot editor for filed objects
{including vatiables), etc.

System shell for APL development. Manages real-ime and batch
applicalions across multiple platforms. Offers standardised error
trapping, job scheduling, task communication and recoveryfreslart
features.

PC format disks with the examples from: Thomsaon, Espinasse
(Kits 1-4), Kromberg, Jizba & FInnAPL. All the examples to save
your fingersl

for DOS, Praduct Number 5764-009
Leading distributor of Causeway products in Denmark

Al our ofd protucts are now either OEM'd, In the public domain, out of dale, or ail of the above, We'll he back!

JAD SMS

poa

JAD SMS is a multi-user software management system for
Dyalog APL™ based on shared, hlerarchical databases. JAD
SMS databasas let you keep historical versions of apl items as
well as attributes such as fimestamp, user name and
documentation. The software includes a graphical user interface
as wall as specialized functions for inclusion in applications. No
charge for single-user version; $100/user for multiple users

16

VECTOR

Vol.19 No.2

Lescasse Consulling

Lingo Allegro

Qualedi

RE Tima Tracker Oy

Warwick University

APL+Win Manthly Tralning

$600

Advanced Windows Programming 385

Weighahead SystemsWelghahead Windows.

Zark

DLL parser for APL $250
Delph! Forms Translator $195
APL+Link Pro poa
SQAPL Pre poa
RainPro poa
Newleaf poa
GraphX and ChartFX poa
Formula One and Dyalog APL $95
FACS poa
QWIN paa
ODBCHzZT poa
Qualedi $850-35,500
uITaw poa
AJGRAPH poa
ECCO PRO with APL poa
NEWT TCP/IP SDK with APL poa
DB+ poa
BATS 250
FAB free
Welghing System {3WS} poa
APL Tutor (PC) 5209
APL Tutor (MF) $5000
Zark ACE 369

APL Advanced Techniques.... $59.95

Communications

$200 pe, $500 mf

Download 50+ page dosument about APL+ programming each
month. You also get ane or more warkspaces full of re-usable
APL code and sometimes additional files or products,

200-page hook plus companion disk on interfacing APL and
Delphi. Gontains full coverage of Delphi-2, +Win and Dyalog.

Parse any Visual Basic DLL declaration file into a set of quadNA
definl{lons. Turn constants and structures into APL variables.
Available for APL+Win and Dyalog/W.

Design forms wilh Delphi and turn them automatically into APL
pragrams which recreate the sama form {+Win and Dyalog/W).

ODBC interface for APL+Win
CDBC interface for Dyalog APLAW

Highly customisable 2D and 3D publication graphics for APL+Win
and Dyalog APLW

Page layout and printing tools for APL+Win and Dyalog
High-quality business graphics for APL+Win

100-page book + companion disk on how to use the Formuta Gne
VBX with Dyaleg APLAY

EMMA-ike interface to DB2 or ODBC databases
Legacy DOS Windowing support for APL+Win
IBM AP127-Fke QDBC Interface for APL+Win and Dyalog APLAY

Electronic Data Interchange (EDI) translation software for the PG,
with strict compliance checking.

Comprehensive high-level Windows User Interface tibrary for
AFL+Win and +II v 5.1, Comprehensive spreadsheets, replicated
fields, special field types, etc. 16 and 32 bit versions available.

Graphpak-compatible 20 graphics package for +Win and +DOS.
Includes mulli-window support, print and metafife support. No
DLLs required.

Leading greup and personal information management system
with comprehensive customising. Supplied with sample +Win
workspace to inlerface to ECCC databases via DDE.

Lead TCP/IP SCK with interfaces to all prolocols. Supplied on 3
CD ROMS together with a sample +Win workspace,

Database interface for APL+DOS under Windews. Allows
combining characler-based APL applications with ODBC-
compliant databases such as Oracle and SQbL-server.

Menu driven system for lime sefies analysis and forecasting using
Bayesian Dynamic modelling. Price Is reduced 1o £35 for
academic institulions.

Tralning program for the above.

Recips Weighing System for Manufacturing Industries,
Pharmaceulical, Cosmetics, Foods ete. Waorks without keyboard
or mouse. Uses Electronic Balances, Laser scanners, bar codes
and labal printers,

APL computer-based training. Available for APL*PLUS PC &
APL*PLUS II. Demo disk $10.

Mafhframa versien.

APL continuing education. APL futor news and holline phone
suppert,

488pp. bock, {ISBN 0-8619067-07) including 2-disk set of utility
functions (APL"PLUS PC format).

Move workspaces or files between APL environments.

17

VECTOR

Vol.19 No.2

APL CONSULTANCY AND DEVELOPMENT

COMPANY
Adleas

Andrews

AFL Borealis Inc.

APL Solutions Inc

APL Syslems IDC St Consullancy

AUSCAN Software

Camacho

lan Clark

Ray Cannon
Causeway
Paul Chapman

CODEWCRK

CoSy

David Crossley

Dinosoft Oy
Dultrich & Partner

Dyadic
DynArray

Evestic AB

First Derivative
Analytics Lid.

General Software

Godin London ing

HMW

Hoekstra Systems

PRODUCT PRICESI(E)
Consultancy poa
Cansultancy poa
Suppert and Developmeant poa
Consullancy poa

poa
Consultancy and Training poa
Consultancy poa
Consultancy poa
Consultancy poa
Consultancy and Training poa
Consultancy 250-500
Consultancy poa
Consultancy poa
Consultancy poa
Consultancy poa
Consultancy poa
Consultancy poa
Consubtancy pea
Consultancy poa
Consultancy poa
Consultancy from 200
Software Development poa
Consultancy poa
Consultancy poa

DETAILS

Development, maintenance, converston, migration,
documentation, of APL products in all APL environments

APL programming and analysis, algorithms, tree processing and
design programs for craft work.

APL Software Support and Development. Speclalisis since 1879
in Sharp APL, APL*Plus, APL+Win, Dyalog APL

APL systems design, development, maintenance, documentation,
testing and training. Providing APL solfutions since 1986,

Cansultancy and mafntenance available by retainer or on call.
APL software development, training

Manuals; feasibility reports and estimales; analysis and
pregramming; APL and MS Windows applicalions; Sharp, IS!
APL, APL*PLUS, APL2/PC and other APLs spoken. Fixed price
systems a spaciality

Interfacing APL, VB, C/C++, AcliveXiCOM. Screen design and
documentation. National language porting.

APL, C, Assembler, Windows, Graphles: PC and mainframe

Onesile training for Causeway, RainPro and NewLeal.
Customlsation and enhancement to meat local needs. Coda
review and pre-implementation check of Causeway applicalions.

24-hour programmer; APL, Smalltalk, C; Windows front end
design a speclality.

Development, maintenance, migration, documsentation of APL
applications. Speciallty: info systems for top executives, intarnset
applications, ‘

CoSy.com, Goherent Systems, provides rapid development In the
K languags and associated dala base products, with a partlcutar
interest in quantitative (financial) medelling.

Exparienced in large APL system developments since 1969 for
PC or mainframe.

Specialised in very large databases.

AFL programming and analysis; APL warkshops and raining on
the job

APL and Unix system design, consuitancy, programming and
iraining.

DynArray offers consulting in the areas of DSS, Y2K and APL
programs upgradefconversicn io modern Web enabled platforms.

Excellent track record from 15+ years of APL applications in
banking, insurance, and education services. All dialecis, platforms
and project phases. SCL expertise.

Analysis, desfgn, prolotyping, development & testing of APL
{especially financial) applications: Sharp, Dyalog APLAW.

Over 20 years experience with every version of APL, large
mainframe systems and small PC based programmes.

We have applicalions in the food manufaciuring field, fravel
agency and airline bookings field and in product fease
managemenl.

System design consultancy, programming. HMW specialize in
banking and prototyping work.

APL censultancy, programming, efc. Also UNIX system
administration

18

VECTOR

Vol.19 No.2

Michael Hughes Consultancy

INFOSTROY Consultancy

poa, compstitiva

Insight Systems Consultancy poa
JAD Software Consuliancy poa
KK Consultancy and

software development poa
Lambent Technolgy Consuitancy poa
Phil L ast Cansuliancy poa
Lescasse Consulting Consultancy poa
Lingo Allegro Consultancy poa
Lucas Solutions Consultancy poa
George Macl.eod Consuitancy poa
Mackay Kinloch Ltd Consuliancy poa
MasterWork Software Gonsultancy poa
Milinta Inc Consultancy poa
Eliis Mazrgan Consultancy 250-500
Qasis Ceonsuliancy poa
Omega Computing Consultancy poa
OCptima Consultancy poa

APL consultant with 20 years experience with all versiens of APL.
| can creale your dynarnic Web sites using the full power of APL
working with Microsoft 1S (Intemet Information Service) on
Windows NT ar 2000, 1 alsc undertake Systemn design,
Programming and Maintenance on all platferms, particuarly MS
Windows.

Broad experienca in varlous APL platforms, Special skills and
knowledge in developing complex applications for investment,
financial and construction markets. Implementation of hybrid
solutions based on APL, Delphl, C++, VBA, SQL servers.

We have experience with just about every APL system and
platform In common use during Lhe last 20 years, from SHARP
APL under MVS or Linux to APL+Win and in particular Dyalog
APL under Windows 9%, NT or 2000. If you have decisions o take
about adapting your APL application to take advantage of
emerging technologies, or would like your strategy reviewed, give
us a call. We have extensive experience in all areas of APL
development, from iegacy systems, up, down and sideways
migratians, to the development and support of shrink wrapped
solutions based on APL. Even if we don't have time to do the
work ourselves, we will know where to find semecne who is an
expert in your version of APL and your application area, on your
continent,

Systems design and development. project management, technical
manuals, finandial and actuarial experlise in APL.

APL-based data managemenl: conversions, ad hoc-analyzing
toals, well-interfaced methods for defining, precessing and
browsing of mulli-dimentional reporis, Rapid custom software
development based on proven modular toolset zpproach.

APL programming, consulting & training; web design and
construction.

APL consukancy, modelling and programaning.

A range of consultants, experts In Windows programming, with
APL+WIn and Dyalog APL/W. More than 100 major APL
applications already developed. We all have additional expertise
In Formula One and Delphi.

General APL consulting, internet websile development, migration
and downsizing, periormance tuning, education and training.

Rates depend on lask and lacation.

Deslgn and programming of naw APL applications. Enhancing
and mainlaining existing APL applications. Porting existing APL
applications from one APL system to another. Supporting users of
APL applications, Experienced on both maintrame, UNIX and PC
APL interpreters.

Design, analysis and programming for banking, insurance and
pensions, finarcial planning and modelling, corporale
perfarmance and legal reporting

Caonsulting and .} programming for econometrics and statistics in
public policy, health and food industries.

Design, development, maintenance, conversion, documentation in
all APLs, most APs and some specific Sharp producls (LOGCS,
VewPaint, Retrieve). Experienoe in mult-user, multi-task
systems, databases, Windows programming.

Business Forecasting & APL Systems.

Expertise in APL system design, Project management,
conversion, migration, tuning; for all APL versions {10+ years
experience)

APL consultancy, programming, etc.

A range of consultants specialising in all areas of pharmaceutical,
industrial and financial systems with 5-15 yrs exparlence on both
PG and mainframe.

19

VECTOR

Vel.19 No.2

RadSys Tachnologies Consultancy

Resources & Results Gonsultancy

RE Time Tracker Oy Consuitancy

Rex Swain Consultancy

Rochester Group
Shepp & Associales Consukancy

Consullancy

Snake Island Research Inc

Consultancy
SovAPL Consullancy
Strand Software Consullancy

Sykes Systems Inc Gonsultancy

Weighahead SystemsConsultancy

Stephen Wynn Consultancy
OTHER PRODUCTS
COMPANY PRCDUCT
Adfee Employment
APL-385 Typefaces
APL Borealis Inc. APL Training
ComLag Comic-Logger
HMW Employment
FAPL Ltd Books

Qasis Tralning
Renaissance Booksellers.

Dala Systems.

poa

poa

poa

poa

poa

poa

PRICES(E)

poa
poa

poa

$25.95+p&p

poa

Areas of expertise: financial systems, risk analysis systems,
healthcare systems.

Knowledge management company builds decision support, data
warehouse, dala mining and slrategle planning systems for
CFQ's, GEO's, and seriior management, using our Rapid
Application Davelopment (RAD) metheds and tools, Extansive
experience in large-scale system development and ad hoc
executive support for Fortune 500 clients.

APL application conversions, APL Windows interfaces, APL o
APleve! Interfacing ta any systemn under Windows, TCP/IP
nelwork and database connectlvity.

Independent consultant, 25 years experience. Custom software
development, PC and/or mainframe,

Speciafise in MIS using Shamp APL

APL applications development and consulting, especially in the
travel industry, especially on small computers. 25 years
experience In APL programming.

APL interpreter and compiler enhancements, intrinsic functions,
parformance consulting. APL parallel compller APEX is giving
very good inftial performance tests with conveolution somewhat
faster than FORTRAN.

Offshore APL development service.

Advice on migrating to and from all flavours of APL and hardware
platforms, Full-screer: inlerface implementation, APL utililies,
benchmarking, efficiency analysis, actuarial software, system
development teols, valvation, pricing and modelling systems.

Completa APL services specialising in audit, oplimisation and
conversion of APL syslems. Excellent design skills. All dialects
and platforms. 17-23 years experience.

Specialising in industrlal systems. Links to PLCs, laser scanners,
bar codes, weigh scales, label printes etc. Also programmable
hand held scanners.

Most experience of financial planning, and mathemalical areas:
operational research, quality control, experimental design.

DETAILS
Cantraciors and permanent employess
Variants of the APL2741 typeface available 1o specification.

Hands-on courses in Infroductory, Intermediate, Advanced and
Windows APL. Courses are customized and flexible, and may be
delivered on-site, with strong emphasis on methods for efficient
and malntainable APL systerns development.

APL*PLUS 1l comic-book nventory system, Shareware version
avallable on America OnLine.

Contractors and permanent employees placed.

I-APL stocks books wrltlen to go with the |-APL inlerpreter and
some APL Press books. For a list write to 11 Auburn Read, Bristol
886 6L3, ring 0147 573 0036 or email

160612 1057 @compuserve.com.

Introduciory courses in APL
Advanced courses for different APL versions

The widest range of APt books avallable anywhere. See Vector
adverfisements.

20

VECTOR

Vol.19 No.2

Right Seat Software Vox Proxy $199 (comm) Vox Proxy is authorware for PowerPoint{r) 2000 or 2002 which
allows the use of Microsoft Agent Technology (3D talking
animated characters) within slide shows. VP appears on
PowerPoint's main menu and provides editing side-by-side with
slides. Automated script-wiiting provides control of PowerPoint,
allowing the use of characters for live presentations or fully-
aulomated tulorals, demos, or training programs. Qplional CD
Prep program allows the user to creata auto-starting CD's that will
play on any verslon of PawerPalnt or without PowerPolnt.

$69.95 {edu}

OVERSEAS ASSOCIATIONS

GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub.

ACM SigAPL International APL QuoteQuad Conferences; APL while pages; web site $30

APL Bay Area USA M. California APLBUG Monthly Meetings (2nd Monday) $20

APL Club Austriia Austria - Quarterly Meetings 200AS{indiv}, 1000AS{corp)

APL Germany e.V. Germany APL Journal Semi-annual meetings DMB0

Ass. Francophane pour
la promotion d'APL France

BACUS Belgium APL-CAM
Capital PCUG Washington, D.C. Monitar
Danish SIG Denmark
Dutch APL Assoc. Holland

Les Nouvelles dAPL

Vector provided

FF350 (private) FF2800 (Company)
Conferences & Seminars £18 (330}

Monthly meetings, occasional classes fres

Mini-congress, APL ShareWare initiative

FinnAPL Helsinki, Finland FinnAPL Newsletier Seminars on APL 100F IM(private), 30{student), 1000 (Co)
Japan APL Assoc Tokyo APL Journal Monthly meelings {4th Sat) 10,000yen to join
NY SigAPL New York, USA Big Apple APL Monihly meelings $35/325(ACM}
Romeffialy 51G Roma, |taly

SE APL Users Grp Atlanta, Georgia SEAPL Newslefter Quarterly meetings $10
SavAPL Moscow, Russla - Saminars and Annval Meeting

SwedAPL Sweden SwedAPL Nyl Semi-annual meetings, seminars SEK 75
SWAPL Texas, USA SWAPL 318
Swiss APL {SAUG) Bemn Part of Qtly Sl-Info SF60 (SI) + SF20 (SAUG)
Toronto SIG Toronto, Canada Occasional meetings, APL Skills Database, Toronto Toolkit

ADDRESSES
ORGANISATION CONTACT
ACM SigAPL David Siege!

ADAPTA Software GmbH Michael Baas

Adaptable Syslems Lols & Richard Hill
Adaytum Limited Douglas Rowley
Adfae Bemard Smoor
Andrews Dr Anne D Wilson
APL-385 Adrian Smith
APL2000 (Europs} Fred Honea

AFL Bay Area APLBUG Curlis Jones (Sec}

ADDRESS, TELEPHONE, FAX, EMAIL etc.

ACM, 1515 Broadway, 17th Floor, New York, NY 10036, USA {Subs only}
Stellinger Weg 19, 20255 Hamburg, Germany. Tel: +49 40 40170951
Faxc +49 40 40170952, Email: info@adapta.de

49 First Street, Black Rock 3193, Australia,

Tel: +61 3 9589 6678 Fax; +61 3 9589 3220 Email: hillrj@melbpc.org.au
Castlegate, Tower Hill, BRISTOL BS12 A, Tel: 0917 921 5555

Fax: 0117 922 7749. Email:sales@adaytum.co.uk

Dorpsstraal 50, 4128 BZ Lexmand, Netherlands.

Tel +31 347 342 337 Fax; +31 347 342 342 Email: adlee@concepts.nl
12 Tharny Hills, Kendal, Cumbria LA9 7AL, UK. Tel: 01538-731205
Email: ADWilsen@kancomp, et

Brook House, Gilllng East, Yark Y062 4JJ, UK, Tel: 01435786385
Email: api385@compuserve.com

see APL Systems IDC SL,

228 Sauth 15th Street, San Jose, CA 95112-2150, USA

Tel: +1 (408) 2924060 Emuail: jonesca@vnet.ibm.com

21

VECTOR

Vol.19 No.2

APL Borealis Inc.

APL Club Austria

APL Germany e.V.
APL Software\Services
APL Solutions Inc

APL Systems ICC SL

Richard Procter

Harald F. Neison

Dieter Lattermann

Dick Holt

Eric Lendau

Fred Honea

Association Francaphone pour

la promotion d'APL
AUSCAN Software Ltd
BACUS

Beautiful Systems, Inc.
Gamacho

Ray Cannon

Causeway Graphical
Systems Lid

Paul Chapman
Cinerea AB
lan Clark

CODEWORK

Comlog Software
CPCUG
CaoSy.com

David Crossley

Danish User Group
Dinosoft Oy

Dittrich & Pariner
Consutting GmbH
Dulch APL Assoclalion
Dyadic Systems Lid,
CynArray Corporalion
Evestic AB

FinnAPL

First Derivative
Analytics Lid.

Ludmila Lemagnen
Richard Procler
Joseph De Kerf
Jim Goff

Anthony Camacho

Adriar; Smith

Relf Komemark
lan Clark

Mauro Guazze

Jeff Pedneau
Lynne Sturtz
Bohb Armstrong
David Crossley

Helens Boesan
Pertti Kalliojarvi

Axel Holzmilller
Bernard Smocr (Sec)
Peter Donnelly

Dr James Brown
Clle Evero

Qlll Paavola

Ken Chakahwata

381 Manor Road Easl, Toronto, Ontario M45 157, Canada.

Tel: (416) 457-7828. Fax: (416) 482-6582 Email: info@aplborealis.com
c/o N-TECH, Siebenbrunnenfeldg. 4-6, A-1050 Wien, Austria.

Tel: +43 1 5458063 Fax; +43 1 5458063-17

Rhelnsiralle 23, D-69190 Walldor!, Germany.

Tel: +49 68227-63469 Compuserve: 1003321461

3802 N Richmend 5t, Sulte 271, Arlington, VA 22207 USA

Tel: +1 {703} 528-7624; Fax: +1 (703) 528-7817; Emall; dick.holt@]unc.org
1107 Dalg Drive, Silver Spring, MD 20910-1607 USA

Tel: +1{301) 6894621 Fax: +3 (301) 5894618 Email: aplsi@starpower.net
Alfredo Marquerie, 12 - 2 F, 28034 Madrid, Spain. Telr +34 91 730 7008
(Otfice) +34 60 680 5949 (Mobile). Fax: +1 775 743 6131. Email:
uksales@ap|2000.nat

174 Boutevard de Charonne, F-75020 Paris, FRANCE

Emalil: lemagnen{@acl.com

PO Box 39, Mansfield, Ontario LON M0 Canada

Tal: +1-705-434-1239 Emall: rjp@ca.inter.net

Rooinberg 72, B-2570 Dulfel, Belgium. Tel: +32 153147 24

308 Old York Road, Sulle 5, Jenkintown, PA 18046, USA

Tel: +1 (215) B85-2636; Fax: +1 (215) 886-4888

Email: BeautifulSystems@goffs.net

11 Auburn Road, Redland, Bristol BS6 6LS, UK, Tel; 0117-973 0036,
email: acam@tesco.nat

21 Woodbridge Rd, Blackwaler, Camberley, Surrey GU17 0BS, UK.

Tel: 01252-874697 Emall: ray_cannon@ecompusenve.com

The Mallings, Castlegate, MALTON, Narlh Yorks YOQ17 7DP, UK.

Tel: 01653-696760 Fax: 01653-687719

Email: adrlan@causeway.co.uk

51B Lambs Conduit Street, London WG1N 3NB, UK.

Tel: 020 7404 5401. Compuserva: 100343,3210

Box 61, 5-193 00 Sigtuna, Sweden.

Tel/Fax: +46 858 255 421 Email rolf@cinerea.se

1204 Daer Cresk Drive, Plainsboro, MJ 08536, USA, Tel: +1 608 716 8832
Emall: earthspot2000@hstmail.com

Corso Cairoli 32, 10123 Torino, Italy.

Tel: +39 11 885168 Fax: +39 11 812 2652 Email: codework @codework-
it.com

18728 Bloomfleld Road, Olney, MD 20832 USA

Tel: +1{301) 260-1435 Email: jefi@softmed.com

Capital PC User Group, 51 Monroe Street, Suite PE-2, Rockville,
Maryland 20850-2421, USA. Tel: +1 (301) 762-9372 Fax: {301} 762-9375.
42 Peck Skp #48, New York, NY 10038-1725, USA. Tel: +1 212-285-1864
Fax: +1 212-2B5-1864, E-mail: bob@CoSy.com,

187 Le Tour du Pont, 84210 ST DIDIER, France. Tel: +33.4.90.66.08.87
Email: crossley@au-vilage.com

c/o Inslght Systems ApS, Nordre Strandve] 118G, Hallebesk, Denmark
Lénnrotinkatu 21C, 00120 Helsinki, FINLAND,

Tel: +388 8 70028820 Fax: +358 § 70028824 Email: dinosofti@dinoscft.fi
Kleler Strasse 47, [-42697 Solingen, Germany. Tel: +49 212-260 660
Fax: +49 212-260 6666, Email: info@dpc.de

Postbus 1341, 3430BH Nieuwegeln, Nalherlands,

Tel: +31 347 342 337 Fax: +31 347 342 342

Riverside View, Basing Road, Old Basing, Basingstoke,

Hants RG24 DAL, UK, Tel: 01256-811125 Fax: 01256-61113¢

16360 Monterey Rd. Suite 260, Morgan Hill, CA 95037, USA

Tel: +1 (408)-782-6648 Fax: +1 (408)-782-6627 Email:info@DynAmay.com
Berteliusvagen 12A, S-146 38 Tullinge, Sweden

Tel & Fax: +46 778 4418 Email: clle.evero@mail.com

Suomen APL-Yhdistys RY, FInnAPL RF, PL 1005, 00101 Helsinki 10,
Finland Email: olli.paavola@pyr fi

114 Lemsford Lane, Welwyn Garden Clty, Herls ALB 6YP, UK

Tel/Fax: 01707-339620. Emall: KenChakahwata@compuserve.com

22

VECTOR

Vol.19 No.2

Generat Software Ltd

M.E. Marlin

Godin London Incorporated Gaétan Godin

HMW Computing

Hoekstra Systems Ltd

Michael Hughes
I-APL Lid

IBM APL Products

INFOSTRCY
Insight Systems ApS
JAD Soflwara

Japan APL Assoc

J Austria

JSoftware Inc.

KiK-tielo Oy

Lambent Technology Lid
Phil Last Ltd

Lescasse Consulting
Lingo Allegre USA, Inc
Lucas Solutions

Mackay Kinloch Lid
George Maclend
MasterWork Software Ltd
Mercia Software Lid.
MicroAPL Ltd.

Milintz Inc.

Ellls Morgan

NY Sig

Qasis b.v.

Omega Computing Inc

Optima Syslems Lt¢

Chtis Hogan

Bob Hoekstra

Anthony Camacho

Nancy Wheseler

Alexay Miroshnlkov
Helene Boesen
David Crosslay

Toshio Nishikawa

Joachim Hoffmann
Eric Iverson
Kimmo Kekalainen
Slephen Taylor
Phil Last

Eric Lescasse
Waller G. Fil

Jim Lucas

Alastair Kinloch
Gearge MacLeod
Fraser Jackson
Gareth Brentnall
Richard Nabavi
Dan Barcnet

Eliis Morgan

Oavid Siege!

Eouis Rijkse

Alan Graham,

Andrew Chou
Pau! Grosvenor

Little Wester House, Westerhill Road, LINTON, Kent ME17 4BS

Tet: 1622 749365 E-mail. martin@gsoft.freeserve.co.uk

12 Gerrard S, Lenden, Ontario, Canada NBG 4G5

Tek: +1 (519) 679-8290 Fax: +1 (51%) 438-6381 Email: info@godin.on.ca
Hamillon House, % Temple Avenue, London EC4Y OHA, UK.

Tal: 0870-1010-489; Email:HMW@4xtra.com

Baminique, Salisbury Road, Woking, Surrey, GU22 7UR, UK.

Tel: 01483-771028. Fax: 01483-837324

Email: Bob.Hoekstra@HoekstraSystems. Itd.uk

28 Rushton Road, Wilbarston, Market Harborough, Leics. LE16 60OL, UK.
Tel: 01536-770998 Email: Michael@Hughes.uk.com

11 Aubumn Road, Redland, Bristol BS6 6LS, UK.

Tel: 0117-973 0036. Email: 100612.1057 @compuserve.com

APL Products, IBM Silicon Valley Lab, Dept H36/F40, 555 Bailey Avenue,
San Jose CA 95141, USA. Tel: +1 (408) 463-APL2 [+1 (408) 463-2752}
Fax: +3 (408) 463-4488 Email; APL2@vnel.ibm.com

3§, Tulenin Lane, St. Petersburg 191186 Russia,

Tel:+7 612 326-9797 Fax:+7 812 311-2184 Emall:aim@infestroy.ru
Nordre Strandvej 119G, D-3150 Hellebagk, Denmark

Tel:+45 7026 13 26 Fax: +45 70 26 13 25 Emall: info@Insight.dk

175 East 96th St., Apt. 176G, New York, NY 10128 Cauntry: USA

Tel: +1 (212) 369-6713 Fax; +1 {212) 761-0124 Email: jadsms@usa.net
1-8-13 Masujima Buld.6F Higashi Golanda Shinagawa-ku, Tokye Japan
141-0022. Tel: +81 {03) 3280-0411 Fax: +81 (03) 3280-0418

Email: KYY00361@niftyserve.or.jp

Hochsleingasse 13/26, 8010 Graz, Austria. Tel;0043 (0)316 91 42 51
Mobile: 0043 (0)699 1 91 42 51 2 Email; joachim.hoffmann@gmx.at

33 Maor Strest, Toronto, Ontario, Canada M58 2K9. Tel: +1 (852) 470-
7345 Fax: +1 {852} 470-9202 Email: Info@jscftware.com
Merikasarminkatu 10 B 56,00160 Helsinki, Finlang, Tel: +358 50 65 27 207;
Email: Kimmo. Kekatainen@pp.htv fi

81 South Hill Park, London NW3 2588, UK. Tel: +44(0)20 7813 3786.
Email: sjt@lambenitechnology.com

146 Crossbrook Street, Cheshunt, Herls, ENB 8JY, UK.

Tel: 01992-633807 Fax: 0121-359 0375 Email; phil.last@net.ntl.com

18 rue de la Belle Feuille, 92100 Boulogne, France, Tel: +33.1.46.06.10.76
Fax: +33.1.46.04.60.23 Email: eric@lescasse.com

203 N. LaSalle Street, Sufte 2100, Chicago, lincls 60601, USA.

Tel:+1 (800) 546 4621 E-mall: lingo-allegro@visto.com

Stubbedamsvej 8C, 3.tv., 3000 Helsinger, Denmark

Tel: 445 40 26 52 42. Email: jel@2danbbs.dk

5§18 Webster's Land, Edinburgh EH* 2RX, Scotland, UK.

Tel; +d4 (0)131 226 5235 Email: alastair.kinloch@btinternet.com

37 Newhouse Rd, Bovingdon, Herts, HP3 0EJ, UK. Tel: 01442-831385
Fax: 01442-831368 Email: george.macleod@nlttworld.com

PO Box 56-036, Tawa, Wellington, New Zealand, Tel: +64 (4) 232-4440
Fax: +64 (4) 2324452 Emall; fraser.jackson@xtra.ca.nz

Mercia House, Ashied Lock, Aston Science Park, Birmingham, B7 4AZ, UK.
Tel: 0121-359 5098, Fax: 0121-359 0375

The Roller Mill, Mill Lane, Uckfield, E.Sussex TN22 5AA

Tei: 01825 768050, Fax: 01825 748472

Email. MicroAPL@microapl.demon.co.uk

Contact Dan Baronet at dank@milinta,com

Myrtle Farm, Winchester Road, Stroud, Pelersfield, Hants GU32 3PE, UK.
Tel: 01720-263843 Email: Ells@mrlirm.deman.co.uk

PO Box 2697; New York, NY10163-2697, USA.

Email: NYSIGAPL@ACM.ORG

Lekstraal 4, 3433 ZB Nieuwegein, Holland. Tel: +31 30 80 66 336

Fax: +31 306 60 65 844 Emaik: rijkse@oasis.nl

3 Columbus Avenue, Edison, NJ 08817, USA.

Tel: +1 (732) 985 8515 Emaik alangraham@mindspring.com

Optima House, Mill Court, Spindle Way, Crawley, Wes!t Sussex, RH10 1TT,
UK, Tel: 01293 562700 Fax: 01293 562699
Emall:mailbex@optima-systems.co.uk

23

VECTOR

Vol.19 No.2

Nicole Schless
Georges Brigham

RadSys Technologies AR Randolph Schrab

Qualedi [nc,

Renaissance Data Systems Ed Shaw
Resources & Resulls Frank Rhodes
RE ¥ime Tracker Oy Richard Eller
Right Seat Scftware, Inc. Tom Alkins

The Rochester Group Ing, Roben Miller
Rome/litaly SIG Mario Sacco
SE APL Users Group John Manges

Shepp & Associales LLC ~ Andrew Shapp

Snake Island Research Inc Bob Bernecky

SOCAL (South California) Roy Sykes .jr

Saliton Assoclates Benolt Paquin

SovAPL Alexandar Skomorokhov

Russian Chapter of SIGAPL

Strand Sofitware Inc Anne Faust

Rex Swain Rex Swain
SwedaAPL Chister Ulfhielm
Swiss APL User Group

Sykes Syslems Inc Roy Sykes Jr
Torento SIG Richard Procter

Welghahead Systems Fhilip Bulmer

Stephen Wynn

Zark Incorparated Gary A. Bergquist

FTP SITES

IBM APL2
Walerloo Archive
APL-to-ASCII

WORLD WIDE WEB SITES

ACM SigAPL
Adapta Software
Adaptable Systems
Adaytum Limited

121 West Main Street, Milford, CT 06460, USA. Tel: +1 (203) 874-4334
Fax;: +1 (203) 876-0083. Email: sales@qualedi.com, info@@quatedi.com
Lavsangarv. 18, 8-756 52 Uppsala, Sweden. Tel: +45 18 32 41 £3

Fax: +46 708 1996 11 Email: randolph.schrab@radsys.se

P.C. Box 511, Botsford, CT 06404, USA, Tel: +1 (203) 270-9726

Emait: aplbooks@earthlink.com

2438 W, Northgate Dr., Irving, TX 75062, USA. Tel: +1 972 523 5417
Email; frank@dec|sion-support.net

Mikonkalu 8 A, 2 krs, PL 363, 00101 Helsinki, Finlard.

Tel: +358 9-621 3300 Fax: +358 9-621 3378 Email: re@rett.fi

1110 12th Streat, Golden, CO BOAG1, USA, Teli+1 303 276 2244,

Fax: +1 303 278 6967. Email: info@vaxproxy.com

B00 Park Avenue, Rochester, NY 14607-2926, USA.

Tel: +4 (716) 279-1110. Fax: +3 (716) 271-1230

Casella Postale 14343, 00149-Roma Trulio, Italy

Email: marlo.sacco@tin.it

413 Comanche Trall, Lawrenceville, GA 30044, USA

Tel: +1 (770} 972-3755 Emait: seapldoc@aol.com

1312 Washington Avenue, 6th Floor St. Louis MO 63103, USA

Tek +1(314) 621-3272 Fax: +1 (314) 621-4267

Email: ashepp@compuserve.com

18 Fifth Street, Ward's Island, Teronta, Ontarlo M5 28 Canada

Tel: +1{416) 203-0854 Fax: +1 (416) 203-6899

Email: bernecky@interiog.com

Sykes Systems [nc, 4649 Willens Ave, Woodland Hills,

CA B1364-3812 USA. Tel +1 (818) 222-2759 Fax: +1(818) 222-9250
Soliton Denmark, Havsgardsvej 4, 2500 Hellerup, Denmark.

Email: sales@soliton.com

PO Box 5061, Obninsk-8, Kaluga Region 249020, Russia

Tel: +7(08439)47108 Fax: +1 (530) 68B5510 Email:askom@obninsk.com
P.0. Box 330, Excelsior, MN 55331 USA

Tal: +1 (952} 470-7345 Fax: +1 (952) 470-9202 Email: info@strandsoft.com
8 South Street, Washington, CT 06793 USA. Tel: +1 {860) 868-0431
Fax: +1 (860) 868.9970 Email: rex@rexswain.com

Novater Consulting Group AB, Svardvégen 11C, §-182 33 Danderyd
Sweden. Tel: +46 8 622 63 50 Fax: +46 8 622 63 51 CServe: 100341,404
Swiss APL User Group, CH-3001, Bemn 1, Switzertand

Email: si@lfl.unlzh.ch

4649 Willens Ave., Woodland Hils, CA 91364, USA

Tel: +1 (818) 222-2759 Fax: +1 (818) 222-9250

PC Box 55, Adelalde St. Post Office, Toronto Ontario M5C 2H8, Canada
Email: info@terontoapl.org

Camberley House, 1 Porteskery Road, Camberley, GU15 3RB, UK,

Tel +44 1276 20789 Email: sales@weighahead.com

8 Clarence Gardens, Brighton, Sussex BN1 2EG, UK.

Tel; 01273-327238 Emall: centre@@cweom.net

23 Kelchbrook Lane, Ellington CT 06029, USA. Tek +1 (860} 872-7806

ftp.software.ibm.com/ps/products/apl2
archive.uwaterloo.ca/ftparch/languages/apl
archive.uwaterloo.callanguages/apliworkspaces/aplascii

www.acm.arg/sigapl/
www.adapta.de/
www.assuredsystems.com.au/
www.adaytum.com/

AFAPL www.afapl.asso.fr/ (Journal available on line)

24

VECTOR

Vol.19 No.2

APL2000

APL-385

APL Journal, Germany
APL Borealis Inc.

APL Systems IDC SL
AUSCAN

Eke van Batenburg
Capital PC User Group
Causeway
CODEWORK

CoSy (Bob Armstrong)
Dinosoft Oy

Dittrich & Partner
DMOZ - Open Directory
Dyadic Systems Ltd
DynArray

FinnAPL

Godin London Inc
Houben {IQL}
Hoekstra Systems

IBM APL2

Infostroy

Insight Systems ApS
Japan APL Association
JSofiware Inc
KJK-tieto Oy

Lambent Technology
Lescasse Consulting
Lingo Allegro USA Inc
Mackay Kinloch
MicreAPL Ltd

Milinta Inc

Oasis b,v,

Optima Systems Ltd
Qualedi, Inc,
Renaissance Data
Resources & Results
RE Time Tracker Oy

Right Seat Software, Inc.
The Rochester Group Inc.

Shepp & Associates
SigAPL
Soliton

Snake Island Research Inc.

Strand Software Inc.
Rex Swain

Toronto SIG (for Toolkit)
Jim Weigang
Weighahead Systems

www APL2000.com/
www.demon.co.uk/apl385/
www.rhombos.defapljourn.him
www.aplborealis.com
www._api2000_net
www.interlog.com/~rjp/auscan/
wwwhio. LeidenUniv.nli~Batenburg/index. html
htip:ifepeug.org/
www.causeway.co.uk/
www.codework-it.com/tangram/eng/
CoSy.com/

www.dinosoft.fif

www.dpc.de; www.apl-online.de
hitp:/fdmez.org/Computers/Programmingt.anguages/APL/
www.dyadic.com/
www.dynarray.com/
www.pyr.fifapl/
www.gedin.com/
www.apf.olap.club.tip.nl

woarwy. HoekstraSystems. itd.uk/
www.ibm.com/software/ad/apl
www.infostroy.ru
www.insight.di/
www.naska.co.jp/lJAPLAS

www jsoftware.com/

ww K k-tieta.com

www lambenttechnology.com
www lescasse.com/
www.lingo.com/
hitp:/fmackaykinloch.itd.uk/
www.microapl.co,uk/apl
www.milinta.com
www.oasis.nlf
www,optima-systems.co.uk
www.qualedi.com
www.aplbooks.com/
www.decision-support.net
www.rett.fif
WWW.VCXProxy.com
www.rochgrp.com/
www.digitravel.com/
www.acm.org/sigapl/
www.solitan.com/
www.snakeisland.com
wiww.Strandscft.com/
www.rexswain.com/
waww.torontozpl.orgf
www.chilton.com/~jimw!
www.weighahead.com

25

VECTOR Vol.19 No.2

Article I. Zark Newsletter Extracts

introduced by Jon Sandles

I hope you are all still enjoying these Zark reprints! Once again, we include a new
crossword for your enjoyment and another classic APL problem. It would be
interesting to see some new solutions to these problems, perhaps using Dyadic’s
dynamic functions, or some J or even K. Solutions will be printed in the next issue.

1. Utility Corner: Internal Rate of Return

{The purpose of this column is to make you more productive by introducing you
to utility functions. Think of utility functions as APL functions that have names
ingtead of symbols. By expanding your function vocabulary, you'll be able to
write APL code that's more concise, more efficient, and more readable.)

The term “Internal Rate of Return” (or IROR} is used to refer to the implied
interest rate in effect from a given set of cash flows. Consider, for example, the
following set of annual cash flows:

“100 B 6 6 & 106

At the start of the first year, 100 is paid out. At the end of the next four years, 6 is
paid in. 106 is paid in at the end of the fifth year. The IROR of this set of flows is
6% per year. To see this intuitively, view the cash outflow (T100) as a deposit into
a bank paying 6% per year. View the next four inflows of 6 as interest
withdrawals at the end of subsequent years. View the final inflow of 106 as an
interest withdrawal of 6 plus the return of the original 100 deposit.

To quantitatively verify that 6% is the IROR, the cash flows should sum to () when
discounted to their present value or when accumulated to their future value using
this rate:

+/7100 6 6 6 6 106x1.06%-16
T2.842170943E 714

+/7160 6 6 6 6 106=1,06=416
T4, 263256415E 14

Close enough to zero. Your task is to write a monadic function IROR that takes a
vector of cash flows as its argument, one number per time period, and returns the
internal rate of return, like so,

26

VECTOR Vol.19 No.2

IROR T100 6 6 6 € 106
.06

Our aim was to find the fastest possible IROR algorithm. The results surprised us.
The most common method wasn’t the fastest.

From a mathematical perspective, the goal is to solve for the variable i such that
the value of the following formula is zero for a given vector of cash flows CF. (The
symbols “f (1)” are read, “a function in terms of 1.%)

fii): +/CF=(4+1)=x-1pCF

Since this problem defies a direct algebraic solution, the only alternative is trial
and error {called, “the method of successive approximations”}. Try a value of 1,
say .08, in the expression and see how close the result is to zero. Then try another
value, say 0.9, and see whether its result is closer to zero of further away. As you
try more and more values, you'll get better at guessing values of i that return a
value of £ (i) that is close to zero.

In fact, you may find it helpful to plot the results. Plot the trial values of 1 along
the X-axis, and the result from the expression along the Y-axis:

Iii)

Graphically, £ (1) describes a curve. The trial values of 1 and f(i) are points
along that curve. From the graphic perspective, your job is to find where the curve
intersects the i-axis, that is, to find the value of i where f{1)=0.

Four different approaches were suggested:

1. Extrapolate/interpolate, using a straight line £ {1)=a+ (b= 1) fitted to the two
best points so far. The “best” points are determined to be those closest to the
i-axis, i.e. for which their values of £ (i} are nearest zero. Draw a straight line
through those points and determine the value of 1 where the line crosses the
i-axis. That value of i becomes the next guess. Naturally, you need to make
two “random” guesses to start the process,

27

VECTOR Vol.19 No.2

2. Extrapolate/interpolate, using a quadratic curve £(i)=a+(bxi)+(cx1%2)
fitted to the three best points. Just as the fitting of a straight line requires tow
points, the fitting of a second degree curve {parabola} requires three points. The
primitive APL function § simplifies the task of fitting the curve. Since the
parabola crosses the i-axis at two points, only the solution nearest the other
guesses is considered.

3. Extrapolate/interpolate, using a straight line that passes through the best point
and has the same slope as the £ (1) curve at that point. The slope of the £{1)
curve at any point is the value of the derivative of £(1) with respect to i at
that point. Computing the derivative of £ (1) is a straightforward calculus
operation:

Fr{i): +/CFx(-1pCFY+(1+1)#~1+1pCF

Given 1 as the best guess so far, and £ (1) as the function’s value at that value
of £, a small amount of algebra produces a formula for the value of i where
the straight line crosses the i-axis:

it I-(fi)+£' (1))

This value of i is the next guess. This method of successive approximations is
known as the Newton-Raphson method, and is the most common technique
employed for solving the IROR problem. It requires only one guess to get
started.

4. Extrapolate/interpolate, using a quadratic curve that passes through the best
point and has the same slope as the £(1) curve at that point, and has the same
rate of change in slope (second derivative) as the £ (1) curve at that point. This
approach extends the Newton-Raphson method to consider the second
derivative as well as the first:

fri(iy: +/CFPx{-1pCF)x{-1+1pCF)x(1+1)2-2+1pCF

The subsequent algebra is considerably more complex, but the resulting curve
does a better job of extrapolating or interpolating. Again, only one guess is
needed to get started.

Each of these four approaches successively determines values of i that are better
than the ones before. You stop the iterative process once you find a value of 1 for
which the value of the function £(1) is “adequately” close to zero, say plus or
minus 1E711.

Which of these approaches is the fastest?

The advantage of approaches 3 and 4 is that they require a single guess to get
started. The disadvantage is that the derivative (and second derivative) must be
computed for each trial of i. The computation of the derivative (and second

28

VECTOR Vol.19 No.2

derivative) is more involved than the computation of the function. Fewer trials are
needed, but each trial is slower.

The advantage of approaches 2 and 4 is that they use a parabola rather than a
straight line when interpolating. Since a straight line is a special case of a parabola,
the parabola can do no worse than the straight line and, in practice, requires about
half as many trials. The disadvantage is that the calculations required at each
iteration are more complex, and hence slower,

To find out which approach was fastest, we timed them on a 360-element vector of
cash flows. In the process of timing, we noticed that the majority of the processing
time was consumed by exponentiation — even with a math (floating point)
coprocessor installed. To eliminate the exponentiation, we took advantage of the
fact that the exponentiation was being done on successive integral powers, and
replaced the exponentiation by cumulative products. To see how this is possible,
note that the following two expressions produce equivalent results:

(+1+1)%1360 n (crigin 1)

*\360p+1+1

Eliminating the exponentiation from all four approaches improved their speeds
considerably. Here are the results of the timings (scaling the results so the fastest
algorithm ran in 100 “units” of time}):

Using » | Using =\
IROR1 273 100 line from best 2 points
IROR2 252 102 parabola from best 3 points
IROR3 285 181 line from derivative (N-R)
IROR4 260 202 | Parabola from 2™ derivative

You can see the simplest algorithm was the fastest! Also, the most common
algorithm, IROR3 using » (Newton-Raphson), was the slowest. So much for
mathematical sophistication.

As always, timings are affected by your hardware and your implementation of
APL. You may want to time these functions on your own machine.

29

VECTOR Vol.19 No.2

The functions used in the timings are listed below. In each function, the logic for
both the exponential and cumulative product algorithms is included, though the
exponential logic is commented out.

v ReIRORL V3i&:J;N:P;T;0I0
[1] n Given a vector of cash flews ¥V, one
[2] s number per time period, returns the
[31] a internal rate of return. Uses
[s1] a straight line Ianterpolation.
(51 J1o~0
{e] G+1.05 1.1 A Init guesses (5%,10%)
(71 a T+«-1pV a Periods for present values
[8] g Pt(Ge.»T)+.2V & Present velues
[9] N+pV¥ a No. periods for present vals
[10] PeV+.xxX(N,2)p20C n Present values
[111 Li:R«(-/Px¢F)4-/P a Interp for rate
[12] +{v/1E"11>|R-G}Ypl2? » Exit jif ~ same
[13] a P+P,V+.xR+T a Present val for rate
[14] P+P V4. .#x\Np+R » Pres. val for rate
[15] P+P[J+«2t41P] n Pick ? nearest zero
[16] G+(G,R)[J] a ... & associated rates
[17] =Ll a Try again
(18] I2:R+R-1 a Convert to Interest rate

v

v ReIRORZ V;4;B;C;G;J;¥;P;7;010
[1] A Given a vector of cash flows ¥V, one
[2] n number per time period, returns the
[3] # internal rate of return, lses
[u] n guadratic interpolation.
[53 0ro+o
[6] G+1.075 1.05 1,1 a Guess 7.5,5,10%
[71 an T«-1pV a Periods for present values
[8] a P<(Ge.»T)+.»Y a Present values
[e] H+«pV a No. periods for present vals
f10] P+V+.xx%(N,3)p2C s Present values
1171 a Coefficlients of gquadratig:
[42] L1:0+PZ(G=6),G,[0.5]1
{13] a NOTE £ sometimes fails on DOM ERROR
[1u] A+C{0]
(151 B+C[1]
[16]1 c+C(2]
[17] n Get roots from quadratic formula;
(18] R+({-BY+1 “1«(0[(BxB)-uxAxC)n0.5)+4+4
[19] R+«R[>/|R-G[0]]) a Pick the best root
[z0] +{v/1ET11>|R-GYpL2 w Exit [f ~ same
[213 wa P~P,V+.xR»T n Present val for rate
[22] P+P,¥V+,xx\Np+R n Pres, val for rate
[23] P+P[J+3+4|P] n Pick 3 pearest zero
[24] G«(G,R)Ed] rn ... & associated rates
[25] +L1 a I'ry again
[26] L2:R+R-1 a Convert to interest rate

v

30

VECTOR

Vol.19 No.2

[1]
[2]
[3]
{u4]
[s)
[6]
[71
: 0]
[s]
[10]
[11]
[12]
f12]
[1u]
[151]
[18]
[17]
[18]
[19]
[z20]
[21]
[2z]
r2a]
[24]
[2s]
fz6]

[11
[2]
[31
[u]
[s]
[6]
[71
[8]
[al
[10]
[111]
{12]
[13]
[iu]
[15]
f161]
[17]
[18]
[181]
[zo]
{21]
{221
[23]
[2u]
[25]

¥ R«IROR3 Vi;DiF;G3N;T;T1:U;v1;:0I0
Given & vector of cash flows V, one
number per time period, returns the
internal rate of return. Newton-
Raphson: for a function f(x),
whose derivative is f'(x), the pext
guegs should be x-f{x)+f'{x}. That
is, use the slope at x to extrap.
to where F(x) 1s zero.
FIX) = +/(G»T)=V
Fr(x} = +/T=(GT-1)xV
0ro<o
a T+-1pV a Periods for present values
n ¥i1+TxV s Product for derivitave
a T+«T-1 n Exponents for derivative
N~p¥ n No., periods for present vals
Ti+71-1¥ a Product for derivative
G+1.1 a Initial guess (10%)
Ll: & D+V14.2U0+«G=T a f'(x)
a FeV+.x"141,0 a f(x)
Fet /UO+Vxx\Np2G n F(x)
DeT14. 206 A F1(X)
R+G-U+F:+D n New rate
+{1E711»|U}pl2 & Exit If - same
G+R a Make this the next guess
+L1 n Try agalin
L2:R+R-1 a Convert to Interest rate
v

D P » » P B D D D D

¢ ReIRORW V:A;B;C;DiF;GiN;S5;T;T1;T2;U;V1;v2,;070

Given a vector of cash flows ¥V, one
number per time period, returns the
internal rate of return. Newlton-
Raphson extended to the 2nd deriv,
For a function f(x), whose deriv.
is f'(x) and 2nd deriv. Is f"(x),
the next guess should be the root
of the quadratic equation
0 = f{Z) = (AxEZ=2) + (BxZ) + C
where;
4 = f'(x)+2
B = f{x)-F"{x)»x
C = f{x)+(-xxfr(x))+(x=2)=xf"(x)
and:
F(x) = +/(GaT)xV
Fr{x) = +/Tx(GaT-1}xV
I=(x3} +/Tx(T-1)=(GwT-2)xV
OI1o+0
T+-1pV o Periods for present valies
Vi+«TxV n Preduct for derivitave
T+T-1 a Exponents for derlvative
¥2+«Tx¥1 a Product for 2nd deriv
T«P-1 n Exponents for 2nd derly
N+«pV n No. periods for present vals
Ti+« 1-t¥ a Product for derivative

» » » » » » » P b P DL DD P PR D

> p ®» P X

31

VECTOR Vol.19 No.2

f261] Tz+T1-1 » Product for 2nd deriv
[271] G+1.1 a Initial guess (10%)
(28] Li: A S+V2+.xl«G~T a £ (x)
[(29) n DeVit+ xUe"14(2G),0 n f'(X)
[30] n FeV¥+.x"141,0 a f(x)
[31] Fes fOvVax\Np3G n f(X)
[32] Do fU«T1xUs6G 0 £1(X)
[33] E«T24 UG n f"(X)
[3u] A«S8:2
[35] B+D-5xG
[36] CaF-GrD-GxA4
{37] n Get roots from quadratlic formula:
[38] Re({-BY+1 T1x(0[(BxB)-5x4aC)»0.5)+4+4
{3g] R+«R[(>/|R-%) a Pick best root
[va] +{0,00000000001>}R-G)pLl? a Exit if - same
[411 G+R n Make this the next guess
[s2]1 ~+L1 » Try again
[43) L2:R+R-1 a Convert to interest rate
v

Some final notes. These IROR functions have very specific behaviour. You may
want to modify them in a numnber of ways:

1. The iterative process is halted when the new guess {value of 1} varies from the
previous guess by less than 1Z711. You may require more or less precision.

2. The process begins with one to three interest rate guesses in the range of 540 8
percent. If you have better knowledge of what the unknown interest rate is,
you may adjust these initial rates to move them closer to the unknown rate. In
this way, you may be able to shorten the process by an iteration or two. In our
trials, we found that the process required the same number of iterations
regardless of the initial rates ... unless the initial rates were very close.

3. In some IROR problems, the interval between cash flows is not uniform. The
second cash flow may code in 45 days, the third in 425 days, the fourth in 450
days, and so on. If this is the case, the time period component of the formulas
must be changed from the vector 1 pCV to a vector representing fractions of
years from the first cash flow to each subsequent cash flow. This change, while
straightforward, eliminates the possibility of using cumulative product (= \) in
place of the slower exponentiation (+}.

2. Limbering Up: Effective Date Searching

{The purpose of this column is to work some flab off you APL midsection. Like
muscles, your APL skills can atrophy if not exercised with adequate frequency
and variety. This column presents a task for you to perform. Set aside a few
minutes from your busy schedule and work the task. Mail in your solution and
stay tuned for the results.)

32

VECTOR Vol.19 No.2

Suppose you have two numeric vectors of the same length, IDS and PRICES. IDS
is a vector of distinct product ID codes for all available products; PRICES is a
vector of corresponding prices for these products. Given a subset list of product
1D codes, say LIST, you can easily determine their correspending prices:

PRICES[IDS\LIST]

Suppose prices change over time. Each prices, for a given product, has an
associated effective date. For a given product, there may be many different prices,
each with a different effective date. To determine the price of a given product, you
need to specify not only the product’s ID code, but also the date as of when you
want its price.

Here’s an illustration

Product Id Price | Effective Date

201 265 1993/01/01
2.75| 1993/07/01
2.89| 1993/09/31

202 15.50 | 1993/01/01
16.75| 1993/10/15

Your task is to design and define a utility function that takes a list of product lds
and corresponding dates, and returns the prices for those products on those dates.
We're looking for two things: clean design, and program efficiency.

Send your solution to:

Vector Production

Brook House

Gilling East

York YO62 4]]

UK email apl385@compuserve.com

The notable functions and their authors’ names will be printed in the next issue of
Vector. Good luck and happy limbering,

Ed: When putting this item together I noticed that TROR1[10] would be more
efficient if the calculation of present values used decode {1} rather than either
the exponentiation or the cumulative product techniques. Much to my surprise

33

VECTOR Vol.19 No.2

and horror, the decode algorithm produced a different result to the cumulative
product code, but the same result as the exponentiation code. The following
demonstrates the problem:

IROR1L {(L”.05#+/w),w)?359p1000C

IROR1[10]

V4. xxX(N,2)p+C A Cumulative product method
"53.61702776 ~4305.479388

(2 1p+G) LoV n Decode method
"56.29787915 T4T736.027327

(Go,*-1pV)+.xV a Exponentiation method

T56.29787915 Tu736.027327

I can only assume that the cumulative product accumulates errors as the
numbers are multiplied together, whereas the other methods do not. In spite of
this difference the final IROR result seems to be the same in each case.

Reprinted with kind permission from Zark APL Tutor News, a quarterly publication of Zark Incorporated,
23 Ketchbrook Lane, Ellington, CT06024, USA.

34

VECTOR Vol.19 No.2

Solution for 19.1 and New Crossword

Solution to Crossword in 19.1

!M L SM_—» L xl.
(N || |4])]e |4 AT | N
o|l=|B|-|T|8|D -1 -/ 7
v | @ gl e | T K Bl || F

5 x| x| S Li~ |0 K| C
2 1 E|X|P|R] [
T N|L vV T 4
R|7 | M Ay x| 1| 1| x|#]|N
) | W | D / 11686 vV
/ + | \N| -] N]p |1 - | E
T|\W |7 |T|W M Al N C
R TIE)S|{ L Vviv|T|/|V]]

35

VECTOR Veol.19 No.2

New Crossword

i 2 3 4 5 3 7 .
8 9 1
) 12 13
14
15|16 17 |1 19 20
21 2
5 T 3
26] 3
% |0 3
32 i 3 |35 3t
ED 39
) 4
Across
1. {~4eB}/A
3. Wherein Vis ...
5 ,?N
8. Do any of the items in nested INST match the array NR?
11. v/B[2z9+1(pB)-29]
13. Magnitude of D
14. Array of shape T5, filled with the elements of Z
15. Any array ABS, with all numbers replaced by 0s and characters by blanks
21. Correspondingly true in N and PA
22. Which elements of V match the corresponding elements of the vector in the enclosed
scalar CP?
23. C, except ...
24, Is the NVLth item of vector A the same as the array E?

36

VECTOR Vol.19 No.2

26.
28.
29.

31.
32.
33.
37.
39.
40.
41.

Which item of N first matches CV?
(=x/pL)pL

Rotate the elements of vector T left () places, format them, and stick the label V on the
front

.. replicate A

The keys for « |

Flag the items of nested NST that match the array NR
The length of vector EV

The next higher integer from NNMS

The first element of X as a scalar

Never forgetto

Down

2.

11.
12.
6.
17,
18.
19,
20.
25.
26.
27.
30.
34,
35.
36.
37.
. [1__ is used to erase objects

e N)

~ly

VECTS[VN41Z]

1,2,3..RB

Flag the character matrix itemns of nested NV that contain the string CV
A random scalar from the set 1 ¥

The remainder of JB<NS

The elements of Q are first located in which elements of the 25th item of A?
Nine ones, as a nested scalar

The keys used for ~

Does VEC exist in the workspace?

TOP=0 for Boolean TOP

I> for Booleans

Is V a scalar?

The shape of the array within the enclosed scalar N
The language |’s older brother

An array with empty shape

Catenate together the items of nested vector N5
Format to N decimal places

NV, flipped and enclosed

The elements of M as a vector

The largerof Tor S

The depth (level of nesting) of NA

Create a nested scalar from array ME

Rank of ...

37

VECTOR Vol.19 No.2

J-ottings 34: Greed — Patterns for the
Imminent Collapse of Western Capitalism

by Norman Thonison

In a communication following J-ottings 33, Ken Iverson pointed out that
%I -x-x") is a generating function for the Fibonacci numbers which in J terms is
fibfn=.0 1&p. % 1 _{ _i&p.
Rewriting the generating function as
Ni—x(1+x)"
the binomial theorem gives the series expansion

x4+ x{l+x0)+ x {1+ x)° +.\'3(l+.\')3+

Write the coefficients of the various binomial coefficients as rows of a table :

x x2 0 x¥ xt B xE T B e
i
1 i
1 2 1
1 3 3 1
1 L 6 L 1
1] 10 10 5

Adding down the columns should make it clear how the Fibonacci coefficients
arise. But why do all this work when J will do it for you using the t. adverb to give
the best fitting polynomial of given degree, say the 13th. 7

fibfn t. i.14
0112352813 21 3% 55 89 144 233

which is exactly equivalent to the expression in J-ottings 33 :
fa. (,+/@(_2&{.))r:12(0 1)

Yet another interesting Fibonacci fact is that every positive integer can be written
as the sum of a series of non-consecutive Fibonacci numbers, non-consecutive

38

VECTOR Vol.19 No.2

because every sum of a consecutive pair can immediately be replaced by the next
higher Fibonacci number — this is the fundamental Fibonacci property. To obtain
such a sum, start with a general verb which transforms any given number into
the “highest value below" in a numeric list :

hvb=.>./ @{(>:#]) N&. highest value below

100 hvb f
89
Define
gap=.-hvb&f
gap 100
it

Both the 89 and the 11 are required, the first to be stored, and the second to be
processed further, so define a verb which partitions an integer in this fashion:

Fgap=. (hvb, [-hvb)&f NB. partitieon into fib+gap
Fgap 100
89 11

Using & makes f into a pseudo-constant which would be changed only if a shorter
or longer Fibonacci series was required. Also, the double computation of the verb
hvb in Fgap is inherently displeasing — this can be circumvented by rewriting the
slightly less transparent verb :

Fptn=.{:@(>:#(],.-)) NB. Fibonacci partition
100 Fptn f
89 11

following which Fsum remembers the left hand part of the list and processes the
gap on the right :

Fsum=.}:,Fptn&f@{: NB. single step process
Fsum 89 11
89 8 3

8 and 3 are both Fibonacci numbers, and so0 100 =89 + 8 + 3.

This process can be repeated as long as necessary using a recursive verb

Fsumr=.($:@Fsum) J@.{e.&f@{:)
Fsumr 100
89 8 3

39

VECTOR Vol.19 No.2

which says in effect “go on reducing the gap until you reach a Fibonacci number”,

100 (= 89 + 8 + 3} can also be expressed in a binary form

Fnum=.|.@(2&}.@(f&e.)@Fsumr)
Fnum 100
001000010100

call such numbers Finary numbers, say — they will be revisited later.

A characteristic of the above algorithm is that at every step the Fibonacci number
giving the smallest gap was grabbed, a characteristic of greedy behaviour as
exemplified alike by small boys sharing cakes and fat-cat directors raiding their
company takings.

The term greedy algorithm is used generically to describe a range of algorithms
which share this general characteristic. It arises sufficiently often to merit
description as a pattern, a word which has become a technical term in the
vocabulary of Object Oriented programming to mean any common way of doing
things ~ more general than an idiom or a phrase, but not large enough to be
considered as a piece of software architecture.

“Patterns” seems a good way of describing general techniques which emerge
intuitively in] programming through recurrent use and reinvention. For example,
the greedy technique apparent in Fsumr above might also have emerged in
programming a distance reducing route starting from a given town and visiting
all other towns represented in a given distance table. To be specific suppose that a
distance table for four towns is

¢ t 5 3
1 0 7 &
5 7 ¢ 10
3 61¢ ¢

The routing problem is not altered by subtracting 11 from all the non-zero entries
in the table and making the objective maximization rather than minimization. S0
definem as

010 6 8
10 045
6 4 01
8 510

Starting at town 0, initial greed says find the route which gives the highest reward
from town 0. This is the route to town 1, from which the next greedy step is to go

40

VECTOR Vol.19 No.2

from town 1 to town 3 since 5>4, and the route is completed by visiting 2, thereby
adding another 1 to the reward, a total of 16.

To preserve indexing it is prudent not to reduce the distance table at each
recursive step but rather to reduce the reward to 0 for steps which proceed to
towns already visited. Thus if the “route so far” is 0 2 1, the next town is
identified by its index as the one offering the highest reward in row 1 after
avoiding revisits, which requires that items 0 and 2 in row 1 must first be
amended to 0 by 0(0 2)}1{m. The index of the next town is generated greedily

by
imax=.4.>./ NB. index of maximum value
ntg=.dyad define NB. next town in greedy chain

;max O(}ex) H({ex) y.

3

021 ntgm

As with f above, a distance table would be unlikely to have frequent changes and
s0 it makes sense to build it in as a pseudo-constant m :

ontg=.ntg&m NB. row index of optimum next town
ontg 0 2 1
3
ontgr=.]"(%$:@(],ontg))@, (4&~:0#)
ontgr 0
0132

A note should be made that a change in the distance matrix might require a
change in the constant 4.

There is an important distinction between these two manifestations of greed. In
the first, the representation of a positive integer as a sum of Fibonacci numbers
can be proved to be unique, and so any algorithmic pattern would produce the
same result. This is not true in the second example for which the route 03 2 1 has
the value of 17, demonstrating that greed is not always the best policy!

41

VECTOR Vol.19 Ne.2

1t should also be stressed that it is recursion in the presence of maximum which
makes these patterns greedy, not recursion alone. Simple recursion is a
generalisation of the greedy pattern. This can be illustrated by venturing even
further into Fibo-land and constructing a Finary adder. First assume that an
ordinary binary adder is available:

badd=.+&.#. NB. binary addition
1 01 badd 1 00
1001

The main difference between binary and Finary numbers is that Finary numbers
never contain consecutive 1s, and so if two consecutive 1s were ever to turn up in
an intermediate calculation these would be inunediately resolved into a single 1 at
the level of the next higher digit. A verb to detect such a state of affairs is :

findi1=.0&,@(2&(*./\)) NB. find sublist 1 1

b NB. representation of 148
1010110101

findii b
00000D100O00Q

Simple binary addition of these two lists makes the necessary adjustment :

repii=.badd find11 NB. replace with 1 0 O
repll b N8. representation of 148
1011000101

Having made one such replacement it is possible that, as in the case above, the
new 1 produces a further pair of consecutive 1s, which in turn may generate a
ripple effect through the whole Finary number. Adopting the recursive pattern
again, define :

replir=.]1"($:@repll)@. (+./@findl1)
replir b NB. representation of 148
1000G60G60101

Enough is now in place for a verb to add 1 to a given Finary number:

Faddi=.replir@(1&badd)
Faddli 1 01 0 1 NB. add 1 to Finary 12
100000

To perform a general Finary addition, e.g. 1010 Fplus 100 00 1, observe that the
recursive pattern requires that the data is in the form of a single argument. One
technique in the present case is to keep on applying Faddl to one of the

42

VECTOR Vol.19 No.2

summands untl the value in a counter matches the other, hence a suitable data
format for the above sum is

u=.0:1 01 0;1 000 Q 1 NB. Finary O{cntr),7,14

and a single step of the addition process is :

Fplusi=.Fadd1&,>@(2&{.).{: NB. Add | to each of 0,7
Fplusl u
b m——m—— e ——————— +

Iti1t 0 0 0 Oli 0000 1) NB. Finary i{cntr),8,1k
ttm—mmmm = =m +

Applying the general recursive pattern yet again leads to

Fplus=.($:@Fplus1) (>@(1&())e. ({.-:{:)
Fplus u
10600000

The problems above may in themselves be academic, but the use of patterns
themselves is a highly practical programming matter. Using patterns is matter of
design; in the examples described above, the generic pattern can be informally
described as

fnr = fnr {fn), that is, a recursive verb defined as “itself applied to the result of a
matching single step verb”. Many, although certainly not all, programming
problems at this level are susceptible to this design pattern. To use such a pattern,
three questions must have clear answers:

1. Can I describe a single step verb whose result is the input to the next step?
2. How do | know when to stop the recursion?
3. What do I want to happen when it does?

What happens below the level of fnr = fnr {fn), for example whether code is tacit,
explicit or a mixture, is a matter of implementation. For example, in the last case,
an iterative design might have led to an implementation something like

Fplus=.dyad define
5=.0 [r=.y.
while.{-.s-:x.) do.
r=.Faddl r [s=.Faddl s end.
1010Fplus 1 00001 NB. 7 + 14
1000000

43

VECTOR Vol.19 No.2

Finally for those of you whose sensible habit is always to skip to the end, thereby
cutting out all the turgid stuff in the middle, this article has been all about
Fibonacei, patterns and greed, but the greatest of these is ... (reader to complete)

ilast=.<:@{#-i.&1@©(1 1&F,.&|.))
NB. index of Lowest order 1 1

rep=.monad define NB. replace lowest 1 1 with 1 0 0
i=.ilast y.
r=.0(i-0 1)}y,

if. i=1 deo,r=.,1,r
else. r=.1(i-2)}r end.
add=. (_2&}.),(_26{.)@(14+&.#.)

44

VECTOR Vol.19 No.2

REVIEWS AND
CONFERENCE REPORTS

45

VECTOR Vol.19 No.2

Dyalog APL for Windows CE (beta)
A Hacker’s First Impression

by Ray Cannon (email: ray_cannon@compuserve.cont)
22nd September 2002

A new version of Dyalog APL was announced at the Dyadic Vendor forum at
APL 2002 in Madrid. What makes it so special is that it is a FULL copy of Dyalog
APL, it’s expected to “cost as little as $50” and runs on the latest Pocket PCs,

A "Pocket PC” is a Personal Digital Assistant (PDA) running Microsoft Pocket PC
2002 software (Windows CE 3.0, Pocket Outlook, Pocket Word and Pocket Excel).

So two weeks ago I bought myself a HP Jornada 568, a Pocket PC with a 206MHz
StrongArm processor, 64 MB ram, 32 MB flash rom, a 320x240 16-bit reflective
TFT colour display, and type 1 Compact Flash port. 1 downloaded a beta copy of
“Pocket APL” from Dyadic’s web site, and have been playing with it in my free
time ever since.

Keyboard

Most Pocket PCs use a stylus and virtual keyboard, but physical keyboards are
available as add-ons for many makes, which allow one to “thumb type” (as
against “touch type”).

I'do not yet have such a keyboard for my Jornada, so cannot tell you if it works in
conjunction with the APL keyboard. However, since the virtual keyboard, when
displayed, takes up about 1/3 of the screen, it would be a real asset if it does
work, even if 1 still type with the stylus!

Using the stylus takes me back 30 years to my “ROLF HARRIS STYLOPHONE *
days. On the Stylophone, you could not play chords, only single notes. So it is
with the Pocket PC, “computer keyboard chords” (such as “rho” = <ctrl>r) are
not possible, so are entered via a sequence of single strokes, <ctrl> then <r>.

(twonder if I can turn my Pocket PC into a Stylophone via Dyalog APL?)

Installation

Installation of the beta copy of Dyalog (and later, a beta upgrade) was simple and
painless. After installing APL I was in such a hurry to use it, that I failed 1o notice

46

VECTOR Vol.19 No.2

that the newly installed “Pocket APL Keyboard” had not been selected. So I
wasted half an hour wondering how to type in APL. Once I had realised that 1
needed to select this second “keyboard”, T was off. Moral - RTFM.

Having seen a demo of “Rain in Spain” I knew it would run many Dyalog APL
workspaces, without problem. (Pocket APL will run the 1996 shareware version of
Adrian Smith’s Rain, supplied as an “outer product” with Dyalog 7.2, as
demonstrated by Dyadic on the last day of the 2002 APL conference in Madrid.)

However, I also knew that the “Windows CE API”, did NOT contain the same set
of DLLs as the “Win32 AP1” as used by Win 95/98/Me/2000 etc., so, as an initial
project, 1 decided to convert all my utility functions that used DLLs to alsc work
under CE wherever possible.

Chicken or Egg?

The first problem 1 had te overcome was “How does code know if it's running
under ‘Win32 API" or ‘Win CE API"?”

The API function “GetVersionEx” that is available under both Win32 and WinCE
returns suitable information so one can make this choice. However, the name of
the DLL it resides in is different. So the ¥4 code needed to call it, needs to know
which OS it is running, so one needs to call the AP GetVersionEx.....

OK, a different approach is required, let's see what APLVersion gives us.

', {wg '"APILVersicn'
Windows for Pocket PC 10.0.0 P Development

Note, the 3rd element of APLVersion is “P” compared to “W” for the Win32 API,
and “M” (Motif} from Unix based machines. {In the first beta release, APLVersion
returned “CE" rather than “P” but this was changed to prevent length errors in
rurning existing code, that some beta testers have reported.)

vPoW+{n Pocketpc or Win32 APRI?

[1] nReturns w If APLVersion is W else o
[z] DML+0

[3] 'Wit=o230!' VOWG'APLVersion':uw

[y] o a Pocket PC or Motife etc }

v

Now please note that I have /am playing with BETA software, and have already
received one update which fixed /resolved several issues with the original release.
In addition to APL related issues, the update has greatly improved the input

47

VECTOR Vol.19 No.2

facilities available to the “developer” e.g. “Auto complete”. Dyadic are acting on
the feedback from the beta testers. So be warned, the final production release may
well have significant changes from the current software I am testing.

Now, on a full-sized PC, I find “Auto complete” a real distraction, and I turn it off
whenever possible. However, when armed with only a “pointed stick” and a
“virtual keyboard” the “Auto complete” feature is a real boon. You will do almost
anything to save a few “key-strokes” or should 1 say “stick-taps”.

As implemented by Dyadic, the “Auto complete” works very well. I have adjusted
its parameters so it does not guess until you have typed 2 characters. I found the
default of 1 character just not worth the effort. (It's a bit like that old TV quiz “I'l
name that tune in one”, sheer luck if it is correct.}

The Core of the Kernel

Depending on platform, Windows APls can handle text as either single-byte
(ASCH) or multi-byte (normally 2-byte -~ UNICODE). To allow for this, many API
functions which handle text can have two forms, and their names have either a
trailing “A” (ASCII) or “W” (wide). Windows CE 3 supports UNICODE only,
hence the API functions end with “W” not “A”.

On a Pocket PC most of the available APIs are to be found in COREDLL. Whereas
under Win32, the AFIs there are spread out a lot more; in Kernel32, User32, Gdi32,
Advpi32 to name just a few.

So here is a function to return the Windows version information:

V r+GetVersion;get;val;dll;dossbuild;ex;rosstritxt 010

[1] aReturn 08 major, minor, build, platform/dos

[zl ore

[3] ro+0

[u] tex'ONA{

[5] w=1:'T kerpel3?|GetVersionEx4d ={I4 I4% Iy Ju Iy T[128]13}!
[6] w=2:'1 coredll|GetVersionExW ={I4 I4 Iy I4 Ty T[1283}!'
[7] }2 PolW 1

fal If a=0RC ex!

[9] str+1uB 0 0 O G(i128p' ')

{101 rc str+ex,cstr

[11] :End

[12] :If rc

[13] striul+161(4p16)Tstry]

[1u] r+str{z 3 4 5]

[15] txXt+6o5tr

[16] txt+{+/a\txt=0AVI1] Y4 Ext

[17] r,+ctxt

45

VECTOR Vol.19 No.2

[18] :Else

[19] r+0 0 0 0 tf

(20] +End

[21] A

fzz] AINFO for 32 bit application {ie not 16bit win 3.x)
[233 aWin NT3.51 - 351 7 7

f2u] aWin NT4 (spg) - 4 0 1381 2 Service Pack 6
[25] aWin 95 (0OSR2) - % 0 1111 1 B

[28] n -4 0 1111 1 C

[27] [- 4 0 1212 1 B

[28] B - 4% 0 1212 1 C

[2a] aWin 98 - 4 10 1998 1

[3c] aWin 985F - 4 10 2222 1 A

[a31] alWin ME - L 90 3000 1

[32] aWin 2600 (sp3) - 5 0 2195 2 Service Pack 3
[33] aWin XP (sp1) -5 1 2600 2 Service Pack 1
[3u] aWin CE 2.0 « 30 11171 3 !

v

So far, 1 have converted about 40 ON4 calling functions, and have had no
difficulty with the APL. That's not to say that the Pocket PC is a great APL
development environment, it'’s not. But the problems are with the limited
resources available on the Pocket PC, not the APL.

The way I have been working is to modify a function on my desktop PC, and after
testing that the code works, saving the workspace. This workspace is then
transferred across to the Pocket PC. After loading this workspace on the Pocket
PC, 1 test it again. If necessary, 1 can fix minor bugs and typos in the APL code, on
the Pocket PC, and then transfer the workspace back to my desktop.

Finally, here is the code to return the version number of a DLL/EXE. Be aware
that Dyadic only recently introduced support for “VerQueryValue” so running
DllVersion on Dyalog.exe will only return a result for version 9.0.3 with a patched
date some time after 22nd March 2002. (I do not know exactly when Dyadic
introduced it.}

49

VECTOR Vol.19 No.2

v version+«DilVersion file;Aloc;Free;lock;Ulck;8ize;Info
iValu;copy;size; hndlyaddrybuff;ok

113 n Get version number of DLL
[2] :If 0 PolW 1
[3] '4loc'NA'u kernelazGlobaldllcc u u!
[u] 'Free'ONA'u kernela2GlobalFree u!'
[5] 'Lock'ONA'u kernelizz2@loballock u!
[6] ‘Jlok'ON4'u kernel32Globaltnlock u!
[71 'Size'[NA'u versionGetFileVersionInfoSized <0T »u!
fa) 'Info'[INA'u versionGetFileVersionInfod <67 u u y'
{91 "Walu'lNA'u versionVerQueryValued u <0T »u »u’
[10] tcopy'0NA'dyalog32.C32MEMCRY >ul] u u!
[11] :Else
[12] "dloc'(ON¥A'u coredllLocaldlloc u u!
[13] 'Free'(IN4'u coredlilocalFree u!
[1u] Lock+{u}
[15] Ulok+«{1}
[26] 'Size'ONA'u coredllfetFileVersionInfoSizeW <0T »u'
{17] 'Info'ONA'u coredllGetFileVersionInfok <o u u u!
{18] ‘Valu'(ONA'u coredllVerQueryValueW u <0T >u »u'
[197 ‘copy'UNAcoredIlmemecpy »>ull u u!
[20] : End
[211] :If wgize«aSize File © n Size of info.
[22] :AndIf xhndl+«Adloc 0 size a Alloc memory.
[23] 1If xaddr+Lock hndl a Lock memory.
fau] :If xInfo file 0 size addr p Version info.
[25] (ok buff size)+Valu addr'\' 0 0

n Version value
(25] If ok
{27] buff«copy(sizess)buff size a Copy info
[28] version«s,/(<2/2+16)1 2424buff

a Encode version
[29] :EndIf
[301] 1EndIf
[31] ok+Ulok hndl ® Unlock memory.
[32] tEndIf
[33] ok+Free hndl rn Free memory.
[3u4] :EndIf

v

Points to note relating to Pocket APL:
* Dyalog32.DLL was not shipped with the beta version, but since “coredll”

contains a both “memepy” and “strnepy” (note lower case spelling), this is not
actually a problem.

50

VECTOR Vol.18 No.2

+ Pocket PC does not support Global memory calls, so these are replaced by
Local memory calls.

*» Local memory does not and cannot be “locked” so these calls are replaced by
simple function calls returning appropriate results.

Conclusion

Dyalog Pocket APL is NOT a toy, nor a “cut down” version of their desktop
product, but a real, state of the art, extremely cheap, full-blown APL, that runs in a
PC that literally fits in your pocket. It can handle workspaces 3 times the size of
the largest workspace T can use on the mainframe APL systems I still support, and
the 256MB of Compact Flash memory 1 have compares well with the 300 MB of
mainframe disk storage 1 have allocated.

With Pocket APL, the APL character set is NOT an issue, Pocket PCs are Unicode
not ASCII based, and with the virtual keyboard, I can see APL characters as T type
for the first time in 7 years!

1 believe Pocket APL can give the APL community a new lease of life. It gives APL
developers a flying start into the Pocket PC market. We can re-sell our existing
products in a brand new environment. We can develop new products for a new
target audience using our existing tocls, with almost no learning curve.

To paraphrase the chancellor of the exchequer at the end of his budget speech:

“1 can commend this APL to the community.”

51

VECTOR Vol.19 No.2

If You Go Down to the Woods Today ...
First Experiences with PocketAPL

by Adrian Smith (adrian@grapl.com)

First Encounter (Madrid 2002)

This must have been the best-kept secret at APL2002. There had been rumours of
a “Project-X" in the Basingstoke labs for several months, but none of us guessed
the shape and size of the egg that the Ducks had been lovingly incubating. When
the chick was finally allowed to hatch, it generated just the “Wow!” reaction that
Dyadic must have been hoping for.

Just as Eric Iverson had shown] to a fascinated BAA Meeting a couple of years
ago, John Daintree was able to demo a fully-fledged pocket application that
exploited the array-power of APL, and was moreover a useful thing to have in
your jacket pocket. His “Mornington Crescent” solver used a publicly available
topology of the London Underground to allow users to tap-select on their current
location and intended destination, and to get simple directions, and a rough time-
estimate. All programmed in DFns (and very nicely described by John Scholes at
the May Vendor Forum) with a simple but fully-functional Gui.

They even had an early version of Rain running, complete with as much of the
viewer as fitted on the post-card-sized screen! In fact almost any reasonable
Dyalog application should at least have a go, straight out of the box, as long as it
keeps away from Windows API calls and is sensible with the Gui.

So, Adrian looked at Jonathan and Jonathan looked at Adrian and we said “Want
onel”, so after a little research we have a matched pair of HP Jornada 568
clamshells, called CEcil and CElia respectively. Now comes the hard part ...

Can We Make Them Do Something Useful?

Oddly enough, T already had a target application in mind, which did help to get
the authorisation past the APL385 purchasing department. Every few months the
Ryedale Field Naturalists (see www.ryenats.org.uk) go out in search of birds or
Howers or fungi. Having spent an exciting day peering into dense thickets or
sinking into bogs, they return triumphant with a long list of the botany and
assorted avifauna they have sighted. In former times, the list consisted of

52

VECTOR Vol.19 No.2

scribbled notes on a clipboard, which some muggins then had to reformat into a
neat CSV file so it could be published on the website for all to admire.

Typically, the list will be over 100 flowers in a day’s outing, so you can guess that
transforming the hurried notes into an accurate list with both Common and Latin
names is a tedious and error-prone business. As it happens, GraPL is a handy tool
for reading in a CSV and writing out a nice HTML table, so all we need is
something we can take out in the field which will speed up the process of creating
the CSV in the first place.

Of course, one could simply use CEeil and either Excel or Notepad to enter the
data by hand, but I have accompanied enough of these trips to know that the
quickfire “Look, here’s a banded Knotweed with asymmetric follicles ... it must be
Albinensis rusticana” (sorry I made that one up)} would swamp any attempt to
work on a normal keyboard, let alone a tap-and-shoot interface. The key to
success would surely be to ensure the absolute minimum of typing, and yet
guarantee total accuracy in the spelling of the final result. Spurred on by the
memory of POET (Portable Order Entry Terminal - Rowntrees circa 1980) and the
4K of Marconi Assembler that my colleague Dr Wilson once wrote, 1 set to work
on the design.

A vital resource which we already had was the BSBI official list of all the plants
known to grow in the UK, listed by “BSBI number”, Latin name and Common
name. Of course there were far too many of these to contemplate the idea of a
drop-down list (around 6,000 I think) and anyway, how would you arrange the
drop-down. Sometimes it is a Latin name that is shouted across the field,
sometimes the common name, sometime a mixture of both (“Ranunculus,
Creeping I think ...”}. The first rule of Extreme Programming is “Build the simplest
thing that could possibly work” which in this case was going to be an edit field
where you could enter something like “ra cre” and tap “Find” to get a list of all
the likely candidates. Maybe there would only be one, or maybe several. Then the
intrepid botanist could simply tap the correct one and hit “Add to cart” to log it. It
had to work simply and quickly, but of course it did need to run some obvious
checks, such as making sure you only logged each plant once.

So, here we are with our Dyalog 10 engine, our BSB! list and some vague ideas
about design. It's Saturday and the Terrington trip is on Tuesday. Time to stop
brooding and start cutting code.

53

VECTOR Vol.19 No.2

Some Early Thoughts on the Gui

As I'm sure you know, a Causeway is a safe path across a bog, so a good start
would be a port of just enough of CPro (let’s call it CProCE) to get me going.
Having spent a few days just playing, I had come to the view that the ‘typical’
Pocket application used only the most basic Gui centrols. No trees, no listviews,
no fancy buttonbars. Remarkably Win31 in fact, so let’s start with the classes
marked ‘Win31” in standard Causeway and see how far we get. A quick reading
of the help file showed a few critical changes that would have to be made to the
‘Form” class so it would behave correctly (for example madal forms would need to
close and return 1 when the user hit the OK in the corner) and of course the
default sizes for edit fields and buttons were all a little different. However this is
mostly in data (the Design variable in the class namespace) so getting it all up
and running took only a couple of hours.

Rather than porting the CPro Designer, 1 simply set the form size to match the
Pocket display, and set the default font to MS Sans Serif Bold so when the form
was created on the ‘real” PC it was a close match for the actual appearance on the
Pocket machine. That way, all | needed was a global switch to check the Dyalog
version and enable the special behaviours which only the Pocket APL supported.

Now I could design and test the entire application in relative comfort, and simply
}save it to a subfolder that ActiveSynch was looking out for. Wait a couple of
seconds until the logo on the system tray want from amber to green, reload the
warkspace on CEcil and try it for real. Swear at an un-noticed Q¥4 call, fix or
remove it, resave, count fo 10, reload and try again. It sounds messy, but actually
it works fine — a bit like having a dual monitor layout apart from the short delay
while the WS is copied down the USB link.

Teething troubles

All these got fixed really quickly, but I should probably mention them in passing.
There was a very strange effect caused by a line in the CPro engine which ran
ODR™ on a column of a nested matrix (by the time Dyadic had fixed the bug I had
removed the offending code); native files did not work at ail {so I had to save the
plant-list in a component file and write it to CSV with ‘real’ Dyalog-9); the main
form did not minimise properly when its X button was hit, so CEcil was a one-
application machine for the day. Sometimes the “context menu” event seemed to
go missing, but I only made minimal use of tap-and-hold menus, so not a big
problem,

The good news is that the CPro namespace is now completely common to the PC
and CE platforms. All we need to do is plug in a different {and much smaller)

54

VECTOR Vol.19 No.2

clags Library. The Designer also needed no changes at all, as long as you only
develop on the PC. To make a fully usable version of this for the Pocket display
would be a lot of work, but I may well make a minimal version which at least
allows me to debug forms and fix the “Data to watch” and “Behaviour” entries
over on the Pocket. T doubt if T will ever do the visual design stuff “over there” as |
cannot really see the need. Other opinions welcome, of course,

Building and Installing the Finished Application

As you might guess, the main form only took a few minutes to rough out, and
looks like this:

. L File Tools

[cree | TFind | Log

Cirsilfrarvense « ThisHe, cigdihg - 20 4%
Helcus mallis - Cieeping Soft Grass
Lusimachia nummularia - Creeping jerny
Myosctis secunda - Fargetmenct, creeping
Potentila reptans « Cinquefoll, creeping
Ranunculus repens - Buttercup, ciesping
Salix repens - Willow, creeping

O entries sofar...

I now needed to put some code behind the ‘Find’ button, and speed was likely to
be an issue, so I pre-processed as much as I could to make the text search as fast as
possible. The first thing I do is save the full namelist in uppercase to a cr-delimited
simple vector with blanks added to the front and back of each line. I have a
matching numeric vector to tell me which row each line comes from, so all I need
to do is use the absurdly fast ¢ to match each part-word the user typed and
progressively eliminate candidate indices. Here is the crucial code:

55

VECTOR Vol.19 No.2

ids+«Find plantsiplantitxt;hits;ptn

a Check the full list of names anm for hits on the passed e<plants>

s Each word 1is taken fn turn so 'but cree' would hit 'Creeping Buttercup!
n Returns the ids from asidx of all the candidates

n See Init which makes the searchable text

plants+#.util.tovpper plants
({plantse'~")/plants)«' !
plantseplants-''"’

plants+' ' ,"¢ ;g util.acsvton plants

+If Oepplants
ids+8
:Return
:End

n Mask hits from each word

ids+aid

tFor plant :In plants
hits«(planteatxt)/aptn
idan+aid[hits]

:End

On the HF Jornada (ARM chip) this runs comfortably quick enough (under 1/10th
of a second} on the 27571-byte text vector, so no problems keeping up with my
handwriting speed!

Of course users make mistakes, and botanists were likely to ask “How many have
we got so far?” o the other screen I needed was to allow deletion from the log, as
well as to show a simple count of the number of entries so far. One of the things
you cannot avoid on the Pocket Gui is a menubar, so let’s use it here! “Tools”
seems a good place to bury this one, so we have something tike:

Simple enough, and this one is modal so it

Thenepadun \s,bum,,:a, b { really goes away when you hit the X in the
Sahy fragils - Willow, crack 3 fragment ili lik
Epilobiumn palustre - Willowhesb, marsh corner. A few s of util ty COd_e (€
E pilabium cliatum - Wilowhetb, American Save and Revert) and we are ready to give it a

Ranuniculus tepens - Butlercup, creeping try out

{The radio buttons choose the ordering - a very
late-running field upgradet)

56

VECTOR Vol.19 No.2

Implementation issues

Nothing to do with Dyadic, but something to be aware of. It is anazingly hard to
do the basic maintenance tasks with the CE interface. Yes, it is Windows, but it
does its damndest to pretend that it is just another dumb organiser! There really is
no way to edit the properties of a shortcut, let alone add a new one, with the
supplied interface. As for changing stuff in the Registry, don't even think about it!

Fortunately, there seem to be loads of useful tools out there to fill the gaps, and
most of them are free. A quick trawl on the internet turned up GSFinder as a
‘proper” Explorer (actually rather a good one) and pocket RegEdit and Notepad
soon followed. Now it is possible to make a new shortcut to start Dyalog, load my
workspace and in the usual way have OLX run up the main form. Of course we do
not yet have a ‘runtime’ environment, but I can check to see if [am running on the
Pocket version of APL when the form closes and JOFF if so. If | add the shortcut
to the Start menu (one of only 9 allowed) then we have something that has all the
look and feel of a real shippable application.

As you can see, it really did work.
Next time we are going to fix up
some Velcro so CEcil is actually
stuck to the clipboard, but in
general the ergonomics were very
satisfactory. 1 was tending to use
the ‘hunt and tap’ keyboard,
where Gill was happier with the
s letter-recogniser. However both
were accepted with no problems
by the standard text-input field so
it was easy to choose. One major
benefit of the HP screen was that
it was comfortably readable out of
doors in full sunlight.

This, coupled with the remarkable
battery life (I took it to Italy for a
5-day trip, used it as my alarm
clock every morning, and was still
writing code on the train home)
makes it a very handy tool for use out in the field, or even the jungle!

VECTOR Vol.19 No.2

Can we Develop APL Code with it?

The only way to answer this question was to give it a try. I really can’t see myself
writing any serious Gui applications in this environment, but what about those
little nuggets of code you need to put behind the Gui? The sort of thing that you
worry away at while waiting for planes and trains, in fact. On the way back from
Milan I thought it would be good to cut some real code, and hopefully make a
good set of test examples to prove it.

The problem I had was simple enough to specify: given a simple numeric matrix,
take an index vector (typically 2 numbers) which could be integer or floating-
point and return a scalar value. Integer indices do what you would expect,
floating-point values result in a simple linear interpolation on the corresponding
axis. We do not attempt to extrapolate over the ends.

Simple encugh, but a few cases to test and enough code to write to give the APL
keyboard a reasonable work-out. How easy was it to get this working?

Using the session

Obviously you need this to generate your test data, select some functions to edit,
and then to run. I soon found I was setting OPW to be fairly wide, as otherwise
even quite small matrices scrolled the session much too far for comfort. Using the
rocker-pad to scroll up is fine for 2 or 3 lines, but not for much more than this. 1
wonder about using the old VSPC style session here — separate area for input at
the foot of the screen and a special command to ‘bring down’ output lines into it.

I also found working with multiple windows very cumbersome, and quickly gave
up attempts to fix code ‘on the fly’ in the editor. It seemed much less confusing
just to look at a few variables, hit + and start again from the top. It never tried the
tracer at all, but then again 1 never use it anyway, prefering the old » approach to
stopping code in its tracks. I think Dyadic should take a hard look at the APL2000
Code-walker which would be a far more appropriate style of interface in the limited
screen-space they have available here.

Working in the editor

Actually typing in the AFPL code was the least of the problems. The auto-complete
is excellent, as it can guess from the context which names are visible and usually
homes in almost instantly. It almost makes the idea of putting the conirol-
structures on one of the sets of virtual keytops redundant, as they auto-complete
very quickly from the normal Alpha keypad. Of course typing the symbols is no
harder than typing anything else, although 1 continue to wonder about the logic of

58

VECTOR Vol.19 No.2

perpetuating an asscciation of symbols with keytops on a machine which does not
actually have any keytops! Something more like the Word Equation-editor toolbar
might have been more appropriate here? Edit, Format is a godsend here, as lining
up code by hand is not something you would want to do.

Lessons for Mainstream Interpreters

Two things are simple and obvious.

1. The auto-complete is really useful when you are digging around in a tree of
namespaces. The fact that it can restrict the search to the likely valid names
means that it offers useful guesses with a minimum of typing.

2. We really must start offering novice APLers some keyboard help. Never mind
showing a map of the keyboard - please can we just have an optional toolbar
with the symbols on it, sensibly grouped. If APL2C can do it, why can’t the rest
of you? | suspect even experienced APLers would find it helpful from time to
time. 1 still type ,[1] rather than {commabar} in APL+Win because it is faster
and a lot less error-prane than finding the symbol!

I think the final lesson is a bit harder to implement. I agree with Ray that we can
actually generate useful applications for this little gem of a machine, and that at
the moment the market is wide open. However 1 really think that we want a much
lighter-weight installation, and that Dyalog may finally have to follow +Win and
APLX in making the ‘runtime’ interpreter just that, rather than simply the
development system with a flag setl Remember that this beast has no hard-drive,
s0 any install is taking a fair chunk out of the 40Mb of free installed memory.
Hopefully, this message will get through to the developers, and we can also
benefit from a lighter-weight installation for the ‘real’ PC platform as a result. If
we can all share the same interpreter, so much the better.

Summary

This is a computer, and an APL implementation, that you should take seriously. It
can do real work, and it really can go out in the fleld and do useful stuff under
‘battle” conditions. As a machine to take with you on that 10-hour flight, it is hard
to beat.

59

VECTOR Vol.19 No.2

APL 2002
AT M ADRID

reported by Anthony Camacho

ATL 2002 was held from 22 to 25 July at the Universidad Autonoma de Madrid.

It was well organised. The display equipment worked. The rooms used were
never overcrowded. There was an excellent computer workshop with internet
access. The food was acceptable. The proceedings were given ot at registration -
a significant benefit as it enabled delegates to make a much better informed choice
of papers to attend. Not only did every delegate get a Vector and a British APL
Association CD containing the proceedings, the Vector archive and some free
APLs and some of Adrian’s pictures, but also there were copies for everyone of
Les Nouvelles D'APL from AFAPL and also another CD with A+ in versions for
Windows and Unix from Morgan Stanley. There was an excellent conference bag,
well designed, well made and with numerous zips and pockets, but there were no
T-shirts or other give-aways. (The BAA CD is to be sent to all subscribers to
Vector with issue 19.2.)

60

VECTOR Vol.19 No.2

There were few hitches and they were all well dealt with; the worst was that on
the first morning the coach to take us from the hotel to the university did not
appear and we were carried in taxis after only about twenty minutes delay and
the conference still started almost on time.

There were some good professional presentations, in particular from Dyadic,
MicroAPL, Adrian Smith, APL 2000 and Soliton. The best presented conference
paper was by Alan Mayer and Alan Sykes. There were some presentations where
the author had done nothing to prepare except write the paper and/or had not
tried a run through; you know who you are so we won't add to your
embarrassment by naming you.

The University is about half an hour from the centre of Madrid and is quite new.
The building where the conference was held was opened in 1999 and felt a bit
bleak. There was no place with comfortable chairs to relax and talk if no paper
appealed, except the computer room, and since the buses left the hotels at eight
thirty or so and did not get back till seven or after, the days were long and tiring.

There are 91 names on the list of participants; as far as | am aware only one paper
had to be cancelled because there was no presenter for it.

61

VECTOR Vol.19 No.2

The first sighting of Dyalog for the PocketPC
John Daintree demonstrates the London Routefinder

I suspect the highlight of the conference was when John Daintree showed a pocket
PC with a full implementation of Dyalog APL - an excellent additional reason for
keeping your functions (and function lines) short! I want one.

APL 2000 had significant enhancements to announce, MicroAPL showed their
excellent new multi-platform APL and Dvadic introduced us to the joys of NET.

At the banquet the only speech was by Bob Brown who explained that the venue
for APL 2003 was not vet decided and that the SigAPL committee had not yet
agreed on a recipient of the Sig APL outstanding achievement award for this vear.
Lynne Shaw presented Jon McGrew with the plaque for last year’s award, which
was not ready in time to give it to him at Yale (APL 2001). Everyone toasted
Manuel Alfonseca (the Chairman of the conference) and his staff for an excellently
organised and run conference. He deserves thanks from all of us.

62

VECTOR Vol.19 No.2

My Impressions of the Conference
from lan Clark

I for one did enjoy the conference, and since I paid my own way from start to
finish (that must be a first!) I felt I'd got my money’s worth.

But no thanks to the formal content, which was pretty dismal. I did go to the last
day, and I found the open discussion unexpectedly useful. I wish I'd taken notes.
The rest wasn’t up to much.

Apart from the vendor material, always worthwhile, if only to see what they're
not doing, the only two papers that thrilled me were the one by the Alans and,
surprisingly, Paul Cockshott’s on Vector Pascal. I'd reviewed that one, and
warned him away from making too ‘academic’ a paper out of it as he was
proposing to. I thought it was a long-shot for this conference, but if there was a
theme for me, it was how to extend existing procedural languages to give APL-
like array functionality, and Vector Pascal was right in there. Its application
domain (effectively the cinema of the future) was fascinating to me.

Jonathan Manktelow with Paul Cockshott

63

VECTOR Vol.19 No.2

So where was the problem? Couldn’t fault the organisation - although anything
university-based has to reconcile the disparate needs of good hotel and food
versus cheap university accommodation, which can mean a long trip between
comfortable surroundings to chat and the actual presentations. As in this case. Too
far to go back for a hanky. Like Anthony, I feel that if everything isn’t on-site it
makes a long day of it. Particularly if there’s nowhere to chill-out—nowhere you
don’t get shooed out of.

1 seem to recall some discussion in the open session on Thursday of commercially-
based versus academically-based APL conferences. I don’t think the APL world is
dead by any means (last November at Naples, Florida showed a lot of life) but it
may be in danger of fragmentation. I think there are two issues. The comfort issue
noted above, which TU-Berlin solved by being a city-centre university site close to
the main hotels, and having excellent refreshiment and sitting-around facilities just
outside the (albeit severe) teaching rooms, And the content issue.

For the sake of clarity I'm going to be beastly and cruel here. 1 get the feeling with
Hispanics that they think that if they just ignore the English-speaking world it will
eventually go away. Yet here was Manuel hoping to help his university come out
of the Franco closet into the Euro scene, indeed the world scene as represented by
APL {which he might hope to be less English-dominated than most computer
topics) and yet all it did was expose Spain for the backwater it still is. If we choose
in future to have the world conference in a minor-league country, APL-wise (I'd
be very careful to exclude say Finland or Denmark from such a designation!) then
it's going to be most important to act as uncle or guardian angel to the local group,
without stealing its thunder, to ensure that major players get to submit good
papers, and that the schedule doesn’t get filled with who-he's who are desperate
for the shop-window. If a good enough stream of papers don’t materialise, then a
bit of cajoling and bullying will need to be done. And not just to plead for fillers
from people who are going to turn up and simply ad-lib, or read out their vanilla-
flavoured papers word-by-word, but by people who can be guaranteed to put on
a good show.

64

VECTOR Vol.19 No.2

Inner Product Fractals from Fuzzy Logics

by Angela Coxe (coxea@Iafayette.edu)

Introduction

Fractals have become a popular topic to study because of their aesthetic appeal.
They have been used in different fields and also as a way to depict natural
landscapes [2,7]. One classic fractal is the Sierpinski Triangle [5]. This fractal may
be constructed using] inner products [3]. In this note our goal is to explore the use
of fuzzy logics with such inner products. This grew out of a project I did in a
visualization class [4].

Boolean Inner Product Fractals

We first consider using an inner product in] to construct the Sierpinski Triangle.
To make the images we start with the binary representation of the values. Here is
a matrix of 3-digit and base-2 construction of binary representations.

1 3

k
s
]

r (kits)}#: i.s2k

e e 0000
OO, O00
PO R, OROROI 10

Then we take the “or” of pair-wise “and” of each row of m with each column of
the transpose using a] inner product; see the following. The 0’s correspond to the
Sierpinski Triangle.

Jb=: m +./ . *, |t m
0Q0Q000O0O00O0
01010101
00110011
01110111
00001l L1
01011 % 1§11
00tifti111
¢gi1111111

65

VECTOR Vol.19 No.2

We then increased the value of k to 8 and made the picture in Figure 1. By
changing the “or” and “and” operators (+. and ».), values of the digit, and the
base in the above expression, different variations on the Sierpinski Triangle can be
seen. The inner product matrix above with a 5-digit base-3 representation gives
the Sierpinski Carpet seen in Figure 2, where +.and * ., were the ged and lem.

Fuzzy Logic

Fuzzy logic is a way to quantify indefinite values of truth. There are different
types of fuzzy logics and each type gives a different behaviour. Fuzzy logics use
“or” and “and” operators, and variations of “or” and “and” to determine the
differing types of fuzzy logics. The types we are going to examine first are the
probabilistic fuzzy logic and the max/min fuzzy logic.

We start with by showing the Boolean Logic truth tables in Tables 1 and 2.

0|1
0|0 |1
111 1

Table 1. Boolean “or” truth table

0|1
o0 |0
110711

Table 2. Boolean “and” truth table

In the probabilistic fuzzy logic x or y is (¥ + y)-(x * y) while x and y is x * y [4,6].
Here is the implementation in J.

por=: (+ - *} O
pand=: =

Tables 3 and 4 are the truth tables for the probabilistic logic. Comparing these
tables to the Boolean truth tables (Tables 1 and 2), note the 0's and 1's are
positioned as in the Boolean tables.

66

VECTOR

Vol.49 No.2

0 0.25 0.5 0.75 1

0 0 0.25 0.5 0.75 1

0.25 0.25 0.4375 0.625 0.8125 1

0.5 0.5 0.625 0.75 0.875 1

0.75 075 | 0.8125 | 0.875 0.9375 1

1 1 1 1 1 1

Table 3. Probabilistic “or” truth table

0 0.25 0.5 0.75 1

0 0 0 0 0 0
0.23 0 0.625 0125) 01875 | 025
05 0 0125 0.25 0.375 0.5
! 0.75 0 0.1875 0.375 0.5625 0.75

1 0 0.25 0.5 0.75 1

Table 4. Probabilistic “and” truth table

67

| Probabilistic Fuzzy Logic Inner Product Fractal

We will now look at the probabilistic fuzzy logic and apply it to inner product
fractals. The expression below makes a matrix using k-digits and s-sampled
values.

VECTOR Vol.19 No.2

k=: 2
s=: 3
Jm=: >, /{k#i<{i.%et)s

0 ¢]
0 0.5
0 i
0.5 4}
0.5 0.5
0.5 i
i 0
1 0.5
1 i

Fuzzy logics may be used on this m in the same construction as the inner product
fractals discussed earlier with a slight variation to accommodate the fuzzy “or”
and “and” operators.

Ib=: m por/ . pand |:m
0 0 0 0 0 0 0 0 0
0 0.25 0.5 0 0.25 0.5 0 0.25 O0.%
0 0.5 1 0 0.5 1 [} 0.5 b
0 0 0 0.25 0.25 0.25 0.5 0.5 0.5
0 0.25 0.5 0.25 0.4375 0.625 0.5 0,625 0,75
0 0.5 1 0.25 0.625 1 0.5 0.75 i
0 0 0 0.5 0.5 0.5% i 1 i
0 0.25 0.5 0.5 0.625 0.75 1 i i
0 0.5 i 0.5 0.75 1 i 1 1

In order to visualize a more detailed version, we assign each value in our matrix
to an integer between Q and 255. The linear visualizing is done using the function
1in256, which matches integers to a palette to construct colour pictures [4].
Notice how there is a block of 1’s in the lower right corner. The 1’s correspond to
the color black in the palette, the 0's correspond to the color white in the palette,
and the rest of the values are different hues in between. Here is the]
representation used to create pictures using the probabilistic fuzzy logic.

load 'fvj2/raster5.ijs’
Lin256=: <.@(255,99&%)

$m=: >, /ar{_1: + #O$){3#<(i.%<:)8
512 3
$b=: m por / . pand |: m
512 512
(P256; Lin256 b) writebmpB8 'pFuzzy000.bmp'

See Figure 3 for an example of inner product fractals using the probabilistic fuzzy
logic. This figure shows the nesting with shifts of shading within the image. Recall

68

VECTOR Vol.19 No.2

that the lower right side is a black block because all the values in that portion of
the matrix are 1's.

Max/Min Fuzzy Logic

Another type of fuzzy logic is max/min. This logic uses max (>.} and min {<.)
functions. The following is the implementation of the max/min “or” and “and”
functions.

mor=: >,
mand=: <.

Tables 5 and 6 show the truth tables for the max/min fuzzy logic.

0 0.25 0.5 0.75 1

0 0 0.25 0.5 0.75 1
0.25 0.25 0.25 0.5 0.75 1
0.5 0.5 0.5 0.5 0.75 1
0.75 0.75 0.75 0.75 0.75 1
1 1 1 1 1 1

Table 5. Max/Min “or” truth table

0 0.25 0.5 0.75 1
0 0 0 0 0 0
0.25 0 0.25 0.25 0.25 0.25
0.5 0 0.25 0.5 0.5 0.5
0.75 0 0.25 0.5 0.75 0.75
1 0 0.25 0.5 0.75 1

Table 6. Max/Min “and” truth table

We can see the values in the max/min truth tables all appear in the domain, while
the probabilistic truth tables contain additional values outside the domain.

69

VECTOR Vol.19 No.2

As before, this is substituted into the inner product formula and the rest is the
same as the probabilistic logic.

$m=: >, /{3#<(i.%<:)8
512 3
$b=: mmax / . min |t m
512 512
(P256; Lin256 b) writebmp8 'mfuzzyQ00.bmp'

An illustration of max/min fuzzy logic inner product fractal is seen in Figure 4.
Notice the uniform bands of color within the nesting of shades. This is not
surprising given the patterns in Tables 5 and 6.

Schweizer Parameterized Family of Fuzzy Logic

Next, we are using the Schweizer parameterized family of fuzzy logic to create a
family of inner product fractals. For this type we are using two definitions, which
give the fuzzy logic for any o>0 [6].

The Schweizer “or” definition is:

x sor v = (1/x" + 1/y* -1) ~¥®
and the implementation in J is:
sor=: 1 : 0"0Q
;f. 1= x.>.y. do. 1 else.
1 - ((R0U-x)am)) + (Z(01-y.)am.)Y =1)n{-%m.)
end.

)

The Schweizer “and” definition is:

x sand y = 1 - (1/(1-2)% + 1/(1-y) @ -1} ~/@
and the implementation in J is:

sand=: {1 : 0"0

;f. 0 = x.»y, do. 0 else.

((A(x)am.) + (Ely.)am.) - 1)a(-%m.)

end.

)

70

VECTOR Vol.19 No.2

The] adverbs for Schweizer families are run similar to the above fuzzy logics. The
difference in the] implementation is the o-value placed in front of the sor and
sand resulting in the appropriate function. Each different o-values affects the
picture slightly. Here is the variation of the inner product fractal used with the
o-value of 0.5.

$m=: >, /A {_1: + #@$}{3#<{i.%<:)B
512 3
$b=: m 2 sor / . {2 sand) |[: m
512 512
{P256; Lin256 b) writebmp8 'sfuzzy000.bmp'

The Schweizer image with the o-value of 0.01 behaves virtually identical to
Figure 3. In addition, Figures 4 and the Schweizer image with the a-value of 20
also have virtually identical behaviours. The images I produced with the
Schweizer family showed an o-value greater than 1 had behaviour similar to a
max/min fuzzy logic, and an a.-value approaching 0 had behaviour similar to the
probabilistic fuzzy logic. Figure 5 is an example where the o-value is between the
probabilistic and max/min figures. To see an animation of this Schweizer family
see [1]. A beta version of image3 addon for] was used to create the animation.
This page also another example of the probabilistic logic were the argument is
preprocessed by the following function.

tw(x)= %+m(x-%)+4 (1-m) (x-%)?

We call this the twisted family of logic, and PFigure 6 contains an example of the
twisted logic at the initial value of =3.

Conclusion

We have seen how fuzzy logics in inner product constructions form fractal like
images. Parameterized families of fuzzy logic show how variations on the logics
according to the parameters give smooth variations between images.

71

VECTOR Vol.19 No.2

Figure 1. Sierpinski Triangle from inner product
fractal of 8-digit base-2 representations.

Figure 2. Sierpinski Carpet from a base-3 construction

72

VECTOR

Vol.19 No.2

TR TR

Ty

3y
A

p.

5
i
L4

N
-
&
"
.

-

BEEE

Figure 3. Inner product fractal from 3-digit probabilistic
fuzzy logic sampled at 8-points.

LT PELLTrrrre
- a waaw
§ e asanay) -
: ® -
: .
- sam "

. EE_: EE

Figure 4. Inner product fractal from 3-digit max/min
fuzzy logic sampled at 8-points.

73

VECTOR Vol.19 No.2

Figure 5. Inner product fractal from 3-digit Schweizer fuzzy
logic sampled at 8-points with an a-value of 2.

Figure 6. Twisted inner product fractal
with a parameter value of -3.

VECTOR Vol.18 No.2

References

[1] Angela M. Coxe, Auxillary Materials for “Inner Product Fractals from Fuzzy
Logics”, http://www.lafayette.edu/~reiterc/sp02fp/coxe/index.himl

[2] Barnsley, Michael. Fractals Everywiiere. Academic Press, Inc., San Diega, CA
(1988).

{3] C. A. Reiter, Fractals and Generalized Inner Products. Chaos, Solutions and
Fractals 3, 695-713 (1993).

{4] C.A. Reiter, Fraclals Visualization and | 2" Ed. Jsoftware, Toronto, Canada {2000).

[5] C.A. Reiter, Sierpinski Fractals and GCDs. Compnuters & Grapiiics, (18) 6, 885-891
(1994).

[6} H.T. Nguyen, E.A. Walker. A First Course in Fuzzy Logic, Second Ed. Chapman &
Hall/CRC, Boca Raton, FL (2000).

7] Mandelbrot, Benoit B. The Fractal Geometry of Nature. W.H.Freeman and
Company, New York, NY (1983).

Angela M. Coxe

Lafayette College Box §916
Easton, PA 18042, USA
coxea@lafayette.edu

75

VECTOR Vol.18 No.2

A Gui-quad for Graphical User Interaction

by F.H.D.(Eke) van Batenburg ' 2
Jasper van Dijk *, Dirk-Jan van Leeuwen®

Abstract

This paper demonstrates a gui-quad primitive that should be added te APL. This
gui-quad is a logical successor of quad and quoted-quad for a windowing
environment.

The right argument of gui-quad is a vector with data-items that are to be
presented to the end-user and the result is the same vector with these data items
modified as the user saw fit. The left argument specifies the layout. So the right
argument specifies what should be presented and the left argument specifies how.

The functional repertoire of this gui-quad is not so extensive that it can supplant
the OWI primitive. However, this gui-quad primitive is far easier to use and also
satisfies most of the programumer needs for a gui-like interaction with the user.

Introduction

A good thing in my opinion is that most APL vendors have, despite some
undeniable differences, an APL that is very similar with regard to the primitive
functions, syntax and basic primitive variables. For this reason when I switch from
my PC where 1 use APL2C or APL2000 to the Mac where I use APL6800C (now
APLX) most of my coding still works. And even when I would move to Unix, a lot
(I refrain from saying most) of my APL coding still works in SAX APL. And this is
more or less codified in the newest ISO standard [1]. You could make an
argument as to whether it was the ISO standard that standardized APL, or
whether the vendors adhered to common principles that made an 15O standard
possible or a bit of both, but I do not intend to raise that discussion here. The fact
remains that I can work without too much mental juggling in many different
APLs.

1 Batenburg@rulsfb.LeidenUniv.nl

2 Theoretical Biology, Inst.Ecological & Evolutionary studies, University Leiden, The Netherlands

76

VECTOR Vol.19 No.2

The thing that is not codified in the ISO standard is the graphical user interface in
APL. And in the beginning this used to be very different in different APL
implementations. Despite the initial differences I noticed that this initially wide
variety of approaches seemed to have grown towards each other in the last
decade. The first one with a nice graphical user interface was APL68000 before the
DOS-world even heard of the words graphical user interface. Then APL*PLUS
came with a graphical user interface using OWGET and OWPUT that was very nice
taking into account the primitive DOS environment of that time. When Dyalog
introduced their OWI using an object-oriented programming approach they
initiated a new and powerful gui for APL. First APL*PLUS adopted this (I leave it
to the reader to pronounce APL*PLUS as APL/Manugistics, Cognos, APL/Win or
APL2000) and now APL68000 (today to be pronounced as APLX of MicroAPL)
adopted it too. This “organic” standardization is something that I am very happy
with.

User Interface.

Having said that I am happy with the standardization of OWI, I must add that as a
programmer I have mixed feelings about the OwI, On the one hand it is an
extremely powerful tool for a programmer. On the other hand unfortunately it is
indeed true that OWwI means “Window Interface”. My point is that as a
programmer, I do not want to interface with Windows (imagine how my students
laugh when 1 work on my Mac and I explain to them that I am interfacing with
“Windows"”). I do not want to interface with Windows, I want to interact with the
User.

Now APL used to have perfectly good primitives to interact with the user: the
quad and the quote quad. It is clear that in the current operating systems the quad
and the quote quad are inadequate for a modern user interface. But rather than a
Windows Interface I think there is a need for a “Graphical-User-Interaction-
Quad”, in short a gui-quad.

Such a gui-quad should take the information that the programmer wants to
present to the end-user, show it in a nice way, let the user change it as he or she
sees fit, and return the modified result. For this I do not want to “interact with
Windows", I do not want to make forms, to create objects nor do I want to assign
properties.

Basic interaction

So let me be more concrete in what I do want, in other words how I want the gui-
quad to work. In its simplest form I just want to say something like:

77

VECTOR Vol.19 No.2

B >'This is simple' 'user interaction.'

and I expect to produce something like:

i
I

This it simple
user interaction.

0 A the explicit result that will be explained later

You see? No forms, no [WI, no (WCALL *MessageBox', no more programming
overhead than just that one symbol for graphical user interfacing.

Now as you see this is a very basic thing. We only have to supply the information
that we want to present to the user. Just like in the old days when we said:

O « >'Fhis is simple' 'user interaction,'

If we want to enhance the layout we should give slightly more information to v .
For example we could specify that we would like to display this information in a
query-box, or a proper info-box. For this we supply layout information as a left
argument, For example:

'?'B>'This displays in' ta query box.'
"i'Ba'This displays in' 'an info box.!

For real interaction you want information back from the user. The simplest way
would be to enable him to answer by clicking on appropriate exit buttons. Of
course you do not want to be restricted to Yes/No or OK/Cancel. What about
specifying these options at the left? Something like:

0« '?' 'Yes' 'LetMeThink' 'No'BH 'Are you happy?'

which generates:

3 Personally 1 would have preferred to use the symbol 8, but unfortunately this is already used for
compaonent files in APLX. Sc instead 1 selected the symbol B, where the O suggests input/output and the
"= " inside suggests the gui object "optien” er "radio-button”,

78

VECTOR Vol.19 No.2

and returns:

® Are you happy?

[

2

Now we have a more solid interaction. I presented a question, and the user
reacted by clicking one of the exit buttons. The result was a number; 1 for [Yes], 2
for [LetMeThink], 3 for {No] and 0 if the user clicked the top-right button [X]; you
see that the user clicked [LetMeThink] because the result was 2.

Sumunarizing, I would like a “graphical-user-interaction-quad” that does not
require me to specify all kinds of Window objects, but permits me to supply my
information to its right (and if necessary some minimal layout specification at its
left) and which returns to me the user response.

More subtle user interaction

The previous example, although rather basic, illustrated the basic principle. Now
a graphical user interaction needs subtler interaction than by simple exit-buttons.
Often 1 have some (default) data that I want to present to the user and give him
the opportunity to change those parts that he disagrees with. And I do want to
present the data in a gui-type way, for example as radiobuttons, clickboxes,
number or text fields, or sliders. Again, we would like gui-quad to take the
information to its right, get layout specifics at its left, and return the presented
information back with modifications if the user changed it. For example:

0« '#'H 'Is your mental age...' 12 a number field

i
! ‘.
1s your mental age... pz {

i

ot] T Tancel |

79

VECTOR Vol.19 No.2

1 6% a the user disagreed with 12 and entered &%

0+« 'x'B 'Coffee' 1 'Tea' ¢ 'Milk' 1 s click boxes

| ¥ Coites

I Tes

.;_Igjmm

) -'}ﬁéﬁé& |
3

1 010 a the user only liked tea

This example showed that a more complex question may need a general
introductory text. For this we supply a nested array with two elements, the first
one with the general text and the second element with the detailed information.
For example:

O « 'o'H'Do you crave for...'('Chocolate'1i'Sugar'0'Meat'0)

The left argument ' o' is a radio-button specification so we get:

Do you crave for...-

.) Sugx

- Meat

: - !I"c -y

1 2 a the user was a sugar lover

All the previous examples only queried the user for one single set of alternatives.
Would it not be nice if we could ask the user several sets of questions? As you see
in the examples each basic unit is a text and a value. Upto now, we used several of
such pairs in a vector, but we can also ask the user his or her opinion on several
sets of alternative pairs. Instead of a vector with questions (which is handled
similarly to a double column of text-value-pairs) we can offer a matrix with
several column-pairs. For example:

80

VECTOR Vol.19 No.2

O« tx B Do you like,..'"(2 Mp'TV'i'Drinks'O'Radio‘o‘Sweets'o)
H .W[.__:ED;?nks. e
[” Sweets

s

11001

The result is a vector with first (as always) a number that indicates how the
dialogue ended (1 for [OK], 2 for [Cancel] and 0 for [X]), followed by the user
response on each of the four clickboxes.

These examples sufficiently show how you can present numbers to the user for
maodification with a layout specification at the left,

Text is very similar to numbers, for example
0« "MHE'Name' ' 'Street' ' ' "Town'! ' !

results into {notice that for sufficient size I gave street a suggestion of 10 blanks):

i

b

i Name
5 Street
' Town

L]

(i
i3

Andof Edufse, 1f -you are not satisfied with the standard [OK] and [Cancel]
buttons, you can specify your own in the left argument. For example:

[

O« '#' '0K* 'Sssssst'B'Your income is' 100000

to get:

51

VECTOR Vol.19 No.2

. Your income is

[=

Detailed layout

My experience is that the capabilities of the above gui-quad is quite satisfactory
and is sufficient for most of my needs. Nevertheless there are occasions when |
want more control over the layout. Now I can resort to GwI but [still have to
specify more nitty-gritty than I care for.

When 1 learned Fortran and PL/I (long, long ago) layout specifications for output
were much simpler. For example to set three numbers on the printer in a field of
size 10, | specified 3F10; for a text of size 12 I specified A12, for two empty lines |
specified SKIP(3) (meaning 1 for next line and 2 more for 2 empty lines} and to
position something, text or numbers, at position 35 I specified COL(35). Now is
this so very different from how 1 want to “print” my dialogue box? Of course the
needs were simpler at that time, but is the complexity of OWI really needed?
Wouldnt the simple Fortran or PL/klike formatting be able to handle the
majority of the graphical layout requirements sufficiently? I found that this type of
layout specification could be used for gui layout rather well. Let me show you
how to do this.

Again, the gui-quad gets its information on the right and returns it modified. We
concentrate on the left argument that will have the Fortran-like specifications to
describe the layout of each of the items in the right argument. As in Fortran, the
specification will be in one vector (ehhhh, statement) separated from each other
by a comma. But of course we will use compact symbolic and suggestive notation.

For example:

0+ ",xI am off,~10,=,0ne,.two.three,#'v 0 1 2 3
01 0C.4 2 3

This displays the values 0, 1, 2 and 3 in layout-elements...

«: a clickbox with value off (describes layout for value 0) and text “I am off”
~: a slider of size 10 (describes layout for value 1)

=: a list with alternatives “one”/"two” /"three” where “two” is on (describes
layout for value 2)

#: a number field (describes layout for value 3)

82

VECTOR Vol.19 No.2

I [and

i

As you see, this dialogue does not look very good, because without much
instruction, gui-quad places all the elements next to each other. Now in Fortran
and PL/I we also had positional instructions. In contrast to the other layout
specifications that were associated with a value, positional instructions were self-
reliant and not related to an input value. For example I could skip 4 positions
using X4, and go to column 35 using COL(35). Apparently gui-quad also needs
positional instructions. Of course, in APL we do not want the specifications as
verbose as in Fortran or PL/L. We will use single-character symbols instead. The
following 6 positional instructions take care of this:

>#: # positions to the right (here # stands for any number for example > 3”)
<#: # positions to the left

a#: # lines up (this would be PL/I magic on the printer}

v#: # lines down

/+ to the beginning of next line

o# .#: toposition #.4.

Positions are expressed in characters. For example “¢5. 9” will place the next item
at line 5, column 9. The size of a character is an average; for proportional fonts, the

e

character “i” takes less space than character “m".

Now if we apply our new specifications we might specify

O+« ',xI am off,v3,-10,01.20,=,0ne.two.three,v,#'v 0 1 2 3
and the result looks much better.

One important feature is still missing: exit buttons. As with the positional
instructions, exit buttons are not associated with information items from the right
argument. They can be inserted in the left argument wherever it is convenient.
They are characterized by the arrow (the suggestion is that they “jump”away). We
use » for normal exit buttons, + for the default button (pressing [Enter]), and + for
the [Esc] button. So...

83

VECTOR

Vol.19 No.2

O«',xI am off,v3,-10,¢1.,20,=.0ne.two.three,v,4,/2,+ 0K ,+Cancel'Bo 1 2 3

will generate the following dialogue box:

b

T oiel|

and may return:

20123

When you want a very complicated box, the left argument of gui-quad is
relatively more complicated, of course. For example to get the box...

Matrix DEMOvar2 | X]
I QS +printer page selup 70
Paper (. IS Lettar £ 4 Letter)) oK ‘
7 US Lepal € B5Leter 'I‘ Cancel
Aeduce o : JPEAT0AL ; Options
Enlarge; 1% PS300B5)
. Priter Effed o203 !
UOtierdaton [:Fork Su{XL100 A4
e i, | - I Test Smocthing?
3 a ot : [Girapkie Smoothing?
! i 0§ I Faster Bitmap Smoothing?
e Margingo -]
Let [i, Fight " Row Cohamn Headings
Tep & | Bottom I\ Cel Giidhines
Center ™ [~ THordzontally 14T 1 Black Whit= Cells
: I Verticall 1 i Stant Pags No's a
| A r = perimr ling seoemen
i CiDownthen Dver i Reduce/Enlaige to, Fﬂ_ﬁ
0 £ Over then Diown L Fito ”

I had to make a matrix DEMGvar2 with the following text:

VECTOR

Vol.19 No.2

Matrix DEMOvar2?, m This will be the titlie

°1.2,” QMS+printer page setup, s Comma between Iftem & comment

61.59," 7.0,

3.2, Paper:,

©3.9,008 Letter, n 4 radio buttons
v,ollS Legal,

03.22,044 Letter,

v,oBS Letter,

¢5.9, 'Reduce or,

v, Enlarge:,

¢6.19,05, n editable field of size 5

06.25, %

8.9, Orientation,
vEl3.3.DmGI0OpicSROOP, a just for demonstration
>1,81,9.DmGUIOpicSNOOP, a small)sizes of picture
013.2, Left,

013.8,05,

14,2, Top,

o14.8,0%,

°13.15, 'Right,

©13.23,0s,

o14,15, Bottom,

oi4,23,05,

¢15.2, 'Center,
015,10,xHorizontally an Two click-boxes
v,xVertically ,

©18.3,0Pown then Over,
v,o00ver then Down,

e18,u5, 05,

018.49,"%,
¢1B.2u4,0Reduce/Enlarge to.,
v,cFit to,

©7.32,"Printer Effects.,
v,xFont Substitution?,
v,xText Smoothing?,
v,xGraphic Smoothing?,
v,xFaster Bitmap Smoothing?,
v,xRow & Column Headings,
v,xCell Gridlines,

v,xBlack % White Cells,

v, 'Start Page No's at:,
016.53,05,

(too

o 3.66,14 [1):4 , o4 .66,+ Cancel ,n Exit buttons

©5.66,+ Options, ¢i%.66,» Help , ¢15.66,+Header...,
0i6.66,+Footer, .. ,e17.66,+Print...-,

ol .39,=ChoosePrinter,PS41044 ,PS300B5.PS20043.KL20085.XL1004,,
o12,1,05.30. - -————————- Margins---------- , A Frames with text
©017.22,03.39, - =-=v=---- Scaling -=-=-=--- .

and used it:

85

VECTOR Vol.19 No.2

O+DEMOvar?B 1 2 3 4 5 6 0 0 9 10 11 ¢ 0 0 0 0 0 ¢ 19 0

You see in this example that gui-quad accepts a matrix as well as a vector as left
argument. You can also see that I can give a comment in the specifications. Now
you might think that this matrix is fairly complex. However, keep in mind that it
defines a dialogue box with 57 items and that only 57 short lines are sufficient to
define this dialogue box.

Progress bars

Frankly speaking, at this point | have explained everything that should be known
about the basics of my proposed gui-quad. I could describe a few more features
that are available (such as the “-specification that you can sprinkle around in the
left argument to put explanatory texts in the dialogue box, or the [-specification
for frames). Or 1 could clarify more details of the functions mentioned (such as the
number right after the =-specification that instructs how many lines are available).
This 1 will not do. For those that are interested 1 refer instead to the example
function and the description that I wrote.

Unfortunately I could not resist extending the functionality of gui-quad in a new
way. This was based on my observation that for progress bars the simple dialogs
were no problem, but as the need for more sophisticated progress-bar-dialogs
grew, the required functions for those dialogs were always purely gui-quad
functions. For that reason T finally decided to put the progress bar functionality
inte the gui-quad .

Now, using the gui-quad for progress bars differs in one aspect essentially from
its normal use. Normally the quad-gui is called only once; it waits for the user to
make its changes and only after the user clicks an exit button it gives back control.

For progress-use however, the gui-quad relinguishes control immediately;
therefore it requires three different types of invocation:

Initially a one-time call that brings up the window. This first call fully describes
the window layout in the normal gui-quad way using the initial values of the right
argument in a way that is specified in the layout description of the left argument.
For example:

D+'Example,"Bar1:,”15,/,”Bar2:,"15,//,+Pause,+Stop'E 01
10 1
a 1 means neo buttons clicked
a 0 1 are values of progress bars

86

VECTOR Vol.19 No.2

Next, the gui-quad is called repeatedly to show the new, updated values in its
window. Now there is no layout at the left because the layout was already
specified in the initial call. At each such call the new progressbar values will
update the progressbar and the program checks the other gui-items (if present) to
see if the user changed them. In our example the user could have pressed the
Pause-button or the Stop-button or the [X] in the top-right corner.

: Barl:

m_ 1
Bz [|

For example

O+'"'d 0.1 0.9 a call one

"1 0.1 0.9
g**'H 0.2 0.8 a call two

2 0.2 0.8 n 2 means "“"second exit button"
Oe1=tH 0.3 0.7 n call three

0 0.3 0.7 a 0 means [X] was clicked on

In this example you see that the result in the second call reports that exit button 2
was pressed (2 instead of ~1) and the last call reports that the upper-right close
button [X] was pressed .

Finally a call that removes the dialogue. Its syntax is:
"4'8 10

In this example we only applied the exit buttons, but as you might expect, you can
use all the previously mentioned gui-items that are available in gui-quad.

Discussion

The biggest forte of this gui-quad is that its arguments concentrate on the
essentials. There is no programming “fuzz” that you need with (W I. No forms, no
opening, closing, showing, waiting, window sizing, deleting, on-methods, and no
properties stuff.

As a consequence the gui-quad arguments are very compact. A vector of one or
two lines easily specifies a dialogue that needs one or more pages of code using
OwI. Therefore it is quickly programmed, read fast by the programmer and
quickly debugged or reprogrammed. Probably you might not see this as a

87

VECTOR Vol.19 No.2

beginner because the funny symbols in the left-argument specifications could look
a bit daunting at first, but using gui-quad for a while will convince you of its
advantage.

Of course the layout specification of variable DEMOvarz was a lot more
complicated than the other examples. This is not surprising as the generated
dialogue is more complicated too. The essential question is of course: are the
specifications for complicated windows easier with OwI?

My answer is: no. The reverse is true: both for simple and for complicated
windows the gui-quad is much easier than the O¥I. You only need to provide a
minimum of layout specifications. If your dialogue is very complicated, the
specifications are more elaborate, but the amount of overhead is very small.

Of course gui-quad can not replace OWI altogether. There are luxury features that
are available in G¥I and not in gui-quad. So for an occasional really sophisticated
window you have to “fall back” to the OvI. Or use CAUSEWAY [2] which is also
much more powerful than this gui-quad and still takes care of a lot of nitty-gritty
that is needed with OWI. However my experience is that for most applications 1
am quite happy with the available functions in the gui-quad.

Conclusion

Several times 1 have spoken about my experiences with gui-quad. So you might
wonder where gui-quad is implemented. Unfortunately nowhere, yet. My
experience is based on a user function that we wrote and which acts like the
proposed gui-quad.

As I hope to have shown, the gui-quad is a very powerful, useful and relatively
easy way to interact with the user. So I plead for adding it to the APL primitives.

As long as the gui-quad is not available as a primitive we have to resort to a user
function. Such a function, called mGUIO (Graphical User Input Qutput), is
currently written for APLX/Win, APLX/Mac, APL2000 and APL2C. If somebody
is interested he or she could contact the first author.

Literature

ISO (1997): Programming languages, their environments and system software
interfaces - Programming language APL, extended. IS013751.

A.Smith (1995): Causeway workshop: Pitkospuut GUIsuon Yli. Vector 11(5)}60-64.
See also: http:/ /www.causeway.co.uk/

88

VECTOR Vol.19 No.2

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. 1t will confain items to interest people with differing degrees of
fluency in APL.

Contents
Technical Correspondence Crossley, Peelle, Thomson 90
Perfect Printing Stephen Taylor 95
A Girl's Best Friend Phil Chastney 109
Dyalog.Net: APLScript and Things Textual John Daintree 114

89

VECTOR Vol.19 No.2

TECHNICAL
CORRESPONDENCE

Vol 19.1: Bitmaps in Dyalog APL/W
From: David Crossley 28" July 2002

I'would like to make three points regarding my atticle in Vector 19.1.

Firstly, 1 wish to correct the record in that Dyalog APL/W can now interface fully
with Bitmaps represented in 24-bit colour using the CBits property whose data
element is an integer matrix of the same size as the Bitmat object giving the
encoded RGB components for each pixel. This was implemented later than
Version 8.1. 3 on which 1 based my article. However, the discussion regarding the
specification of Bitmap structures, which are relevant also to the data structures
for Cursors and Icons, may still be of general interest.

Secondly, I wish to correct an error in a code fragment near the beginning of the
article (entirely the fault of the author) which read as follows:

bits+0='ff.bm'OWG 'Bits' 'CHap'
You will of course realise that the CMap parameter should not be there,

Thirdly, a whole Appendix was omitted from the article (not the fault of the
author) which contains the all-important specification of the Bitmap file structure.
This may well appear on the Internet site for Vector 19.1, though not available
when I wrote this letter, but for readers preferring paper copy it is reproduced
below.

Appendix
Vv r«BM Read fiBits;CMap;hshdr;i;jinitiwiz
[1} av Read and define Bits and CMap from Bitmap file f
[23 AL o+ L(<IM/IM/NM Bits><NM CMap>} 1f successful,

or 0 ((0 opo)(0 3p0)) if failed
[3] +Start

90

VECTOR

Vol.19 No.2

sl

[51

[6]

[7]

[8]

[9]

[1e]
[11]
[12]
[13]
[14]
[15]
[18]
[17]
[18]
[1a81]
[ze]
fz21]
[22]
[23]
[2u]
[25]
[25]
1271
f28]
[29]
{30l
[312
[32]
[33]
[au]
[as]
[35]
[37]
[3a]
{ag]
fvol
Tw1l
[u2]
(s3]

[uu]
[us]
[ue]
[u71]
[ug]
[s49]
[50]

[51]
[521]
[52]
[su]
[55]
[s6]

A Bitmap file structure...

n BITMAPFILEHEADER

a1l 0-1 UINT BM Indicates Bitmap
a2 2-5 DWORD Total file size in bytes
A3 -7 UINT 0 - reserved
a4 B-9 UINT 0 - reserved

5 10-13 DWORD Offset to bits from beginning of file
n BITMAPINFOHEADER
m 6 14-17 DWORD Size of this structure in bytes

a7 1B-21 LONG Width of bitmap in pixels

n B 22-25 LONG Helight of bitmap in pixels

A 9 26-27 WORD Planes (set to 1)

n 10 28B-29 WORD Coleour bits per pixel (1,4%,8 or 2%)
A 41 30-33 DWORD Compression scheme [or 0}
A 12 34-37

n 13 38-%1 LONG Horizontal resolution in pixels/melre
s 14 42-u5 LONG Vertical resolution in pixels/metre
A 15 46-49
A 16 50-53 DWORD Kr of importani colours In lmage

a RGBQUAD 4+ bytes per colour (abseht if Colour bits is 2b)
BYTE Blue intensity |

[BYTE Green Intensity | Note order,

3 BYTE Red intensily |
R BYTE Set to 0

A

n 1-bit
r U-bit u bits/pixel (row widths+z bytes etc)
a B-Bit 1 byte/pixel
a 2u-bit 3 bytes/pixel in order BE-G-R (no celour map)
Start:

r+0({0 Qpe}{0 3p0})

sfrap ©

1If "BM'w2tzebiread f o :Return o tEndIf
kdr«16p0

pdr(z 5 6 7 8 11 12 13 14 15 16)+2 BM_WORD

iwh
:Sele
iCase

n

DWORD Size of bitmap in bytes (0 unless compr scheme used}

DWORD Nr of colours used {supersedes Colour bits info)

1e NOT RGH

Bitmap Bits, rows padded to u-byte boundary, from BOITOM row to top..

1 bit/pixel {row width:s bytes rounded te 4-byte boundary)}

z{{2 10 14 18 22 30 3% 38 42 45 50)e.+t4]
hdr(9 101<BM_WORD z[26 28a.+4:12]

nepdr[s 7 8 15)
¢t 10-hdr

1
++2xn=0

CMap«~"1+$0AV10 “1¢n upz(sSu+rtxnl

t+0ON¥XLATE 0 ¢ ({1256)-0I0(NXLATE ©
an to aveld transliation in byte+bIt conversion

Bits~oh wtih,32xTwi32)p12 [DR iz

t
:Case
n

OX¥XLATE ©
N
+416%0=0

CMap+~1+¢0A¥10 "1+n 4pz[54+i4xn]

Bits+oh wt(h,8x[wiB)phib 167 1+04Viisz

91

VECTOR Vol.19 No.2
[571 :Case 8
[58] nt+256%n=0
{59] CHap+«~14404V10 “14n 4pzl[Su+i14xm]
[60] Bits+« 1+0AV1R wt(h,uxlwiu)pisz
[61] iCase 24 n convert to use colour table if possible
le2] Bitsveh wp(3p256) L 1+0AV el (Axw) . 3)p(h,w*3)tih, uxlw=0.75)pitz
(63] 1 If 256:pCMap+v,Bits
{eu] Bits+"1+CMap\Bits
[65] CMap~(3p256) 1CMap
[662 1Else
{577 CHap+0 3po
[68] (EndIf
[63] :EndSeliect
[70] r«i(Bits CMap)
[71] :EndTrap
v
Y r+{a}B¥ WORD b
[1] av Convert WORD/IDWORD from text to Integer, or vice-versa
[2] A a «— IS {+1} 1:WORD, 2:DWORD
[al n b+ TV/TM Each 2/4 bytes represents a WORD/DWORD, or
[v] R IS/IV integer to text representedatlion of a WORD/DWORD
(51 nor o+ IV or TV
[s] a Note: WORD and DWORD are big-endian
71 (Tf 0=[INC*a' o a~1 o :EndIf
I8l a«2x1+axl
[9] sIf 82=0DR b o re(ap256).a"1+0AV18¢{ (L (p,b)+a),a)ph
[10] :Elge o r«[(AV[0IO+,¢8(ap256)T,h]
[11] rEndIf
v
v r+biread n;t
[11 r¥ Binary read: Read file without transiation
[2] n ONTIE t+«"1+L/0,0NNUHS
[3] ((1256)-0I0)0OFXLAPE ¢t
[u] r+0ONREAD t,82, (ONSIZE t),0 o ONUNTIE ¢t
v

92

VECTOR Vol.19 No.2

Second-order Josephus

From: Howard A. Peelle (hapeelle@educ.umass.edu) July 2002

It was nice to see Eugene McDonnell’s “At Play with J” column in Vector 18:4 on
“Second-order Josephus” which relates to previous articles in Vector on the
Josephus problem. Hopefully there will be more in the future.

Gene cited Boyko Bantchev who recalled the neat verb to compute the josephus
survivor number;

S =: 1&[.&.#:

The reader should be cautioned that the input and result are in origin 1 while]
uses origin 0, and that this verb does not generalize to the original Josephus
problem (using a killing interval of three) nor to ather intervals.

Bantchev proffered] verbs to solve the Second-order Josephus problem,
beginning with a verb to eliminate item S #y from any list y which, if restricted to
unique items (as needed here), can be written more succinctly as:

E =: -, <:@5e# {]

This can be embodied in a master verb using a gerund to find the Second-order
survivor number by simulation:

$2a =: E a: {<: ° Natural)
Natural =: >:@i.

Interested in producing a sequence of such results directly, Gene offered a “high-
speed” verb to compute all but one last item using a power of 2 needed for input.
I've rewritten it tacitly here to produce the full sequence:

J2t =: Sort @ {Naturcl@Power , Copy@Power®i.)

Sort =: [f:=~
Natural =: }.@i.@>:
Power =: 2&+
Copy =: # +:

The following alternative definition is more efficient without sorting:

J2r =: »:@Copies # Natural@Power
Copies =: Power@i. In} Power # 0:
In =: <:@+:1@[

93

VECTOR Vol.19 No.2

An even more efficient definition is:

J2b =: +/\ @ Bits =: {: , ;@:{Take each)@Power@i.
Take =: +: {, (# 1:)

This verb runs about 8 times faster than Gene’s hs]2 in about 30% space for a
sample input of 12 (using J4.06a on a Pentium Il PC running Windows 95 with
256M).

Gene's column could have concluded with a verb to solve the Second-order
Josephus problem:

$2c¢ =: <: { J2x @ Enuf =: >.@Log =: 2&~.

But, of course, this is redundant. Instead, Bantchev offered a verb 52 using base-2
encoding to solve the problem (except for an input of 1). Here is an alternative
inclusive definition:

$2p =1+ (] <, 1: + {- -:)) <.&.(26r.)

This definition produces the Second-order Josephus sequence about 6 times faster
than Bantchev’s 52 for 2+i.30 and generally runs even faster (but in increasingly
more space) for larger inputs. (But who would want to do so much killing?!)

From : Norman Thomson 5 September 2002

Regarding Phil Chastney’s letter in Vector 19.4, in comparing 16 words with 12
pages, I am of course employing a degree of exaggeration for effect — but not
much! Occam’s razor is about minimizing concepts, which is precisely what rank
does in providing a unifying principle which is absent, or at best only qualifiedly
present, in APL, a point amply demonstrated by Phil himself in making the case
for redefinition of some of the APL primitives. 1 recall the disappointment I felt
when first coming to APL when it dawned on me that default axes were a matter
for the whim of the software producer. Rank does not in itself remove problem
complexity, but with], at least I know that T must ascribe my struggles with
domain-extended problems solely io personal weakness of intellect (as
demonstrated by Howard’s improvements on some of my illustrations!),
uncompounded with arbitrary rules set by the product provider.

94

VECTOR Vol.18 No.2

Perfect Printing

by Stephen Taylor
Email: sji@lambentiechnology.com

Abstract

APL.RTF creates, previews and prints Windows documents of arbitrary length to
the standard of an advanced Microsoft Word user. The resulting files can be
opened, edited or printed from Microsoft Word, and can also be attached to email
messages. The APL application-level code required to use this is terse, with large-
scale mapping from APL nested lists and tables to document paragraphs and
tables. Execution is fast, and the APL footprint is small.

A workspace containing much of what is described in this article has been posted
on the Vector web site. You might find this article interesting for the way in which
object-oriented and functional programming layers have been combined, inspired
by something seen in a J programming lab. Or you might want to use APL.RTF, in
which case contact the author.

Background

Once our clients were content for letters and other documents to look like a
computer had printed them. Those days are gone. Now they want their
documents to look as good as if produced by a competent secretary with a word
processor.

Printing through standard RTF tools gets some control over fonts, alignment and
so on. But it doesn’t meet the ‘competent secretary’ standard. We needed to
produce letters and forms with tables, frames, boxes, shaded areas, hairlines,
arbitrarily positioned text, switches between portrait and landscape orientations
and so on.

From one point of view, a solution is available without any programming at all.
We can call Microsoft Word from within APL and do anything Microsoft Word
can do. This works but has two serious drawbacks. The first is that it runs slowly.
The second is that, while one gets all of Word’s awesome abilities, including
searching and replacing, the APL application code has too much to do in
managing Word.

95

VECTOR Vol.19 No.2

I we could keep most of Word's presentation controls, we would sacrifice most of
its editing abilities and just append content sequentially to a document. In
particular, we should like our application code to map straight from large-scale
APL data structures, such as nested tables and lists of text strings, to tables and
paragraphs in a document, without stopping to specify every detail of
presentation and to hide any encoding or markup done to achieve this.

We did it. APL.RTF is a printing subsystem with a modest footprint (135Kb in
Dyalog APL 9 under Windows 98SE) that fits cleanly into an application. It
enables the application to produce RTF (Rich Text Format) documents of arbitrary
length that can be printed or edited by Word, or sent as email attachments. It runs
fast, exploiting the Microsoft type libraries to do the hard work. We believe it
could be ported to] or K fairly easily. It supports more presentation features than
most Word users know how to employ, and enables our applications to meet or
surpass the ‘competent secretary’ criterion.

Word-processing presentation features supported

The interface supports control of the following features:

Character properties
« font family

= bold and italic styles

* typesize

s type colour

* kerning (inter-character spacing)

s special characters: checkboxes, current date, left & right quotes, line break,

page break, page number, tab

Paragraph properties
 left, right, centered or justified alignment

* paragraph and first-line indentation
* leading (spacing before and after paragraphs)

* keep to discourage Word from breaking a paragraph across a page boundary

96

VECTOR Vol.19 No.2

keep-with-next to discourage Word from separating two paragraphs with a page
boundary

page breaks
bulleted lists

tab stops: left, right, centred and decimal; with various leads

Tables

column heading rows that repeat when the table crosses a page boundary
row-level control of keep and keep-with-next properties

column- or cell-level control of cell width

cell-level control of alignment

cell-level control of leading before and after

cell-level control of shading

cell-level control of top, left, bottom & right border widths and colours

horizontal merging of adjacent cells

Pictures

bitmap picture files

Inline styling

-

bold and itatic

expanded inter-character spacing

tab stops

arbitrary positioning of frames

frame size

frame position and alignment, choice of reference frame
text wrapping and separation, overlays

overlapping frames

border width, colour and padding

97

VECTOR Vol.19 No.2

* background shading

Section properties
» USletter or A4 paper size

* portrait or landscape orientation
« multiple columns
* margin sizes

* page header and footer text, with distinct headers and footers for the first page
of each section

+ header and footer offsets

A quick tour

Creating, writing to and printing a document

Writing a document from APL.RTF is a lot like writing a Microsoft Word
document. You start by creating a new blank document from a template. You add
paragraphs, assigning them styles from the template’s style sheet. The style sheet
specifies different named paragraph styles in terms of such things as alignment,
indents, fonts, colours and leading. You also add lists, again giving them styles
from the style sheet.

You add tables, with exact control of their appearance: alignment, column widths,
hairlines, text styles, shading, merged cells.

Just as in Microsoft Word, you control page layout: paper size, orientation,
margins and the offsets of the headers and footers from the page edge. Your
document can have multiple sections with different page layouts, including
switching between arientations and multiple columns.

You can also use absolute positioning to place text or pictures precisely where you
want them on the page, Hoating it above the other text or having the main text
wrap around it. Your text boxes can have background shading or borders.

When you've finished your document, tell it to print itself, or show you a print
preview. Or tell it to close itself and return the name of an RTF file you can print
or attach to an email.

98

VECTOR Vol19 No.2

This is particularly valuable when developing an application. Start with a
template document similar to what you want, write output to it, and immediately
preview it onscreen. Then you can fine-tune appearance and positioning by
editing either the application script or the template’s style sheet, or both.

The Document class

The core of APLRTF is its Document class, represented by the Document
namespace. It contains further namespaces, which correspond to Microsoft Word
template documents for different purposes. As with Microsoft Word, the default
template is called Normal.

The Document class contains its own methods (functions), and a constructor
method (¥ew) for creating instances of itself. The New method returns a copy of
the template into which has been copied all the Document methods not already
defined in the template. In this way, the templates inherit methods from the
Document class.

This is not so for properties: new instances do not inherit property values
{variables) from Document. Instead they are created by the Initialise
function. When ¥New has created an instance, it invokes Initialise, which was
inherited either from the template or from the Document class.

Initialise sets the new document's properties. Some of these are private to the
document and are not intended for reference by the programmer. Others control
key aspects of presentation. Chief of these are the page layout, font table and style
sheet.

The font table is a list of font family /name pairs, eg ‘swiss Arial’ or ‘roman Times
New Romary’.

The style sheet is a table of RTF style definitions used to assign styles to
paragraphs. The Document method makeStyleSheet creates a default style
sheet, for the Norma ! template. It adapts from the RTF.STY LEMACRGS namespace
a specialist vocabulary for defining style sheets. You can adapt Document’s
makeStyleSheet function for new document templates for your applications.

The page layout is a list of name-value pairs that corresponds to the key features
controlled by Microsoft Word's File/Page Setup dialogue, eg paper size and
orientation, and margin sizes.

Paragraphs, lists and tables are added to the document using its methods
AddPara, AddList and AddTable. The method AddBox sets paragraphs and

99

VECTOR Vol.19 No.2

lists on the page using ‘absolute positioning’. Absolute positioning is very
powerful and allows you to place a frame of text or graphics anywhere on the
page, with optional borders or background shading, and to determine whether
the background text will flow around it or lie underneath it.

The style of paragraphs, lists and tables is controlled by references to the style
sheet. These references apply defined styles to entire paragraphs, list items or
table cells. APL.RTF also supports ‘inline styling’, in which part of a string of text
can be assigned bold, italic or expanded-text style, or some combination of them.
This is provided by document methods EMBOLDEN, ITALICISE and EXPAND.

The document method Print sends the document to Microsoft Word for printing.

The document method Close acts like Print, but returns the name of the RTF
file instead of sending it for printing. This file is then available for use as, say, an
email attachment.

Print Previews

The UTILS namespace contains a
function preview, which will display §
an RTF file in a browser, exactly as it §
would look in Microsoft Word. (It
uses Microsoft Web Browser, the
same OCX control that Internet
Explorer uses.) If the user confirms,
the document is printed; else
destroyed.

A ot 4!z kasue s, weh, wi bt h g m et e

Catearred a o 3wy pe
ot vhiet sy Pl il g Ay o ey 1oy vy e e o o

At A 0 Bt 1)k =1 e ket o b Foee b e e e 1 K B
i b kb T e, a0 B b VSO L B T b

Wit | luated most mp vy walnhon, and b nek

rogm rost 1o 5% wx
T i EH [I o h
ELrCl k) 1 (L) 2 e
ey oy ah amn st Frs
MaTnuy L I - E

In fact, the Print method also tests

whether it is in runtime mode. If not, it passes Print Preview a snapshot copy of
the document’s current state. Developers always get a preview, but the active
document is untouched. This allows developers to add to a document and

immediately see the effect without destroying the document.

The SCRIPTS namespace

The SCRIPTS namespace contains the application-level code. In this context, a
script is an APL function that adds content to a document, specifying its
presentation attributes as it does so.

Four scripts are called by the Examples function in the workspace root: these
demonstrate different capabilities of APL.RTF. Three scripts are called by the sv¢

100

VECTOR Vol.19 No.2

function in the workspace root: these demonstrate some documents created for a
commercial applcation.

v Examples scripts;doc;script

{11 a scripts is a list of numbers in range 1-4; see below
[2] a Printer is name of a Windows printer

(3]

(4] doc+#.Document, (New Example)

{s]

[6]1 doc.Started+0 A 1st script not to start new section
[7]

{8] :For script :Im scripts

[9]:Select script

f1o0] :Case 1 o #.SCRIPTS.GENERAL.Script doc n general
f11] :Case 2 ¢ #,SCRIPTS.MULTI.Script doc rm multi cols
[12] iCase 3 ¢ #.SCRIPTS.ORIENT.Seript doc rn 2 orientns
£13] :Case 4 ¢ #,SCRIPTS.POSN.Script doc s abs posn
(1] tEpndSelect

{t5] :EndFor

{16]

{17) doc.Print Printer 1
v

You can see from Examples and SvQ that the scripts are passed a reference to a
document object, to which they add their output. They can be called in any order:
compare

Examples 1 2 3
Examples 4 3 2

i
1
The RTF namespace

“[Object Qriented Programming] is effective. Unfortunately, some people think
that if some OOP is good, then more is better. It is a mistake to think of OOP as
an alternative to FP (functional programming); all languages, at the low level,
have FP, and at a higher level, have QOP.”

Object Oriented Programming labin |

The RTF namespace contains the functional programming layer used by the
Document class. It is mostly concerned with the encoding of RTF control words.
{(Enthusiasts might appreciate the very fast D functions used by TABULATE to
convert nested tables into RTF code strings.) Application programmers should
never need to refer to it.

101

VECTOR Vol.19 No.2

The Microsoft type libraries

APL.RTF delegates much processing to the Microsoft type libraries. The
application programmer need do nothing to obtain or invoke these but ensure that
users have Microsoft Word installed on their PCs.

Five type libraries are used: Microsoft HTML Object Library, Microsoft Internet
Controls, Microsoft Word Object Library, Microsoft Office Object Library and
Visual Basic for Applications Extensibility.

The APL.RTF workspace is distributed with these libraries unloaded. Dyalog APL
will load them on first use; they occupy nearly IMb of the workspace. Since
loading the libraries causes a noticeable delay, applications are best saved with the
libraries already loaded.

Creating a new document template

APL.RTF Document templates correspond exactly to Microsoft Word template
documents, That is, a template is used to create various documents that share a
common ook,

This common look is embodied in the document's style sheet, which names,
numbers and describes a list of paragraph styles. Paragraph styles are described
in such terms as the font family and size used, bold or italic style, leading before
or after the paragraph, alignment and indentation.

Many users of Microsoft Word find it convenient to set the presentation attributes
of their document’s paragraphs on an ad-hoc basis. Not so the APL.RTF
application programmer, who wishes to keep this detail out of the application’s
script. Rather than specify presentation attributes ‘in line” in his script, he lists
them in the document template’s style sheet.

There are a handful of exceptions to this. The document’'s EXBGLDEN, ITALICISE
and ZXPAND methods can be used to apply this ‘in line’ styling to words and
phrases. Also, the position and leads for tab stops can be set in the script. See the
5v@ scripts for examples where tab stops with underlined leads are used to create
places to write on a form.

As in Microsoft Word, the default document template is called Normal. It is
represented by an empty namespace, Kormal. Because it is empty, it inherits all
its methods from its parent class/namespace, Document. Cne of these methods,
Initialise, setsits properties.

102

VECTOR Vol.19 No.2

Initialise calls two functions of interest to the application programmer:
makeStyles and makeLayout. The former creates the document’s style sheet,
and font- and colour tables. The latter specifies the document’s page layout,
corresponding roughly to the attributes controlled in Microsoft Word by the
File/Page Setup dialogue.

To create a new document template, create a new namespace within Document
and copy into it either or both of makeStyles and makeLayout. Edit those
functions to suit your application.

Your new template needs in it only what is to differ from Normal. It inherits
everything else from its parent, Document.

Samples and examples

The GENERAL script shows various APLRTF features. The AddPara

appends paragraphs of text; wrapping and justification are managed
by APL.RTF.

AddPara'Sched Title' 'Robinson Crusoe'
AddPara'Subtitlie' 'by Daniel Defoe!
AddParaf'Body Text')(#.DATA.texts.(pl p2 p3))

A couple of pull quotes are hung in boxes against the margins, the
body text wraps easily around them. A table and logo are shown. A

new section opens, and the orientation switches to
landscape.

A large table is appended. Overflowing its first
page, its Theader rows are repeated

automatically on continuation pages.

The MULTT script shows the same story in
a 2-column format, complete with a
centred pull quote. The 0RTENT script does the same again in the
form of a ‘scriptlet’, then switches the page orientation to
landscape and executes the scriptlet again with 3 columns
specified. The scriptlet’s output appears correctly in the
landscape orientation. Even the page number, set by tab at %’
outside the right, adjusts to the changed page width. Here is the
application code: script and scriptlet.

103

VECTOR Vol.19 No.2

v Script doc

[1] a The scriptlet is independent of page orientation
[2]

[3] doc.PageSetup'Orientation' 'Portrait!

(4] doc Scriptiet 2 a cols

(51

[6] doc.NewSection'D

[7) doc.PageSetup'Orientation' 'Landscape'

[8) doc Scriptlet 3 a cols

v

v doc Scriptlet cols;UPATH;pg;rtf;styles;tabstops
[1] OPATH«'#.SCRIPTS .MULTI # .UTILS'

f2]

(31 :With 'doc’
iy n set R-aligned tab stop 1/2" bheyond R margin

[5]tabstops+<(0.5+PageWidth)('R")
[6]SetFooter('Footer')(TAB,'Page ' PAGENO) (tabstops)

[7]
[8]

A title and first paras

[9lAddPara'Sched Title' '"Robinson Crusoe'

{101
[11]
[12]
[13]
[14]
[15]
[181]
{1713
{18]
f193
f201
v

AddPara‘'Subtitle' 'by Daniel Defoe!

A section break and new layout
NewSection'N'
PageSetup('Columns'){cols)

pg+'I would be satisfied with nothing but going to sea!'
AddBox (PqPosnC) (ComposePara'Pull Quete'pg)
AddPara('Body Text')(#.DATA.texts.(pl p2 p3 p& p5 pe))

tEndWith

APL.RTF has a powerful ability to place text at arbitrary positions on the page,
with or without borders ('boxes’) or background shading. Body text can wrap
around these or not. The fourth example script demonstrates this,

Finally the scripts called by s¥¢ demonstrate these features used in a commercial
application to produce correspondence.

134

VECTOR Vol19 No.2

bbb iy

Key features

bocument methods are monadic or niladic, like those of Microsoft’s Common
Object Models. Like them, some have overloads defined; that is, they accept
arguments in varying forms. See the scripts for illustrations.

Paragraphs

The AddPara method adds one or more paragraphs to the document, specifying a
style from the style sheet, and optionally specifying tab stops. AddPara discards
empty paragraphs.

AddPara'Sched Title' 'Robinson Crusoe’
AddPara'Subtitle' 'by Daniel Defoe!
AddPara({'Body Text')(#.DATA.texts.{(pl pz p3))

Tab stops

Tab stops can be specified simply as scalars—a horizontal offset in inches from the
paragraph start—or as enclosed pairs or triples. As pairs: the offset and the
alignment of text to the tab stop: left, centred, right or decimal. As triples: the
offset, alignment and lead to the tab stop: dot, middle dot, hyphen, underline,
thick, equal. Tab stops with underline leads are used to mark places for
handwriting in the 5v¢ documents on this page.

stops+0.25 2,.5(Pagelidth*Lt 'U1")

entab+{TAB,w,TAB,TAB}

AddPara{'Left Flush')(entab'Insurance Company Name'){stops)
AddPara{'Left Flush')(entab'Reference'){stops}
AddPara('Left Flush')(entab'Address')(stops)

AddPara{'Left Flush')(entab'')(stops)

AddPara(‘Left Flush')(entab''){stops)

105

VECTOR Vol.19 No.2

Special characters
The document has niladic methods for special characters like T'4B5 and PAGENO.

It also has a dyadic function LINE, which joins its arguments with a new-line
character. So

oLINEfa b ¢

joins text strings a A ¢ into a single paragraph with embedded new-line
characters.

Bitmaps

The BIT¥AP method takes two arguments: a scaling factor and a file name, which
should have a .BMP extension. In principle it should be possible to calculate the
scaling factor to produce an image of a desired size from a bitmap file. In practice,
it is far simpler to take a guess, preview the result, and converge on a suitable
factor.

Lists

Microsoft Word supports a wide variety of auto-numbered lists; APL.RTF none.
Auto-numbering of lists is useful for editing documents with a word processor
but is of little use for our purposes.

APL.RTF supports bulleted lists through the AddList method. Its syntax mirrors
that of 4ddPara. Paragraphs composed with AddList are given bullet peints.

Tables

APL applications easily compose information in the form of tables. APL.RTF
easily maps APL tables to document tables.

The 4ddTable method takes a 2-element argument. The second is a nested table
(rank-2 array) of character strings. These character strings may include RTF
control words embedded by the in-line styling metheds EMBOLDEN, ITALICISE
and EXPAND, but otherwise need no presentation information.

Presentation instructicns are embedded in the first argument element, the format
array. This is a rank-3 array of 18 planes of the same shape as the data table. Each
plane controls a different attribute of the table’s presentation. See the function
FmtBigThlIin the SCRIPTS.GENERAL namespace for an example,

106

VECTOR Vol.19 No.2

Sections
For shert documents a single page layout suffices. Longer documents might need

a section in landscape orientation, for example, or to restart page numbering. The
NewSect ion method takes one of the following arguments:

8 new section, retaining current layout
'D' new section, restoring the document’s default layout

*N' new section, without a page break

Boxes

The ability to place a text box at an arbitrary position on the page is one of
APL.RTF's most powerful features, The box may be set with or without a border,
so the result may appear simply as text placed at an arbitrary position. See for
example, the script in SCRIPTS. @226, which uses AddBox to write an address
exactly where it will show through an envelope window.

4ddBox, like AddTable, takes a 2-element argument.

The first element is a list of 18 numbers. To keep track of the semantics of this, the
namespace RTF ., B0X contains a default set and a vocabulary in which to specify
them. See particularly how the script in SCRIPTS.POSN takes a copy of this
object, resets some values to produce a default set for the script, then uses a series
of ‘Box’ functions to produce slight variations, specifying only the changes from
these defaults,

bpd+BoxPosDef #.RTF,BOX an box posn defaults

v bpd+«BoxPosDef boxposnchj
[1]1 = box position default values for this application
{2] & object contains vocabulary for setting parameters

[2]

(6] rbpd'0ONS boxposnobj

[5]

(6] :With 'bpd!

[71 Hposn+column aligned left

[a] Vposn+para aligned inline

[91 Size+0.75 0,75 a width & height in Inches

[10)Wrap Overlay Absnooverlp+«do dont dont a wrapping
[11])Separation«1¢ 10 a A and v, in pts

[12]Pen Colour+<0.5 0 na 1/2pt black border

[13]Pad Shade+5 © m 5pt padding, no background shading
[14]) :EndWith

v

107

VECTOR Vol.19 No.2

d.AddBox{Box10 bpd){empty) a adds one box in the document

v r+Box10 bpd;b
[1] 'B'ONS bpd n copy default BOXPOSN values
[2]) b.(Wrap«dont) A wrapplng
[3) b.Separation«0 0 a h and v, in pts
[4} r+b.Parameters
v

The second element is, for once, not ‘raw’” APL character strings or tables, but a
marked-up RTF string. This must be so, because a box can contain paragraphs or
lists, which themselves need to be composed against the document’s style sheet.
4ddBox can place them on the page, but does not know how to compose them.

The ComposePara and ComposelList methods have the same syntax as
AddPara and 4dd[ist, but return marked-up RTF strings instead of adding the
paragraphs or list to the document. These strings can be concatenated and the
result used as the second element of the AddBox argument.

Conclusion

With APL.RTF we are able to map APL data arrays to well-presented documents
with minimal application code. We quickly adapt existing templates to new
applications, and can meckup a handful of new document designs in a morning.
We use well-proven Microsoft code to participate in the device independence that
Windows applications comunonly enjoy; the documents we produce live in the
same world of PCs and email that our users do. They like this and so do we.

108

VECTOR Vol.19 No.2

A Girl’s Best Friend

by Phil Chastney
email: philip_chastney @ yahoo.com

0. introduction

No significant domain algebra this time, just a suggestion for expanding the
current class of statement separators by the addition of two more items, allowing
better control over exception handling,.

1. the present situation

11 APL functions consist of a sequence of lines. In addition, some
implementations allows braces to be used to group lines into blocks.

Each line may have 0, 1 or many separate executable statements, followed by an
optional trailing comment.

If a line has more than one statement, the statements are separated by a diamond.

1.2 Actually, the description of diamond as a “statement separator” is a
misnomer. QOther languages may describe the comma as a separator, but in APL
we know it as a primitive function which joins, not separates, two arrays.

Like a number of other such functions, the diamond is really a constructor, which
joins up statements into lines. Or, to put it another way, it is a function which
takes executable statements as arguments, and delivers another executable.

(Contrast this with the use of use of 4 and + (“lev” and “dex”) which achieve a
similar effect by operating in the data domain. This only works, however, if every
subexpression delivers a result lying within the data domain.)

2. the present mechanism

21 The only issue with these function/line/statement things is how to handle
side-effects, the most obvious of these being embedded assignments. We need
more flexibility in this area if we want to improve exception handling, and the key
concepts (borrowed from the database world) are those of “commit” and
“rollback”.

109

VECTOR Vol.19 No.2

When an expression like

N+N-1
is executed, the interpretation proceeds from right to left. The rightmost
occurrence of N picks up the current value of N, and the leftmost occurrence of N
receives the updated value, This means that in a statement like

RECIP++N+«N-1
the value of N will have been permanently updated if the expression fails thus:

RECIP«+N«N-1
DOMAIN ERROR

RECIP++N+«N-1

A

22 To borrow an idea from Z, we can use primes to indicate updated values.
If function FOO updates a global variable X, we specify pre-conditions on that
variable by referring to X, while post-conditions refer to X’. Thus we can clarify
our earlier example, by writing

RECIP«+N"«N-1
and the old idiom

S«(5#' ')/S«D
becomes

8" «(87#' ')/57~0O.

2.3 Phil Abrams once propesed that values should be bound at the start of
execution of a line — this may have been in the days before diamond statement
separators — which would have given us the sequence

RECIP«+N«N-1
where RECIP takes the value of the reciprocal of the value of N before updating,

In the event, the idea was never adopted, but it still has merit. In particular, it
would allow us to rerun a bad line in the same environment, while debugging.

Languages like SOL have long had to cope with complicated updates which may
ultimately have to be abandoned. The update is applied tentatively. If at any
point the update fails to meet certain specified constraints, the transaction is rolled
back, and the database left in its original state. If the update is completed
satisfactorily, it is then comunitted explicitly, and the new data becomes visible to
other users. This, of course, requires transaction_star and fransaction_end markers.
In the absence of such markers, updates are committed immediately, by default.

110

VECTOR Vol.19 No.2

3. animproved mechanism

3.1 It is clear that current practice in APL is to commit updates immediately,
by default, with no rollback option.

It is, however, helpful to think of all side-effects as tentative, until the end of the
staternent is reached. If the end of the statement is marked by a diamond or end-
of-ling, the side-effects are committed. This does not affect the current definition
for <, which we would retain as the default semantics.

We would also introduce two new connectors, which are for the moment written
as <&> and <s>.

At their simplest:

<&> would defer commitment until the end of the following statement;

<e+> would trigger a rollback in the event of error in the left-hand statement,
clear the error flag and execute the right-hand statement (which would
presumably specify some sort of recovery routine} in the original
environment. Otherwise, the interpreter would skip over the right hand

statement to the next statement connector before deciding whether to
commit outstanding updates.

3.2 Forexample,

RECIP<*N<«N-1 <e+> RECIP<«0
would recover from an attempt to take the reciprocal of zero, but in doing so, it
would also have rolled back the decrement of N, so that the more complete
solution of

RECIP<:N«N-1 <+> RECIP«N<0
might be preferred.

Alternatively, the statement

N+«N-1 ¢ RECIP++N <+> RECIP+«0
would ensure that the decrement is always committed, and the reciprocal
operation is always protected.

3.3 The sequence

THIS <&> THAT <&> THE_OTHER <e¢> RECOVER
defers commitment until THE_ OTHER has completed execution. If this execution
is error-free, the RECOVER statement is skipped. In the event of any error in the
protected section, the interpreter rolls the environment back to the beginning of

111

VECTOR Vol.19 Ne.2

the line, undoing all updates made by THIS and THAT, before finally invoking
RECOVER in the restored environment.

34 The sequence

THIS <&> THAT <+> RECOVER ¢ THE_OTHER
defers commitment until THIS and THAT have completed execution. If this
execution is error-free, the RECOVER statement is skipped, and interpretation
continues with THE_OTHER. In the event of any error in the protected section,
the interpreter rolls the environment back to the beginning of the line, undoing all
updates made by THIS and THAT, before invoking first RECOVER and then
THE_CTEER in the restored environment.

35 Inthe event that THIS executes without error, the sequence

THIS <+> RECOVERY1l <e> RECOVERYZ2 ¢ THAT
would skip forward over RECOVERY1 and RECOVERYZ2, and execute THAT.
In effect, the routine RECOVERY 2 protects RECOVERY1.

3.6 If we are allowed to use braces to group lines together, the sequence

{
LINE1
LINEZ2
LINE3
} <+> RECOVER
could (given some mechanism for passing back error flags) be made protect the
whole block.

4, closing remarks

41 This is not the last word in error recovery, but it is an improvement.

To extend “error recovery” facilities into “event handling” facilities, the user
program needs some means to indicate that it wishes either to abandon execution
of the current stateniént, or to leave the current block with the error flag set, and
Osignal or something similar would do the job very nicely.

4.2 Instead of returning to the most recently committed state, the programmer
may prefer to return to some earlier environment. If that earlier environment falls
within the current block then a branch command as the recovery statement may
be all that is required.

If the desired earlier environment is external to the current block, then things get
messy. Itis a reasonable requirement, frequently needed in response to a “Quit”

112

VECTOR Vol.19 No.2

or “Cancel” command, but sometimes it can only be implemented using ugly
constructs which trap error code 666 (or whatever) and pass back the error to the
calling function, and so on, until the required environment is reached. This is all
part of a larger problem, which may be tackled in due course.

4.3 The use of the tri-graphs, <&> and <+>, is highly unsatisfactory, but until
better symbaols suggest themselves, the chosen ones have the merit of suggesting
the “and” and “or” element of the connectors’ semantics.

44 A proper definition of the proposed new connectors is not itself a difficult
task, but requires the definition of a new domain, E, of executable statements.

Despite their central importance, executable statements are not very exciting
objects: we define them (recursively), we combine them and we execute them.

The ways in which we define statements are defined by the syntax, the way they
are executed is defined by the execution model, which only leaves the ways in
which they are combined.

All diamond operators are elements of E<(E;E}). The operators ¢ and <&>
both deliver domain products, their results being members of (E®E) . The
operator <+>, on the other hand, delivers a domain sum, the result being an
element of (E®E) , but, since the construct

THIS <s+> RECOVERY1
is radically different from

RECOVERY1 <s»> THIS
it has the added complication that this particular domain sum is not commutative.

4.5 Anybody interested in pursuing this topic from the theoretical point of view
might do worse than start with

Dana Scott (1971), The Lattice of Flow Diagrams
{in} E Engeler [ed], Symposium on Semantics of Algorithmic Languages
Springer-Verlag, Berlin — Heidelberg

which uses flow diagrams as a simple example to demonstrate the techniques of
“approximation” and limit domains.

113

VECTOR Vol.19 No.2

Dyalog.Net: APLScript and Things Textual

by John Daintree (email: johnd@dyadic.com)

Introduction

This is the second of three papers discussing Dyadic Systems” .Net compatible
product, Dyalog.Net.

In this paper we discuss APLScript, a UNICODE based representation of APL
programs.

Dyadic Systems has set up a mailing list to discuss Dyalog.Net related issues. To
subscribe to this list, send an email to dotnet@dyadic.com with SUBSCRIBE as the
subject.

Why APLScript?

APL has traditionailly been developed wusing dedicated development
environments. These environments typically comprise of editors, debuggers,
workspace explorer tools, and a host of other features that “enhance * the coding
experience. In many cases, especially when one is writing a simple utility or
application it may be more convenient to dispense with this complex
environment.

APLScript is a version of Dyalog APL that allows us to write APL code in any
UNICODE aware editor. Armed with just Notepad, or our favourite text editor,
we can write and deploy our APL application.

Another advantage of using APLScript is that we can take advantage of existing
source-control systems to save our APL code. Also, we can use standard text
- comparison utilities to quickly find changes across versions of our source code. In
multiple language projects the APL source code can be saved alongside the source
code of the other languages, and even viewed using the same tools.

114

VECTOR Vol.18 No.2

Hello World
Using APLScript we can simply open Notepad and write a simple function:

vhello
O«'Hellc World'
v

Typing APL into Notepad?

Dyalog.Net ships with a useful little utility called the APL IME. IME is an
abbreviation of Input Method Editor. The APL IME allows us to type APL code
(using our chosen APL translate table) into any application that is “IME aware”.

The IME can be configured from the Control Panel

Sefngs|

. Default mput language General T.Zh;—{

5 Select ana of the installed inpudt Tan

M compulel Input Translate T able:
39 Fl Enghsh [UnRedéhgdch « United

Inctalled zervices

I Select the services that you want f Initial APL Mode
ligt. Use the Add and Remove butlq

[EH English (United Kingdam]
Keyboard
= Danish
+ Dyalog APL Keyboard
= Swedish
» United Kingdom

DK ” Cancel -

Preferences

[Languageﬂar...J [Key Settings... -}

[oK] [Caneel] "ép;‘y .

115

VECTOR Vol.19 No.2

During use, the APL IME presents itself as a small button that also indicates if
APL input is currently enabled.

TR e P YA o AT P EANPE e e

B bellp.apl - Notepad . ;.
Filz Edt Format Wew Help

Cix<"hello'

Vhello |[[an
[1<'Hello World'

v

Back to the World

We can use the APLScript compiler to generate an executable file from this source
code (which was saved in the text file hello.apl).

aple /bchello /eonsole hello.apl

The program aplc.exe is the APLScript compiler. This itself is written in Dyalog
APL, and has been packaged into an executable by the Dyalog APL development
environment,

On the command line we have used the /Ix option to specify that the hello
function is the “entry-point” of the program. The /console option indicates that
this application can write to the hest command window directly , and does not
use the Dyalog session for input or output.

The full list of options for aple.exe can be obtained with the command aplc /?, and
this returns:

aplc.exe cormumand line options:

/? Usage

/rfile Add reference to assembly

/o[ut]:file Output file name

/x:file Read source files from Visual Studio.Net project file
/resfile Add resource to output file

/q Operate quietly

/v Verbose

116

VECTOR Vol.18 No.2

/s Treat warnings as errors

/runtime Build a non-debuggable binary

/bcexpression Specify entry point (Latent Expression)

/tlibrary Build .Net library (.dll)

/tnativeexe Build native executable {.exe), Default

/tworkspace Build dyalog workspace {.dws}

/nomessages Process does not use windows messages. Use when creating
a process to run under IIS

/console Creates a console application

Some of these options will be discussed in this and future articles.

We can open a command window and execute hello.exe, which we can see is a
“normal” executable file:

< Command Prampt .

GC:ndevt95naplsredhello.exe
Hellp World

(C:\deut?5Naplsrc>dir hello.exe
Uoliume in deive C is Local Dick
Uolume Serial Number is B3V2-3C9C
Pirectory of C:owdevt¥o9naplsre
01/18-2882 14:42 40088 hello.exe
1 File(s> 46, HBW hytes
A Dircu2 1.258.024_ 960 hytes free

CindavE 95 aplsre X,

This use of APLScript to create standalone executable files is independent of the
Net Framework. This example will compile and execute on any windows
platform, with or without the .Net framework. The simplicity of the example
illustrates the convenience of APLScript.

The Dyalog APL Development environment can be used to create executables

directly from workspaces.

Writing Code in APLScript

The rules for APLScript are fairly simple. There are three things that can appear in
APLScript.

1) An APLScript statement, e.g . :Class, :EndClass, :Field

2) A function definition, delimited by "¢’

117

VECTOR Vol.19 No.2

3) An executable expression

APLScript Statements

:Class, :EndClass
e.g.

:Class Example:System.0bject

:EndClass

These APLScript declarations declare that the subsequent functions and code
expressions comprise a new .Net Type. In full, we specify the name of the new
class and the name of the base class. If the base class name is omitted it defaults to
System.Object.

The example above declares a new Type called Example, that derives from

System.Object.

1Field
e.g.
1Field Tnt32? Code

:Field defines a named “slot” within the class. This slot has a particular type
and only data of the declared type can be stored in the field,

In the example we are declaring a field called Code, which can only contain data
of type Intaz

1 Struct, iEndStruct
e.g.
:Struct Booking
DateTime When

String Customer
:EndStruct

These statements define a “structure”. A structure is a set of name value pairs,
which can be passed as a single entity to a function.

118

VECTOR Vol.19 No.2

Each enfry in a structure is similar to a field in that the data must be of the
appropriate type.

:Namespace, :EndNamespace
e.g.

:Namespace utils

:EndNamespace

Similar to :Ciass, but these declarations define a “traditional” namespace that
will contain the subsequent functions and evaluated code expressions.

:Property, sEndProperty
eg.

:Property Int32:10
vr+get

(1] I

v
vset value

[1] Dio+value
v

:EndProperty

‘These statements allow us to define functions that will be called to set and get the
values for a property.

This example above defines a property called 10.

The APLScript compiler generates a function called get_I6 which contains the
get portion of the code, and a set_I0 function that contains the set portion.

Encapsulating access to 0I0 as a property allows the calling language to use
simple reference and assignment to access the current value. Using functions that
perform the assignment and retrieval of the vatue allows the APL code to perform
error checking on the value and throw appropriate exceptions if necessary.

A property can be made read-only by omitting the “set” portion of the
: Property declaration.

119

VECTOR Vol.19 No.2

:Indexer, :EndIndexer
e.g.

+Indexer Array:Item
iParameterList Int3z
vset args
[1] value Index+args
[2]) value Ofreplace tie index
v
vr+get Iindex
(2] r«0fread tie Index
v
:Endindexer

An indexer is a special type of property. The indexer specifies the “default”
member of a Type. We will see another example of an indexer later,

APLScript Functions
eg.
vhello
(1] O+'Helloc World!
v

APL Functions in APLScript are indicated by the ‘v’ character.

Within the body of the function line numbers may be present but are ignored by
the script compiler.

When a function appears within :Class and :EndClass statements additional
statements may be contained within the body of the function. These statements
determine the metadata for the function.

The permitted statements are as follows.

tAccess
e.g.
tdccess Public

or

:Adccess Constructor

120

VECTOR Vol.19 No.2

or

:Access ClassConstructor

or

:Access FPublic Constructor

“:Access Public” indicates that the function is “exported” from the Type in
which it is defined. A function can be marked as Public {the default) or
Private. A private function can only be called by the APL code in the
workspace, not by any code that instantiates an instance of the Type.

“:4ccess Constructor” indicates that the function is a constructor for the
type. A constructor function is called on a new instance of the type and allows the
APL code to injtialise the contents of the new object.

¥:dccess ClassConstructor” indicates that the function is a class constructor
for the type. This function will be called before any instances of the type are
created. This allows the APL code to injtialise any elements of the class that will
be common to all instances.

As shown in the final example, qualifiers to : Access can be merged in a single
: Access statement.

The Constructor and ClassConst ructor qualifiers are only applicable within

:Class/ 1 EndClass statements

:ParameterList
eg.
:Parameterlist Int32,8tring

ar

:ParameterList Int32 value,String forename,String surname

:ParameterList specifies the parameter types of a function. It is a comma
separated list. Each element of the list specifies the type of the corresponding
parameter. A name for the parameter can be specified, and this appears in the
metadata, but is otherwise unused.

121

VECTOR Vol.19 No.2

:Parameterlist has no impact on how the function is called from APL, it is
only used to provide metadata for the assembly that is created from the script.

tReturns
eg.
tReturns Int3z2

:Returns specifies the type of the return value for the function. If : Returns is
omitted from a functon definition then the function should not return a result.

:Implements
e.g.
:Implements Iota

or

:Implements PropGet I0

ar

:Implements PropSet 10

:Implements allows us to export the containing function with a name other than
the name of the function itself . This allows us to specify that a function provides

an “overload” of a method. In addition :Impiements can be used to indicate
that a function is a get or set accessor for a property.

Each of these statements provide the same information in APLScript that was
provided by the various dialog boxes in the Dyalog.Net development
environment.

APLScript Executable Expressions

Executable expressions are those expressions that appear outside of the body of a
function.

Executable expressions are evaluated by the APLScript compiler at compile time.
For example, consider the following APLScript program

122

VECTOR Vol.19 No.2

Olx+'hello!
Ocy 'DISPLAY!'

toupper+{
1dx+0A4AViw
of f+uBx{ idxz1B)Iaidx<u3
(JAV{ idx+off])

}

vhello
[1] O«DISPLAY toupper ‘Hello Worlid'v

The first eight lines of the code are “executable expressions”. As such they are
executed at compile time. The assignment to (JLX prevents the error that the script
compiler would generate if we do not used the /Ix command line option. The
DISPLAY workspace is copied into this executable at compile time, so there are no
additional workspaces to ship with our executable. We can also fix dynamic
functions in this section of an APLScript program, and these can be called as
normal from the body of the script.

Reading the Command Line

Here is a simple APLScript program that uses the APL function DISPLAY to
display the result of an APL primitive applied to the arguments passed to the
program,

Dilx«'disp’
Ocy 'DISPLAY!

vdisp s;args

args+2 [ng '.' 'GetCommandLinedrgs'
O«DISPLAY 1s"14args

v

Note the new method GetCommandLinedrgs on the root object. This method
returns a vector of character vectors, providing the command line arguments of
the program. Args[0ic] is the name of the executing program, and so in this
example is discarded. In addition there is a method called GetCommand L ine that
returns a character vector containing the command line as it was typed.

So, compiling and executing this program gives:

123

VECTOR Vol.19 No.2

Cindevt?5vaplsreraple sconsole disp.apl
Dyalog APLScript e¢ompiler. Version 1.1
[Copyright Dyadic Systems Ltd 2082

Y
B
a
¢
A
]
5
a

Unfortunately the command window is unable to display the APL characters used
by the DISPLAY function correctly.

APLScript and .Net Assemblies

In the first of these Dyalog.Net articles we used the Dyalog APL development
environment to create a simple .Net Assembly that contained APL functions that

124

VECTOR Vol.19 No.2

could be called from a C# program. Let us now examine the APLScript version of
the APL code from that article:

:Class Demo

Ymake io
1dccess Constructor
sParameterlist Int3z2

Fiovio
v

vr+iota n

:Access Public
:ParameterList Int32[]
:Returns Array

I'+in
v

Jr+iota_1 n

r4ccess Public
rParameterlList Int32
:Returns Int3z2(]
:Implements Method iota

r+liota n
v

Yr+«iota_2 n

tAccess Public
rParameterList Int32,Int32
:Returns Int3201[,]
:Implements Method iota

r+iota n
v
:EndClass
Let's examine the code a section at a time

:Class Demo

We declare a new .Net Type called Demo. The base class is omitted so the new
Type will derive from System.Object.

125

VECTOR Vol.19 No.2

vmake io
tAccess Constructor
tParameterList Int3z

io+ic
v

The integer parameter of the constructor is used as the value of {116 for this object.

Note that each instance of a .Net Type written in APL is its own namespace. This
means that each instance can have its own global variables (inside the namespace)
and because 070 has “namespace scope” the assignment above will only affect
this instance of the Demo Type. At any time there may be multiple instances of
Demo, possibly with different values of DI0.

vr+iocta n

Here we define a function called iota.

idccess Public
iParameterList Int3z[]
:Returns Array

The function is “public”, which means that it can be called directly by code
outside of the workspace.

The functjon is declared as taking a vector of integers, and returning an array of
arbitrary rank and shape.

This is the most “generic” declaration that we can make for an iota function, and
most completely describes the apl iota primitive.

r+1n
v

The function just returns the result of the application of the APL primitive to the
argument.

Vr«liocta_1 n

rdccess Public
tParameterlList Int32
:Returns Intaz[]
:Implements Method lota

r+iota n
v

126

VECTOR Vol.19 No.2

yr+iota_2 n

:Access Public
1ParameterList Int3z,Int3z
:Returns Int3z2(1[,]
:Implements Method iota

r+iota n
v

In addition to the basic iota function, we can also define “overloads” of iota.
This is illustrated in the two functons above, each of which define an overload of
iota and return arrays of rank 1 and 2 respectively, The : Impiement s statement
declares that the methods iota_1 and Iota_2 are visible externally with the

name “iota”. Note that iota_1 and ieta_2 each call the previously declared
iota function. iota is called as if it were any other APL function.

The definition of the class is terminated with the : EndC lass statement.

This APL source code is saved in the file iota.ap] {remember that this is UNICODE
text file). Again, we can use the APLScript compiler to compile the APL code into
a .Net Assembly

&t Comunand Prompt

C:ndewt?bhaplsrc raple st:library jota.apl
Dyaley APLEcript compiler. Usrsion 1.1
Copyright Dyadic Systems Ltd 2882

Cindeve9Shaplsrcrdir iota.dll
Uolume in drive G is Local Disk
Uolume Sevial Nunher iz BS72-3C9C

Directory of C:indeutP5Naplsee
A1 /18-28082 11:42 44,960 iota.dll
1 Pile(s?> 40,968 hytes
W Dirds) 1.321,443.328 hytes free

C:ndevt95Naplsec >

Similar C# code to that presented in the first article can then use the Demo Type
contained within the assembly.

127

VECTOR Vol.19 No.2

using System;

class Uselota

static void TestDemof()

{

Demo demo = new Demo(2);
int[] shape=(1,2,3};

Console WriteLine(demo.iota(10));
Console. WriteLine(demo.iota(10,10));
Console.WriteLine(demo.iota(shape));

]

static void Main()

{
TestDemo();

}

A Note about Debugging

If we have an error in our APL code then the Dyalog APL development
environment is invoked at runtime to allow us to debug the application. Consider
the case where the C# programmer attempts to create an instance of Demo,
passing an invalid value for B70 to the constructor function. The Dyalog debugger
displays as shown below:

» CLERR WS {AppDamain_USE_IOTA_EXE.Asvembly_lata.Denta)- Dyalos APLAY
He Edt Yews windows Jesson log Achen Options look bl
WEFHN S e BB VR ARAHR M@ o
Pyalng.ﬂet Release 1
Serial Np @ 000OCO » Pentlum
[Fri Dct 04 09:05:23 2002
1:DOMALN ERROR
makeld) OI0« Lo
~

g g .,.LEJLI
‘;J make(41#010+ io

o Ll

Sistack (T1d 1]

IS

VECTOR Vol.19 No.2

We can use the usual techniques to fix the problem. Notice that as shown below,
151 includes the full stack trace of the application, including the portion from the
C# code. DST just returns the APL portion of the stack.

= CLEAR WS (Appliomain_USE_[OTA_EXE. Assembly_iota.Demo)- Dyalog APLAY

He Lk vew Widows Sassion log Aion Optins Teok belp
WIS REG | te TR B VE (|[TdQ @& N EaBE o
Serial No : 000000 ¢/ Pentium ERE-
Frl Dct 04 09:05:23 2002 g
1:00HRIN ERROR i
makel4] O10+lo :
4 I
Isi i
RppDomain_USE_TQTA_EXE .Assembly_iota.Dema.makel4]1= Bl
Uselota.TestDemold
Uselota.fainfl L.
&1 (system thread:3276) Ha
lo iyl
2 o o
[%5
Uabugggr—AppDomaln_USE}TZE)-{EAssamth_iﬁta,Demn,rﬁ'ake'rﬂd1|._.'L;:_,“ — - S |
make 1o Xl [makel 43010+ 1o 5=
Aiifiocess Constroctor 5{ ‘%
tParameterList Int32 t
i A
010+ 1o ’} "y
- v
2] 4
=) Ve
x | =
8 X
5
o s — g i
[Feady, .- . R fins [o [[“:
iCurbbj: sl (Undefined) l&:2 Tbg:0 OTRAP IDST:1 MID:1 JOHL:0

The ideal solution to this error is to trap the error on assignment to 070 and throw
a Net exception that the C# code can catch. The new constructor would look as
follows

vmake io

rAccess Constructor
:Parameterlist Int3a?

:Trap 0

[Jio«io
1Else

{ArgumentException.New 'io must be 0 or 1') Osignal sc¢
:Endfrap

v

1f we had compiled our APLScript library with the /runtime option then we
would have seen the standard Dyalog “runtime violation” dialog box, not the
debugger.

129

VECTOR Vol.19 No.2

APLScript and Microsoft Visual Studio.

APLScript has allowed us to remove the APL language from the constraints of any
particular development environment. We have seen that we can use Notepad, or
any UNICODE text editor, to write APL code. In addition there is at least one
important development environment that can now be used to develop APL code,
and that is Microsoft Visual Studio. Net.

When Dyalog.Net is installed on a machine where Microsoft Visual Studio. Net
(hereafter referred to as VS.NET) is installed, the installation process integrates
APLScript with VS.NET.

When we select “New Project “ from the VS.NET IDE we are given the option to
create an “Apl exe project” or a “Apl dll project”.

New Project

Eroject Types: Templates: [—EE— _:J
(2 Visual Basic Projects o~
L} Visual C# Projects

(T visual C++ Projects
{1 Setup and Deplayment Projects
= 1] Other Projects

O Database Projects

apl dliProject Apl .exe
Project

{73 Other Languages
D Extenslhility Projects

rerr e o

Create an Apl Application

Neme: ‘ Project?

Location: f E:\Documents and SettingsijohndiMy Documents\Visue _:_I Browse...

Pru]acl: W\I! be created at E 'l, JAjohndipy Dn:uments\\ﬁsual Studio Prmects'apruge:t?.

FMore] I K | Cancel ' - Help | I

130

VECTOR

Vol.19 No.2

Selecting “Apl .exe project” causes VS.NET to create an empty project for us that
initially contains a file called main.ap! which is our initial APLScript source code

document.

z erlrowfl“‘l'lsuialc [design) - main.apl

Ho ER Wew Fropct Duid Debw Toos Widow He
A5 HE LR 0. ’f;‘, » Debug
L P IR B 5 2 1

maln.a{:[‘l

nirhlslmt ile isﬁmu"nwgmh’f;"srtidr'r.'e?‘fﬂ’e' for ?cTur ji?Lséix;xpr‘.' appIicat ion. g—:

CPER

¥ Sohtion Explorer -Propet? ¥ X

% . — P
| %A Soltion Project7 {1 project)
- {Zd Project?
| A} Source Fles
)i] Rt bt

S LD B e W Surder] B.M. N

Fonfi aved I

Cha s

131

VECTOR Vol.19 No.2

Using the APL IME we can type our APL code into the VS.NET edjtor.

Here is a simple GUI “hello world” program

2SS EE LhE e - D0, ot - g WH_PAINT - aER

4

{sdton Explocer - Proxe?

Sokition Project? {1 profect)
Oix-'helio’ " G2 Project?
L - ¥ Sowce Fles
¥hello:nh i 3 makn.apl
I ‘mb' Owe 'magbok' 'helle world' "This is ARLScripe''! | ERgam.lxk
Ddg *mot i
v
lipopees . # %

132

VECTOR Vol.19 No.2

We can select “Build Project” from the Build Menu

Fie EM Yew Dot | Bud | pebug Tods Wieow ek

D1 by B (P, |6 Baldsoeon CuhiShiteg) Debug - ggp w_pAINT . g
Rebusd Sokion
oon b - i 1% sokon Sxporm Fropedd, B X
nThis Tald 1 alod BukdProea? your APLSCrapt application. —{ 0D
vt hel 1ot Rebulid Propect? ;E;Sdiﬁn‘l’r'l':)uﬂ(l F'IDF\:‘)
w-thello Clean Propect? i~ G Project?
= #ZY Sowte Fies
yhella;nb Bagch Buld, ., | [} maosapl
‘mR! Quo fusgho Configuration Managet .. 8 AFLSczipt!!! [2] ResdMe.txt
Ody 'nis* B
-]
¥ . d
hl J
Brﬁ;k;w;ts
WRhew - o e
Hame

0 Tash wnd |) comtoens W dove B Breakpeints

Remis)Saved [S 2 T T T chz T I T

And this invokes the APLScript compiler, which compiles the source code.

133

VECTOR

Vol.19 No.2

Finally, we can execute project?.exe.

[Debug | Tools window Hep
Windows: [3

p Start =3

B il Yew Proect Dl
WH-uw-sWlad, iy

main._apl | T ! Fart Wikhout Debuggig _ (ib4S i o
AThiz file is an ampi.
A Processes...
_ |
§ Olx-thella Exceptions,.. Ctribak+L
¥nallo: CZ Stepitto F1l
'mbh' Duc 'magbox! ‘htk Step Qver Fip [t
| cag e
v P New Greakpont... B
i
!

CT1pt aﬁpnéaﬁnn. =

_ EER
-BER

> RN WH_PAINT

b | [kt o FroeT .
| 154 Sokuion Froject” (1 project)
V= 5 Project?
[Source Fles

{] man.apt
| 5] beadme bt
|

Froperes_

é Ta_:'r Lxst_\ L
RenfsySwved

134

VECTOR Vol.19 No.2

g L ik Ty - g m e e oo il ‘:ﬁﬁ}ﬂﬂ
Bis Edt Yew Propet Buld Debug Ipcl Window Hslp
WS G s e, e - BT) tebu i g W_PAINT AR Y

% Pn AR

ma?m.apII e ; TSolution Explcer - rject?_§_ X
"] nThis file iz an empty =torter file for your APLScript spplicat iun._f‘
1 ok e T et
Olx-'hallo’ i
! Yhello:mb
! 'mb' Uwc 'mogbox! ‘hello world' 'This 1= AFLScrapef!!
Odg 'mb!
v
| I—
ello world
- This s APLSCrpkil
1 e
i — s OF
Ecesbpores —
ikew | ¥
Mawe bk Count

EEEEE e

Admiitedly a trivial example, but it indicates the portability of APLScript.

Let’s look at a more complicated example that uses two programming languages,
some Net, and some APL component files.

The ComponentFile Solution

Dyalog.Net ships with a VS.NET solution called ComponentFiles. A solution is a
number of related projects. In ComponentFiles we have a project called cfiles,

which is written in APLScript, and a project called ComponentFiles which
contains C# source code.

If we open the ComponentFiles solution in V5.NET we see the following:

135

VECTOR

Vol.19 No.2

B G Yew Project Pid Cehog Joos Widow Help

[2) rOfremd cie index
v
1IndIndexer
1EndC lass A_FileComponencs

Tmake arga

[1i] :hecess public constructor

[2] :ParemetecLizt String

[31

[4] tizeargs= Oftie O

[s1 components. Fillelomponents.New rie
v

:Proparty _TileComponents:Components
Vi-ger

[1] r—-componsnts
v
tIndProperty

vCluael
[1] :Aiccess Public
(21
[3] Ofuntie tim

v

(EndClass
L]

Yash List - 0 Bl Emror tosks shown (kered)

D-o-508 $B@a 9-o-86") ey A WHM_PAINT
Thls 8 % AR, o
T 4 F = }

= EX Sores Fias

{) tmam.ant

135 Readie bt
18] ComponentFiles

References

AssemblyInfo.cs

Cha

136

VECTOR Vol.19 No.2

The ComponentFiles solution contains an APLscript program that presents an
object-oriented interface to APL component files. Also in ComponentFiles is a C#
program that uses the APL code to retrieve and modify components in a simple
component file.

On the right hand side of the window we can see the “Solution Explorer” which
lists the files that make up the solution, and we can see the current source file
open in the editor. This is main.ap] and is the APLScript code for the cfiles project.

Here is the full listing of the APLScript program

a This file is an empty starter file for your APLScript application.
OJio+1
Omlst

:Class ComponentFile

:Clags _FileComponernts
vmake arg
(1] :4ccess constructor
[2] :ParameterList Int32
[3]
(4] tie«arg
v

:Property Int3z:Count
vr+get
(1] r+« 1+22{0fsize tie
v
:EndProperty

vr«Add array
{13 :Access public
{2] :ParameterList Array
{3} :Returns Intaz
(ul
[s8] rearray Ufappend tie
v

137

VECTOR Vol.19 No.2

:Indexer Array:Item
:ParameterlList Int3?2
vset args
[1] (2»args) Ofreplace tie (i»args)
v
vr+«get index
[{2] r«[fread tie index
v
:EndIndexer
:EndClassn _FileComponents

vmake args

[1] :4ccess public constructor

[2]1 :Parameterlist String

[2]

[u] tie~args QOftie ©

(51 components+_FileCompcnents.New tle
v

:Property _FileComponents:Components
yr+get
[1] r«components
v
:EndProperty

yClose

[1] :Access Public

(2]
[3] Dfuntie tie
v

:EndClass

The APLScript defines two Net types , one called ComponentFile and one
called _FileCemponents. The ComponentFile Type encompasses operations
that can be performed on a file, e.g. Close. The _¥FileComponents Type

-encompasses operations that can be performed on components in the file, such as
4dd and Count. The _FileComponents Type uses an indexer to present the
components in the file as an array. Notice also that _FileComponents is declared
inside the definition of ComponentFile. This allows us to define, in .Net
terminology, a “Nested Type”.

When an instance of ComponentFile is created the constructor function (make)
is called with the filename of the desired component file as a parameter. The nake
function ties the component file and stores the tie number in a variable called ¢ 1e.
This variable is global to the current namespace and so is specific to this particular

138

VECTOR

Vol.19 No.2

instance of the ComponentFile object, each instance of ComponentFile has its
own namespace. In addition the make routine creates a new instance of the
s class, passing the new tie number to the constructor of this

_FileComponent

Type.

The componentFile object has a property called Components that returns the
instance of the _FileComponents class that was created in the ComponentFile

constructor. Note that this is a read-only property.

Here's the C# prog

using System;

ram that accesses the ComponentFile Type.

namespace ComponentPiles

/17 <summarys

/// summary

description for Classl.

/1] </sunmary>

class Clagsl

public

static void Main{)

ComponentFile £ile = new ComponentFile(*.\\cfiles.dcf"};

for (int i=1;i«=file.Components,Count;i++)
DumpArray (file.Components (i)} ;

Congole.WriteLine{file.ToString());

Console.Write("file.Count:");
Conscle . WriteLine {file.Components.Count) ;

Console.Write("file.Components[1]:");
Dumparray (£ile. Components(1]) ;

int [] New = new int[3];
New [0]=1;
New[1]=3;
New[2]=5;

Ceongole,.Write ("Added component at ");
int at = file. Components.Add (New);

Console.WritelLine{at);

Console.Write ("New component contains:");
DumpArray{file.Components [at]);

New[0]=11;
Kew[1]=33;
New(2]=55;

Console.Write ("Overwritten component.Now containg:");

file.Components fat] =New;
DumpArray (file.Components [at]) ;

file.Closel};

139

VECTOR

Vol.19 No.2

}

static void DumpArray{Array a}
switch (a.Rank)

case 1:
for (int i=0;i<a.Length;i++)

if (i!=0)
Console . Write(",");
Console.Writela.GetValue(i});
}
break;
defaulc:
Console,Writel{a.ToString());
break;

Console.WriteLine () ;

Look at the following line of the C# program

Console, WritelLine {file.Components.Count) ;

The wvariable file refers to an instance of the Componentrile Type.
ComponentFile has a property, Compcnents, that returns an instance of the
_FileComponents Type, which has a Count property. When this line of C# is
executed the code specified in the get section of the : Property declaration of

Count is executed.

140

VECTOR Vol.19 No.2

Remember that _FileComponents defined an indexer called Ttem:

:Indexer Array:Item
:ParameterList Int3z
vset args
[1] (2-args) Ofreplace tie (loarys)
v
vr«get index
[2] r«(fread tie index
v
:EndIndexer

This indicates that the _FileComponent Type has a Property called Item, thatis
the default member of the class. If Item was declared using : Property the C#
code would have to use

array=File.Components.Item[2] ;

To access the 2™ component of the file. Because we used :Indexer to declare
Item, the C# code can be simplified to

array=File.Components[2];

which is somewhat more convenient for the C# programimer, The APL code that is
executed in each case would be identical.

Similarly, assignment to the appropriate element of the component file can be
achieved with

File.Components[2] =array;

And this will execute the APL code in the set section of the : Tndexer declaration.

141

VECTOR Vol.19 No.2

If we initialize the component file so that it contains a single component that is
the vector “This is the first compenent’ the output from the CH# program is as
follows

ile.Conponents[i):This is the first component
fdded component at

[Mew conmponent comtains:1.3.5

Overuritten component _Mow contains:11,33,55
[Press any key to centinue_

Summary

APLScript allows us to abstract the APL language from the traditional
developments, giving us the ability integrate our APL code with other languages
and development environments.

The Next Article

In the next article we will examine the use of APLScript to write web pages.

John Daintree
Senior Programmer
Dyadic Systems Ltd

email: johnd@dyadic.com
mailing list: dotnet@dyadic.com

142

VECTOR Vol.19 No.2

Index to Advertisers

Dyadic Systems Ltd 2
MicroAPL Ltd 8
Strand Software 1
Vector Back Numbers 5

All queries regarding advertising in VECTOR should be made to Giil Smith,
at 01439-788385, Email: apl385@compuserve.com.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards. Please send the text of submitted articles (hardcopy with diskette as
appropriate) to the Vector Working Group via:

Vector Administration, ¢/o Gill Smith
Brook House

Gilling East

YORK, YO62 4]]

Tel: +44 (0) 1439-785385

Email: apl385@compuserve.com

Authors wishing to use Word for Windows should contact Vector Production for
a copy of the APL2741 TrueType font, and a suitable Winword template. These
may also be downloaded from the Vector web site at www.vector.org.uk

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard” material
{e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK YO62 4]]. Please also copy us with all electronically
submitted material so that we have early warning of possible problems.

143

VECTOR Vol.19 No.2

Subscribing to Vector

Your Vector subscription includes membership of the British APL Association,
which is open to anyone interested in APL or related languages. The membership
year runs from 1st May to 30th April. The British APL Association is a special
interest group of the British Computer Society, Reg. Charity No. 292,786

Name:
Address:

Postcede / Country:
Telephone Number:

Email Address:
UK private membership ... e £20 a
Overseas private membershipcccccommnmnimmnn. £22 Q
Airmail supplement (not needed for Europe)coocovvccvenne £4 Q
UK Corporate membershipccoveremiresrerssiensesseresnns £100 |
Corporate membership OVerseasc.covoercrerimensnsrnnes £135 Q
Sustaining membership ... s £500 Q
Non-voting UK member (student/OAP /unemployed) £10 Qa

PAYMENT - in Sterling or by Visa/Mastercard/JCB only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Association”, or you may quote your
Mastercard, Visa or JCB number.

l'authorise you to debit my Visa/Mastercard /JCB account

NulleEl':lll!llIIIJ[IIIIL!IIIEXpil'ydat"e:i_l_ll_]_l

for the membership category indicated above,

U annually, at the prevailing rate, until further | pata Frotection Act:

notice The infarmation supplied may be slored
’ P an computer and processed in
D One year's subscrlp tion only accondance with the registration of the
Brilish Computer Society.
Signature:

Send the completed form to:
BAA, ¢/o Rowena Small, 12 Cambridge Road, Waterbeach, CAMBRIDGE CB5 9NJ, UK
Fax: +44 (0) 1653 697719

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by a Committee
of officers who are elected by a postal ballot of Association members prior to the Annual General Meeting, Working
groups are also established in areas such as activity planning and journal production. Offers of assistance and
involvement with any Association matters are welcomed and should be addressed in the first instance to the Secretary.

Chairman

Secretary

Treasurer

Journal Editor

Projects and
Publicity

Webmaster

Activities

Scheol Project

Adrministration

2002/2003 Committee

Adrian Smith
0143%-788385
apl385@compuserve.com

Antheny Camache
0117-973-0036
acam(@tesco.net

Nicholas Small
01223-570850
treas.apl@bes.org.uk

Stefano Lanzavecchia
stit@apl.it

Dr Alan Mayer
0§792-205678x4274
a.d.mayer@swansea.ac.uk

Ray Cannon
01252-874697
ray Cannon@conpuserve.cam

Jor: Sandles
01904-612882
jon_sandles@cesi.com

Stephen Taylor
sjt@lambenttechnology.com

Rowena Small

Brook House
Gilling East
YORK YO524]]

11 Auburn Road
Redland
BRISTOL, BS6 6L8

12 Cambridge Road, Waterbeach,
Cambridge CB5 9NJ

c/o APL Italiana
Corso Vercelli 54
20145 - Milano
ltaly

European Business Management School,
Swansea Unmiversity,
Singleton Park, SWANSEA SA2 BPP

21 Woodbridge Road,
Blackwater, Camberley,
Surrey GU17 0BS5S

138 Burton Stone Lane,
YORK YO30 6DF

12 Cambridge Road, Waterbeach,

01223-570850 Cambridge CB5 9NJ
treas.apl@bes.org.uk
Journal Working Group
Editor: Stefano Lanzavecchia see above
Production: Adrian & Gill Smith Brook House, Gilling East, YORK (01439-788385)
Advertising: Gill Smith Brook House, Gilling East, YORK (01439-788385)
Suppeort Team: Jonathan Barman {01488-648575), Anthony & Sylvia Camacho (0117-973-0036),

Ray Cannen (01252-874697), Stephen Taylor (077-1340-0852)
Bol Hoekstra (01483-771028), Jon Sandles (01904-612882), Marc Griffiths

Typeset by APL-385 with MS Word for Windows
Printed in England by Short-Run Press Ltd, Exeter

VECTOR

VECTOR is the quarterly Journal of the British APL Association and is distributed to Association
members in the UK and overseas. Tha British APL Association is a Specialist Group of the British
Computer Society. APL stands for “A Programming Language’ - an Interactive computer
language noted for its elegance, conciseness and fast development speed. It is supported on
most mainframes, workstations and personal computers.

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial support
of the following Association Sustaining Members. In many cases these organisations also provide
manpower and administrative assistance to the Association at Iheir own cost.

Causeway Graphical Systems Ltd
The Maltings, Castlegate,
MALTON, North Yorks YO17 7DP
Tel: 01653-696760

Fax: 01653-697719

Email: sales@causeway.co.uk
Web: www.causeway co.uk

Dyadic Systems Lid
Riverside View, Basing Road,
Oid Basing, BASINGSTOKE,
Hants, RG24 OAL

Tel: 01256-811125

Fax: 01256-811130

Email: sales@dyadic.com
Web: www.dyadic.com

Insight Systems ApS
Noerdre Strandvej 119G
DK-3150 Hellebaek
Denmark

Tel: +45 70 26 13 26
Fax: +45 70 26 13 25
Email: info@insight.dk
Web: www.insight.dk

MicroAPL Lid

The Raller Mill, Mill Lane

Uckfield

E Sussex TN22 5AA

Tel: 01825-768050. Fax: 01825-749472
Email: MicroAPL@microapl.demon.co.uk
Web: www.microap!.co uk/apl

© APL2000 Inc

One Research Court
Suite 140

Rockville MD 20850
USA

Tel: +1 (301) 208 7150

Email: sales@ap|2000.com
Web: www.apl2000.com

Compass Ltd
Compass House
60 Priestley Road

GUILDFORD, Surrey GU2 5YU

Tel: 01483-514500

Dutch APL Association
Postbus 1341

3430BH Nieuwegein
Netherlands

Tei: +#31 347 342 337

HMW Computing
Hamilton House,

1 Temple Avenue,
LONDON EC4Y 0HA
Tel: 0870-1010-469
Email: HMW@4xtra.com

Soliton Associates Lid
Groot Blankenberg 53
1082 AC Amsterdam
Netherlands

Tel: +31 20 646 4475
Fax: +31 20 644 1206
Email: sales@soliton.com

