The Journal of the
British APL Association

A Specialist Group of the British Computer Society

J-APL86 - latest news
Future direction of APL.
APL2 idioms
More from APLBE.

News, reviews and APL
product guide,

a 2 g 92 o

Yol.3 No.3 January 1987

Contributions

All contributions to VECTOR should be sent 1o the Editor at the address given on the inside back
cover. Letters and articles are welcomed on any topic of interest to the APL community. These do not
need to be limited 1o APL themes nor must they be supportive of the language, Articles should be
submitted in duplicate and accompanied by as much visual material as possible, including a
photograph of the author. Unless otherwise specified each item will be considered for publication asa
personal statement by its author, who accepts legal responsibility that its publication is not restricted
by copyright. Authors are requested wherever possible to supply copy in machine-readable form
ideally text files on a 5%4" IBM-PC compatible diskette. For other standards, please contact the Editor
beforehand. Program listings should indicate the computer system on which they have been run. APL
symbols should be displayed on a separate line and not embedded in narrative . Except where
indicated, items published in VECTOR may be freely reprinted with appropriate acknowledgement.

Membership Rates 1986-87

VECTOR
Category Feep.a. copies Passes
£ $

Nonvoting student membership 3 1 1
UK Private membership 10 1 1
Overseas private membership i8 27 1 i
Supplement for airmail

(not needed for Europe) 8 12
Corporate membership (UK) 85 10 5
Corporate membership (Overseas) 140 210
Sustaining membership 360 neg 5

The membership year runs from 1st May to 30th April. Applications for membership should be made
on the form at the end of the journal. Passes are required for entry to some Association events and for
voting at Annual General Meetings. Applications for student membership will be accepted on a
recommendation from a course supervisor. Overseas membership rates cover VECTOR surface
postage and must be paid in CUK.

Corporate membership is offered to organisations where APL is in professional use. Corporate
members receive muldple copies of VECTOR and are offered group attendance of Association
meetings. Partaking individuals need not be identified buta contact person should be nominated fer all
comimunications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of
promoting the growth of APL interest and activity. As well as receiving public acknowledgement for
their sponsorship, sustaining members receive bulk copies of VECTOR, and are offered news listings
in the editorial section of the journal and opportunities to inform APL users of their products via
seminars and articles.

Advertising

Advertisernents in VECTOR should be submitted in typeset camera-ready A5 portrait format with a
20 mm blank berder, Illustrations should be black-and-white photographs or line drawings. Rates are
£250 per page. A6 and A7 sizes are offered subject to layout constraints.

Deadlines for advertisement bookings and receipt of camera-ready copy are given beneath the Quick-
Reference Diary.

Advertisements should be booked with and sent to Steve Lyus, whose address is given beneath the
Index of Advertisers.

VECTOR

EDITORIAL: Trainupachild. . .
APL.NEWS
Quick-reference diary
APL Course dates
General Correspondence
British APL Association News
Commirttee News
Sustaining members
International news - Journal exchange
QL/APL User Group
APL Product Guide
APL Book list
The Education VECTOR

PRODUCT AN BOOK REVIEWS

Applied Mathematics for Programmers
and Mathematics and Programming
—KenIverson

Introduction to APL - Howard Peelle

Comparing Compiuer Languages

APL 68000 on the Atari ST

APL*PLUS/PCrelease 6.0

APL.68000 for the Apple Macintosh

RECENT MEETINGS
The I-APL project

APL Debate: What is APL Thinking?
Idioms & problem-solving in APL2

GENERAL ARTICLES
Stepstoabetter BASIC

Time to think about the future direction of APL.

TECHNICAL SECTION
Editorial: Interpreters for debuggers
Technical Correspondence
Competition result — Watch Your Step
Surely there must be a better way

—Ambi-valence

APL Trivia~ Funny dates
[-APL Technical Specification

CONTENTS

David Preedy

Barnetson, Branson, Barker

Dick Bowman
Steve Lyus
David Preedy

Steve Lyus

Norman Thomson

Simon Garland
Romilly Cocking
Peter Branson
Paul Chapman
Martyn Adams
Mark Bassert

Camacho, Ziemann,
Thomson & Chapman

Alan Graham

Anthony Camacho
Graham Parkhouse

David Ziemann
Mitchison, Piper, Jackson
David Ziemann

David Ziemann
David Ziemann
David Ziemann

Command-driven interface for BDAM and QSAM

APsusing APL2 under TSO

David Piper

PUBLICDOMAIN SCFTWARE LIBRARY

INDEX TO ADVERTISERS

Veol.3 No.3

NP =] L

13
14
19
21
23
32
33

36
38
40
47
51
54

60
66
77

95
97

102
104
107
111
115
118
125
133

13%

Info Center/1

an 1BM licensed program that helps business professionals
perform their daily tasks quickly and productively

Info Center/l provides an integrated,
multifunction information center environ-
ment compatible with predecessor pro-
ducts such as ADRS 1l and APLDI Il A
full-screen interface, with prompts and
extensive help facility, provides easy
access o the following powerful general
business functions, as well as providing
the full power of APL:

Query System

The Query System provides a simple,
effective way to interactively access,
analyze, manipulate, and report informa-
tion stored in files of up to several
hundred megabytes.

Reporting System

Provides an organization with a single,
comprehensive system for generating and
maintaining reports. Standard calcu-
lations can be defined and stored for
future use. Calculations can be made
with predefined functions and with APL.

Data Entry and Validation

This tool allows information center per-
sonnel to tailor panels for users to display,
update, and enter data in column format.

Financial Planning System

The Financial Planning System provides a
set of 60 modeling rowtines that work with
the Reporting System and address peri-
odic data. Some examples are:

Financial analyses and plans
Statistical analyses and projections
What if analyses and modeling
Project evaluations and risk analyses.

Business Graphics

The Business Graphics facility is a partic-
ularly powerful yet flexible tool for inter-
actively producing the following types of
charts: line graphs, surface charts,
histograms, pie charts, scatter plots, bar
charts, stacked bar charts.

Technical Data

Info Center/1 is an IBM Licensed Program, Program Number 5668-897.

The program runs under CMS and TSO topether with the following IBM programs or their equivalents:
APL2 or VS APL, Application Prototype Environment, GDDM (Graphical Data Display Manager).
Some cxamples of terminals supported are: IBM 3277, 3279, 3270 PC/G and GX.

VECTOR Vol.3 No.3

Editorial: “Train up a child ...”
by David Preedy

This issue of VECTOR unashamedly devotes several pages to various aspects of the I-APL
project, of which 1 hope 2all our readers are by now at least aware. Although I-APL is a
separate activity from any other organisation, it has already at the time of writing in early-
November received backing from the British APL Association and from SIGAPL. The
transatlantic nature of its support is reflected not only in the make-up of the -APL
comumittee, but also of those others involved in the development of the interpreter itself and
of the infrastructure to ensure its success — the documentation, supporting material and the
“business plan”; spawned in Manchester, I-APL should be developed by Dallas.

My direct knowledge of education is limited to my own experiences and to those of my close
family and in particular my own children. As a mathematician, 1 cannot fail to see how
much more appropriate an APL background would have been 10 my own education, than
was the mixture of Algol and Fortran that constituted the norm before the days of micros
and BASIC. However my views of the computing needs of today’s school-children are
coloured more by what I have seen as an outsider looking in on my children’s education.

In general the teaching profession has shown considerable inventiveness and imagination
in taking the microcomputer to heart. Of course there have been cases where the computer
has been used trivially to mimic the teaching of arithmetic by rote, and of course it would be
better if all schools had the resources to buy more computers. But equally there are many
dedicated teachers who recognise the computer as a totally new type of teaching aid, that
should not be used merely as a glorified adding machine. Also there is much innovative
software available for the educational market — the Mary Rose project and the work done
with LOGO would seem to be classic examples,

Above all though we must avoid the danger that all the school-children interested in
computers become so accustomed to the BASIC approach to programming that they regard
its looping, scalar techniques as sacrosanct. (It was Anthony Camacho, I think, at APL86
who expressed the fear that we are training people to be unable to use the benefits of parallel
computers.) APL seems to have three strong advantages in the educational area.
Structurally, it reflects the mathermatical concepts being taught much more clearly than any
other language; it is after all a sophisticated mathematical notation in its own right. As a
calculating machine, it provides a powerful tol for pupils to use 10 support other work they
may be doing - analysing experimental results, and so on. And for the teacher, its brevity
should help in preparing functions, where appropriate copied from written material, to
illustrate the work in hand. The speed with which results can be obtained with only a
modicum of APL expertise must be a key factor in retaining the interest of youngsters
whose attentiveness fades when faced with a daunting stream of PRINT$ IF THEN
ELSEs.

VECTOR Vol.3 No.3

What then can we as APL users do to assist the momentum of the I-APL band-wagon? The
key factor is communication. The small core of educationalists in the APL community
cannot expect personally to reach a large number of teachers; they can however attempt to
concentrate their own resources on the key decision-makers — LEA Mathematics Advisers
and the like. What the rest of us should be able 1o do is to contact those teachers we know
personally, especially those with an interest in mathematics and computers, and tell them
about I-APL. However we musi give them a two-fold message — not only that a free APL
interpreter is available, along with suitable supporting material, but also why it should be
important to them.

Now we can all explain in our own way why APL helps us, but the niceties of component
file systems and nested arrays may well be irrelevant to the class’s uses of computers. What
we need to do between now and the start of the publicity drive in the Summer is to
encourage those teachers already using APL to tell us lay-people what particular
characteristics of APL are most relevant in the educational context. Then we have a real
prospect of introducing APL effectively to a whole new generation.

“Train up a Chlld in the way he should go: and when he is old, he will not
depart from it.” Proverbs, xxii, 6

Dates for future issues of VECTOR

Vol3 Vol4d Vold4 Vol4

No4 Nol No2 No3
Copy date 30 Jan 87 24 Apr87 24 Jul 87 16 Oct 87
Ad. booking 20Feb 87 22 May 87 21 Aug 87 13Nov 87
Ad. copy 27 Feb §7 29 May 87 28 Aug 87 20 Nov 87
Distribution April 87 July 87 October 87 January 88

VECTOR

Date
1987

6-7 January

20 February
20 March
11-15 May

6 June

18 September
16 October
20November
1988

15 January

18 March

20 May

16 September
21 October

18 November

Vol.3 No.3

Quick-reference diary

Venue

London

London
London
Dallas

London
London
Lendon

London

London
London
London
London
London

London

compiled by David Preedy

Event

APL in Engineering & Information Science
Organised by South Bank Polytechnic

British APL Association meeting

British APL Association meeting

APL 87— APLintransition

British APL Association AGM & meeting
British APL Association meeting

British APL Association meeting

British APL Association meeting

British APL Association meeting
British APL Association meeting
British APL Association AGM & meeting
British APL Association meeting
British APL Association meeting

British APL Association meeting

All British APL Association meetings are to be held a1 the Royal Over-Seas League, Park
Place, near Green Park tube station and start at 2pm.

Please note the date of the AGM, which has been moved to June 6th to avoid a clash with

APL-87 in Dallas!

ERCIA 1
Software Limited
WSFULL problems with APL*PLUS/PC?

A Before A Aftex

0 WSSIZE U WSSIZE
481568 747408

Could you use those extra Bytes? — give us a call to find
out how.

Mercia also offer a full range of consultancy and
education services - make a note in your diary of our
1987 course schedule:-

Introduction to APL*PLUS/PC - 3 Day Course £350

(In House £1200)
January 20, 21, 22
March 17,18, 19

May 19,2021

APL*PLUS/PC Enhancements — 2 Day Course £240
February 17, 18 (In House £300)
April 1,2
May 56

System Design with APL*PLUS — 3 day Course £315

(In House £1200)
January 27, 28, 29
March 24, 25, 26
May 12,13 14

MERCIA SOFTWARE LIMITED

Aston Science Park, Love Lane, Birmingham B7 4B].
Telephone: 021-359 5096

VECTOR Vol.3 No.3

APL course diary

Many of the APL vendors included in the VECTOR APL Product Guide offer courses in
APL and related topics. For a full list readers are recommended to look under the relevant
section of the product guide. This section gives course dates for those suppliers who have

prepared their course schedule at the time of going 10 print.

January 1987

14 Beginners APL MicroAPL
20-22 APL Fundamentals Cocking & Drury
20-22 APL*PLUS/PC Inwroduction Mercia Software
21 Intermediate APL MicroAPL
26-29 APL*PLUS PCIatermediate Cacking & Drury
27-29 System design with APL*PLUS Mercia Software
February 1987

34 Statgraphics Cocking & Drury
10-12 APL Fundamentals Cocking & Drury
11 Advanced APL MicroAPL
16-19 APL Systern Design Cocking & Drury
17-18 APL*PLUS/PC Enhancements Mercia Software
18 Intermediate APL MicroAPL
24-26 APL Fundamentals Cocking & Drury
March 1987
10-12 APL Fundamentals Cocking & Drury
16-19 APL*PLUS PCIntermediate Cocking & Drury
17-19 APL*PLUS/PC Introduction Mercia Software
24-26 APL Fundamentals Cocking & Drury
24-26 System design with APL*PLUS Mercia Software
31-%4 Statgraphics Cocking & Drury
April 1987

7-9 APL Fundamentals Cocking & Drury
21-22 APL*PLUS/PC Enhancements Mercia Software
28-30 APL Fundamentals Cocking & Drury
May 1987

5-6 APL*PLUS/PC Enhancements Mercia Software
11-14 APL System Design Cocking & Drury
12-14 System design with APL*PLUS Mercia Software
18-21 ATPL Fundamentals Cocking & Drury
19-21 APL*PLUS/PC Introduction Mercia Software
27-28 Statgraphics Cocking & Drury

APL CONSULTANTS

LONDON & READING

Account Managers (6 yearst) to 25K

Senior Consultants (4-6 years) to 21K
Consultants (2-4 years) to 17K
Junior Consultants (1-2 years) to 13K

Are your APL skills and potential being recognised
and rewarded?

Cocking & Drury consultants have been implementing

successful decision support applications for 10

Eears, with clients who appreciate the productivity
enefits of APL.

In our professional team you will experience a
range of APL environments - APL*Plus, VSAPL, APL2
and Unix, on both mainframes and micros. You will
also be developing systems which, increasingly,
need to interface with non-APL Information Centre
products.

Of course as the leading APL consultancy, in a
rapidly expanding market, we offer a rewarding
career with first class benefits - profit sharing,
free health insurance, and a non*contributory
pension.

For further details colf Ralph Wilson on 0734 588835

= COCKING &DRURY LTD.
: 155 Friar Street, Reading, RG1 THE

VECTOR Vol.3 No.3

LN

General Correspondence

The VECTOR working group welcomes correspondence on any topic affecting the APL
community. All such letters should be addressed to the Editor and should indicate whether they are
tniended for the general or technical section. Letters containing APL code will normally appear in
the Technical section of VECTOR, and authors are asked to observe the requirements on the
inclusion of APL code stated on the inside cover. The Editor reserves the right to edit any letter
unless the writer states that the letter is to be published tn full or not at all.

APL, standards
From Mr Paul Barnetson 21st Qctober 1986
Sir,

Atarecent meeting of the BSI APL Panel, there was a long discussion on how we could best
attract new members to join us in our exciting work. I hope that an appeal 1o the VECTOR
readers may result in some volunteers coming forward.

Most of us have moaned because & package that runs on one computer doesn’t run on
another. Result; you have to rewrite it!

This problem is now being overcome by the APL Standard. The document is shortly to be
published as an ISO (International Standards Organisation) Standard, and this will be
followed soon afier by the same document appearing as a BSI (British Standards Institute)
Standard.

But . . . it won’t cover all the modern facilities of current APL implementations. Both the
ISO APL sub-committee and the BSI APL panel are gearing up to work on standardising
some of these modern facilities:

generalised arrays, operator extensions, scope of names, file inputioutput,
complex arithmetic, exception handling, etc.

T would like to ask your readers three questions:

Do YOU use these techniques in APL?
Do YOU want 1o see them standardised?
Are YOU prepared 10 work in this area?

If the answer to any of these is “Yes”, then you’ll want 1o participate in the future work of
the BST APL panel. We meet once a quarter, on average, and normally in the Londen area.
There will also be opportunities for members to attend the international meetings of the
ISO APL sub-committee,

VECTOR Vol.3 No.3

Further information can be obtained from either of the following:
David Ziemann, BSI APL panel chairman, Cocking & Drury, 01-493 6172
Paul Barnetson, BSI APL panel secretary, IBM, 0705-323054

Yours sincerely,

Paul Barnetson,

Secretary, BSI APL panel,
IBM United Kingdom L1d.,
P.O.Box 41,

Northern Road, Portsmouth,
Hampshire. PO6 3AU.

(Editor: I am sure we all wish you luck in attracting volunteers for this interesting and important
challenge.)

Comparing Languages

From Mr Peter Branson 20th October 1986
Sir,

I have used APL for many years (mainframe) but had 10 leave it for a while. Coming back to
it, I joined the B.A A. several months ago, and back issues of VECTOR have been most

helpful in highlighting recent developments. I enjoy my copies of VECTOR so please keep
up the good work.

A book review is enclosed, for the *Handbook and Guide for Comparing Computer
Languages”. You will see that I came across it by chance in 2 local library; Felicity at Mine
of Information says it is not on their lists, and she hasn’t been able to find a U.K. supplier
yet for me.

I was surprised to find, when talking to people at the Royal Over-Seas League last week,
that no-one appeared 10 have heard of this book. Since I had already made detailed notes, it
seemed sensible to make them more widely available to the VECTOR readers.

Yours sincerely,

Peter Branson,
Oaklands Cottage, Wray Common,
Reigate, Surrey.

(Editor: Peter’s review is included in the reviews section later in this issue of VECTOR. Perhaps
any reader knowing of a supply of the Handbook could let us know.)

10

VECTOR Vol.3 No.3

L.ATL
From Mr Simon Barker,
Sir,
Please find enclosed a donation towards the I-APL appeal. It’s pleasing 1o see something so
positive and (hopefully) far-reaching being attempted.

My own feelings about the objectives of the I-APL project are rather mixed; partly because
it seems that the project is concerned with making APL the new BASIC (although it can
certainly live up 10 being a Beginner’s All-purpose Symbolic Instruction Code); and partly
because 1 feel that a subset of plain old “vanilla” APL will have a hard time competing
against full-scale implementations of Fortran, Pascal and some advanced BASICs which
are already in wide use.

The area where APL really needs credibility is in the business arena because it is here that
a language can grow in stature enough to be taken seriously elsewhere. For this reason, in
parallel with the I-APL project, I think there should be a drive to develop powerful, cheap
software written in APL to exploit the new icon-driven machines that are filling today’s
computer market. Just imagine how popular APL might have been if, say, Lotus 1-2-3 had
been written in it.

To this end I salute MicroAPL for taking the initiative and producing APL for the
Macintosh, Atari ST and the Amiga, along with all-important run-ime versions of the
interpreter.

If software developers have got any sense, they will soon realise how easy it is to produce
well-specified, full-featured software, quickly, easily and cheaply using APL. The I-APL
publicity drive might well help towards this end.

Finally, may I say how much I enjoyed APL86 and how superbly VECTOR Vol 3, No 2
captured the excitement and sheer pleasure of that event.

Yours,

Simon Barker,
55 Conisborough Crescent,
Catford, London SE6 2SP,

(Editor: Your contribution to the I-APL project has been forwarded to the I-APL committee.
Readers might Eke to note that I-APL is separate from the BAA and that I-APL matters should
normally be addressed to the I-APL committee, specifically Anthony Camacho, David Ziemann
or Norman Thomson — in the U K.

Thank you for your comments on last VECTOR ; we like to receive comments from readers — even
unfavourable ones which give us useful feedback to improve your journal,)

11

APL.68000
FOR THE
COMMODORE AMIGA

APL.68000 on the Amiga offers a uniquely friendly environment in which to program
in APL. It offers the simplest method of writing applications which take full advantage
of the Amiga features, allowing systems written in APL to set a new standard of
professionalism and integration with other Amiga software.

FEATURES:

® Uses standard Amiga user
interface

® Built-in full screen function
editor

® Access to Amiga Dos native
files

® Built-in VT100 APL/ASCII
terminal amulation

® Full clipboard support for data
exchange

® APL can be started from
workbench

® Common system commands as
pull-down menus

Price: £200 excl. VAT

APL.BB0OQO is a trademark of MicroAPL Ltd,
Amiga is a trade'nark of Commcdore-Amiga Inc.

Full printer support

Runs in its own window
User-defined pull-down menus
User-defined Dialog and Alert
boxes

Full interface to Amiga graphics
facilities

Arbitrary 1/0 via serial ports
Session manager allows editing
of screen lines

Workspaces can be set as run-
time applications

Applications can use standard
ASCII keyboard

Applications can detect mouse
position and state

BEEBEED
LM ICIRIO] |
L JAPIL]
OO0

MicroAPL Limited

Commercial Offices: 19 Catherine Place, London SW1E 8DX
Telephone: 01-834 9022

VECTOR Vol.3 No.3

British APL. Association News
BAA Committee News
by Dick Bowman

There are two items of interest arising from recent Committee meetings, both aimed at
improved communications and information exchange in the global APL community.

Sharp Mailbox code.

I P Sharp Associates are Sustaining Members of the BAA and their cooperation during the
organising stages of APL86 was most helpful; in particular the access which they provided
to their Mailbox system.

They have made the most welcome gesture of allowing the BAA to continue using the
Mailbox, which means that two things can now happen:

We have created a Mailbox group called <FBAA> (Friends of the British APL Association)
which can act as an address for any communications of interest 10 members of the BAA.
Join this group if you want to receive any of this news etc.

Also you can send messages direct to the BAA Committee. At present we have no group
specifically for this purpose (one day the Secretary will doubtless get round to it) and you
should address your message to either <BOW>, <MEL>, or <ZIEM>.

International Journal Exchange.

There was a somewhat inconclusive meeting of many of the international APL ‘clubs’ at
APL86 - one thing which we were able to achieve being that we wanted 1o revitalise the
longstanding but lately moribund exchange of journals between the groups.

We have contacted all of the groups that we know of and now have journal exchange
agreements with the Swiss, German, Bay Area and Australian Groups. You should begin to
see some summarisation of the contents of the various journals in forthcoming VECTORs;
what you won’t be seeing is lengthy extracts from their articles.

What we want to achieve is to let all of our membership know what’s happening in APL
worldwide and we’d particularly encourage you to join the individual groups if you think
their activity looks interesting.

If, by any chance, there are any other groups publishing APL journals who would like to
participate in this scheme please contact a member of the BAA committee as soon as you
can.

13

VECTOR Vol.3 No.3

News from Sustaining members
APL People

By the time you read this the summer holidays will have long gone and we will all just be
recovering from Christmas — ready for another busy APL year ahead.

APL People’s associated enterprises continue to prosper. APL Tran-Plan is progressing
with its work on several transportation studies in North America; H Walton Technical
Services are busier than ever with PEFAC — the computerised estimating system; and APL
People’s consultancy business is steadily growing. Recently their employment agency has
been engaged by clients in the U.S.A. to fill vacancies in New York, and potential business
in North America looks most promising.

Since APL§6, where APL Software Limited got under way, the company has contracted to
market a range of software for both mainframe and PC environments (see Product Guide).
Other software is being evaluated and should become available in 1987. Initial interest has
been encouraging not only in the curremt portfolio of software, but also from companies
wanting their in-house systems evaluated with a view to marketing them. How much “new”
application software might be discovered for the benefit of the APL community.

APL Software Technology (UK) Ltd

* APL Software Technology’s investment into APL Software Limited (together with APL
People) has begun to show a healthy level of interest. The new company will be a powerful
arm to the marketing and sales of the products they offer.

The latest release of Powertools has been well received by their client base, the extended
facilities giving a boost to the development of application systems. New versions of this
release have now been made for the MicroVax, under Unix, and the Wang PC.

The mainframe Relational Database System RDS is now available on the IBM PC and is
currently undergoing beta-testing with one of their clients. There has been much interest in
RDS, the many enquirers including a US banking organisation.

APL Software Technology looks forward to a busy and interesting 1987,

14

VECTOR Vol.3 No.3

Cocking and Drury Ltd.

Cocking and Drury have recently signed an agreement with Uniware, the leading French
APL software house. The deal gives Cocking and Drury an exclusive dealership
throughout Great Britain and Ireland for Unitab, The APL Debugger and a Statgraphics
add-on module,

Unitab is a PC workspace database manager that lets you manipulate and browse APL data
in a spreadsheet-like manner. The system is window-oriented and uses pOp-up menus to
interact with the user. Although the product has been available 10 French-speaking users
for some time, the latest version includes English transtation for all help, prompts and
documentation. The software contains hooks to allow programmers to customise the
package with their own code.

The APL Debugger is a development and debugging aid for APL*PLUS PC application
writers. It lets you easily step through an executing function, producing a scrollable full-
screen display of the current expression and its result. Local variables may also be
examined and medified.

The Statgraphics add-on module for Correspondence Analysis is the first of a series of
third-party add-ons that will be made available for use with Release 2 of Statgraphics.
Cocking and Drury welcome approaches from users who have developed software that
could be marketed in this way.

Release 2 of Statgraphics was announced in September last year. As well as general speed-
ups throughout the system, the new relesse boasts enhanced data management features,
direct dBase, Lotus and Symphony import/export, a variety of new statistical procedures,
multiple plot overlaying and a plot ‘zoom’ option. In addition, a mechanism allowing APL
developers to customise the package by adding their own menu options is provided.

Release 6 of APL*PLUS PC s selling well. New features include arrays without imposed
size limits, support for the exciting HP LaserJet + printer, full graphics character set
support (no APL ROM needed), improved file system facilities, and enhancements to the
[] WIN full-screen system function. The file system improvements permit dynamic access
to DOS directories via APL library numbers, and generalised native file access via complete
DOS path names. The documentation is ‘all new’ and includes an invaluable spiral-bound
pocket reference guide.

Cocking and Drury are proud to announce their first mainframe compiler trial at a UK
customer. In a study for another client, their expected savings for using the APL*PLUS
Enhancements and Sharefile component filing system (rather than APL2) amounted to
£100,000 over 2 five-year period. Savings are expected to be even larger when the compiler
is installed. Cocking and Drury is also now offering compiler training seminars throughout
Europe.

Cocking and Drury and STSC have recently signed a dealership agreement for Dataport,
the spreadsheet system for mainframe based VS APL users, and Cocking and Drury now
support all existing Dataport users in Great Britain and Ireland.

15

VECTOR Vol.3 No.3

On the education front, bookings are being taken for two new public courses; the four-day
APL*PLUS PC Intermediate course (plenty of practical tools and systems design) and a
two-day course for Statgraphics users. A new one-day in-house nested arrays course is also
newly available anywhere in Europe.

Dyadic Systems Limited

Dyadic Systems has completed its transition from a software-only company 10 & supplier of
complete APL systems. In July, Dyadic became one of the first Authorised Dealers for the
exciting new IBM 6150 Microcomputer, and has since announced an Alios dealership and
an arrangement with Sun Microsystems. As a result, Dyadic is able to offer and support a
comprehensive range of APL systems to meet 2 variety of business needs and budgets.

At the bottom of the range is the Dyalog APL Coprocessor, a plug-in board for the IBM PC.
The system has an N$32000 processor, hardware floating-point, up to 4Mb RAM and
16Mb of virtual address space. The Dyalog APL Coprocessor provides a concurrent DOS
and multi-user APL/Unix environment in an IBM PC or compatible.

Mid-range systems are based on the 1IBM 6150 and Altos 3068 computers. The IBM 6150
has a 32-bit CPU based on Reduced Instruction Set {RISC) technology. Its operating
system is AIX, an enhanced version of Unix V.2 with an improved user-interface, and it has
a PC AT coprocessor for IDOS applications. Communications support Ethernet, Token
Ring and SNA. The 6150 is seen as a strategic system for IBM, and is expected to double in
power and capacity annually. The system includes a special version of Dyalog APL which
supports interfaces 10 IBM 6150 SQL and to the Advanced Graphics Support Library
(GSL). A typical configuration includes 4Mb RAM, Floating-point processor, 140Mb
disk, a high-function bit-mapped console, several IBM 3163 ASCII terminals and/or high
quality Lynwood APL/Graphics VDUs, and an IBM 4201 Proprinter. All devices are
supplied complete with APL character support.

The Altos 3068 is a 68020-based alternative. Its special features include a local-area
network which supports IBM PCs and compatibles. This provides file transfer, ceniral
storage and sharing of DOS files, shared printers and the use of the PCs as Dyalog APL
terminals to the Altos 3068 host. A typical configuration includes the network, 4Mb RAM,
170Mb disk, diskette, cartridge tape and several high-quatity Lynwood APL/Graphics
VDUs.

Dyadic also supplies a range of Sun workstations and multi-user computers which can be
configured either as a network or s a traditional time-sharing system. Sun workstations
have 19-inch high-resolution screen with advanced windowing features. At the top of the
range is the outstanding Sun 3/200. This has a 25MHz 68020 CPU, 68881 floating-point co-
processor and cache memory. These features alone make it twice as fast as other 68020-
based APL systems on the market. Add Sun’s optional Floating-Point Accelerator, which
is 2-3 tmes faster than a 68881 co-processor, and you have a very powerful APL
microcomputer indeed.

Dyalog APL is not restricted to any particular processor. This means that Dyadic can
continue to take full advantage of technical developments in the computer industry to offer
competitive high-performance systems for the APL user. Watch for a Compaq 386
implementation early in 1987.

16

VECTOR Vol.3 No.3

Mercia Software Limited

Mercia Software are looking forward to continuing growth in the APL-related market in
1987. Interest in APL*PLUS/PC is still strong, with their range of programmer
productivity aids, such as UNIWARE’s Debugger, and STSCs TOOLS and
SPREADSHEET MANAGER proving popular amongst the nation’s APLers.

On the application front, APL-based packages are making more and more inroads into the
business computing market. STATGRAPHICS, helped by a price reduction and a much
improved new version, has been very successful, and EXEC*U*STAT looks like bringing
the power of APL 10 a wide range of users (even if they don’t realise it). At the time of
writing, Mercia are about to embark on a major campaign to bring this excellent product to
the attention of the I*C user world in general.

The future looks even more exciting with the forthcoming lunch in Spring '87 of a major
new APL*PLUS-based system, for which Mercia has been liaising with the Forecasting
and Materials Management guru, Professor R.G.Brown. Q.R. and logistics practitioners
should watch this space for news of LOGOL.

putting
APL
Software
on the map

APL Software Ltd., 27 Downs Way, Epsom, Surrey KT18 5LU (03727 21282)

17

An intriguing computer for an
exciting language-—the WS-1
and APL.68000, At last the APL
programmer can have portability
without sacrificing power or
capability. Dodge the queue
waiting for time on the main-
frame and discover the sudden
freedom of belng able to try out
programs anylime, anywhere.,

The APL.GB00Q interpreter is
implemented in 86KB of ROM,
running under a multi-user,
multi-tasking operating system
called BIG. DOS. Speed is the
essence of APL programming,
and now the WS-1 makes
development even faster.

Enhancing APL.68000

Come and
see us at APL ‘86,

APL.68000 on the WS-1 has
attractive enhancements such as
a powerful component file
system, QUAD. FMT function
for alpha report formatting,
QUAD. CC function for full-
screen centrol, and extended
error trapping facilities.

FOR DISTRIBUTORSHIP INFORMATION AND PRODUCT DETAILS PLEASE CONTACT:

Bundled with the WS-1
are four workspaces: SYSFNS,
APLUTIL, FILEUTIL, and
SYSCOM. Each gives access to-
the WS5-1s unique capabilities
such as control of the buift-in
speaker phone, microcassette
unit, RTC (real time clock), bit-
mapped graphics LCD screen,
and optional 3.5-inch Soppy
disk drives.

Compress these capabilities
into a sleek footprint measuring
less than 13 inches by 11 inches,
and you have the ultimate
definition of power.

dmpere

am él"E Asahi Bldg., 7-5-20 Nishi-Shinjuku, Shinjuku-ku, Tokyo, Japan. Phone: 03-365-0825.
I.:,!(mmmm Telefax: 03-365-0999. Telex:]3310% AMPERE. IP Sharp Mail Box Code AMP (Group Code APLWS).

VECTOR Vol.3 No.3

International APL News

Journal Exchange

We are now regularly exchanging journals with various overseas APL groups; as a result we
are seeing several very interesting documents that haven't come our way before. A good
example are the proceedings of the annual seminars organised by the New York SIGAPL
under the title “APL as a tool of thought”. These have been held each April since 1983, so
we now have four hefty volumes of proceedings.

The first seminar in 1983 offered workshops discussing APL as a tool of Mathematics,
Science, Social Studies, Natural Language, Music and Computer Science. By 1985, the
scope had expanded to include Biology, Calculus, Mathemartics, Social Studies, Compurter
Science, Economics, Graphics, Linear Algebra, Music, Statistics, Artificial Intelligence,
Databases, Finance, Gaming & Simulation, Manufacturing, Modelling, System Design
and a Teacher’s Toolbox.

The full lists of contents are as follows:

APL asatool of thought - 1983

Binomial Distributions Linda Alvord
Elementary Algebra Brooke Allen
Computer Simulation int Science Teaching Charles Waters
Analyzing Problems of Population Growth and Distribution Tama Traberman

Computer-Authored Tests and Exercises in Grammar

Musical Grammar David Sieinbrook
APL asa Tool for Teaching Computer Theory Philip Van Cleave
APLinaLiberal Arts College Donald B McIntyre
Getting Started in APL Allen J Rose
An Application in Remedial Math Cecil Denney
Downto BASIC Jim Lucas
A Personal View of APL. John McPherson
APL KW Smillie
APLasatool of thought IT - 1984
Using APL to Teach Concepts in Analysis & Design Wilbur LePage
Meaningful means: Analysis of Experimental Data Charles Waters
APL Enhances Mathematics Education Linda Alvord
Quantitative Reasoning in the Social Studies Tama Traberman
Polygonal Functions and their use in Teaching Calculus Don Orth
APL as a Financial Tool Gary Podorowsky
APL in Linear Alpebra Murray Eisenberg
A Demonstration of MEDCAT Hagamen, Gardy, Bell
& Zarz
Implementation of a Virtual Memory APL Interpreter Ed Cherlin
Bibliography of APL Publications NY/SIGAPL
Whatis APL? Ed Shaw
Domino—an APL primitive for Matrix Inversion M A Jenkins
The Art of Question Bepging Lee Wilcox
Modularity in Thought and Systems LibGibson

The use of Domino in Optimal Resource Allocation
Interactive Statistical Graphicsin APL
Undergraduate Data Analysis Laboratory

19

David Michelson

Ronald Frank
Neil Polhemus
Robert Douglas

VECTOR

APl asatool of thought IT1- 1985

Acrtificial Intelligence Development Aids

Matrix Algebra and the Mathematics of Vector Graphics

Relational Databases; Theory and Practice

Right Brain Thinking and Modelling Business Problems

A Structured APL Approach to Data Entry

The Design of an Integrated Manufacturing System
using a Netwark of PCs

Using APL to write an Assembler

APL asa Tool for Teaching Computer Theory

Musical Objects in Temporal Space

EXECUCALC, an APL-based Lotus 1-2-3 [ookalike for
IBM mainframes

APL as a Tool concerning Accounting and Financial Simulation

APL and Linear Algebra

Teacher’s Toolbox

Least Squares Curve Fitting Viewed Geometrically

Parametric and Polar Equations in Pre-Calculus Mathematics

Intensive Analysis of Global Data

Computer Sirulation in Biological Education

Computers and Calculus

Teaching Economic Concepts with APL Graphics

APL, aTool for Teaching

Teachking APL asa Problem Solving Tool in Business

APL asatool of thought IV - 1986
APL and Application Design
The Advatages of APL for Population Modeling
User Friendly Applications Design
An APL Credit Card Acquisition Profitability Model
Prototyping in the Real World, Considerations on a Project
APL in Education Engineering
Arithmetic and Geornetric Progressions
APL - Alchemist’s Tool
Indeterminate Error in Radiation Measurement

Writing User-Friendly Applications in APL for the Apple Macintosh

Using Dyalog APL
An APL 10 C Interface
Differences between VS APL and APL2 Release 2

Vol.3No.3

Sullivan & Fordyce
David M Laur
Robert G Brown
Ron Frank

Wilbur LePage

Clark Kee

Philip Van Cleave
Philip Van Cleave
David Steinbrook

Kevin Weaver
Miklos Vasarhelyi
L] Dickey

David Michealson
Murray Eisenberg
Linda Alvord
Tama Traberman
Charles Waters
Don Orth

Raobert Douglas
Roger Pinkham
William Royds

Robert Bernecky

Robert Desharnais

Christopher Lete

Urdang & Kaberon

Chris Oakleaf ‘
LaGrega & Zaccone

Linda Alvord |
Tama Taberman
Charles Waters
Richard Smith
Peter Donelly
Robert Lauer i
Norman Brenner

The length of the articles varies considerably from a brief abstract in some cases to a full
paper in others. One cannot fail to be impressed by the broad range of areas covered by the
seminars and by their growing list of speakers. Further information about these
proceedings, and perhaps about 2 1987 seminar, can be obtained from New York SIGAPL,

Suite 524, 660 Amsterdam Avenue, New York, N.Y. 10025

20

VECTOR Vol.3 No.3

QL/APL User Group

Those users of QL/APL who have to date been beavering away in isolation will be interested
to hear of the formation of a QL/APL User Group to exchange news, views, ideas and
software. :

The group will be an independent body run by users, whose aim will be to provide a vehicle
for the promotion of all matters pertaining to the furtherance of APL on the QL - an

environment from which to compound, augment, and proclaim hard-gained knowledge
and results.

Ron Suter, whoe currently works for & large English mail order chain store company, has
volunteered himself as founder member and consequently organiser of the initial set-up of
the group, along with MicroAPL Ltd. who have offered to host the inaugural meeting.

MicroAPL have also offered a prototype copy of their MicroPlot software for the QL free of
charge to anyone joining the group; like many a great symphony this is as yet unfinished,
and so I offers an immediate challenge to any wishing to take up the gauntlet of group
participation in the project.

In order to register your interest, please contact Ron Suter at the address given below.
Please include your name and address, details of the APL version used (keyword or
symbolic), amount of RAM, main areas of interest, and any suggestions for topics for User
Group metings. You can contact Ron at the following address:

Ron Suter,

19 Mere Avenue,
Raby Mere, Wirral.
L63 ONE.

or leave a message on Prestel number 514285074.

21

IBM Personal Computer APL/PC Version 2.0
6391329

1BM Personal Computer APL/PC Version 2.0, is a low cost, full
function APL interpreter with a high degree of VS APL compat-
ibility. 1 contains a wealth of auxiliary processors for a wide
range of functions and interfaces to external devices.

Emulates 8087 or 80287 if the co-processor is not present
RS232 support

IEEE-488/GPIB support

Co-operative processing via IBM 3278/9 adapter

Interface to IBM Macro Assembler and Professional Fortran
APL2 GRAPHPAK compatible workspace provided

Can run DOS functions and applications under APL

Cover Workspaces for auxiliary processors

The interpreter, workspaces and auxiliary processors are supplied on three
double-sided diskettes packaged with a comprehensive manual, quick ref-
erence card and a keyboard template. The manual includes setup, instal-
lation, tutorial and reference sections.

A separate package is supplied, containing a replacement ROM for the
IBM Monochrome or Colour display adapters and a ROM puller. A
program to load the APL font into the IBM Enhanced Graphics Adaptor
1s also included.

® Available from Authorised IBM PC Dealers.

e ——— — — IBM (UK) International Products Ltd
- e m—— West Cross House
- wm o v 2 West Cross Way

— e 7 — Brentford

Middlesex TWS 9DY

© International Business Machines Corporation 1986

VECTOR Voi.3 No.3

APL Product Guide
Compiled by Steve Lyus

VECTOR’s exclusive APL Product Guide aims to provide readers with useful information
about sources of APL hardware, software and services. We welcome any comments readers
may have on its usefulness and any suggestions for improvements.

We do depend on the alacrity of suppliers 1o keep us informed about their products so that
we can update the Guide for each issue of VECTOR. Any suppliers who are not included in
the Guide should contact me to get their free entry — see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a fair market
coverage,

The listings are not restricted to UK companies and international suppliers are welcome to
take advantage of these pages. Where no UK distributor has yet been appointed, the vendor
should indicate whether this is imminent or whether approaches for representation by
existing companies are welcomed.

For convenience to readers, the product list has been divided into the following groups:

Complete APL Systems (Hardware & Software)
APL Timesharing Services

Other services

APL Interpreters

APL Visual Display Units

APL character set printers

APL-based packages

APL Consultancy

APL Training Courses

Vendor addresses

* ok k% % o 4 4 %

Every effort has been made 10 avoid errors in these listings but no responsibility can be
taken by the working group for mistakes or omissions.

Note: ‘poa’ indicates ‘price on application’
All contributions to the APL Product Guide should be sent to:

Steve Lyus

Metapraxis Lid.,
Hanover House
Coombe Road, Kingston
KT2 7AH

23

VECTQR Vol.3 No.3

COMPLETE APL SYSTEMS

COMPANY PRODUCT PRICESE DETAILS
Analegic The APLMaching $50,000+ AP500array processor, 4 Mbdata memory, B0 Mb disk drive.
Cocking/Drury MicroAPL SPECTRUM 5,000 Supplied as part of a turnkey system.
SAGE Il -35000 See MicroAPL entry.
SAGENV
Dyadic Dyalog APL Coprocessar 3500+ 32-bitcoprocessorboard for IBM PG. NS32000 cpuwith FPP, up

104Mb RAM, 16Mb virlual memory, Software includes Unix V.2,
Dyalog APL, graphics support, DOS interface. Provides multi-user
UniwDOS environment,

1BMB150 15,000+ Muli-user Dyalog APL system wilh Fast 32-bitRISC processor,
FPP, upto8Mb RAM, 210Mb Disk, 16users, Interface lo SQL,
graphics and APL support for standard IBM peripherals,

Altos 3068 25000+ Multi-user Dyalog APL systemwith MC8B020 cpu & MCE8B81 FPP,
Alsofeatures a LAN which supporls IBM PCs as Dyalog APL
lerminals.

Sun3 15000+ Multi-user Dyalog APL systemswhich can be configured asa

network of workstations and or a traditional time-sharing cpu. Withiits
26MHZ 68020 cpu, the Sun 3/200is lhe fastest APL microcomputer
onthe market,

Gen. Scitware Myriade poa Tlcomputer +APL & AFL operating syslem
Inner Product IBMPC 2,000 1B PCs supplied fortumkey applications
-6,000
MBT. MBT Series 10 poa UNIX/68010 based multi-user APL syslem
TORCH poa BBOGO/ZBO muitiprocessor
MetaTechnics — poa Details on application - IBM PC compatible
MicroAPL Avurora 23,500 Multi-user APL computer using 68020 CPU. Std. configuration
2Mb RAM, 16 RS232 ports, 58 Mb hard dise, 720K diskette
SPECTRUM 11,000 Expandable multi-ussr APL computer using Motorola 66000.
- 15,000 Std. configuration § Mb RAM, 12436 Mb disc, 12 ports.
STRIDE 440 8,500 Multi-user APL computer, T Mb RAM, 12418 Mbidisc.
Atari 10408T 794 1 Mb Mano/Colour System, includes 1 Mb disc drive & mains

-89 transformer built inte Conscle.

APL TIMESHARING SERVICES

COMPANY PRODUCT PRICES £ DETAILS

Beeing Mainstream APL poa Enhanced IBM VS APL (CMS)

Mercia APL'PLUS poa ST5C's Mainframe Service— MAILBOX etc.

1.P. Sharp SHARP APL poa Intematianal Network 2pplication systems and pubric databases.

24

VECTOR

Vol.3 No.3

APL VISUAL DISPLAY UNITS

COMPANY PRODUCT PRICESE DETAILS
Dyadic Lynwood]300 1,560 Monochrome ANSI3.64 APL vdu, 15-inch high quality screen, Tek
graphics, local macro keys.
Lynwoodjs00 2,295 Colour ANS| 3,64 APL vdu, 15-inch high quality screen, Tek
graphics, local macrokeys.
IBM 3163 791 Low-cast Monochrome APL vdu. Supports downleaded Dyalog APL
font.
1B 3164 1,093 Low-cost Colour APL vdu. Supports downloaded Dyalog APL font.
Famell Tandberg TDV 2221 995 Ergonomic design APL terminal, 50-19200 baud, 15" anti-reflex
sereen, low protile keyboard
Tandberg TDV 2271 1,155 Combined APL/ANSI ergonomicterminal as above,
Gen. Sohtware Meilordata 400 Second-hand
Elile 3045A
M.B.T. various Contact MBT for details
MetaTechnics IBM EGA compatible 298 Emulates EGA & Hercules, Half Carc
MicroAPL Insight VOT-1 795 Inexpensive APLVDU
Insight GDT1 1450 With monochrome graphics
Goncept 201 1,295 APLVOU with 8page memory
Cancepl 201G 1,650 Graphics VDU
Shandell HD52010 1,215 ANSI X3.64 compatible, full pverstrike chars., 4/8 pages, 2/3 comms.
ports, 804132 cols., windgwing, viewports, 157 screen.
HDS2010G 1495 AsHD32010plus Teidronix 4010/4014 graphics with 1024 x 390
resolution.
HDS2010GX 1,775 As 2010G butwith 1024 x 780 resalution.
HDS2210 1,215 DEC VT220 compatible, full averstrike characters, 4 page memory,
23comms. pris, 80/13260ls,, 157 5Creen
HD52210G 1,495 AsHDS2210 plus Tektronix 4010/4014 compatible graphics with
1024 x 780 resolution. Also additional capabilities of Retrographics
VT840/D0640 and Visual 500 terminals.
HDS2210GX 1,775 AsHDS2210G but with 1024 x 780 resolution.
Textronix 41148 13500+ 19"D.V.S.T..Graphics: 3120 x 4096 displayable; Intelligent: up o
800K memory; APL keyboard (opticn 4E)
4125 21,550+ 1920 colourgraphics; Workstation (1280 x 1024);Intelligent:upto
BOOK memory; APL keyboard {mod AP)
4128 26822+ As4125plus 3D wireframe
APL PRINTERS
COMPANY PRODUCT PRICESE DETALLS
Datatrade Datasouth DS180+ 1,285 180 cps malrix printerwitt 4K buffer, 9 x 7 dot matrix and APL option.
\Da\!asaulh 05220 1,695 Letter quality; graphics capability, APL option (both available with
o~ IBM Twinex or Coaxinterface).
Dyadic 1BM 4201 Proprinter poa 100, 200, 40(niq) cps, malrix printer, with graphics. Supperts
downloaded Dyaleg APL font.
ToshibaP351 poa 24 pin high-quality matrix printer 100 cps letter quality, 192 ¢ps draft.
Inner Product Epson FX80 500 Saftchar. set, 160cps, B0 column
Anadex G620 1,150 200¢ps., 132¢ol, vractor feed
Siemens PTa8 620 180 ¢ps., BOcal., silent
TGG Starwriter 1,180 40¢ps., fefler quality
MBT. Facit 4565 poa 40cpsletterquality
Facit4510/11/12 poa Matrxprinters
MetaTechnics Quen-data 285 Low-cost APL Caisy-wheel printer
MicroAPL Datasouth DS160+ 1,295 See Datatrade entry
Philips GP300 1924 Matrix printer with letter & draft quality and APL.
Qume Letterpra20 549 APLJASCI Dalsy-wheel printer

25

VECTOR

OTHER PRODUCTS

Vol.3 No.3

COMPANY PRODUCT PRICESE DETAILS
APL People Employment Agancy poa Permanentaemployess placed at all levels, Contractors supplied for
shortlgng-temn projects, supervised.
Mineof Information ~ APL Book Service Seebooklist
1.P. Sharp Productivity Tools poa Utilities for systems, operations, administration & analysls;
auxiliary processors, comms softwars, international network,
Databases poa Financial, aviation, energy and secioeconomic.
APL PACKAGES
COMPANY PRODUCT PRICESE DETAILS
APL {385 FSM 385 50 Screen development
DRAW 385 Screen design
DB 385 ainframe: 125 Relational W.5.
GEN385 Utiliies
APL Software Lid Malinframe
AFMIAP 1,035 Interprocess Scftware for VW/CMS & MVYS/TS0,
- Keyed Access 2850 ComponentFile Management System (VSAPL/APLY)
~Interactive Link 1,325
- Mail Exchange 2,650
CALLAP 4,030 Non-APL program execulion (VSAPL/APLZ)
APLPRINT 2,205 Outputto high speed line printer or 326x devices (VSAPL/APL2}
ENHANCED FORMAT 2,205 Extends Format eperatorta full *Quad-FMT" status (VSAPL/APL2)
ISP 750 Inputand Output Stack Processors for manipulating terminal 11O
0O5P 2205 with facilities for Error Trapping (VSAPL)
DISPLAY CAPTURE poa Allows terminal oulput to be collected and held for retrievat by an
APLfunction (APL2)
Ucr poa UserCommunication Facility for data transfer between users (APL2)
RDS poa Relation Data Base System
PANEL poa Fullscreen management system
PFS poa Program File System- APL Systems developrent ald
Microcompuler
POWERTOOLS 205 Assemblerwritten replacement function for commenly used CPU-
censuming APL functions, includes a Forms Processor.
Beta-plan BETA-FONT poa Muitiple fort PC character generator. Deglers required for non-
Scandinavian countries.
Boeing TABAPL poa Hierarchical Planning System
Butel Merlin 5,000 Mainframe APL spreadsheet runs under VWCMS, TSG, VSPC
Merlin/PC poa Version for APL*PLUS/PC
Cocking/Drury Mainframe
5T5C's SHAREFILE & poa Componentfiles, quad- functions & nested amrays for [BM VSAPL
enhancements to VSAPL under VMICMS & MVSITSO
SHAREFILE AP 15,000 STSC's sharefile for APL2
FILEMANAGER poa STSC'sdatabase package.
FORMAT 2,250 Enhanced report formatting.
COMPILER 30,000 First APL compiler. Avaitable with APLPLUS enhancements and
Sharefile under VMICMS & MVS/TSO
satL poa Aninterfacebetween SQL and APL'PLUS for VSAPL
FMT poa Full featured FMT for APL2
DATAPORT poa Powerful Information Centre spreadsheetincorporating data
oxchange between APL and FOCUS, IFPS, SAS, APLDI, ADRSI,
LOTUS123, VISICALC, MULTIPLAN, DIF flles
Microcomputer
STATGRAPHICS Rel2 545 Pawerful Slatisties andgraphics on IBMPC's, PC/AT sand
compatibles
Release 2update 165 Update fromrelease 1o release 2
APL'PLUSPCTools

26

VYECTOR

Vol.3 No.3

VOL 1t 325 Incl. 327 JRMA support, RAM disk, full screen data entry,
menuinpul, reportgeneration, games.
voLz2 128 Incl.file documentor, screen editor, exception handler.
APL'PLUSPCFin& 350 Financial & statistical routines
Stat. Library
SPREADSHEET MANAGER 185 APL-based spreadsheet for APL*PLUS/PC. Cell arithmetic;
transfersto ASCil, LOTUS
E&S PROTOPAK Packages for prototyping management informatian systems —
consistingof: PC & mainframe
RMS Madules Relational databases.
AMS 250+ Mutti-dimensicnal arrays
RAMS Combined RMS & AMS.
BMS Dynamic financial medelling & forecasting
FMS Fult-screen handler for APL‘PLUSIPC. (AP 124-based)
CMS Communications package.
508 poe Scheduled ordering and stock control.
Gen. Software PROPS 500+ Spreadsheetsyster for Product and/or Project Planning.
H.M.W. INPUT poa Matrix manipulation package for dala entry & report generation
PRINTPAK poa Block printing for VM/GMS
VIEWPAK poa AP124 Pretocol emulator for [BMIPC
Holtech CASH 3500 Accounting package & hotel management system on MicroAPL
~10000 SPECTRUM& SAGECPUs.
Inner Product Viewcom 150 Control Viewdata from APL
APL/GBASE Il 150 Interface APL with dBase Il
APLAABASE Il 150 Interface APL withdBASE Il
APLLOTUS 120 Interface APL with Lotus
APL/WCRDSTAR 150 Interface APL with Wordstar
APLMULTIPLAN 150 Interface APL with spreadsheet
CEMAS 3,500 EEC monetary and agrimonetary analysis.
MBT. RHOMBUS poa Integrated Office System
HASLEMERE poa Hotel Accounting System
Mercia STATGRAPHICS2 535 Integrated stal. graphic system for PCs.
Upgrade to Aelease 2 175
EXEC'U'STAT 425 Easy to use Siatistics for management.
APL'PLUStools
VoL 225 IBM PC Utililies:IAMA3270 comms, full screen, RAM Disk report
generator
voLe2 126 Flledocumentation, screenediting. Exception handling.
FINANCIAL AND 325 Financial and Statistical analysis
STATISTICALLIB.
INFOCENTRE 2,000 Full-screen eniry, disptay & multi-aimensional analysis. Interfaces to
-20,000 other 1.C. products. Runs under VM VSAPLon IBM mainframes.
APL Spreadshest 195 APL spreadsheet—links to popular spreadsheet software.
Manager
APL Dehugger 195 Pawerlul debugging tooi for APL'PLUS/PC
UNITAB 495 Spreadsheetfor APL'PLUSIPC
MULTI-APL pea Multi-userMulti-tasking APL"PLUS/PC
EXECUCALC 4,000 Mainframe Spreadsheet with VisiCalc and Lotus 1-2-3 functionality
requires VSAPL under TSOor VM.
EXECUPLOT 3,200 Mainframe Graphics display system with VisiPlot lunctiorality
requires VSAPL under TSO or VM and GDDM,
MIGROSPAN 250 Comprehensive APL wtor

27

VECTOR Vol.3 No.3
MetaTechnics MetaScreen 89 Full-screen handles for APL*PLUS/PC, based on VSAPLAP124
MetaPack 455 Comprehensive utilities package for APL"PLUSIPC. Includes
MetaScreen, MetaWs, Browse, Toolbox, Numeric Editor.
APL-IEEE488 99 Controls IEEE488/GPIB Bus from APL"PLUS/PC,
PLOT/PC o] 2D &30 Graphics package. Includesinteractive diagram Editors.
Browse] Sorolling of DOS files, large APL variables.
ADAPTADLS poa Production & purchasing schedulingfor process manufacturing.
ADAPTAMSP poa Job-shop Ioading & scheduling for multi-stage production.
MicroAPL MicroTASK 250 Product development aids
MicroFILE 250 File utilities and database
MicroPtOT 250 Graphics for HP plotters etc
MicroLINK 250 General device communications
MicroEDIT 250 Full screen APL editor
MicroFORM 250 Full screen forms design
MicroSPAN 250 Comprehensive APL tutor
MicroGRID poa Ethernet & other networking
APLCALC 400 APLspreadsheetsystem
MicroPLOT/PC 250 ForAPL'PLUS/PC product
MicroSPAN/PC 250 For APL"PLUS/PC product
PCTOOLS Vol 1 295
STATGRAPHICS Rel 1 495
STATGRAPHICS Ret2 535
Parallax ExecuCale $5,000 Mainframe-based electronic spreadshes! for VI/CMS & MYSTS0
with links tomicro products.
ExecuPlot $5,000 Mainframe-based colour graphics with micro links.
L.P, Sharp ACT poa Actuarial syslem
APS poa Financizl Modelling
BOXJENKINS poa Forecastingtechnique
CONSOL poa Finangial Consolidation
COURSE poa APL Instruction
EASY poa Econometric Modelling
FASTNET poa Projecl Management
GLOBAL LIMITS poa BExposure management for banks
MABRA poa Aecord maintenanca/reporting
MAGIC poa Timaseries analysis/reperting
MAGICSTORE poa N-dimensional database system
MAILBOX poa Etectronic Mail
MICROCCM poa Mainframa to micro fink
SAGA poa Generalgraphics, mostdevices
SIFE poa Forecasting system
SNAP poa Project managamert
SUPERPLOT poa Business graphics
VIEWPQINT poa 4GL-Infocentre product
XTABS , poa Survey Analysis
Sugar Mil Stat $129.95 Statistical toolbox, menu driven

APL CONSULTANCY

{prices quoted are per day unless otherwise marked)
COMPANY PRODUCT PRICES £

DETAILS

APL People Consultancy poa

Project management, financial applications, relational databases.
Difficult prablems sofved,

Management cansultancy.

Links to non-APL systems,

From consuliart level Lo managing consuliant,

Documentation a speciality.

28

VECTOR Vol.3 No.3

Boeing Consultancy poa
Camacho Consultancy poa Speialisingin programming & manual wriling.
Cocking/Drury Consultancy 120-150 Jurtior consultant

140-200 Consultant
165-300 Senior cansultant
275-400 Managingconsultant

Delphi Consultancy poa Specialising Inmanagement reparting systems and APLon
microcomputers,

Dryadic Consultancy poa APL systemdesign, consullanay, programming & training for
Dyalog APL, VSAPL, APL'PLUS, IPSA APL elc.

E&S Consultancy 150 System prototyping: all types of informatian system,

- 250

FASTCODE Consuktancy poa Specialiseinimproving performance of APL applications on
micros & mainframes.

Gen. Software Consultancy 100+

HMW. Consuitancy 100-250 System design consukancy, programming,

Inner Produgt Consultancy 200 On-site micro-mainframe APL, PC/DOS & Assembler

Lloyd Savage Consultancy poa Decision support, particularly specialising in Sales & Marketing
systems.

MB.T. Consultancy poa

Mercia Consultancy poa APL'PLUS 8 VSAPL consultangy,

MelaTechnics Consultancy pea Management Information & Production. Englneering
APL-C/Assembler custom programming

MitroAPL Consultancy poa Technical & applicationsconsultancy.

M Consultancy poa Speciafisein Maintenance and development of existing APL systems

Parallax Consultancy $750 Infroduclory APL, APL for End-user & Advanced Topics in APL

0BOatine Consultancy 200 Specialisingin Banking, Financial & Planning Systems.

Rochester Group Consultancy poa Specialise in MIS using Skap APL

1.P.Sharp Consultancy poa Consultancy & suppost service world-wide,

APL INTERPRETERS

COMPANY PRODUCT PRICESE DETAILS
Cocking/Drury APL'PLUS/PC Rel§ 475 STSC'stull featured APL for IBM PC, PC/AT and compatibles
Upgrade5to 6 120 Extension from rel 5 which incorporates 64K object support,
Upgrade?2,3,4106 225 Extension upgrades torelease 6.
Run-time poa Closed version of APL"PLUS/PC which prevents user exposure
toAPL,
APL'PLUSUNIX poa SISC's2ndgeneration APLior IBM PC/AT, DEC,AT&T
and other Unix computers,
Dyadic Dyalog APL 785 2ndgen. APLfor UNIX systems, e.q. IBM 6150, Sun, Vax, NCR,
=10,000 HPS0GO,AT&T, Altos, Apalio, Whitechapel, Sperry, etc.
Gen. Software APL"MYRIADE poa Runs on Texas Instruments T1920 range.
IBM UK Product Sales [BMPCAPL poa Event-handiing & APsor full-screen U0 disks, diskettes,
asynch. comms,
Inner Product VIZ:APL 250 8-bit Zilog Z-80CPM
- 350
APL*PLUS/PC 600 See under Cocking & Drury

2%

VECTOR Vol.3 No.3
M.B.T. Dyalog APL poa See Dyadic Systems entry
MBTAPL poa Enhanced Dyalog APL for MBT bardware.
VIZ:APL poa Custornized for TORCH hardware
Mercia APL*PLUS/PCRel 6 495 STSC'stull-featurs APL for IBM PC,PC/AT Compag, Clivetti, Wang,
Apricot, Ericsson efe
Upgrades 3t 4 100
Upgradesdto5 150
Upgrades 5106 130
APL"PLUS/UNIX poa Interpreter for UNIX systems: WICAT, CADMUS, CALLAN,
FORTUNE 32:16, HP, 9000/500, OLIVETTI 382
MetaTechnics APL*PLUSRel& 475 Discountonquantity.
MicroAPL APL.68000 1,006+ Fullimplementation with component files, emor trapping etc. for
SPECTAUM, SAGE & other MCBB000-based computers,
QUIAPL {keyword) 87 Fullkeyword APL for QL with many extra features.
QUAFL (APL chars) gy VSAPL compatible APL for QL with many extra features.
APL.6B000 for Appie Maciniosh 257
APL.68000 tor Commodars Amiga 200
APL.6BG00 for Atari 57 170
APL*PLUS/PC-FELB 450
Portable PortAPL $195 IBMPC Software
$275 Mackintosh
$2,995 DECVAX
|.P. Sharp Sharp APLIPCX 2575 ForlBMXT/AT
1,000+ ForlBM mainframes
Sharp APLIPC 325 FarIBMPCor PC/XT

APL TRAINING COURSES

(Prices quoted are per course unless otherwise stated)

COMPANY PRODUCT PRICES £
Cocking/Drury 3dayFundamentals 375
4day APL*PLUS/PC Intermediate 525
5 day System Design 595
Introductionto APL2 poa
APLZinCepth poa
Inner Product poa
MBT. poa
Mercia 3 day Infroductionto APL 350
2day APL"PLUS/PC Enhancements 240
Jday APL"PLUS System Design 375
Paraliax poa

30

VECTOR

Vol.3 No,3

VENDOR ADDRESSES

COMPANY CONTACT ADDRESS & TELEPHONE No.
Analogic Corporation Denise Favorat 8 Centennial Drive, Centennial Industrial Park, Peabody, Mass. U.5.A. 01961
B 617-246-0300
APL 385 Adrian Smith Brook House, Gilling East, York. & 04393-385
APL People Valerie Lusmore 17 Barlon Street, Balh, Aven. & 0£25-62802
APL Software Lid Philip Goacher 27 Downs Way, Epsom,Surrey KT18 5LU & 03727-21282
17 Barton Strest, Bath, Avon BA1 1HQ & 0225-82602
Beta-plan APS Kim Andreasen Stengrade 75 , DK-3000 Helsingor, Denmark, 74522148 48
Boeing Computer Anne Harding 19 Fitzroy Street, Services (Europe) Lid., London Wt P 5AB. & 01-631 0808
Bute! Technology Lid. Mike Munro Butel House, 3 Greal West Rd., London W4 5QJ & 01-995-1433
Anthony Camacho 2Blenhelm Aoad, St Albans, Herts ALY 4NR. & St Albans 60130
Cocking & Drury Lt¢. Romilly Cocking 16 Berkeley Street, London WX SAE. &= 01-4936172
Brian Drury 155 Friar Street Reading RG1 1HE. 2 0734-588835
Datatrade Ltd. Tony Checksfield 38Biling Road, Northampton, NNt 5DQ. & 0604-22269
Delphi Consultation Lid, David Crossley Church Green House, Stanford-in-the-Vale, Oxon SN7 BLO. B D3677-384
Dyadic Systems Ltd. Peter Donnelly Park House, The High Street, Alton, Hampshire, 2 0420-87024
E & 5 Associates Frank Evans 19 Homesdale Road, Orpingten, Kent BRS 1JS. ‘2 0669-24741
Farnell International R. Falrbairm Jubilee House, Sandbeck Way, Wetherby, W. Yorks. & 003761961
Instruments Lid, or Roger Attard Davenport House, Bowers Way, Harpenden, Herts. 2 05827-65071
FASTCODE Andrew Dickey P.0. Bax 281, Crotan-on-Hudsorn, New York 10520, U.S.A. (014}271-3200
General Software Lid. M.E, Martin 22 Aussell Road, Northolt, Middx. UB5 4Q5. & (1-864 9537
H.M.W. Programming Ken Jackson 142 Feltham Hill Rd, Ashford, Middx. TW15 1HN. & 07842-41232
Consultants Lid,
Hollech Ltd. Jan Bateman *Q' Block 4th Floor, Metropolitan Wharf, Wapping Wall, London E1 985.
201-4813207
IBM UK Lt Chris Sell PO Box 32, Alencon Link, Basingstoke, Hants. RG21 1EJ. '8 0256-56144
Inner Product Lid. Dominic Murphy Eagle House, 73 Clapharm Commen Southside, London SW49DG.
= 01-5733354
Lloyd Savage Lid Philip Johnson Carnbridge House, Oxford Road, Uxbridge, Middy, UBS8 2UD. % 0895-50826
Mercia Software Ltd. Garath Breninall Aston Sclence Park, Love Lane, Birmingham B7 4BJ. & 021-359 5096
Barrie Wabster
MetaTechnics Systems Lid ‘[l)ohr}dS%enbridge Unit216, 62 Trition Road, London, SE21 BDE. & 01-6707559
avid Toop
MicroAPL Ltd. Bernadette Leverton 19 Catherine Place, London SW1E 6DX = 01-834 8022
Minz of Information Richard Ross-Langley PO Bax 1000, St. Albans, Herts AL36NE. & 0727 52801
Modem Business Michael Branson P.0. Box 87, Guildford, Surrey GU4 888
TechnologyLtd. {MBT) 2 04568-23956
M.T.L. Ray Cannon 7 Pine Wood, Sunbury-on-Thames, Middx. TW16 85H 28 69327 80848
Parallax Systems Inc. KevinWeaver B0 Westath Street, New York, New York 10011, U.S.A. & 212-475-4001
Porable Software Richard Smith 60 Aberdeen Ave, Cambridge, Mass. U.S.A. 02138, & 617-547-2918
QB On-Line Systems Philip Bulmer 5 Surrey House, Perismouth Rd Camberley, Surrey, GU15 1LB. 2 0276-2078%
The Rochester Group Robert Pullman 164 Pinnacle Rd., Rochester NY 14620 2 716-461-3169
Shandell Systems Ltd. Maurice Shanahan 12 High Street, Chalfont 51, Giles, Bucks HP8 4QA. = 02407-2027
|.P. Sharp AssociatesLid. David Weatherby 10 Dean Farrat Street, London SW1. 28 01-2227033
SugarMill Softwara Corp. Lawrenze H. Nitz 11680 Kika Place, Kailua, Hawaii 96734 & (808) 261-7536
Tekironix UK Lid, Paul Mergan Fourth Avenue, Globe Park, Marfow, Bucks SL7 1YD. = 06284-6000

31

APL BOOQKLIST
{In author order)

Title Price © UK _P&P
* Sharp AFL Reference Manual, P Berry 10.50 2.70
Star Map, P Berry & J Thorstetsen 6.00 .50
APL and Insight, P Berry and G Bartoll 4.50 .55
APL 86 Tutorials, A Camacho (members £9.30) 12.00 2.00
* A Source Book In APL, 4 Falkeff & K Iverson 10,00 1.80
* FinnAPL Idiom Library (when avallable) 11.20 1.30
aApplication Systems in APL, Gibson Levine Metzger 30.00 2.70
* APL:An Interactive Appreach, Gilman & Rose 26.50 2,75
Solutiens to Algebra, J Iversom 3.00 .50
A Dictionary of APL, K Lverscn 2.50 250
A Ceongise Dictionary of APL, K Iverson 2,00 .50
Algebra: an Algorithmic Treatment, K Jverson 22,50 2.30
APL in Exposition, K Iverson 3.00 «50
Applied Mathematies for Programmers, K Iverson 8.00 1.35
Elementary Analysis, X Iverson 8.00 1.50
Intreduction to APL for Scientists & Englneers, K Iverson 3.00 40
Introducing APL to Teachers, K Iverson 3.00 40
Mathematics and Programming, K Iverson 8.00 .95
APL Toolkit {CIPS APL SIG), K Levine 4.50 .95
Reliable Software Through Composite Design, Myers 15.00 1.30
APL:An Introduction, H Peelle POA
* APL The Language & its Usage, R Polivka & S Pakin 36.35 2.70
APL in Practice, Rose/STSC 40.00 2,50
Sharp APL Users Meeting Procs 1984 (Information Centres) 8.00 1.80
Sharp APL Users Meeting Procs 1982 Vol 2 8.50 1.80
Sharp Pocker APL Reference Book 1.50 .50
* APL:Design Handbook for Commercial Systems, A. Smith 13.10 1.50
Resistive Circuit Theory, R Spence 20.00 2.80
Whizzbangs Volume II, R Sykes 14,50 1.80
Whizzbangs Volume I, R Sykes 14,50 40
An APL Notebook, Barrie Wetherill (when available) 1.90 .50
APL Idiom List (Yale University) 2.00 .50
APL 86 Conference Proc¢s, D Ziemann (rembers £13.30) 17.30 2.25
APL Business Technelogy 'B3 Proceedings 11.20 2.70
APL Lapel Pin with gripping backplate 2.00 +50
APL Quore-quad the Early Years 32.00 2.70
APL SV Reference Card (Vade mecum) .50 «50
APL Trivia Cards {per set) 4.50 .60
Special APL 86 Wallet Offer (see Vector 3.2 page 92) 22.50 5.00

PLEASE ORDER DIRECT FROM MINE OF INFORMATION

APL Book Service, PO Box 1000, St Albans, AL3 6NE, UK
Telephone 0727-52801
Prices are subject to change without notice
Access and Visa accepted, or Sterling cheque with order.

Outside UX add an EXTRA amount per book—
£l to Europe, £2.50 Africa and Middle East, £5 elsewhere {all sent airmall)

* In a poll of the British APL Assoclation Committee the books marked with
an asterisk were highly thought of among those they had read. Vector hopes
to publish a set of potted beok reviews for all books in stock soon.

VECTOR Vol.3 No.3

The Education VECTOR

by Norman Thomson

The previous column under this heading concluded by announcing how the idea of Public
Domain APL was born at APL86. Since then, I-APL (International APL) has been born,
and the embryonic concept has moved inexorably to project status, The British APL
Association has promised funds subject to committee approval by 1st December of a
technical specification and business plan. SIGAPL has promised similar support. An
appeal has been made to individual and sustaining members of the BAA and to the other
European associations to contribute to the £30,000 which is required 1o see the project to
successful completion. Happily enough initial funds have been guaranteed to enable the
project to engage Paul Chapman 1o embark on the I-APL interpreter, while on both sides of
the Atlantic work is progressing with the supporting documentation.

The existence of an interpreter and documentation is of course by no means all, The next
stage wiil then be to bombard our schools with APL, and although our plans include
approaches 1o LEA Mathematics Advisers, Mathematics Project Directors and High 1Q
(Information Technology Quotient) Schools, this is a peint at which all members of the
Association have a part to play in consciously telling and persuading the rest of the world
that APL is here, and available 1o all, and that it contains the seeds of important educational
innovation in the Mathematics and Science classroom. In particular those members who
are concerned with recruitment into their companies have a special role 1w play. An
argument heard regularly from Polytechnic lecturers is that they do not teach APL because
itis not used by employers. How I wish I could broadcast the telephone conversation I had
recently with a representative of a large British company asking me if I knew at which
Polytechnics they should look to recruit graduates competent in APL. Is there a rurning
point in view?

Meanwhile we continue to hear of new APL enterprise in education. At University College,
London, for example, Dieter Girmes in the Statistical Science Department runs a 2nd/3rd
year course on Mathematical Computation which is based entirely on APL. After a
minimum of formal instruction, students are issued with sheets each containing an APL
function and its associated “brother” function which gives a detailed trace of execution,
thereby explaining what the various APL primitives are doing. The aim is not to impart any
new mathematics, but rather te relate known mathematics and statistics to APL, and
thereby focus on the power of APL to express and execute algorithms. The course is
practical rather than didactic, and support is provided by terminals connected 1o the
College’s Euclid computer.

On the school front, delegates at the MUSE (Microcomputer Users in Schools and
Education) Conference showed considerable interest in APL, and we hope that by the time
of the next conference I-APL will be a viable and attractive option on school micros. At
Portsmouth Grammar School, the computer donated by Quaker Oats in the competition
judged by the BAA has been received with enthusiasm by pupils, one of whom has been
working on a mini-APL interpreter in COMAL as a project.

33

VECTOR Vol.3 No.3

Meanwhile, as the dawn of I-APL is awaited, we take a look at what low-cost APL systems
are currently available to the home or school user. First we mention two free APLs —and yes
we do mean free! These are VIZ::APL - put into the Public Domain by Inner Product and
which runs on the RML 380Z and other CI’’M machines —and Acornsoft APL which runs
on the BBC micros equipped with the second Z80 processor. Anthony Camacho can be
contacted for details of the Acornsoft interpreter and we hope to have VIZ::APL available
through the BAA by the end of the year; please do not ask Inner Product for copies.

The cheapest APL system remains the Sinclair QL, which can still be obtained; ask
MicroAPL if you have problems. This typically costs around £200 with a monitor, and QL/
APL from MicroAPL costs a further £100 in either keyword or symbolic notation. (These
prices in common with all the others quoted here include VAT.) QL/APL is 2 full-blown
no-corners-cut APL with file facilities and graphics links. 1 have been using it myself at
home for & year or so and 1 have yet to find any flaws in the interpreter.

The next available product going up the quality ladder is the Atari 1040 for which you can
expect to pay £920 with a monochrome monitor, or £1150 with colour. APL (again from
MicroAPL) will cost just under £200. APL for the Commodore Amiga comes in at £260,
and for the Apple Macintosh at £295. MicroAPL reports shipments of 300 per month for
this product, but sadly most of these are to the Continent. PortaAPL, the other APL
product which runs on the Macintosh, sells for about $200. {Ed: most of these interpreters
have been reviewed in recent issues of VECTOR.)

If your budget runs to the IBM PC or its look-alikes, the best purchase is version 2 of IBM’s
own APL which retails at £328 and is subject to its Educational discount. STSC’s longer-
established APL*PLUS sells at £546-25; Pocket APL is §TSC’s mini-version of APL,
which costs about $100 but is not on sale in the U.K. Itis too early 1o say whether the new
Amstrads will ran APL successfully, but the first signs look hopeful.

In summary, APL is poised at an educational cross-roads — I-APL promises the
opportunity to prove once and for all that it is only cost which has prevented APL from
taking its place as one of the most popular and useful computer languages. We move
forward in faith and hope.

34

VECTOR Vol.3 No.3

REVIEWS SECTION

For the first time, this issue of VECTOR contains a separate section devoted to reviews.
This section will contain reviews of books, software and hardware of interest to the AP,
community at large.

Val Lusmore of APL People has agreed to take on the role of Reviews Editor to coordinate
the reviewing process. Whilst the VECTOR team try to cover as wide an area as possible,
we cannot reasonably expect 1o notice every new product. Val would therefore welcome
input from three sources:

® product vendors who are able 10 make available product for review;
o ideas for books and products suitable for review;
& volunteers who would like a chance 10 evaluate new products and write a review

for VECTOR.
All ideas should be sent to:

Val Lusmore,
APL People Lid.,
17 Barton Street,
Bath, Avon

Tel. 0225-62602

This issue covers three book reviews and two APL implementations. The first book review
is a double-header; Simon Garland reviews two recent books by Ken Iverson — “Applied
Mathematics for Programmers” and “Mathematics and Programming”. Another renowned
APL author is Howard Peelle, and his “Introduction 1o APL” is reviewed by Romilly
Cocking. Thirdly Peter Branson gives us his thoughts on reading “A Handbook and Guide
for Comparing Computer Languages”, produced by the Research and Education
Association of New York.

Paul Chapman is an independent consultant, who is currently working for the I-APL
committee writing a free public-domain APL interpreter for small computers. In his
copious free time Paul kindly agreed to review MicroAPL’s APL.68000 implementation on
the Atari 520 ST

Finally Martyn Adams of Metapraxis offers some first impressions on the latest release (6.0)
of STSC’s APL*PLUS/PC, including a fleeting and evidently unsatusfactory encounter
with the new Compag 386 microcomputer.

35

VECTOR Vol.3 No.3

Book reviews

Applied Mathematics for Programmers (157 p)
Mathematics and Programming (132 p)
by Kenneth E. Iverson

Published by I P Sharp Associates, 1986.
Reviewed by Simon Garland

Both of these new self study courses from Dr. Iverson use an executable notation, that is (as
he explains in the introduction to Mathematics and Programming) . . a notation whose rules
are so strict and simple that a reader, or computer, can interpret any expression
unambiguously.

The executable notation used is APL, as defined in A Concise Dictionary of APL (also
available from I.P.Sharp). No prior knowledge of the notation is assumed, it is introduced
clearly and simply as required — in refreshing contrast to the usual half apologetic jokes
about strange symbols and unreadable one-liners.

In order 1o be able to use the course texts easily the reader should have access to a union
keyboard version of APL and a copy of a direct definition workspace that uses the

FunctionName : ElseExpression : IfCondition : ThenExpression
form of definition.

As far as 1 could tell all examples could be executed without problem (apart from the
respense time..) with the current version of Sharp APL/PC. APL*PLUS/PC users will not
be able to use any of the expressions using Sharp enhancements like the rank operator, or
enclosed arrays, but they can stilf execute most of the expressions without much problem
by simply replacing the lev and dex symbols by the functions:

7 Result+Result LEV Junk

[1] ar
v

¥ Result+Junk DEX Result

[1] A~
v

Better still make the direct definition compiler do it {exercise -1}.

The aim of Applied Mathematics for Programmers is to make the mathematics involved in
many of the basic tools of programming more accessible to programmers — to enable them
to grasp the concepts behind the tools they use.

Anyone who has had to sit through a lecture on how quicksort works, complete with helpful
diagrams, examples, handwaving, and the exhortation that it’s all very simple will
appreciate the power of a concise executable notation that allows the student to experiment
with the simple functions:

Sort: (Bfw).Sort{~Brw=L/u)/w 1 D=pw : !

Qs: (Q8({w<F)/fw) o ({w=F)fo) . (QS(w>F)/w)-F+ltw : O0=pw : "'

36

VECTOR Vol.3 No.3

Mathematics and Programming is more a review of high school mathematics using an
executable notation, which exposes and clarifies relations among topics previously studied
in isolation; it also goes into more detail about the notation and its ‘grammar’.

Both courses go over similar ground, but with different emphasis. They cover
classifications and sets, the behaviour of elementary functions (utility functions are
supplied for drawing graphs and barcharts to assist with the exploration of the behaviour of
the functions), directed graphs and trees, identities and proofs, and modelling (including
writing your own computer). Exercises to check and extend undertanding of the points
under discussion are provided at the end of the book, with indicators within the text when
an exercise is available.

Applied Mathematics for Programmers has a special section on manual translation with
examples of translation to Pascal, C, Fortran, and Conventional Mathematical Notation,
closing with a discussion on general translation techniques. This chapter is an example of
the attitude that permeates the whole course — no messianic preaching APL to the masses,
just a demonstration of how useful it is to be able to wranslate ideas into 3 concise clear
notation to help with the understanding and communication of concepts — if a program
works in Fortran then fine, don’t touch it, but perhaps it would be easier to document the
essential algorithm in something less cumbersome.

Mathematics and Programming has a special section on co-ordinate geometry — I didn’t find
this as interesting, but I've probably been scarred for life by not having courses like this
one. . .

Although these books are meant as course texts | think most APL users could profit from a
careful study of the examples, Consider for example one of the identities discussed under
Efficiency in the chapter on Identities and Proofs in Applied Mathematics for Programmers;
the problem is the common one of applying an expensive function F 1o a vector of non-
distinct values v. The brute force solution (any mistakes in the normal APL examples are
my fault) is something like:

Eia] r+{rv+pv)pl

(113} +1c+{rvpl020)),1022i+1

[12]1020: r[il+F +[i]
[1311021:+1cli®i+1]

Of course we could ‘optimise’ this considerably to:

[a2] r+lro+lppmek+{uv+iuh v)e .=y)pl
[431] cols+t0lpmsk
[44] +le+(rmpl030),10324i+1

[4511038: rlmskliz]/colsI+F uv[il
[4611031¢+1clivist]

(Nub: ((1pw)=wiw)/w)

but with a little more thought we could have written it much more clearly from the begin-
ning {(if it’s not clear then try it out!):

37

VECTOR Vol.3 No.3

Eii r+(ne.=vi+.xF n+Nub v

v
Most of all I would hope that those responsible for teaching programming {not just those
responsible for teaching APL..) or mathematics would take the time to look carefully at
these texts with a terminal nearby — I'm certain that students would approach such courses
with much more enthusiasm than a standard lecture oriented course.

Finally aquote from C, A, Hoare, reported in the August 1986 edition of BY TE magazine:
“Many programmers of the present day have been educated in ignorance and
fear of mathematics. Of course, many programmers are mathematical
graduates who have acquired a good grasp of topology, caleulus and group
theery. But it never seems to occur to them o take advantage of their
mathematical skills to define a programming problem and search for its
solution.

“Qur present failure to recognize and use mathematics as the basis for a
programming discipline has a number of notorious consequences. They are
the same as you would get from a similar neglect of mathematics in drawing
maps, marine navigation, bridge building, air-traffic control, and exploring
space.”

An Introduction to APL
by Howard A Peelle

Published by Holt, Rinehart and Winston, 1986.
Reviewed by Romilly Cocking

In the early Seventies, there were not many ways of learning APL. This did not matter
much, as very few people wanted to learn it. Most students of the language were unwilling.
They were victims of zealots who had just become APLers, and who were determined 1o
share the good news.

Today, the situation is much healthier. A growing number of companies are making a
healthy profit from selling APL products and services, more important, a large and
growing number of organisations now depend on the use of APL to help them achieve their
goals,

APL is in demand, and more people want 1o learn it than ever before. A wide variety of
methods are available — public courses, CAl programs, and self-study books. For some
years, the standard text for introductory courses has been Gilman and Rose (3rd edition,
Wiley 1984). Originally published in 1974, "the red book” has gene through three editions,
changed its colour, and sold well over & quarter of a million copies.

No book is ideal, and APL trainers are always on the lookout for new texts. I have just been
reading APL — an introduction, by Howard Peclle. The text is intended for two uses; it can
be read as a self-study guide, for individual students who are learning AFPL on their own;
alternatively, it can be used as part of a taught course. The text has an associated volume of
instructor notes, which contain details of the author’s educational philosophy, as well as
teaching tips, and solutions to programming problems.

38

VECTOR Vol.3 No.3

Both volumes are informal, but very well structured. The main tex1 consists of a short pre-
face, followed by two main sections, seven appendices, references, an index and a table of
APL symbols,

The preface explains what APL is; why you should learn it; its strengths and weaknesses;
some learning tips; and how to get started, The section on strengths and weaknesses is a
model piece of persuasive writing, and should on no account be skipped over.

The first part of the book contains an introduction, followed by nine chapters. This part
introduces the APL language; each chapter contains a list of contents, a set of cbjectives,
examples, exercises, a review, and a set of programming projects. The pacing of each
chapter has been carefully planned; early sessions go at a comfortable pace, but chapters
eight and nine see the introduction of outer and inner product, and matrix divide.

The second part of the book consists of a further five chapters on APL teols. Each chapter
describes (and gives the code for) APL programs that are useful in particular disciplines —
business, statistics, mathematics, education and computer science. These are working
programs that you can use on their own, or incorporate in your own software. The prog-
rams are written for clarity rather than efficiency, but they introduce the student to the idea
of utility functions — a cructal point, omitted from many courses. Alas, the author does not
place equal emphasis on the need to explore the utilities available on the student’s own com-
puter systern. Utilities can give valuable short cuts in software development, and they can
also teach a lot. (If you write optimised but unreadable code, it may be kinder 10 lock the
public versions, for just this reason!) No doubt the emphasis reflects the author’s prefer-
ence for learning by experience rather than example.

At an introductory level, the book compares well with Gilman and Rose. It is even less
formal, and much less daunting. It covers less material — if you learn everything in Gilman
and Roese, you will know a lot more APL. How many actually do so?

APL — an fntreduction also adopts some unconventional terms — list rather than vector,
input rather than argument, The vexed issue of terminclogy is discussed in the instructor’s
notes, along with other contentious topics. I disagree with a number of choices made in this
book, but one must welcome any text that emphasises that they are just choices. There are
only two such choices with which I feel I must take issue.

The first is on the topic of commenting. In my view, this must be introduced very early on
—in immediate execution mode, so students can pick up the habit of first-line comments as
soon as they learn how to define a function. Once learnt, the habit sticks for life, but it is
much harder to acquire later on!

The second is on the topic of branching methods. Peelle opts for the introduction of
branching using the idiom

+labelxtcondition

This is later superseded by the more normal

+condition/label

The insuperable objection to the first method is that it goes completely wrong in origin 0.
Anyone who learns it will one day waste a great deal of time finding this out the hard way.

These are minor criticisms, however, and the books are generally excellent. APL is easy,
fun, and of great practical use. Peelle’s new book will help a new generation of students to
find this out for themselves.

39

VECTOR Vol.3 No.3

Handbook and Guide for Comparing Computer Languages
Produced and published by
Research and Education Association, New York (1985)
Reviewed by Peter Branson

After all the discussions on how little publicity APL, gets, the thing that hit me when I
stumbled across this book in my local library was the front cover. There, in very bold print,
are the eight languages covered:

BASIC PLA
FORTRAN APL
PASCAL ALGOL 60
COBOL C

It is worth quoting part of the preface:

“Although most languages can be used for one application or another, a great
deal of confusion exists as to which language is appropriate for a given
application. From among the various languages that have been developed,
eight remain as the most practical and advantageous to use. These are ., 2

and the above are listed again. Although we might not all agree with the chosen eight, at
least APL is in there!

After a random dip, followed by a quick serial scan, | realised I was looking at the book in
wo differing ways: firstly, to see how good were the APL parts; secondly, te help myself
with non-APL langauges. (I have a working familiarity with some of these eight, but want
to know something about C — of which 1 am pretty ignorant.) My first impression was that
the book was excellent, but this was rapidly modified as 1 went through the APL sections.
In this review 1 will look at the general parts at the start of the book, and then concentrate on
the detailed APL sections, before trying to give an overall summary.

Layout and Introduction

The book starts with a general section on factors for language choice, followed by an
averview of each one. The languages are then compared side-by-side under 18 headings,
and the book concludes with two sample programs, some appendices and a glossary. The
paper, typeface and general layout are very good, and plenty of white space is allowed to get
optimum comparison when entries differ in length. The initial section entitled “Factors for
Choice of Language” is one page covering clarity, simplicity, unity of language and
structure, naturalness of application, ease of extension, external support, portability and
different measures of efficiency. Although short, this is quite good.

There follows about one page for each language entitled “Introduction and Brief Overview™.
Within my knowledge of the various languages, the balance seems quite reasonable. The
overview of APL is really quite good in what it does cover (which isn’t nearly enough —see
later), although I do have minor objections to such phrases as “.. restriction to
homogeneous array structures (creates difficulty in) business data processing”, or
“subprograms are restricted to at most two arguments (with) a single result”, both of which
have a stronger negative connotation than is really justified.

40

VECTOR Vol.3 No.3

APIL, details

This part of the review concentrates on the APL entries, using the same 18 sub-headings as
the book itself.

Program structure:

Good, except there is perhaps insufficient emphasis on the fact that APL is
fundamentally different from the other seven.

Statement layout:

Reasonable, although it is not made really clear that a statement separator is only
needed when there is more than one statement per line.

Elementary data types:
I don’t like this much, although others might think it fair:

*APL is quite restricted in its data-structuring facilities. Numbers and characters are
elementary data types.”

Identifiers:
This is alright.
Declarations:

Good, althongh more emphasis could have been given to the fact that declarations are
simply unnecessary in APL.

Elementary structured type array:

This is reasonable, but gives a slightly negative impression, Quly basic APL is
discussed.

Array declarations:
Fine.

Operators:

After quite a reasonable beginning, the bad news now starts. Firstly, someone has
clearly decided to call APL primitive functions “operaters” (which others have done
in the past), presumably to try and get uniformity across the eight languages.
However the section then covers only right-to-left execution, parentheses, negation,
minus, plus, power, logical comparison, access by name, assignment and indexing.
What is done is quite reasonable but woefully inadequate. There is a reference o a
“Table of APL Operators”, but no such table appears in the book.

Some simple examples are given of the kind:
243=5

but the author does not seem to realise that all the examples will give logical 1 as the
result, and the parentheses are missing,

41

VECTOR Vol.3 No.3

Expressions:

This section is reasonable, except for the use of “infix” for dyadic and “polish prefix”
(yes, with a small “p”) for monadic.

Assignment:

Quite good, except that only scalar and vector assignments are mentioned, which
might cause some confusion since higher-order arrays have previously been
introduced (albeit briefly).

Conditonal and unconditional branching:

This section is a candidate for the nuthouse. It is frankly appalling and appears to
have been written by someone in their first few days with APL. Much of the section
is devoted to a laborious exposition of how “times iota” works; this is the only form
used anywhere in the book, and often the iota is missing! After all this heavy going,
multi-way branches are omitied altogether. With one exception, all branching is to
line numbers. There is a reference to the fact that branch to label is “sometimes”
useful because of dynamic line number re-allocation, but the example given is poor.

How easy it should have been to include the standard list of “condition, reduce,
label” branches, and perhaps the standard IF function as well.

Looping & iteration

Like meny of the sections, typographical errors abound. A simple interest
calculation is chosen {which doesn’t actually need a loop in any of the languages - but
never mind that). My APL complaints are that “minus reduce” is used (without
explanation) for a simple numeric difference; it may be clever but can only be
confusing in this context. Local variables are introduced in a header line without
being mentioned anywhere in the book that I have seen. A less important point is the
use of a trailing decision.

In particular though, there is no attempt to show how APL can avoid many types of
loop altogether; another opportunity sadly missed.

Function {user-defined)

By way of complete contrast, this section is quite well done; even the typographical
errors are fewer here than in other sections, It was a heart-felt relief to find four quite
reasonable functions, and with branching to labels, no less! The author(s) have
clearly battled to try and get common terminology, as noted previously. In earlier
sections APL functions are called “programs” or “subprograms”, but this section
fails to point out that this is what user-defined functions are as well. On the plus side,
the terms “dyadic”, “monadic” and “niladic” are used correctly, although the
attempt to discuss the presence or absence of an explicit result using “unlimited” or
“limited” is not so good.

A final point — there are no examples using text or character data either here or
elsewhere in the book. This appears to be the case for all the languages and is a
notable omission.

42

VECTOR Vol.3 No.3

Subroutines.

This APL section is brief but good. It correctly describes functions (as “functions™!)
and function calling. It also refers properly to unrestricied recursive calls.

Intrinsic/library functions.

In this section the book starts 1o fall apart again. The text talks variously about
“operations”, “generator primitives”, “expressions”, “primitives”, etc., whereas
what it actually covers are three APL operators — reduction, inner product and outer
product. There is further reference to the mythical Table of APL Operators. There is
no discussion of library functions, or quad functions for that matter.

Input/output.

A very poor section with no mention of “quote-quad” nor of other forms of I/Q
available on any reasonable system, There is a passing reference o files which are
“not normally provided”, but at least “some recent APL implementations include
such fearures”.

Program halts.

The entire entry is “Not applicable”. The authors have presumably never heard of
“quad delay”, or of function-defined halts, etc.

Documentation.

The final subsection dezls with comment statements within a function in a
moderately acceptable way, although the example given is poor.

Sample programs.

Two sample programs are included and the best word to describe them is “hideous”.
Riddled with typographical errors, as usual, but also with such charming features as:

numbered header lines;

&ll branches use “rimes io1a” 10 line numbers;

two “quad” entries for data input, rather than a vector;
etc.

The examples under user-defined functions could not be called brilliant, except perhaps in
comparison with these.

Appendices.

I. Pascal delimiter words (1 page)

1I. ANSI Cobol reserved words (2 pages)
III. Summary of Cobol formats (4 pages)
IV. PLA buili-in functions (1 page}

V. Csyntax summary (2 pages)

V1. PL/1 Arithmetic built-in functions

Without checking a reference manual, I believe that IV and VI are both PL/1, so perhaps
one of these should be the missing APL table.

43

VECTOR Vol.3 No.3

Glossary.

An excellent glossary comes last, although it is far 100 extensive for the subject marter of the
book. It includes gates, bytes, buffers, cascaded arrays, clock pulse, etc. — terms which
don’t appear at all in the text. Some of the 25 pages used (out of a total of only 122) could
have been put to better use.

Well that’s the end of the book as such, but I can’t [eave without listing some of the more
glaring omissions. Workspaces and system commands are mentioned but only in the
Overview. The following are not covered at all:

many of the important functions;
local and global variables;

quad functions and variables;
quote-quad and other I/Q forms;

text or character data;

library workspaces and functions;
public domain software; draft 1SO standard;
portability; fast prototyping;
modularity;

access to other languages and systems;
availability on micros;

nested arrays;

user-defined operators;

other features of enhanced APLs.

Before summing up, I will paraphrase some of the claims made on the back cover:

® Enables comparison of all eight languages at a glance,

& Makes for rapid selection of the most appropriate language.
® Transition between the eight languages made easy.

® Enables design of completely new languages.

Leaving aside the last, rather grandiose, claim, the very good design and style of the book,
should have made the other claims possible. However the appalling errors and emissiens in
the APL partly nullify these claims, certainly as far as APL is concerned. [imagine a
potential APL user would be totally confused,

As for my other interest - can it help me quickly to get a grasp of C? Well it appears to give
me something of the flavour of the language, but naturally I am left wondering how many
errors there are in the C entries. (A cursory look at the Fortran and Basic parts suggests that
these are not teo bad, but I still wouldn’t trust them without a critical review.) So unless
someone will kindly review the C parts for me, it looks as though I am going to have to fork
out for Kernigan and Ritchie after all, and [suggest that anyone wishing to learn APL sticks
to Gilman and Rose.

My overall sentiment is one of intense disappointment; such 2 good idea was ruined in the
execution. The book is well worth a look (if only to see what might have been), but I have
not been able to track down a U.K. supplier; in any case I would recommend vour local
library, rather than spending well-earned money on this edition. A second edition,
thoroughly checked for accuracy and completeness would be well worth having, and I am
waiting to hear from the Association in New York whether or not one is planned.

44

NEW MAINFRAME SOFTWARE
FORIBM'S"APL

Now available in the UK, two new offerings from
STSC that enhance IBM’s mainframe APL

- implementations

If you're staying with VS APL ...
COMPILER The first commercial compiler

for APL compiles functions
individually. Results in
significantly faster execution.
Interpreted functions can call
compiled functions and vice
versa.

If you're migrating to APL2 ...

SHAREFILE/AP STSC's popular APL
component file system is now
available under APL2. Multi-
user, nested array storage,
libraries, access matrices.
Multiple file system support.
International language
translations.

For full information, contact the APL*PLUS ™ Product Group,
Cocking & Drury on 01-493 6172,

Trodemarks/Qwners: [BM/International Business Machines Corparation - APL*PLUSISTSC, Ine.

==— COCKING &DRURY LTD.

— THE APL PROFESSIONALS

16 BERKELEY STREET-LONDOMN -WIX S5AE
Tel: (011493 6172 Tix: 23152 MONREF G

24

Building on a solid past

1976

ISAM/AP for APLSV
VSAM/AP for APLSY
1977

AFM/AP® APLSV
AFNMZAP for VSPC/VSAPL
1878

AFM/AP for CMS/VSAPL
CALL/AP for APLSV
1979

CALL/AP for VSPC/VSAPL
1980

AFM/AP for TSO/VSAPL
1981

CALL/AP for CMS/VSAPL
Enhanced Format for VSAPL
Keyed Access Option
1982

Interactive Link Option
Mail Exchange Option
CALU/AP for TSO/VSAPL
1983

APLPRINT

tnput Stack Processor
Output Stack Processor
1985

AFM/AP for CMS/APL2
AFM/AP for TSQ/APL2
CALW/AP for APL2
Enhanced Format for APL2
1986

APL2 Display Caplure
Indexed File Option

When Interprocess Systems got started ten
years ago, they had a lot of ideas about APL,

As far back as APLSV, they believed that APL
users needed better file facilities. They began by
providing shared access to ISAM and VSAM.

Then came a component file system that would
run on any in-house IBM mainframe APL
system.

But their customers wanted more than just
component files. They asked for - and got -
keyed access and an indexed, PCS-style file
structure.

There was also a need for a Quad-FMT
equivalent that wouldn't change IBM source
code. Interprocess did it for VSAPL, and it's still
there for APL2.

Recently APL2 added the ability to call
FORTRAN or BAL from APL - something that
Interprocess introduced as long ago as 1978.

Interprocess also pioneered a concept: That
APL enhancements don't have to change the APL
product itself, That you can achieve results from
the IBM interfaces already present.

It's a concept that gives Interprocess customers
unparalleled continuity from one APL
environment to the next. Something solid to
build on for the future,

For more details of the IBM APL enhancements
developed by Interprocess Systems contact

APL Software Limited
27 Downs Way, Epsom, Surrey KT18 5LU

England

Tel. 03727 21282

VECTOR VYol.3 No.3

Product reviews
APL.68000 for the Atari ST

Reviewed by Paul Chapman

Preface

“The following review assumes some experience of the APL language and environment, and
some of the concepts, such as workspaces, common o all APL installations. It also assumes
at least a passing acquaintance with WIMP {windows, icons, mouse, pull down menus)
environments,

Introduction

The machine provided by MicroAPL was an Atari 520ST with high resclution
monochrome screen and two disk drives. The software provided for review was sealed and

obviously an end user production version. A full set of software and documentation for the
5208T was also provided.

The Atari 520ST and its younger, bigger brother the 1040ST are 8Mhz 63000 based micro-
computers. The ROM-based operating system is called TOS. An Apple Macintosh-style
deskiop environment called GEM, which is driven by a two-butten mouse (included as
standard} is provided, also in ROM. On disk, Basic and Logo language interpreters are
provided, as well as a word-processor called st word.

I concentrated my attention on the APL interpreter, and, in particular, its interface to the
GEM WIMP environment.

Getting Started

The interpreter comes in a box proclaiming “APL.68000 PROFESSIONAL
PROGRAMMING LANGUAGE” and costs £170 plus VAT. The single disk provided
contains the interpreter, five wiility workspaces, and a demo workspace. The
documentation comprises a generic APL.68000 language manual, which is provided with
all implementations of the interpreter; a much smaller manual APL.68000 forithe Atari ST
containing a description of the desktop environment, and details of the workspaces
supplied; a reference card; and a copy of the latest issue of MicroAPL News.

I 'had no problem getting the interpreter up and running. No special installation procedure
was necessary — this is cne piece of sotware which you can take home, plug in, and start
using straight away. ATL key stickers were already affixed 10 the keyboard supplied, and a
set was also provided with the package. These would probably take sbout half an hour to
puton,

My first problem came when I tried to load the DEMO workspace using the menu
provided. With the mouse, I selected the “File” menu from the top of the screen, and then
the “Open” item from that menu. After a little grinding from the disk, a list of the
workspaces on the APL disk appeared in a new window, and 1 selected “DEMO” by
pointing to it and “double-clicking” on it. (This piece of WIMP jargon indicates pressing
the select button on the mouse twice in quick succession, which has the effect of opening the

47

VECTOR Vol.3 No.3

selected item.) The new window disappeared, and after 2 while the message “W3S
LOCKED” appeared in the main dialogue window. Repeating the attempt produced the
same effect.

A manual JLOAD was successful, and thereafter the problem of being unable to load
workspaces from the menu disappeared. Furthur investigation revealed that the problem
only occured the first time afier the interpreter was loaded, and before any expression had
been entered. It’s an annovance rather than a bug, and would be especially so to a
newcomer, who might spend some time in the manuals trying to find out what he eor she is
doing wrong, or 1o find some other way {in this case, }LLOAD) to get started.

The demo workspace illustrates very simply how APL can be used to write applications
which use the WIMP environment and graphics on the ST. Typing DEMO caused the
menu bar at the top of the screen to change to a list of menus defined in the application.

From the menu, it was possible to call up one of two graphic displays (a rather boring graph
in one, and a number of variously shaded and patterned squares in the other), and also a
“Dialog Box” which allows the further selection of options and switches {in this case a
mock-up of a very simple serial port set up). The final menu item allowed me to return to
native APL, either with or without clearing the workspace.

I began examining the functions in the workspace. The DEL editor worked much as
expected, and used the normal APL dialogue window. Also provided is a full screen editor,
which can be entered from the menu using the mouse. Upon selecting “Open fn” from the
“Edit” menu, a dialogue box appears to ask the name of the function, The default is the Jast
function edited, although perhaps a more appropriate default would be the function
appearing a1 the top of the SI.

The editor uses the whole of the dialogue window, first of all saving the current contents,
and then displaying the function selected on the screen, The editor is natural to use — I
didn’t have to look in the manual to learn fancy control characters. My main reservation
was that there was no distinction of lines beginning with labels or comments. This, taken
together with the fact that blank lines, although they can be entered, are not retained in the
function definition, made reading functions rather difficul.

1 was impressed with how little code was apparently needed to interface to GEM, especially
after some unpleasant experiences with the Commodore Amiga system documentation,
which weighs several pounds and takes weeks to comprehend. The use of the graphics
utility functions was immediately self-evident, and even the calls to GEM itself were fairly
transparent.

Some of the functions, for example those used to set up menus and dialogues, took global
variables as arguments. Unfortunately, the full-screen editor could not be used to examine
and edit character vectors and matrices, which was an irritation.

The global arrays themselves were again mostly self-explanatory. For example, the array
used to define the application menus was a character matrix, with menu titles starting in the
first column, with the menu items for each title appearing below the title, on lines beginning
with one space.

48

VECTOR Vol.3 No.3

Typing a few APL expressions supplied sensible answers, though the overhead in display
time produced from working within a window environment is slightly irritating after the
memory-mapped characters of the IBM PC, particularly when scrolling. This shouldn’t
bother 3278 users, however!

A simple interactive graphics function

I now set myself the task of writing a function which would allow very simple line drawings
o be produced under mouse control. The idez was to be able to point the mouse at the
screen where I wanted the line to begin, then press the left mouse button and hold it down
while I “dragged out” (another piece of WIMP jargon) a dotted line until I was happy with
its position, then release the botton whereupon a solid line would be added 1o the picture.

I went to the pamphlet describing the particular features of the ST version of the
interpreter, and quickly found a function called GETMOUSE in workspace TOQLS
supplied with the system. This niladic function returns a 3-element vector of the current x
and y co-ordinates of the mouse pointer, together with an integer from 0 to 3 indicating the
state of the mouse buttons.

In the description of the STGRAPH workspace, | found a number of tools for line drawing,
shape drawing and shape filling functiens. LINECOLOR sets the line color, while
LINETYPE sets the line style (solid and various patterns of dotted). Finally, POLYLINE
draws a line or sequence of lines. The funcion CLEARWINDOW clears the window of
APL dialogue, which may be restored with RESTORESCREEN.

It took twenty minutes of trial and error to set up this function, which worked quite
successfully, if a litde sluggishly.
Many problems and some solutions

Many problems came to light during this process, however, Many could be dealt with by a
careful study of the descriptions of the functions, but some were deficiencies in the
implementation itself.

In particular, an irritating lack of elegance and consistency came to light in the use of the
graphic functions,

The origin for mouse co-ordinates is the top lefi corner of the screen, whereas that for all
graphic co-ordinates is the top left corner of the current window. Whenever it is necessary
to translate from one to the other, an offset must be supplied which is supplied by the
function WINDOWTPOS. This can be overcome by taking the additional steps of setting a
global variable called WHOLESCREEN to 1, and then calling CLIPRECT with argument
WINDOWPOS.

This must be done repeatedly, since it is possible for the application user to move the
window and change its size. Unforunately, if the user does this more than once, the
interpreter restores the contents of the APL dialogue o the window, wiping out any output
from the application so far.

Some of the graphic objects are expressed using (x,v) co-ordinates, whilst the rest use row-
column co-ordinates (ie (y,x) co-ordinates). This may be areflection of the way the internal
GEM routines work, but inelegance in the way GEM works should not be passed on to the
APL programmer.

49

VECTOR Vol.3 No.3

None of the graphics drawing parameters {eg. current line color, line type) can be
interrogated by the programmer: the usual convention, that of making functions return the
old values when given an empty argument, is omitted.

Most graphics systems allow different interactions 10 be specified between graphic objects
o be drawn and the current contents of the screen. For example, it is usually possible to
define XOR or inverting interaction, so that two successive placings of an object on the
screen will have no net effect, This was essential in the simple program described above, for
the purposes of drawing the “dragged out” dotted line which changes position as the mouse
pointer is moved about the screen.

The graphics functions supplied allow this to be done only with solid objects like circles and
rectangles (and not with their outlines), and then only some interactions are possible, eg.
not AND or OR. No interactions are possible with line drawing. Eventually I chose to drag
out a solid rectangle, which was ugly and unclear, but at least it was possible 1o do this in
inverted display.

Presumably, the GEM kernel itself allows all these functions, so I can’t see any problem In
providing them to the APL programmer.

Another problem which emerged was YCOPYing from a nearly full or full disk. For some
reason, YCOPY uses temporary disk space, so the message /O ERROR - DISK 1S FULL
can come as something of a surprise during a read operation.

There are all sorts of nasty litile problems associated with using the cursor (o select extracts
for cut/copy/paste operations. For example, it is not possible to select a full line for pasting
in the full screen editor.

It as also impaossible to get in or out of the full screen editor without using the mouse, which
is irritating. Also, the mouse pointer disappears altogether during output to the screen, so
that if one moves the mouse to the menu bar during output, the position of the pointer
cannot be seen.

Documentation

I did not need to look at the APL language manual once, which is encouraging. What I was
using was certainly a real APL, and worked fine.

The rather thin pamphlet describing the implementation is rather unsatisfactory. For
example, the default colour numbers are described as 0 for black and 1 for white. In fact,
they the the reverse of this. The descriptions of the utility functions are far from formal, and
occasionally misleading because APL programmers should naturally assume consistent
behaviour, since so much is made of this in the APL. language itself.

Software

1 did not have time to explore the other workspaces provided. These are: MENUS for
creating menus and interrogating the user’s selection of ttems; DIALOG for creating and
executing dialogues; STFILE for accessing ST native files; and TOOLS which contains
miscellaneous functions for programming function keys, setting keyboard translation, etc.

50

VECTOR Vol.3 No.3

It really looks to me as if the STGRAPH workspace was cobbled together with the restina
hurry to create a product. It also looks as if little or no beta testing of the product has been
performed. [set out to review the usefulness of the implementation rather than to try and
break the interpreter, and yet I found several bugs, inconsistencies and irritations within a
very short time.

The functions I explored are simple to pick up and use, but this is more a result of lack of
flexibility than careful and logical design. Much of GEM is inaccessible from APL, except
through the use of custom-writien shared variable processors and careful study of the GEM
system manuals. If MicroAPL were to consider expanding the range of functions for
accessing GEM in the future, they would find consistent extensions to the functions already
defined very difficult.

Conclusions

APL.68000 is a sound product as an APL interpreter, and competes fairly well in
functionality and very well in price with its main rival on micros, STSC’s APL*PLUS/PC.

The ST is used both at home and in business. Much of its appeal over, say, the IBM PC
must be in its price for home users, and in the GEM environment for business. Itis difficult
to see which market APL.68000 is aimed at. I1s price is too high, compared with that of the
hardware it is running on, to be attractive to home users, and the lack of a full interface to
GEM would purt business users off.

For myself, if owned an Atari ST, I would spend my money on a C compiler so that I could
have full access to GEM’s facilities. If I had to recommend the purchase 10 a business user
committed to the ST, I would point out the need to spend money on having a custom
interface produced by a systems programmer if any serious use of the GEM environment
were planned.

APL is praised for its natural extension to graphics environments, but MicroAPL have a
long way to go to provide the access 10 GEM an APL graphics programmer needs.

STSC APL*PLUS/PC release 6

by Martyn Adams

At last [have received a copy of STSC APL*PLUS release 6.0 for the PC! I always look
forward to receiving a new version of my favourite piece of software, This version’s great
claim to progress is its ability to handle objects over the 64k-byte limitation but there are
several other features which are really quite useful.

We quickly discovered that Grade-up and Grade-down give NONCE ERRORs when
trying to process objects larger than 64%. So you can’t sort large objects. We also found that
[OVI and [JFI give DOMAIN ERRORs on large objects, so you can't validate large
character arrays either.

We also tried the ASMFNS workspace and found that some of the assembler functions
were slower than ‘doing it by hand’ in APL. I haven’t checked but I suspect they may have
used less workspace. STSC, could we have some ASMFNS written in 80286 machine code
(for our ATs) for even faster code?

51

VECTOR Vol.3 No.3

The 64k-byie variable size barrier has never actually been a problem to me personally. If
any object went over that size I guessed that something had gone wrong with my coding. If
vou only have 400k or so of workspace on a 640k machine then 64k can be a very large
percentage of space devoted to one object. WS FULL has always been my problem.
Nevertheless a dark cloud has been removed and if you want to process a large object then,
provided you have the workspace, you do not need to chop it up any more.

This begs the question.., when can we break the 640k machine size barrier? Already lots of
software take advantage of extra memory. Sometimes this memory is banked so as to appear
as another parallel memory space. Sometimes it sits on top of the operating system (DOS)
as extended memory. I prefer the latter idea — it is easier for me to understand.

Anyway, we all wait for the latest version of DOS running on IBM’s new PC based on the
Intel 80386 chip. This should break all known speed and size barriers which currently limit
the PC architecture, It is rumoured to be called DOS 5.0 — we all wait with anticipation.

Meanwhile COMPAQ have beatent IBM by releasing their COMPAQ 386 to the public. It
runs very, very fast. It is 1o IBM PC/AT what the AT was to the IBM PC/XT. COMPAQ
seem 10 marketing the new machine as basically a go-faster DOS box. It runs a version of
MS-DOS and does one or two tricks with its internals in order to maximise performance.
And it is claimed to be pretty nearty 100% compatible with IBM’s PCs.

Unfortunately the latter statement isn’t strictly true. I had a chance to run APL*PLUS
release 5.0 on it. Everything seemed 10 work fine except that the inner product always
returned 0, Even when the APL statement should have returned 1. This was very
disheartening. 1 suspect that there may be one or two other areas which do not give results
as expected. I understand that release 6 will also not run on the 386 so we will have to wait
for a 386 compatible APL.

(JWIN, which handles the PC screen as a full-screen manager, has been improved. The few
improvements are very useful and can be quite significant if you program them properly.
Unfortunately the new manual that comes with release 6, although nicer than the old one,
is still a little confusing when it comes 10 describing the actions and effects of the keyboard
and what characters are allowed where under what circumstances. After a liule
experimenting though, all becomes clear and it really isn’t as difficult as it first seems.

Function keys are now handled better, so they say, but I still find the definition of a complex
data entrv/edit screen a long and tiresome process.

STSC have improved the way APL starts up in “noddy” mode for the first time users. |
haven’t explored these features as I consider myself a bit of a power user but I understand
that for the first time user these can be really helpful.

Other nice features include [JCHDIR, [JRMDIR, JMKDIR and [JLIBD. The first three
mimic the DOS commands for changing, removing and creating directories. These are
very useful. Especially useful is[JL.IBD which allows you to dynamically set up and delete
(and [JLIBS interrogates) the APL library structure. Before [JLIBD you had te use a file
called APLLIBS on start-up which is a very clumsy method of defining libraries.

52

VECTOR Vol.3 No.3

I do however have a gripe with the native file naming convention. In this release you can
define a native file called: ‘B:DATA\FILEA. XXX and it is found, as one would expect, on
the directory called DATA on diskette drive B:. This is much better than the old method
where it was very difficult to read files which fived in directories other than the current one.

Full marks for that one — but if you specify a native file called: ‘B:FILEB.XXX then the
APL will not look for the file where you would expect. The DOS standard is that the file
should be found on drive B: in its current directory. However the APL replaces the drive B:
characters with the library 1 definition (drive A; would be library 0, drive C: library 2 etc.).

This, I thought, was confusing. ‘B:’ means drive B: if there is a backslash in the file name;
otherwise it means the diskette drive and directory specified in library 1 (except on alternate
Thursdays?). I suppose the developers at STSC know what they are doing. I don’t.

[JGPRINT has been upgraded to handle the LaserJet Plus printer - I haven’t had time to ry
this eption but am looking ferward to it. STSC have thoughtfully supplied a little reference
manual along with the revamped documentation. Called the Quick Reference Guide it
happens to be so full of information that it is not a very quick reference at all (it is quicker
and more handy than the manual though). It is so useful that I hide it from my colleagues.

In addition to the comprehensive language description the Quick Reference Guide gives
details of the 87 odd different authorised [JPEEK and [JPOKES. Additional POKES
include:

® whether or not you wish to allow low minus as negative signs in character strings when
validating them using [TV1 or converting them using [JF1.

¢ Inhibit creation of objects greater than 64k,
® Allow the display of sub-directories and/or volume ID when using [JLIB.

¢ Disable buffering of keyboard input while functions are executing when using the DOS
keyboard routines.

® Make [JFRACE give a short form output.

® Force 2 return to text mode from graphics mode whenever immediate execution is
entered.

Incidentally the Quick Reference Guide doesn’t specify all the parameters for [JGPRINT.

Finally, as a general point, I would just like to add that as an APL purist at heart I am
disappointed that there are now 144 [Jfunctions in APL*PLUS release 6. I guess we may
soon be able to forget the APL and write in[Jeode only. I also feel uneasy about the way that
4 lot of machine-coded functions (using [JCALL) are supplied as optional extras and one,
BOX (which turns a character vector into a matrix), is practically compulsory.

The fact that APL*PLUS has to use so many [Jfunctions and the odd machine-coded
program indicates to me that perhaps the APL should be made 2 little more practical. It
should understand about its working environment a little more, even if it means that
variables and files are one and the same thing! I do not blame APL*PLUS for their policy of
enhancing their APL by the addition of [Jfunctions (in fact it is a very rich language for this
reason) — but somehow I feel that something is being lost from the concept of APL as a

53

VECTOR Vol.3 No.3

computer programming language. 1 guess it has something to do with the fact that APL is
really a computer implementation of Iverson’s notation. Still, full-screen management and
full file management as APL primitives have their appeal.

In conclusion then, APL*PLUS release 6 is a definite evolutionary step forward. Well
worth looking at for the serious PC APL developer. I consider it a real professionals’ tool
and an improvement on release 5. A lot of barriers have been lifted - roll-on release 7.

APL.68000 for the Apple Macintosh
by M.S. Bassett

The Macintosh was the first readily available computer to use the concepts of mice,
windows and pull-down menus 1o build a user interface, and whatever you think of this
approach yourself much of the strength of the Macintosh is that nearly all of the software
you run on it will offer the same working environment and access methods.

This poses interesting problems for the writers of Macintosh programrning languages; they
must provide:

a) a Macintosh-style interface for the potential programmer (who is, after all, a user as
well);

b) arespectable programming language;

¢) ameans for that programmer to provide a Macintosh-style interface for the users of their
program in turn. This review will attempt 1o describe how MicroAPL have fared in each
of these three areas.

The APL.68000 interpreter is in fact very comforiable to use, and integrates nicely into the
Macintosh environment. To start the interpreter you may either use the mouse to point to
the interpreter itself, which loads and gives you a CLEAR workspace, or point t¢ a
workspace file on disc which will invoke the interpreter and automatically load the
workspace selected, (Macintosh owners note: obviously you don’t just paint to these things
vou double-click on them, but I want (o avoid as much MacJargon, sorry Macintosh jargon,
as possible in this review.)

When loaded, the interpreter offers you a 24 by 80 text window, which can be moved aboul
the screen but not re-sized. At the top you have a choice of four menus which control the
APL environment, including the editing and running of functions (see figure 1). I
particularly like the File menu which offers you both the APL and the Macintosh
descriptions of workspace loading/copying etc.

54

VECTOR Vol.3 No.3

L] Fite |
=—)LOAD Cpen... 1t

Terminal

Intervupt

Connect
apL.{ JSAUE Save as... [Pouse iscannact
coryl JCOPY Merge... | Cut E4] Resurme Setup
EEEﬁ JORGP Delete... Copy £

Paste ®D
Page Setup Clear ®Y
R —— E n te r
JCLEAR New
JOFF Quit Open fn .y

[lese t
Jisit, I anchanged

APL.68000 for the Macintosh
Capyright (C) 1985 MicroRPL Ltd

When you select an option from the File menu a window appears asking you to select the
name of the workspace desired from 2 menu (the menu scrolls if you have more than eight
workspaces on the disc). You also have the option to cancel the request or change disc
drives of you wish. This is all just like the standard Macintosh approach but I found two
oddities: first whether you are loading, copying, merging or deleting, the text on the
window says “open” i.e. load a workspace — this led me to accidentally delete on of the
workspaces provided with the system; second I could find no way to save a workspace of the
same name as one already existing on the disc - very frustrating !

Editing a function is done via the Edit menu (surprise !). The edit window is large and
scrolls in all four directions, again in the standard Macintosh manner. The APL character
font is small but perfectly readable. Editing is peformed using the Macintosh “cut and
paste” approach which is essentially a set of highly flexible block move/copy/delete
operations. This is also standard Macintosh style but I found it a bit awkward; I kept having
to take my hands off the keyboard to use the mouse and in particular it is very frustrating not
being able to move the cursor from the keyboard. My normal style of APL programming is
to write a line of code from left to right leaving gaps or pairs of parentheses for bits I am
going to come back and fill in later; this involves a lot of cursor work and is especially
unsuited to use of a mouse. However after half an hour’s practice I had written some fairly
long functions so perhaps familiarity will bring content.

There is no recognised “Break” key on the Macintosh keyboard so MicroAPL chose the
cloverleaf key for this role which seems a reasonable choice; confirmed mousers can choose
Break or Pause from the Interrupt menu which will normally be available whenever a
program is running.

Unfortunately I had no facilities with which to try out the Terminal emulation menu, so all
I can report is that it offers the standard VT52 protocol and a wide variety of option
selections.

55

VYECTOR Vol.3 No.3

Moving onto the interpreter itself, the language is a full implementation of APL.68000
which is jolly good news; what everybody wants to see of course is the benchmarks. The
first few columns of this table were cribbed from VECTOR Volume 1, Number 4.

UPDATED 'SMITH' BENCHMARKS

I B IBM FC SEECTRUM QL MACINTOSH
CHIP: 8088 8088 58000 58008 68000
APL: IBM APL APL=PLUS AFL.68000 QL/APL{K) APL.E80DO
VERSION: 1.00 2.6 4.10/8 1.03 1.0
BENCHMARKS:
Ze+ SV 90 102 28 S 18
Zev VL, 0.4 3 6 16 2
Z+L /01 1MT uo 25 20 42 11
ZeVI= 1 380 282 4312 6824 Jugy
| VR 80 79 87 169 64
Z+VRLVIT 20]] 20 14 23 51 12
ZeVITYVI] §00 112 190 325 150
72 1+MR 9 24 12 27 4
ZeVIeVI 150 146 217 202 100
2 18MC 450 60 188 355 151
Z#VCo . =VC 360 151 158 363 117
Z+{150)e, 4150 2530 439 241 535 165
ZeVRL +VR 210 341 192 350 148
I+MREL Ot VR 70 1488 o 559 270
Z+FIB 2200 3827 1654 3250 1255
ZeVAn3.14 100 136 229 396 180
Z4VR13.14 110 152 382 541 308
ZveVR 150 143 2428 3807 1958
Z+10VR% .1 411 438 462 4559 2256

As you can see it is very fast !

‘Fhe last hurdle to clear is making use of the Macintosh graphics facilities from within APL,
the “Toolbox™ of special purpose routines in the Macintosh ROM. MicroAPL provide a
selection of several workspaces to this end, each containing a set of assembler routines
accessible from APL te control such things as menus, the mouse, graphics windows etc.
was unable to find any aspect of the Macintosh interface thart I couldn’t control with these
routines and they are very reasonably sized, taking up 60K of a 272K workspace if you load
everything in.

Using these routines you can create your own menus and menu bars, over-riding the
standard options if you wish, track the movement of the mouse, make windows pop up all
over the place and generally dazzle users with any amount of pyrotechnics. You also have
full access to the standard Macintosh data-transfer facilities, the “Scrapbook” and
“Clipboard”. The graphics routines are particularly impressive. Standard functions let you
create lines, circles, ovals ,boxes and arbitrary polygons, filled or not with whatever pattern
you desire; and these functions are in themselves quite fast. However by using the
MAKEPICTURE command the output from these functions can be coded into an integer
vector (which I presume is a set of calls to the ROM); in itself quite small this vector can be
processed to re-draw the original image at blinding speed. As a small example of what can
be achieved 1 offer figure 3, which shows my favourite “hatf-hour” database with graphics,
customised menus and a choice of output windows, the entire screen taking perhaps two
seconds to draw.

56

VECTOR Vol.3 No.3

In short this must be the best APL. currently available for the Macintosh and quite likely
one of the best available for any PC. Highly recommended.

€ File Edit Interrupt Terminal

ManthivFigures ®F
— Graphics 3 Graphics %6
Bokatrenies: 1K Lomments
Em

151 | Budget M Actual M Pr
I Cum Uariance= Preview —

Close RIl
Quit

1

Ja

Whug Jun Jul Aug Sep Oct Nov Dec
85] i

-3 _——‘n.-;-._-_-,......_V.ﬂ./.”.' res

Turnover

Sep. 85

1985 Budget Actual UVariance Preview Forecast

Jan 75 60 (15
Feb 65 53 (1)
Mar 85 88 (5)

v
~3

ARE YOU

TIRED of TRYING
to get GRAPHS from some
COMMERCIAL PACKAGES “?

Our PLOT [PC can match most of the graphical
output of other highly priced packages at a
MUCH LOWER PRICE!

3D & 2D PLOTS TEXT ANNOTATION and
AUTOMATIC SCALING

Supports SCREENS, PRINTERS and PLOTTERS
Inciudes INTERACTIVE DIAGRAM EDITOR
COMPLETE with DOCUMENTATION

LICENCE TERMS AVAILABLE

UNLOCKED CODE

£ 99'00 (inc. VAT)

MetaTechnics Systems Ltd
Unit 216, 62 Tritton Road,
London SE21 8DE, 01-670 7959

The Systems Builders

VECTOR Vol.3 No.3

RECENT MEETINGS

This section of VECTOR is intended to document the seminars delivered at recent
meetings of the Association, particularly for the benefit of those members based away from
London who often find it hard to find the time to attend. It also covers other selected events
which are likely to be of interest to the wider APL community.

We are dependent on the willingness of speakers 1o provide us with a written version of
their talk, and we would remind them that “a picture’s worth a thousand words”. Copies of
slides and transparencies will enhance their articles.

The Activities Officer (see inside back cover) will respond enthusiastically to effers from
individuals who wish to contribute seminars and supporting papers.

59

VECTOR Vol.3 No.3

British APL Association Meeting

I-APL
17 October 1986
Reviewed by Anthony Camacho

I-APL had been advertised as the only topic. The plan of the afternoon was for Anthony to
explain what the project was about, then for Norman Thomson to talk about what is being
done to prepare for introducing it into schools and finally for David Ziemann and Paul
Chapman to answer any questions about the specification and how the interpreter is to be
produced and ported to the target machines.

The explanation of the project’s history and content took the form of five large charts. The
main events so far, the reasons for the project, the target specification, the details of the
features of the interpreter (ISO conformance) and the organisation of the project.

Chart 1: I-APL Main events so far.

April 1986 First discussed

APL 86 Committee formed

July 30 enthusiasts

August 1986 SigAPL votes $5000 {conditionally)
September 1986 Letters to all European Groups

BAA votes £6000 (conditionally)

October 1986 Specification in draft
Marketing plan to be produced
Work on interpreter begins

November 1986 Fundraising begins in earnest
APL 87 Dallas Interpreter on demonstration
May

It was made clear that the project is not under the auspices of the British APL Association
or SigAPL and that it should not be assumed that what the members of the project satd
expressed the opinions of the BAA. The details of the conditions under which the sums
voted by SigAPL and the BAA would be paid were made clear. SigAPL wishes to se¢ and
approve of the marketing plan (as it is not a commercial product some things will be harder
and a few easier than the usual kind of marketing), and will pay $500 on evidence that the
project is really going to start, $2500 on approval of the marketing plan and $2000 on
completion of the interpreter (to assist with the costs of launching it and distribution). The
BAA conditions are that its Technical Officer vets the Technical Specification and reports

60

VECTOR Vol.3 No.3

his acceptance to the committee and that its Publicity Officer and Education Officer are
given the opportumnity to see and suggest improvements to the marketing plan, and that the
project accepts any amendments they require.

When asked what the state of the BAA finances was, the BAA Officers present agreed that
they could not really speak for the Treasurer in his absence; however they could safely say
that the BAA had more than the proposed contribution in its current bank account and that
this was before the profit from APL 86 was taken into account; in short all that could be said
was that it would not strain the BAA’s finances to make this contribution.

Chart 2: I-APL — Reasons for the Project

An interpreter which will run on small computers is needed 10 give more
people the chance to try APL (especially at school and at home).

A free interpreter is needed to overcome the price barrier which prevents
many people from taking their interest further (most schools cannot afford
commercial prices).

The target machines for the project are the BBC ‘B’, Spectrum 48K (and up), the Apple II
(and up), all CP/M micros {e.g. Amstrad word processors) and all PC look-alikes (e.g.
Amstrad 1512 series).

The major task besides producing the interpreter itself will be to provide introductory
material suitable for this large potential readership: teaching material for schools, games for
home use and manuals and guides which do not assume the degree of determinaticn to
absorb new ideas that a company expects from a data processing employee.

The purpose of the whole project is to promote the use of APL: not specially I-APL, which
will neither be fast nor well provided with facilities, but any APL. If the project succeeds it
will bring many new members to the BAA.

(Editor: As the I1-APL specification is printed in full in the technical section of this
wssue of VECTOR, we have omitted charts 3 and 4 which were an abbreviated
specification.)

David Ziemann explained that although it may take some time for the formalities w0 be
completed before the 18O Standard is issued, the draft is now fixed and we can safely
assume that it will not change.

Paul Chapman explained that the interpreter will be designed to be ported easily onto any
new machine and the source code will be freely available so that the project does not have to
do all the ports ~ or even to have knowledge of all of them.

Paul Chapman explained that this outline specification is a target not an absolute
commitment (some facilities may have to be dropped if there is no room for them), but that
he intended to write the interpreter with all these facilities built-in and only 10 drop features
as a last resort if he could find no other way of getting the interpreter into the space.

David Ziemann offered to provide a copy of the draft specification as it stoed (not yet
agreed) to anyone with a legitimate interest, provided that recipients would treat it with
discretion and not allow it to be published unti] agreed.

61

VECTOR Vol.3 No.3

Chart 5: 1-APL:; Project Organisation
The Committee is:

FEdward M. Cherlin (Editor: APL Market News) joint chairman
Anthony Camacho (Sec: BAA) joint chairman

Howard Peelle (Prof. of Education, Univ. of Massachusetts)

Norman Thomson (Educn, Officer, BAA —algorithms ed: Quote-quad)
David Ziemann (Technical Officer, BAA)

The Committee has formed a Company called I-APL Limited and all
committee members are Directors. Anthony Camacho is Company Secretary.

There are at present nearly 40 enthusiasts on the mailing list, mostly collected
at APL 86. Anyone interested may add their name to the list and will be
circulated with news of progress.

David Ziemann explained that he hoped to improve the draft specification as a result of
comments made at this meeting.

It was agreed that it is most important to make clear that all manuals and other documents
issued as part of the project could be copied and translated freely (the latter point especially
important to users of APL whose native tongue is not English).

Norman Thomson pointed out that as far as the bulk of the new potenual users were
concerned, the project will not have a product until the supporting documentation is
complete and can be provided with the interpreter.

The documentation at present being prepared consists of a Tutorial on which Linda Alvord
is working, an encyclopaedia of APL (giving examples of each use for the primitve
functions, operators and system features in alphabetical order) which Garry Helzer is
writing and a series of books or booklets to be called “APL for where the dots are
replaced by a particular application of APL.

The obvious first example was APL Programs for Mathematics and Norman circulated draft
copies of his book with that title (90 pages of A4 text), This was tried out by loeking up in it
some school mathematics topics such as Pythagorean triples and going through the
examples given. Norman will welcome comments from those who took copies away.

This book (and Garry Helzer’s, which is also in draft) at present has only standard APL
examples: eventually there will be side by side examples both in APL and in the ASCII
mnemonic transliteration. This will make the book suitable for use whether or net the
computer has an APL character set available and will help to accustom people to the APL
characters at the same time. Llewellyn Jones has been working on a way to do this
transliteration for some two years now and is willing to give the project permission 1o use his
wark free of charge. He has functions which will translate from cither form into the other
under VS APL and under APL*PLUS/PC. (APLpip for the PC and APLpup for the
mainframe where EBCDIC is a bit more restrictive than ASCIL.)

62

VECTOR VolL3 No,3

Norman said that the marketing effort could only begin when both interpreter and
documentation were ready. He suggested several lines of attack. As these were discussed
and added to during the meeting the set below includes all the main ideas that seemed
acceptable 1o those present.

I Prestige schools. Norman Thomson has contacts at several of these and believes that as
they have better facilities and lively and open-minded staff, they should be easier to
persuade to try out APL. If two or three of the best known schools can be shown to have
made a success with APL then it may be easier to overcome resistance in other schools.
Excellent reference sites will certainly do us no harm.

2 County Education advisers (or Inspectors as they are called in [LEA — which Neil Bibby
pointed out) should certainly be made aware of what we are offering and asked to
encourage their schools to try experiments with APL.,

3 British APL Association members should be asked 1o demonstrate what we produce to
anyone in education that they know and to help to give away the interpreter, sell any
books we have 1o charge for and provide the project with feedback on what other
material could be provided which would help to make the product more acceptable.

4 Plainly any school which can be persuaded to give APL a try should be; the selection
will have 1o be haphazard — it will be the teachers members of the APL Association or
the I-APL Project know rather than any selection by some criterion of suitability,

5 Itwasagreed that it would be particularly valuable to get I-APL exposed to the trainees
and staff of teacher training colleges. A few committed advacates in such an institution
could encourage the spread of APL out of all proportion to their numbers.

6 It was suggested that another good place for publicity was the user groups. There are
groups interested in particular machines, microcomputer clubs for particular districts
or in particular colleges and these enthusiasts are more open 10 new ideas than the
general run of home and school microcomputer users. It might even be possible to get
the interpreter put onto a public access network so that people could download it.

Norman Thomson reported that the Mathematical Association has a book giving the
BASIC programs for 132 common mathematical functions or processes and that this is very
popular and widely used. His book is intended to upstage this as it contains many more
functions (about rwice as many) and need not be more expensive. He has already been
exploring ways to get it published as cheaply as possible and is weighing the relative
advantages of cheapness and getting onto the lists of a recognised and respected educational
publisher,

Les Hollingbery asked about style and standards of the examples in the material 1o be
produced for the project (he liked the style of Norman’s examples). It is desirable that the
examples should encourage good habits but the project ought not to try to impose ‘good’
style on potential users (at least not where there is room for a difference of opinion about
what style is ‘good’). The project cannot really afford an editor to impose a house style on
authors who are all doing voluntary work and may be unwilling to accept anyone else’s
views of how to do it. Any suggestions which could be circulated for comment to all authors
working on the project would be very welcome.

63

VECTOR Vol.3 No.3

When the meeting was thrown open to general discussion (questions had been encouraged
throughout) many helpful suggestions were made. The dash between the Iand APL could
subtly be made heart-shaped. We should write and include some games in the free software
issued with the project. We should all write to computer and non-computer press about the
project to give it publicity and arouse expectations; perhaps we could ask magazine readers
o send in their names and addresses if they were interested in an early copy of the
interpreter.

Paul Chapman was asked about the process of writing the interpreter and he explained that
he intended 1o write code which would be interpreted in every machine. The interpreter
would be a very simple version of a threaded language — something after the style of
FORTH but not FORTH itself because the interpreter would be too big and complex. The
APL interpreter could thus be exactly the same sequence of ones and zeros on every
machine. It would use the machine code entirely through the kernel of the threaded
interpreter. To port the APL 1o a new machine it would be necessary to write the machine
language kernel for the machine and code the calls to the operating system which did such
things as write a character to the screen, get a character from the keyboard and so on. Asit
happens only three machine language kernels will be required - to suit 6502, Z80 and the
8088 family. Paul hopes that his development environment will have commercial vatue. It
is to be called DE (to imply it is better than C as an environment for creating poriable
software) — he was going 1o call it DEL {for development environment language) until he
discovered he was unaccountably losing files!

The general atmosphere of the meeting was friendly and no-one voiced any adverse
criticism of the work that had been done so far or of the plans presented, When the audience
was challenged to suggest a better way to encourage the spread of APL no suggestion was
offered. When people were asked explicitly whether they thought the contribution from the
BAA was a good use of the funds there was no dissenting voice 10 say that it was not. There
was general agreemnent that this was a very good way to try to spread the use of APL, and
many present felt that se far unfruitful efforts might meet with success once they had the
proposed free product to help them.

Thirteen people put themselves down on the list of people interested in having news about
the project and most of them offered to help in some way.

The meeting ended at about 5.30 and discussions contintied in the bar for some time.

64

VECTOR Vol.3 No.3

65

VECTOR Vol.3 No.3

APL Debate: What is APL Thinking?
Reported by David Preedy

Howard Peelle, who acted as chairman for the session, introduced the debate by outlining
why he felt that the wopic of APL Thinking was an important issue to discuss at the
conference:

“It’s a term that we seem to bandy about quite {reely here in the APL
community and if indeed we are serious about the dissemination of APL,
especially for those people who are learning APL for the first time, it seems to
us that it is important to understand APL thinking ourselves.”

He then said a few words on his own perspective on the subject by way of warm-up,
describing some of the work done by himsell and his colleagues at the University of
Massachusetts, addressing the objective stated by Robert Hooker:

“The time is right for the psychology of programming and of APL in particular
to come of age . , . we have a need to study the unique mechanisms used by
APL programmers in structuring their thoughts”.

Their approach to their initial studies into APL thinking has been 1o study the literature and
extract relevant comments; to analyse some common mistakes that beginners make when
learning APL; and to think abourt the kinds of errors that APL instructors make while
teaching APL. With this background they’ve begun a series of interviews and published a
survey in Quote-quad inviting people to say what they think APL thinking means to them.

They have initiated a course daringly entitled “APL thinking” — a computer science course
attracting also some people from educatien and from mathematics. As a result they have
identified quite a number of challenges or related issues surrounding the topic; they
concern questions such as the extent to which individual style affects APL thinking or, as he
phrased it

“Do you believe that APL thinking style or APL programming style can or
should be taught?”.

Despite its inherent difficulties, they are using a methodelogy invelving asking people to
talk out loud while they’re thinking about a problem and while they’re using APL 1o solve
it.

Peelle finished off his introduction by showing a few quotes that they have extracted either

from the literature or from the individuals directly about what people think constitutes
APL thinking.

“Clear, simple rules; compact notation; unambignous interpretation;
executability of mathematical statements”

“APL 1hinking is recognising patterns, decomposing a problem and seeing
where 10 apply APL idioms”

“I know I can do it iteratively but the question is how can I do it with arrays, be
it elegant or not”.

66

VECTOR Vol.3 No.3

“The best way to gain fluency in APL is by thinking in APL”
“Itis not evident that the average programmer thinks in arrays”.

Several quotes explored the ideas of visualising geometric objects and dealing with
mathematical expressions.

“Problem-solving using APL can frequently be facilitated through the use of
visual imagineering”

“I learned APL simply by considering how a mathematician would think”,
“APL is the essence of mathematical thinking”

or, by the same speaker when pressed on the point:

“Mathematical thinking is the essence of APL thinking”.
“APL is a good short-hand mathematics”

“APL thinking means ecstacy”

“I’s the ability to say the same thing in several ways”

Some quotes explored the importance of modelling — structuring data rather than program
flow; thinking about the problem rather than thinking about the program one’s writing or
certainly rather than thinking about the machine upon which it’s going to run.

“It involves being the black sheep in the D.I*, department”

“One could memorise all the APL primitives and other aspects of the language
and still not be able to selve problems”

{APL thinking is what would be missing in that case.)

“There’s a large distance between how I think of 2 problem and how I must
write it in APL”,

APL thinking is not APL itself; it’s not what APL does; or even what APL makes easy 1o do.
It’s what we do beyond what APL offers. It may include what we have to do to make APL
fit the problem or even make the problem fit APL. Therefore APL thinking is really the
complement to APL. The last quote was:

“APL thinking — 1 don’t know what that is”.

The first panellist on the debate was Micheal Berry:

Having been involved with teams working on designing parallel computers, Berry
presented the view from one who has recently moved outside the APL world to a place
where people are spending a lot of time doing exactly the opposite of what those in APL
think people usually ought to do, namely thinking about the details of a particular
compuier architecture and how to write programs that will match the way the machine
works. The machine in question is a massively parallel machine called the Connection
Machine which involves somewhat over 65000 processors all of which are fairly small but
have their own memory and each of which has the sole option of whether or not to execute
the the instruction that is sent 1o it from a host computer.

67

VECTOR Vol.3 No.3

The problem with how to program such a machine therefore is how to design programs
(and how 10 design a programming language in which 1o design those programs) in which
i’s easy to make statements so that each of the little processors working independently of
the others will usefully progress towards solving the problem.

“One of the first weeks I was there, people were sitting around discussing the
problem especially with the IF statement for the new language. The problem
being that... you imagine arrays as being stored with one element in each
processor and, If you had 2 arrays that you were going to add, the
corresponding elements of each array would be in different memory locations
but on the same set of processors and you would send the instruction ADD
presumably with some pointers 10 the 2 aress in memory and each little
processor would do its one addition, and so the thousands of ADDs would be
done,

“Well, they knew they needed to design an IF staterment and the obvious way
for it to work would be that you evaluate what they call the predicate, this
being a LISP environment, basically a Boolean expression, and for all the
processors in which it’s true they stay turned on and do the next thing and then

they turn themselves off, and the other set of processors turns itself on and
does the ELSE thing.

“People were worried about the fact that unfortunately this decision-making
has to happen in the front-end computer, something like a VAX or a
Symbolics 3600, and a lot of ime is wasted while thinking about doing the IF
while the Connection Machine itself is sitting there not deing anything. I
brought up an idea which seemed weird to people: “Why don’t you try and
write the programs so there aren’t any 1Fs, because you would think of an
instruction to say, which would do the right thing to all of the data. The
instruction would be more complicated but each processor would do it and
have done the right thing.” ”

“The reason I thought of that and everyone else was thinking about how to do
the IF was because I had just come from years and years of thinking in APL
and it seemed natural to me to try and think of a solution where even if it’s
more complicated to express what you're doing you can still doit all at once.”

They now regard suitable problems for the Connection Machine, as those exhibiting a high
degree of “data-level parallelism”, meaning that you can do it all at once, such as image-
processing, where each pixel can be instructed to ask its neighbours how bright they are and
average with them or something like that.

Berry saw this as one angle on what is APL thinking; it’s thinking about how to find that
data-level parallelism, because data is what we can structure very well in APL. He
illustrated this concept with some examples.

68

VECTOR Vol.3 No.3

The first was taken from a Scientific American article some time ago which compared
computer languages by asking a skilled writer in each language 10 write what they think
would be the normal way in their language to express the problem “Add up all the odd
integers in this integer vector”. The APL solution differed radically from all the other
solutions in incorporating data-level parallelism; all the other solutions involved locking at
each element and asking if it were odd and if so incrementing the counter variable that’s
collecting the sum, and if not going on to the next one and asking it. So in fact Scientific
American had found a good example of APL thinking.

Another familiar example is the problem of rowating the lines of a text matrix to remove
leading blanks. In APL, you work out how many leading blanks there are in each line and
rotate by that amount; you don’t loop through the lines. Whilst each line does have to move
by a different amount, you only need one expression by which to figure out how much they
have to move.

Sometimes it’s hard to see the data-level parallelism because at the level that you're looking
at it the data doesn’t look quite parallel or looks ragged and here Berry showed how nested
arrays have helped in letting parallelism or rectangularity be imposed at whatever level is
most convenient.,

Berry finished by exploring the trade-off between elegance and performance. One of the
things that restricts us from really practising our APL thinking is that people look at you
and say “That’s cute, but come on let’s be reasonable it’s not an efficient way 1o do things”.
At Analogic, Berry had great fun implementing the paragraphing system using domino and
realising that, while still perhaps slower than some other ways, it worked fast enough for
him to use it, and he did use it in his text editor just for fun. If Berry does achieve his goal
of getting a “thinking machine”, and if he succeeds as 2 mole-bearer and we ever have APL
on the Connection machine, he remains confident it will be better 1o use the approaches
currrently discarded on grounds of performance. He looks forward to the day when his
APL thinking will not only be clear to himself and hopefully to readers, but will also be the
best way to make the hardware do what it’s supposed to do.

In answer 10 a question, Berry explained how he felt that the Connection machine has been
affected by APL. The proposed specification for the language for the Connection Machine
borrows exclusively and fairly heavily from APL where the most noticeable things are
operators reduction and scan. Although not called operators they they apply 10 a function
and give you & new function that works just like APL ones. Another thing, that would also
be an operator by our APL definitions for scalar extension, applies to a function and makes
a function that is executed in every processor (in Connection Machine terms); in APL we
would say it applies to each element of the array, so it’s either a scalar extension operator or
an “each” operator of some kind. These were quite conscious borrowings and Berry found
that in joining the Connection Machine team his knowledge of APL was recognised as a
plus.

The next speaker was Ray Polivka. He started by exploring some of the premises
underlying the debate. The first was that the individual concerned actually is prepared to
think, and wants to think. It was an illusion to forget that many people simply do not want
1o think about the process they are learning.

69

VECTOR Vol.3 No.3

His next statement was:
“I don’t think there is APL thinking.

“Let me say it a little differently — | believe APL fosters thinking and the type
ol thought patterns that it fosters are structure driven, or data driven. It allows
us, if we so choose to do it, to think more like the patterns that we would like
to think in. Now Pm comparing that with the patterns that are forced upon us
in regular computing.”

Based on his experience in teaching APL to a whole spectrum of people from engineers,
secretaries, managers and computer science trained people, Polivka had found that the
problems lie with the computer science folk, because APL allows you to think more
naturally.

“What is the natural way that the computer scientist has been trained in? IF
THEN ELSE I GETS INCREMENT etc DO WHILE FOR. That’s why
what has happened in many cases is that the person who has come from a
PASCAL trained background comes into APL and proceeds to write glorious
Pascal with APL terminology.”

One of the other problems is that programmers tend to drop down too quickly to the details.
If you're going to build a piece of furniture, you don't immediately go down to a hardware
store and pick out the nails you're going 1o use. You design the thing first — what shape and
size you want — negotiate with your wife or husband and things of this sort. You don’t go
down to the details,

And yet in fact in programming in a sequential language you are forced to go down to those
details much earlier than you want to. APL promotes thinking which 1s:

Algorithmic,
Idiomatic — although Polivka preferred a term from psychology “chunks of

APL” because you can read the statement item by item or function by function
or you can see it as a chunk of APL

Inquisitive — the fact that APL. is executable on a machine is a great bonus and
if you’re not sure what happens, you just try it out,

“Multi-perspective” — meaning that there’s no one way 1o the solution. One of
the real joys of working with APL is to come to a collleague and say “Look at
the solution I have got to this problem” and he can say “Look at mine” and you
find that you’ve been looking at it from two different ways.

Polivka closed by saying that APL is a notation that we need, will continue to need in the
growth of our scientific and engineering development as a society and culture. APL fosters
thinking.

70

VECTOR Vol.3 No.3

The next speaker was Roy Sykes, who started by pointing out the inadequacy of the normal

adjectives used to describe APL thinking — words like “modular”, “array-driven”, “whizz-
bang”, “intuitive”, “parallel” and so forth. He thought those terms are inadequate. He
prefered a metaphor — the metaphor of the combined architect and builder of a house,
somewhat like Polivka’s furniture builder. The client, often oneself, is interviewed; the
needs are assessed; the blueprints are drawn and approved; the required marterials are
acquired; the proper tools are brought 1o bear; the house is constructed; and finally some
walls are shifted around, a few changes are made to belter suit the client. Sykes saw APL
thinking covering this broad context. It is not limited to what one does with the symbols of
APL. It’s the mental process that threads throughout the entire process of defining and

solving the problem.

Sykes illustrated this by going through the typical process that he typically undergoes in
defining a program, a function of a modest size, not a throw-away one but one that is part of
a larger system.

“The first thing I do is think; think about what the problem is, try and
understand what I'm doing. Part of that process is understanding exactly what
my inputs are. This is nothing new; one decides whether one is taking
character or numeric data, is it going 10 come in as arguments or global
variables from the user at a keyboard, from files, whatever, Bur in any case 1
define that very carefully. At this point I open definition on the function, and
I have the formal header, perhaps not the local variables, and perhaps 3 or 4
lines of comments describing precisely what my inputs are.”

Next he does the same with the outputs — decide what the cutputs are, precisely how they
are structured and ordered. He has now documented a substantial part of the function
without writing any code — presuming that the header is not code.

Then he thinks about the transformations required; whether they’re structural or
mathematical primarily; is it inherently a parallel or an iterative solution? Of course that is
overlaid with what we can currently do in APL with the primitives available to us. This
involves deciding whether to adopt a nested or a simple solution. Essentially he breaks the
problem into sentence-sized chunks,

The next thing is what some other people would consider APL thinking and coding — Sykes
overlays the sentence-sized chunks onto the tools and mechanisms he knows. Working in
order, he starts with the APL primitives; for a structural problem he may think in terms of
taking transpose, drop and laminate; for a mathematical problem he may consider the
scalar primitives, [Jdivide, base-value and so on. Then he introduces the so-called idioms or
chunks that are available that we all know. Thirdly he brings in the existing commonly used
subroutines he has already used to solve problems. And fourth he thinks in terms of new
subroutines that he might write and how they could be generalised for future applications.

The penultimate step is to lash all these chunks together trying to smooth the transition
between the sentences, putting in the appropriate commas, semi-colons, periods,
paragraphing, and so on — the nails of Ray Polivka’s furniture.

71

VECTOR Vol.3 Ne.3

Then Sykes tests his code. The testing has three phases. First he assures that the proper
inputs result in the proper outputs, especially on the edge conditions. Secondly he checks
that bad inputs are handled properly, giving correct responses to the users, or signalling
errors to the outer environment or just letting the program blow up — that’s acceptable
provided that the error performance is documented. Third is testing no undesirable
outputs arise, such as unlocalised local variables and so on. We don't after all want the
neighbour’s house subsiding!

Finally, the last step is incorporating revisions. He reviews the core algorithm used and
removes any redundancies. The chunks have a bit of a disadvantage in that if you simply
write in chunks, you may end up with a chunky program. One wants to have a smooth
program, and sometimes if you look at the broader measure you see that two or three
chunks put together are rather an entirely new algorithm. Sykes removes these
redundancies and revises the documentation.

“If we define APL thinking in its very narrowest sense, that of the
transformations and coding, we encourage a myopic approach to problems. I
teach APL and I find that the most difficult problem is not APL thinking, it’s
thinking. The results are fuzzy because the inputs and outputs are not even
clarified by the students to start. He or she has a very broad idea of what they
want to do; they don’t know know really what they start with, and they don’t
know really what they want. Once those two things are clarified, the process is
simplified by APL. If we can teach people 1o clarify their thoughts, the
embodiment of their thoughts into APL code is simplified.”

In response to a question, Sykes explained his approach when he finds he actually gets stuck
in defining the algorithm. If none of his colleagues can help he puts wgether the very
simplest, often iterative, scalar solution 1o solve the problem,

“I get something that works; it may put my machine 10 sleep for 30 seconds but
at least it works. It represents the most basic, (pun intended), solution to the
problem. It works, 1 know my inputs, I know my outputs, and the
transformation there. That process will often clarify to me what I havetodoin
amore parallel sense, using the APL primitives at hand. Very often, especially
these days, I find myselfat first thinking in terms of nested array solutions, and
then backing off into simpler solutions that are almost as terse but run
considerably faster using simple arrays.”

The final panellist was Norman Thomson. He felt that his view of APL thinking might
reflect a transatlantic difference in attitude from his three co-panellists. To him APL
thinking is a kind of layer that goes on outside APL; it’s the kind of things that he says to
himself in order to make APL make sense.

At an earlier session Stephen Jaffe had formalised little rules —rules that are the baby-talk of
APL - the things that make it easy 1o get it right if you are re-structuring multi-dimensional
arrays. What you do is you build up a fabric of these informal rules, informal as opposed to
the formal rules of APL, and that forms the basis of Thomson’s APL thinking.

72

VECTOR Vol.3 No.3

He then looked at the increasing challenge presented by APL2:

“Now, I guess that if we had reviewed this five or six years’ ago, before APL2
came widely onto the scene, we could see that we’d to a large extent exhausted
the APL1 challenge — we’d begun to understand and largely control the
symbols that are present in APLI. In my bockcase at home, I’ve got a book of
silly ideas. I once had the idea that it would be fun to take all the APL primitive
symbals, and combine them, take all the possible pairs of symbols and work
out what they did together; maybe 1ake a few triads and find out what groups
of three did; explore the possibilities and see what you got, and hopefully quite
a lot of them might be interesting. In a sense when you’ve done that, and
you've filled that book, then you would know all there was to know abott
APL, that’s the end of it and 1 could then go on and study something
interesting like beetles or mushrooms or something of that sort. I hasten to say
that it’s a book with a lot of empty pages, but there was a point at which APL1
looked like a closed universe.”

Thomson then gave an illustration of how his existing APL} informal rules had been
affected by the introduction of APL2. He looked at the case of outer product. Intuitively
there he had an interpretation; it meant extending an argument and applying a function to
any string of numbers to get blocks of resulis. It only becomes meaningful, to do an outer
product in code, when we had the “each” operator, and so it was lovely when APL2 came
along and proposed “each”, because somehow it was the jigsaw-piece that neatly filled in a
gap that was somehow z void in APL1,

However the other side to this particular ¢oin had come 1o mind earlier in the day when an
expression involving nested arrays had been displayed and Thomson had fallen hook, line
and sinker for an incorrect interpretation. He had been forced 10 go back 1o first principles
and even then his interpretation was rejected in discussions with others. It seems that with
APL2 we have created a structure of vastly greater complexity than we ever had with APL1.
Some time ago APLI looked like being a nicely closed, nicely rounded, self-contained
unity. Now with APL2, the “clear, simple rules” and “unambiguous interpretation”, so
admired by Howard Peelle’s respondents seem to have evaporated. As Thomson
concluded:

“Yes it’s unambiguous, but goodness me it takes a lot of seeing to perceive that
unambiguous interpretation.”

“So in short that’s my perception of APL thinking — something that has
radically changed between the, what now seems relatively simple, structure of
APLY and this vast relatively unexplored territory of APL2.”

Following the formal presentations by each of the panellists, there followed a more general
discussion involving members of the audience as well. There was considerable discussion
on the alternative interpretations of some APL2 idioms and whether they could be read
naturally left to right, read aloud for instance so that a class can understand them.

73

VECTOR Vol.3 No.3

From the floor, Anthony Camacho called on the principle of Occam’s Razor, saying that it
seemed to him that the types of thinking identified as APL thinking do not appear to differ
from ordinary thinking. So he was inclined to agree with Ray Polivka when he said that
there isn’t APL thinking — there’s just thinking. The opposing view was given that APL
thinking 1s in fact a subset of ordinary APL, and the debate had been concerned with
identifying the specific characteristics that are typical of APL thinking in particular.

In response to Norman Thomson’s APL2 problems, it was hypothesised that he had given
an example of is how APL thinking is something that he has developed. When he looked at
the expression and applied APL thought to it, he didn’t get the right answer, because in
APL2 APL thinking doesn’t work!

Adin Falcoff suggested that the answer to Anthony Camacho’s dilemma was that in
discussing APL Thinking we are working 1n the context of the world of programming and
so when he talks about APL thinking he is contrasting it with thinking about other
programming languages.

“I think there are some very simple and cbvious differences. You tend to think
in terms of transformations of arrays; you tend to think in terms of functions
that have arguments and results; you tend and you learn eventually to think in
terms of operators; and the consequence of this is that you learn 1o think of
breaking your problem down in some logical way. Some of these things are
present in other programming languages, but most of them are not, and
certainly the others are present to a much larger extent in APL than in other
langauges.”

Ken Iverson looked at the different types of approach to describing processes, or even to
describe the same process {rom different points of view. Sometimes one wants to emphasize
iteration, sometires recursion, and there’s also the use of arrays. Then there’s the question
of doing things modularly and having functions with arguments and results; on the other
hand also possibly deciding things in detail. He thought that the essential thing of any good
language is that it allows you to express yourself in any of these ways conveniently and
cleanly and to the extent that APL is successful it is because it does 1hat. Iverson finished
with a question:

“How much harm do you think that the people in APL have been doing and
are doing by emphasising that APL thinking has one narrow notion that of
arrays?”

Roy Sykes believed that we have been doing a lot of harm and asked how many times we
have wasted time trying o make things faster, in particular by making them non-looping,
when the first solution that comes to mind is an iterative solution. He felt that cne of the
biggest beons of an APL compiler is that i1 allows the freedom to think in ways that either
are not overlaid on the primitives and eperators that we have at hand, or not intuitively
overlaid on them.

74

VECTOR Vol.3 No.3

Norman Thomson pointed out as evidence of the distinction between APL thinking and
ordinary thinking that in his own personal experience, APL had affected his life in some
sense — he saw things differently once he had been shown APL. He also disagreed with Adin
Falcoff’s view that the context of APL Thinking had to be programming. He felt that the
one thing that characterizes APL and makes it different from other languages is that its
context is a great deal broader than just programming. The revelation about APL was its
relevance in the real world; that, for example, the encode function is what you do when you
get change; or it’s what you do when you convert from centimetres to Imperial units.

“It seems 1o me that the whole essence of APL, and the whole thing that keeps
conferences like this going year after year, is the fact that APL has a spark, a bit
of inspiration, a bit of something I don’t know what — the thing we're trying to
identify, I guess — that is just that much broader than pure programming.”

Adin Falcofl responded that he thought that people’s interest in it would be somewhat
diminished if it were not implemented on computers — that programming should not be
regarded as z dirty word. Norman Thomson’s reply was that APL was the thing that to him
at least humanizes computers.

Linda Alvord explained how, as a mathematics teacher, she has 2 mental mode! allowing
her to see the structure of APL as if it was the 3-dimensional world that we live in. There’s
a visual aspect to the images of the data that is quite different from the way you think about
it in other programming languages. There’s something about the thought process that
involves image-making, and model-making, that characterizes it as different from other
languages.

Ray Polivka felt that we need to encourage array-thinking. He paraphrased what Anthony
Camacho had said at the Education Day:

*Loop-thinking is not natural; more and more programmers are learning more
and more on how 10 be baffled by parallel array thinking.”

APL isn’t the only language capable of handling collections of data — vectors, arrays,
strings, etc. — but one of its other strengths is i1 provides the supporting function is to
manipulate these things very concisely and precisely.

Roy Sykes finished the debate by highlighting APL’s interactive executability as
fundamental to its nature. But primarily, he thought:

“APL is a new vocabulary and it’s been said, by whom I don’t know, that
without vocabulary, without language, thought is impossible. Language in
some respects defines thought. And the language that we’re speaking of,
which is APL, defines our thoughts in a much broader way, a much richer
language, than any other computer language that I know of, I think the very
fact that we have such a large vocabulary in APL makes our thinking process
larger and richer in solving problems.”

75

LOWEST PRICES!
DIRECT FROMTHEU.S.A.!

Hundreds more
available — call for a quote!

HOW MUCH WILL YOU SAVE"
celimow (01) 997- 4277 &0

(301) 762 6647 Telex: 9102400147

1377 K Street, N.W,, Suite 827 Washington, D.C. 20005 USA .

VECTOR Yol.3 No.3

Idioms and Problem Solving in APL2
Delivered by Alan Graham at APLS6

Transcribed by Fohn Sullivan

(Editor: The start of the tape is unforrunately inoudible,)

- .. Avery common one (idiom) I call ‘All Right” takes each item on the left and pairs it with
the entire array R on the right. I have some examples which will make this clear. To take the
whole array on the right, if that’s what you want, you don’t want it itlemwise.

L (7 (er)

*All Left’ is the whole array on the left.

(eL} £ R

Now what’s the final combination of EACH and ENCLOSE? How about if you enclose
both of them? Not interesting or important, because you have that idenuity,

(eL) £ (cR) +» < L £" R

So there’s “All Right’, ‘All Left’, but ‘All Both’ doesn’t make sense.

One thing you find when using EACH is thart the derived function with RESHAPE is a
scalar function,

What that means is that like addition and subtraction itemns get paired and, if you have a
scalar, scalar extension occurs; dealing with scalars you can think of it as the RESHAPE 10
the size of the non-scalar and then the function is applied pairwise. This is important
because RESHAPE is not a scalar function, but RESHAPE EACH is a scalar function.
FOO EACH is a scalar function — 1 don’t care what FOO does, it’s a scalar function. I found
that hard to adapt to, once I'd adapted 10 it I say, as you do once you've learned something,
“Of course It’s simple”, but you don’t say that while trying to adapt o it because it’s tough.

OK we’ll look at some examples and try and adapt to it. A two-element vector plus a two-
element vector, you get a two-element veclor, same thing here,
2 3p4 5

that’s 2 rehape 4, 3 reshape 5. Well, how about if I'd like for instance down here I°d like rwo
2 by 3 matrices, one filled with 4s, one filled with Ss. That’s it, I want to use the entire left
argument over and over again, so I enclose it, you get scalar extension

(2 3)p™4 5

50 it’s 1he same as writing (2 3)(2 3) both in parentheses RESHAPE EACH and then carry
out

(7 3p4),{2 3p5)

And the final one, *All Right’

7 3p7es 5

77

VECTOR Vol.3 No.3

I get enclosed vector 4 3, and enclosed vector 4 5 4. And this occurs time after time after
time. I guess —er — well I'l] leave it at that.

I want to show you some other applications of this, this in action. Garth Foster called me
up, well, I guess I called him, a few weeks ago; he had a question that after a litte head-
scratching I came out with, I knew the answer, I don’t know why it took me solong. He said
you have the alphabet and you’d like o map indices into the alphabet into words, and more
specifically, he wanted 1o get a nested array of indices representing an array of words, and
he'd like to do that mapping and extract the words. So, here’s one reason why I use index-
origin zero, so you can put the blank in frent and A is one, and blank is zero. Here is my
alphabet

A+' ABCDEFGCHIJKLMNOPQRSTUVWXYZ'

and with PICK it works easily, vou can take out the I like that

934

1

and during one organized conference they had the competition for what words and phrases
in history mean. Before this talk, because there is the CHIPMUNK idiom, they had it afier
this talk everyone in this room wanted to win that prize. Why is it called the CHIPMUNK
idiom?

g 2 13="ca

You see, doesn’t that look like a chipmunk to you? Eyes, and big fat cheeks there. So there’s
the chipmunk idiom for you. It has to be asked, which one of the templates is it, pairwise,
all left or all right; which one am I using? (Pause, then answer from the audience ‘All
Right”) All right. ’m 1aking the entire alphabet, and picking from it the ninth, then picking
from it the second, then picking from it the thirteenth and I get IBM out of it and, well, hold
on, what is the F; the Fis PICK EACH, that’s the scalar function that | call F. So that’s just
a case of All Right.

Now, what Garth wanted to do— Oh, so you could say it was an index I’ll call I, and then you
could use the chipmunk again

1+9 2 13

I12"cA
1BM
and then you could say, well 1 want to add one to each number and compare that to the
addition of zero,

II«{c1)-0 1
1I>""cca
IBEM HAL

but then of course I'd get IBM and HAL from 2001! This is what Garth wanted to do, and
this is another example of All Right, because PICK EACH ENCLOSE (the chipmunk
idiom) is the chipmunk function, you could call it, so I'd like to do a list on the left, that
function, EACH, All Right; so I have this idiom which really would have been an obscure
question. What do you think that idiom is called? You'll never guess so I'll tell you. That’s
called *chipmunk with glasses and a toothache’. {Laughter) You'll have to use it a whole bit
more and have great fun.

78

VECTOR Vol.3 No.3

When I invite people in to see these things or give demos 1 tell them that this is my APL2
PC, even though it’s on the mainframe, and these are my APL2 toys, although I think
they’re not as trivial as toys. Another way to do this if you want to avoid the pepper effect,
you can define a sub-function called vector indexing, which is very nice.

[0] z+1 vI ¥

[1] » VECTOR INDEX

[2] Z«I=a"cvV

now you can say ‘jot-dot-VI', you can say ‘“VI-each’, you can say ‘VI-each-each-each-each’,
and you can use the function without thinking ‘chipmunk’, which might not have much to
do with vector indexing. This works fine, {inaudible), and now it becomes apparent that
we’re using All Right here, because here is the function, a list of indices or a list of lists of
indices, and All Right on the right.

[|
I 11BMI [HALL |
| !

LI S ey |

Now lets have some fun with EACH. Take a look at that.

X+(2p73 5 1)pTc1.0
bs X

4
'
'
)
'
'
]
+
1
'
'
'
1
1
1
'
]
]
]
1
'
+
'
'
[l
]
]
i
'
'
]
.
i
i
i
'
)
1
'
'
i

NI
20
91 |
|
il |
20
g1 |

|

Well, let's see. Only two EACHes. “T'wo reshape each’ you get 3 3 (pause} 5 5 (pause) 7 7.
We say we wanl to apply each one of those 10 the entire thing to the right, which are the
indices I followed by zero, 5o we want to do 3 3 reshape of that whole list, thena 5 5 reshape
of that whole list, and a 7 7 reshape of that whole list, and we get this beautiful thing.

I feel that with APL1 Pve been pedalling a very very nice bicycle, and with APL2 they gave
me a motor {some chuckles from the audience). It’s very easy to get horribly carried away,
and you should maybe restrain yourself; so I can use the chipmunk with glasses to solve
Garth’s problem of mapping arrays of indices into characters

79

VECTOR Yol.3 No.3

[|

IBM| +1BM 1| $1BM 1EM|

e R

!

I+ |
[| 18l IBM IB| | 1BM 1B]| |
| IM Tt }HM IBM|] {M IBM T} |
] *ecet | IBEM | |BM IBM | |
| [TBM 1] |1BM IBMI |
I tomena t | IBM IE]| |
| M 184 1] |
i |

A little bit different example, of how EACH helps you out, and how derived functions and
operators ¢an help you out. [just made this array that I'd like to manipulate, and you might
make that array just experimenting: it's a 3-element vector, and whatever you can do: a
scalar, a vector and a matrix. If you display it it looks like this

D5 R+3.14 'ABRACADABRA' (2 3p4 2 2 1)

R PR
ABRACADABRA] +4 3 21 |
---------- YIE 4 3]

|

PSSR |

You take the shape and, sure enough, it is a three-element vector
pR

Sometimes | ask my students a trick question, “How many elemenis in a 3-element vector?”
They get that (laughter). “How many elements in & scalar?” One, we know that, but
sometimes - hmmm - zero? “What's the shape of a scalar?” One? No, so the edge
conditions are tricky; this is a normat 3-element vector, nothing up my sleeve. You also may
want Lo say, what’s the shape of each one of those items

R
1203
and you can clearly see the first item is empty, which is correct (It is indented, it’s hard to
seewhen you get a wider display font like this), an 11-element vector and a 2 by 3. In the
spacing of the original system this is pretty close 10 it, there’s two blanks there, and so you
can only default this place, you do get the feel for the separation here if you look carefully.
1 find I don’t use this display too terribly often because 1 do like to default this place. One of
the other things I tried is - Ah ves, of course, I want the rank of each one, zero one two
3 pp R
That doesn’t work. Why? Anybody know? I mean, three? Where did that come from?
{answer from audience RHO-EACH) Rho-each is & scalar function, what’s a scalar
function on a 3-element vector? A three-element vector: that’s not a trick question. So
what’s the shape of a 3-element vector? Three. Even my students get that, very easily. So,
of course I tried this, thinking “Ah, I'll fix it”. (laughter)

(pp)7R

SYNTAX ERROR

(pp)7R
A

80

VECTOR Vol.3 No.3

and dialled up Jim Brown and said “Hey, it doesn’t work™. Well, sure, we could make this
work, but I think rho-rho —I think you mean rho-rho made-up in a direct-definition form,
but you could mean W-rho-rho-W or you could mean — there’s many different functions so
we didn’t choose one: no, that doesn’t work. The thing is not a functicn, so you get
SYNTAX ERROR. Well, you can do it rho-each-rho-each

e 7R
0 1 2
and here’s some pepper occurring. You'll also notice the spacing here, there’s two spaces
between the items, so if I'm doing rank-each, I know the rank of anything is a single
number and I prefer the simplest data-structure possible so now we really get the scrambled
eggs with pepper and you get zero-one-two and that’s exactly the right answer I want.

+as R

01 2

Hmmm, what can 1 do. Well, I take stock and write this rank function,

OFX 'Z+RANK X' *Z+tgpX!
RANK
and that I find the easiest way without popping into an editor, just define on the fly, and
then you RANK-EACH

RANK™ R
o1z

1 find that what I want is not to have to stop to define functions then to come back to all my
problems but I never have the function RANK lying around in all my workspaces because
it’s just too easy, so what do I do? (How am I doing on time? OK? What's that? Fifteen
minutes, ah, OK means different things 10 different people (laughter) I can only give one
percent of my talk now {more laughter).) I want an operator, an operator to the rescue. My
friend Phil Benkard calls this idea a ‘Nonce function’ (Nonce means ‘for the moment”)
Some APL systems give out NONCE ERROR when they’re not sure what should be
implemented or not. IBM says “We can’t do that” because nonce is pre-announcing
something that’s going to be OK. I call these nonce functions so I can have a function
for the moment so I can apply each to it, or outer product or what-have-youn, and then have
it evaporate.

Here, what I dois I use the simple form of direct definition what I mean is I don’t do the if-
then-else case, sure you can do it, but I have another way to do if-then-else and what I do is
1 take a function in a character representation form, a character string, Operators always
produce real live functions so anywhere in APL2 where we say you can use a function, you
can use & primitive or a defined function or a derived function. So therefore what ! get out
of this operator taking 2 data operand, which 1 feel a little queasy about, is a derived
function. I don’t feel so bad because the F represents a function as character. So let’s go
through it.

81

VECTOR Vol.3 No.3

[G] z7+Y~ (F~ Dd) %~

[1] a Direct Definition {APL2's Lambda)

[2] DEs(2=zONC'F ')}/5 4 A Variable?

[3] OEs(i<ppF /5 2 A Vector/Scalar?
[4] DES(~F =zvyF)/5 & R String

[5] {('w'=F7)/F"J+ct X~ ' & Replace w+right
{6] F +eF~ A Simple

(7] ((*a'=F7)/F"J+ct Y~ ' A Replace a+rleft
[8] F +eF” A Simple

[9]1 'Oes OET* OEA "2 +'.,F A Do it upder trap

What I dois I do the error checking first, as primitives must do error checking of their input
before they try it out, and I"ll read it in English as fast as I can. F must be a variable coming
in, not a function because this doesn’t apply. Then I say if it's over rank 1 it’s no good, it’s
got to be a string, then I say check — if it’s not a string blow up. I remember that 54 isa
domain error, but I got it wreng — I putin 5 I and was getting VALENCE ERROR. Well,
I sit with the book next to my desk, or I could type it in quickly te see what error I get. Right
here I say if there are any omega’s in this string replace them with the name of the argument
— oh, I should mention, why the little marks next to each one of the names? I’'m trying, in a
vain attempt perhaps, to avoid name conflict, because the thing you're executing may
reference variables, global variables, or may call subfunctions — if you have a subfunction
by the name of X, or worse I, this doesn’t work If I had not put the suffix of an overbar; now
things won’t work if you have a subfunction F-overbar, but I'm using that convention to say
“these names I really want to be strictly local” APL doesn’t give you the facility to say “make
them strictly local”, so I do it by naming convention.

So finally I say take this square peg and fit it into the round hole because this is 4 characters
long and I’'m replacing occurrences of scalars, so I enclose it, get rid of the nesting, and
enclose the other argument. Now 1 never do a name-class to see if this function is monadic
or dyadic if it's monadic there won’t beany alphas in there I don’t even have 1o check. The
last staternent says execute the right argument and if it fails for any reason take the error you
got which is stored in [] ET and record it one level higher because 1 may have a function
whose argument [pass is not in the domain, the operator has no idea of what’s right, it
blindly applies functions, so this is very common in operators, to say do it now and oh by
the way if you blow up don’t report it here, report it one level up. Just as you don’t get the
assembler language code for outer product, if you do an outer product jot-dat-divide and
you have some zeros lying around, I don’t want the code for my operators to show up in the
same way. So, how can I use this? There's my original array
E

3.14 ABERACADARRA h 32
143

I would like to say the rank of each item, conveniently, and I say it here
'"tppw' DD R
012

I’d like to say de-duplicate each one: give me the nub of each item,

82

VECTOR Vol.3 No.3

'"(H{wrw)sipw) /w+,e' DE™ R
1.14 ABRCD 4 3 2}

and it works. Also, you can be the judge, sometimes 1 put unnecessary parcntheses to
enhance clarity, and, looking at it myself I don’t know whether it enhances it or not. Would
you like parentheses to the left of the quote and directly to the right of the DD to say that
thing in parentheses is my function? I don’t know, does it help or hurt? (mixed replies from
the audience).

Let me show you some other things, what you should do when you get started. This is what
Bob Bernecky said APL2 didn’t have; well maybe he’s right but with DD I can do this
without having to define anything, so APL2 does have it. This is the cartesian product of
two lists of things

TAPL' 'AI' «,('a o' DD} "' 1 2 86 (2 3pi6)
APL APL 1 APL 2 APL 86 APL 01 2
345

Al Al 1 AT 2 Al 86 Al 012
345

and you can see APL being paired with each item on the right in every combination using
outer product, so now with APL2 outer product can be used any time you need any sort of
cartesian product. Doesn’t have to be a scalar function, it can be any function, and this says
make a 2-item list, take one from the left and one from the right. Now the way you do it
without DD is you enclose each of the left and you enclose each of the right and you do jot-
dot-comma. Why do you need to enclose it in this case? Because you get a length error
trying to catenate things of wildly different shapes. If you have, say, character strings and
you want to glue them together in every combination, just simple jot-dot-comma will work.
So that’s a pretty easy way.

And if it will make it a little bit freer, I'll show you that you get a 2 by 4 array, which you can
deduce from the original cuter-product shape rules: the shape of the result of an outer
product is the shape of the left catenated 10 the shape of the right. I also find you can do
useful work. One of the common phrases in my paper is the first of jot-dot-comma-reduce
and one application I use of that is 1 do an outer-product reduction, I use that to form all the
indices of an array using jot-dot-comma-reduce, so this does come up in day-to-day worl,
I'm not just making pretty slides.

83

IS AVAILABLE NOW FOR THE HIGH PERFORMANCE

e e ah oo E

AND FOR 22 OTHER UNIX* SYSTEMS! ——

The IBM 6150/51 is a new family of high performance 32-bit multi-user micro
computers and workstations. Itis based on reduced instruction set{RISC)
technology and AlX**, IBM's enhanced version of UNIX Systern V; and is an excellent
basis for a Dyalog APL system.

Dyalog APLonthe IBM 6150/51 isfast, especially with the floating-point accelerator,
andthere s practically nolimit on the size of APL objects and workspaces,

The entire range of standard IBM screens and printers for the 6150/51 is fully
supported, as are most of the common APL/ASCII vdus.

All AlX facilities can be accessed fromwithina Dyalog APL function and results
rmay be captured in an APL array. Compiled subroutines written in C or Fortran can
easlly be incorporated into applications, and interfaces between Dyalog APLand
several IBM supported software packages such as SQL and the Professional

Craphics Serles are avallable.

Dyalog APL adheres to the draft ISO standard for APL and includes many of the
features of AFLZ. Nested arrays, and corresponding extensions to primitive functions
and operators, greatly simplify the processing of lists and non-rectangulardata
structures. Dyalog APL contains a host of useful features including a session
manager, full-screen editor, and full-screen data manager.

The IBM 6150/51 with Dyalog APL is available direct from Dyadic. Prices, including
Dyalog APL, start from around £15,000.

For further iInformabion, pleass contact Peter bonnelly
Dyadic Systems Ltd., Park House, The High Street, Alton,
Hampshire GU34 1EN, United Kingdorm

Telephone: Alton (0420)87024(10 lines). Telex 858811

*UNIX Is atrademark of AT &T‘Ehel\ Labora(mes BMI1s & registered tradermark of Iltemational Business Machines Corporation
A5 a traciemark of International Business Machines Corporanon.

ANNOUNCING

THE

COPROCESSOR
FOR THE IBM PC

The Dyalog APL coprocessor aliows large scale second-generation APLapplications
tobe developed and run on an1BM PC or plug-compatible computer.

The Dyalag APL coprocessor consists of

EEl o 32-bit coprocessor board based on the NS 32000 chipset, hardware
floating-point, up to aMb of on-board RAM, and 16Mb of virtual
memory space.

acomplete implementation of UNIX* System V including C, f77, Fortran
and Pascal.

acomplete implementation of Dyalog APL.

software thatintegrates the Dyalog APL coprocessor subsystem into the
PC-DOS environment.

aDyalog APL character generator and set of keycap stickers.

The Dyalog APL coprocessar is easlly installed in an 18M PC or plug-compatible system
with a standard BI0S and a hard disk. The board simply slides into a singlesletinthe
PC chassis, and the software is installed via an intaractive menu,

The Dyalog APL coprocessor provides both DOS and UNIX Systermn V environments
without compromise. Data can be shared between the two envircnments, anda
simple keyboard command switches between operating systems.

DOS commands and files can be accessed directly from Dyalog APL, and Dyalog APL
can be rundirectly frorm DOS.

The Byalog APL COprocesscr supports vary large APL objects and workspaces,
1o amaximum cf nearly 16Mb; and floating-point performance s up to
3umes faster than anIBM PC AT,

Prices, inciuding a muiti-user Dyalog APL licence, start from around £3,000.
Accmplete ready-to-run system with a fast 40 mb disk and tape back-up
is also available for under £7,000.

For further detals and ordenng information, please contect Peter Donnelly
Dyadic systems Ltd,, Park House, The High Street, Alten,
Hampshire GU34 1EN, United Kingdom
Telephone: Alton (042087024 (10 lines) Telex 858811

IBM s aregistiered trademark of INtemanional Business Machines Corporaton *UNIK .3 rademark of AT &T Bell Laborarones

VECTOR Vol.3 No.3

Let me show you another application of DD which 1 do use all over the place to such an
extent that I’d like 1o have some built-in facilities that will do this without my having to
carry arotind DD. I'm not sure how that would work, but I'd also like to do without the
quotes, I’'m not sure how that would work but there are proposals. In teaching APL Ken
(Iverson) suggests doing outer products to see tables.

TIO0IZaex0123

171171
I 00 O
1 11 1
1 24 8

Maybe somebody else asks where do those answers come from. You’d like to trace star. So
yow'd like to have a variant of star, which shows what’s going on as you do it, So I can use
the simple recognition methed and 1 say quote-quad DD, Well quote-quad is a sort of
funny input - open the keyboard and let me type; and I say all right do the operation and put
the answer there, show an assignment, put the left there and the right there and you get this
beautiful traced display

101 2+, (0DD)O1 23

(G*NJO.‘.lu"l“

1+71*0 T1+"I*x1 1+7"1%2 T1+«71=»3
I +0*0 0=+0=1 0+«0*2 §+0#*3
1+«1*0 1+ 1+#1 1«1 %2 1«1 %3
1 «2 >0 2+« 2 »1 4 + 2 * 2 8+ 2 %3

Never do my fingers leave my hands. Oh, now I know where they come from

Looking clockwards again — how much time — less than 10 minutes — ah, I see - I thought
you were going to say less than 10 nanoseconds. I think two more topics. One of the key
things T have to do, If I write a program that’s going 1o be inserted into the interpreter, as a
new function, maybe experimentally (we cail it PDF - pre-defined function or primitive
defined functions) I have 10 be as severe as a primitive function and fully check the
arguments.

0=pX A Empty

lezX A Simple

x=lx n Integer

=¥k A Simple Character
0Aa,=¢40pcX p Bumeric
rla,=e4bpeX A Character
1=+[JECTppalX? n, Non-Complex

So 1 have a set of idioms for domain checking and of course common ones like this everyone
knows (empty), Simple — is the array a simple array? This is integer, assuming that you
already know your array is numeric, the floor of all integers is the same array. Here’s 2
simple character one. Then they get massive. X there is an array of any depth rank shape or
whatever entirely numeric. Now I found that I could write this over and over again without
flaws but it does get a little tricky. Also all character; here’s the most tricky one of all - non-
complex — meaning X is numeric of any depth rank and shape, but I don’t want any
complex numbers sneaking in there. What I do is use[] EC, and rank is simply to say look
1 don’t want WS FULL on my [J EC, so rank gives you that single number or maybe it
won’t work but, maximum is not defined on complex numbers, because which is bigger:

86

VECTOR Vol.3 No.3

2]93 or negative-15]22? Well, we could have said you take the magnitude from the origin
and return the larger one, instead we said we don™t know what that means. And 5o that
blows up the maximum, but this is bad because if somebady comes along and says this
means this, then this won’t work. So that’s the quick way (o find out non-complex.

I don’tlike doing this, because now 1 know what to say; I'd rather say the word EMPTY or
the word SIMPLE and so forth. 1 don’t like 10 do these phrases because 1 can make a
mistype, I can leave out this enclose, and now it works sometimes, I'd rather just say this.
So, how do you do this? You can just say it. The nice thing about programming languages
is that if you don’t like a facility that’s there you can abstract it by making a program. This
s what I call a ‘good’ program (I say good in quotes because if you're not making a program
that you want to be just like a primitive and reject all its arguments you don’t have 1o be so
extreme)

Header
A Absetract
A Prolog
Argument checks A Comments
L]
Body n

You have an abstract, a one-line abstract; a prologue saying don't de this with it or that, or
maybe an example; then you do argument checks, than you have code that actually does it,
S0 let me give you an example of why you might want to do this Fve purposely chosen a
stupid function to do. Now COUNT means in origin 1 iota-N; it’s so simple even in origin
zero you don’t want a subfunction. I'm showing this to emphasize that argument checking
helps. So I test it like a good programmer - COUNT 3 and I test it again, how about
something bad and you get an answer
[G] Z+COUNT W

[1]1 A First N counting numbers
[2] zZes\Kpl

COUNT 3
1213

COUNT 2 3
1223
123

Now that may not be desirable; we want to say LENGTH ERROR, or DOMAIN ERROR
or some such message. So how do I do it? OK I’'m a thorough person, Pl go through and
put the checks in.

[¢) zZ+COUNT X

[1] A First N counting numbers
[2] OES{~I=x/pN)}/5 3

[3] OES(~E22N)/5 &

{41 Oes(~0=+0pK}/5 4

[53 Oes(~1=LN)/5 4

[6] DES(~N20)/5 &

[7] z++\Epl

87

VECTOR Vol.3 No.3

COUNT 3
123

COUNT 2 2
LENGTH ERROR

COUNT 2 3

A
Do you have any uneasy feeling at all about this function? (laughter) Yeah, evenif you don’t
care about it very much, I look at this and say Where's the code that actually does it?
There’s several nice things that I can say about this, the error-checking part of it is in the
beginning all with [] ESs, so I could work out a workspace with all the checks in and then
run a processing function that takes them out once the thing works. So we have in APL &
strongly-typed language if we want a strongly-typed language. And you also notice that
these phrases aren’t horrible error-trapping phrases, but you could make a mistake, you
could do this and put 1 less-than depth and get wrong; I do try to do this as NOT, this
means that if it is NOT a single then blow up with a length error. If it's NOT simple blow
up and so forth. As for efficiency, 1 don’t care, NOT is very very fast, especially NOT on 1-
bit scalars. In fact, | was showing off APL PC 2.0, with 2 30,000-¢lement bit vector...how
many more minutes — 1 won’t tell that story.

So this works just like the primitive would work with different argument. How can we doa
litle better? Well, look, I can actually apply IOTA, I can apply a related function that has
the same domain, and if it blows up for any reason I can use the error we’re going to code.
Sa the style is this, now it’s an admittedly bad example because COUNT is trivial, it’s using
IOTA to check essentially IOTA, but I've used this in good cases. 1 proposed a new
function whose argument treatment and forms is just like compression arguments and
forms. So how do I test that they’re OK? 1 try compression on the arguments, if they blow
up I say No good. They’re easy to do, actually they’re quite fast, there itis. I could make one
more step, of course this was not my point, but I can do it with IOTA, and I want it to accept
any single matrix or scalar or vector, so I can do it like that, and now at this point we spit
back the errors, even the one — resource failure, we spit back just like a primitive that fails
to work.

[0] zZ«COURT N

[11 A First N counting numbers

[2] ‘'0Oes OET* OEA '+0p1,K’
[3] z++\(.N)pl

Now there is a better way, and a fast better way.

88

VECTOR

[0] <zecoUNT N;010
[1] m Firet ¥ counting numbers
{2] O10+l
[3] *0Es OET* OEA 'Z«1,N’
COUNT 3
123
COUNT 1 1 lp4
1234

COUNT '0F MONTE CRISTO!
LENGTH ERROR

COUNT 'OF MONTE CRIBTO!

A

COUNT 2#35
WS FULL

COUNT 2%35

A

Finally the function COUNT is perfect

1. Correct output given proper input.
2. Rejects all improper input.

3. Reports resource failures.

4. Easy to understand. *

5. Efficient, =*

{* Some may argue about this)
{"* Usually overemphasized)

Vol.3No.3

I’'ve made the two last points ‘Easy to understand’ that’s heavily subjective, I tried to make
it easy to understand. Efficient? — well, probably overemphasized. Many times I find my
watch doesn’t go down to nanoseconds so I’'m not sure if it’s inefficient or not. There is
another way to do it. I could write helper functions — Ill show you the helper functions
tater. Now you do this, and you say What the heck is this PL/1 doing in my APL code,

[0} zZ+COUNT W
[1] n Firat N counting numberas

[2] DECLARE NONEG INTECER SINGLE SIMPLE N

[3]1 z++4\({.N)p!l

COUNT 13-
1223

COUNT 2 3
DOMAIN ERROR

COUNT(2] DECLARE NONEC INTEGER SINGLE SIMPLE N
A

A

COUNT "2
DOMAIN ERROR

COUNT[2} DECLARE NONEG INTEGER SINGLE SIMPL
A A

COUNT 1 (2 3)
DOMAIN ERROR
COUNT(2] DECLARE NONEG INTEGER SINGLE
A

89

VECTOR Vol.3 No.3

except for the last name which is the argument name all of these are monadic functions;
except for the DECLARE function, all the rest take their argument and immediately return:
it, but befare they do that they check to make sure that it's satisfied. If it's not satisfied they
report an error and what happens here is that this is not a single number so you notice that
the right-hand caret points to the word that is offended by that argument. Now if everything
is clear the N tumbles through from function to function, of course DECLARE is a
monadic function that says Oh, we got there, it does nothing. So you can write a very
wordlike form.

The other nice thing is that if I put the word NONCOMPLEX in and later on we change
maximum so that it works with complex, then I can change NONCOMPLEX without
changing this. The other nice thing is that I get everything debugged here, and I don’t want
to carry around these helper functions with me, then I just go through and putalamp here
and replace that DECLARE and now there’s a nice comment in ENGLISH. I also thought
this would be wonderful for the compiler people, because if you wrote your programs like
this they could specifically recognize a line starting with DECLARE and now they know
what the arguments are, which is one of the hard things 1o do for a compiler.

Let me sum up. Finally one more step in this. You notice that we showed the inside of the
code. Finally after we're sure that everything works we want to say like Peter suggested,
Don’t show me that, report it like a primitive, We can finally do this with [] FX[] CR

01 0 0 OFX OCR "COUNT'
COURT

COUNRT 3
123

COUNT 2 3

LENGTH EREOR
COUNT 2 3
A

COUNT *71
DOMAIN ERROR

COURT 1!

A
Now we’ll put up at the end after I'm done the functions that do that. I think that’s far more
readable and I am an APL bigot and 1 prefer to say it that way than say it another way. You
don"t have to make any extensions to the language, so I'll give you these functions, they’re
one-liners after the comment.

Let me leave you with a quick whizbang if I may. This is one that we noticed I think, well
Roy Sykes gets the credit for this perhaps. This says Is A and B the same t0 4 significant
digits?

4z (7)) A B
and it works like this: I can rewrite it like that

=/74 v A B

90

VECTOR Vol.3 No.3

which says this

=/{T4¥a)(T4vp)

and now you can see, this

a(T4vA}=(T4vD)

and match always gives back a simple scalar so you don’t need the enclose

(T4¥a)=("4¥B)

and obviously this matches the arrays: are they all to 4 digits? But if 1 don’t want 10 check
that, I want to say How many digits do they match 10? and so now what I need is 10 say “for
D, I want 1o know D.”

(-D)=.(¥") & B

1 could do this

(=1)=.(¥7) 4 B

I could do this

(-2}=.(*7) a B

I could do this

(=3)=.(v") a4 B

until they finally match, but I have a list of numbers of digits, like 1, 2, 3 and so forth, so 1
can do it with a whizbang, 1 don’t call it an idiom it’s not common enough, I use the All
Right, and match-dot-format-each is the function that I do All Right with and now what do
I do? To find out how many digits? Just sum them up

(-+\I8p1)=.(*")" cA B
11111000000D0O0O0C0D00O0TCO0CEDQ

+/(=+\18pl)=.(+")" ca B
5
50 let me leave you with something that. . .sometimes it hurts me when I try to think . . . but
here is an APL2 whizbang.

+/AN(-+\99p1)=.(¥")" cA B

[figure 99 digits: all systems would poop out before 99 digits. So now, the and-scan there is
1o say take the format and if you get a one after you get the first zero then don’t consider that.
I showed this at New York City SIGAPL meeting and somebody said “Oh my goodness”, [
felt that person was representing the computer this was run on. (laughter) I'will . . . to you,
this does turn on the error-conditioning. But you have to realize this, I don’t mind how
much CPU time is used up, because if you don’t use the CPU time now, it’s gone for ever.
(Laughter)

O.K. {Applause)

91

VECTOR Vol.3 No.3

BACK NUMBERS OF YECTOR

Back numbers of VECTOR are available from the BCS. If you don’t have them all,
now is the time 10 complete your collection. Apart from the technical contents,
every issue includes book and product reviews, letiers, news and a competition.
Send in your order before they run out. These will one day be unobtainable
collectors’ items, like the early issues of Quote Quad.

The prices inclusive of postage and packing are as follows:

Prices in Pounds Sterling

UK Surface Airmail
(inc. Europe) (outside Europe)
Single issues 3 3.75 75
Volume 1 10 14.00 22.00
Volume 2 10 14.00 22.00

Please send sterling cheques or money orders (payable to The British APL
Association) to the Treasurer:

Mel Chapman, 12 Garden Street, Stafford ST17 4BT.

Don’t forget 10 include your name and address and to be clear which VECTORs
you want.

92

VECTOR Vol.3 No.3

Introduction to General Articles

This tssue of VECTOR contains two articles of 2 non-technical nature.

The first article continues our extracts from Anthony Camacho’s series Steps to a better
BASIC first published in Datalink, This series explains some of the concepts behind, and
advantages of, APL to an audience brought up on the staple diet of BASIC available on
most microcomputers. Anthony’s article is reprinted by kind permission of Datalink
magazine,

Many of you will remember Graeme Robertson for his erndite and entertaining offerings at
anumber of BAA meetings. Graeme recently left I P Sharp Associates to work for a PhD in
particle physics at Durham University, but before he left he held a seminar, intriguingly
titled *APL3’. (Maybe soon we'll reach APLSS}. Graham Parkhouse attended the seminar,
and as well as teiling us about it, philosophises ot the future directions of APL.,

93

In
every industry,
there has to be
a leader

Personal APL - Our version of APL for the Apple Macintosh, Atari ST,
Commeodore Amiga and Sinclair QL brings full-powered APL at
the lowest possible price.
PC-APL — MicroAPL supplies STSC's APL*Plus/PC with full backup,
support, and ancillary software.

Departmental APL — For the ultimate in performance and power, our
multi-user APL supsermicros can handle even the largest applications.
Company-wide APL — With unrivalled experience in networking and
communications, MicroAPL can offer a comprehensive APL facility

linking PCs, supermicros and mainframes.
Consultancy in APL — MicroAPL’s commitment to quality doesn't stop at
our hardware products. Our uniquely experienced team of APL consultants
will undertake any APL software project, from one day’s help with a specific
problem, to major team development.

OO oe
[IMICIRIO|]
ERN AN
ERRuEnn
MicroAPL. Limited

19 Catherine Place, London SW1E 6DX
Telephone: 01-834 9022

VYECTOR Vol3 No.3

Steps To A Better BASIC

by Anthony Camacho

Everything AND the kitchen sink
or how to take it with you when you go

When you go caravanning, instead of taking tents out of the boot of the car and erecting
them in the pouring rain, it seems like [uxury. 1t’s not the same, of course, as doing things
the hard way, but it does make life easier.

The COBOL or BASIC way of taking things with you is to put them into constants or
DATA so you unpack the luggage freshly on every run. This is fine for a data processing
application, but less than ideal when it comes to programming.

That calls for easy ways 10 handle parts of the program such as subroutines. A COBOL
library is easy. Most BASIC methods are not. COBOL writers can copy from the library at
compile time, so there is no problem with clashes of line number. BASIC programmers
have to write their standard subroutines with high line numbers so that they can be merged
with any main program.

Programmers in most BASICs do not have the facility to call subroutines by name so they
get 1o know the line numbers of the main routines and of course they get used to a particular
line number doing each of the common things they want to do. For example GOSURB 9873
may display M$ centred on line 21 flashing with three beeps. The main program can’t be
tested without the subroutines; after they are merged it can’t be renumbered because that
would move all the subroutine addresses.

Where BASIC does have an advantage over COBOL is in the programmers’ tolkits which
provide all kinds of useful debugging aids. In microcomputers this may be held in ROM so
that i is always available. This brings such joys as the ability to display the list of all
variables and their current values or to trace a variable’s changes of value.

In APL on the other hand it is easy to take things with you. Indeed that is the default. All
APL work is done in a notional “workspace” which is a block of real or vireual memory. The
workspace holds your bits of program (which are all in the form of procedures or
“functions” as APL calls them). It also holds all the variables that have been assigned a
value. At any time you can get a sorted list of variables with the command JVARS oralist
of functions with)FNS. The workspace also contains the stack, which records all the return
addresses for functions in progress and such “global variables” as the print precision, the
print width, the comparison tolerance (yes APL finds a million millionths equal to 1), the
sced for pseudo-random numbers and 5o on. If you interrupt the execution of an APL
program and }SAVE the workspace, everything is stored, and branching to the line counter
after reloading it will carry on exactly as if there had been no interrupt at all,

You can copy functions and variables into your workspace from another workspace if you
need, so any useful tools (such as a full-screen editor or a format controlled listing function)
can be copied when needed and either kept in the workspace or erased from it before it is
saved.

95

VECTOR Vol.3 No.3

This approach removes most of the pain of holding the latest run date, master file identity
and any current parameters from one run 0 the next — they are simply stored in the
production version of the workspace which automatically can save a new version of itself
each time it runs. There is no need for those troublesome bits of program to store such
details in one of the master files in a place where they will be accessible from the beginning
of the next run.

APL provides filing systems — and often it isn’t practical to hold all the data in the
workspace. If the records are extremely large it may even be necessary to read them in and
process them one at a time. But for most purposes the workspace will suffice. Even on
microcemputers quite respectable amounts of data can be held without bothering with files.

My BBC microcomputer a version of APL running and the workspace limit is 400K — about
the size of a respectable book, On the IBM PC workspaces of up to half a megabyte are
common, and with the 68000 they can be as large as you need, up to the address limit of 16
megabytes.

In short the workspace is ideal for programmers. It saves trouble, simplifies manipulation
of programs and data, and assures consistency between runs. Why doesn’t any other
language have one?

APL People Limited

- the Matchmakers

We will be pleased to match your Company's need for permanent or
contract APL people at all levels with the wide-ranging skills of those
available - or to recruit them for you.

For APL people wanting permanent or contract consultancy and
programming work we offer an advisory and placement service 10
match your requirements to those of a suitable company.
For further details contact
Valerie Lusmore or Jill Moss
Bath (0225) 62602

APL People Ltd., 17 Barton Street, Bath BA1 1HQ

96

VECTOR Vol.3 No.3

Time to think about the future directions of APL
by Graham Parkhouse

Not long after returning from APL86 in Manchester this July, T received an invitation to a
one-day seminar called APL3 — a seminar on the future directions of APL. Now | am a
comparative new-boy to this APL terminology; APL86 was the first annua! APL
conference 1 had been to. From the conference | had heard so much about APL2 and
second generation APLs that I quickly discerned the implication of the APL3 in the title to
the seminar. Being an engineer, 1 am a practical man who might be more attracted to APL3
were he persuaded that the number attached to the APL referred 1o the language’s
horsepower. But, being theoretically inclined also, 1 am fascinated by APL as a
phenomenon and needed no encouragement to join a discussion on its merits and its future
directions.

I want to tell you a litte about the seminar and to share some of my thoughts about APL
development, but before doing so let us consider some practical issues surrounding second
generation APLs. By “second generation APL” we mean an APL implementation that
includes nested arrays, i.e. arrays of arrays. With the nested arrays come many new
primitive functions and operators. Additional features of most second generation APLs are
the facility for using primitive operators with user-defined functions and the facility for
user-defined operators. There is no generally accepted standard for second generation
APLs, and all those currently being used do differ significantly from each other. This
divergence in the development of APL is weighted by IBM’s presence; due to their
influence, APL2, which is their particular dialect, is likely to become the industry
standard. What is more, “APL2" is already in popular use as the generic name for second
generation APLs, just as “APL1” is being used as the generic name for first generation
APLs. So the name “APL2” is likely to continue to have dual meaning in the same way as
well-known brand names like “Biro” and “Hoover”,

I suspect that the title of this seminar 1 am going to tefl you about was designed to get our
attention OFF APL2, being organised as it was by 1.P.Sharp Associates, a company who
have dene so much to promote advanced computer systems and who, in the process, have
promoted APL. Their own Sharp APL was the first commercially available second
generation APL.. But the seminar was not abour Sharp APL; Graeme Robertson, of
I.P.Sharp’s education section, presented a survey of APL principles which embraced more
aspects of APL than I had ever thought of. Graeme obviously appreciates structure,
because he had cleverly organised the whole day’s contents into a special ternary tree
structure, subdivided to five levels, each subdivision containing three items. This resulted
in 3*5 pieces of information to be delivered in three hours at an average pace of one piece
every 45 seconds. You will be glad to know that he was very flexible in his delivery, 1aking
questions and diversions in his stride, but he had to triple his rate after lunch. (Note the
factor of three.) But he managed it so well that we were able to enjoy the virtuosity of his
delivery as well as the quality of the content.

97

VYECTOR Vol.3 No.3

What did he say? He talked about paris of speech, cells and frames, parsing rules; he
introduced me to the concepts of potency and weights of operators; we discussed direct
definition of functions and covered some of the new primitive functions described in
Iverson’s Dictionary of APL. Graham went on to demonstrate how APL has been used to
express all the well known scientific theories most concisely, and tried to demonstrate that
APL was relevant 1o many of the popular mathematical technigues such as predicate
calculus.

It was at this stage that I realised that we were not going to be introduced to the nub of APL3
(in the same way as nested arrays are the nub of APL2). Instead Graham gave us an
ilfustrated glimpse into topics of current research interest: data representations, tensor
analysis and functional analysis, finishing with an introduction to fractals, a new branch of
mathematics concerned with hierarchical patterns. He emphasised the importance of
computer graphics, and suggested that future usage of APL would be more graphically
orientated. I was challenged by the need for mathematical tools that will help us understand
and manipulate the data supporting these concepts, tools as elegant as the concepts
themselves. Can APL meet this need?

Who can be sure? What is certain is that practitioners of APL are breaking new ground.
APL is unique in being the first, the most highly developed, and the most used executable
analytical notation. Being a symbolic analytical notation it matches our thought processes
which are themselves symbolic, and being executable it gives us the benefit of
experimentation; in other words a mighty tool for intellectual explorers.

1 cannot forget Phil Smith’s presentation to APL86 called A Programming Language for
Thoughts and Dreams. Those who possess the Tutorial Volume of the Proceedings can enjoy
experimenting with the random dot pattern iltustrated in his paper. The illustration is a
collection of black, red and blue dots randomly distributed over a rectangular area. Looked
at normally there is no evidence of any pattern whatsoever within the picture; the
rectangular boundary is the only shape, and all dots seem evenly distributed. But looked at
through the coloured glasses provided, rows of steps are apparent, with the lowest steps
along the top and the bottom row, rising to higher steps towards the middle row, which
itself is the highest step. Withoul the glasses there is no evidence of these steps. But I have
not mentioned Phil’s purpose behind the demonstration which has so impressed me. This
was to demonstrate the working of the right-hand side of our brains. When you first look at
the picture through the glasses, nothing happens! You have to study it for several minutes
before the steps start to take off into three dimensions. During these several minutes your
brain is matching the dots seen by one eye with those seen by the other (because with the
glasses each eye is seeing a different pattern} and decides that the patterns would be
identical if they were not on a flat piece of paper but on rows of steps. Do not worry if you
do not understand my explanation; the point is that our brains perform a very sophisticated
calculation without us being conscious of what it is. We do not know what our brains are
doing, but they do it, and it takes them time.

98

VECTOR Vol.3 No.3

How often have you stopped grappling with a problem on your mind and turned to other
things, when suddenly you present yourself with a solution to your original problem?
Inspiration? Yes, but probably only after the right side of your brain had done a lot more
work on the original problem while you were consciously thinking about the next one. It
does seem that the right side of the brain is a parallel subconscious processor with the left,
more conscious side. | am not suggesting that we al| have split personalities; both sides have
been designed to work harmoniously together as a team, probably with the left side
dominant. Following Phil’s recommendation I got hold of Betty Edwards’ amazing book
Drawing on the Right Side of the Brain (see reference) - a book that has not only taught me
about how to draw, but which has demonstrated to me the potential struggle berween the
two halves of the brain. She explains why most of us are so bad at drawing; it is because of
our impatience. In our impatience the left sides of our brains keep guiding our hands 1o
draw stereotyped symbols for each familiar object, such as the sun with its childish rays;
when we inhibit the left side, and she explains how to do this, then the right side is given a
chance to display its natural artistic ability. With practice we can encourage the right side to
do what it is designed to do, and stop the left side from being over-dominant.

What has this got 0 do with APL? A great deal if, as I suspect, our understanding of
mathematics is shared between the two sides of our brains. Then we should expect to need
time to assimilate ideas, time to gain sufficiently deep understanding to be able to recognise
the future directions of APL. Through their pioneering, Ken Iverson and his collaborators
have given us a most valuable means of expression with which we may experiment and
learn. APLI has modified the way many of us think. Developments in APL1 will lead us on
further, but I believe that what we need most is to use what we have, at the same time
gaining deeper insight into the problems facing us. APL development is a time-dependent
process; dependent on the time it takes our subconscious minds to assimilate new ideas,
which should not be hurried.

Reference:
Edwards, B. Drawing on the right side of the Brain] P, Tarcher Inc., Los Angeles.

99

—=== COCKING & DRURY LTD.

—&—=—w=— THE APL PROFESSIONALS

TELEX: 23152 MONREF G

— - S A
—, ——— 16 BERKELEY STREET - LONDON - WIX SAE TELEPHONE:(01) 493 6172

COURSES

APL Fundamentals
Jan 20-22 3 days

APL*PLUS PC Intermediate
Jan 26-29 4 days

APL Fundamentals
Feb 10-12 3 days

APL System Design
Feb 16-19 4 days

APL Fundamentals
‘Feb 24-26 3 days

APL Fundamentals
Mar 10-12 3 days

APL Fundamentals
Mar 24-26 3 days

£375.00
£525.00
£375.00
£595.00
£375.00
£375.00

£375.00

Discounts ai ailable fo companies making more 1fy U require coul n APLZ or other specialised
fhun one bnok g:ﬂ o fime: toples we will be h ppyl p d t!-lnkmlyo hc’:vur
Nurber of Totdl premises. In-hous to st
bookings Discoun ' Hyd tt':e have4 mrpeplt! n at
2 £50 (ie £25 per course) Al prices exclude VAT,

3 £90 fie £30 per course)

4 £140 (ie £35 per course) 01-493 6172,

For funher information, please

ring Liz Swann on

VECTOR Vol.3 No.3

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already know
APL. It will contain items to interest people with differing degrees of fluency in APL.

101

VECTOR Vol.3 No.3

Technical Editorial: Interpreters for Debuggers
by David Ziemann

Those of us who use APL 1o develop applications already know that the language offers
remarkable reductions in implementation time when compared with other languages.
What effect does using APL have on the other phases of system development, and in
particular, how helpful is APL during debugging? Let us remind ourselves of the various
stages in the life of a application. Broadly speaking the application development process can
be broken down into the following nine tasks:

Determine requirements
Specification

Design

Implementation

Testing

Debugging
Documentation
Maintenance
Modification

No task is truly independent and a definitive order should not be implied — documentation
for example, may well be developed in parallel with other phases.

Direct use of interpreter facilities is only strictly necessary during the implementation,
debugging, maintenance and modification phases, although APL may also be used to help
in other ways. (An APL prototype for example, can be considered as a specification for a
final system). Maintenance and modification can be viewed as similar activities to
implementation, where APL is used to build, correct and extend programs. When APL
programs go wrong, the user still remains in the APL environment, and so the interpreter
is necessarily used during debugging. The debugging process, however, does not usually
require the construction of programs, but more often depends on the use of facilities
available in immediate execution mode. The ability to view the SI stack, to look at the
names and values of variables and even to change their values are all debugging tools which
are ‘narurally’ available, Trace and Stop facilities are provided in most APLs as system
functions or via the T-delia and S-delta syntax. Trace and Stop seem however to be the only
tools available explicithy for debugging, and Stop has even found olher uses outide this area.

Do these typical debugging facilities match up to the typical problems that one experiences
during debugging? The sort of questions that we want to answer are; “A spurious 1 appears
on the screen while my system is running. Where was it produced?”, or “Where on Earth
did the variable <flag> get set 10 17?”, or “How did this simple expression produce this
strange result?”, or “My system accidentally leaves a variable <I> as global. In which
function did 1 forget to localise it?”. Although the answers to such questions may usually be
determined by a combination of esoteric programming combined with trial and error, the
interpreter does not make it easy for us.

102

VECTOR Yol.3 No.3

APL interpreters do not appear 1o be improving in this area, in fact there is evidence to the
contrary. Well over ten years ago Xerox’s Sigma APL included the system commands
JOBSERVE and)CATCH.)OBSERVE caused the subsequently executed APL
expression 1o be ‘observed’, ie for every intermediate result to be displayed under a caret
line indicating the progress at each stage. YCATCH altowed the programmer to trap the
assignment of a variable. The command YCATCH X VIA FOO caused the function <FQ Q>
to be executed whenever the variable <X> was assigned a value. Very useful indeed, but
I've never seen it anywhere else since. It might be possible to provide this facility in systems
that support exception handling by considering assignment as a type of exception.

Other desirable debugging facilities include the validation of newly defined functions for
simple syntactic errors, global references and assignments and even clashes between local
names such as labels with other names. The ability to ‘travel’ through the SI stack
environments to examine their local contexts would also be valuable.

One objection to the provision of these, and other, debugging tools is that they result in
unacceptable performance penalties during production use, If this is true, then solutions
must be found which enable debugging aids to be delivered to the programmer. One
approach, particularly in the PC environment, might be to provide two interpreters — one
which includes a whole family of debugging facilties, and one without the features, the
production interpreter. Which interpreter is used could be decided by an APL invocation
option, or perhaps more flexibly by running an ‘interpreter generation program’ which
would produce one of the two interpreters as its output.

Itis clear that implementers have concentrated their efforts in encouraging the programmer
to reduce the cost of the implementation phase of a project by providing high-performance
tools such as nested arrays, full-screen 170 facilities and exception handling, among others.
Now is the time for them to similarly enhance our debugging tools so that savings can also
be made in this area.

103

VECTOR Vol.3 No.3

Technical Correspondence

Watch Your Step
From Neil Mitchison 17 July 1986
Dear Editor,

I enclose a submission for the *Waich Your Step’ competition. I am afraid that at present |
have ne facilities for printing APL, so T have had to write ot the function in longhand,
However 1 hope that will not give Dave Ziemann too many problems. 1 have tested the
function on Version 2.2 of Siemens APL, running on a Siemens mainframe (which is in fact
2 360 lookalike).

I think the code is fairly explanatory; while the number of lines could be reduced, it would
be at the expense of clarity, in my opinion. The same goes for reducing the number of local
variables.

Obviously the problem would be trivial in a nested-arrays version.
Yours sincerely,

Neil Mitchison
Bremlaan 55
1900 Overijse
Belgium

(Editor: Thanks for your letter Neil, and thanks also for colouring the zeroes pink in your entry —
it would otherwise have been quite difficult to distinguish them from the letter Os in your local
variable names! The result of the Watch Your Step competition appears later in this issue.)

APL2 bugs

From David Piper 10 October 1986
Dear Editor,

Some APLZ bugs wo add to your (no doubt extensive) collection. All the below encountered
in APL2 1.2

1. EDITOR 2

Inserting lines after line 7. Lines N.1, N.3, N.5, N.6 and N.8 are fine . . . but try
N.2, N.4,N.7 and N.9, and the result is 2 definition error. The more digits after the
decimal peint, the more confusing the rules get. See listing 1 for an illustration.

2. Assember Function DAN

Bug or design feature? Adjacent delimiters do not resiiftin items of zero length — the
items are omitted (listing 2). -

104

VECTOR Vol.3 No.3

3. APL WSID

Command of the APL2/TSO interface returns a three row array, first row contains
the WSID, the second the time stamp of the last save and the third the userid of the
perpetrator of the said)SAVE. If an object is copied from another WS, the time
stamp and userid are changed to that of the WS from which the object was copied
(listing 3).

4. APL QUIET

Command of the APL2/TSO interface is documented as stopping output to the
terminal until a prompt for input is issued or immediate execution mode is re-
entered. APL errors and STOP messages wurn the quiet mode off (listing 4).

At the current rate of discovery, more next time!

Yours sincerely, Listing 1. Editer 2 Definition Error
D .B. Piper EHv TEST.2 op: & 14

. TEST
Rainham, Kent. [:] SOKE TEST TEXT

[2] SOME TEST TEXT

[3] SOME TEST TEXT

[4] SOME TEST TEXT

[51 SOME TEST TEXT

(6] SOME TEST TEXT

[71 SOME TEST TEXT

[8] SOME TEST TEXT

[7.1] THIS LIRE WILL BE OX
DEFN ERROR

[7.2] THIS WILL GIVE DEFN ERROR

Listing 2. Assembler function DAN

JCLEAR
CLEAR WS
3 11 ONA *DAN?
1
JCOPY 1 DISPLAY DISPLAYG
SAVED 6.06.1986 8.59.09 (GMT)
p” '/ DAN 'ITEMI/ITEM2//ITEM?'
5

A THE NULL ITEHM IS5 EXCLUDED
3 11 ONA 'CAN®

P ('/'#YITEMI/ITEM2//ITEMT'Y CAN 'ITEMI/ITEM2//ITEM?®
5 5 0 5

A THE NULL ITEM IS INCLUDED

Listing 3, APL WSID being corrupted

JLOAD TESTING
SAVED 2B,07.,1986 9.25.57 {GMT)
JHOST APL WSID

TESTING
28,07.1986 09.25.57
V500003
T50(0)

JCOPY ROBL

SAVED 22,09%9.1986 10.26.39 (GMT)

. JHOST APL WSID
TEST1NG

22.09.1986 10.26.39
V30C015

T50{0)

105

VECTCR Vol.3 No.3

Listing &. APL QUIET turned off by stop message
YTESTLOIY

{0] TEST

[11] O+ *BEFORE QUIET*

[2] RC=aTSD 'APL QUIETT'

{31 RC+RC,ASTACK™' ' "IN STACK''' '}WSID' '+[JLC"

[4] [D«'AFTER STACK CMD, BEFORE STACK RUN'

{51 SaTEST+10

[6] 10:S5ATEST+:0

[7] O+'AFTER STACE RUNT

[8] &# The only messape generated by this functien should be:

[93 A BEFORE QUIET (from line 1}.
v 2,10.1986 12.50.58 (GHMT}

TEST A NOTE: Comments added after execution.

BEFORE QUIET A + This message is DK
B + Where does this line cecme from?

TEST[6] A + Quiet has been turned off
IN STACK A + Stack is run
15 CLEAR WS
AFTER STACK RUR n + Function restarts

RC

o 0 0 0
And some more!

From Colin Jackson 10 October 1986
Dear Sir,

I have noticed the following odd behaviour of APL2 release 2, running under VM:
{a B} «+ 1 2
assigns 1 to A and 2 1o B as expected. However,

(A (B €) D) «1 {2 3) 4

sets Atol,Bto23,Cto4, and leaves D undefined. Maybe a SYNTAX ERROR would be
better!

Yours sincerely,

Colin Jackson

Cocking and Drury Lid
16 Berkeley Street
London W1X 5AE

(Editor: VECTOR will publish details of any other APL bugs that our readers discover, so do let
s know of any nasties you find. Surely APL2 can’t be the only APL system with bugs in it?)

106

VECTOR Vol.3 No.3

Competition Result — Watch Your Step
by David Ziemanm

This time the challenge was to write a function STEP that produces a matrix of ‘step’
vectors from its argument, a three-column matrix of start, stop, and step values. For
example:

O+MI+5 3pl0 27 5,80 100 20,113 100 3,78 73 2,71 "3 1

o 27 5
B0 100 20
113 100 3
"8 T3 2
1 73 I
0 STEP Ml

i0 15 20 25 0
80 100 0 0 0
113 11¢ 107 104 10f
"8 e T4 0 0
1 "2 "3 0 o
The left argument is a pad value for use in cases where a step vector contains zero, as in:

O+M2+3 3p8 "3 1,76 6 2,72 2 1

873 1
6 6 2
Tz 02 1
99 STEP M2 L

8 7 6 5 4 3 2 I 0717273
6 T4 T2 0 2 4 6 99 99 99 99 99

271 6 1 2 99 99 99 99 99 99 99
The competition attracted fourteen entries from Australia, Belgium, Denmark, West
Germany and of course the UK. (What happened to our US and Canadian readers?). The
entrants used eight different APLs 1o code their solutions, most of them on PCs and micros;
VS APL, APL2, Sharp APL, APL*PLUS PC, IBM PC APL, APL.68000, MIPS APL and
Siemens APL.

Boiling the entries down proved fairly difficult, mainly because they all worked. At least,
they all appeared to work for the above arguments. Closer inspection revealed that one
entry did not return an explicit result, and that another went into an infinite loop if the first
element of the right argument was 2 one!

As usual, dependence on the external index origin was tested for, and three entries were set
aside because they failed when a global origin of zero was used. The next test tried each
entry with a fractional right argument, as in:

Mls2
5 13.% 2.3
490 50 10
56,5 50 1.5
T4 1.5 1

6.5 T1.5 0.5
D STEP M132
5 7.5 10 12.5 ©
40 S0 o 0]
56.5 55 53.5 52 50.5
"4 T3 T2 o 0
0.5 71 “1.5 0 0

107

VECTOR Vol.3 No.3

All the functions bar cne behaved appropriately, producincg the result shown above. A
floating point left argument produced the expected result in all cases, and so the search for
more exacting rests was on.

What would happen if the entries were tried with a vector left argument, rather than a
scalar? All entries performed as expected with a one-element pad value, but they split into
three camps when a longer vector was used. The first group reported an APL error, the
second group ignored the extra elements, using only the first element in the left argument as
the pad value, and the third group used up the pad vector elements in a cyclic fashion. Itis
hard to see meaning in the cyclic use of a vector of pad numbers, and no such function
documnented this behaviour, and so these entries were rejected. Strictly speaking, the
entries that ignore all but the first element are also not quite right - it is actually misleading
and potentially dangerous for a function to accept argument values that it does notuse, For
example, an extended version of STEP that uses the second element of the left argument for
a new purpose might now blow up when used as a replacement for the original function.
The functions that caused a LENGTH or RANK error report therefore displayed the
correct behaviour, and passed this test,

The next test checked to see if each function gave the correct result when a one row matrix
of ones was passed in. The right answer is of course:

0 STEP 1 3pl

Surprisingly perhaps, four more entries bit the dust on this one, producing two columns
rather than one in the result matrix.

The next test examined the result when the right argument is an empty matrix, with zero
rows and three columns. Before reading on, what do you think the shape of the result
shoutd be? This one produced no less than four different shapes of empty result and also a
few errors. The error-producing functions were eliminated because an empty result is
certainly to be expected in this case, Furthermore, we should expect the result to have as
many rows as the argument matrix and this criterion eliminated the entry that gave an
empty vector as its result.

Of the remaining empty matrices, some had zero columns, seme one column and one even
had two columns in the result! A zero by zero empty matrix was deemed correct because
this result is consistent with the idea that the number of columns in the result should be
equal to the length of the longest step vector in the result:

p0 STEP ¢ 3pe
00

This left us with only two entries. Here is Neil Mitchison’s function which has the twin
merits of meaningful local variable names and clear APL code. Notice that the argument
matrix MX is never indexed in Neil’s solution, and that crigin-independent code is
produced by just one reference to [J10.

108

VECTOR Vol.3 No.3

¥V R+FL STEPANM MX;GAP;INC;I0TA;LENGTES:RHO

[1] A Produces _matrix of step vectors. filled with FL
[2] GAP+-/ 0 T1 +MX

[3] INCe, 0 2 +MX

L[4} 10TA+-010-t({/.0,LENGTHS+14(|GAP+INC

[5] RHO+pR+(INCxx-CAP)e.xIOTA

[6] E+,R+&(JRHO)p 0O "2 +MX

[7) BRI{.LENGTESs.SI0TA)/1pRI+FL

[8] R+RHOpR

v
The other successful entry was submitted by Morten Kromberg, who gave us this function:

¥ R+FILL STEPAMK CTL;(I0;STEP;START;END;DIFF:N:;MAX;HMASK
[1] 2{0=[NC *'FILL'}/'FILL+0?
[2] O10+0
[£3] START+CTL[;0]
[4] END+GTL[;1]
[5] STEP+CTL[;2]
[6] =&
[7] MAX+O[[/N+l+L ({DIFF+EKRD-START)+STEP
[8] MASE+Ne ,>1HAX
{93 =
[10] R+{START».+MAXpQ)+4(STEPxxDIFF)»,x1MAX
[11] R+{RxMASE)+FILLx~MASK
v

Morien’s function has the additional feature of being able to handle the elision of the left
argument when run on an APL system which supports ambi-valent functions.

It seemed clear that the winners had been found, and that their function were complete. I
was ready to put the results 10 bed when another simple test occurred to me. The one row
matrix of ones had already been tried, but what about a one row matrix of zeroes? Again,
another reasonable function argument. To my horror (and depression because I thought
the work was over) twelve out of the fourteen entries failed! Neil, Morten and ten others all
yielded the following incorrect result:
99 STEPANM 1 3p0

)

99 STEPAME 1 3p0
]
Of the two who passed this test, one had already failed two other tests, and so this
elevated R H Currie’s solution, which had produced 2 one-column empty matrix in
response to the empty argument. R H Currie’s correct answer to the test, and the well-
commented code follow:

99 STEPARC 1 3p0

¥ R+L STEPARC M:X;Y;[I0
(1} AL is trailing pad number. M[;1 2] are start- and end-points
[2) aM[:3] are steps
[3} mAReturn matrix of range vectore
[4] maAssume L is numeric scalar; M numeric nx3 matrix
(5] ADon't mess avout with index origin - set it to I
[6]1 [O1o«l
[?] aATake absolute value of stepa: replace 0 with 1
(8] M{33]1+Y+0=Y+|M[;3]
[91 AX is no. within range in each row
[10] Z«IT{(1lpX)aX«1+L)(-/M{; 1 23)4u(;3]
[t!} AY is a Boolean matriz of required shape: l=within range

109

VECTOR Vol.3 No.3

[12] Y+Xe.21[/X
[13] AGemerate K as though all ranges are same length
[14] R+MI;([/X)pll+(M[;3Txx=/Mu[; 2 13)s.x0.71+E/X
[15] AReplace out-of-range elements by L
[16] R+(RxY)+Lx~Y

v

So it turned out that the three best entries all failed exactly one test each — an
unexpectedly tough competition indeed.

Morten also supplied the following appropriately named function which ran well over
fifty per cent faster (under APL*PLUS PC) than any of the other entries:

¥V R+FILL QUICKSTEP CTL;I0;STEP;START:END;DIFF;N;MAX;MASK;T;INDEX
[11 1(0=08C 'FILL'}/'FILL+0"
[z% DIo+0 ¢ START+CTL[;0] ¢ END+CTL[;1] ¢ STEP+CTL(;2]
[3 "
{4} MAX+O[[/¥+1+L(|DIFF+END-START)45TE?
[5] T+K/STEP+STEFx=xDIFF
6] TET140,+\N1+«START-"140,5TART+(N-1)xSTEP
[7] MASE+He ., »1HAX
&] 010+1 ¢ INDER+{pMASK)p(,HASK)\1pT
£e] Oro+0 ¢ R+(FILL,+\T)[INDEX]
v

QUICKSTEP was by far the fastest function, but would require modification to change

its current bahaviour of ignoring extra elements in the left argument. It also fails the one
row matrix of zeroes test.

Competition entries must be written in standard-conforming APL, but we are always
interested to see solutions in other APL dialects. Morten included this Sharp APL
alternative with his entry:

¥ R+FILL SAPLSTEF CTL;0IO;STEP;START;END;DIFF;N;MAX
[11] 2(0=[JNC 'FILL'")/'FILL«D'
[2] O10+0 ¢ START+CTL[;0] ¢ END+CTLL;1]) ¢ STEP«CTL[;2]
{31 =
[4] MAX+OT[/t+1+l{ [DIFF+END=START)+STEP
[5] R+{START+ >(STEPxxDIFF)x">17>K), | >(MAX-N)p >FILL

v

Congratulations to Neil Mitchison, Morten Kromberg and R H Currie who share the
£50 prize money equally. Commendations are also due to Anthony Quas and Heinz
Reutersberg.

110

VECTOR Vol.3 No.3

Surely there must be a better way

Ambi-valent Functions
by David Ziemann

If you have an APL solution that you feel could be improved upon, but you just can’t quite
see how, then send it in to us. In the other hand, you may have found a new solution t0 an
old problem — why not let other people know about it?

Many APL programmers use interpreters that support ambi-valent functions. An ambi-
valent function is one whose valence is not fixed. This usually means that it can be called
monadically as well as dyadically. By the way, it’s probably better to pronounce ‘ambi-
valent’ with the hyphen in mind; the functions don't feel opposite emotions
simuitaneously, but rather they demonstrate one of two different combining powers, or
valences.

My feelings toward ambi-valent functions are however, definitely ambivalent. They are
often used in a way which is likely to lead to code that is difficult to modify, or even worse,
that leads to program bugs. This, however is another story, albeit one which I hope to
follow up sometime. For the moment, let us say that they should NOT be used for passing
‘control information’ into a function but rather to allow the function to assume a default left
argument. Even this practice is dubious, but. . . ,

Anyway, the standard way of testing for the presence or absence of the left argument is by
using the ‘name-class’ system function,[] NC. This is demonstrated by the function DIVI,
a modified version of DIV, which acts as a cover function for the divide primitive, but
which gives a zero whenever division by zero occurs, rather than a DOMAIN ERROR. If
the left argument is missing then the value 1 is substituted and the result is a reciprocal.

¥V Z+4 DIV W
(1] m Divide <A> by <W> without DOMAIN ERROR
(2] & Zervos in <W> give zeros in <Z>
[3]
[4] Z4ZRAEW+~T+WZ0
v

v Z+A DIVI W
[¥]1 & Divide <A> by <W> without DOMAIN ERROR
[2) A Zeros in <W> give zeros in <Z>, Default <A> is i

[32

[4] +(2=0NC TA')/a
[5] A+l

[6]

[71

al
[al ZHLXAEWH~Z+HZ0
v

I 200DI1vl 2 00
0.5 00

Divi 0 1 2
01 0.5

111

VECTOR Vol.3 No.3

If the name-class of the left argument name is 2 then a left argument value was supplied,
otherwise it is 0. If you are using a system that supports an APL statement separater thern it
is possible 1o tidy this up slightly by coding:

¥ Zea DIVZ W

n Divide <A> by <W> without DOMAIN ERROR
A Zeros in <W> give zeros im <Z>», Default <A> is

[11]
£2]
[3]
[4] +(2=0HC *A')/a © A+l
[53
(6]
[71

as
I+ZxAtW+~2+UZ 0

v
In both cases however, the code is a bit messy, involving a branch arrow, a systern function,
a label and a pair of parentheses. The next step is to bury the mess inside another function,
so that we don’t have 1o look at it all the time. The function DEFAULT assigns its right
argument value to the name on the left only if it doesn’t already have a value.

9 Zea DIVI W
1] n Divide <A> by <W> without DOMAIN ERROR
E?% A Zeros in <W> give zeros in <Z>, Default <A> is 1
3
[4] 'A' DEFAULT 1

[51] Z+ZH AW ~Z+W=0
v

Vv Al DEFAULT &2
[1] A 1f nmame in <Al> is not a variable assign it the value <a2>

{31 2 (2x0NC AI}/AL,'+a2"
v

Notice that DEFAULT has to use unusual local names in order to reduce the probability of
any of them clashing with the calling functon’s left argument name. Admitedly, the
function trades a branch and a label for an execute,but it is hidden away in a single function.
This is preferable to the practice of littering code with ever more complex expressions of the
form

2{220ONC'LEFT")/'LEFT+F0O0 2'

Apart from the low readability and maintainability of this kind of thing, the call to function
FQO would probably not be detected by cross-reference or other workspace documenting
programs. Debugging is made easier too, because DEFAULT can be iemporarily modified
1o include your choice of trace or stop expressions.

The DEFAULT function is useful, but if you are lucky enough to be using an APL which
has a [J SI system function you can do even better. [] SI typically produces a character
vector or matrix representation of the SI stack as it would appear if you use the)51 system
command. By examining the SI stack it's possible to determine the name of the calling
function, and hence if its left argument name (if any) has a value. The function LARG
returns a } if its calling function was invoked with a left argument, otherwise a 0 is returned.
Because it examines the header line of the calling function’s definition, it does not need to
have the variable name passed in as an argument.

112

VECTOR Vol.3 No.3

¥ Z+A DIV4A W
A Divide <A* by <W> without DOMAIN ERROR
A Zeros in <W> give zeros in <Z>, Default <A> is 1

1]

2]

3]

4] +LARGSfa © A+1
5]

6] a:

7] Z+IxAtW+~Z+UWZ0
v

¥ A+LARG;[I0;4Al
A Return 1 if calling function called with left argument, else 0O

dro+c

R Get the name of the calling function
Ale(alt'['3+a8+, (1,14pAl)+ 1 O +aleOst

P Quit if there is no calling function or czlling function locked
+(0epal+0CRL Al,'[0I')/A+0

(e la e lanton Lon tan Lo dan Lan Lt Lan)
e A B R LTI ST T
R = O L e e L

]
)] n Return 1 if the nameclass of the function's left argument is 2
1 a+2=0NC(-(daldi'=t)ral+(alr" *)4al

v

The system function [] CRL is used to return the character representation of the function
header line. This is available in APL*PLUS PC, but users of other systems will have 1o
[J CR the whole function and extract the header line by indexing,

The use of LARG is not recommended because it may encourage ‘spaghetti logic’. A better
approach is 1o devolve the assignment of the left argument name into a cover function, as in
DEFAULT. In this way the module strength of the function {a systemn design concep) is
not compromised to the same extent. The function LARGDEF (Left ARGument DEFault)
implements this idea as follows:

¥ 2+A DIVS W

[1] n Divide <A> by <W> without DGMAIN ERROR

(2] A Zeros in <W> give zeras in <Z>. Default <A> is 1
3]

[4] LARGDEF 1

[5] T+ZHAIN+~ZeYZO

¥ LARGDEF 42;010;a;Al
[1] A sSet calling function lefe argument to €A2> iff its undefined

[3] O1o0+0

[5] n Get the name of the calling function
{6% Ale (A1 [*)4al+, (1. 14pa0)¢ 1 O +al+0sT

[8] @& End if no calling function or function locked
[9]J +{Cepal«lCRL al,*[0]")/0C
[10
[11] A Get the name of the calling function's left argument
[12] a«(-(4AI}1'+1)4+AL+ (AL " ")44l
[13]
[14] A Assign value iff calling functioen®s left arg. is undefined
{151 s(o0=0O8c a)/a."+a2?
v

113

VECTOR Vol.3 No.3

Now we have a function which can be safely used to provide a default value for a funtion left
argument name, and without the visible use of branching, labels, execute, parenthesese or
quote marks. LARGDEF will have no effect if its calling function definition is not dyadic or
if the SI stack 15 clear.

No reference to the name of the left argument is made in the application function, so the
approach is less liable to bugs resulting from program meodifications. For example, if you
later wanted to rename your function left argument, you could do so with less chance of
introducing a program bug.

Can you see why the phrase ‘0-equal’ is used rather than ‘2-not-equal’ in the last line of
LARGDEF?

Please note that the function DIV has only been used as an example (o demonstrate these
techniques; utilities like LARGDEF would be more usefully employed in applicatien
functions rather than common APL utilities.

114

VECTOR Vol.3 No.3

APL Trivia

Funny Dates
compiled by Dave Ziemann

First, thanks are due to John Searle from Sydney, Australia, who was originally responsible
for the ‘Meaning of life, the universe and everything’ expression, which evaluates to 42,
What will John’s next numerological submission be?

But now to the dates. The following expressions were executed under APL2 release 2,
running in a TSO environment:

NAMES+ ™11 34ATSO'APL PDS1 ''VSS.NAMES.APZTNOLILl''*
[O+NAMES+c[2]NAMES
ATR CAN CTK CTN DAN FED XTC PFA RTA SAN SVI
(c3 11) ONATNAMES
11111111111
2021 2 DAT NAKMES

1985 4 1 12 0 0 0
1985 4 1 12 0 0 0
1985 4 1 12 G 0 O
1685 4 1 12 0 0 C
1985 4 1 12 0 0 0
1985 4 1 12 ¢ 0 9
1985 4 1 12 0 0 0
1985 4 1 12 0 0 O
1985 4 1 12 0 0 0
1985 4 1 12 0 0 0
1985 4 I t2 0D O Q

The [AT system function can be used with a left argument of 2 10 discover the date and
time that any defined function was saved. Afier defining the APL? inuinsic functions
supplied with the APL2 product, the 2{] AT is applied 1o each name. As you can see above,
it turns out that they were all created exactly at the end of April fools day, 1985! Can this be
mere coincidence? Thanks te David Piper for pointing out this curious behaviour.

It makes sense to try 2{1 AT with primitive APL2 functions as well, but in this case we just

get a timestamp of 7 zeroes — not so interesting, At least, in immediate execution mode we

do. However, any primitive APL2 function may be an operand 10 an APL2 user-defined

operator, 50 it’s possible to apply [] AT 1o this operand within the definition of the operator:
. vYQUADraTLOO- 1V -

(0] RE+{LO QUAD_AT)RA

[11 RE+RA [AT *LO"
v

2 JAT te?
0000000

® QUAD_AT 2
1614 2 7 18 28 15 285
The result when the operator is applied to the log primitive appears to be the birth date of
Napier, the Scottish mathematician who discovered logarithms! The question is, is the time
accurate? Before you rush to try this with other primitive functions, it only seems to
produce a non-zero timestamp for the logarithm function. Further developments awaited
eagerly.

I15

H.M.W. PROGRAMMING CONSULTANTS LTD

Why not discover more about
* Consultancy/Support Service
* APL on the IBM PC
* VM/CMS Packages
Ring Ken Jackson at

H.M.W. PROGRAMMING CONSULTANTS LTD
142 FELTHAM HILL ROAD,
ASHFORD, MIDDLESEX TW15 1HN
Telephone: Ashford 41232

VECTOR Vol.3 No.3

Introduction to Contributed Articles

See the APL-86 section {page 77) for our main technical article this issue which is a
transcript of Alan Graham’s APL86 talk entitled ‘Idioms and Problem Solving in APL2’.
Alan works for IBM at their Santa Teresa laboratory in California. If you are new to APL2
or an old hand, this profound but eminently understandable foray into the uses of the
language will be of interest. Many thanks are due to John Sullivan for his accurate
transcription of both text and APL from Alan’s talk and visual materials.

David Ziemann is Technical Officer on the I-APL committee, and is responsible for the
production of the technical specification of the proposed interpreter. The current technical
specification is published here for the first time. Please send any technical comments or
suggestions directly to the author.

David Piper is fast becoming a regular contributor to VECTOR. This time he shows us how
he has used APL2 language features to create a set of efficient QSAM and BDAM file access
functions in a TSO environment. The APL2 code from David’s offering in the last
VECTOR was accidentally omitted, and so we have appended it to the end of his article.

117

VECTOR Vol.3 No.3

I-APL Technical Specification
Number 1.1 - October 1986

0 Introduction

This decument is the technical specification for I-APL, a full function, portable, freely
available public domain APL interpreter for small computers.

As the design and development of I-APL progresses, the technical specification will
become more detailed. There are a number of issues which have not yet reached
conclusion, and as they become concrete, so subsequent specifications will reflect this.

The specification consists of five parts; an overview followed by hardware, language,
environment, and exclusion sections. The hardware specification includes details relating
to target machines, The language section contains the specification for the 1-APL language
itself, and in particular how it relates to the text of the Draft International Standard for
APL. The last section contains technical information relevant to aspects of the APL
environment, as distinct from the language. Finally the exclusion section includes a
checklist of features which are not planned f{or implementation in I-APL.

1 Overview

I-APL is designed 1o be a standard-conforming portable APL interpreter for small
computers. The standard referred to here is the English text for the Draft International
Standard for the programming language APL, or DIS 8485, ISO document number IS0/
TC 97/5C 22/WG 3/N55.

Furthermore, I-APL is designed with the education market strengly in mind — full
standard-conformance and the minimisation of interpreter size are the twin goals which
subordinate execution speed and productivity features. Therefore I-APL is not to be
considered a commercially viable product. In particular, there will be no file system or full-
screen i/o, and the maximum theoretical workspace size will not exceed 64K bytes.

Effort will not be spent on ‘smart algorithms’. For example, the naive bubble sort will be
used where required, and symbol table searching will be strictly linear. Additionally, the
more esoteric algarithms necessary for a conforming implementation (Eg matrix inverse,
matrix divide, dyadic transpose and the transcendental, gamma, and binomial functions)
will be candidates for ‘magic functions’, ie they will be implemented using APL itself, ina
manner transparent to the user.

The implementation language will be Forth-like, and the generated object code will be a
universal intermediate language which is executed by a small machine-code interpreter.
Porting will therefore consist of rewriting a small number of routines particular to the
processor and environment of each target machine. The development environment will be
initially developed on a PC clone. Paul Chapman will develop the implementation
language, the APL interpreter and a small compiler, written in G, to tranlsate to the target
machine’s language.

118

VECTOR Vol.3 No.3

2 Hardware specification
I-APL will be implemented for use on the following target machines:
Apple I
BBC model B
Commodore 64
CP/M-based micros
IBM PC and clones
Sinclair Spectrum

Every effort will be made 1o make it as easy as possible for I-APL to be ported to other small
machines. We hope to encourage rather than discourage this activity by providing hooks,
handles and documentation wherever they are appropriate,

The size of the interpreter will not exceed 30K bytes, and it is hoped that a final size of 25K
bytes will be achieved.
3 Language specification

1-APL will include all the defined facilities and implementation-defined facilities required
by the 18O standard, and will achieve a very high level of conformance with the standard.
This phrase is used not because it is planned to skip over certain features, but because we
recognise that in practice complete conformance is unlikely.

The optional facility ‘trace and stop control’ will be included, but the shared variable
protocol and statement separator facilities will not. A number of consistent extensions will
also be made.

3.1 Specified facilities

The following is a list of standard-specified facilities currently planned for inclusion in I-
APL:

3.1.1 Functions, operators and variables

All primitive functions, operators, system functions and system variables specified as
defined facilities in the standard. That is:

Primitive functions

Conjugate Negative Signum
Reciprocal Floor Ceiling
Exponential Natural logarithm Magnitude
Factorial Pitimes Not

Plus Minus Times
Divide Maximum Minimum
Power Logarithm Residue
Binomial Circular functions And

Or Nand Nor

Equal Less than or equals Lessthan
Notequal Greater than or equal Greater than

119

VECTOR

Ravel
Reshape

Roll
Reverse (two forms)
Matrix inverse

Index of

Compress (two {orms)
Representation

Drop

Indexed reference
Dyadic format

Index generator
Join (catenate)

Grade Up
Monadic transpose

Member of

Expand (two forms)
Rotate (two forms)
Dyadic transpose
Indexed assignment

Also, the ‘with axis’ forms of the following:

Reverse (two forms)
Expand (two forms)

Operators
Reduction {two forms)
Inner product

Compress (two forms)

Rotate (two forms)

Scan {(two forms)

Also, the ‘with axis’ forms of the following:

Reduction {two forms)

System functions
Time stamp (T'S)
Line counter (1.C)

Scan (two forms)

Atomic vector (AV)
Name class (NC)

Name list (NL) — monadic and dyadic

Function fix (FX)

System variables

Character representation (CR)

Comparison tolerance (CT) Random link (RL)

Print precision (PP)

Latent expression (LX)

3.1.2 Miscellaneous

Index origin (10)

Vol.3 No.3

Shape

Grade Down
Execute

Deal

Base value
Take

Matrix divide
Monadic format

Join

QOuter product

Delay (DL)
Expunge (EX)

Assignment, branch, parentheses, quotes, labels and end of line comments, as specified.

3.1.3 Quad and quote-quad input and output.

3.1.4 Stop and trace

The *stop and trace control” optional facility for querying and setting function trace and

stop ¢ontrol.

120

VECTOR Vol.3 No.3

3.1.5 System commands

JCLEAR JCOPY JDROP JERASE
JFNS JLIB JLOAD JSAVE
;%{I/S}D)SIC)SINL JVARS

It will probably not be possible to provide YCOPY on machines which are tape cassette
rather than disk-based.

3.1.6 Function editor

A del-type line editor for defining and editing functions. Blank lines will be allowed in
defined functions.

3.2 Consistent extensions

The following list of consistent extensions is planned for inclusion in I-APL:

3.2.1 Replicate
The left argument of compression will be extended to the domain of positive integers.

3.2.2 QuadCALL
A facility for executing programs written in the machine language of the host compurer.

3.2.3 QuadPW
A facility for querying and specifying a printing width parameter.

3.2.4 Scalar extension

Dyadic scalar extension will be less strict than described in the standard, and will be behave
as implemented on most APL systems. That is, a single element array of any rank will
conform with any other array,

3.2.5 Base value shape requirements

The shape requirements for the arguments of the base value function will be less strict than
described in the standard, That is, a unit dimension in the last axis of the left argument or
in the first axis of the right argument will be replicated to match the length of the
corresponding axis in the other argument

3.2.6)PCOPY

The JPCOPY system command will be provided in disk-based versions of I-APL.

3.2.7 Join on empties

Joining (catenating) two empty arrays of different type will produce an empty result, rather
than the error signalled in the standard.

121

VECTOR Vol.3 No.3

4 Environmental features

The following list of features related to the APL environment is planned for inclusion in I-
APL:

4.1 Atomic vector

A 256-element single character atomic vector will be implemented. All the ASCII
characters will be included and will appear in their usual positions. A full range of APL
special symbols will be included.

4.2 Character representation

There will be no difference between the internal and external representation of characters in
the system.

4.3 Provision of APL characters

APL special characters will be provided on at least one target machine. For other target
machines which permit 2 programmable character set, the APL characters will be provided
in a form that will easily allow a porter to install the set, The target machines known to
include a programmable character set are the BBC model B, the Sinclair Spectrum and the
PC (with colour card). The target machines that are not known to include a soft character
set are the Apple II, the CP/M-based machines and the PC with monochrome graphics
adapter.

4.4 ASCII representation of APL

All the target machines will allow APL to be entered and displayed using an ASCII
representation, The details of this are currently being waorked out, and a proposal will
appear soon. A keyword or mnemonic approach is considered less desirable than a direct
transliteration scheme, although this may not be possible.

4.5 Alphabet

The upper-case alphabet will be available for constructing identifiers, comments and
character constants. The lowercase alphabet will not, if as expected it is reserved for use in
the ASCII transliteration of APL symbols.

4.6 Internationalisation

Al I-APL error messages and system command names will be stored in special tables at
identified locations so that alternative language versions of I-APL may easily be created.

4.7 Porting and upgrading

Porting hooks will be provided whenver possible to encourage the transfer of I-APL 10
other machines, and to facilitate the provision of extra features. For example, hooks will be
provided to permit the development of full-screen 170 and arbitrary eutput translation.

122

VECTOR Vol.3 No.3

4.8 Numeric representation

The internal representation for the numbers has not been finally decided. There are two
possibilities; either a single representation will be used for all numbers, or a multiple
representation will be used. If a single representation is chosen it will be a single precision
floating point representation of either 4 or 5 bytes. If a multiple representation is chosen, a
three-fold split is likely; the floating point representation, 2 byte integers and 1 bit
booleans. Note that the advantage of the bit booleans would be purely one of space - no
boolean processing optimisations are planned.

4.9 Printing

A facility to echo the current session to a printer will be provided, as will the capability 1o
print the contents of a character array.

5 Exclusion

The following list is a checklist of features that are not currently planned for inclusion in the
I-APL base product. It is here to indicate that the features were considered for inclusion
and rejected rather than not considered at all.

5.1 A filing system
Other than the wransparent one required 1o save workspaces in a library.

5.2 Shared variables

5.3 Graphics support

5.4 QuadPEEK and QuadPOKE
5.5 A statement separator

5.6 Complex numbers

Complex numbers and complex arithmetic will not be implemented. Also, raising a
negative number (o a fractional power will produce a DOMAIN ERROR, even when a real
result is possible,

5.7 Generalised arrays

5.8 Extensions to upgrade and downgrade
5.9 A defined function locking mechanism
5.10)RESET.

JSIC will be implemented.

5.11 S-delta and T-delta

The S-delta and T-delta mechanism for setting handling stop and trace vectors will not be
implemented. The corresponding system functions will be present.

5.12 Change name class of functions on the stack

It will not be possible to expunge or fix a function that is pendent, waiting or suspended a1
a lower level than the top of the SI stack,

123

VECTOR Vol.3 No.3

5.13 Invalid assignments to system variables

An attempt to assign a system variable with a value outside its valid value set will signal a
LIMIT ERROR.

5.14 YCOPY for tape machines

The system commands JCOPY and JPCOPY will not be provided for tape-based machines.
They will be included in the disk-based versions of I-APL.

5.15 Screen print

The ability to print the current screen contents to a printer will not be provided.

5.16 Program execution of system commands
System commands will not be in the domain of the primitive execute function,

5.17 Workspaces larger than 64K bytes

A theoretical limit of 64K bytes for workspaces will exist, even for machines that could
support larger ones.

124

VECTOR Vol.3 No.3

A Command driven interface for BDAM and QSAM
Auxiliary Processors using APL2 under TSO

by David Piper

1. Introduction

The requirements for the successful use of files from within APL can be summarised as
being:

Efficient input/output processing
A 1obust, consistent and easy to use interface.

The auxiliary processors associated with the QSAM and BDAM access methods (API11
and AP210 respectively} are more difficult to use, and generally considered to be less robust
than other auxiliary processors associated with file handling in APL (e.g. the VSAM AP,
AP123).

Increased difficulty of use arises from the protocols associated with the APs. These are not
command driven, but rather depend on the order of assignment/use of the shared variables.
The initial values of the shared variables are also crucial, since the file to be accessed is
opened at the point of sharing the variables, and closed at relraction, rather than by explicit
command after sharing. Also note the data shared variable (prefix REC not DAT) must be
shared first.

The APs are considered less robust, since the order of assignment/use of the shared
variables is crucial, forming the command interface. Misuse of the variables, in the sense of
an incerrect order of assignment/use, can cause the auxiliary processors 1o abend. If this
oceurs, the APs may be unavailable for the rest of the TSO session, The QSAM AP is
especially prone to this type of failure if only a single {data variable) is shared. In this case,
even simple errors, stch as attempting to continue processing after end of file, may give rise
to an abend in the AP.

2. Designing a new interface
The criteria behind the design of an interface to cover the use of the APs are threefold:
Efficiency of file 1/0.

Robustness of the interface.
Ease of use for the application developer.

Since the cover functions are intended for use within an application, ease of use in terms of
flexibility of command specification etc. is given the lowest priority. Efficiency is given the
highest priority so the command interface has as litile impact as possible on application
performance,

In order to minimise the efficiency impact, each command is made as simple as possible o
interpret. Once interpreted, the minimum possible code is used to execute each command,

125

VECTOR Vol.2 No.3

The range of commands is extended to include ‘block’ operations to further minimise
overheads. During the execution of blocked commands, the command is interpreted once,
then executed in a loop, with no more code than would have to be used if shared variables
were used directly by the application code.

Further efficiency is gained by avoiding the use of execute for all operations (except the
initial opening of a file). The technique used is to fix an access function, with a given name,
in which the references to the shared variables are explicitly coded. For a fuller discussion
of this technique, see my article in VECTOR 3.2. Robustness is achieved by containing all
file operations within the cover functions. This ensures that all uses of the shared variables
are executed in the correct order. It also allows a certain amount of error checking to be
performed, such as preventing attempts to write data to a file open in read only mode. Error
checking at this point also prevents attempts to process files after an end of file condition is
received. Thus the major sources of errors within the auxiliary processors are avoided.

Ease of use is improved by removing the need for initalisation of variables before being
shared. The open command performs the correct initialisation and performs all checking
necessary to ensure the share was successful. From the applications point of view, the
complexity of opening the file is reduced 1o the simple use of a single command. The same
can be said of the close command. The cover function takes care of shared variable
retraction and checking of return codes.

Ease of use is further enhanced by the use of the same command structure (as far as
possible) across both APs. The command structure has been implemented o resemble as
closely as possible that implemented for the VSAM auxiliary processor (AP 123). The
similarity of the command structures across all three access methods allows file processing
to be used far more easily than when making use of a variety of function driven interfaces.

3. Creating/Deleting Access Paths

Before any files can be accessed, the path function has 1o be created {or LINKED]. For
QSAM files:

RC+aQSAH_LINK 'pame! A <uname> is used to customise the
A names of the access path function
A and the shared variables)

Commands can then be issued using the path function:

RC+QSAM_name 'command! R Gpening, Closing or reading
RC+data QSAM. name ‘'command' A Writing data

When file processing is complete, the path function can be erased. The process of
UNLINKING issues a close command in case any files have been left open. Paths are
deleted using the UNLINK function:

RC+4QS5AM_unlink 'pname?

The path function is expunged along with the shared variables.

126

VECTOR Vol.3 No.3

4. Opening and Closing Files

As already discussed, opening and closing files is one of the most complex operations under
ATs 111 and 210. First the variables have to be initialised:

CTLQSAM+"filename (crl?

RECQSAM+'filename {mode conv'

Afier this, the variables can be shared — record variable first:

88«111 [sVD 2 7p'RECQSAMCTLQSAM!

Return codes from the open operation must be checked:

RC+CTLQSAM

Using the command interface, the above steps are reduced to a single line of code (assuming
the path has already been linked):

RC+QSAM_path 'Om filename conv'

Acceplable values for <Om> - the access mode — are R{ead), W(rite) or U(pdate). BDAM
files can additionally be opened for Flormar) processing. The return code given by the open
operation is fully descriptive of any error that may have occurred. The code can be passed
10 the relevant error message function to obtain a texrual description of the error.

When opened for FORMAT processing, the next command given for the file must be the
format command:

RC+data BDAM_path 'F' pnn A <non> is the number of records
The file is then left open in update mode.

The BDAM file interface ensures that the open/format commands are processed in the
correct order witheut intermediate attempts 10 read and write to the file.

Closing the file is simply a matter of using the close command. This command retracts the
shared variables (thereby closing the file), but leaves the path function intact. This allows
further file processing to take place, either in a different access mode, or to another file.

5. Reading/Writing Data

The only significant differences in syntax between the two file access methods are in the
commands associated with reading and writing data. The syntax is bound to be different
since BDAM offers direct access to records while QSAM offers only sequential access.
BDAM also offers sequential access, the syntax for sequentially processing single records is
identical for both access methods.

For efficiency of file access, ‘pseudo-blocked’ access commands are also provided. These
read or write a series of records using only one call 1o the path function. A loop of code
within the access function performs the multiple calls to the auxiliary processor. The
command is parsed only once, the code loop simply assigning/using the shared variables as
required. As soon as a non-zero return code is encountered processing ceases. If a write is
being performed, any unwritten records are returned in the data item of the return vector.

127

VECTOR VYol.3 No.3

To read a single record, the following syniax is used:

(RC DA)Y+QSAM_path 'R® A QSAH
(RC DA)+BDAM_path 'R’ A BDAM sequential
{RC DA)Y+BDAM_path 'R' recoerd_number A BDAM direct

The data is returned as a nested vector, each item of the vector is a record from the file.
Since only a single record is read, the vector has only ene item.

To perform a ‘blocked’ read:
(RC DA)+QSAM_path 'R' number_of.records A QSAM
(RC DA)+BDAM_path 'R' nl n2 n3 A BDAM direct

The blocked access terminates as soon as a non-zero return code is encountered. The length
of the vector of records (DA) is the same as the number of records read. The return code
indicates why the read was abandoned.

To write a single record, the following syntax is used:

{RC DA)+data Q5AM path 'w' A QSAM
(RC DA)+~data BDAM_path ‘W' A BDAM sequential
(RC DA)+data BDAM_path ‘W' nl n BDAM direct

A data vector is always returned, normally this will be an empty nested vector. 1fa non-zero
return code is generated by the write command, the unwritten record is returned.

To perform a ‘blocked’ write:

(RC Dad+records QSAM_path 'W' R Q5AM
(RC DAderecords BDAM_path 'W' nl n2Z n3... A BDAM direct

When performing a ‘blocked” write using BDAM, records are written untik:

Records are exhausted in the data vector.
Record numbers are exhausted in the command vector.
A non-zero return code is received.

Any over-written records are returned in the data component of the explicit result. The Jef
argument is a nested vector, each ilem representing a record to be written. If only a single
record is to be written, consisting of a simple vector, this need not be enclosed.

The convention of using a nested vector to contain data records is adopted to enable the use
of the VAR conversion option. This option allows APL2 variables of any type, rank or level
of nesting to be written to file without conversion. To write a series of such arrays, each is
enclosed to form an item of a nested vector which is presented as the left argument.

6. Conclusions

The primary aim of any system of functions covering the use of file access auxiliary
processors should be to maintain the highest level of efficiency possible. This is true simply
because of the number of times the auxiliary processor is likely to be used, especially if file
processing is involved.

128

VECTOR

VoL3 NOo.3

The concept of a command driven interface also enables the following advantages to be
realised:

Reduction in the number of functions in the workspace.
Implementation of a similar syntax across access methods.

Generating a function containing the shared variable names explicitly allows multiple files
to be accessed without the need to continually retract/re-offer shared variables, and

rem

oves the need to use execute.

{Editor: David supplied more APL2 code than we have room for here. A listing of the functions
produced by the BDAM and QSAM ‘LINK funciions follows.)

ABDAM_LIKK ‘'TESTLINKE?

n Generate the function below

VIDAM_TESTLIRK[OIV
v

RC+DA BDAM_TESTLINE CMD;CC;LIN;[I0
010+l
«{'Q*=4{HD+ ,CHD) /0P
RC+{s¥0 2 12p'RECHTESTLINKCTLLTESTLINR®
~{0xRCes] 22=v/2XRC)/fer
+("ORWCF'«+CMD) /op.rd,wr.cl,fo
RC+{1 12)**
+0
op:RC+*TESTLINE® ABDAM_OFPEN CMD+l}CHD
+{af1 13=trC}/0
bdam TESTLINR«(Af0=tRC)/4CHD
-0
rdi+(0#RC+]l ISn-bdam TESTLINECTRU')/ec
DA+ (LIM+1] " 1+p,CMD)pct?
+((CO+1)=p .CHD) /ar
r1:CTLLTESTLINK+{1+CO)>CHD
er:DA[CO]+=RECLTESTLINK
+(0xRC+CTLOTESTLINE) frx
+(LIK2CO+CO+E) /e
rxzDA+{LINLT1+COIeDA
RC+{CARDAM_CODE RC),.cDA
»{{12x3tRCIAV/E 127+RC)/0
«0(BDAM_TESTLINK *C')
wri+(0fRCe] ISx~bdam TESTLINKL'WI")}/er
+{0zRCs] 3I3x22[NC 'DA")/er
LIN~{1+pCHD)LpDA«,8EL5 DA
coel
+{1l=p,CMD} /5w
wIiCTLBTESTLINK«{CO+1)aCHD
4w iRECHTESTLINK=COSDA
+(0ZRCCTLBTESTLINK} fwx
+{LIN2CO*C0+]1)/wl
wx1DA+(LIKLTL1+CO)#DA
RC+{cABDAM_CODE RC).cDA
+({1724+RCIAV/B L229RC)/0
~0(BOAK_TESTLINE 'C')
for+{0ZRC+]1 15»bdam TESTLINKZ'F')/er
+(0*RC+1 17x2%pCKD)/ et
+(0#RC+] 33x220ONC 'DA")/er
CTLbTESTLINK+22CHD
RECHTESTLINR+DA
+(v/02RC+ABDAN_CODE CTLHTESTLINK)/er
bdam_TESTLINK+'U’
+0
er:RC+(RC)"'"
-0
cl:RC+0SYR 2 12p 'RECBTESTLINKCTLLTESTLINE?
RC«(3 22xv/2xRC)*"
bdam TESTLINKe! ¢
7 30.10.19686 15.42.39 (GHT)

AQ5AM_LINKE 'TESTLINR'

A Cenerate the function below

129

VQSAN_TESTLINELO]Y

RC+DA QSAN_TESTLIKK CMD;CO;LIM:0IO
O10+1
+{'0'=4+CHD) fop
RC+[JSV0 2 1Zp*RECQTESTLINKCTLqTESTLINK®
+{07RC+1 2Zav/2eRC}/er
+{10RWCT¢+CHD) fop.td,wr.cl
RC+(% 12}
=0

ap:RC+TTESTLINE® AQSAM_OFPEM CHD+14CHD
«(af1 13=4RC)/D
quam_TESTLINK«(A/0=+RC}/+CHD
{0

rd:+(0FRC+] 15x~quan_TESTLIKK¢'RU')/er
~((2zpCHD)AL2=__CHD)/tb
CHD+CHD, 1

rhi+(v/0#RC+1 1Zx02+0pLIN«2oCHD)} er
+(v/02RC+]1 12xLIM<CO+})}/er
DA+ (LIM+|lLIN)pe'?
r1:DA(CDOJ+ERECQTESTLINK
+{0#¥RC+CTLQTESTLINE) /rx
={LIKzCO+CO+1)/rl
tziDA+{LIMLT1+4CO) DA
RC+(cAQSAK_CODE RC),cDA
+{(127420C)AV/B 112+RC}/0
+0{QSAM_TESTLINK 'C')

wri+{0ZRCe} §3x~geam TESTLINK¢'VUT)/ er
+(0RC+1 33x27[HC '"DA")/er
LIN*pDA+,ARIS DA
Coes1

w1iRECQTESTLIRKSCO2DA
+(02RC+CTLQTESTLINE) fwx
+{LINZCO+CO*1}/ w1

wx DA+={LINLT1+CO)+DA
RC+(cAQSAM_CODE RC),cDA
+{(12x++RC)IA¥/B 122¢4RC)/O
+0{G5AK_TESTLINE fC')

er:RC+(RC)T'
~0

c1:RC+0SYR 2 12p'RECTESTLIKKCTLATESTLINK'
RE=(1 22xv/27zRC)""*
quam_TESTLINE=" "

¥ 30,10,1986 15.53.40 {GHT)

VECTOR Vol.3 No.3

Using [JFX to facilitate the use of Auxiliary Processors

An article with the above title, written by David Piper, appeared in the last VECTOR
(volume 3, number 2). Unfortunately the accompanying APL2 programs which David
supplied were accidentally omitted from the article. We apologise 1o David and any readers
who have been inconvenienced. The code that should have appeared follows:

[#l? AVSAM_LINK.} p: 14 19B6-03-20 14.45.43

[o] RC+AVSAM_LINK PH;DA;SV;TS50

[] A PN: Gemerate access function for V5AM path <PN» [AP123)

[2] A PN - Character vector path name to be used

[3] A RC =~ Humeric¢ scalar RC - O=ok,l=Ffailed

[4] S5V+(2 4p*CTLvDATvV').(2.pPN)pPN Create 5V names

[5] +{v/~(0OKC 5V)e0 2)/ev Report name clase problems
{61 RC+123 0Osvo 3v Share with AP123

[7] +(v/C=RC}/er Error: if no offer failed
[8] RC+[isvs s¥ Cheek degree of coupling

[9] +{v/2zRC)/er Exror: if not fully coupled
[Geperate access functienm

[Exit if fixed

L Report pmime c¢lass problems
[Report unable to share

10] RC+5Y AVSAM_GEN EN

11] +{9=kC) /0

12} ev:'INVALID PATH WAME'® DES 2 3
13} er:"vS5AM NOT AVATILABLE® 0QES 1 5

TTPDRPRIBDTDD

[aly AVSAM_GEN.3 p: 12 1986-03-07 12.47.18
[o} RC+SV AVSAM_GEN FN;CD
[1] R FN: Generate access function for VSAM file (AP123)
[2] A 8V - Character array Shared variable names to be used
[3] A FN - Character vector File name
[4] A RC - Humeric scalar Return code - O=ok, I=failed
[5] CD+c'RC+DA V5AM_',FN,!' CMD' #® Function called VSAM_<FN>
[6] CD+CD,c'+{2=DNC "'DA'*)/dy' A Check for dyadic use
[7] CD+Ch,c'DA+" "V 1Y A Default null data SV
[83 CD+CD,c'dy:!,5vV[2;],r+pAt B Aspiga data SV
[9] CD+CD,cSV[1;], "+CHD? R Assign control S¥
[10] CL*CD,ctRO+, 14,8y, t R Return code is CTL DAT
[1F] RC+0=#0pRC+1 I 0 0 0OFX cD A Fix the function
[A]¥ aVSAM_UNLINK.3 p: 9 1986-03-20 14.48.09
[o] RC+AVSAM_UNLINK FH;NA
1] & FN: Destroy access function for VS5AM file <FN> (AP123)
[2) A FN - Character vector file name to be closed
3] A RC - Numeric scalar RC - D=ok,l=failed
[43 NA+(2 4p'CTLvDATv').(2.pFN)pFN A S5V names
(51 HA=(NA,® *),[1I'VSAM_',FN A Access function name
[6] +{RC+3208C NAL3;1)/0
(71 RC+aNA[3;T, vigry A VSAM cloae fila
[8] RC+v/12[EX NA A Expunge the objects
AVSAM_LINK *'TEST!
a
¥YSAM_TEST[D0-2v
(0] RC+DA YSAM_TEST CMD
[1] +(z=0NC *DaAt}/ay
[2] Da+tt
{31 dy:DATvTEST+D4
[4] CTLvTEST+CMD
5] RKC+CTLvTEST DATvTEST

130

VECTOR Vol.3 No.3

YREFORTI{(0O-]

[i6] qr:VSAK_INPUT ‘C*

Alvays try to close file.
[I?7] AVSAM_UNLIME *INFUT®

Deatroy link to path IRPDT

[o] RC‘IEPORTI:VSAH_!KPUT;CTL?[NPUT;DATVIHPUT}DATA
{11 RC+AVSAM_LINK 'INPUT?' n Link to path INPUY
[z1 +{0xRC) /er A Report error if failed
[31 RC+4VSAM_IKPUT 'OR RLINPUT' A Cpen file RIINPUT for Read
[4] +(v/0xRC) ter n Eeport error oo open
[s5] DATA+(&0p* A Fized lengtk BO byte data
[6] s1:RC+VSAM _INPUT 'R' A Read a record
[7] ={A/8 4=+RCI/ef n End of files. no retord read
€D +{v/024RC)}/er A Report error vemdiung file.
{9l DATADATA,.[1] 2aR¢ A Join record to data sarray
(18] st A Get another record
[11] ef:CREATEAREPORT] DATA A Do something with data
[1z1 EC*0 m All ok, so returp O
[13] +qt A Now tidy up files etc.
[14) er:4YSAM_ERROR RC # Keport error
[i5] RC+} A Exit with bad code

"

A

[nlv AVSAM_ERROR.3 p: 4% 1966-03-13 10.49,06

[o] MS+A4VEAM_ERROR KC;CD;EN

[1] m FN: Return error mevnage from Y5AM processing via AP123

[2] A RC - Numeric vector Return code to be analysed

[3] A MS - Chavacter vector Message associated with code

[4] +(iz=zRC)/5i m Beturn code is simple vector

[53 RC=+RC m First bit only

[6] si:CD+E 12 13 15 16 17 I8 1% 20 2I 22 27 32 33 42 45 48 0 8 Ilé
[71 CD+CD.4 B 16 20 28 32 40 88 56 100 11C 116 128 136 152 168 1%2
[8] Co+((15¢17p1).4,17p8),[1,5)cD

[9] EN+(CDA.=RC)tl

[10] Bt I+nt+EN

[11] «0 M5+'Y501001 Error creating/ending link with VSAM file.t

[12) +0 ME+'VSD1012
{13] +0 HS+T¥501013
(14] +0 H5+'Vs501015
(151 +0 HS+'¥501016
[161 +0 HS+T¥501017
(171 +0 K5+ '¥5UlD13B
[18] -0 M5+'¥50101%
[1¢%] ~+0 M§+'¥S01020
[z0] +0 MS+'VsUI0ZL
{21] =0 M5+'ysuloz2
[22] +0 ME='vSDlOZ7
[z32 +0 HS+'V501032
[24] +0 HS+'VSDi033
[25] +0 MS+'VEVLI042
£26] +0 ME+TVSULD4S

E
E Invalid command syntax in the CTL.?
I Open request against file already open.'
E Cowmmand mot allowed in current open mode.'
E Erase on eotry zequenced VSAM datsset.'
E Key data too loug (or too short in RU command).'
S VSAM interoal error detected (MODCB error).'
§ V5AM internal error detected (SHOWCH error).‘'
E Datu variable does not contsin charscter datas.'
E Dats variable is not of correct length.'
E File is not currently open.’
S VSAM internal error detected (TESTCE error).t
S Jueufficient FREE apace for !/0 aress.'
E Ho dats in the DAT SV for 4 write request.!
E A.P. sequencing error (eee OSVYC).*
3 VSAM internal error detected {GENCB error).’!
[27] +0 HM5+'VSULIC4E E Tnvalid ccomand sequence {eg W before EU},'
28] =0 H$«'VSUQO0GO 1 Command executed successfully.’
[29] +0 M5+'VSUDCCS W Duplicate keys ow file, only the fitst read.?
[30] +0 M5+'V¥5U4116 5 File not closed correctly, uae ANS VERIFY.?
! [31] =»0 HS5+TYSD8004 E End of file. or key gtrater than any oo file.'
{32] +0 H5+'VSUB008 E Duplicate key. record mot written."'
{331 +0 HE+'VYS5UB016 E Recotd not found.'
(34] +0 M5+'V5UB020 E Recotd in wae by another user.'
[35] +0 MS+'VSUBOZB E VSAM dataset is full.!
[3527 +0 HS+'YSUB03Z E Invalid relative byre saddress.’
! £37] +0 MB+'V¥SUBO40 & Insufficient virtual atorage.’
i [38] +0 M5+'V3SUBOB8 E Seq. read requested without prior positioning.’
f3s] +0 M5+'¥SUB096 E Attempt to change key of record.'
(40] +0 H5+'VSD810C E Cannot change record length in non-keyed DS.!
~»0 MS«'VSD2]10 E Attempt to open empty file for read/update.’
fa2] +0 M5+ 'VSO8116 § Fale not closed correctly. use AHS VERIFY.!
[43] +0 MS5+'V¥5U8128 E Attempt to ogen file not properly sllocated.’
' [44] +0 M5+TVBDB136 E Insufficient virtual storsge.'
[a45] +0 MS='¥508152 E Passvord error.’!
{46] +0 M5+'VSUB168 E Dataset in use by ancther uder.'
[47] +0 H5+'95UB1392 E lovalid record number in relative record file.!'
[48] +0 M5+'¥SU1099 E Unkoown return codes ',¥RC

P
S
-
—

CAPLFOR
BOARD LEVEL| //////,
SYSTEMS | METAPRAXIS

£9.000 - £20,000 h

Metapraxis is a management consultancy specialising in corporate financial
control. We normally work with the Senior Directors of groups with annual
turnover of over £250 M. Our approach helps Directors to interpret the
mountain of data which they face using conventional methods of present-
ation. We have developed two techniques to facilitate this process:

* RESOLVE is the first of a new generation of corporate control
systems, and is used in econometric, banking, and project control
environments, as well as for financial control of large organisations.

* VISION is a software control system to coordinate Boardroom
presentation media, including computer outputs, such as RESOLVE and
Prestel, alongside 35mm, T.V., videotape and video-conferencing.

£

We now seek exceptional individuals to join our software development
team. You will develop innovative new products, some of which border on
the expert system field, as well as enhance our existing systems and provide
in-depth technica! support to our clients. Working with advanced graphics
techniques, you will use a mix of skills in areas such as APL, Assembler,
graphics hardware control and on-line data communications.

You should have a good honours degree in a numerate science, and a
demonstrable track record of using APL in the implementation of complex
commercial projects, in mainframe and/or micro environments.

This is a unique opportunity to influence and share in the growth of a new
industry. Please send relevant career details to:

David Preedy
Development Director

Metapraxis Limited, Hanover House, Coombe Road,
Kingston-upon-Thames, Surrey, KT2 7AH. y

VECTOR Vol.3 No.3

The British APL Association

Public Domain Software Library

The BAA Public Domain Software Library is now up and running. The library will be
managed by the BAA as a non profit-making service for the APL community worldwide,
although a discount is offered 1o BAA members. At the end of April 1986 the scheme will be
re-evaluated and changes may be made to its operation.

The library catalogue will be printed regularly in.VECTOR, and we hope also 10 run
reviews of popular and interesting software.

So, where does the software come from? You guessed it — the PDSL can only work if you
send us your software. The DOS format disk is used as the exchange medium, although this
does not mean that the software has to run on the PC. We encourage mainframe users alsg
to share their VS APL, APL2, Sharp APL, APL*PLUS {and any other) utilities or even
complete systems. We make absolutely no restrictions on the target machine — provided
you can download the software onto a disk, then the library can accept it.

Piease think back aver the last year or two. That litle APL system you developed, those
utility workspaces or even that database. It doesn’t even have to be APL software, although
we do stipulate that it should be ‘of interest’ to the APL user, programmer, educator or
student. When you have something to send us, fill in the PDSL Submission Form
{overleaf) and send it off with the software. Before making & submission, remember that if
you are not the sofiware owner you should first get permission from that person. You must
sign the submission form in order to allow us to distribute the software on your behalf.

Although donors may not sell submitted software to the library, we have taken the decision
to permit donation of free demonstration disks, that is software that provides a taste of a
commercial product. Software operating under the *shareware’ concept will likewise be
allowed, provided that this is explicitly stated on the submission form, At this early stage of

the service we do not undertake 10 distribute paper documentation or any other non-disk
materials.

If you are ordering software (use the PDSL Order Form} please understand that we can
make no claims or promises whatsoever regarding the software, but we will endeavour o
ensure that contriblitions behave as described by their donors. Furthermore, we cannot
accept responsibility for any damage or legal liability caused by using library software. If
you do have any positive or negative comments though, let us know and we will take
appropriate action.

Finally, please help us get this worthwhile project off the ground by sending us some
software, earlier rather than later. You never know, you might even win the prize for
donating the most popular disk.

133

VECTOR Vol.3 No.3

British APL Asscciation Public Domain Software Library
SOFTWARE SUBMISSION FORM

Please copy and £itl in thie form for EACH disk youw submit. If you have
any difficulties. see the "SOFTWARE SUBMISSION INSTRUCTIONS' form.
Details correspondong to itews flagged {#) will net be made publically
available, but are for our records ounly.

Use

10.
11.

12.

13,

t4,

15,

BLOCK CAPITALS for all items except numbers 6 and 16.

0. Submission dates . ______

Name of domor(J}: ___ 2, Daytime phonel(*)s__. . ______
FULL address(=): — _— —_
Mailbex codes(*): IPSA:___________ STSC: e IEM: ___ .

Disk title:

Brief description of diak contents:

List target machines:

List additional software required:

Indicate special hardvare requirements:

Indicate special software reguirements:

Is sufficient documentation provided on the disk?{¥/N): ______ ______

List titles of any paper documentation included with you submission:_

Is this documentation. or any other, available to users upon

application to you?(¥/W):______ Please give details:

Does the disk include any form of payment request from uvesers of the
software?(Y/N}:_____

If the target machine is not a POS-based PC, does the disk include

instructions for transfer to the target machine?(Y/N):_ _________

134

VECTOR Vol.3 No.3

British APL Association Public Domain Software Library
SCFTWARE SUBMISSION FORM (continued)

16, File names and descriptions. This information will be made publically
available in the software library catalogue, Please save us Bome work
by including these details on a file mamed <CAT> {no file extension)
on your submitted disk. Please enter these details for all files on
the disk., except <CAT> itself. You can affix a print of <CAT> belaw.

FILE NRAME EXT SHORT DESCRIPTION

17. Tetal space occupied by all files on the disk, in Kbytes:__

18. Please use any extra space above for any comments you wish to make.

- Your signature is necessary. It declares your legal right to make
the disk freely available for copying and use, and grants the
British APL Association a similar right.

Signature:

135

VECTOR Vol.3 No.3

British APL Association Public Domain Sefrware Library
SOFTWARE SUBMISSION IKSTRUCTIONS

The numbered points on this sheet of instructions correspond to items on
the SOFTWARE SUEMISSION FORM, which must be filled in and included with
with each disk you submit.

1. The donor's name will be made publically available as a part of the
software library c¢atalogue. If you wish to make an anonymous
denation. please supply your name anyway. but place an asterisk

?ui:hin the parentheses.

2. Please supply a daytime telephone pumber at which you can usually be
contacted., This will not normally be used, and will not be released.

3. The address will not be released. If you wish to make your address
available it must be included in an appropriate file on the disk.

4. Please supply any electronic mailbox codes by which you may be
tontacted. They will not be released.

5. The disk title should be s single short sentence ar list by which the
disk can be uniquely identified. and which expresses the purpose of
the disk.

6, Please supply a short description of the averall purpose of the disk,
which may be used ag a part of the software library catalogue.

7. List target machines., PC DOS format diskettes are the exchange wedium
for library scoftware. NO restrictions are made on the final
destination of software. Therefore appropriate Tesponses might be:
'*IBM PC!', 'PC and clones', 'Mainframe with APL2' or 'Any machine
running Sharp APL'.

8, List additional software required to use the disk. For example.
specifiy the APL interpreter needed if the disk contaims APL
workspaces.

9, Indicate special hardware requirements. For example: "640K memory
needed', 'Hercules graphics board needed' or 'Math co-pracessor
recommended’ etc.

10. Indicate special software requirements. For example: 'APL*PLUS PC
release 6 needed', 'AFLZ release 2 needed' or 'Best results with
oS 3' etc.

11. Indicate if suitable documentation is provided on the disk. A
positive response indicates that documentation exists on the disk or
that nome is necessary. If you are supplying any APL workspaces,
you are strongly encouraged to provide variables containing summary
descriptions of the primary functions.

12. The British APL Assotiation does NOT at this time undertake to
distribute or otherwise make available any paper documentation. er
other non-disk materials. You may however choose to submit such
material for review purposes - we plan to review library software
periodically in VECTOR. the journal of the BAA.

13, Indicate if documentation or other non-disk materials is available to

the softvare user directly from yourself. If so. you must remember to
incluede the details and a contact address ON THE DISK itself.

136

YECTCR Vol.3 No.3

14,

16.

17.

18,

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION INSTRUCTIONS {continued)

Does the disk include a request for payment? If your response is YES,
the software library catslogue will indicate that the software i
'USER SUPPORTED'. This wsrns potential users that the author requires
peyment under certain specified conditions, eg for privileges
available to 'registered' users of the software., such as
documentation or future releasesn.

If the target environment is NOT a PC or PC clone running DOS. you
are advised and encouraged to provide the necessary instructions Lo
help the user to move the software from such a machine to the target
enviraonment.

Flease specify the file name, extension and short description of EACH
file on the disk. To ensure accuracy and to save us extra work.,
please enter these details inte a file named <CAT>, with no file
extension. on the submitted disk. You cam then print the file <CAT>
and affix to the submission form.

The preferred format for the <CAT> file is 'filename/extn//desc’
where the / represents a space, filename as an B character filename.,
extn is a 3 character file extension and desc is a 66 character
description. Use a new-line character to delimit these entries.

1f you are submitting APL workspaces, you are strongly encouraged
to include variables containing summary descriptions of the primary
functions.

Specify the approximate amount of space that the disk files oCcCcupy.

Signature. A submission cannot be accepted without the signature of
the software donor.

137

VECTOR Vol.3 No.3

British APL Association Public Domain Software Library

##w#» ORDER FORM ##dws

To: The BAA Public Domain Software Library
c¢/o David Ziemann
Flat 3, 63 Queens Crescent
London HW5 4ES
ENGLAND

PLEASE SUPPLY THE DISKS CIRCLED BELOW:

18 19 28 21 22 23 24 25 26 27 28 29 30 31 32 33 34 335
15 37 3B 39 40 41 42 43 44 43 46 47 4B 49 50 531 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6% 70 7I
72 713 14 15 16 77 18 19 80 81 82 83 84 B85 86 87 8B BY

90 91 9% 93 94 95 96 97 98 99 100

TOTAL DISKS ORDERED (please double-check)s______

library disks at 2 Pounds each @ BAA Member's rate

library disks at 3 Pounds each : Non Member's rate

I want to jein the BAA, and enclose
the 10 Pounds annual membership fee H

Poscage and handling: 1.00

Add 2 Pounds for orders outside the UK:

Total order - remittance included: — ______

Please make cheques payable to the Britisk APL Association.
Payment can be made in US Dollars - pay 1.5 US Dollars for each Pound.
All orders must include payment = allew 30 days for delivery.

BAA membership year rune from 1 May - 30 April. People joining pare
way through the year will receive appropriate back numbers of Vector.

Software is atccepted by the British APL Asscciation on good faith and
we do not vouth for or make any claims regarding donated software.

The British APL Association cannot be held responsible for any damage,
however causeds by the use or misuse of library software.

138

VECTOR Vo0l.3 No.3

Index to Advertisers

Ampere 18
APL People 96
APL Software Lid 17,46
Cocking & Drury 8,45, 100
Dyadic Systems Lid 84,85
HMW Programming Consultants 116
IBMPC 22
IBM (Sweden) 2
Mercia Software 6
Metapraxis 132
MetaTechnics 58
MicroAPL 12,94
Mine of Information (APL Booklist) 32
USA Direct Software 76
Vector — Back Numbers 92

All queries regarding advertising in VECTOR should be made to the advertising editor,
Steve Lyus, at the following address:

Metapraxis Ltd
Hanover House
Coombe Road
Kingston, KT2 7AH

Tel: 01-341 1696
Advertisements should be submitted in typeset, camera-ready AS portrait format with a
20mum blank border. Ilustratons should be black-and-white photographs or line

drawings. Rates are £250 per page. A6 and A7 sizes (at £150 and £75 respectively) are
available, subject to layout constraints.

139

VECTOR Vol.3 No.3

BRITISH APL ASSOCIATION
Membership Application Form

Please read the membership information in the inside front cover of VECTOR before completing this
form. Use photocopies of this form for multiple applications. The membership year runs from 1st
May - 30th April.

Name:

Department:

Organisation:

Address Line 1:
Address Line 2:
Address Line 3:
Address Line 4:

Post or zip code:

Country:

Telephone Number:

Membership category applied for (tick one): 86/87
Non-voting student membership (UKonly) £5
UK private membership £ 10
Qverseas private membership £18 $27
Airmail supplement (not needed for Europe) £ 8 §$12
Corporate membership, ... £85
Corporate membership Overseas £140 3210

Sustaining membership £360

For student applicants:

Name of course:

Name and title of supervisor:

Signature of supervisor:

PAYMENT

Payment should be enclosed with membership applications in the form of a UK sterling cheque or
postal order made payable 10 “The British APL Association”. Corporate or sustaining member
applicants should conact the Treasurer in advance if an invoice is required. Please enclose a stamped
addressed envelope if you require a receipt.

Send the completed form to the Treasurer at this address:
Mel Chapman, 12 Garden Street, Stafford ST17 4BT, UK.

140

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society and a member of
EurcAPL, an organisation supported by the Commission of the European Communities. It is
administered by a Commitiee of eight officers who are elected by the vote of Association members at
the Annual General Meeting, Working groups are also established in areas such as activity planning
and journal production. Offers of assistance and invelvement with any Association matters are
welcomed and should be addressed in the first instance to the Secretary.

1985/86 Committee
Chairman: Dick Bowman CEGRB, 85 Park Street,
01-634 7639 London SEI.
Secretary: Anthony Camacho 2Blenheim Road, St, Albans,
0727(56 from London)-60130 Herts AL1 4NR.
Treasurer: Mel Chapman 12 Garden Street,
0785-33511 Stafford, ST174BT
Activities: Stan Wilkinson 26 Leith Mansions Grantully Road
01-286 7068 London W9 1L.GQ.
Publicity: Romilly Cocking Cocking & DruryLid.
01-4936172 16 Berkeley Street, London W1X SAE.
Journal Editor: David Preedy Metapraxis Ltd. Hanover House,
01-541 1696 Coombe Road Kingston
KT27AH.
Educaton: Dick Gray Horseshoe House,
0476-860483 Sproxton, Melton Mowbray,
Leicestershirc LEF4 4QB
Technical: David Ziemann Cocking & Drury Ld.,
01-4936172 16 Berkelev Swreet, London WI1X 3AE

Activities Working Group

Peter Donnelly 0420-87024
Steve Margolis 01-6707959
Tim Perry 04626-77375
Roy Tallis 01-405 7841
Stan Wilkinson (11-286 7068
Journal Werking Group

Jonathan Barman 01-4936172
Anthony Camachoe 0727(56 from London)-60130
Steve Lyus 0272-666961
David Preedy 01-341 1696
Adrian Smith 0904-53071
David Ziemann 01-4936172

WP disks converted to photosetting by Capella House, Stowmarket {(0449) 677663,
Printed in England by Short-Run Press Lid., Exeter.

PRI

A

Lasl1elidhe
el

T Py [PR E LS S AL T PO PR R

felae il e

Vil

[N

e

reip e

HESE L

