

.J-ARL86 — latest news
Future direction of APL.
APL2.idioms
More from APL88.
News, reviews and APL
product guide.

Go
0

8
29

6

The Journal of the
British APL Association

A Specialist Groupof the British Computer Society Vol.3 No.3 January 1987

Contributions
All contributions to VECTORshould be sentto the Editor at the address given on the inside back
cover. Letters and articles are welcomed onanytopicofinterest to the APL community. These do not
need to be limited to APL themes nor mustthey be supportive of the language. Articles should be
submitted in duplicate and accompanied by as much visual material as possible, including a
photographofthe author. Unless otherwise specified each item will be considered for publication asa
personal statement byits author, who accepts legal responsibility thatits publicationis not restricted
by copyright. Authors are requested wherever possible to supply copy in machine-readable form
ideally text files on a 544" IBM-PC compatible diskette. For other standards, please contact the Editor
beforehand. Program listings should indicate the computer system on which they have been run. APL
symbols should be displayed on a separate line and not embedded in narrative . Except where
indicated, items published in VECTORmaybefreely reprinted with appropriate acknowledgement.

Membership Rates 1986-87
VECTOR

Category Fee p.a. copies Passes£ $
Nonvoting student membership 5 i 1
UKPrivate membership 10 1 1
Overseas private membership 18 27 1 i
Supplementfor airmail

(not neededfor Europe) 8 12
Corporate membership (UK) 85 10 5
Corporate membership (Overseas) 140-210
Sustaining membership 360 neg 5

The membership year runsfrom 1st May to 30th April. Applications for membership should be made
on the form at the end ofthe journal. Passes are required for entry to some Association events and for
voting at Annual General Meetings. Applications for student membership will be accepted on a
recommendation from a course supervisor. Overseas membership rates cover VECTORsurface
postage and mustbe paid in £{UK.
Corporate membership is offered to organisations where APL is in professional use. Corporate
members receive multiple copies of VECTORand are offered group attendance of Association
meetings. Partaking individuals need not be identified buta contact person should be nominatedforall
communications.
Sustaining membership is offered to companies trading in APL products; this is seen as a method of
promoting the growth ofAPL interest and activity. As well as receiving public acknowledgementfor
their sponsorship, sustaining members receive bulk copies of VECTOR,andareoffered newslistings
in the editorial section of the journal and opportunities to inform APL usersof their products via
seminars andarticles.

Advertising
Advertisements in VECTORshould be submitted in typeset camera-ready AS portrait format with a
20 mm blank border,Illustrations should be black-and-white photographsorline drawings. Rates are
£250 per page. A6 and A7sizesare offered subject to layout constraints.
Deadlines for advertisement bookings and receipt of camera-ready copy are given beneath the Quick-
Reference Diary.
Advertisements should be booked with and sent to Steve Lyus, whose addressis given beneath the
Index of Advertisers,

VECTOR

EDITORIAL:Train upa child. ..
APL NEWS
Quick-reference diary
APL Course dates
General Correspondence
British APL Association News

Committee News
Sustaining members

International news — Journal exchange
QL/APL User Group
APLProduct Guide
APLBooklist
The Education VECTOR
PRODUCTANDBOOKREVIEWS
AppliedMathematicsforProgrammers

and Mathematics and Programming
—KenIverson

Introduction toAPL—Howard Peelle
Comparing ComputerLanguages
APL68000 on the Atari ST
APL*PLUS/PCrelease 6.0
APL.68000 for the Apple Macintosh
RECENT MEETINGS
The I-APLproject
APL Debate: Whatis APL Thinking?
Idioms & problem-solving in APL2
GENERALARTICLES
Steps toa better BASIC
Timeto think aboutthe future direction ofAPL
TECHNICAL SECTION
Editorial: Interpreters for debuggers
Technical Correspondence
Competition result—Watch Your Step
Surely there must bea better way

—Ambi-valence
APLTrivia~ Funny dates
1-APL Technical Specification

CONTENTS
David Preedy

Barnetson, Branson, Barker
Dick Bowman
Steve Lyus
David Preedy
Steve Lyus
Norman Thomson

Simon Garland
Romilly Cocking
Peter Branson
Paul Chapman
Martyn Adams
Mark Bassett

Camacho, Ziemann,
Thomson & Chapman
Alan Graham
Anthony Camacho
Graham Parkhouse

David Ziemann
Mitchison,Piper, Jackson
David Ziemann
David Ziemann
David Ziemann
David Ziemann

Command-driveninterface for BDAM and QSAM
APs using APL2 under TSO David Piper

PUBLIC DOMAIN SOFTWARE LIBRARY
INDEXTO ADVERTISERS

Vol.3 No.3

w
n
a

13
14
19
21
23
32
33

36
38
40
47
51
54

60
66
77
95
97

102
104
107
ltt
115
118
125
133
139

Info Center/1
an 1BM licensed program thathelps business professionals

perform their daily tasks quickly and productively

Info Center/{ provides an integrated,
multifunction information center environ-
ment compatible with predecessor pro-
ducts such as ADRS Il and APLDI I. A
full-screen interface, with prompts and
extensive help facility, provides easy
access to the following powerful general
business functions, as well as providing
the full power of APL:

Query System
The Query System provides a simple,
effective way to interactively access,
analyze, manipulate, and report informa-
tion stored in files of up to several
hundred megabytes.

Reporting System
Provides an organization with a single,
comprehensive system for generating and
maintaining reports. Standard calcu-
lations can be defined and stored for
future use. Calculations can be made
with predefined functions and with APL.

Data Entry and Validation
This tool allows information center per-
sonnel to tailor panels for users to display,
update, and enter data in column format.

Financial Planning System

The Financial Planning System provides a
set of 60 modeling routines that work with
the Reporting System and address peri-
odic data. Some examples are:

Financial analyses and plans
Statistical analyses and projections
Whatif analyses and modeling
Project evaluations and risk analyses.

Business Graphics
The Business Graphicsfacility is a partic-
ularly powerful yet flexible tool for inter-
actively producing the following types of
charts: line graphs, surface charts,
histograms, pie charts, scatter plots, bar
charts, stacked bar charts.

Technical Data

Info Center/1 is an IBM Licensed Program, Program Number 5668-897,
The program runs under CMS and TSOtogether with the following 1BM programsortheir equivalents:
APL2 or VS APL, Application Prototype Environment, GDDM (Graphical Data Display Manager).
Some examples of terminals supported are: IBM 3277, 3279, 3270 PC/G and GX.

VECTOR Vol.3 No.3

Editorial: “Train up a child ...”
by David Preedy

This issue ofVECTOR unashamedly devotesseveral pagesto various aspectsofthe]-APLproject, of which I hopeall our readers are by now at least aware. Although I-APLis aseparateactivity from any other organisation,it has already at the timeofwritingin early-Novemberreceived backing from the British APL Association and from SIGAPL. Thetransatlantic nature of its support is reflected not only in the make-up of the I-APLcommittee, butalso ofthose others involved in the developmentofthe interpreteritselfandofthe infrastructureto ensureits success — the documentation, supporting material and the“business plan”; spawned in Manchester, I-APL should be developed by Dallas.
Mydirect knowledgeofeducation is limited to my own experiences andto thoseofmyclosefamily and in particular my ownchildren. As a mathematician, I cannotfail to see howmuch more appropriate an APL background would have been to my owneducation, thanwas the mixture of Algol and Fortran that constituted the norm before the days of microsand BASIC. However my views of the computing needs of today’s school-children arecoloured more by whatI have seen as an outsider looking in on my children’s education.
In general the teaching profession has shown considerable inventiveness and imaginationin taking the microcomputerto heart. Of course there have been cases where the computerhas beenusedtrivially to mimic the teachingofarithmetic byrote, and ofcourse it would bebetterif all schools had the resources to buy more computers. But equally there are manydedicated teachers who recognise the computerasa totally new type of teachingaid, thatshould not be used merely as a glorified adding machine. Also there is much innovativesoftware available for the educational market — the Mary Rose project and the work donewith LOGO would seem to be classic examples.
Above all though we must avoid the danger that all the school-children interested incomputers become so accustomedto the BASIC approachto programmingthatthey regardits looping, scalar techniquesas sacrosanct. (It was Anthony Camacho,I think, at APL86whoexpressedthefear that we are training people to be unableto use the benefits ofparallelcomputers.) APL seems to have three strong advantages in the educational area.Structurally,it reflects the mathematical concepts being taught much moreclearly than anyother language;it is after all a sophisticated mathematical notation in its own right. Asacalculating machine,it provides a powerfultoolfor pupils to use to support other work theymay be doing — analysing experimentalresults, and so on. Andfortheteacher,its brevityshould help in preparing functions, where appropriate copied from written material, toillustrate the work in hand. The speed with which results can be obtained with only amodicum of APL expertise must be a key factor in retaining the interest of youngsterswhose attentiveness fades when faced with a daunting stream of PRINT$ IF THENELSEs.

VECTOR Vol.3 No.3

Whatthen can we as APLusersdoto assist the momentumofthe I-APL band-wagon? The
key factor is communication. The small core of educationalists in the APL community
cannot expect personally to reach a large numberofteachers; they can howeverattemptto
concentrate their own resources on the key decision-makers — LEA Mathematics Advisers
and the like. What the rest of us should beable to dois to contact those teachers we know
personally, especially those with an interest in mathematics and computers,andtell them
about I-APL. However we mustgive them a two-fold message — notonly that a free APL
interpreter is available, along with suitable supporting material, but also why it should be
important to them.
Now we can all explain in our own way why APL helpsus,but the niceties of component
file systems and nested arrays maywell be irrelevantto the class’s uses ofcomputers. What
we need to do between now andthe start of the publicity drive in the Summeris to
encourage those teachers already using APL to tell us lay-people what particular
characteristics of APL are most relevant in the educational context. Then we have a real
prospectofintroducing APLeffectively to a whole new generation.

“Train up a child in the way he should go: and whenheis old, he will not
departfrom it.” Proverbs, xxii, 6

Datesfor future issues of VECTOR
Vol3 Vol4 Vol 4 Vol4
No4 Nol No2 No3

Copydate 30 Jan 87 24 Apr 87 24 Jul 87 16 Oct 87
Ad. booking 20 Feb 87 22 May 87 21 Aug 87 13 Nov87
Ad. copy 27 Feb 87 29 May 87 28 Aug 87 20 Nov 87
Distribution April 87 July 87 October 87 January 88

VECTOR Vol.3 No.3

Quick-reference diary
compiled by David Preedy

Date Venue Event
1987
6-7 January London APL in Engineering & Information Science

Organised by South BankPolytechnic
20 February London British APL Association meeting
20 March London British APL Association meeting
11-15 May Dallas APL 87- APLin transition
6June London British APL Association AGM & meeting
18 September London British APL Association meeting
16 October London British APL Association meeting
20 November London British APL Association meeting
1988
15 January London British APL Association meeting
18 March London British APL Association meeting
20 May London British APL Association AGM & meeting16 September London British APL Association meeting21 October London British APL Association meeting
18 November London British APL Association meeting
All British APL Association meetings are to be held at the Royal Over-Seas League, ParkPlace, near Green Park tubestation andstart at 2pm.
Please note the date of the AGM, which has been moved to June6th to avoid a clash withAPL-87in Dallas!

ERCIA
Software Limited

WSFULLproblems with APL*PLUS/PC?
A Before A After

UO WSSIZE O WSSIZE
487568 747408

Could you use those extra Bytes? — give us a call to find
out how.

Mercia also offera full range of consultancy and
education services — make a note in your diary of our
1987 course schedule:-

Introduction to APL*PLUS/PC -3 Day Course £350(In House £1200)
January 20, 21, 22March 17, 18, 19
May ‘19, 20, 21

APL*PLUS/PC Enhancements -2 Day Course £240
(In House £800)February 17, 18

April 1,2
May 5,6

System Design with APL*PLUS — 3 day Course £375
(in House £1200)January 27, 28, 29March 24, 25, 26May 12,13, 14

MERCIA SOFTWARE LIMITED
Aston Science Park, Love Lane, Birmingham B7 4BJ.

Telephone: 021-359 5096

VECTOR Vol.3 No.3

APLcourse diary
Manyof the APL vendors included in the VECTOR APL Product Guide offer courses in
APLandrelated topics. Fora fuillist readers are recommendedto look underthe relevant
section of the product guide. This section gives course dates for those suppliers who have
preparedtheir course schedule at the timeof goingto print.
January 1987

14 Beginners APL MicroAPL
20-22 APL Fundamentals Cocking & Drury
20-22 APL*PLUS/PC Introduction Mercia Software
21 Intermediate APL MicroAPL
26-29 APL*PLUSPCIntermediate Cocking & Drury
27-29 System design with APL*PLUS Mercia Software
February 1987

3-4 Statgraphics Cocking & Drury
10-12 APL Fundamentals Cocking & Drury
ll Advanced APL MicroAPL
16-19 APLSystem Design Cocking & Drury
17-18 APL*PLUS/PC Enhancements Mercia Software
18 Intermediate APL MicroAPL
24-26 APL Fundamentals Cocking & Drury
March 1987
10-12 APL Fundamentals Cocking & Drury
16-19 APL*PLUSPC Intermediate Cocking & Drury
17-19 APL*PLUS/PC Introduction Mercia Software
24-26 APL Fundamentals Cocking & Drury
24-26 System design with APL*PLUS Mercia Software
31-4 Statgraphics Cocking & Drury
April 1987
7-9 APL Fundamentals Cocking & Drury

21-22 APL*PLUS/PC Enhancements Mercia Software
28-30 APL Fundamentals Cocking & Drury
May1987
5-6 APL*PLUS/PC Enhancements Mercia Software
11-14 APL System Design Cocking & Drury
12-14 System design with APL*PLUS Mercia Software
19-2] APL Fundamentals Cocking & Drury
19-21 APL*PLUS/PCIntroduction Mercia Software
27-28 Statgraphics Cocking & Drury

yeeETRY
LONDON & READING
 Account Managers (6 yearst) to 25K
 Senior Consultants (4-6 years) to 21K
Consultants (2-4 years) to 17K
Junior Consultants (1-2 years) to 13K

Are yourAPLskills and potential being recognised
and rewarded?
Cocking & Drury consultants have been implementing
successful decision support applications for 10ears, with clients who appreciate the productivity
enefits of APL.

In our professional team you will experience a
range of APL environments - APL*Plus, YSAPL, APL2
and Unix, on both mainframes and micros. You willalso be developing systems which,increasingly,
needto interface with non-APL Information Centre
products.
Of course as the leading APL consultancy,in arapidly expanding market, we offer a rewardingcareerwithfirst class benefits - profit sharing,
free health insurance, and a non‘conitributory
pension.

eermefelRo oll AAeAalec)
== COCKING&DRURYLID.

155 Friar Street, Reading, RG] THE

VECTOR Vol.3 No.3

General Correspondence
The VECTOR working group welcomes correspondence on any topic affecting the APL
community. All such letters should be addressed to the Editorand should indicate whether they are
intendedfor the generalor technicalsection. Letters containingAPL code will normally appear in
the Technicalsection of VECTOR, and authors are asked to observe the requirements on the
inclusion ofAPL code stated on the inside cover. The Editor reserves the rightto edit any letter
unless the writer states thattheletter is to be published infullor notatall.

APLstandards
From MrPaul Barnetson 21st October 1986
Sir,
Ata recent meeting of the BSI APL Panel,there was a long discussion on how wecould best
attract new membersto join usin our exciting work.I hope that an appeal to the VECTOR
readers may result in some volunteers coming forward.
Most of us have moaned because a package that runs on one computer doesn’t run on
another. Result: you haveto rewrite it!
This problem is now being overcomeby the APL Standard. The documentis shortly to be
published as an ISO (International Standards Organisation) Standard, and this will be
followed soon after by the same documentappearing as a BSI (British StandardsInstitute)
Standard,
But. . . it won’t coverall the modernfacilities of current APL implementations. Both the
ISO APL sub-committee and the BSI APL panel are gearing up to work on standardising
someofthese modernfacilities:

generalised arrays, operator extensions, scope of names,file inpuVourput,
complexarithmetic, exception handling,etc.

I] wouldlike to ask your readers three questions:
Do YOUusethese techniques in APL?
Do YOUwantto see them standardised?
Are YOU preparedto work in this area?

If the answerto anyoftheseis “Yes”, then you’ll wantto participate in the future work of
the BS] APL panel. We meet once a quarter, on average, and normally in the Londonarea.
Therewill also be opportunities for membersto attend the international meetings of the
ISO APL sub-committee.

VECTOR Vol.3 No.3

Further information can be obtained from eitherofthe following:
David Ziemann, BSI APL panel chairman, Cocking & Drury, 01-493 6172
Paul Barnetson, BSI APL panel secretary, IBM, 0705-323054

Yourssincerely,
Paul Barnetson,
Secretary, BS] APL panel,
IBM United Kingdom Lid.,
P.O.Box 41,
Northern Road, Portsmouth,
Hampshire. PO6 3AU.
(Editor: I amsure we all wish you luck in attracting volunteersfor this interesting and important
challenge.)

Comparing Languages
From MrPeter Branson 20th October 1986
Sir,
Thave used APL for manyyears (mainframe) but hadtoleaveit for a while. Coming back to
it, I joined the B.A.A. several months ago, and back issues of VECTOR have been most
helpful in highlighting recent developments. I enjoy my copies ofVECTORso please keep
up the good work.
A book review is enclosed, for the “Handbook and Guide for Comparing Computer
Languages”. Youwill see that J came acrossit by chance in a local library; Felicity at Mine
of Information saysit is not on theirlists, and she hasn’t been ableto find a U.K. supplier
yet for me.
1 wassurprised to find, when talking to people at the Royal Over-Seas Leaguelast week,
that no-one appeared to have heard of this book. Since I had already made detailed notes, it
seemed sensible to make them more widely available to the VECTORreaders.
Yourssincerely,
Peter Branson,
Oaklands Cottage, Wray Common,
Reigate, Surrey.
(Editor: Peter’s review is included in the reviewssectionlater in this issue ofVECTOR. Perhaps
any reader knowing ofa supply ofthe Handbookcouldlet us know.)

10

VECTOR Vol.3 No.3

T-APL
From MrSimon Barker,
Sir,
Please find enclosed a donation towardsthe]-APL appeal. It’s pleasing to see something so
positive and (hopefully) far-reaching being attempted.
Myownfeelings about the objectivesofthe I-APL projectare rather mixed; partly because
it seemsthat the project is concerned with making APL the new BASIC(althoughit can
certainly live up to being a Beginner’s All-purpose Symbolic Instruction Code); and partly
becauseI feel that a subset of plain old “vanilla” APL will have a hard time competing
against full-scale implementations of Fortran, Pascal and some advanced BASICs which
are already in wide use.
The area where APLreally needscredibility is in the business arena becauseit is here that
a languagecan growin stature enough to be takenseriously elsewhere. For this reason, in
parallel with the]-APL project, I think there should bea drive to develop powerful, cheap
software written in APL to exploit the new icon-driven machinesthatarefilling today’s
computer market. Just imagine how popular APL might have beenif, say, Lotus 1-2-3 had
been written in it.
To this end I salute MicroAPL for taking the initiative and producing APL for the
Macintosh, Atari ST and the Amiga, along with all-important run-timeversions of the
interpreter.
If software developers have got any sense, they will soon realise how easy it is to produce
well-specified, full-featured software, quickly, easily and cheaply using APL. The I-APL
publicity drive might well help towardsthis end.
Finally, may I say how much I enjoyed APL86 and how superbly VECTOR Vol 3, No 2
captured the excitementandsheerpleasureof that event.
Yours,
Simon Barker,
55 Conisborough Crescent,
Catford, London SE6 2SP.
(Editor: Your contribution to the 1-APL project has been forwardedto the I-APL committee.
Readers might like to note that I-APLis separatefrom the BAA and that I-APL matters should
normally be addressed to the I-APL commuttee, specifically Anthony Camacho, David Ziemann
or Norman Thomson — in the UR.
Thank youforyour comments on last VECTOR;welike to receive commentsfrom readers — even
unfavourable ones which give us usefulfeedback to improve yourjournal.)

11

APL.68000
FOR THE

COMMODORE AMIGA
APL.68000on the Amiga offers a uniquely friendly environmentin which to program
in APL.It offers the simplest methodof writing applications whichtakefull advantage
of the Amiga features,allowing systems written in APL to set a new standard of
professionalism and integration with other Amiga software.

FEATURES:
@ Uses standard Amiga user

interface
© Built-in full screen function

editor
®@ Access to Amiga Dos native

files
@ Built-in VT100 APL/ASCII

terminal amulation
© Full clipboard support for data
exchange

@ APL can bestarted from
workbench

@ Common system commands as
pull-down menus

Price: £200 excl. VATAPL.68000is a trademark of MicroAPL Ltd.Amiga is a trademark of Commodore-AmigaInc.

Full printer support
Runsin its own window
User-defined pull-down menus
User-defined Dialog and Alert
boxes
Full interface to Amiga graphics
facilities
Arbitrary I/O via serial ports
Session managerallowsediting
of screen lines
Workspacescanbeset as run-
time applications
Applications can use standard
ASCII keyboard
Applications can detect mouse
position and state

LOLI)LIMINCIRIOL_|LJLJAIPIL|LOU
MicroAPL Limited

Commercial Offices: 19 Catherine Place, London SW1E 6DX
Telephone: 01-834 9022

VECTOR Vol.3 No.3

British APL Association News
BAA Committee News

by Dick Bowman
There are two itemsofinterest arising from recent Committee meetings, both aimed atimproved communications and information exchangein the global APL community.
Sharp Mailbox code.
IP Sharp Associates are Sustaining Membersofthe BAA andtheir cooperation during theorganising stages ofAPL&86 was most helpful; in particular the access which they providedto their Mailbox system.
They have made the most welcomegesture ofallowing the BAA to continue using theMailbox, which meansthat two things can now happen:
Wehave created a Mailbox group called <FBAA> (Friendsofthe British APL Association)which can act as an address for any communicationsofinterest to membersofthe BAA.Join this groupifyou wantto receive any ofthis newsetc.
Also you can send messages direct to the BAA Committee. At present we have no groupspecifically for this purpose (one day the Secretary will doubtless get roundtoit) and youshould address your messageto either <BOW>, <MEL>,or <ZIEM>.
International Journal Exchange.
There was a somewhatinconclusive meeting of manyof the international APL ‘clubs’ atAPL86 - one thing which we were able to achieve being that we wanted to revitalise thelongstanding butlately moribund exchangeof journals between the groups.
We have contacted all of the groups that we know of and now have journal exchangeagreements with the Swiss, German, Bay Area and Australian Groups. You should begin tosee some summarisationofthe contentsofthe variousjournalsin forthcoming VECTORs;what you won’t be seeingis lengthy extracts from theirarticles.
What we wantto achieveis to let all of our membership know what’s happening in APLworldwide and we'd particularly encourage youto join the individual groupsif you thinktheir activity looks interesting.
If, by any chance,there are any other groups publishing APL journals who would like toparticipate in this schemeplease contact a member of the BAA committeeas soon as youcan.

13

VECTOR Vol.3 No.3

Newsfrom Sustaining members
APL People

By the time youread this the summerholidays will have long gone and wewill all just be
recovering from Christmas — ready for another busy APL year ahead.
APL People’s associated enterprises continue to prosper. APL Tran-Plan is progressing
with its work on several transportation studies in North America; H Walton Technical
Services are busier than ever with PEFAC — the computerised estimating system; and APL
People’s consultancy businessis steadily growing. Recently their employment agency has
been engagedbyclients in the U.S.A. to fill vacancies in New York,and potential business
in North America looks most promising.
Since APL86, where APL Software Limited got under way, the companyhas contracted to
marketa range ofsoftware for both mainframeand PC environments(see Product Guide).
Othersoftwareis being evaluated and should becomeavailable in 1987. Initial interest has
been encouraging not only in the current portfolio of software, but also from companies
wantingtheir in-house systemsevaluated with a view to marketing them. How much “new”
application software might be discovered for the benefit of the APL community.

APL Software Technology (UK) Ltd

> APL Software Technology’s investment into APL Software Limited (together with APL
People) has begun to show a healthylevel of interest. The new companywill be a powerful
arm to the marketing andsales of the products they offer.
The latest release of Powertools has been well received by their client base, the extended
facilities giving a boost to the developmentofapplication systems. New versionsofthis
release have now been madefor the MicroVax, under Unix, and the Wang PC.
The mainframe Relational Database System RDSis now available on the IBM PCandis
currently undergoing beta-testing with oneoftheir clients, There has been muchinterest in
RDS,the many enquirers including a US bankingorganisation.
APL Software Technology looks forwardto a busy and interesting 1987.

14

VECTOR Vot.3 No.3

Cocking and Drury Ltd.
Cocking and Drury haverecently signed an agreement with Uniware,the leading FrenchAPL software house. The deal gives Cocking and Drury an exclusive dealershipthroughout Great Britain and Ireland for Unitab, The APL Debuggerand a Statgraphicsadd-on module.
Unitab is a PC workspace database managerthat lets you manipulate and browse APL datain a spreadsheet-like manner. The system is window-oriented and uses pop-up menus tointeract with the user. Although the product has been available to French-speaking usersfor sometime, the latest version includes English translation for all help, prompts anddocumentation. The software contains hooks to allow programmers to customise thepackage with their own code.
The APL Debuggeris a development and debugging aid for APL*PLUSPCapplicationwriters, It lets you easily step through an executing function, producing

a

scrollable full-screen display of the current expression and its result. Local variables may also beexamined and modified.
The Statgraphics add-on module for Correspondence Analysis is thefirst of a series ofthird-party add-ons that will be made available for use with Release 2 of Statgraphics.Cocking and Drury welcomeapproaches from users who have developed software thatcould be marketedin this way.
Release 2 of Statgraphics was announced in Septemberlast year. As well as general speed-ups throughoutthe system, the new release boasts enhanced data managementfeatures,direct dBase, Lotus and Symphony import/export, a variety of new statistical procedures,multiple plot overlaying and a plot ‘zoom’option.In addition, a mechanism allowing APLdevelopers to customise the package by adding their own menuoptionsis provided.
Release 6 of APL*PLUSPCisselling well. New features include arrays without imposedsize limits, support for the exciting HP LaserJet + printer, full graphics character setsupport (no APL ROM needed), improvedfile system facilities, and enhancementsto the0 WINfull-screen system function. Thefile system improvements permit dynamic accessto DOSdirectories via APL library numbers, and generalised nativefile access via completeDOSpath names. The documentationis ‘all new’ and includes an invaluable spiral-boundpocket reference guide.
Cocking and Drury are proud to announcetheir first mainframe compilertrial at a UKcustomer. In a study for anotherclient, their expected savingsfor using the APL*PLUSEnhancements and Sharefile componentfiling system (rather than APL2) amounted to£100,000 overa five-year period. Savingsare expected to be even larger when the compileris installed. Cocking and Drury is also now offering compilertraining seminars throughoutEurope.
Cocking and Drury and STSC haverecently signed a dealership agreementfor Dataport,the spreadsheet system for mainframe based VS APL users, and Cocking and Drury nowsupportall existing Dataport users in Great Britain and Ireland.

15

VECTOR Vol.3 No.3

Onthe education front, bookings are being taken for two new public courses; the four-day
APL*PLUS PC Intermediate course(plenty of practical tools and systemsdesign) and a
two-day course for Statgraphics users. A new one-day in-housenested arrays courseis also
newly available anywhere in Europe.

Dyadic Systems Limited
Dyadic Systems has completedits transition from a software-only company to a supplier of
complete APL systems. In July, Dyadic becameoneofthefirst Authorised Dealersfor the
exciting new IBM 6150 Microcomputer, and has since announced an Altos dealership and
an arrangement with Sun Microsystems. Asa result, Dyadic is able to offer and supporta
comprehensive range ofAPL systems to meet a variety of business needs and budgets.
Atthe bottom ofthe rangeis the Dyalog APL Coprocessor,a plug-in board for the IBM PC.
The system has an NS$32000 processor, hardwarefloating-point, up to 4Mb RAM and
16Mbofvirtual address space. The Dyalog APL Coprocessor provides a concurrent DOS
and multi-user APL/Unix environmentin an IBM PC or compatible.
Mid-range systemsare based on the IBM 6150 and Altos 3068 computers. The IBM 6150
has a 32-bit CPU based on Reduced Instruction Set (RISC) technology. Its operating
system is AIX, an enhancedversion of Unix V.2 with an improved user-interface, and it has
a PC AT coprocessor for DOSapplications. Communications support Ethernet, Token
Ring and SNA. The6150is seenasa strategic system for IBM, andis expected to double in
powerandcapacity annually. The system includesa special version of Dyalog APL which
supports interfaces to IBM 6150 SQL andto the Advanced Graphics Support Library
(GSL). A typical configuration includes 4Mb RAM,Floating-point processor, 140Mb
disk, a high-function bit-mapped console, several IBM 3163 ASCIIterminals and/or high
quality Lynwood APL/Graphics VDUs, and an IBM 4201 Proprinter. All devices are
supplied complete with APLcharacter support.
The Altos 3068 is a 68020-based alternative. Its special features include a local-area
network which supports IBM PCs and compatibles. This providesfile transfer, central
storage and sharing of DOSfiles, shared printers and the use of the PCs as Dyalog APL
terminalsto the Altos 3068 host. A typical configuration includes the network, 4Mb RAM,
170Mb disk, diskette, cartridge tape and several high-quality Lynwood APL/Graphics
VDUs.
Dyadic also supplies a range of Sun workstations and multi-user computers which can be
configured either as a network or as a traditional time-sharing system. Sun workstations
have 19-inch high-resolution screen with advanced windowing features. At the top of the
rangeis the outstanding Sun 3/200. This has a25MHz 68020 CPU, 68881 floating-point co-
processor and cache memory. Thesefeatures alone makeit twice as fast as other 68020-
based APL systems on the market. Add Sun’s optional Floating-Point Accelerator, which
is 2-3 times faster than a 68881 co-processor, and you have a very powerful APL
microcomputerindeed.
Dyalog APLis notrestricted to any particular processor. This means that Dyadic can
continueto takefull advantageoftechnical developmentsin the computerindustry to offer
competitive high-performance systems for the APL user. Watch for a Compaq 386
implementationearly in 1987.

16

VECTOR Vol.3 No.3

Mercia Software Limited
Mercia Software are looking forward to continuing growth in the APL-related marketin
1987. Interest in APL*PLUS/PC is still strong, with their range of programmer
productivity aids, such as UNIWARE’s Debugger, and STSC’s TOOLS and
SPREADSHEET MANAGERproving popular amongst the nation’s APLers.
On the application front, APL-based packages are making more and moreinroadsinto the
business computing market. STATGRAPHICS, helpedby a price reduction and a much
improved new version, has been very successful, and EXEC*U*STATlookslike bringing
the power of APL to a wide range of users (even if they don’t realise it). At the time of
writing, Mercia are about to embark on a major campaignto bringthis excellent product to
the attention of the PC user world in general.
The future looks even more exciting with the forthcoming lunch in Spring ’87 of a major
new APL*PLUS-based system, for which Mercia has been liaising with the Forecasting
and Materials Management guru, Professor R.G.Brown. O.R.and logistics practitioners
should watch this space for news of LOGOL.

We're
putting
APL
Software
on the map
APL Software Ltd., 27 Downs Way, Epsom, Surrey KT18 5LU (03727 21282)

17

Enhancing APL.68000
An intriguing computer for an

exciting language—the WS-1
and APL,68000,Atlast the APL
programmercan have portability
without sacrificing power or
capability. Dodge the queue
waiting for time on the main-
frame and discover the sudden
freedom of being able to try out
programs anytime, anywhere.
The APL.68000 interpreter is

implemented in 86KB of ROM,
running under a multi-user,
multi-tasking operating system
called BIG. DOS. Speed is the
essence of APL programming,
and now the WS-1 makes
development even faster.

Come andsee us at APL ‘86,

APL.68000 on the WS-1 has
attractive enhancements such as
a powerful componentfile
system, QUAD. FMT function
for alpha report formatting,
QUAD. CC function for full-
screen control, and extended
error trapping facilities.

FOR DISTRIBUTORSHIP INFORMATION AND PRODUCT DETAILS PLEASE CONTACT:

Bundled with the WS-1
are four workspaces: SYSFNS,

APLUTIL, FILEUTIL, and
SYSCOM.Each gives access to-
the WS-1’s unique capabilities
such as control of the built-in
speaker phone, microcassette
unit, RTC (real time clock), bit-
mapped graphics LCD screen,
and optional 3.5-inch floppy
disk drives.
Compress these capabilities

into a sleek footprint measuring
less than 13 inches by 11 inches,
and you havethe ultimate
definition of power.

Cimpeéere
 om Erp Asahi Bldg., 7-5-20 Nishi-Shinjuku, Shinjuku-ku, Tokyo, Japan. Phone: 03-365-0825.Bere Telefax: 03-365-0999. Telex: J33101 AMPERE.IP Sharp Mail Box Code AMP (Group Code APLWS).

VECTOR Vol.3 No.3

International APL News
Journal Exchange

Weare now regularly exchanging journals with various overseas APL groups;as a result we
are seeing several very interesting documentsthat haven’t come our way before. A good
example are the proceedings of the annual seminars organised by the New York SIGAPL
underthe title “APL as a tool of thought”. These have been held each April since 1983, so
we now havefour hefty volumesof proceedings.
Thefirst seminar in 1983 offered workshops discussing APL as a tool of Mathematics,
Science, Social Studies, Natural Language, Music and ComputerScience. By 1985, the
scope had expandedto include Biology, Calculus, Mathematics, Social Studies, Computer
Science, Economics, Graphics, Linear Algebra, Music, Statistics, Artificial Intelligence,
Databases, Finance, Gaming & Simulation, Manufacturing, Modelling, System Design

and a Teacher’s Toolbox.
Thefull lists of contents are as follows:
APLasa tool ofthought — 1983
BinomialDistributions Linda Alvord
Elementary Algebra Brooke Allen
ComputerSimulation in Science Teaching Charles Waters
Analyzing Problems ofPopulation Growth andDistribution Tama Traberman
Computer-Authored Tests and Exercises in Grammar David Michelson
Musical Grammar David Steinbrook
APL asa Toolfor Teaching Computer Theory Philip Van Cleave
APL ina Liberal Arts College Donald B McIntyre
Getting Started in APL Allen J Rose
An Application in Remedial Math Cecil Denney
Down to BASIC Jim Lucas
A Personal View ofAPL John McPherson
APL KW Smillie

APLasa tool ofthought H— 1984
Using APL to Teach Concepts in Analysis & Design Wilbur LePage
Meaningful means: Analysis ofExperimental Data Charles Waters
APL Enhances Mathematics Education Linda Alvord
Quantitative Reasoningin the Social Studies Tama Traberman
Polygonal Functionsandtheir use in Teaching Calculus Don Orth
APLasa Financial Tool Gary Podorowsky
APLin Linear Algebra Murray Eisenberg
A Demonswation ofMEDCAT Hagamen,Gardy,Bell

& Zatz
Implementation ofa Virtual Memory APL Interpreter Ed Cherlin
Bibliography ofAPL Publications NY/SIGAPL
What is APL? Ed Shaw
Domino-an APLprimitive for Matrix Inversion MAJenkins
The Art ofQuestion Begging Lee Wilcox
Modularity in Thought and Systems Lib Gibson
The use ofDomino in Optimal Resource Allocation
Interactive Statistical Graphics in APL
Undergraduate Data Analysis Laboratory

19

Ronald Frank
Neil Polhemus
Robert Douglas

VECTOR

APLasa toolofthought IIT- 1985
Artificial Intelligence Development Aids
Matrix Algebra and the Mathematics ofVector Graphics
Relational Databases: Theory andPractice
Right Brain Thinking and Modelling Business Problems
A Structured APL Approachto Data Entry
The Design ofan Integrated Manufacturing System

using a Network ofPCs
Using APL to write an Assembler
APLasa Tool for Teaching Computer Theory
Musical Objects in Temporal Space
EXECUCALC,an APL-based Lotus1-2-3 lookalike for

IBM mainframes
APLasa Tool concerning Accounting and Financial Simulation
APLand Linear Algebra
Teacher’s Toolbox
Least Squares Curve Fitting Viewed Geometrically
Parametric and Polar Equations in Pre-Calculus Mathematics
Intensive Analysis of Global Data
ComputerSimulation in Biological Education
Computers and Calculus
Teaching Economic Concepts with APL Graphics
APL, a Tool for Teaching
Teaching APL asa Problem Solving Toolin Business

APLasa toolofthought IV— 1986
APLandApplication Design
The Advatages ofAPLfor Population Modeling
User Friendly Applications Design
An APLCredit Card Acquisition Profitability Model
Prototypingin the Real World. Considerations ona Project
APLin Education Engineering
Arithmetic and Geometric Progressions
APL-Alchemist’s Tool
Indeterminate Error in Radiation Measurement
Writing User-Friendly Applications in APLfor the Apple Macintosh
Using Dyalog APL
AnAPLtoC Interface
Differences between VS APL and APL2Release 2

VolL3 No.3

Sullivan & Fordyce
David M Laur
Robert G Brown
Ron Frank
Wilbur LePage
Clark Kee
Philip Van Cleave
Philip Van Cleave
David Steinbrook
Kevin Weaver
Miklos Vasarhelyi
LJ Dickey
David Michealson
Murray Eisenberg
Linda Alvord
Tama Traberman
Charles Waters
Don Orth
Robert Douglas
Roger Pinkham
William Royds

Robert Bernecky '
Robert Desharnais
Christopher Lett
Urdang & Kaberon
Chris Oakleaf :
LaGrega & Zaccone
Linda Alvord \
Tama Taberman
Charles Waters
Richard Smith
Peter Donelly
Robert Lauer ‘
Norman Brenner

Thelength ofthe articles varies considerably from a brief abstract in somecasesto a full
paper in others. One cannotfail to be impressed by the broad range of areas covered by the
seminars and by their growing list of speakers. Further information about these i
proceedings, and perhaps abouta 1987 seminar,can be obtained from NewYork SIGAPL,
Suite 524, 660 Amsterdam Avenue, New York, N.Y. 10025

20

VECTOR Vol.3 No.3

QL/APL User Group
Those users ofQL/APL whohaveto date been beavering awayin isolationwill be interestedto hear of the formation of a QL/APL User Group to exchange news, views, ideas andsoftware. :
The groupwill be an independent body run by users, whoseaim will be to provide a vehiclefor the promotion ofall matters pertaining to the furtherance of APL on the QL -- anenvironment from which to compound, augment, and proclaim hard-gained knowledgeand results.
Ron Suter, who currently works for a large English mail order chain store company, hasvolunteered himself as founder member and consequently organiseroftheinitial set-up ofthe group, along with MicroAPL Ltd. who haveoffered to host the inaugural meeting.
MicroAPL havealsooffered a prototype copyoftheir MicroPlot softwarefor the QLfree ofcharge to anyonejoining the group;like manya great symphonythis is as yet unfinished,and soit offers an immediate challenge to any wishing to take up the gauntlet of groupparticipation in the project.
In order to register your interest, please contact Ron Suterat the address given below.Please include your name and address, details of the APL version used (keyword orsymbolic), amountofRAM,main areasofinterest, and any suggestionsfor topics for UserGroup metings. You can contact Ronat the following address:

Ron Suter,
19 Mere Avenue,
Raby Mere, Wirral.
L63 ONE.

or leave a message on Prestel number 514285074.

21

IBM Personal Computer APL/PC Version 2.0
6391329

IBM Personal Computer APL/PC Version 2.0, is a low cost, full
function APL interpreter with a high degree of VS APL compat-
ibility. It contains a wealth of auxiliary processors for a wide
range of functions andinterfaces to external devices.

Emulates 8087 or 80287 if the co-processoris not present
RS232 support
JEEE-488/GPIB support
Co-operative processing via IBM 3278/9 adapter
Interface to IBM Macro Assembler and Professional Fortran
APL2 GRAPHPAKcompatible workspace provided
Can run DOSfunctions and applications under APL
Cover Workspaces for auxiliary processors

The interpreter, workspaces and auxiliary processors are supplied on three
double-sided diskettes packaged with a comprehensive manual, quick ref-
erence card and a keyboard template. The manual includes setup, instal-
lation, tutorial and reference sections.
A separate package is supplied, containing a replacement ROM for the
IBM Monochrome or Colour display adapters and a ROM puller. A
program to load the APL font into the IBM Enhanced Graphics Adaptor
is also included.
@ Available from Authorised IBM PC Dealers.

—— IBM (UK)International Products Ltda West Cross House
-— ooo 2 West Cross WaySS—_——s BrentfordMiddlesex TW8 9DY

© International Business Machines Corporation 1986

VECTOR Vol.3 No.3

APL Product Guide
Compiled by Steve Lyus

VECTOR’sexclusive APL Product Guide aimsto provide readers with useful informationaboutsources ofAPL hardware,software and services. We welcome any commentsreadersmay have onits usefulness and any suggestionsfor improvements.
We do depend onthealacrity of suppliers to keep us informed abouttheir products so thatwe can update the Guidefor each issue ofVECTOR.Anysuppliers who are not included inthe Guide should contact meto get their free entry — see address below.
Wereservetheright to edit material supplied for reasonsofspace or to ensure a fair marketcoverage.
Thelistings are not restricted to UK companiesandinternational suppliers are welcometotake advantageofthese pages. Where no UKdistributorhasyet been appointed, the vendorshould indicate whether this is imminent or whether approaches for representation byexisting companies are welcomed.
For convenienceto readers, the productlist has been dividedinto thefollowing groups:

Complete APL Systems (Hardware & Software)
APL Timesharing Services
Otherservices
APLInterpreters
APLVisual Display Units
APLcharacterset printers
APL-based packages
APL Consultancy
APL Training Courses
Vendoraddresses+

+e
H
t

O
E
E

Every effort has been madeto avoid errors in theselistings but no responsibility can betaken bythe working group for mistakes or omissions.
Note: ‘poa’ indicates ‘price on application’

All contributionsto the APL Product Guide should besentto:
Steve Lyus
Metapraxis Ltd.,
Hanover House
CoombeRoad, Kingston
KT27AH

23

VECTOR Vol.3 No.3

COMPLETE APL SYSTEMS

COMPANY PRODUCT PRICES£ DETAILS
Analogic The APL Machine $60,000 APS500array processor, 4 Mb data memory, 80 Mbdiskdrive.

Cocking/Drury MicroAPL SPECTRUM 6,000 Supplied aspart ofa turnkey system.
SAGEII 35,000 See MicroAPLentry,
SAGEW

Dyadic Dyalog APL Coprocessor 3,500+ 32-bitcoprocessor board for IBM PC. NS32000 cpu with FPP, up
104Mb RAM,16Mbvirtual memory, Softwareincludes Unix V.2,
Oyalog APL,graphics support, DOSinterface. Provides multi-user
UnivDOSenvironment.

(8M6150 15,000+ Multi-user Dyalog APL system with Fast 32-bit RISCprocessor,
FPP, upto 8Mb RAM,210MbDisk, 16users. Interface to SQL,
graphics and APL support forstandard IBM peripherals.

Altos 3068 25,000+ Multi-user Dyalog APLsystem with MC68020 cpu & MC68881 FPP.
Also features a LAN which supporis IBM PCs as Dyalog APL.
terminals.

Sun3 15,000+ Multi-user Dyalog APLsystems whichcan beconfiguredasa
network ofworkstations andora tragitionaltime-sharing cpu. With its
25MHZ 68020cpu,the Sun 3/200is the fastest APL microcomputer
onthe market,

Gen. Software Myriade poa Ticomputer +APL & APLoperatingsystem
Inner Product IBMPC 2,000 IBM PCssupplied fortumkeyapplications

— 6,000
MBE, MBTSeries 10 poa UNLX/68010 based multi-user APL sysiem

TORCH poa 68000/Z80 multiprocessor
MetaTechnics = poa Details on application~ IBM PC compatible
MicroAPL Aurora 23,500 Multi-user APL computer using 68020 CPU.Std. configuration

2Mb RAM,16 RS232 ports, 68 Mbhard dise, 720Kdiskette
SPECTRUM 11,000 Expandable multi-userAPL computerusing Motorola 68000.

-15,000 Std. configuration 1 Mb RAM,12/36 Mbdisc, 12 ports.
STRIDE 440 8,500 Multi-userAPL computer, 1 Mb RAM,12/18 Mbdisc.
Atari1040ST 799 1Mb Mono/ColourSystem,includes 1 Mb disc drive & mains

~999 _tvansformerbuiltinto Console.

APL TIMESHARING SERVICES

COMPANY PRODUCT PRICES£ DETAILS
Boeing Mainstream APL poa Enhanced IBM VS APL (CMS)
Mercia APL"PLUS poa STSC's Mainframe Service- MAILBOXetc.
(LP. Sharp. SHARPAPL poa International Network application systems and public databases.

24

VECTOR Vol.3 No.3

APL VISUAL DISPLAY UNITS

COMPANY PRODUCT PRICES DETAILS
Dyadic Lynwood}300 1,560 Monochrome ANSI3.64 APLvdu,15-inch high quality sereen, Tek

graphics,local macrokeys.
Lynwoodj500 2,295, ColourANSI 3.64 APLvdu, 15-inch high quality screen, Tek

graphics,local macro keys.
IBM 3163 731 Low-cost Monochrome APL vdu. Supports downloaded Dyalog APL

font.
IBM 3164 1,093 Low-cost Colour APL vdu. Supports downloaded Dyalog APLfont.

Farell Tandberg TDV 2221 995 Ergonomic design APLterminal, 50-19200 baud, 15” anti-retlex
‘screen,lowprofile keyboard

Tandberg TDV 2271 1,195 Combined APLANSI ergonomic terminal as above.
Gen. Software Mellordata 400 Second-hand

Elite3046A
M.B.T. various Contact MBT for details
MetaTechnics IBMEGA compatible 299 Emulates EGA & Hercules, Half Card
MicroAPL. Insight VD¥-1 795 Inexpensive APLYDU

Insight GDT-1 1,460 With monochromegraphics
Concept 201 1,295 APL VOUwith8 page memory
Concept 201G 1,650 Graphics VDU

Shandell HDS2010 4,215 ANSIX3.64 compatible, full overstrike chars., 4/8 pages, /3comms,
ports, 80/132 cols., windowing, viewports, 15”screen.

HD$2010G 1495 AsHDS2010plusTektronix 4010/4014 graphics with 1024 x 390
resolution,

HDS20106X 1,778 —-As2010G butwith 1024 x 780 resolution.
HOS2210 1,215 DEC VT220 compatible, full overstrike characters, 4 page memory,

23comms.pris, 80/132 cols., 15" screen
HDS22106 4,495 ASHDS2210 plus Tektronix 4010/4014 compatible graphics with

1024 x 790 resolution.Also additional capabilities of Retrographics
VT640/DQ640 and Visual 500 terminals.

HDS2210GX 4778 ASHDS2210G but with 1024 x 780 resolution.
Textronix 41148 13,500+ 19°D,V.S.T.:Graphics:3120 x 4096 disptayable; Intelligent: up to

‘800K memory; APL keyboard (option 4E}
4125 21,550+ 19"2Dcolourgraphics; Workstation (1280 x 1024);Inteltigent: upto

800K memory; APL keyboard (mod AP)
4128 26,822+ As4{25plus3D wireframe

APL PRINTERS
COMPANY PRODUCT PRICES£ DETAILS
Datatrade Datasouth DSi80+ 1,295 180 cps matrix printerwith 4K buffer, 9x 7 dot matrix and APLoption.“5Daasouth 08220 1,695 Letter quality; graphics capability, APL option (both available withnd IBM Twinexor Coax interface).
Dyadic 1BM 4201Proprinter poa 100, 200, 40(niq) cps, matrix printer, with graphics. Supports

downloaded Dyalog APLfont.Toshiba P351 poa 24 pin high-quality matrix printer 100 cpsletterquality, 192 cps draft,Inner Product Epson FX80 500 Soft char. set, 180. cps, 80 column
Anadex $620 1,150 200 cps., 132 col, tractor feed
Siemens PT&S 620 180cps., 80col., silent
TGC Starwriter 1,180 40 ops.fetter quality

MBIT. Facit 4665 poa 4Ocpsletter-quality
Facit4510/11/12 poa Matrix printers

MetaTechnics Quen-data 295 Low-costAPL Daisy-wheelprinter
MicroAPL Datasouth DS180+ 1,295 See Datatrade entry

Philips GP300 1,924 Matrix printerwith tetter & draft quality and APL.QumeLetterpro20 549 APLASCII Daisy-wheelprinter

25

VECTOR

OTHER PRODUCTS

Vol.3 No.3

COMPANY PRODUCT PRICES£ DETAILS
APLPeople EmpfoymentAgency poa Permanentemployees placed atall levels, Contractors supplied for

shorvfong-term projects, supervised.
MineotInformation APL Book Service See booklist
LP. Sharp Productivity Tools poa Utilities tor systems,operations, administration & analysts;

auxiliary processors, commssoftware,international network,
Databases poa Financial, aviation, energy and socioeconomic.

APL PACKAGES
COMPANY PRODUCT PRICES£ DETAILS
APLO>385 FSM 385 PC: 50 Screen development

ORAW385 Screen design
DB 385 Mainframe: 125 Relational W.S.
GEN385 Utilities

APLSoftware Lid Maintrame
AFMAP- 11,035 Interprocess Software for VM/CMS & MVS/TSO,
—Keyed Access 2,650 ComponentFile ManagementSystem (VSAPL/APL2)
Interactive Link 1,925~Mail Exchange 2,650
CALL/AP 4,030 Non-APL program execution (VSAPL/APL2)
APLPRINT 2,205 Output to high speeding printeror 328x devices (VSAPL/APL2}
ENHANCED FORMAT 2,205 Extends Format operatorto full "Quad-FMT"status (VSAPL/APL2)
Isp 750 Input and Output Stack Processors for manipulating terminal
OsP 2,205 with facilities for ErrorTrapping (VSAPL)
DISPLAY CAPTURE poa Allows terminaloutput to be collected andheld forretrieval by an

APLfunction (APL2)
UCF poa User Communication Facility for data transfer between users (APL2)
ROS poa Relation Data Base System
PANEL poa Fullscreen management system
PFS poa ProgramFile System-- APL Systems developmentaid
Microcomputer
POWERTOOLS 295 Assemblerwritten replacement function for commonly used CPU-

consuming APLfunctions,includes a Forms Processor.
Beta-plan BETA-FONT poa Multiple font PC charactergenerator. Dealers required fornon-

Scandinavian countries.
Boeing TABAPL poa Hierarchical Planning System
Butel Merlin 5,000 Mainframe APLspreadsheet runs under VM/CMS,TSO, VSPC

MerlinvPC poa Version tor APL*PLUSVPC
Cocking/Drury Mainframe

STSC’s SHAREFILE & poa Componentfiles, quad- functions & nested arraysfor IBM VSAPL.
enhancements te VSAPL under VM/CMS & MVS/TSO
‘SHAREFILE AP 15,000 STSC’s sharefile for APL2
FILEMANAGER poa ‘STSC's database package.
FORMAT 2,250 Enhancedreport formating.
COMPILER, 30,000 First APLcompiler. Available with APL°PLUS enhancements and

Sharetile under VM/CMS & MVS/TSO
SQL poa Aninterfacebetween SQL and APL*PLUSfor VSAPL
FMT poa Full featured FMT for APL2
CATAPORT poa. PowerfulInformation Centre spreadsheetincorporating data

exchange between APL and FOCUS,IFPS, SAS, APL/OI, ADRSII,
LOTUS123, VISICALC, MULTIPLAN,DIF files

Microcomputer
STATGRAPHICS Rel2 546 Powerful Statistics and graphics on IBMPC’'s, PC/ATsand

compatibles
Release 2update 165 Update from release1 torelease 2
APL'PLUSPCTools

26

VECTOR Vol.3 No.4

VOL + 326 Incl. 327x JRMAsupport, RAMdisk,full screen data entry,
menu input,report generation, games,

VOL2 125 Incl.file documentor, screeneditor, exception handler.
APL*PLUS PC Fin & 350 ‘Financial & statistical routines
Stat. Library
SPREADSHEETMANAGER 195 APL-based spreadsheetfor APL'PLUS/PC.Cell arithmetic;

transfers to ASCil, LOTUS
Eas PROTOPAK Packagesfor prototyping managementinformation systems—

consisting of: PC &maintrame
RMS Modules Relational databases,
AMS 250+ Multidimensionalarrays
RAMS Combined RMS & AMS,
BMS Oynamic financial modelling & forecasting
FMS Full-screen handler for APL"PLUSIPC.(AP 124-based}
CMS Communications package.
S08 poa ‘Scheduled ordering and stock contral,

Gen. Software PROPS §00+ Spreadsheetsystem for Product and/or Project Planning.
H.W. INPUT poa Matrix manipulation package fordataentry & report generation

PRINTPAK. poa Block printing for V4/CMS
VIEWPAK poa AP124 Protocol emulatorforiBM/PC-

Holtech CASH 3,500 Accounting package & hote! managementsystem on MicroAPL
19,000 SPECTRUM& SAGE CPUs.

Inner Product Viewcom 150 Control Viewdata from APLAPLIGBASEII 150 Interface APLwith dBase !
APL/GBASEIII 150 Interface APL with dBASEIII
APLLOTUS: 150 Interface APLwith Lotus
APL/WORDSTAR 150 Interface APLwith Wordstar
APL/MULTIPLAN 150 Interface APL with spreadsheet
CEMAS 3,500 EEC monetary and agrimonetary analysis.

MBT. RHOMBUS. poa Integrated Office System
HASLEMERE poa Hotel Accounting System

Mercia STATGRAPHICS2 535 Integrated stat. graphic system for PCs.
Upgrade to Release 2 5
EXEC'U'STAT 425 Easyto use Statistics for management.
APL*PLUStools

VOL1 225 IBM PCUtilities:IAMA3270 comms,tull screen, RAM Disk report
generator

VOL2 125 File documentation, screen editing. Exception handling,
FINANCIAL AND 325 Financial and Statistical analysis
STATISTICAL LIB.
INFO CENTRE 2,000 Full-screen entry, display & multi-dimensionalanalysis. Interfaces to

-20,000 ‘other |.C. products, Runs under VM VSAPLonIBM maintrames.
APLSpreadsheet 195 APLspreadsheet—links to popularspreadsheetsoftware.
Manager
APL Debugger 195 Powertul debuggingtoolfor APL’PLUS/PC
UNITAB 495 SpreadsheetforAPL*PLUS/PC
MULTI-APL. poa Multi-user/Multi-tasking APL"PLUS/PC.
EXECUCALG 4,000 Mainframe Spreadsheet with VisiCalc and Lotus 1-2-3 functionality

requires VSAPLunderTSO or VM.
EXECUPLOT 3,200 Mainframe Graphics displaysystem with VisiPlotfunctionality

requires VSAPL under TSO or VM and GDDM,
MIGROSPAN 250 Comprehensive APL tutor

27

VECTOR Vol.3 No.3

MetaTechnics MetaScreen 89 Full-screen handler for APL*PLUS/PC,based on VSAPLAP124
MetaPack 495 Comprehensive utilities package forAPL"PLUS/PC.Includes

MetaScreen, MetaWS,Browse, Toolbox, Numeric Editor.
APLIEEE488 9g Controls IEEE488/GPIB Busfrom APL"PLUS/PC,,
PLOT/PC 99 2D &3D Graphics package.Includesinteractive diagram Editors.
Browse 99 Scrofling of DOSfiles, large APLvariables,
ADAPTAOLS poa Production & purchasing schedulingforprocess manufacturing.
ADAPTAMSP. poa —_Job-shop loading & scheduling for multi-stage production.

MicroAPL MicroTASK 250 Product developmentaids
MictoFILE 260 Fileutilitiesanddatabase
MicroPLOT 250 Graphics for HP plotters ete
MicroLINK 250 General device communications
MicroEDIT 250 FullscreenAPLeditor
MicroFORM 250 Full screen formsdesign
MicroSPAN 250 Comprehensive APLtutor
MictoGRID poa Ethernet & other networking
APLCALC 400 APLspreadsheet system
MicroPLOT/PC. 250 ForAPL'PLUS/PCproduct
MicroSPAN/PG. 250 ForAPL"PLUS/PC product
PCTOOLSVol f 295
STATGRAPHICSRel 1 495
STATGRAPHICS Re! 2 535

Parallax ExecuCale $5,000 Mainframe-based electronic spreadsheetfor VW/CMS & MVS/TSO
with links to micro products.

ExecuPlot $5,000 Mainframe-based colourgraphicswith micro links,
LP. Sharp ACT poa Actuarial system

APS poa Financial Modelling
BOXJENKINS poa Forecasting technique
CONSOL, poa Financlal Consolidation
COURSE poa APLInstruction
EASY poa Econometric Modelling
FASTNET poa Projecl Management
GLOBAL LIMITS poa Exposure managementfor banks
MABRA poa Record maintenance/reporting
MAGIC poa Timeseries analysis/reporting
MAGICSTORE poa N-dimensional database system
MAILBOX poa Efectronic Mail
MICROCOM poa Mainframeto miro link
SAGA poa General graphics, mostdevices
SIFT poa Forecastingsystem
SNAP poa Project management
SUPERPLOT poa Business graphics
VIEWPOINT poa 4GL—Infocentre product
XTABS poa Survey Analysis

SugarMill Statt $129.95 Statistical toolbox, menu driven

APL CONSULTANCY{prices quoted are per day unless otherwise marked)
COMPANY PRODUCT PRICES £ DETAILS:
 APL People Consultancy poa Project management, financial applications,relational databases.

Difficult problems solved.
Managementconsultancy.
Links to non-APLsystems.
From consultant level to managing consultant.
Documentation a speciality,

28

VECTOR Vol.3 No.3

Boeing Consultancy poa
Camacho Consultancy poa Specialisingin programming & manual writing.
Cocking/Drury Consultancy 120-160 Junior consultant

140-200 Consultant
185-300 Seniorconsultant
275-400 Managing consultant

Delphi Consultancy poa Specialising in management reporting systemsand APLon
microcomputers.

Dyadic Consultancy poa APL systemdesign, consullancy, programming & training for
Oyalog APL, VSAPL, APL"PLUS,IPSAAPLetc,

E&S Consultancy 150 ‘Systemprototyping:all typesofinformationsystem.~250
FASTCODE Consultancy poa Specialise in improving performanceof APLapplications onmicros & mainframes.
Gen. Software Consultancy 100+
HM.W. Consultancy 100-260 System design consultancy, programming,
Inner Product Consultancy 200 On-site micro-mainframe APL, PC/DOS & Assembler
Uoyd Savage Consultancy poa Decision support, particularly specialising in Sales & Marketingsystems,
MBT. Consultancy poa
Mercia Consultancy poa APL'PLUS & VSAPLconsultancy.
MetaTechnics Consultancy poa ManagementInformation & Production. EngineeringAPL— C/Assembler custom programming
MicroAPL. Consultancy Poa

__

Technical & applications consultancy.
MT. Consultancy poa Specialise in Maintenance and developmentofexisting APL systems
Parallax Consultancy $750 IntroductoryAPL, APIfor End-user& Advanced Topics in APL
QBOn-Line Consultancy 200 Specialising in Banking, Financial & Planning Systems.
Rochester Group Consultancy poa Specialise in MIS using Sharp APL
LP. Sharp. Consultancy poa Consultancy & support service world-wide.

APL INTERPRETERS
COMPANY PRODUCT PRICES£ DETAILS.
Cocking/Drury APL'PLUS/PC Rel6 475 STSC’s full featured APLforIBM PC, PC/AT and compatiblesUpgrade Sto 6 120 Extension from rel which incorporates 64K object support.Upgrade 2,3,4to6 225 Extension upgradestorelease 6,

Run-time poa Closed version of APL"PLUS/PCwhich prevents user exposureTo APL,
APL*PLUSUNIX poa ‘STSC’s 2nd generation APL forIBM PC/AT, DEC, AT&T.

andotherUnix computers.
Dyadic Dyalog APL 795

—

2ndgen. APLfor UNIX systems, ¢.g. IBM 6150, Sun, Vax,NCA,
= 10,000 HP9000, AT&T,Altos, Apollo, Whitechapel, Sperry, etc.

Gen. Software APL'MYRIADE poa RunsonTexas InstrumentsT1990 range.
IBM UK ProductSales [BMPC APL poa —_-Event-handling & APsforfull-screen /O disks,diskettes,

asynch. comms.
Inner Product VIZ:APL. 250 B-bit Zilog 2-80 CP/M

-350
APL'PLUS/PC 600 Seeunder Cocking & Drury

29

VECTOR Vol.3 No.3

M.B.T. Oyalog APL poa See Dyadic Systemsentry
MBTAPL poa Enhanced Dyalog APLfor MBT hardware.
VIZAPL poa CustomizedforTORCH hardware

Mercia APL"PLUS/PC Rel 6 495 STSC’stull-feature APLfor IBM PC,PC/AT Compag,Olivetti, Wang,
Apricot, Ericssonete

Upgrades 3104 100
Upgrades 4 to5 150
Upgrades 5 106 130
APL’PLUSVUNIX poa Interpreter for UNIX systems: WICAT, CADMUS, CALLAN,

FORTUNE 92:16, HP, 900/500, OLIVETTI 382
MetaTechnics APL*PLUS Rel 6 475 Discount on quantity.
MicroAPL APL.68000 1,000+ Fullimpfementation with componentfiles, errortrapping etc.for

SPECTAUM,SAGE & other MC68000-based computers.
QLJAPL(keyword) 87 Full keyword APLfor QL with manyextra features.
QUAPL(APLchars) a7 VSAPL compatible APLfor QL with manyextra features.
APL.68000 for Apple Macintosh. 257
APL.68000 tor Commodore Amiga 200
APL.68000 tor Atanst 170
APL'PLUS/PC-REL6 450

Portable PortAPL $195 IBMPC Software$275 Mackintosh
$2,995 DECVAX

LP. Sharp. Sharp APL/PCX 2,875 ForlBM XT/AT
1,000+ ForlBM mainframes

Sharp APL/PC 325 ForiBM PC or PC/XT

APL TRAINING COURSES
(Prices quoted are per course unless otherwise stated)

COMPANY PRODUCT PRICES £
Cocking/Drury Sday Fundamentals 375

4dayAPL"PLUS/PC Intermediate 525
§ day System Design 595,
Introduction to APL2 poa
APL2in Depth poa

{nner Product poa
M.BT. poa
Mercia 3day{ntroduction ta APL. 350

2day APL*PLUS/PC Enhancements 240
3 day APL*PLUSSystem Design 375

Parallax poa

30

VECTOR Vol.3 No.3

VENDOR ADDRESSES

COMPANY CONTACT ADDRESS & TELEPHONENo.
Analogic Corporation Denise Favorat 8 CentennialDrive, CentennialIndustrial Park, Peabody, Mass. U.S.A. 01961617-246-0300
APL 385 Adrian Smith Brook House,Gilling East, York, @ 04393-385
APL People Valerie Lusmore 17 Barton Sireet, Bath, Avon. @ 0225-62602
APLSoftware Lid Philip Goacher 27 Downs Way, Epsom,Surrey KT185LU @ 03727-21282

17 BartonStreet, Bath, Avon BA1HQ@0225-62602
Beta-planAPS. Kim Andreasen Stengrade 75 , OK-3000 Helsingor, Denmark.245221 48 48
Boeing Computer Anne Harding 19 Fitzroy Street, Services (Europe) Ltd., Landon WtP SAB. @ 01-63% 0808
Bute! Technology Lid. Mike Munro Butel House, 3 Great West Rd., London W45QJ 201-995-1433
Anthony Camacho 2Blenheim Road,St. Albans, Herts AL(4NA.@ St. Albans60130
Cocking & Drury Ltd. Romilly Cocking 16 Berkeley Street, London W1X SAE. 01-493 6172

Brian Drury 155 Friar Street Reading RG1 1HE, 20734-58835
Datatrade Ltd, Tony Checksfield 38 Billing Road, Northampton, NN1 5DQ. 0604-22289
DelphiConsultationLtd. David Crossley Church Green House,Stanford-in-the-Vale, Oxon SN78LQ, € 03677-384
Dyadic Systems Ltd. Peter Donnelly Park House, The High Street, Alton, Hampshire. @ 0420-87024
E& SAssociates Frank Evans 19 Homesdale Road, Orpington, Kent BAS 1JS, @ 0689-24741
Farnell nternationat A. Falrbairn Jubilee House, Sandbeck Way, Welherby, W.Yorks. @0997-61961Instuments Ltd. or RogerAttard Davenport House, Bowers Way, Harpenden,Herts. 05827-69071
FASTCODE Andrew Dickey P.0. Box 281, Croton-on-Hudson, NewYork 10520, U.S.A. (914) 271-3200
General Software Ltd, M.E,Martin 22 Russell Road, Northolt, Middx. UBS 4QS.@ 01-864 9537
H.M.W,Programming Ken Jackson 142 Feltham Hill Rd,Ashford, Middx, TW15 1HN. 2 07842-41232Consultants Lid.
Holtech Ltd. Jan Bateman *O' Block 4th Floor, Metropolitan Wharf, Wapping Wall, Landon £1 988.

01-481 3207
IBMUKLtd Chris Selt PO Box 32, AlenconLink,Basingstoke, Hants. RG21 1EJ. @ 0256-56144
Inner Product Lid, Dominic Murphy Eagle House,74 Clapham Common Southside, London SW4 9DG.

01-6733964
Loyd Savage Lid Philip Johnson Cambridge House, Oxford Road, Uxbridge. Middx, UBS 2UD.@ 0895-59826
Mercia SoftwareLtd. Gareth Brentnall AstonScience Park, Love Lane, Birmingham B7 4BJ. @021-359 5096Barrie Webster
MetaTechnics Systems Ltd goheStenbridge Unit216, 62Tritton Road, London, SE21 BDE. @ 01-6707959avid Toop
MicroAPLLtd. Bernadette Leverton 19 Catherine Place, London SW1E 6DX 01-834 9022
Mineof Information Richard Ross-Langley PO Box 1000, St. Albans, Herts ALS 6NE.& 072752801
ModernBusiness Michael Branson P.O.Box 87, Guildford, Surrey GU4 8BBTechnologyLtd. (MBT) 04868-23956
MT. Ray Cannon 7 Pine Wood, Sunbury-on-Thames, Middx, TW16 6SH@ 09327 80848
Parallax Systems inc, Kevin Weaver 60 West Sth Street, New York, New York 10011, U.S.A. 212-475-4001
Portable Software Richard Smith 60 Aberdeen Ave, Cambridge, Mass. U.S.A, 02138, 2 617-547-2918
QB On-Line Systems Philip Bulmer § Surrey House,Portsmouth Rd Camberley, Surrey, GU15 1LB, 20276-20789
The Rochester Group Robert Pullman 164 Pinnacle Rd., Rochester NY 14620 2%716-461-3169
Shandell SystemsLtd. Maurice Shanahan 12 High Street, Chalfont St. Giles, Bucks HPS 4QA. & 02407-2027
\.P. Sharp AssociatesLid. David Weatherby 10 DeanFarrarStreet, London SW1. @ 01-2227033
SugarMill Software Corp. Lawrence H. Nitz 4180 Kika Place, Kailua, Hawaii 96734 > (808) 261-7536
Tektronix UK Ltd. Paul Morgan Fourth Avenue, Globe Park, Marlow, Bucks SL7 10.@ 06284-6000

31

APL BOOKLIST
(In author order)

Title Price £ UK_P&P
* Sharp APL Reference Manual, P Berry 10.50 2.70

Star Map, P Berry & J Thorstetsen 6.00 +50
APL and Insight, P Berry and G Bartoli 4.50 55
APL 86 Tutorials, A Camacho (members £9.30) 12.00 2.00

* A Source Book in APL, A Falkoff & K Iverson 10.00 1.80

* FinnaPL Idiom Library (when available) 14.20 1.30
Application Systems in APL, Gibson Levine Metzger 30.00 2.70

* APL:An Interactive Approach, Gilman & Rose 26.50 2.75
Solutions to Algebra, J Iverson 3.00 +50
A Dictionary of APL, K Iverson 2,50 +50

A Concise Dictionary of APL, K Iverson 2.00 250 '
Algebra: an Algorithmic Treatment, K Iverson 22.50 2.30
APL in Exposition, K Iverson 3.00 «50
Applied Mathematics for Programmers, K Iverson 8.00 1.35
Elementary Analysis, K Iverson 8.00 1.50
Introduction to APL for Scientists & Engineers, K Iverson 3.00 40
Introducing APL to Teachers, K Iverson 3.00 «40
Mathematics and Programming, K Iverson 8.00 «95
APL Toolkit (CIPS APL SIG), R Levine 4.50 395
Reliable Software Through Composite Design, Myers 15.00 1.30
APL:An Introduction, H Peelle POA

* APL The Language & its Usage, R Polivka & S Pakin 36.35 2.70
APL in Practice, Rose/STSC 40.00 2.50
Sharp APL Users Meeting Procs 1984 (Information Centres) 8.00 1.80
Sharp APL Users Meeting Procs 1982 Vol 2 8.50 1,80
Sharp Pocket APL Reference Book 2.50 +50

* APL:Design Handbook for Commercial Systems, A. Smith 13.10 1.50
Resistive Circuit Theory, R Spence 20.00 2.80
Whizzbangs Volume II, R Sykes 14.50 1.80
Whizzbangs Volume I, R Sykes 14.50 40
An APL Notebook, Barrie Wetherill (when available) 1,90 +50
APL Idiom List (Yale University) 2,00 +50
APL 86 Conference Procs, D Ziemann (members £13.30) 17.30 2.25
APL Business Technology '83 Proceedings 11,20 2.70
APL Lapel Pin with gripping backplate 2.00 +50 |
APL Quote-quad the Early Years 32.00 2.70 |
APL SV Reference Card (Vade mecum) +50 +50
APL Trivia Cards (per set) 4.50 ~60 |
Special APL 86 Wallet Offer (see Vector 3.2 page 92) 22.50 5.00

PLEASE ORDER DIRECT FROM MINE OF INFORMATION |
APL Book Service, PO Box 1000, St Albans, AL3 6NE, UK |

Telephone 0727-52801
Prices are subject to change without notice i

Access and Visa accepted, or Sterling cheque with order.

Outside UK add an EXTRA amount per book-
£1 to Europe, £2.50 Africa and Middle East, £5 elsewhere (all sent airmail)
* In a poil of the British APL Association Committee the books marked with

an asterisk were highly thought of among those they had read. Vector hopes
to publish a set of potted book reviews for all books in stock soon. i

VECTOR Vol.3 No.3

The Education VECTOR
by Norman Thomson

The previous columnunderthis heading concluded by announcing howtheidea ofPublicDomain APL wasborn at APL86. Since then, I-APL (International APL) has been born,and the embryonic concept has moved inexorably to project status. The British APLAssociation has promised funds subject to committee approval by Ist December of atechnical specification and business plan. SIGAPL has promised similar support. Anappeal has been madeto individual and sustaining membersof the BAA and to the otherEuropean associations to contribute to the £30,000 which is required to see the project tosuccessful completion. Happily enoughinitial funds have been guaranteed to enable theproject to engage Paul Chapmanto embarkon the I-APLinterpreter, while on bothsides ofthe Atlantic workis progressing with the supporting documentation.
Theexistenceof an interpreter and documentation is of course by no meansall. The nextstage will then be to bombard our schools with APL, and although ourplans includeapproaches to LEA Mathematics Advisers, Mathematics Project Directors and High 1Q(Information Technology Quotient) Schools, this is a point at which all members of theAssociation havea partto play in consciouslytelling and persuading therest of the worldthat APLis here, and availabletoall, and thatit contains the seeds ofimportant educationalinnovation in the Mathematics and Science classroom. In particular those members whoare concerned with recruitmentinto their companies have a special role to play. Anargumentheard regularly from Polytechniclecturersis that they do not teach APL becauseit is not used by employers. How I wish I could broadcastthe telephone conversation I hadrecently with a representative of a large British company asking meif I knew at whichPolytechnics they should look to recruit graduates competent in APL.Is there a turningpoint in view?
Meanwhile wecontinueto hear ofnew APL enterprise in education. At University College,London,for example, Dieter Girmesin the Statistical Science Department runsa 2nd/3rdyear course on Mathematical Computation which is based entirely on APL. After aminimum of formal instruction, students are issued with sheets each containing an APLfunction andits associated “brother” function which gives a detailed trace of execution,thereby explaining whatthe various APLprimitives are doing. Theaim is not to impart anynew mathematics, but rather to relate known mathematics andstatistics to APL, andthereby focus on the power of APL to express and execute algorithms. The course ispractical rather than didactic, and support is provided by terminals connected to theCollege’s Euclid computer.
On the school front, delegates at the MUSE (Microcomputer Users in Schools andEducation) Conference showed considerable interest in APL, and we hopethat bythe timeof the next conference I-APLwill be a viable andattractive option on school micros. AtPortsmouth Grammar School, the computer donated by Quaker Oats in the competitionjudged by the BAA hasbeenreceived with enthusiasm by pupils, one of whom has beenworking on a mini-APL interpreter in COMALasa project.

33

VECTOR VoI.3 No.3

Meanwhile, as the dawnof I-APLis awaited, we take a look at what low-cost APL systems
are currentlyavailable to the homeor schooluser. First we mention two free APLs—andyes
we do mean free! These are VIZ::APL - put into the Public Domain by Inner Product and
which runs on the RML 380Z andother CP/M machines—and Acornsoft APL which runs
on the BBC micros equipped with the second Z80 processor. Anthony Camacho can be
contacted for details of the Acornsoft interpreter and we hope to have VIZ::APLavailable
through the BAAbythe endofthe year;please do not ask Inner Productfor copies.
The cheapest APL system remains the Sinclair QL, which can still be obtained; ask
MicroAPLifyou have problems. This typically costs around £200 with a monitor, and QL/
APLfrom MicroAPLcosts a further £100 in either keyword or symbolic notation. (These
prices in commonwith all the others quoted here include VAT.) QL/APLis a full-blown
no-corners-cut APL with file facilities and graphics links. I have been using it myself at
homefor a year or so and I haveyetto find anyflawsin the interpreter.
The next available product going up the quality ladderis the Atari 1040 for which you can
expect to pay £920 with a monochrome monitor,or £1150 with colour. APL (again from
MicroAPL) will cost just under £200. APL for the Commodore Amiga comesin at £260,
and for the Apple Macintosh at £295. MicroAPLreports shipmentsof 300 per month for
this product, but sadly most of these are to the Continent. PortaAPL,the other APL
product which runs on the Macintosh,sells for about $200. (Ed: mostof these interpreters
have been reviewedin recent issues of VECTOR.)
If your budgetrunsto the IBM PCorits look-alikes, the best purchaseis version 2 ofIBM’s
own APL which retails at £328 andis subject to its Educational discount. STSC’s longer-
established APL*PLUSsells at £546-25; Pocket APL is STSC’s mini-version of APL,
which costs about $100 butis not on sale in the U.K.It is too early to say whether the new
Amstrads will run APL successfully, but thefirst signs look hopeful.
In summary, APL is poised at an educational cross-roads - I-APL promises the
opportunity to prove once andforall thatit is only cost which has prevented APL from
taking its place as one of the most popular and useful computer languages. We move
forward in faith and hope.

34

VECTOR Vol.3 No.3

REVIEWS SECTION
Forthefirst time,this issue of VECTORcontains a separate section devoted to reviews.
This section will contain reviews of books, software and hardwareofinterest to the APL
communityat large.
Val Lusmore ofAPL People has agreed to take on the role of Reviews Editor to coordinate
the reviewing process. Whilst the VECTORteam try to cover as wide an area as possible,
we cannot reasonably expect to notice every new product. Val would therefore welcome
input from three sources:
@ product vendors whoare able to makeavailable product for review;
@ ideas for books and productssuitable for review;
® volunteers who would like a chance to evaluate new products and write a review

for VECTOR.
All ideas should besentto:

Val Lusmore,
APL People Ltd.,
17 Barton Street,
Bath, Avon
Tel. 0225-62602

This issue covers three book reviews and two APL implementations. Thefirst book review
is a double-header; Simon Garland reviews two recent books by Ken Iverson — “Applied
Mathematics for Programmers”and “Mathematics and Programming”. Another renowned
APL author is Howard Peelle, and his “Introduction to APL”is reviewed by Romilly
Cocking. Thirdly Peter Branson gives us his thoughts on reading “A Handbook and Guide
for Comparing Computer Languages”, produced by the Research and Education
Association ofNew York.
Paul Chapman is an independent consultant, who is currently working for the -APL
committee writing a free public-domain APL interpreter for small computers. In his
copiousfree time Paul kindly agreed to review MicroAPL’s APL.68000 implementation on
the Atari 520 ST.
Finally Martyn AdamsofMetapraxis offers somefirst impressionson thelatest release (6.0)
of STSC’s APL*PLUS/PC,including a fleeting and evidently unsatisfactory encounter
with the new Compaq 386 microcomputer.

35

VECTOR Vol.3 No.3

Book reviews
Applied Mathematics for Programmers(157 p)

Mathematics and Programming(132 p)
by Kenneth E. Iverson

Published by I P Sharp Associates, 1986.
Reviewed by Simon Garland

Both ofthese new selfstudy coursesfrom Dr. Iverson use an executable notation, thatis (as
he explainsin the introduction to Mathematics and Programming) . . a notation whose rules
are so strict and simple that a reader, or computer, can interpret any expression
unambiguously.
The executable notation used is APL, as defined in A Concise Dictionary ofAPL (also
available from I.P.Sharp). No prior knowledgeofthe notation is assumed,it is introduced
clearly and simply as required — in refreshing contrast to the usual half apologetic jokes
about strange symbols and unreadable one-liners.
In order to beable to use the coursetexts easily the reader should have access to a union
keyboard version of APL and a copy ofa direct definition workspacethat uses the
FunctionName : ElseExpression : IfCondition : ThenExpression
form ofdefinition.
As far as I couldtell all examples could be executed without problem (apart from the
response time..) with the current version of Sharp APL/PC. APL*PLUS/PCuserswill not
be able to use any of the expressions using Sharp enhancementslike the rank operator, or
enclosed arrays, but they can still execute most of the expressions without much problem
by simply replacing the lev and dex symbols by the functions:

9 Result+Resulg LEY Junk
Ql) arv

¥ Result+Junk DEX ResultLil acv
Betterstill make the direct definition compiler do it (exercise -1).
The aim of Applied Mathematics for Programmers is to make the mathematics involved in
manyofthe basic tools of programming moreaccessible to programmers — to enable them
to grasp the concepts behindthe tools they use.
Anyonewhohas hadtosit through a lecture on how quicksort works, complete with helpful
diagrams, examples, handwaving, and the exhortation that it’s all very simple will
appreciate the powerof a concise executable notation that allowsthe student to experiment
with the simple functions:
Sort: (B/w)sSort(~Bew=l/u)/e : O=pw : tt
QS: (Q8(weF)/a) 4 ((uzF)/a) . (QSCu>F)/u)aF+ltw : O=pw zt!

36

VECTOR Vol.3 No.3

Mathematics and Programming is more a review of high school mathematics using anexecutable notation, which exposesandclarifies relations amongtopics previously studiedin isolation; it also goes into more detail aboutthe notation andits ‘grammar’.
Both courses go over similar ground, but with different emphasis. They coverclassifications and sets, the behaviour of elementary functions (utility functions aresupplied for drawing graphs and barcharts toassist with the exploration ofthe behaviour ofthe functions), directed graphsandtrees, identities and proofs, and modelling (includingwriting your own computer). Exercises to check and extend undertanding ofthe pointsunder discussion are provided at the end ofthe book, with indicators within the text whenan exercise is available.
Applied Mathematics for Programmers has a special section on manual translation with
examples of translation to Pascal, C, Fortran, and Conventional Mathematical Notation,closing with a discussion on generaltranslation techniques. This chapter is an example oftheattitude that permeates the whole course — no messianic preaching APL to the masses,
just a demonstration of how usefulit is to be able to translate ideas into a concise clearnotation to help with the understanding and communication of concepts — if a programworks in Fortran then fine, don’t touch it, but perhaps it would be easier to document theessential algorithm in something less cumbersome.
Mathematics and Programming has a special section on co-ordinate geometry — I didn’t findthis as interesting, but I’ve probably been scarred forlife by not having courseslike this
one...

Althoughthese books are meantas coursetexts I think most APLusers could profit fromacareful study of the examples. Consider for example oneoftheidentities discussed underEfficiency in the chapter on Identities and Proofs in Applied Mathematicsfor Programmers;the problem is the commononeof applying an expensive function F to a vectorof non-distinct values v. The brute force solution (any mistakes in the normal APL examplesaremy fault) is somethinglike:
tio3 reCrvtpv)p0C113 slovtryp1020)),1022-4i+1
(1221020: rLil*r v[i]
C23]1021:41cLiei+t)

Of course we could ‘optimise’ this considerably to:
[42] re(rm+lppmsk+(uv+Nub v)°.=y¥)p0(43) cols+10lpmsk[44] +Le*(rmp1030),10324i¢1(451030: rl€msklis]/cols]+F uvlil[46]1031 t+icLi+ied]

(Nubs (Cipw)=aiw)/u)

but with a little more thought we could have written it much moreclearly from the begin-
ning(if it’s notclear thentry it out!):

37

VECTOR Vol.3 No.3

f13 re(ne.ev)+.*F neNub v
v

Mostofall I would hope that those responsible for teaching programming (not just those
responsible for teaching APL..) or mathematics wouldtake the time to look carefully at
these texts with a terminal nearby —I’m certain that students would approach such courses
with much more enthusiasm thana standard lectureoriented course.
Finally a quote from C.A. Hoare,reported in the August 1986 edition ofBYTE magazine:

“Many programmersofthe present day have been educated in ignorance and
fear of mathematics. Of course, many programmers are mathematical
graduates who have acquired a good grasp of topology, calculus and group
theory. But it never seems to occur to them to take advantage of their
mathematical skills to define a programming problem and search for its
solution.
“Our present failure to recognize and use mathematics as the basis for a
programmingdiscipline has a numberof notorious consequences. They are
the sameas you would get from a similar neglect of mathematics in drawing
maps, marine navigation, bridge building, air-traffic control, and exploring
space.”

An Introduction to APL
by HowardA Peelle

Published by Holt, Rinehart and Winston, 1986.
Reviewed by Romilly Cocking

In the early Seventies, there were not many ways oflearning APL. This did not matter
much,as very few people wanted to learn it. Most studentsofthe language were unwilling.
They werevictims of zealots who had just become APLers, and who were determined to
share the good news.
Today, the situation is much healthier. A growing number of companies are making a
healthy profit from selling APL products and services; more important, a large and
growing numberoforganisations now depend ontheuse ofAPL to help them achievetheir
goals.
APLis in demand, and more people wantto learn it than ever before. A wide variety of
methodsare available — public courses, CAI programs, andself-study books. For some
years, the standard text for introductory courses has been Gilman and Rose (3rd edition,
Wiley 1984). Originally published in 1974, ’the red book’ has gone throughthree editions,
changedits colour, and sold well over a quarter of a million copies.
Nobookis ideal, and APL trainers are always on the lookoutfor new texts. I have just been
reading APL — anintroduction, by HowardPeelle. Thetextis intended for twouses;it can
be read as a self-study guide,for individual students who are learning APL ontheir own;
alternatively, it can be used as part of a taught course. Thetext has an associated volume of
instructor notes, which contain details of the author’s educational philosophy, as well as
teaching tips, and solutions to programming problems.

38

VECTOR Vol.3 No.3

Both volumes are informal, but very well structured. The main text consists ofa short pre-
face, followed by two mainsections, seven appendices, references, an index and a table of
APL symbols.
Thepreface explains what APL is; why you should learnit; its strengths and weaknesses;
some learning tips; and how to get started. The section on strengths and weaknessesis a
modelpiece of persuasive writing, and should on no accountbe skipped over.
The first part of the book contains an introduction, followed by nine chapters. This part
introduces the APL language; each chapter containsalist of contents, a set of objectives,
examples, exercises, a review, and a set of programming projects. The pacing of each
chapter has been carefully planned; early sessions go at a comfortable pace, but chapters
eight and nine see the introduction of outer and inner product, and matrix divide.
Thesecondpart of the book consists of a furtherfive chapters on APL tools. Each chapter
describes (and gives the code for) APL programsthat are useful in particular disciplines —
business, statistics, mathematics, education and computer science. These are working
programsthat you can use on their own,or incorporate in your own software. The prog-
ramsare written for clarity rather than efficiency, but they introduce the studentto the idea
of utility functions — a crucial point, omitted from many courses. Alas, the author does not
place equal emphasis on the need to explore the utilities available on the student’s own com-
puter system. Utilities can give valuable short cuts in software development, and they can
also teach a lot. (If you write optimised but unreadable code, it may be kinder to lock the
public versions, for just this reason!) No doubt the emphasis reflects the author’s prefer-
ence for learning by experience rather than example.
At an introductory level, the book compares well with Gilman and Rose. It is even less
formal, and muchless daunting. It covers less material — ifyou learn everything in Gilman
and Rose, you will know a lot more APL. How manyactually do so?
APL — anintroduction also adopts some unconventional terms- list rather than vector,
input rather than argument. Thevexedissue of terminologyis discussedin the instructor’s
notes, along with other contentioustopics. I disagree with a numberofchoices madein this
book, but one must welcomeany text that emphasises that they are just choices. There are
only two such choices with whichI feel I musttake issue.
Thefirst is on the topic of commenting. In my view,this must be introduced very early on
— in immediate execution mode,so students can pick up the habitoffirst-line commentsas
soon as they learn how to define a function. Oncelearnt, the habit sticks for life, but it is
much harder to acquire later on!
The second is on the topic of branching methods. Peelle opts for the introduction of
branching using the idiom
*labelxtcondition
This is later superseded by the more normal
+condition/label
The insuperable objection to thefirst methodis that it goes completely wrongin origin 0.
Anyone wholearnsit will one day waste a great dealoftimefindingthis out the hard way.
These are minorcriticisms, however, and the booksare generally excellent. APL is easy,
fun, and of great practical use. Peelle’s new bookwil! help a new generation of students to
find this out for themselves.

39

VECTOR Vol.3 No.3

Handbook and Guide for Comparing Computer Languages
Produced and published by

Research and Education Association, New Yorb (1985)
Reviewed by Peter Branson

After all the discussions on how little publicity APL gets, the thing that hit me when I
stumbled acrossthis book in mylocallibrary wasthe front cover. There,in very bold print,
are the eight languages covered:

BASIC PL/I
FORTRAN APL
PASCAL ALGOL60
COBOL c

It is worth quoting partof the preface:
“Although most languages can be usedfor one application or another,a great
deal of confusion exists as to which language is appropriate for a given
application. From amongthe various languages that have been developed,
eight remain as the most practical and advantageousto use. These are. . .”

and the aboveare listed again. Although we mightnotall agree with the choseneight, at
least APL is in there!
After a random dip, followed by a quick serial scan, | realised I was lookingat the book in
twodiffering ways:firstly, to see how good were the APL parts; secondly, to help myself
with non-APLlangauges.(I have a working familiarity with someoftheseeight, but want
to know something about C — of which I am pretty ignorant.) Myfirst impression was that
the book was excellent, but this was rapidly modified as I went through the APLsections.
In this review I will lookat the generalparts at thestart ofthe book, and then concentrate on
the detailed APLsections, before trying to give an overall summary.
Layout and Introduction
The book starts with a general section on factors for language choice, followed by an
overview of each one. The languages are then compared side-by-side under 18 headings,
and the book concludes with two sample programs, some appendices and a glossary. The
paper, typeface and generallayout are very good, andplentyofwhite spaceis allowed to get
optimum comparison whenentriesdiffer in length. The initial section entitled “Factorsfor
Choice of Language” is one page covering clarity, simplicity, unity of language and
structure, naturalness of application, ease of extension, external support, portability and
different measuresofefficiency. Althoughshort,this is quite good.
Therefollows about onepagefor each languageentitled “Jntroduction and BriefOverview”.
Within my knowledge of the various languages, the balance seems quite reasonable. The
overview of APLis really quite good in whatit does cover (whichisn’t nearly enough ~ see
later), although I do have minor objections to such phrases as “... restriction to
homogeneous array structures (creates difficulty in) business data processing”, or
“subprogramsarerestricted to at most two arguments (with) single result”, both ofwhich
have a stronger negative connotation thanis really justified.

40

VECTOR Vol.3 No.3

APLdetails
This part of the review concentrates on the APL entries, using the same 18 sub-headings as
the bookitself.
Program structure:

Good, except there is perhaps insufficient emphasis on the fact that APL is
fundamentally different from the other seven.

Statement layout:
Reasonable, although it is not made really clear that a statementseparator is only
needed when there is more than one statementperline.

Elementary data types:
I don’t like this much,althoughothers mightthinkit fair:
“APLis quite restricted in its data-structuringfacilities. Numbers and characters are
elementary data types.”

Identifiers:
Thisis alright.

Declarations:
Good, although more emphasis could have been givento thefact that declarations are
simply unnecessary in APL.

Elementary structured typearray:
This is reasonable, but gives a slightly negative impression. Only basic APL is
discussed.

Array declarations:
Fine.

Operators:
After quite a reasonable beginning, the bad news nowstarts. Firstly, someone has
clearly decided to call APL primitive functions “operators” (which others have done
in the past), presumably to try and get uniformity across the eight languages.
Howeverthesection then coversonly right-to-left execution, parentheses, negation,
minus,plus, power, logical comparison, access by name, assignment and indexing.
Whatis done is quite reasonable but woefully inadequate. Thereis a reference to a
“Table ofAPL Operators”, but no such table appears in the book.
Some simple examples are given of the kind:

24+3=5
but the author does not seem to realise thatall the exampleswill give logical 1 as the
result, and the parenthesesare missing.

41

VECTOR Vol.3 No.3

Expressions:
This section is reasonable, exceptfor the use of “infix” for dyadic and “polish prefix”
(yes, with a small “p”) for monadic.

Assignment:
Quite good, except that only scalar and vector assignments are mentioned, which
might cause some confusion since higher-order arrays have previously been
introduced (albeit briefly).

Conditional and unconditional branching:
This section is a candidate for the nuthouse.It is frankly appalling and appears to
have been written by someonein theirfirst few days with APL. Muchofthe section
is devoted to a laborious exposition of how “timesiota” works; this is the only form
used anywherein the book, andoften the iota is missing! Afterall this heavy going,
multi-way branches are omitted altogether. With one exception, ali branching is to
line numbers. Thereis a reference to the fact that branch to label is “sometimes”
useful because ofdynamic line numberre-allocation, but the example givenis poor.
Howeasy it should have been to include the standardlist of “condition, reduce,
label” branches, and perhaps the standard IF functionas well.

Looping & iteration
Like many of the sections, typographical errors abound. A simple interest
calculation is chosen (which doesn’t actually need a loop in anyof the languages — but
never mind that). My APL complaints are that “minus reduce” is used (without
explanation) for a simple numeric difference; it may be clever but can only be
confusing in this context. Local variables are introduced in a headerline without
being mentioned anywherein the bookthat I have seen. A less importantpointis the
use ofa trailing decision.
In particular though, there is no attempt to show how APL can avoid manytypesof
loop altogether; another opportunity sadly missed.

Function (user-defined)
By way of complete contrast, this section is quite well done; even the typographical
errors are fewer herethan in othersections. It was a heart-felt relief to find four quite
reasonable functions, and with branching to labels, no less! The author(s) have
clearly battled to try and get commonterminology, as noted previously. In earlier
sections APL functionsare called “programs” or “subprograms”, but this section
fails to point out that this is what user-defined functionsare as well. On theplusside,
the terms “dyadic”, “monadic” and “niladic” are used correctly, although the
attemptto discuss the presence or absence ofan explicit result using “unlimited”or
“limited” is not so good.
A final point — there are no examples using text or character data either here or
elsewhere in the book. This appears to be the case for all the languages andis a
notable omission.

42

VECTOR Vol.3 No.3

Subroutines.
This APL sectionis brief but good. It correctly describes functions(as “functions”!)
andfunctioncalling. It also refers properly to unrestricted recursivecalls.

Inwinsic/library functions.
In this section the bookstarts to fall apart again. The text talks variously about
“operations”, “generator primitives”, “expressions”, “primitives”, etc., whereas
whatit actually covers are three APL operators — reduction, inner product and outer
product. Thereis furtherreference to the mythical Table ofAPL Operators. Thereis
no discussion oflibrary functions, or quad functionsfor that matter.

Input/output.
A very poorsection with no mention of “quote-quad” nor of other forms of I/O
available on any reasonable system. There is a passing reference to files which are
“not normally provided”, but at least “some recent APL implementations include
suchfeatures”.

Program halts.
Theentire entry is “Not applicable”. The authors have presumably neverheard of
“quad delay”, or of function-defined halts, etc.

Documentation.
The final subsection deals with comment statements within a function in a
moderately acceptable way, although the example given is poor.

Sample programs.
Two sample programs are included and the best word to describe them is “hideous”.
Riddled with typographicalerrors, as usual, but also with such charmingfeatures as:

numbered headerlines;
all branches use “timesiota” to line numbers;
two “quad”entries for data input, rather than a vector;
etc.

The examples underuser-defined functions could notbe called brilliant, except perhaps in
comparison with these.
Appendices.

1. Pascal delimiter words (1 page)
Il. ANSI Cobol reserved words (2 pages)
IH. Summary of Cobol formats(4 pages)
TV. PL/I built-in functions (1 page)
V. Csyntax summary (2 pages)
VI. PL/I Arithmetic built-in functions

Without checking a reference manual, I believe that IV and VI are both PL/1, so perhaps
oneofthese should be the missing APL table.

43

VECTOR Vol.3 No.3

Glossary.
Anexcellent glossary comeslast, althoughit is far too extensive for the subject matter ofthe
book. It includes gates, bytes, buffers, cascaded arrays, clock pulse, etc. — terms which
don’t appearatall in the text. Some ofthe 25 pagesused (outofa total of only 122) could
have beenputto better use.
Well that’s the end ofthe book as such, but I can’t leave withoutlisting some of the more
glaring omissions. Workspaces and system commands are mentioned but only in the
Overview. The following are not coveredatall:

manyof the importantfunctions;
local and globalvariables;
quad functions and variables;
quote-quad andother I/O forms;
text or character data;
library workspaces and functions;
public domain software; draft ISO standard;
portability; fast prototyping;
modularity;
access to other languages and systems;
availability on micros;
nested arrays;
user-defined operators;
other features of enhanced APLs.

Before summing up,I will paraphrase someof the claims made on the back cover:
© Enables comparisonofall eight languagesat a glance.
® Makesfor rapid selection of the most appropriate language.
® Transition betweenthe eight languages madeeasy.
© Enables design of completely new languages.

Leaving asidethelast, rather grandiose,claim, the very good design andstyle of the book,
should have madethe other claims possible. Howeverthe appalling errors and omissions in
the APL partly nullify these claims, certainly as far as APL is concerned, I imagine a
potential APL user would betotally confused.
As for myotherinterest — can it help me quickly to get a grasp ofC? Well it appearsto give
me somethingoftheflavourof the language, but naturally I am left wondering how many
errors there are in the C entries. (A cursory look at the Fortran andBasic parts suggests that
these are not too bad, butI still wouldn’t trust them withouta critical review.) So unless
someonewill kindly review the C parts for me,it looks as though J am goingto haveto fork
out for Kernigan and Ritchieafterall, and I suggest that anyone wishing to learn APLsticks
to Gilmanand Rose.
Myoverall sentimentis one ofintense disappointment; such a good idea was ruined in theexecution. The book is well worth a look (if only to see what might have been), but] havenot been able to track down a U.K.supplier; in any case I would recommend yourlocal
library, rather than spending well-earned money on this edition. A second edition,
thoroughly checked for accuracy and completeness would be well worth having, and Iam
waiting to hear from the Association in New York whetherornotoneis planned.

44

Now available in the UK, two new offerings fromSTSC that enhance IBM's mainframe APL- implementations
 If you’re staying with VS APL...
COMPILER The first commercial compiler

for APL compiles functionsindividually. Results in
significantly faster execution.Interpreted functions can callcompiled functions andviceversa.

 If you’re migrating to APL2...

SHAREFILE/AP STSC’s popular APL
componentfile system is nowavailable under APL2. Mullti-
user, nested array storage,
libraries, access matrices.Multiple file system support.Internationallanguagetranslations.

Forfull information, contact the APL*PLUS™ Product Group,Cocking & Drury on 01-493 6172.
Trademarks/Owners: [B M/International Business Machines Corporation - APL*PLUS/STSG,Inc.

e & D D

Building on a solid past
1976

\SAM/AP for APLSV
VSAM/AP for APLSV

1977
AFM/AP® APLSV

AFM/AP for VSPC/VSAPL
1978

AFM/AP for CMS/VSAPL
CALL/AP for APLSV

1979
CALL/AP for VSPC/VSAPL

1980
AFM/AP for TSO/VSAPL

1981
CALUAP for CMS/VSAPL

Enhanced Formatfor VSAPL
Keyed Access Option

1962
Interactive Link Option

Mail Exchange Option
CALLAPfor TSO/VSAPL

1983
APLPRINT

Input Stack Processor
Output Stack Processor

1985
AFM/AP for CMS/APL2
AFM/AP for TSO/APL2

CALL/AP for APL2
Enhanced Format for APL2

1986
APL2 Display Capture

Indexed File Option
When Interprocess Systems got started ten

years ago,they had a lot of ideas about APL.
As far back as APLSV,they believed that APL

users neededbetterfile facilities. They began by
providing shared access to ISAM and VSAM.
Then came a componentfile system that would

run on any in-house IBM mainframe APL
system.
But their customers wanted more than just

component files. They asked for - and got -
keyed access and an indexed, PCS-style file
structure.
There was also a need for a Quad-FMT

equivalent that wouldn't change IBM source
code. Interprocessdid it for VSAPL,and it's still
there for APL2.
Recently APL2 added the ability to call
FORTRAN or BAL from APL - something that
Interprocess introduced as long ago as 1978,
Interprocess also pioneered a concept: That

APLenhancements don't have to change the APL
productitself. That you can achieve results from
the IBM interfaces already present.

It's a concept that gives Interprocess customers
unparalleled continuity from one APL
environment to the next. Something solid to
build on for the future.

For more details of the IBM APL enhancements
developed by Interprocess Systems contact

APL Software Limited
27 Downs Way, Epsom, Surrey KT18 5LU

England
Tel. 03727 21282

VECTOR Vol.3 No.3

Product reviews
APL.68000 for the Atari ST
Reviewed by Paul Chapman

Preface
Thefollowing review assumes someexperience of the APL language and environment, andsomeof the concepts, such as workspaces, commontoll APLinstallations. It also assumesat least a passing acquaintance with WIMP (windows,icons, mouse, pull down menus)environments.
Introduction
The machine provided by MicroAPL was an Atari 520ST with high resolutionmonochromescreen and two disk drives. The software providedfor review was sealed andobviously an end user production version.A full set of software and documentationfor the520ST was also provided.
The Atari 520ST andits younger, bigger brother the 1040ST are 8Mhz 68000 based micro-computers. The ROM-based operating system is called TOS. An Apple Macintosh-styledesktop environment called GEM, which is driven by a two-button mouse (included asstandard)is provided, also in ROM. On disk, Basic and Logo languageinterpreters areprovided, as well as a word-processorcalled Ist word.
I concentrated my attention on the APL interpreter, and, in particular,its interface to theGEM WIMPenvironment.
Getting Started
The interpreter comes in a box proclaiming *APL.68000 PROFESSIONALPROGRAMMING LANGUAGE?”andcosts £170 plus VAT. Thesingle disk providedcontains the interpreter, five utility workspaces, and a demo workspace. Thedocumentation comprises a generic APL.68000 language manual, which is provided withall implementationsofthe interpreter; a much smaller manual APL.68000forthe AtariSTcontaining a description of the desktop environment, and details of the workspacessupplied; a reference card; and a copyofthelatest issue ofMicroAPL News.
Thad no problem getting the interpreter up and running. Nospecialinstallation procedurewas necessary — this is one piece of sotware which you can take home, plug in, and startusing straight away. APLkeystickers were alreadyaffixed to the keyboard supplied, and aset was also provided with the package. These would probably take abouthalf an hour toput on.
Myfirst problem came when I tried to load the DEMO workspace using the menuprovided. With the mouse,I selected the “File” menufrom thetopofthe screen, and thenthe “Open” item from that menu. After a little grinding from the disk, a list of theworkspaces on the APL disk appeared in a new window, and I selected “DEMO”bypointing to it and “double-clicking”onit. (This piece of WIMPjargon indicates pressingtheselect button on the mousetwice in quick succession, which hastheeffectofopening the

47

VECTOR Vol.3 No.3

selected item.) The new window disappeared, and after a while the message “WS
LOCKED?”appeared in the main dialogue window. Repeating the attempt produced the
sameeffect.
A manual)LOAD was successful, and thereafter the problem of being unable to load
workspaces from the menu disappeared. Furthurinvestigation revealed that the problem
only occured thefirst time afier the interpreter was loaded, and before any expression had
been entered. It’s an annoyance rather than a bug, and would be especially so to a
newcomer, who might spend sometimein the manuals trying to find out what he orsheis
doing wrong, orto find someother way (in this case,)LOAD)to getstarted.
The demo workspaceillustrates very simply how APL can be used to write applications
which use the WIMP environment and graphics on the ST. Typing DEMOcaused the
menubarat the top ofthe screen to changeto a list of menusdefined in the application.
From the menu,it was possible to call up one oftwo graphic displays (a rather boring graph
in one, and a numberofvariously shaded andpatterned squaresin the other), and also a
“Dialog Box” which allows the further selection of options and switches(in this case a
mock-upof a very simple serial port set up). The final menu item allowed meto return to
native APL,either with or withoutclearing the workspace.
I began examining the functions in the workspace. The DEL editor worked much as
expected, and used the normal APL dialogue window. Also providedisa full screen editor,
which can be entered from the menu using the mouse. Uponselecting “Open fn”from the
“Edit” menu,a dialogue box appearsto ask the nameofthe function, Thedefaultis the last
function edited, although perhaps a more appropriate default would be the function
appearingat the top ofthe SI.
Theeditor uses the wholeof the dialogue window,first of all saving the currentcontents,
and then displaying the function selected on the screen. Theeditor is natural to use - I
didn’t have to look in the manual to learn fancy control characters. My main reservation
wasthat there was no distinction of lines beginning with labels or comments. This, taken
together with the fact that blanklines, although they can be entered, are not retained in the
function definition, made reading functions rather difficult.
J] was impressed with howlittle code was apparently needed to interface to GEM, especially
after some unpleasant experiences with the Commodore Amiga system documentation,
which weighs several pounds and takes weeks to comprehend. Theuse of the graphics
utiliry functions was immediately self-evident, and even the calls to GEM itself werefairly
transparent.

Someofthe functions, for example those used to set up menusand dialogues, took global
variables as arguments. Unfortunately, the full-screen editor could not be used to examine
and edit character vectors and matrices, which was anirritation.
Theglobal arrays themselves were again mostly self-explanatory. For example, the array
used to define the application menus was a character matrix, with menutitles starting in the
first column, with the menuitemsfor each title appearing belowthetitle, on lines beginning
with one space.

48

VECTOR Vol.3 No.3

Typing a few APLexpressions supplied sensible answers, though the overheadin display
time produced from working within a window environmentis slightly irritating after the
memory-mapped characters of the IBM PC,particularly when scrolling. This shouldn’t
bother 3278 users, however!
A simpleinteractive graphics function
IT now set myself the task of writing a function which wouldallow verysimple line drawings
to be produced under mouse control. The idea was to be able to point the mouseat the
screen where I wantedtheline to begin, thenpresstheleft mouse button and hold it down
while I “dragged out”(anotherpiece of WIMPjargon)a dotted line until] was happy with
its position, then release the botton whereupona solid line would be addedto the picture.
I went to the pamphlet describing the particular features of the ST version of the
interpreter, and quickly found a function called GETMOUSEin workspace TOOLS
supplied with the system. This niladic function returnsa 3-elementvectorof the current x
and y co-ordinates of the mouse pointer, together with an integerfrom 0 to 3 indicating the
state of the mouse buttons.
In the description ofthe STGRAPH workspace, I found a numberoftoolsfor line drawing,
shape drawing and shape filling functions. LINECOLORsets the line color, while
LINETYPEsetstheline style (solid and various patternsof dotted). Finally, POLYLINE
drawsa line or sequenceof lines. The funcion CLEARWINDOWclears the window of
APLdialogue, which may be restored with RESTORESCREEN.
Tt took twenty minutes oftrial and error to set up this function, which worked quite
successfully, ifa litde sluggishly.
Manyproblemsand somesolutions
Many problems cameto light during this process, however. Many could be dealt with by a
careful study of the descriptions of the functions, but some were deficiencies in the
implementationitself.
In particular, an irritating lack of elegance and consistency cameto light in the use of the
graphic functions.
Theorigin for mouse co-ordinatesis the top left corner of the screen, whereas thatfor all
graphic co-ordinatesis the top left corner of the current window. Wheneverit is necessary
to translate from one to the other, an offset must be supplied which is supplied by the
function WINDOWPOS.This can be overcome bytaking the additional stepsofsetting a
global variable called WHOLESCREENto 1, and then calling CLIPRECTwith argument
WINDOWPOS.
This must be done repeatedly, since it is possible for the application user to move the
window and changeits size. Unfortunately, if the user does this more than once, the
interpreter restores the contents of the APL dialogue to the window,wiping out any output
from the application so far.
Someofthe graphic objects are expressed using (x,y) co-ordinates, whilst the rest use row-
column co-ordinates(ie (y,x) co-ordinates). This may bea reflection ofthe waythe internal
GEMroutines work, but inelegance in the way GEM works should not be passed onto the
APLprogrammer.

49

VECTOR Vol.3 No.3

None of the graphics drawing parameters (eg. current line color, line type) can be
interrogated by the programmer: the usual convention, that ofmaking functions return the
old values when given an empty argument,is omitted.
Mostgraphics systemsallow different interactions to be specified between graphic objects
to be drawn and thecurrent contentsof the screen. For example,it is usually possible to
define XORorinverting interaction, so that two successive placings of an object on the
screen will have no net effect. This was essential in the simple program described above,for
the purposes ofdrawing the “dragged out”dotted line which changes position as the mouse
pointer is moved aboutthe screen.
The graphics functionssupplied allow this to be doneonly with solid objects like circles and
rectangles (and not with their outlines), and then only someinteractionsare possible, eg.
not AND or OR. Nointeractions are possible with line drawing. Eventually I chose to drag
out a solid rectangle, which was ugly and unclear, butat least it was possible to do this in
inverted display.
Presumably, the GEM kernelitself allowsall these functions, so I can’t see any problem in
providing them to the APL programmer.
Another problem which emerged was)COPYing from a nearly full or full disk. For some
reason,)COPY uses temporary disk space, so the message I/O ERROR - DISK IS FULL
can come as something of a surprise during a read operation.
Thereareall sorts of nasty little problems associated with using the cursorto select extracts
for cut/copy/paste operations. For example,it is not possible to select a full line for pasting
in the full screen editor.
Ji as also impossible to get in or out ofthe full screen editor without using the mouse, which
is irritating. Also, the mouse pointer disappearsaltogether during outputto the screen, so
that if one moves the mouse to the menu bar during output, the position of the pointer
cannotbe seen.
Documentation
I did not need to look at the APL language manual once, which is encouraging. What I was
using wascertainly a reat APL, and workedfine.
The rather thin pamphlet describing the implementation is rather unsatisfactory. For
example, the default colour numbers are described as 0 for black and 1] for white. In fact,
theythe the reverse of this. The descriptionsofthe utility functionsare far from formal, and
occasionally misleading because APL programmers should naturally assume consistent
behaviour, since so much is madeofthis in the APL languageitself.
Software
I did not have time to explore the other workspaces provided. These are: MENUSfor
creating menus and interrogating the user’s selection of items; DIALOGforcreating and
executing dialogues; STFILE for accessing ST native files; and TOOLS which contains
miscellaneous functions for programming functionkeys,setting keyboardtranslation,etc.

50

VECTOR Vol.3 No.3

It really looks to meas if the STGRAPH workspace was cobbled together with the rest ina
hurry to create a product. It also looksasiflittle or no beta testing of the product has been
performed. | set out to review the usefulness of the implementation rather than to try and
break the interpreter, and yet I found several bugs, inconsistencies andirritations within a
very short time.
The functions I explored are simple to pick up anduse, but this is more a result of lack of
flexibility than careful and logical design. Much ofGEM is inaccessible from APL,except
through the use ofcustom-written shared variable processors andcareful study ofthe GEM
system manuals. If MicroAPL were to consider expanding the range of functions for
accessing GEMin thefuture, they would find consistent extensionsto the functionsalready
defined very difficult.
Conclusions
APL.68000 is a sound product as an APLinterpreter, and competes fairly well in
functionality and very well in price with its main rival on micros, STSC’s APL*PLUS/PC,
The ST is used both at home and in business. Muchofits appeal over, say, the IBM PC
mustbein its price for home users, and in the GEM environmentfor business.It is difficult
to see which market APL.68000is aimedat.Its price is too high, compared with that of the
hardwareit is running on, to beattractive to home users, and the lack ofa full interface to
GEM would put business usersoff.
For myself,if I owned an Atari ST, I would spend my money on a C compiler so that] could
have full access to GEM’sfacilities. If I had to recommendthe purchaseto a business user
committed to the ST, I would point out the need to spend money on having a custom
interface produced by a systems programmerif any serious use of the GEM environment
were planned.
APLispraised for its natural extension to graphics environments, but MicroAPL have a
long way to go to provide the access to GEM an APLgraphics programmerneeds.

STSC APL*PLUS/PCrelease 6
by Martyn Adams

Atlast I have received a copy of STSC APL*PLUSrelease 6.0 for the PC! I always look
forward to receiving a new version of my favourite piece of software. This version’s great
claim to progressis its ability to handle objects over the 64k-byte limitation but there are
several other features which arereally quite useful.
We quickly discovered that Grade-up and Grade-down give NONCE ERRORs when
trying to process objects larger than 64k. So you can’tsort large objects. Wealso found that
[VI and (JFI give DOMAIN ERRORson large objects, so you can’t validate large
character arrayseither.
Wealso tried the ASMFNS workspace and found that someof the assembler functions
were slower than ‘doing it by hand’ in APL. I haven’t checkedbut I suspect they may have
used less workspace. STSC, could we have some ASMENSwritten in 80286 machine code
(for our ATs) for even faster code?

51

VECTOR Vol.3 No.3

The 64k-byte variable size barrier has never actually been a problem to mepersonally. If
any object wentoverthatsize I guessed that something had gone wrongwith mycoding.If
you only have 400k or so of workspace on a 640k machine then 64k can be a verylarge
percentage of space devoted to one object. WS FULL has always been my probiem.
Nevertheless a dark cloud has been removedand if you wantto processa large object then,
provided you have the workspace, you do not needto chop it up any more.
This begs the question... when can we break the 640k machinesize barrier? Alreadylots of
software take advantageofextra memory. Sometimes this memoryis bankedso as to appear
as anotherparallel memory space. Sometimesit sits on top of the operating system (DOS)
as extended memory.I prefer thelatter idea — it is easier for me to understand.
Anyway, weall wait for the latest version of DOS running on IBM’s new PC based on the
Inte! 80386 chip. This should breakall known speed andsize barriers which currently limit
the PC architecture.It is rumouredto be called DOS 5.0 — weall wait with anticipation.
Meanwhile COMPAQhavebeaten IBM byreleasing their COMPAQ 386to the public. It
runs very, very fast. It is to IBM PC/AT whatthe AT wasto the IBM PC/XT. COMPAQ
seem to marketing the new machineasbasically a go-faster DOS box. It runsa version of
MS-DOSand does oneor two tricks with its internals in order to maximise performance.
Andit is claimed to be pretty nearly 100% compatible with IBM’s PCs.
Unfortunately the latter statement isn’t strictly true. I had a chance to run APL*PLUS
release 5.0 on it. Everything seemed to work fine except that the inner product always
returned 0. Even when the APL statement should have returned 1. This was very
disheartening.] suspect that there may be one or two other areas which do notgiveresults
as expected. I understandthatrelease 6 will also not run on the 386so wewill have to wait
for a 386 compatible APL.
(IWIN, which handles the PC screen asa full-screen manager, has been improved. The few
improvementsare very useful and can be quite significant if you program them properly.
Unfortunately the new manual that comeswith release 6, although nicerthan the old one,
is still a little confusing when it comesto describing the actions andeffects of the keyboard
and what characters are allowed where under what circumstances. After a little
experimenting though,all becomesclear andit really isn’t as difficult as it first seems.
Function keys are now handled better, so they say, but I still find the definition ofa complex
data entry/edit screen a long and tiresomeprocess.
STSC have improved the way APL starts up in “noddy” modeforthefirst time users. I
haven’t explored these features as I consider myself a bit of a power user but] understand
that for thefirst time user these can bereally helpful.
Othernice features include JCHDIR, DRMDIR, QMKDIR and (JLIBD.Thefirst three
mimic the DOS commandsfor changing, removing and creating directories. These are
very useful. Especially useful is (LIBD which allows you to dynamically set up and delete
(and LIBSinterrogates) the APL library structure. Before JLIBD youhadto usea file
called APLLIBSon start-up whichis a very clumsy methodofdefininglibraries.

52

VECTOR Vol.3 No.3

I do however have a gripe with thenative file naming convention.In this release you candefinea nativefile called: ‘B: DATA\ FILEA.XXX’anditis found, as one would expect, onthe directory called DATAon diskette drive B:. This is much better than the old methodwhereit wasvery difficult to readfiles which livedin directories other than the currentone.
Full marksfor that one — butif you specify a nativefile called: ‘B:FILEB.XXX’then theAPLwill notlook for thefile where you would expect. The DOSstandard is thatthefileshould be found on driveB:in its current directory. However the APL replaces the drive B:characters with the library 1 definition (drive A: would be library 0, drive C:library 2 etc.).
This, I thought, was confusing.‘B:’ means drive B: if there is a backslash in thefile name;otherwise it meansthediskette drive and directoryspecified in library 1 (except on alternateThursdays?). I suppose the developers at STSC know what they are doing. I don’t.
UIGPRINThasbeen upgraded to handle the LaserJet Plus printer —] haven’t had timeto trythis option but am looking forwardto it. STSC have thoughtfully supplieda little referencemanual along with the revamped documentation. Called the Quick Reference Guide ithappensto be so full of information thatit is nota very quick referenceatall (it is quickerand morehandythanthe manual though), It is so usefulthatI hideit from mycolleagues.
In addition to the comprehensive language description the Quick Reference Guide givesdetails of the 87 odd different authorised PEEK and [JPOKES. Additional POKESinclude:
© whetheror not you wish to allow low minusas negativesigns in character strings whenvalidating them using [JVIor converting them using []FI.
© Inhibit creation of objects greater than 64k.
© Allow the display of sub-directories and/or volume ID when using (LIB.
© Disable buffering of keyboard input while functionsare executing whenusing the DOSKeyboard routines.
® Make (JTRACEgivea short form output.
© Force a return to text mode from graphics mode whenever immediate executionisentered.
Incidentallythe Quick Reference Guide doesn’t specify all the parametersfor OGPRINT.
Finally, as a general point, I would just like to add that as an APL purist at heart J amdisappointed that there are now 144 [functions in APL*PLUSrelease 6. I guess we maysoon be ableto forget the APL andwrite in [codeonly.I alsofeel uneasy aboutthe way thata lot of machine-coded functions (using JCALL)are supplied as optional extras and one,BOX (which turnsa character vector into a matrix),is practically compulsory.
The fact that APL*PLUShasto use so many [Jfunctions and the odd machine-codedprogram indicates to me that perhaps the APL should be madea little more practical. Itshould understand aboutits working environmenta little more, even if it meansthatvariables andfiles are one and the samething! I do not blame APL*PLUSfortheir policy ofenhancing their APL bythe addition of[functions(in fact it is a very rich languagefor thisteason) — but somehow I feel that something is being lost from the concept of APL as a

53

VECTOR Val.3 No.3

computer programming language.I guessit has something to do with thefact that APLis
really a computer implementation of Iverson’s notation. Still, full-screen managementand
full file management as APL primitives have their appeal.
In conclusion then, APL*PLUSrelease 6 is a definite evolutionary step forward. Well
worth lookingat for the serious PC APLdeveloper. I considerit a real professionals’ tool
and an improvementonrelease5. A lot of barriers have beenlifted — roll-on release 7.

APL.68000 for the Apple Macintosh
by M.S. Bassett

The Macintosh was the first readily available computer to use the concepts of mice,
windowsand pull-down menusto build a user interface, and whatever you think ofthis
approach yourself muchofthe strength of the Macintoshis thatnearly all of the software
you run onit will offer the same working environmentand access methods.
This posesinteresting problemsforthe writers ofMacintosh programming languages; they
must provide:
a) a Macintosh-style interface for the potential programmer (whois, after all, a user as

well);
b) arespectable programming language;

c) ameansfor that programmerto provide a Macintosh-style interfacefor the usersoftheir
program in turn, This review will attemptto describe how MicroAPLhavefared in each
of these three areas.

The APL.68000 interpreteris in fact very comfortableto use, and integrates nicely into the
Macintosh environment.Tostart the interpreter you mayeither use the mouseto point to
the interpreter itself, which loads and gives you a CLEAR workspace, or point to a
workspace file on disc which will invoke the interpreter and automatically load the
workspaceselected. (Macintosh ownersnote: obviously you don’t just pointto these things
you double-click on them, but I wantto avoid as much MacJargon,sorry Macintosh jargon,
as possible in this review.)
When loaded, theinterpreteroffers you a 24 by 80 text window, which can be movedabout
the screen butnot re-sized. At the top you have a choice of four menus which control the
APL environment, including the editing and running of functions(see figure 1). I
particularly like the File menu which offers you both the APL and the Macintosh
descriptions of workspace loading/copyingetc.

54

VECTOR Vol.3 No.3

" «€
[==)LOAD Open...

 Brin Break Connect

apL.¢)SAUE Saveas... Pause Hiscannactcopy} JCOPY Merge... Cut SH Resume SetupSe coy xceo Paste sD
Clear BY

bo “1 Enter
)CLEAR New)OFF Quit Open tn h {lose ti

Quit, fa dechanged

APL.68000 for the Macintash
Copyright (C) 1985 MicroAPL Ltd

Whenyouselect an option from the File menu a window appears asking you to select thenameof the workspace desired from a menu(the menuscrolls ifyou have more thaneightworkspaces on the disc). You also have the option to cancel the request or change discdrives of you wish. Thisis all just like the standard Macintosh approach but I found twooddities: first whether you are loading, copying, merging or deleting, the text on thewindow says “open”i.e. load a workspace — this led meto accidentally delete on of theworkspaces provided with the system; secondI could find no way to save a workspaceofthesame nameasonealreadyexisting on the disc — very frustrating !
Editing a function is done via the Edit menu(surprise !). The edit window is large andscrolls in all four directions, again in the standard Macintosh manner. The APLcharacterfont is small but perfectly readable. Editing is peformed using the Macintosh “cut andpaste” approach which is essentially a set of highly flexible block move/copy/deleteoperations. This is also standard Macintoshstyle but I foundita bit awkward;I kept havingto take my handsoff the keyboardto use the mouseandin particularit is very frustrating notbeing able to movethe cursor from the keyboard. My normalstyle ofAPL programmingisto write a line of code from left to right leaving gapsor pairs of parenthesesfor bits I amgoing to come back andfill in later; this involves a lot of cursor work and is especiallyunsuited to use of a mouse. Howeverafter half an hour’s practice I had written somefairlylong functionsso perhaps familiarity will bring content.
There is no recognised “Break” key on the Macintosh keyboard so MicroAPL chose thecloverleaf key for this role which seemsa reasonable choice; confirmed mousers can chooseBreak or Pause from the Interrupt menu which will normally be available whenever aprogram is running.
Unfortunately I had nofacilities with which to try out the Terminal emulation menu,so allI can reportis thatit offers the standard VTS2 protocol and a wide variety of optionselections.

55

VECTOR VoL3 No.3

Moving onto the interpreteritself, the language is a full implementation of APL.68000
whichis jolly good news; what everybody wantsto see of course is the benchmarks. The
first few columnsofthis table were cribbed from VECTOR Volume 1, Number4.

UPDATED ‘SMITH’ BENCHMARKS

TBM PC TBM PO SPECTRUM QL MACINTOSH
CHIP: 8088 8088 68000 68008 68000

APL: TBM APL APL*PLUS APL.68000 @L/APL(K) APL .68000
VERSION: 1.00 2.6 4610/8 1.093 1.0

BENCAMARKS:
aes /VI 90 102 26 Su 18
Zev/VE 0.8 3 6 16 2
ZeL/UL IMT 40 25 20 42 i
VIF 390 282 4312 6824 3494
a |VR 80 79 87 169 64
2 VRUVIT120)) 20 14 23 S1 12
ZeVICVVII 600 112 190 325 180
te"? ASME 9 24 12 27 4
“eVIevI 150 146 217 202 100
22 18NC 450 60 188 355 iat
Be ¥Ce.2VC 360 441 158 363 417
2e(150)}e,+150 2530 439 241 $35 165
Ze VAL .+VR 210 su. 192 340 148
‘E+MRGL OF VR 70 1488 340 559 270
2+FIB 2200 3827 1654 3250 1255
Ze VRRZ.14 100 136 229 396 180
Ze VRI3 14 i10 142 389 S41 306
2eeVR 150 143 2428 3807 1968
Z+1OVRe 411 438 3462 4559, 2256

Asyoucanseeit is very fast !
Thelast hurdleto clear is making use ofthe Macintoshgraphicsfacilities from within APL,
the “Toolbox”of special purpose routines in the Macintosh ROM. MicroAPLprovide a
selection of several workspaces to this end, each containing a set of assembler routines
accessible from APLto control such things as menus, the mouse, graphics windowsetc. I
was unableto find any aspect of the Macintosh interface that I couldn’t control with these
routines and they are very reasonably sized, taking up 60K ofa 272K workspaceifyou load
everything in.
Using these routines you can create your own menus and menu bars, over-riding the
standard optionsifyou wish, track the movementof the mouse, make windowspopupall
over the place and generally dazzle users with any amountof pyrotechnics. You also have
full access to the standard Macintosh data-transfer facilities, the “Scrapbook” and
“Clipboard”. The graphicsroutinesare particularly impressive. Standard functionslet you
createlines,circles, ovals ,boxes andarbitrary polygons,filled or not with whatever pattern
you desire; and these functions are in themselves quite fast. However by using the
MAKEPICTURE commandthe outputfrom these functions can be coded into an integer
vector (which I presumeis setofcalls to the ROM);in itself quite small this vector can be
processed to re-draw the original image at blinding speed. As a small example ofwhat can
be achieved J offer figure 3, which showsmy favourite “half-hour” database with graphics,
customised menusand choice of output windows,the entire screen taking perhaps two
secondsto draw.

56

VECTOR Vol.3 No.3

In short this must be the best API. currentlyavailable for the Macintosh and quite likelyoneofthe best available for any PC. Highly recommended.

 @ File Edit Terminal

 Interrupt

“Figures
“Graphics
Comments Graphics

Betatronics UKEm
1 t

Cum. Variance = Previewsetust Close All h
Quit

JarsEeb Mar Apr May Jun Jul Aug Sep Oct Nou Dec85 —la

 Turnover
Sep. 85

1985 Budget Actual Variance Preview Forecast
Jan 7s 68 as)
Feb 65 55 (10)
Mar 85 86 (S) uw

wn a

ARE YOU
TIRED of TRYING

to get GRAPHS from someCOMMERCIAL PACKAGES “?
Our PLOT/PC can match mostof the graphical
output of other highly priced packages ata
MUCH LOWER PRICE!
3D & 2D PLOTS TEXT ANNOTATION and
AUTOMATIC SCALING
Supports SCREENS, PRINTERS and PLOTTERS
Includes INTERACTIVE DIAGRAM EDITOR
COMPLETE with DOCUMENTATION
LICENCE TERMS AVAILABLE
UNLOCKED CODE

£ 99.00 (inc. VAT)

MetaTechnics Systems Ltd
Unit 216, 62 Tritton Road,
London SE21 8DE, 01-670 7959

The Systems Builders

VECTOR Vol.3 No.3

RECENT MEETINGS
This section of VECTOR is intended to document the seminars delivered at recent
meetingsof the Association, particularly for the benefit of those membersbased away from
Londonwhooftenfind it hard to find the timeto attend.It also covers otherselected events
whicharelikely to be of interest to the wider APL community.
We are dependentonthewillingness of speakers to provide us with a written version of
their talk, and we would remind them that“a picture’s worth a thousand words”. Copies of
slides and transparencies will enhance theirarticles.
The Activities Officer (see inside back cover) will respond enthusiastically to offers from
individuals who wish to contribute seminars and supporting papers.

59

VECTOR Vol.3 No.3

British APL Association Meeting
J-APL

17 October 1986
Reviewed by Anthony Camacho

1-APL had been advertised as the only topic. The plan ofthe afternoon was for Anthony to
explain what the project was about,then for Norman Thomsonto talk about whatis being
doneto prepare for introducing it into schools and finally for David Ziemann and Paul
Chapmanto answerany questions about the specification and how theinterpreteris to be
produced and ported to the target machines.
Theexplanationofthe project’s history and content took the form offive large charts. The
main events so far, the reasonsfor the project, the target specification, the details of the
features of the interpreter (ISO conformance) andtheorganisation of the project.
Chart 1: I-APL Main events so far.
April 1986 First discussed
APL 86 Committee formed
July 30 enthusiasts
August 1986 SigAPLvotes $5000 (conditionally)
September 1986 Letters to all European Groups

BAAvotes £6000 (conditionally)
October 1986 Specification in draft

Marketing planto be produced
Work oninterpreter begins

November 1986 Fundraising begins in earnest

APL87 Dallas Interpreter on demonstration
May
It was madeclearthat the project is not underthe auspices of the British APL Association
or SigAPL andthatit should not be assumed that what the members of the project said
expressed the opinions of the BAA. The details of the conditions under which the sums
voted by SigAPL and the BAA would be paid were made clear. SigAPL wishes to see and
approve ofthe marketingplan(asit is not a commercial product some things will be harder
and few easier than the usual kind of marketing), and will pay $500 on evidence that the
project is really going to start, $2500 on approval of the marketing plan and $2000 on
completion ofthe interpreter(to assist with the costs of launchingit and distribution). The
BAAconditionsare that its Technical Officer vets the Technical Specification and reports

60

VECTOR Vol.3 No.3

his acceptance to the committee and that its Publicity Officer and Education Officer aregiven the opportunity to see and suggest improvementsto the marketing plan,andthattheproject accepts any amendmentsthey require.
When asked whatthestate of the BAA finances was, the BAA Officers present agreed thatthey could notreally speak for the Treasurerin his absence; however they could safely saythat the BAA had morethanthe proposedcontribution in its current bank account and thatthis was before the profit from APL 86 wastaken into account; in shortall that could be saidwasthatit would notstrain the BAA’sfinances to makethis contribution.

Chart 2: I-APL — Reasonsfor the Project
Aninterpreter which will run on small computers is needed to give morepeople the chance to try APL (especially at school and at home).
A free interpreter is needed to overcome the price barrier which preventsmany people from taking their interest further (most schools cannot affordcommercial prices).

The target machinesfor the project are the BBC ‘B’, Spectrum 48K(andup), the Apple II(and up), all CP/M micros (e.g. Amstrad word processors) and all PC look-alikes (e.g.Amstrad 1512 series).
The major task besides producing the interpreteritself will be to provide introductorymaterial suitable for this large potential readership: teaching material for schools, gamesforhome use and manuals and guides which do not assumethe degree of determination toabsorb new ideas that a company expects from a data processing employee.
Thepurposeofthe whole project is to promotethe use ofAPL:notspecially -APL, whichwill neither be fast nor well provided with facilities, but any APL.If the project succeedsitwill bring many new membersto the BAA.

(Editor: As the 1-APL specificationis printed in full in the technicalsectionofthisissue of VECTOR, we have omitted charts 3 and 4 which were an abbreviated
Specification.)

David Ziemann explained that although it may take sometime for the formalities to becompleted before the ISO Standardis issued, the draft is now fixed and we can safelyassumethatit will not change.
Paul Chapmanexplained that the interpreter will be designedto be ported easily onto anynew machineand the source codewillbe freely available so thatthe project does not have todo all the ports — or even to have knowledgeofall of them.
Paul Chapman explained that this outline specification is a target not an absolutecommitment (somefacilities may have to be droppedifthereis no room for them), but thathe intendedto write the interpreter withallthesefacilities built-in and onlyto drop featuresas a last resortif he could find no other wayofgetting theinterpreterinto the space.
David Ziemannoffered to provide a copy of the draft specification as it stood (not yetagreed) to anyonewith a legitimate interest, provided that recipients would treat it withdiscretion and notallow it to be published until agreed.

61

VECTOR Vol.3 No.3

Chart 5:]-APL: Project Organisation
The Committeeis:
Edward M. Cherlin (Editor: APL Market News) joint chairman
Anthony Camacho (Sec: BAA)joint chairman
Howard Peelle (Prof. of Education, Univ. of Massachusetts)
Norman Thomson (Eduen. Officer, BAA — algorithmsed: Quote-quad)
David Ziernann (Technical Officer, BAA)
The Committee has formed a Company called 1-APL Limited and all
committee membersare Directors. Anthony Camacho is CompanySecretary.
Thereare at present nearly 40 enthusiasts on the mailing list, mostly collected
at APL 86. Anyone interested may add their nameto thelist and will be
circulated with newsofprogress.

David Ziemann explained that he hoped to improve the draft specification as a result of
comments madeatthis meeting.
It was agreed thatit is most important to makeclearthat all manuals and other documents
issued as part ofthe project could be copied andtranslated freely(the latter point especially
importantto users of APL whose native tongueis not English).
Norman Thomson pointed out that as far as the bulk of the new potential users were
concerned, the project will not have a product until the supporting documentation is
complete and can be provided with the interpreter.
The documentationat present being prepared consists of a Tutorial on which Linda Alvord
is working, an encyclopaedia of APL (giving examples of each use for the primitive
functions, operators and system features in alphabetical order) which Garry Helzer is
writing and

a

series of books or booklets to be called “APL for... .” where the dots are
replaced by a particular application of APL.
The obviousfirst example was APL ProgramsforMathematics and Normancirculated draft
copies of his book withthattide (90 pagesofA4 text). This was tried out by looking up init
some school mathematics topics such as Pythagorean triples and going through the
examples given. Norman will welcome comments from those who took copies away.
‘This book (and Garry Helzer’s, whichis also in draft) at present has only standard APL
examples: eventually there will be side by side examples both in APL and in the ASCII
mnemonictransliteration, This will make the book suitable for use whether or not the
computer has an APL characterset available andwill help to accustom people to the APL
characters at the same time. Llewellyn Jones has been working on a way to do this
transliteration for some twoyears now andis willingto give the project permissionto use his
workfree of charge. He has functions which will wanslate from either form into the other
under VS APLand under APL*PLUS/PC. (APLpip for the PC and APLpupfor the
mainframe where EBCDICisa bit morerestrictive than ASCII.)

62

VECTOR Vol.3 No.3

Norman said that the marketing effort could only begin when both interpreter anddocumentation were ready. He suggestedseveral lines of attack. As these were discussedand added to during the meeting the set below includes all the main ideas that seemedacceptableto those present.
1 Prestige schools. Norman Thomsonhascontactsat severalof these and believes that asthey have better facilities and lively and open-minded staff, they should be easier topersuadeto try out APL.Iftwoorthreeofthe best known schools can be shownto havemade a success with APL thenit may beeasier to overcomeresistancein otherschools.Excellent referencesites will certainly do us no harm.
2 County Education advisers (or Inspectorsas they are called in ILEA — which Neil Bibbypointed out) should certainly be made aware of what we are offering and asked toencouragetheir schools to try experiments with APL.
3 British APL Association members should be asked to demonstrate what we producetoanyonein education that they know andto help to give away the interpreter, sell anybooks we have to charge for and provide the project with feedback on what othermaterial could be provided which would help to makethe product moreacceptable.
4 Plainly any school which can be persuaded to give APL a try should be; theselectionwill have to be haphazard — it will be the teachers membersof the APL Association orthe I-APL Project know rather than anyselection by somecriterion ofsuitability.
5 It was agreed thatit would beparticularly valuable to get I-APL exposed to the traineesandstaff of teachertraining colleges. A few committed advocatesin such an institutioncould encouragethe spread ofAPL outofall proportion to their numbers.
6 It was suggested that another good place for publicity was the user groups. There aregroupsinterested in particular machines, microcomputerclubsfor particulardistrictsor in particular colleges and these enthusiasts are more open to new ideas than thegeneral run of homeand school microcomputerusers. It might even be possible to getthe interpreter put onto a public access network so that people could downloadit.
Norman Thomson reported that the Mathematical Association has a book giving theBASICprogramsfor 132 common mathematicalfunctionsor processes andthatthis is verypopular and Widely used. His book is intended to upstagethisas it contains many morefunctions (about twice as many) and need not be more expensive. He has already beenexploring ways to get it published as cheaply as possible and is weighing the relativeadvantagesof cheapnessandgetting ontothelists ofa recognised and respected educationalpublisher.
Les Hollingbery asked about style and standards of the examples in the material to beproduced for the project(heliked the style of Norman’s examples). It is desirable that theexamples should encourage good habits but the project oughtnotto try to impose ‘good’style on potential users (at least not where there is room fora difference of opinion aboutwhatstyle is ‘good’). The project cannotreally afford an editor to impose a house style onauthors whoare all doing voluntary work and may be unwilling to accept anyoneelse’sviewsofhow to doit. Any suggestions which could be circulated for commentto all authorsworking on the project would be very welcome.

63

VECTOR Vol.3 No.3

When the meeting was thrown opento general discussion (questions had been encouraged
throughout) manyhelpful suggestions were made. The dash between the Tand APLcould
subtly be made heart-shaped. Weshould write and include some games in the free software
issued with the project. We shouldall write to computer and non-computerpress about the
project to giveit publicity and arouse expectations; perhaps we could ask magazine readers
to send in their names and addresses if they were interested in an early copy of the
interpreter.
Paul Chapman was asked aboutthe process ofwriting theinterpreter and he explained that
he intended to write code which would be interpreted in every machine. Theinterpreter
would be a very simple version of a threaded language — something after the style of
FORTHbut not FORTHitself becausethe interpreter would be too big and complex. The
APL interpreter could thus be exactly the same sequence of ones and zeros on every
machine. It would use the machine code entirely through the kernel of the threaded
interpreter. To port the APL to a new machineit would be necessary to write the machine
language kernelfor the machine and codethecallsto the operating system which did such
thingsas write a characterto the screen, get a character from the keyboard and so on. Asit
happensonly three machine language kernels will be required — to suit 6502, Z80 and the
8088 family. Paul hopesthat his development environmentwill have commercialvalue.It
is to be called DE (to imply it is better than C as an environmentfor creating portable
software) — he was goingtocall it DEL (for development environment language) until he
discovered he was unaccountablylosingfiles!
The general atmosphere of the meeting was friendly and no-one voiced any adverse
criticism of the work that had been doneso farorofthe plans presented. Whenthe audience
was challenged to suggest a better way to encourage the spread ofAPL no suggestion was
offered, When people were asked explicitly whether they thoughtthe contribution from the
BAAwasa gooduseofthe fundsthere wasnodissenting voiceto say that it was not. There
was general agreementthat this was a very good way to try to spread the use of APL, and
many presentfelt that so far unfruitful efforts might meet with success once they had the
proposedfree productto help them.
Thirteen people put themselves down onthelist of peopleinterested in having news about
the project and mostof them offered to help in some way.
The meeting ended at about 5.30 and discussions continuedin the bar for some time.

64

VECTOR Vol.3 No.3

65

VECTOR Vol.3 No.3

APL Debate: What is APL Thinking?
Reported by David Preedy

Howard Peelle, who acted as chairman for the session, introduced the debate by outlining
why he felt that the topic of APL Thinking was an importantissue to discuss at the
conference:

“It’s a term that we seem to bandy about quite freely here in the APL
community and if indeed we are serious about the dissemination of APL,
especially for those people whoare learning APL forthefirst time,it seemsto
us thatit is importantto understand APL thinking ourselves.”

Hethen said a few words on his own perspective on the subject by way of warm-up,
describing some of the work done by himself and his colleagues at the University of
Massachusetts, addressing the objective stated by Robert Hooker:

“The timeis right for the psychology ofprogramming and ofAPLin particular
to come of age . . . we have a needto study the unique mechanisms used by
APL programmersin structuring their thoughts”.

Their approach to theirinitial studies into APL thinking has been to study theliterature and
extract relevant comments; to analyse some common mistakesthat beginners make when
learning APL; and to think about the kinds of errors that APL instructors make while
teaching APL. With this background they’ve beguna series of interviews and published a
surveyin Quote-quadinviting people to say what they think APL thinking means to them.
They haveinitiated a course daringly entided “APL thinking” — a computerscience course
attracting also some people from education and from mathematics. As a result they have
identified quite a number of challenges or related issues surrounding the topic; they
concern questions suchas the extent to which individualstyle affects APL thinkingor, as he
phrased it:

“Do you believe that APL thinking style or APL programming style can or
should be taught?”.

Despite its inherent difficulties, they are using a methodology involving asking people to
talk out loud while they’re thinking about a problem and while they’re using APLto solve
it.
Peelle finished off his introduction by showing a few quotes that they have extracted either
from theliterature or from the individuals directly about what people think constitutes
APL thinking.

“Clear, simple rules; compact notation; unambiguous interpretation;
executability of mathematical statements”
“APL thinking is recognising patterns, decomposing a problem and seeing
whereto apply APL idioms”
“I know I can doit iteratively but the question is howcan I doit with arrays, be
it elegant or not”.

66

VECTOR Vol.3 No.3

“The best way to gain fluency in APL is by thinking in APL”
“Ttis not evident that the average programmerthinksin arrays”.

Several quotes explored the ideas of visualising geometric objects and dealing with
mathematical expressions.

“Problem-solving using APL can frequentlybefacilitated through the use of
visual imagineering”
“T learned APL simply by considering how a mathematician would think”.
“APLis the essence of mathematical thinking”

or, by the same speaker when pressed on thepoint:
“Mathematical thinking is the essence ofAPL thinking”.
“APLis a good short-hand mathematics”
“APL thinking meansecstacy”
“It’s the ability to say the samething in several ways”

Somequotes explored the importance ofmodelling — structuring data rather than program
flow; thinking aboutthe problem rather than thinking about the program one’s writing or
certainly rather than thinking about the machine upon whichit’s going to run.

“Tt involves being the black sheep in the D.P. department”
“One could memoriseall the APL primitives and other aspectsofthe language
andstill not be able to solve problems”

(APLthinking is what would be missingin that case.)
“There’s a large distance between how think of a problem and how I] must
write itin APL”,

APLthinking is not APLitself; it’s not what APL does; or even what APL makeseasyto do.
It’s what we do beyond what APLoffers. It may include what we have to do to make APL
fit the problem or even make the problem fit APL. Therefore APL thinkingis really the
complement to APL. Thelast quote was:

“APL thinking — I don’t know whatthatis”.

Thefirst panellist on the debate was Micheal Berry:
Having been involved with teams working on designing parallel computers, Berry
presented the view from one who has recently moved outside the APL world to a place
where people are spending a lot of time doing exactly the opposite of what those in APL
think people usually ought to do, namely thinking about the details of a particular
computerarchitecture and how to write programsthat will match the way the machine
works. The machine in question is a massively parallel machine called the Connection
Machine which involves somewhat over 65000 processorsall of which are fairly small but
have their own memoryandeachofwhich hasthe sole option ofwhetheror not to execute
the the instruction thatis sentto it from a host computer.

67

VECTOR Vol.3 No.3

The problem with how to program such a machinetherefore is how to design programs
(and how to design a programming language in which to design those programs) in which
it’s easy to make statementsso thateachofthelittle processors working independently of
the otherswill usefully progress towards solving the problem.

“Oneofthe first weeks I was there, people weresitting around discussing the
problem especially with the IF statementfor the new language. The problem
being that... you imagine arrays as being stored with one element in each
processor and, if you had 2 arrays that you were going to add, the
corresponding elementsofeach array would bein different memory locations
but on the sameset of processors and you would send theinstruction ADD
presumably with some pointers to the 2 areas in memory and each little
processor would doits one addition, andso the thousands ofADDs would be
done.
“Well, they knew they neededto design an IF statement and the obvious way
for it to work would be that you evaluate whatthey call the predicate, this
being a LISP environment, basically a Boolean expression, and forall the
processorsin whichit’s true they stay turned on and do the nextthing and then
they turn themselvesoff, and the otherset of processors turnsitself on and
does the ELSEthing.
“People were worried about thefact that unfortunately this decision-making
has to happen in the front-end computer, something like a VAX or a
Symbolics 3600, and lot of time is wasted while thinking about doing the IF
while the Connection Machineitself is sitting there not doing anything. |
brought up an idea which seemed weird to people: ‘Why don’t you try and
write the programsso therearen’t any IFs, because you would think of an
instruction to say, which would do the right thing to all of the data. The
instruction would be more complicated but each processor would doit and
have done the right thing.’ ”
“The reason I thoughtof that and everyoneelse was thinking about how to do
the IF was because I had just comefrom years and years of thinking in APL
and it seemed natural to meto try and think of a solution where evenif it’s
more complicatedto express what you’re doing you canstill do it all at once.”

They now regard suitable problems for the Connection Machine,as those exhibiting a high
degree of “data-level parallelism”, meaning that you can doit all at once, such as image-
processing, where each pixel can be instructed to ask its neighbours how brightthey are and
average with them or somethinglike that.
Berry saw this as one angle on what is APL thinking;it’s thinking about how to find that
data-level parallelism, because data is what we can structure very well in APL. He
illustrated this concept with some examples.

68

VECTOR Vol.3 No.3

The first was taken from a Scientific American article some time ago which comparedcomputer languages by asking a skilled writer in each language to write what they thinkwould be the normal way in their language to express the problem “Add upall the oddintegers in this integer vector”. The APL solution differed radically from all the othersolutions in incorporating data-level parallelism;all the other solutions involved lookingateach element andaskingif it were odd andifso incrementing the counter variable that’scollecting the sum, andif not going on to the next one andaskingit. So in fact ScientificAmerican had found a good example of APL thinking.
Another familiar example is the problem ofrotating thelines of a text matrix to removeleading blanks. In APL,you work out how manyleading blanksthereare in each line androtate by that amount; you don’t loop throughthelines. Whilst each line does have to moveby a different amount,you only need one expression by which to figure out how muchtheyhave to move.
Sometimesit’s hardto see the data-level parallelism becauseat the level that you're lookingat it the data doesn’t look quiteparallelor looks ragged and here Berry showed how nestedarrays have helpedin letting parallelism or rectangularity be imposed at whateverlevelismost convenient.
Berry finished by exploring the trade-off between elegance and performance. Oneof thethings thatrestricts us from really practising our APL thinkingis that people look at youand say “That’s cute, but comeonlet’s be reasonableit’s not anefficient way to do things”.At Analogic, Berry had great fun implementingthe paragraphing system using domino andrealising that, whilestill perhaps slower than some other ways, it worked fast enough forhim to useit, and he did useit in his text editor just for fun. If Berry does achieve his goalofgetting a “thinking machine”, andifhe succeeds as a mole-bearer and weever have APLon the Connection machine, he remains confidentit will be better to use the approachescurrrently discarded on grounds of performance. He looks forward to the day whenhisAPLthinking will not only be clear to himselfand hopefully to readers, but will also be thebest way to make the hardware do whatit’s supposedto do.
In answerto a question, Berry explained how hefelt that the Connection machine has beenaffected by APL. The proposedspecification for the language for the Connection Machineborrows exclusively and fairly heavily from APL where the most noticeable things areoperators reduction and scan. Although notcalled operators they they apply to a functionandgive you a new function that worksjust like APL ones. Another thing,that would alsobe an operator by our APL definitionsforscalar extension, applies to a function and makesa function that is executed in every processor (in Connection Machine terms); in APL wewould sayit applies to each elementofthearray,soit’s either a scalar extension operator oran “each”operator of some kind. These were quite conscious borrowings and Berry foundthat in joining the Connection Machine team his knowledge of APL was recognised as aplus.

The next speaker was Ray Polivka. He started by exploring some of the premisesunderlying the debate. Thefirst was that the individual concerned actually is prepared tothink, and wants to think. It wasan illusionto forget that many people simply do not wantto think aboutthe processtheyare learning.

69

VECTOR Vol.3 No.3

His next statement was:
“¥ don’t think there is APL thinking.
“Let mesayita little differently — I believe APL fosters thinking andthe type
ofthoughtpatternsthat it fosters are structure driven, or data driven, It allows
us, if we so chooseto doit, to think morelike the patterns that we would like
to think in. Now I’m comparingthat with the patterns that are forced upon us
in regular computing.”

Based on his experience in teaching APL to a whole spectrum of people from engineers,
secretaries, managers and computer science trained people, Polivka had found that the
problems lie with the computer science folk, because APL allows you to think more
naturally.

“What is the natural way that the computerscientist has been trained in? IF
THEN ELSE I GETS INCREMENTetc DO WHILE FOR. That’s why
what has happened in manycasesis that the person who has come from a
PASCALtrained background comesinto APL andproceedsto write glorious
Pascal with APL terminology.”

Oneofthe other problemsis that programmerstend to drop down too quickly to the details.
If you’re going to build a piece of furniture, you don’t immediately go downto a hardware
store andpick out the nails you’re going to use. You design the thing first — what shape and
size you want — negotiate with your wife or husbandandthingsofthis sort. You don’t go
down to the details.
Andyetin fact in programmingin a sequential language you are forced to go downto those
details muchearlier than you want to. APL promotes thinking whichis:

Algorithmic,
Idiomatic — although Polivka preferred a term from psychology “chunks of
APL”because you can read the statementitem by item or function by function
or you cansee itas a chunk of APL
Inquisitive — the fact that APL is executable on a machineis a great bonus and
ifyou’re not sure what happens, you just try it out.
“Multi-perspective” — meaningthat there’s no one wayto the solution. Oneof
the real joys of working with APLis to cometo collleague and say “Lookat
the solution I have gotto this problem”and he can say “Look at mine”and you
find that you’ve been lookingatit from two different ways.

Polivka closed by saying that APL is a notation that we need, will continue to need in the
growthofourscientific and engineering developmentasa society and culture. APL fosters
thinking.

70

VECTOR Vol.3 No.3

The next speaker was Roy Sykes, who started by pointing out the inadequacyofthe normal
adjectives used to describe APL thinking — wordslike “modular”, “array-driven”, “whizz-
bang”, “intuitive”, “parallel” and so forth. He thoughtthose terms are inadequate. He
prefered a metaphor — the metaphorof the combinedarchitect and builder of a house,
somewhatlike Polivka’s furniture builder. Theclient, often oneself, is interviewed; the
needs are assessed; the blueprints are drawn and approved; the required materials are
acquired; the proper tools are broughtto bear; the house is constructed; andfinally some
walls are shifted around, a few changes are madeto better suit the client. Sykes saw APL
thinking covering this broad context. It is not limited to what one doeswith the symbolsof
APL.It’s the mental process that threads throughouttheentire process of defining and
solving the problem.
Sykesillustrated this by going through thetypical process that he typically undergoesin
defining a program,a function of a modestsize, not a throw-away onebut onethatis part of
a larger system.

“The first thing I do is think; think about what the problem is, try and
understand whatI’m doing. Part ofthat process is understanding exactly what
my inputs are. This is nothing new; one decides whether one is taking
character or numeric data, is it going to come in as argumentsor global
variables from the user at a keyboard, from files, whatever. Butin any case 1
define that very carefully. At this point I open definition on the function, and
I have the formal header, perhaps notthelocal variables, and perhaps 3 or 4
lines of commentsdescribing precisely what my inputs are.”

Nexthe does the same with the outputs — decide whatthe outputs are, precisely how they
are structured and ordered. He has now documenteda substantial part of the function
without writing any code — presuming that the headeris not code.
Then he thinks about the transformations required; whether they’re structural or
mathematical primarily;is it inherently a parallel or an iterative solution? Of coursethatis
overlaid with what we can currently do in APL with the primitives available to us. This
involves deciding whetherto adopta nestedor a simple solution. Essentially he breaks the
problem into sentence-sized chunks.
The next thing is what some other people would consider APL thinking and coding — Sykes
overlays the sentence-sized chunksonto the tools and mechanisms he knows. Working in
order, he starts with the APL primitives; for a structural problem he maythinkin terms of
taking transpose, drop and laminate; for a mathematical problem he may consider the
scalar primitives,[]divide, base-value and so on. Then he introducestheso-called idioms or
chunksthatare available that weall know. Thirdly he bringsin the existing commonly used
subroutines he hasalready used to solve problems. And fourth he thinks in terms of new
subroutines that he might write and how they could be generalised for future applications.
The penultimatestep is to lash all these chunks together trying to smooth thetransition
between the sentences, putting in the appropriate commas, semi-colons, periods,
paragraphing, andso on — the nails of Ray Polivka’s furniture.

7)

VECTOR Vol.3 No.3

Then Sykes tests his code. The testing has three phases. First he assures that the proper
inputsresult in the proper outputs, especially on the edge conditions. Secondly he checks
that bad inputs are handled properly, giving correct responses to the users, or signalling
errors to the outer environment orjust letting the program blow up ~ that’s acceptable
provided that the error performance is documented. Third is testing no undesirable
outputs arise, such as unlocalised local variables and so on. Wedon’t after all want the
neighbour’s house subsiding!
Finally, the last step is incorporating revisions. He reviews the core algorithm used and
removes any redundancies. The chunks have a bit of a disadvantagein that if you simply
write in chunks, you may end up with a chunky program. One wants to have a smooth
program, and sometimes if you look at the broader measure you see that two or three
chunks put together are rather an entirely new algorithm. Sykes removes these
redundancies and revises the documentation.

“If we define APL thinking in its very narrowest sense, that of the
transformations and coding, we encourage a myopic approachto problems.I
teach APL andI find that the mostdifficult problem is not APL thinking,it’s
thinking. The results are fuzzy because the inputs and outputs are not even
clarified by the studentsto start. He or she has a very broad idea of what they
want to do; they don’t know knowreally what they start with, and they don’t
knowreally what they want. Once those twothingsare clarified, the processis
simplified by APL. If we can teach people to clarify their thoughts, the
embodimentoftheir thoughts into APL codeis simplified.”

In response to a question, Sykes explained his approach whenhefindshe actually gets stuck
in defining the algorithm. If none of his colleagues can help he puts together the very
simplest, often iterative, scalar solution to solve the problem.

“T get something that works;it may put my machinetosleep for 30 secondsbut
at least it works. It represents the most basic, (pun intended), solution to the
problem. It works,] know my inputs, I know my outputs, and the
transformation there. That processwill often clarify to me whatI have to do in
a moreparallel sense, using the APL primitives at hand. Very often, especially
these days, I find myselfatfirst thinking in termsofnested array solutions, and
then backing off into simpler solutions that are almost as terse but run
considerably faster using simple arrays.”

The final panellist was Norman Thomson. Hefelt that his view of APL thinking might
reflect a transatlantic difference in attitude from his three co-panellists. To him APL
thinking is a kind of layer that goes on outside APL;it’s the kind of thingsthat he says to
himself in order to make APL makesense.
Atanearlier session StephenJaffe had formalisedlittle rules — rules that are the baby-talk of
APL the thingsthat makeit easy to get it right ifyou are re-structuring multi-dimensional
arrays. Whatyou dois you build upa fabric of these informal rules, informal as opposedto
the formal rules of APL,andthat formsthe basis of Thomson’s APLthinking.

72

VECTOR VoL3 No.3

Hethen looked at the increasing challenge presented by APL2:
“Now, I guess that if we had reviewedthis five or six years’ ago, before APL2
came widely onto the scene, we could see that we’d to a large extent exhausted
the APLchallenge — we’d begun to understand and largely control the
symbols that are present in APLI. In my bookcase at home,I’ve got a book of
silly ideas. | once hadthe idea that it would befunto takeall the APL primitive
symbols, and combine them, takeall the possible pairs of symbols and work
out whatthey did together; maybe take a few triads and find out what groups
of three did; explorethe possibilities and see what you got, and hopefully quite
a lot of them mightbeinteresting. In a sense when you've done that, and
you'vefilled that book, then you would knowall there was to know about
APL, that’s the end of it and I could then go on and study something
interesting like beetles or mushrooms or somethingofthat sort. I hasten to say
thatit’s a book with a lot ofempty pages, but there was a point at which APL
lookedlike a closed universe.”

Thomson then gave anillustration of how his existing APL] informal rules had been
affected by the introduction of APL2. He looked at the case of outer product. Intuitively
there he had aninterpretation; it meant extending an argumentand applying a function to
any string of numbersto get blocksofresults. It only becomes meaningful, to do an outer
product in code, when wehad the “each” operator, and so it was lovely when APL2 came
along and proposed “each”, because somehowit was thejigsaw-piece that neatlyfilled in a
gap that was somehow a void in APLI.
Howeverthe otherside to this particular coin had cometo mindearlier in the day when an
expression involving nested arrays had been displayed and Thomsonhad fallen hook,line
and sinkerfor an incorrect interpretation. He had been forced to go backtofirst principles
andeventhen hisinterpretation wasrejected in discussionswith others. It seems that with
APL2 wehavecreated a structureofvastly greater complexity than weever had with APLI.
Some time ago APLI looked like being a nicely closed, nicely rounded, self-contained
unity. Now with APL2,the “clear, simple rules” and “unambiguous interpretation”, so
admired by Howard Peelle’s respondents seem to have evaporated. As Thomson
concluded:

“Yesit’s unambiguous, but goodness meit takesa lot ofseeing to perceive that
unambiguousinterpretation.”
“So in short that’s my perception of APL thinking — something that has
radically changed between the, what now seemsrelatively simple, structure of
APLIandthis vast relatively unexplored territory of APL2.”

Following the formal presentations by each ofthe panellists, there followed a more general
discussion involving membersof the audience as well. There was considerable discussion
on thealternative interpretations of some APL2 idioms and whether they could be read
naturally left to right, read aloud for instance so that a class can understand them.

73

VECTOR Vol.3 No.3

From thefloor, Anthony Camachocalled on the principle of Occam’s Razor, saying thatit
seemed to him thatthe types ofthinking identified as APL thinking do not appearto differ
from ordinary thinking. So he wasinclined to agree with Ray Polivka when he said that
there isn’t APL thinking — there’s just thinking. The opposing view was given that APL
thinking is in fact a subset of ordinary APL, and the debate had been concerned with
identifying the specific characteristics that are typical of APL thinkingin particular.
In response to Norman Thomson’s APL2 problems,it was hypothesised that he had given
an example of is how APLthinking is somethingthat he has developed. Whenhe lookedat
the expression and applied APL thoughtto it, he didn’t get the right answer, because in
APL2 APLthinking doesn’t work!
Adin Falcoff suggested that the answer to Anthony Camacho’s dilemma wasthat in
discussing APL Thinking we are working in the context of the world of programming and
so when he talks about APL thinking he is contrasting it with thinking about other
programming languages.

“T think there are some very simple and obviousdifferences. You tend to think
in terms of transformationsof arrays; you tend to think in termsof functions
that have argumentsandresults; you tend and you learn eventually to think in
termsof operators; and the consequenceofthis is that you learn to think of
breaking your problem down in some logical way. Someofthese things are
present in other programming languages, but most of them are not, and
certainly the others are present to a much larger extent in APL thanin other
langauges.”

Ken Iverson looked at the different types of approach to describing processes, or even to
describe the sameprocessfrom different points ofview. Sometimes one wants to emphasize
iteration, sometimes recursion, and there’s also the use of arrays. Then there’s the question
of doing things modularly and having functions with arguments andresults; on the other
hand also possibly deciding things in detail. He thoughtthatthe essential thing ofany good
language is that it allows you to express yourself in any of these ways conveniently and
cleanly and to the extent that APLis successful it is because it does that. Iverson finished
with a question:

“How much harm do youthink that the people in APL have been doing and
are doing by emphasising that APL thinking has one narrow notion that of
arrays?”

Roy Sykes believed that we have been doing a lot of harm and asked how many times we
have wasted timetrying to makethings faster, in particular by making them non-looping,
whenthe first solution that comes to mind is an iterative solution. Hefelt that one of the
biggest boons of an APL compileris thatit allows the freedom to think in ways that either
are not overlaid on the primitives and operators that we have at hand,or not intuitively
overlaid on them.

74

VECTOR Vol.3 No.3

Norman Thomson pointed out as evidenceof the distinction between APL thinking and
ordinary thinking that in his own personal experience, APL hadaffected his life in some
sense — he saw thingsdifferently once he had been shown APL.Healso disagreed with Adin
Falcoff’s view that the context of APL Thinking had to be programming.Hefelt that the
onething that characterizes APL and makesit different from other languages is that its
context is a great deal broader than just programming. Therevelation about APL wasits
relevance in the real world;that, for example, the encode function is what you do when you
get change; or it’s what you do when you convert from centimetres to Imperial units.

“Tt seemsto methatthe whole essence ofAPL,andthe wholething that keeps
conferenceslike this going yearafter year, is the fact that APL hasa spark,abit
of inspiration, a bit of something I don’t know what — the thing we’re trying to
identify, I guess — that is just that much broader than pure programming.”

Adin Falcoff responded that he thought that people’s interest in it would be somewhat
diminished if it were not implemented on computers — that programming should not be
regarded as a dirty word. Norman Thomson’sreply was that APL wasthethingthat to him
at least humanizes computers.
Linda Alvord explained how, as a mathematics teacher, she has a mental model allowing
herto see the structure ofAPL asif it was the 3-dimensional world that welive in. There’s
a visual aspectto the imagesof the data thatis quite different from the way you think about
it in other programming languages. There’s something about the thought process that
involves image-making, and model-making, that characterizes it as different from other
languages.
RayPolivka felt that we need to encourage array-thinking. He paraphrased what Anthony
Camachohad said at the Education Day:

“Loop-thinkingis not natural; more and more programmersare learning more
and more on how to be baffled by parallel array thinking.”

APLisn’t the only language capable of handling collections of data — vectors, arrays,
strings, etc. — but oneofits other strengthsis it provides the supporting function is to
manipulate these things very concisely and precisely.
Roy Sykes finished the debate by highlighting APL’s interactive executability as
fundamentalto its nature. But primarily, he thought:

“APL is a new vocabulary andit’s been said, by whom I don’t know,that
without vocabulary, without language, thought is impossible. Language in
some respects defines thought. And the language that we’re speaking of,
which is APL,defines our thoughts in a much broader way, a much richer
language, than any other computer languagethat I know of. I think the very
fact that we have such a large vocabulary in APL makesour thinking process
larger and richer in solving problems.”

75

LOWEST PRICES!
DIRECT FROMTHEU.S.A.! Hundreds more

available — callfor a quote!

HOWMUCHWILLYOU SAVE?sumow! one997-4277 tr

Telex: 9102400147(301) 762 6647
1377 K Street, N.W., Suite 827 Washington, D.C. 20005 USA

VECTOR Vol.3 No.3

Idioms and Problem Solving in APL2
Delivered by Alan Graham at APL86

Transcribed byJohn Sullivan
(Editor: Thestartofthe tapeis unfortunately inaudible.)
... Avery commonone(idiom) I call ‘All Right’ takes each item ontheleft and pairs it withthe entire array R on theright. I have some examples which will makethis clear. To take the
wholearray on the right, if that’s what you want, you don’t wantit jtemwise.
L £” (eR)
‘All Left’ is the whole array on theleft.
(cL) £7 R
Now what’s the final combination of EACH and ENCLOSE? How aboutif you encloseboth of them? Notinteresting or important, because you havethat identity.
(cL) £" (eR) +e cL Ee" R
So there’s ‘All Right’, ‘All Left’, but ‘All Both’ doesn’t make sense.
Onething you find when using EACHis that the derived function with RESHAPEis ascalar function.
What that meansis that like addition and subtraction itemsget paired and, if you have ascalar, scalar extension occurs; dealing with scalars you can think ofitas the RESHAPEtothe size of the non-scalar and then the function is applied pairwise. This is importantbecause RESHAPEis nota scalar function, but RESHAPE EACHis a scalar function.FOO EACHisa scalar function —I don’t care what FOO does, it’s a scalar function. I foundthat hardto adaptto, once I’d adaptedto it I say, as you do once you’ve learned something,“OfcourseIt’s simple”, but you don’t say that while trying to adaptto it becauseit’s tough.
OK we'll look at some examples andtry and adaptto it. A two-elementvector plus a two-elementvector, you get a two-elementvector, same thing here,
2 3p4 5
that’s 2 rehape4, 3 reshape 5. Well, how aboutif I’dlike for instance down here I'dlike two2 by 3 matrices, onefilled with 4s, onefilled with $s. That’s it, I wantto usethe entireleftargument over andoveragain,so I encloseit, you get scalar extension
(e2 3)p"4 5
so it’s the sameas writing (2 3)(2 3) both in parentheses RESHAPE EACHandthencarryout
(2 3p4).(2 3p5)

Andthefinal one, ‘All Right’
2 3p"<4 5

77

VECTOR VoL3 No.3

T get enclosed vector 4 5, and enclosed vector 4 5 4. Andthis occurs timeafter time after
time. I] guess — er — weil I’ll leaveit at that.
I want to show you someotherapplicationsofthis, this in action. Garth Foster called me
up, well, I guess I called him, a few weeks ago; he had a question thataftera little head-
scratching I cameoutwith, I knewthe answer, I don’t know whyit took meso long. Hesaid
you have the alphabet and you’d like to map indicesinto the alphabet into words, and more
specifically, he wanted to get a nested array of indices representing an array of words, and
he’d like to do that mapping andextract the words. So, here’s one reason whyI use index-
origin zero, so you can put the blankin front and is one, and blankis zero. Here is my
alphabet
Aw! ABCDEFGHIJKLMNOPQRSTUVWXYZ*

and with PICKit workseasily, you can take outtheI like that
SDA

I
and during one organized conferencethey had the competition for what words and phrases
in history mean. Beforethis talk, because there is the CHIPMUNKidiom,they had it after
this talk everyonein this room wanted to win that prize. Why is it called the CHIPMUNK
idiom?
9 2 1L3D7CA
Yousee, doesn’t that look like a chipmunkto you? Eyes,and big fat cheeks there. So there’s
the chipmunk idiom for you. It has to be asked, which one ofthe templatesis it, pairwise,
all left or all right; which one am I using? (Pause, then answer from the audience ‘All
Right’) All right. I’m takingthe entire alphabet, and picking from it the ninth, then picking
from it the second,then pickingfrom it the thirteenth and I get IBM outofit and, well, hold
on, whatis the F; the F is PICK EACH, that’s the scalar functionthatI call F. So that’s just
a case of All Right.
Now,what Garth wanted to do- Oh, so you couldsay it was an index I'll cail I, and then you
could use the chipmunkagain

I*9 2.13Is"cA1BN
and then you could say, well] want to add one to each number and compare that to the
addition of zero,

TI*{ct)-0 1lI" "eca
IBM HAL

butthen of course I'd get IBM and HALfrom 2001! This is what Garth wantedto do, and
this is another example of All Right, because PICK EACH ENCLOSE(the chipmunk
idiom)is the chipmunkfunction, you could callit, so I’d like to do list on theleft, that
function, EACH,All Right; so I have this idiom whichreally would have been an obscure
question. What do you think that idiom is called? You'll never guess so I’ll tell you. That’s
called ’chipmunkwith glasses and a toothache’. (Laughter) You'll haveto use it a whole bit
more and have great fun.

78

VECTOR Vol.3 No.3

WhenI invite peoplein to see these things or give demosI tell them thatthis is my APL2PC, even thoughit’s on the mainframe, and these are my APL2 toys, although I thinkthey’re not astrivial as toys, Another wayto do this if you wantto avoid the peppereffect,you can define a sub-function called vector indexing, which is very nice.
Co] z+1 vivC1] a vector INDEX[2] Z«ta"ev
now youcan say ‘jot-dot-VI’, you can say ‘VI-each’, you can say “‘Vl-each-each-each-each’,and you can use the function withoutthinking ‘chipmunk’, which might not have much todo with vector indexing. This worksfine, (inaudible), and now it becomes apparent thatwe’re using All Right here, because hereis the function, a list ofindicesora list oflists ofindices, and All Right on the right.

BS ii

DS II VI"cA
| ster. eee. |
{ {tami [Hatt |
i tanak tenet

Nowlets have some fun with EACH. Takea look at that.
X+(2p°3 5 7)p "1,0

Well, let’s see. Only two EACHes. ‘Two reshape each’ you get 33 (pause) 5 5 (pause) 7 7.We say we want to apply each oneofthoseto the entire thing to the right, which are theindicesI followed by zero, so we wantto do 3 3 reshapeofthat wholelist, thena 55 reshapeof that wholelist, and a7 7 reshapeofthat wholelist, and we get this beautiful thing.
I feel that with APL] I’ve been pedalling a very verynice bicycle, and with APL2 they gaveme a motor (some chuckles from the audience). It’s very easy to get horribly carried away,and you should mayberestrain yourself; so I can use the chipmunkwithglassesto solveGarth’s problem of mappingarraysofindices into characters

79

VECTOR Vol.3 No.3

etre te
IBM[+1BM If

! !l4 I
to] 1B] [8M tat [| 15M 1B]
| tM tt [M IBM] [M IBM TT || te--' [IBM | {BM IBM |
1 (1BM 1] |1BM IBMI
I tonnne ‘| 1pm 1BI| IM IBM I] fi |‘ '

A little bit different example, of how EACHhelps you out, and how derived functions and
operatorscan help youout.I just madethis array that I’d like to manipulate, and you might
makethat array just experimenting:it’s a 3-element vector, and whatever you can do: a
scalar, a vector and a matrix. If you displayit it lookslike this

DS R+3.14 'ABRACADABRA' (2 3p4 3 2 1)ener eee

 i ve .
[3.14 [ABRACADABRA| 494 31 tenenannnee- Iba| ’ ~

 atone

bu
n

Youtake the shape and, sure enough,it is a three-element vector
PR

Sometimes I ask my studentsa trick question, “How manyelementsin a 3-elementvector?”
They get that (laughter). “How many elements in a scalar?” One, we know that, but
sometimes — hmmm -— zero? “What’s the shape of a scalar?” One? No, so the edge
conditionsaretricky; this is a normal 3-element vector, nothing up my sleeve. You also may
wantto say, what’s the shape ofeach one ofthose itemsov
23
and you can clearly see thefirst item is empty, whichis correct(It is indented, it’s hard to
seewhen you get a widerdisplay fontlike this), an 11-element vector and a 2 by 3. In the
spacing ofthe original system this is pretty closeto it, there’s two blanksthere, and so you
can only default this place, you do get thefeel for the separation hereifyou look carefully.
I find I don’t usethis display too terribly often becauseI do like to default this place. One of
the other things I tried is - Ah yes, of course, I wantthe rank of each one, zero one two
4 ppR

That doesn’t work. Why? Anybody know? I mean, three? Where did that come from?
(answer from audience RHO-EACH) Rho-each is a scalar function, what’s a scalar
function on a 3-element vector? A three-element vector: that’s not a trick question. So
what’s the shapeofa 3-element vector? Three. Even my studentsgetthat, very easily. So,
of course I tried this, thinking “Ah, I’ll fix it”. (aughter)

Cpp)"R
SYNTAX ERROR

(pp) "RAA

80

VECTOR Vol.3 No.3

and dialled up Jim Brown andsaid “Hey,it doesn’t work”. Well, sure, we could makethis
work,but I think rho-rho— I think you mean rho-rho made-upin a direct-definition form,
but you could mean W-rho-rho-W or you could mean — there’s manydifferent functions so
we didn’t choose one: no, that doesn’t work. The thing is not a function, so you get
SYNTAX ERROR.Well, you can do it rho-each-rho-each

ap" Rool 2
and here’s some pepper occurring. You'll also notice the spacing here, there’s two spaces
between the items, so if I’m doing rank-each, I know the rank of anything is a single
numberandI prefer the simplest data-structure possible so now wereally get the scrambled
eggs with pepper and youget zero-one-two and that’s exactly the right answer I want.

+ “p “p “R012
Hmmm,what can I do. Well, I take stock andwrite this rank function,

OFX 'Z+RANK X' 'z+topx!RANK
and that I find the easiest way without poppinginto an editor, just define on thefly, and
then you RANK-EACH

RANK” R
o1L?2

] find that whatI wantis not to have to stop to define functions then to come backto all my
problemsbut J never have the function RANKlying aroundin all my workspaces because
it’s just too easy, so what do] do? (How am I doing on time? OK? What’s that? Fifteen
minutes, ah, OK meansdifferent things to different people (laughter) I can only give one
percentof mytalk now (morelaughter).) I want an operator, an operatorto the rescue. My
friend Phil Benkard calls this idea a ‘Nonce function’ (Nonce means‘for the moment’)
Some APL systems give out NONCE ERROR when they’re not sure what should be
implemented or not. IBM says “We can’t do that” because nonce is pre-announcing
somethingthat’s going to be... . OK.I call these nonce functionsso I can have a function
for the momentso I can apply eachtoit, or outer product or what-have-you, and then have
it evaporate.
Here, what I do is I use the simple form ofdirect definition what I meanis J don’t dotheif-
then-else case, sure you can doit, but 1 have another way to doif-then-else and what I do is
J take a function in a character representation form, a character string. Operators always
producereal live functions so anywhere in APL2 wherewesay you can use a function, you
can use a primitive or a defined function or a derived function. So therefore what I get out
of this operator taking a data operand, which I feel a little queasy about, is a derived
function. I don’t feel so bad because the F represents a function as character. So let’s go
throughit.

81

VECTOR Vol.3 No.3

[o} 2°+y7 (F7 DD) x7C1] A Direct Definition (APL2's Lambda)[2] Ges(2z0ne'F™')/5 4 a Variable?(3) Oes(i<ppFo)/5 2 a Vector/Scalar?
[4a] F)/5 4 A String
[5] DiRT J]ect X7 * of Replace wtright
C6] Fo+er™ a SimpleC7] (Ctat=F-)/P7]*ct ¥7 ' a Replace atleft
C8] Fotery A Simple
(9) 'Oes Qer' ea '2°+',F” a Do it under trap

WhatI do is I do the error checkingfirst, as primitives must do error checking oftheir input
before they try it out, and I’read it in English as fast as I can. F must be a variable coming
in, not a function because this doesn’t apply. ThenI say if it’s over rank 1 it’s no good, it’s
got to be a string, then I say check if it’s not a string blow up.] rememberthat 5 4 is a
domain error, but I got it wrong —1 putin 5 1 and was getting VALENCE ERROR.Well,
I sit with the book next to my desk,or I could typeit in quickly to see whaterrorI get. Right
here I say if there are any omega’sin this string replace them with the nameofthe argument
— oh, I should mention,why thelittle marks nextto each one of the names? I’m trying, ina
vain attempt perhaps, to avoid name conflict, because the thing you’re executing may
reference variables, global variables, or may call subfunctions — if you have a subfunction
by the nameofX, or worseF,this doesn’t workIf] had notputthe suffix ofan overbar; now
things won’t workifyou have a subfunction F-overbar,but I’m usingthat conventionto say
“these namesI really wantto be strictly local” APL doesn’t give youthefacility to say “make
them strictly local”, so I do it by naming convention.
So finally I say take this square peg andfitit into the round hole becausethis is 4 characters
long and I’m replacing occurrences of scalars, so I encloseit, get rid of the nesting, and
enclose the other argument. Now I never do a name-classto seeif this function is monadic
or dyadic if it’s monadic there won’t beany alphas in there I don’t even have to check. The
last statement says execute the right argumentandifitfails for any reason take the error you
got whichis stored in [] ET and recordit one level higher because I may have a function
whose argument I passis not in the domain,the operator has no idea of what’s right, it
blindly applies functions, so this is very commonin operators, to say do it now and oh by
the wayifyou blow up don’treportit here, report it one level up. Just as you don’t get the
assembler language code for outer product, if you do an outer productjot-dot-divide and
you have some zeros lying around, I don’t want the code for my operators to show upin the
same way. So, how can I use this? There’s myoriginal array

Rg
3.14 ABRACADABRA 432

143
I would like to say the rank of each item, conveniently,and I sayit here

*topa’ DD” RO12
I'dlike to say de-duplicate each one: give me the nubofeach item,

82

VECTOR Vol.3 No.3

"CCwtw)etpa)/at wu? DD” R3.14 aABRCD 4321
and it works. Also, you can be the judge, sometimes I put unnecessary parentheses to
enhanceclarity, and, looking at it myself don’t know whetherit enhancesit or not. Would
you like parenthesesto the left of the quote anddirectly to the right of the DD to say that
thing in parentheses is my function? I don’t know,doesit help or hurt? (mixedreplies from
the audience).
Let me show you someother things, what you should do whenyougetstarted. This is what
Bob Bernecky said APL2 didn’t have; well maybe he’s right but with DD I can dothis
without having to define anything, so APL2 does haveit. This is the cartesian product of
twolists of things

TAPL' taLt #.(ta w? DD) *' 1 2 86 (2 3pi6)APL APL I APL 2 APL 86 APL O12
345AL AL 1 AL 2 Al 86 AL 012345

and you can see APL being paired with each item onthe right in every combination using
outer product, so now with APL2 outer product can be used any time you needany sort of
cartesian product. Doesn’t have to be a scalar function,it can be any function,andthis says
make a 2-item list, take one from the left and one from the right. Now the way you do it
without DDis you enclose each oftheleft and you enclose each of the right and you dojot-
dot-comma. Why do you need to enclose it in this case? Because you get a length error
trying to catenate things of wildly different shapes. If you have, say, character strings and
you wantto glue them togetherin every combination, just simple jot-dot-commawill work.
So that’s a pretty easy way.
Andifit will makeita little bit freer, I'll show you that you get a 2 by 4 array, which you can
deduce from the original outer-product shape rules: the shape ofthe result of an outer
productis the shapeof the left catenated to the shapeofthe right. I also find you can do
useful work. Oneof the commonphrases in mypaperis the first of jot-dot-comma-reduce
and one application I use ofthatis I do an outer-product reduction,I use that to form all the
indicesofan array using jot-dot-comma-reduce,so this does comeup in day-to-day work,
I’m not just making pretty slides.

83

IBM 6150/51(RT PC)
+————AND FOR 22 OTHER UNIX* SYSTEMS! ————

 The IBM 6150/51 is anew family of high performance 32-bit multi-user micro
computers and workstations.It is based on reducedinstruction set(RISC)

technology and AIX* *, IBM’s enhanced version of UNIX System V; andis an excellent
basis fora Dyalog APL system.

Dyalog APLonthe IBM 6150/51is fast, especiallywith the floating-point accelerator,
andthereis practically no limiton the size ofAPL objects and workspaces,
The entire range of standard IBM screens andprinters for the 6150/51is fully

supported, as are most of the common APUASCII vdus.
All Alx facilities can be accessed from within a Dyalog APLfunction and results

may be captured in an APLarray, Compited subroutines written in C or Fortran can
easily be incorporatedinto applications, and interfaces between Dyalog APLand

several IBM supported software packages such as SQL andthe Professional
GraphicsSeries are avallable.

Dyalog APL adheresto the draft ISO standard forAPLand includes manyof the
features ofAPL2. Nested arrays, and corresponding extensionsto primitive functions
and operators, greatly simplify the processingoflists and non-rectangulardata

structures. Dyalog APL containsa hostof usefu! features including a session
manager,full-screen editor, and full-screen data manager.

The IBM 6150/51 with Byalog APLis available direct from Dyadic. Prices,including
Oyalog APL, start fram around £15,000.

Forfurtherinformation, please contactPeterDonnellyDyadic SystemsLtd., Park House, The High Street, Alton,
Hampshire GU34 1EN, United Kingdom

Telephone:Alton (0420)87024(10 lines). Telex 858811

“UNIS a trademark of AT [BelLaboratones [pMa regstered traderrark of IntemationalBusinessMachines Corporationa trademark of international Business Machines Corporabon.

ANNOUNCING

THE
OEM oyow Dp
COPROCESSORFOR THE IBM PC

The Dyalog APL coprocessorallowslarge scale second-generation APL applicationstobe developed and runon aniBM PC or plug-compatible computer.

The DyalogAPL coprocessorconsists of.
GE a 32-bit coprocessor board based on the NS 32000 chipset, hardwarefloating-point, up to 4Mb ofon-board RAM, and 16Mbofvirtualmemory space.

a complete implementation of UNIX* System V including C, £77, Fortranand Pascal.
a complete implementation of Dyalog APL.
softwarethatintegrates the Dyalog APLcoprocessorsubsystem into thePC-DOS environment.
a Dyalog APLcharacter generatorand set of keycapstickers.

The Dyalog APL coprocessorIs easily installed in an IBM PC or plug-compatible systemwith a standard BIOS anda hard disk. The board simply slides intoa singleslotin thePC chassis, and the softwareis installed via an interactive menu.
The Dyalog APL coprocessorprovides both DOS and UNIX SystemV environmentswithout compromise, Oata can be shared between the two environments, andasimple keyboard command switches betweenoperating systems.BOS commandsandfiles can be accessed directly from Dyalog APL, and Dyalog APLcan be run directly from DOS.
The Dyalog APL coprocessor supports very large APL objects and workspaces,toamaximum of nearly 16Mb; and floating-point performanceIs up to3 times faster than an IBM PCAT.

Prices,including a multi-user Dyalog APLlicence,start from around £3,000.Acomplete ready-to-run system with a fast 40 mb diskand tape back-upisalso available for under £7,000.
Forfurther detailsandordenng information, pleasecontact Peter, ‘DennellyDyadic systemsLtd., Park House, The High Street, Alton,

 Hampshire GU34 TEN, United KingdomTelephone:Alton (0420187024 (10 lines) Telex 858811
TBM esa registered vademark of intenavonal Business Machines Corporation “UNIX isa trademark of AT & T Bell Laboratones

VECTOR VolL.3 No.3

Let me show you another application of DD which I do useall over the place to such an
extent that I'd like to have some built-in facilities that will do this without my having to
carry around DD.I’m not sure how that would work,but I’d also like to do withoutthe
quotes, I’m not sure how that would work but there are proposals. In teaching APL Ken
(Iverson) suggests doing outer productsto see tables.

“EO L2e.% 0123
171171
1 00 6
21124
1624 8
Maybe somebodyelse asks where do those answers come from. You'dlike to trace star. So
you'dlike to have a variant ofstar, which shows what’s going on as you do it. So I can use
the simple recognition method and I say quote-quad DD. Well quote-quad is a sort of
funny input— open the keyboard andlet me type; and I sayall right do the operation and put
the answerthere, show an assignment,puttheleft there andtheright there and youget this
beautiful traced display

“1012 +.(0 DD) O12 3(atw)tetia tet wo
l* "be 0 “Le “De 1 Le “b*# 2 “be “1*3
le*easro O*# O41 o+O*2 a+ 0 * 3
1+*1+0 Be lei 1* 1 * 2 be le 31+24* 06 2e*2e"1 4+ 2" 2 B+e2*3
Never do my fingers leave my hands. Oh, now I know wherethey come from
Looking clockwards again — how much time— Jess than 10 minutes — ah,I see - I thought
you were going to say less than 10 nanoseconds. I think two more topics. One of the key
things I haveto do, If I write a program that’s goingto beinserted into the interpreter, as a
new function, maybe experimentally (wecall it PDF — pre-defined function or primitive
defined functions) I have to be as severe as a primitive function and fully check the
arguments.

a Empty
A Simplea Integer
A Simple Charactere+0pcxX A Numeric

szet0pcx a Character=4DEC'ppxex! 4, Non-Complex

So I havea set ofidioms for domain checking and ofcourse common oneslike this everyone
knows (empty), Simple — is the array a simple array? Thisis integer, assuming that you
already know yourarray is numeric,the floorofall integers is the same array. Here’s a
simple character one. Thenthey get massive. X thereis an array ofany depth rank shape or
whatever entirely numeric. Now I found that I could write this over and over again without
flaws butit doesgeta little tricky. Also all character; here’s the mosttricky oneof all — non-
complex — meaning X is numeric of any depth rank and shape, but J don’t want any
complex numberssneakingin there. What I do is use[] EC, and rankis simplyto say look
1 don’t want WS FULL on my [J EC,so rank gives you that single number or maybeit
won’t work but, maximum is not defined on complex numbers, because which is bigger:

86

VECTOR Vol.3 No.3

2J93 or negative-15J22? Well, we could havesaid you take the magnitudefrom the originand return the larger one, instead we said we don’t know whatthat means. And so thatblows up the maximum, butthis is bad because if somebody comes along and says thismeansthis, then this won’t work. So that’s the quick wayto find out non-complex.
I don’t like doing this, because now I know whatto say; I’d rather say the word EMPTY orthe word SIMPLEand so forth. I don’t like to do these phrases because I can make amistype, I can leave outthis enclose, and now it works sometimes,I'd rather just say this.So, how do you do this? You can just say it. The nice thing about programming languagesis that if you don’t like a facility that’s there you can abstractit by making a program. Thisis whatI call a ‘good’ program (I say goodin quotes becauseifyou’re not making a programthat you wantto bejustlike a primitive andreject all its arguments you don’t haveto be soextreme)

HeaderA Abstract
® Prolog
Argument checks A CommentsABody a

You have an abstract, a one-line abstract; a prologue saying don’t dothis withit orthat, ormaybean example; then you do argumentchecks, than you have codethat actually doesit.So let me give you an example of why you might wantto do this I’ve purposely chosen astupid function to do. Now COUNTmeansin origin 1 iota-N; it’s so simple even in originzero you don’t want a subfunction.I’m showingthis to emphasize that argument checkinghelps. So I test it like a good programmer ~ COUNT3 andI test it again, how aboutsomething bad and you get an answer
Co} z+counTt nCll] a First N counting numbers[2] Ze4+\Npl

COUNT 3123
COUNT 2 3123123

Nowthat may not be desirable; we wantto say LENGTH ERROR,or DOMAIN ERRORor some such message. So how do I do it? OK I’m a thoroughperson,I'll go through andput the checksin.
Co} z+counT xCij a Firet N counting numbers[2] QESs(~1=x/pN)/5 3C3] Ges(~t2en)/5 4[4] Ues(~0=+0pn)/5 4C5} Qes(~l=tn)/5 4[6] GEs(~nz0)/5 4[7] ze4\Npl

87

VECTOR Vol.3 No.3

COUNT 3123
COUNT 2 3

LENGTH ERROR
COUNT 2 3A

Do you haveany uneasyfeelingat all aboutthis function? (laughter) Yeah,evenifyou don’t
care aboutit very much, I look at this and say Where’s the code that actually does it?
There’s several nice things that I can say aboutthis, the error-checkingpartofit is in the
beginningall with [] ESs, so I could work out a workspace withall the checks in and then
run a processing function that takes them out once the thing works. So we have in APL a
strongly-typed language if we want a strongly-typed language. And you also notice that
these phrases aren’t horrible error-trapping phrases, but you could make a mistake, you
could do this and put 1 less-than depth and get wrong;I do try to do this as NOT,this
meansthatif it is NOT a single then blow up with a length error.If it’s NOT simple blow
up andso forth. Asforefficiency, I don’t care, NOTis very very fast, especially NOTon1-
bit scalars. In fact, I was showing off APL PC 2.0, with a 30,000-elementbit vector...how
many more minutes — I won’ttell that story.
So this worksjustlike the primitive would work with different argument. How can we doa
little better? Well, look, I can actually apply IOTA,I can applya related function that has
the same domain,andif it blows up for any reason I can usethe error we’re going to code.
So thestyle is this, now it’s an admittedly bad example because COUNTis trivial, it’s using
IOTAto check essentially IOTA, but I’ve used this in good cases. 1 proposed a new
function whose argument treatment and formsis just like compression arguments and
forms. So how doI test that they’re OK?I try compression on the arguments,if they blow
up I say No good. They’reeasy to do, actually they’re quitefast, thereit is. I could make one
morestep,ofcourse this was not mypoint, but I can do it with IOTA,andI wantit to accept
any single matrix or scalar or vector, so I can doit like that, and now at this point we spit
back the errors, even the one — resourcefailure, we spit back just like a primitive thatfails
to work,
Co] Z+courT N
Cll a Firet N counting numbers(23 ‘Oes OgerOa '+0pi1.N?[3] Zes\C.N)pl
Nowthereis a better way, and a fast better way.

88

VECTOR

C0] z+countT N;Oro
C1] a First N counting numbers(2) Oro+1
C3) "OES Qett DEA '2+1,N!

COUNT 3
123

COUNT I 1 Ip4
1234

COUNT ‘OF MONTE CRISTO!LENGTH ERROR
COUNT ‘OF MONTE CRISTO!A
COUNT 2235

WS FULL
COUNT 2%35A

Finally the function COUNTisperfect
1. Correct output given properinput.
2. Rejects all improper input.
3. Reports resource failures.
4. Easy to understand. *
5. Efficient. **
(* Some may argue aboutthis)
(** Usually overemphasized)

Vol.3 No.3

DPve madethe twolastpoints ‘Easy to understand’ that’s heavily subjective, J tried to makeit easy to understand. Efficient? — well, probably overemphasized. ManytimesI find mywatch doesn’t go down to nanoseconds so I’m notsureifit’s inefficient or not. There isanother wayto doit. I could write helper functions — I’ll show you the helper functionslater. Now you dothis, and you say Whatthe heckis this PL/I doing in my APL code.
[o} z+counT w
{ll a Firat NX counting numbera
C2] DECLARE NONEG INTEGER SINGLE SIMPLE ¥C3} ze4+\(W)pl

COUNT 3
123

COUNT 2 3
DOMAIN ERROR
COUNT(2] DECLARE NONEG INTEGER SINGLE SIMPLE WNA A

COUNT “2
DOMAIN ERROR
COUNT[2] DECLARE NONEG INTEGER SINGLE SIMPLE NA A

counT 1 (2 3)DOMAIN ERROR
COUNT(2] DECLARE NONEG INTEGER SINGLE SIMPLE WNA A

89

VECTOR Vol.3 No.3

except for the last name which is the argument nameall of these are monadic functions;
exceptfor the DECLAREfunction, alltherest take their argument and immediately return
it, but before they dothat they check to makesurethatit’s satisfied. If it’s notsatisfied they
reportan error and what happenshereisthat this is not a single numberso you notice that
the right-handcaretpoints to the wordthatis offended by that argument. Now ifeverything
is clear the N tumbles through from function to function, of course DECLAREis a
monadic function that says Oh, we got there, it does nothing. So you can write a very
wordlike form.
Theothernice thingis that if I put the word NONCOMPLEXin andlater on we change
maximum so that it works with complex, then I can change NONCOMPLEX without
changingthis. Theothernicethingis thatI get everything debugged here, and I don’t want
to carry aroundthese helper functions with me, then I just go through and put a lamp here
and replace that DECLAREand now there’s a nice comment in ENGLISH.

|

also thought
this would be wonderful for the compiler people, becauseifyou wrote your programslike
this they could specifically recognizea line starting with DECLAREandnowthey know
what the argumentsare, whichis one of the hard thingsto do for a compiler.
Let me sum up. Finally one morestepin this. You notice that we showedtheinside of the
code. Finallyafter we’re sure that everything works we wantto say like Peter suggested,
Don’t show methat, reportit like a primitive, Wecan finally do this with 1] FX (] CR

01 0 6 OFX Ocr ‘count’COUNT
COUNT 3

123
COUNT 2 3

LENGTH ERROR
coUNT 2 3A
coUNT '7t

DOMAIN ERROR
COUNT "27A

Now we'll put up at the endafter I’m donethe functionsthat do that. I think that’s far more
readable and I am an APLbigot and J preferto sayit that way than say it another way. You
don’t have to make any extensionsto the language,so I’ll give you these functions, they’re
one-liners after the comment.
Let meleave you with a quick whizbangif I may. Thisis one that wenoticedI think, well
Roy Sykesgets the credit for this perhaps. This says Is A and B the sameto 4 significant
digits?
“Az (YW) AB
and it workslike this: 1 can rewriteit like that
ef"4 Ww AB

90

VECTOR Vol.3 No.3

which says this
a/ (740A) ("4yB)
and now you cansee,this
eCava}E(4B)
and match always gives back a simple scalar so you don’t need the enclose
C4vade("4yB)
and obviously this matchesthe arrays: are they all to 4 digits? Butif] don’t want to check
that, I want to say How manydigits do they match to? and so now whatI needis to say “forD, I want to know D.”
(-D)e.(¥") AB
I could do this
(-l)e.Cy7) AB
I could dothis
(-2)e. (47) AB
I could dothis
(-3)ze. Cy") ag
until they finally match, but I havea list ofnumbers ofdigits, like 1, 2, 3 and so forth, solcan do it with a whizbang, I don’t call it an idiom it’s not common enough,I use the AllRight, and match-dot-format-eachis the function that I do All Right with and now what do1 do? Tofind out how manydigits? Just sum them up

C-#\18p2)a.C¥7)” cA B11111¢0000000000000
+/(-9\L8pt)s.C¥")7 cA B5

so let meleave you with somethingthat. . sometimesit hurts me whenI try to think. . . buthere is an APL2 whizbang.
+7ANC-9\99p1 E.C97)7 CAB
I figure 99 digits: all systems would poopoutbefore 99 digits. So now,the and-scanthereisto say take the formatandifyou get a oneafter yougetthefirst zero then don’t considerthat.I showedthis at New York City SIGAPL meeting and somebodysaid “Oh my goodness”, Ifelt that person was representing the computerthis was run on.(laughter) I will. . . to you,this does turn on the error-conditioning. But you haveto realize this, I don’t mind howmuch CPU timeis used up, becauseifyou don’t use the CPU timenow,it’s goneforever.(Laughter)
O.K. (Applause)

91

VECTOR Vol.3 No.3

BACK NUMBERSOF VECTOR
Back numbers ofVECTORareavailable from the BCS. Ifyou don’t have them all,
now is the time to complete your collection. Apart from the technical contents,
every issue includes book and productreviews, letters, news and a competition.
Send in your order before they run out. These will one day be unobtainable
collectors’ items, like the early issues of Quote Quad.
Theprices inclusive of postage and packingare as follows:

Prices in PoundsSterling
UK Surface Airmail

(inc. Europe) (outside Europe)
5.75Single issues 3 : .

Volume 1 10 14.00 22.00
Volume 2 10 14.00 22.00

Please send sterling cheques or money orders (payable to The British APL
Association) to the Treasurer:

Mel Chapman,12 Garden Street, Stafford ST17 4BT.
Don’t forget to include your name and addressandto be clear which VECTORs
you want.

92

VECTOR VolL3 No.3

Introduction to General Articles
This issue of VECTORcontainstwoarticles of a non-technicalnature.
Thefirst article continues our extracts from Anthony Camacho’s series Steps to a betterBASICfirst published in Datalink. This series explains someofthe concepts behind, andadvantages of, APL to an audience brought up on the staple diet of BASICavailable onmost microcomputers. Anthony’s article is reprinted by kind permission of Datalinkmagazine,
Manyofyou will remember Graeme Robertsonforhis erudite and entertaining offerings atanumberofBAA meetings. Graemerecentlyleft I P Sharp Associates to work for a PhD inparticle physics at Durham University, but before he left he held a seminar,intriguinglytitled ‘APL3’. (Maybesoon we'll reach APL86). Graham Parkhouse attended the seminar,andas well astelling us aboutit, philosophises on the future directions of APL.

93

Inevery industry,

there has to be
a leader

Personal APL — Our version of APLfor the Apple Macintosh,Atari ST,
Commodore Amiga and Sinclair QL brings full-powered APL at

the lowest possible price.
PC-APL — MicroAPL supplies STSC’s APL*Plus/PC with full backup,

support, and ancillary software.
Departmental APL — Forthe ultimate in performance and power,our
multi-user APL supermicros can handle eventhelargest applications.
Company-wide APL— With unrivalled experience in networking and
communications, MicroAPL can offer a comprehensive APLfacility

linking PCs, supermicros and mainframes.
Consultancyin APL — MicroAPL’s commitmentto quality doesn’t stop at
our hardware products. Our uniquely experienced team of APL consultants
will undertake any APL software project, from one day’s help with a specific

problem, to major team development.

DOODLIMIIICIRION_|LiJAlPIuLI
MicroAPL Limited

19 Catherine Place, London SW1E 6DX
Telephone: 01-834 9022

VECTOR Vol.3 No.3

Steps To A Better BASIC
by Anthony Camacho

Everything AND thekitchen sink
or how to take it with you when you go

When you go caravanning,instead oftaking tents out of the bootof the car and erectingthem in the pouringrain,it seemslike luxury.It’s not the same,of course, as doing thingsthe hard way,butit does makelife easier.
The COBOLor BASIC wayoftaking things with you is to put them into constants orDATAso you unpackthe luggagefreshly on every run. Thisis fine for a data processingapplication, butless than ideal when it comesto programming.
That calls for easy ways to handle parts of the program such as subroutines. A COBOLlibrary is easy, Most BASIC methodsare not. COBOLwriters can copyfrom thelibrary atcompile time, so there is no problem with clashesof line number. BASIC programmershave to write their standard subroutines with high line numbersso that they can be mergedwith any main program.
Programmers in most BASICs do not havethefacility to call subroutines by nameso theyget to knowtheline numbersofthe main routines andofcourse they get used toa particularline number doing each of the commonthingsthey wantto do. For example GOSUB 9873may display M$ centred online 21 flashing with three beeps. The main program can’t betested without the subroutines; after they are mergedit can’t be renumbered because thatwould moveall the subroutine addresses.
Where BASIC does have an advantage over COBOLis in the programmers’toolkits whichprovideall kindsofuseful debuggingaids. In microcomputersthis may be held in ROM sothat it is always available. This brings such joys as the ability to display thelist ofallvariables and their current valuesor to trace a variable’s changesofvalue.
In APL onthe other handit is easy to take things with you. Indeed thatis the default. AllAPL workis donein a notional “workspace” whichis a blockofreal or virtual memory. Theworkspace holds your bits of program (which are all in the form of procedures or“functions” as APL calls them), It also holdsall the variables that have been assigned avalue. At any time you cangeta sortedlist of variables with the command)VARSora listoffunctions with)FNS. The workspacealso containsthe stack, which recordsall the returnaddresses for functions in progress and such “global variables” as the printprecision, theprint width, the comparison tolerance (yes APLfinds a million millionths equalto 1), theseed for pseudo-random numbersandso on. If you interrupt the execution of an APLprogram and)SAVEthe workspace, everythingis stored, and branching to the line counterafter reloadingit will carry on exactlyasif there had been no interruptatall.
You can copy functions andvariables into your workspace from another workspaceifyouneed, so any usefultools (such asa full-screen editor or a format controlled listing function)can be copied when needed and either kept in the workspaceor erased from it beforeit issaved.

95

VECTOR Vol.3 No.3

This approach removes most ofthe pain of holding thelatest run date, masterfile identity
and any current parameters from one run to the next — they are simply stored in the
production version of the workspace which automatically can save a new version ofitself
each time it runs. There is no need for those troublesomebits of program to store such
details in one of the masterfiles in a place where they will be accessible from the beginning
of the next run.
APL provides filing systems — and often it isn’t practical to hold all the data in the
workspace.If the records are extremely large it may even be necessary to read them in and
process them one at a time. But for most purposes the workspacewill suffice. Even on
microcomputersquite respectable amountsofdata can be held withoutbothering withfiles.
My BBC microcomputera version ofAPL runningand the workspacelimit is 400K— about
the size of a respectable book. On the IBM PC workspaces of up to half a megabyte are
common, and with the 68000 they can beas large as you need, upto the addresslimit of 16
megabytes.
In short the workspaceis ideal for programmers. It saves trouble, simplifies manipulation
of programs and data, and assures consistency between runs. Why doesn’t any other
language have one?

APL People Limited
- the Matchmakers

Wewill be pleased to match your Company's need for permanent or
contract APL people atall levels with the wide-ranging skills of those
available - or to recruit them for you.
For APL people wanting permanent or contract consultancy and
programming work we offer an advisory and placement service to
match your requirements to those of a suitable company.

Forfurther details contact
Valerie Lusmoreor Jill MossBath (0225) 62602

APL People Ltd., 17 Barton Street, Bath BAI 1HQ

96

VECTOR Vol.3 No.3

Timeto think about the future directions of APL
by Graham Parkhouse

Notlongafter returning from APL86 in Manchesterthis July, I received aninvitation toaone-day seminar called APL3 — a seminar on the future directions of APL. Now 1 amacomparative new-boy to this APL terminology; APL86 was the first annual APLconference I had been to. From the conference I had heard so much about APL2 andsecond generation APLsthatI quickly discerned the implication ofthe APL3in the title tothe seminar. Being an engineer, I am a practical man who might be moreattracted to APL3were he persuaded that the number attached to the APLreferred to the language’shorsepower. But, being theoretically inclined also, 1 am fascinated by APL as aphenomenon andneeded no encouragementto join a discussion onits merits andits futuredirections.
T wantto tell you

a

little about the seminar and to share some ofmy thoughts about APLdevelopment, but before doingso let us consider some practical issues surrounding secondgeneration APLs. By “second generation APL” we mean an APL implementation thatincludes nested arrays, i.e. arrays of arrays. With the nested arrays come many newprimitive functions and operators. Additionalfeatures of most second generation APLs arethefacility for using primitive operators with user-defined functions and the facility foruser-defined operators. There is no generally accepted standard for second generationAPLs, and all those currently being used do differ significantly from each other. Thisdivergence in the development of APL is weighted by IBM’s presence; due to theirinfluence, APL2, which is their particular dialect, is likely to become the industrystandard. What is more, “APL2”is already in popular use as the generic namefor secondgeneration APLs, just as “APLI”is being used as the generic nameforfirst generationAPLs. So the name “APL2”is likely to continue to have dual meaning in the same wayaswell-known brand nameslike “Biro” and “Hoover”.
I suspectthatthetitle of this seminar I am goingto tell you about was designed to get ourattention OFF APL2, being organised asit was by 1.P.Sharp Associates, a company whohave done so muchto promote advanced computer systems and who,in the process, havepromoted APL. Their own Sharp APL was thefirst commercially available secondgeneration APL.. But the seminar was not about Sharp APL; Graeme Robertson, ofI.P.Sharp’s education section, presented a survey ofAPLprinciples which embraced moreaspects of APL than I had ever thought of. Graeme obviously appreciates structure,because he had cleverly organised the whole day’s contents into a special ternary treestructure, subdivided tofive levels, each subdivision containing three items. This resultedin 3*5 pieces of information to be delivered in three hours at an average paceofonepieceevery 45 seconds. Youwill be glad to know that he wasvery flexible in his delivery, takingquestions and diversionsin his stride, but he had to triple his rate after lunch. (Note thefactor of three.) But he managedit so well that we wereable to enjoy the virtuosity of hisdelivery as well as the quality of the content.

97

VECTOR Vol.3 No.3

What did he say? He talked about parts of speech, cells and frames, parsing rules; he
introduced meto the concepts of potency and weights of operators; we discussed direct
definition of functions and covered some of the new primitive functions described in
Iverson’s Dictionary ofAPL. Graham went on to demonstrate how APLhas been used to
expressall the well knownscientific theories most concisely, and tried to demonstrate that
APLwas relevant to many of the popular mathematical techniques such as predicate
calculus.
Tt wasat this stage that I realised that we werenotgoingto be introducedto the nub ofAPL3
(in the same way as nested arrays are the nub of APL2). Instead Graham gave us an
illustrated glimpse into topics of current research interest: data representations, tensor
analysis and functionalanalysis, finishing with an introductiontofractals, a new branch of
mathematics concerned with hierarchical patterns. He emphasised the importance of
computer graphics, and suggested that future usage of APL would be moregraphically
orientated. I was challenged by the need for mathematicaltools that will help us understand
and manipulate the data supporting these concepts, tools as elegant as the concepts
themselves. Can APL meetthis need?
Whocan be sure? Whatis certain is that practitioners of APL are breaking new ground.
APLis uniquein beingthefirst, the most highly developed, and the mostused executable
analytical notation. Being a symbolic analytical notation it matches our thoughtprocesses
which are themselves symbolic, and being executable it gives us the benefit of
experimentation; in other words a mighty tool for intellectual explorers.
I cannot forget Phil Smith’s presentation to APL86 called A Programming Language for
Thoughts and Dreams. Those who possess the Tutorial Volumeofthe Proceedings can enjoy
experimenting with the random dot patternillustrated in his paper. Theillustration is a
collection ofblack, red and blue dots randomly distributed overa rectangular area. Looked
at normally there is no evidence of any pattern whatsoever within the picture; the
rectangular boundaryis the only shape,andall dots seem evenly distributed. But looked at
through the coloured glasses provided, rows of steps are apparent, with the lowest steps
along the top and the bottom row,rising to higher steps towards the middle row, which
itself is the highest step. Withoutthe glasses there is no evidenceof these steps. But] have
not mentioned Phil’s purpose behind the demonstration which has so impressed me. This
wasto demonstrate the workingofthe right-handside ofour brains. When youfirst look at
the picture throughthe glasses, nothing happens! You haveto studyit for several minutes
before the stepsstart to take off into three dimensions. During these several minutes your
brain is matching the dots seen by one eye with those seen by the other (because with the
glasses each eye is seeing a different pattern) and decides that the patterns would be
identical if they were not on flat piece of paper but on rowsofsteps. Do not worry if you
do not understand my explanation;the pointis that our brains perform a very sophisticated
calculation without us being consciousof what it is. We do not know whatourbrains are
doing, but they doit, and it takes them time.

98

VECTOR Vol.3 No.3

Howoften have you stopped grappling with a problem on your mind and turned to other
things, when suddenly you present yourself with a solution to your original problem?
Inspiration? Yes, but probably onlyafter the right side of your brain had done a lot more
work on the original problem while you were consciously thinking aboutthe next one.It
does seem that the right side of the brain is a parallel subconscious processor with theleft,
more consciousside. I am not suggesting that weall have split personalities; both sides have
been designed to work harmoniously together as a team, probably with the left side
dominant. Following Phil’s recommendation I got hold of Betty Edwards’ amazing book
Drawing on the Right Side ofthe Brain (see reference) ~ a book that has not only taught me
about how to draw, but which has demonstrated to methe potential struggle between the
two halvesofthe brain. She explains why mostofusare so bad at drawing;itis because of
our impatience. In our impatience theleft sides of our brains keep guiding our hands to
draw stereotyped symbols for each familiar object, such as the sun with its childish rays;
when weinhibittheleft side, and she explains how to do this, then theright sideis given achanceto display its naturalartistic ability. With practice we can encouragetherightside todo whatit is designed to do,andstop theleft side from being over-dominant.
What has this got to do with APL? A great dealif, as I suspect, our understanding of
mathematics is shared betweenthe twosidesofour brains. Then we should expectto need
timeto assimilate ideas, time to gain sufficiently deep understandingto beable to recognise
the future directions ofAPL. Throughtheir pioneering, Ken Iverson andhis collaborators
have given us a most valuable means of expression with which we may experiment and
learn. APLI has modified the way manyofus think. Developments in APL]will lead us on
further, but I believe that what we need most is to use what we have, at the same time
gaining deeperinsightinto the problemsfacing us. APL developmentis a time-dependentprocess; dependenton thetimeit takes our subconscious mindsto assimilate new ideas,which should not be hurried.
Reference:
Edwards, B. Drawing on the right side of the Brain].P. Tarcher Inc., Los Angeles.

99

16 BERKELEY STREET - LONDON °» WIX 5AE

COCKING & DRURYLTD.
THE APL PROFESSIONALS TELEX: 23152 MONREF G

TELEPHONE: (01) 493 6172

 COURSES

APL Fundamentals

Jan 20-22 3 days
APL*PLUSPC Intermediate

Jan 26-29
APL FundamentalsFeb 10-12
APL System DesignFeb 16-iS
APL Fundamentals‘Feb 24-26
APL FundamentalsMar 10-12
APL Fundamentals

Mar 24-26
Discounts ore available to companies making morethon one bookining ct @atime:
Numberof Totalbookings Discount2 £50 fie £25 percourse)
a £90 (je £30 per course)4 £140(le £35 percourse)

4 days
3 days
4A days
3 days
3 days
3 days

£375.00
£525.00
£375.00
£595.00
£375.00
£375.00
£375.00

Forfurther information, pleasering Liz Swann on01-493 6172,

VECTOR Vol.3 No.3

TECHNICAL SECTION
This section of VECTORis aimed principally at those of our readers who already knowAPL.It will contain itemsto interest people with differing degreesoffluency in APL.

101

VECTOR Vol.3 No.3

Technical Editorial: Interpreters for Debuggers
by David Ziemann

Those of us who use APLto develop applications already know that the language offers
remarkable reductions in implementation time when compared with other languages.
What effect does using APL have on the other phases of system development, and in
particular, how helpful is APL during debugging? Let us remind ourselvesofthe various
stagesin thelife ofa application. Broadly speaking the application developmentprocess can
be broken downinto thefollowing ninetasks:

Determine requirements
Specification
Design
Implementation
Testing
Debugging
Documentation
Maintenance
Modification

Notask is truly independentanda definitive order should not be implied - documentation
for example, may well be developed in parallel with other phases.
Direct use of interpreter facilities is only strictly necessary during the implementation,
debugging, maintenance and modification phases, although APL mayalso be used to help
in other ways. (An APL prototype for example, can be considered as a specification for a
final system). Maintenance and modification can be viewed as similar activities to
implementation, where APLis used to build, correct and extend programs. When APL
programsgo wrong,theuserstill remains in the APL environment,andso the interpreter
is necessarily used during debugging. The debugging process, however, does not usually
require the construction of programs, but more often depends on the useoffacilities
available in immediate execution mode. The ability to view the SI stack,to look at the
namesandvaluesofvariables and even to changetheir valuesare all debuggingtools which
are ‘naturally’ available. Trace and Stopfacilities are provided in most APLsas system
functionsor via the T-delta and $-delta syntax. Trace and Stop seem howeverto be the only
tools available explicitly for debugging,and Stop has even found otheruses outide this area.
Dothesetypical debuggingfacilities match upto the typical problemsthat one experiences
during debugging? Thesort ofquestions that we wantto answerare; “A spurious | appears
on the screen while my system is running. Where wasit produced?”, or “Where on Earth
did the variable <flag> get set to 172”, or “How did this simple expression produce this
strange result?”, or “My system accidentally leaves a variable <I> as global. In which
function did I forget to localise it?”. Although the answersto such questions may usually be
determined by a combination of esoteric programming combined with trial and error, the
interpreter does not makeit easy for us.

102

VECTOR Vol.3 No.3

APLinterpreters do not appearto be improvingin this area,in fact there is evidenceto the
contrary. Well over ten years ago Xerox’s Sigma APL included the system commandsJOBSERVE and)CATCH.)OBSERVE caused the subsequently executed APLexpression to be ‘observed’, ie for every intermediate result to be displayed undera caretline indicating the progress at each stage.)CATCHallowed the programmerto trap theassignmentofa variable. The command)CATCHXVIA FOOcaused the function <FOO>to be executed wheneverthe variable <X> wasassigned a value. Very useful indeed, butI’ve neverseenit anywhereelse since. It might be possible to providethis facility in systemsthat support exception handling by considering assignmentas a type of exception.
Otherdesirable debuggingfacilities include the validation of newly defined functions for
simple syntactic errors, global references and assignments and even clashes between localnames such as labels with other names. Theability to ‘travel’ through the SI stack
environmentsto examinetheir local contexts would also be valuable.
One objection to the provision of these, and other, debugging tools is that they result in
unacceptable performance penalties during production use.If this is true, then solutions
must be found which enable debugging aids to be delivered to the programmer. Oneapproach,particularly in the PC environment, might be to provide two interpreters — one
which includes a whole family of debugging facilties, and one without the features, the
production interpreter. Which interpreter is used could be decided by an APLinvocation
option, or perhaps moreflexibly by running an ‘interpreter generation program’ which
would produce one ofthe twointerpreters asits output.
Itis clear that implementers have concentratedtheirefforts in encouraging the programmerto reduce the cost of the implementation phase ofa project by providing high-performancetools such as nested arrays, full-screen I/O facilities and exception handling, amongothers.Nowis the timefor them to similarly enhance our debuggingtoolsso that savings can alsobe madein this area.

103

VECTOR Vol.3 No.3

Technical Correspondence
Watch Your Step

From Neil Mitchison 17 July 1986
Dear Editor,
I enclose a submission for the ‘Watch Your Step’ competition. I am afraid thatat presentIhave nofacilities for printing APL, so I have had to write out the function in longhand.HoweverI hopethat will not give Dave Ziemann too many problems. I havetested thefunction on Version 2.2 of Siemens APL, running on a Siemens mainframe (whichis in facta 360 lookalike).
I thinkthe codeisfairly explanatory; while the numberoflines could be reduced,it wouldbeat the expenseofclarity, in my opinion. The samegoesfor reducing the numberoflocalvariables.
Obviously the problem wouldbetrivial in a nested-arrays version.
Yourssincerely,
Neil Mitchison
Bremlaan 55
1900 Overijse
Belgium
(Editor: Thanksforyour letter Neil, and thanksalsofor colouring the zeroespink inyour entry —it would otherwise have been quite difficult to distinguish them fromthe letter Osin yourlocalvariable names! Theresult ofthe Watch Your Step competition appearslater in this issue.)

APL2 bugs

From David Piper 10 October 1986
Dear Editor,
Some APL2bugsto add to your (no doubt extensive) collection. All the below encounteredin APL2 1.2.
1. EDITOR 2

Inserting lines after line 7. Lines N.1, N.3, N.5, N.6 and N.8 are fine . . . but try
N.2, N.4, N.7 and N.9,and theresultis a definition error. The moredigitsafter the
decimal point, the more confusing the rules get. See listing 1 for an illustration.

2. Assember Function DAN
Bugordesign feature? Adjacentdelimiters do not resiittin itemsofzero length — the
itemsare omitted (listing 2). >

104

VECTOR Vol.3 No.3

3, APL WSID
Commandof the APL2/TSO interface returns a three row array, first row containsthe WSID,the second the time stampofthelast save and thethird the userid oftheperpetrator of the said)SAVE.If an object is copied from another WS, the timestamp anduserid are changedto that of the WSfrom which the object was copied(listing 3).

4. APL QUIET
Command of the APL2/TSOinterface is documented as stopping output to theterminal until a prompt for input is issued or immediate execution mode is re-entered. APL errors and STOP messagesturn the quiet modeoff (listing 4).

Atthe currentrate of discovery, more next time!
Yourssincerely, Listing 1. Editor 2 Definition Error

i Cel¥ TEST.2 p: 8 14D.B. Piper Co] restRainham, Kent. Ci] some Test text(2) some TEST TEXT[3] SOME TEST TEXT[4] SOME TEST TEXT(51 SOME TEST TEXT(632 SOME TEST TEXTC7] SOME TEST TEXT£8] SOME TEST TEXT(7.1] THIS LINE WILL BE OKDEFN ERROR(7.2] THIS WILL GIVE DEFN ERROR
Listing 2. Assembler function DAN

YCLEARCLEAR WS3°11 DNA "pant1 JCOPY 1 DISPLAY DISPLAYGSAVED 6,06.1986 8.59.09 (GMT)oe” 84? DAN NITEME/ITEM2// ITEM?5 55A THE NULL ITEM IS EXCLUDED3.11 ONA ‘cant
oe” CO/ eV ITEME/ITEMZ//1TEM?*) CAN "ITEMI/1TEM2//ITEM?!55 0 5A THE NULL ITEM 18 INCLUDED

Listing 3, APL WSID being corrupted
JLOAD TESTINGSAVED 28.07.1986 9.25.57 (GMT)
JHOST APL WSIDTESTING28.07.1986 09.25.57v500003TSOCO) YCOPY ROBLSAVED 22.09.1986 10.26.39 (GMT)JHOST APL WSTDTESTING22.09.1986 10.26.39V50G015TSO(0)

105

VECTOR Vol.3 No.3

Listing 4, APL QUIET turned off by stop message
YTEST(OIY

{0] TEST
C1] O+*BEFORE QUIET’£2] RC*+aTSO 'APL QUIET*{3] RC+RC,ASTACK™' SIN STACK''' ')WSID! t+OLct[4] Q+'AFTER STACK CMD, BEFORE STACK RUN’(5) saTEstT+10[6] 10:5aTEST+10(71 O+'aFTER STACK RUNT
[8] # The only message generated by this function should be:(93 a BEFORE QUIET (from line 1).92.10.1986 12.50.58 (GMT)

TEST a NOTE: Comments added after execution,
BEFORE QUIET aA + This message is OK

A + Where does thia line come from?TEST[6} A + Quiet has been turned off
IN STACK A + Stack is run
1S CLEAR WS
AFTER STACK RUR a + Function restarts

RC000 90
And some more!

From Colin Jackson 10 October 1986
DearSir,
I havenoticed the following odd behaviour of APL2 release 2, running under VM:
(AB) +12
assigns | to A and 2 to B as expected. However,
(A (BC) DD + 1 (232 4
sets A to 1, B to 23, C to 4, and leaves D undefined. Maybe aSYNTAX ERRORwould be
better!
Yourssincerely,
Colin Jackson
Cocking and Drury Ltd
16 Berkeley Street
London W1X 5AE
(Editor: VECTORwillpublish details ofany otherAPL bugs that our readersdiscover, so dolet
us know ofany nasties youfind. Surely APL2 can’t be the only APL system with bugsin it?)

106

VECTOR VoL3 No.3

Competition Result — Watch Your Step
by David Ziemann

This time the challenge was to write a function STEP that produces a matrix of ‘step’
vectors from its argument, a three-column matrix of start, stop, and step values. For
example:

CenI+5 3p10 27 5,80 100 20,113 100 3,78 “3 2,71 “32
10 27 5
80 100 20

113 100 3
“8 73 2
“173 I

0 STEP MI
10, #15 20 25 080100 Go 0G @

113 110 107 104 101“a 76 “A 0 01 2 3 09 0
Theleft argumentis a pad value for use in cases where a step vector contains zero,as in:
a3

“6 6 2
“2.2

C+M2+3 3p8 “3.1.76 6 2,52 21
1
199 STEP M2 oo.

8 7 6 5 4 3 2 Lt G1 72 736 7472 0 2 & 6 99 99 99 99 99271 0 1 2 99 99 99 99 99 99 99
The competition attracted fourteen entries from Australia, Belgium, Denmark, West
Germanyandof course the UK. (What happened to our US and Canadian readers?). The
entrants used eightdifferent APLsto codetheir solutions, most ofthem on PCs and micros;
VS APL, APL2, Sharp APL, APL*PLUSPC, IBM PC APL, APL.68000, MIPS APL and
Siemens APL.
Boiling the entries down proved fairly difficult, mainly because they all worked. At least,
they all appeared to work for the above arguments. Closer inspection revealed that one
entry did not return an explicit result, and that another wentinto an infinite loopif the first
elementofthe right argumentwasa one!
As usual, dependenceon the external index origin wastested for, and three entries were set
aside because they failed when a global origin of zero was used. The next test tried each
entry with a fractional right argument,as in:

M1s2
3 13.5 2.5

40 50 1056.5 50 1.5"4 71.5 1“0.5 “1.5 0.50 STEP M192
5 7.5 10 12.5 0

40 50 G 0 8
56.5 55 53.5 52 30.5
“4 73 72 o Q
0.5 71 “1.5 0 oO

107

VECTOR Vol.3 No.3

All the functions bar one behaved appropriately, producincg the result shown above, A
floating point left argument produced the expected result in all cases, and so the search for
more exacting tests was on.
What would happenif the entries were tried with a vector left argument, rather than a
scalar? All entries performed as expected with a one-elementpad value, buttheysplit into
three camps when a longer vector was used. Thefirst group reported an APL error, the
second groupignoredtheextra elements,usingonly the first elementin the left argument as
the pad value,andthethird group used upthe pad vector elementsin a cyclic fashion.Itis
hard to see meaningin the cyclic use of a vector of pad numbers, and no such function
documented this behaviour, and so these entries were rejected. Strictly speaking, the
entries that ignoreall but thefirst elementarealso not quite right — it is actually misleading
and potentially dangerousfora function to accept argumentvaluesthat it does notuse. For
example, an extended version of STEPthat usesthe second elementofthe left argumentfor
a new purpose might now blow up whenusedas a replacementfortheoriginal function.
The functions that caused a LENGTHor RANKerror report therefore displayed the
correct behaviour, and passedthistest.
Thenext test checkedto seeif each function gave the correct result when a one row matrix
of ones was passed in. The right answeris of course:

0 STEP 1 3pt
Surprisingly perhaps, four moreentries bit the dust on this one, producing two columns
rather than onein the result matrix.
The next test examined the result whenthe right argumentis an empty matrix, with zero
rows and three columns. Before reading on, what do you think the shapeof the result
should be? This one produced noless than fourdifferent shapes of empty result and also a
few errors. The error-producing functions were eliminated because an emptyresult is
certainly to be expected in this case. Furthermore, we should expect the result to have as
many rowsas the argument matrix and this criterion eliminated the entry that gave an
empty vectorasits result.
Of the remaining empty matrices, some had zero columns, some one columnand oneeven
had two columnsin the result! A zero by zero empty matrix was deemed correct because
this result is consistent with the idea that the numberof columnsin the result should be
equalto the length ofthe longest step vectorin the result:

p0 STEP 0 3000
This left us with only two entries, Here is Neil Mitchison’s function which has the twin
merits of meaningful local variable names and clear APL code. Notice that the argument
matrix MX is never indexed in Neil’s solution, and that origin-independent code is
producedbyjust one reference to []1O.

108

VECTOR Vol.3 No.3

VY R+FL STEPANM MX;GAP; INC; I0TA; LENGTHS: RHO2 oA Produces_matriz of step vectors, filled with FL1 GAP+-/ 0 71 +Hx2 Ince, 0 2 $Mx2 LoTA+-D10-tf/.0,LENGTHS+1+L1GAPSINCJ RHO+pR+(INCxx-GAP)*.xI0TA1 B+ Re&(GRHO)p 0 2 4+MX2 RE LENGTHS*.sI0TA)/ipRI]+FLJ] R+RHOpRmo
nn
nn
an
n

SM
OB
EU
NE

vThe other successful entry was submitted by Morten Kromberg, whogaveusthis function:
V ReFILL STEPAMK CTL; (10; STEP: START; END; DIFF :N;MAX;MASKC1] s(€O=ONc 'PILL')/*FILL+0!€2] O1o+oC3] START+CTL[;0][4] END+CTLE;1][5] sTEr+cti(;2)C6] a[7] MAX+OP[/N+1+L ({DIFF+END-START) +#STEF[8] MASK+Ne.>1HAX{9} aC10] Re(START*.+MAXp0)+(STEPxxDIFF) ¢.x1MAXC11] Re(RxMASK)+PILLx~MASKv

Morten’s function has the additional feature of being able to handle theelision oftheleftargument when run on an APL system which supports ambi-valent functions.
It seemedclear that the winners had been found, andthattheir function were complete. Iwasreadyto put theresults to bed when anothersimple test occurred to me. The one rowmatrix of ones had already been tried, but what about a one row matrix ofzeroes? Again,another reasonable function argument. To my horror (and depression because J thoughtthe work wasover) twelve outofthe fourteen entries failed! Neil, Morten and ten others allyielded the following incorrect result:

99 STEPANM 1 3p000
99 STEPAMK 1 3p0ao

Ofthe two who passedthis test, one had already failed two othertests, and so thiselevated R H Currie’s solution, which had produced a one-column empty matrix inresponse to the empty argument. R H Currie’s correct answerto thetest, and the well-commented code follow:
99 STEPARC 1 3p0

V RL STEPARC M:X;¥;010
C1] aL is trailing pad number, M[;1 2] are start- and end-pointsC2) aM[:3] are steps(C3) aReturn matrix of range vectors
[4] Assume L is numeric scalar; M numeric nx3 matrix
C5} abdon't mess avout vith index origin - set it to 1C6] O1o+1C7} aTake absolute value of steps: replace 0 vith 1C8] MEs3)+ye0s¥+1 M053]
C97 aX is no. within range in each rowCro} x#1PClFpx)+xeleLi(-/Mfs 2 23)eHC 53)(Cil} aY is a Boolean matrix of required shape: l=vithin range

109

VECTOR Vol.3 No.3

[12] yexe.210/k
[13] aGenerate R as though all ranges are same lengthC14] rents (P/X)pl]4(MCs3]xx-/als 2 L])s.xO.r 140 /x[15] aReplace out-of-range elements by L
[16] R*(RxY)+Lx-¥v
So it turned out that the three best entries all failed exactly one test each — an
unexpectedly tough competition indeed.
Mortenalso supplied the following appropriately named function which ran well over
fifty per cent faster (under APL*PLUSPC)than anyofthe otherentries:

V R*FILL QUICKSTEP CTL;(10; STEP; START; END; DIFF 3N3MAX; MASK; 1; INDEX
C1] s(oeONC tFILL')/*FILL+O!t2] O1o+o © START+CTLE;0] © END+CTL(;1] O STEP*CTL[;2]3] A{4} MAX+OP[/N+1+L([DIFF+END-START)4 STEP[5] T+N/STEP+STEPXxDIFF{6] TE 7140, +\NI]+START-"140,START+(N-1)xSTEP[7] MASK+Ne.>1MAXC8) O10«1 © INDEX+(pMASK)p(,MASK)\1pT[9] Oro+o > Re(FILL, +\T)LINDEX]

v

QUICKSTEPwasbyfarthe fastest function, but would require modification to change
its current bahaviourofignoring extra elementsin the left argument.It alsofails the one
row matrix of zeroestest.
Competition entries must be written in standard-conforming APL, but we are always
interested to see solutions in other APL dialects. Morten included this Sharp APL
alternative with his entry:

VY R+FILL SAPLSTEP CTL;U10;STEPs START; END; DIFF; Nj MAXC1] 2(O=QNC 'FILL')/'FILL+Ot(2] Oro+0 © START+CTL[;0] © END+CTL[31] © STEP*CTL[;2]
{3] aA[4] MAK+OTF/Nel+l([DIFF+END-START)+STEP
[5] R#(START+~>(STEPxxDIFF)x7>172N), | >(MAX-N)p">FILL

v
Congratulations to Neil Mitchison, Morten Kromberg and R H Currie who share the
£50 prize money equally. Commendationsare also due to Anthony Quas and Heinz
Reutersberg.

110

VECTOR Vol.3 No.3

Surely there must be a better way
Ambi-valent Functions

by David Ziemann
If you have an APLsolution thatyou feel could be improved upon, but you just can’t quitesee how,then send it in to us. In the other hand, you may have founda new solution to anold problem — whynotlet other people know aboutit?
Many APLprogrammersuseinterpreters that support ambi-valent functions. An ambi-valent function is one whosevalenceis not fixed. This usually meansthat it can be calledmonadically as well as dyadically. By the way,it’s probably better to pronounce ‘ambi-valent’ with the hyphen in mind; the functions don’t feel opposite emotionssimultaneously, but rather they demonstrate one of two different combining powers, orvalences.
Myfeelings toward ambi-valent functions are however,definitely ambivalent. They areoften used in a way whichislikely to lead to codethatis difficult to modify, or even worse,that leads to program bugs. This, howeveris another story, albeit one which I hope tofollow up sometime. For the moment,let us say that they should NOTbeusedfor passing‘control information’ into a function butratherto allow the function to assumea default leftargument. Even this practice is dubious, but... .
Anyway,the standard wayoftesting for the presenceor absenceoftheleft argumentis byusing the ‘name-class’ system function, [] NC. This is demonstrated by the function DIV],a modified version of DIV, which acts as a cover function for the divide primitive, butwhichgives a zero wheneverdivision by zero occurs, rather than a DOMAIN ERROR.Iftheleft argumentis missing then the value | is substituted and theresultis a reciprocal.

Vv 2*A DIV W
C1] A Divide <A> by <wW> without DOMAIN ERROR(2] a Zeros in <W> give zeros in <Z>[3]
[4J Z+LxAtWenZ*+Hz0v

¥ 2*ADIVE W
C1] Divide <A> by <W> without DOMAIN ERROR(2) m Zeros in <W> give zeros in <2>. Default <A> is }(3)
[4] +(25D0NC tat)/aC5] AtlC6}
C7] a:C8] 2ezxatwe~zewz0v

120 Div] 20060.500
DIVI OL 2

010.5

11]

VECTOR Vol.3 No.3

If the name-classof the left argument nameis 2 then a left argument value wassupplied,
otherwise it is 0. Ifyou are using a system that supports an APLstatementseparatorthenit
is possible to tidy this up slightly by coding:

¥ Z+A DIV2 WfA Divide <A> by <W> without DOMAIN ERRORA Zeros in <W> give zeros in <Z>, Default <A> is(1)
C2]
[3](4) +€2=NC tat)/a O Atl
[5]
C6)C7] at

Z+ZxAtWs~2+070
y

In both cases however, the codeis a bit messy, involving a branch arrow,a system function,
a label anda pair ofparentheses. The nextstep is to bury the mess inside another function,
so that we don’t haveto look atit all the time. The function DEFAULTassignsits right
argument value to the nameontheleft onlyifit doesn’t already havea value.

9 24a DIV3 W£1] a Divide <A> by <W> without DOMAIN ERRORp23 A Zeros in <W> give zeros in <Z>. Default <A> is 13
[4] ‘A' DEFAULT 1
(53 Z+ZxAtWtnZewz0v

¥ Al DEFAULT A2
C1] a If name in <Al> is not a variable assign it the value <A2>
[3] 2(270NC al}/Al,*+A2"

v
Notice that DEFAULThasto use unusuallocal namesin order to reduce the probability of
any of them clashing with the calling function’s left argument name. Admittedly, the
function trades a branch anda label for an execute,butit is hidden awayin a single function.
This is preferable to the practiceof littering code with ever more complex expressionsofthe
form
2(2z0NC'LEFT')/*LEFT+FOO 2¢
Apart from the low readability and maintainability ofthis kind of thing,the call to function
FOO would probably notbe detected by cross-reference or other workspace documenting
programs. Debuggingis madeeasier too, because DEFAULTcanbe temporarily modified
to include yourchoice of trace or stop expressions.
The DEFAULTfunctionis useful, but if you are lucky enough to be using an APL which
has a[] SI system function you can do even better. [] SI typically produces a character
vector or matrix representation ofthe SI stack as it would appearifyou use the)SI system
command. By examining the SI stack it’s possible to determine the name ofthe calling
function, and henceif its left argument name(if any) has a value. The function LARG
returns 1 ifits calling function was invoked with left argument, otherwise a 0 is returned.
Because it examines the headerline of the calling function’s definition, it does not need to
havethe variable namepassedin as an argument.

112

VECTOR Vol.3 No.3

VY ZA DIV4 W(1) # Divide <A> by <W> without DOMAIN ERROR{2] a Zeros in <W> give zeros in <Z>. Default <A> is 1[3]{4] +LaRG/a © A+](s]C6) oa:C7] ZeZxaswe~zeyzo
v
¥ AtLARG;O10;A1
a Return I if calling function called with left argument, else 0
O1o+0

(11
C2JC3]
C4]
€5] a Get the name of the calling function63 Al+Cale'L State, (ls lipal)+ 2 0 ¢aleOsr7
(8)
C9]C10ti
C12

A Quit if there is no calling function or calling function locked+(OepaleUcrL al,'f0]')/a+0iJ" Return I if the nameclass of the function's left argument is 2J ae2=One(-Coal dit"SealeCalit tatv
The system function [] CRLis used to return the character representation of the functionheaderline. This is available in APL*PLUSPC,butusers of other systems will have to0) CRthe whole function and extract the headerline by indexing.
The use of LARGis not recommended because it may encourage‘spaghetti logic’. A betterapproachis to devolve the assignmentoftheleft argument nameinto a cover function, as inDEFAULT.Inthis way the module strength of the function (a system design concept) isnot compromisedto the sameextent. The function LARGDEF(Left ARGument DEFault)implementsthis idea as follows:

Vv Z+A DIVS W
[1] A Divide <A> by <W> without DOMAIN ERROR(2] A Zeros in <W> give zeros in <Z>. Default <A> is ItajC4] LaRcper 1
C5] Z+ZxAtW+~Zey7z0v

V LARGDEF 42;Q10;A;Al[1] a Set calling function left argument to <A42> iff its undefined(2) ~[3] Oro+oC4)
C5] a Get the name of the calling functionfea Al*(alit(*)tate.(1,lipal)+ 1 0 +4al+Os17(8] ® End if no calling function or function locked[C9] +(Oepal+OcrL ai.tfoJ*)/0(103
CLL] A Get the name of the calling function's left argumentfiz] At(- COAL tet taleCalit "eal13(14] e Assign value iff calling function's left arg. is undefined{15] 2(o=DNe 4)/a,'+a2"

v

113

VECTOR Vol.3 No.3

Now we havea function whichcan besafely used to provide a default value for a funtionleft
argument name,and withoutthe visible use of branching,labels, execute, parenthesese or
quote marks. LARGDEFwill havenoeffectifits calling function definition is not dyadic or
if the SI stackis clear.
Noreference to the nameofthe left argumentis made in the application function, so the
approachisless liable to bugs resulting from program modifications. For example,if you
later wanted to rename your function left argument, you could do so with less chance of
introducing a program bug.
Can you see why the phrase ‘0-equal’ is used rather than ‘2-not-equal’ in the last line of
LARGDEF?
Please note that the function DIV has only been used as an example to demonstrate these
techniques; utilities like LARGDEF would be more usefully employed in application
functionsrather than common APLutilities.

114

VECTOR Vol.3 No.3

APLTrivia
Funny Dates

compiled by Dave Ziemann
First, thanks are due to JohnSearle from Sydney, Australia, who wasoriginally responsible
for the ‘Meaningoflife, the universe and everything’ expression, which evaluates to 42.
Whatwill John’s next numerological submission be?
But now to the dates. The following expressions were executed under APL2release 2,
running in a TSO environment:

NAMES+ "11 34ATSO'APL PDSI ''VSS.NAMES.AP2TNGI1‘TtO+NAMES+c[2]NAMESATR CAN CTK GIN DAN FED KTC PFA RTA SAN SVI(e311) DNA"NAMESPbrirrttrairidida{2} 2 DAT "NAMES
1985 6312 000
1985 4112006
1985 4112 600
1985 4112000
1985 41120400
1985 41126690
1985 4112000
1985 4112000
1985 4112000
1985 4112000
1985 41 12000
The [] AT system function can be used with a left argumentof2 to discover the date andtime that any defined function was saved. After defining the APL2 intrinsic functionssupplied with the APL2 product,the 2] ATis applied to each name.As you can see above,it turns out that they wereall created exactly at the end of Aprilfools day, 1985! Can this bemere coincidence? Thanks to David Piper for pointing out this curious behaviour.
It makessense to try 2] AT with primitive APL2 functionsas well, but in this case wejustget a timestampof7 zeroes — notso interesting. At least, in immediate execution mode wedo. However, any primitive APL2 function may be an operand to an APL2 user-definedoperator,so it’s possible to apply [] ATto this operandwithinthedefinitionofthe operator:

7 VQUAD!ATEOO- 19 ~
CO] RE*(LO QUAD_AT)RA
1] RE*RA DaT *Lo?v

2 UaT tar
ooo00od

@ QUADLAT 2
1614 27 18 28 18 285
Theresult when the operatoris applied to the log primitive appears to be the birth date ofNapier, the Scottish mathematician who discovered logarithms! The questionis, is the timeaccurate? Before you rush to try this with other primitive functions, it only seems toproduce a non-zero timestampfor the logarithm function. Further developments awaitedeagerly.

115

H.M.W. PROGRAMMING CONSULTANTS LTD

Why not discover more about

* Consultancy/Support Service

* APL on the IBM PC

> VM/cmsPackages
Ring Ken Jackson at

H.M.W. PROGRAMMING CONSULTANTS LTD
142 FELTHAM HILL ROAD,

ASHFORD, MIDDLESEX TW15 1HN
Telephone: Ashford 41232

VECTOR Vol.3 No.3

Introduction to Contributed Articles
See the APL-86 section (page 77) for our main technical article this issue which is a
transcript of Alan Graham’s APL86 talk entitled ‘Idioms and Problem Solving in APL2’.
Alan works for IBM attheir Santa Teresa laboratory in California. If you are new to APL2
or an old hand, this profound but eminently understandable foray into the uses of the
language will be of interest. Many thanks are due to John Sullivan for his accurate
transcription of both text and APL from Alan’s talk and visual materials.
David Ziemann is Technical Officer on the I-APL committee, and is responsible for the
productionofthe technical specification of the proposed interpreter. The current technical
specification is published here for thefirst time. Please send any technical comments or
suggestions directly to the author.
David Piperis fast becoming a regular contributor te VECTOR.This time he shows us how
he has used APL2language featuresto createa setofefficient QSAM and BDAM file access
functions in a TSO environment. The APL2 code from David’s offering in the last
VECTORwasaccidentally omitted, and so we have appendedit to the end ofhisarticle.

117

VECTOR Vol.3 No.3

I-APL Technical Specification
Number1.1- October 1986

0 Introduction
This documentis the technical specification for I-APL, a full function, portable, freely
available public domain APL interpreter for small computers.
As the design and development of I-APL progresses, the technical specification will
become more detailed. There are a number of issues which have not yet reached
conclusion, and as they becomeconcrete, so subsequentspecifications will reflect this.
The specification consists of five parts; an overview followed by hardware, language,
environment, and exclusion sections. The hardwarespecification includesdetails relating
to target machines. The languagesection containsthespecification for the I-APLlanguage
itself, and in particular how it relates to the text of the Draft International Standard for
APL. Thelast section contains technical information relevant to aspects of the APL
environment, as distinct from the language. Finally the exclusion section includes a
checklist of features which are not planned for implementation in I-APL.
1 Overview
LAPL is designed to be a standard-conforming portable APL interpreter for small
computers. The standard referred to here is the English text for the Draft International
Standard for the programming language APL,or DIS 8485, ISO document number ISO/
TC 97/SC 22/WG 3/N5S.
Furthermore, I-APL is designed with the education market strongly in mind — full
standard-conformance and the minimisation ofinterpreter size are the twin goals which
subordinate execution speed and productivity features. Therefore I-APL is not to be
considered a commercially viable product.In particular, therewill be nofile system orfull-
screen i/o, and the maximum theoretical workspacesize will not exceed 64K bytes.
Effort will not be spent on ‘smartalgorithms’. For example, the naive bubble sort will be
used where required, and symbol!table searching will be strictly linear. Additionally, the
moreesoteric algorithms necessary for a conforming implementation (Eg matrix inverse,
matrix divide, dyadic transpose and the transcendental, gamma, and binomial functions)
will be candidates for ‘magic functions’,ie they will be implemented using APLitself, in a
mannertransparentto the user.
The implementation languagewill be Forth-like, and the generated object code will be a
universal intermediate language which is executed by a small machine-code interpreter.
Porting will therefore consist of rewriting a small number of routines particular to the
processor and environmentofeach target machine. The development environmentwill be
initially developed on a PC clone. Paul Chapman will develop the implementation
language, the APLinterpreter and a small compiler, written in C,to tranlsate to the target
machine’s language.

118

VECTOR Vol.3 No.3

2 Hardwarespecification
1-APLwill be implemented for use on the following target machines:

Apple H
BBC model B
Commodore 64
CP/M-based micros
IBM PCand clones
Sinclair Spectrum

Everyeffort will be made to makeit as easy as possible for I-APLto be portedto other smallmachines. We hope to encouragerather than discouragethis activity by providing hooks,handles and documentation wherever they are appropriate.
Thesizeofthe interpreter will not exceed 30K bytes, andit is hopedthata final size of 25K
bytes will be achieved.
3 Languagespecification
1-APLwill includeall the definedfacilities and implementation-definedfacilities requiredby the ISO standard, andwill achieve a very high level of conformancewith the standard.This phrase is used not becauseit is plannedto skip over certain features, but because werecognise that in practice complete conformanceis unlikely.
The optional facility ‘trace and stop control’ will be included, but the shared variableprotocol and statementseparatorfacilities will not. A numberofconsistent extensionswillalso be made.
3.1 Specified facilities
Thefollowingis a list of standard-specified facilities currently planned for inclusion in I-APL:
3.1.1 Functions, operators and variables
Ail primitive functions, operators, system functions and system variables specified asdefinedfacilities in the standard. Thatis:
Primitive functions

Conjugate Negative SignumReciprocal Floor CeilingExponential Naturallogarithm MagnitudeFactorial Pitimes Not
Plus Minus Times
Divide Maximum Minimum
Power Logarithm ResidueBinomial Circular functions AndOr Nand Nor
Equal Less than orequals Less thanNot equal Greater than or equal Greater than

119

Vol.3 No.3VECTOR

Ravel Index generator Shape
Reshape Join (catenate)
Roll Grade Up Grade Down
Reverse (two forms) Monadictranspose Execute
Matrix inverse
Index of Memberof Deal
Compress (two forms) Expand(two forms) Base value
Representation Rotate (two forms) Take
Drop Dyadic transpose Matrix divide
Indexed reference Indexed assignment Monadic format
Dyadic format
Also,the ‘with axis’ formsofthe following:
Reverse (two forms) Compress (two forms) Join
Expand(two forms) Rotate (two forms)
Operators
Reduction (two forms) Scan (two forms) Outer product
Inner product
Also,the ‘with axis’ formsofthe following:
Reduction (two forms) Scan (two forms)
System functions
Time stamp (TS) Atomicvector (AV) Delay (DL)
Line counter (LC) Nameclass (NC) Expunge (EX)
Namelist (NL) — monadic and dyadic
Function fix (FX) Character representation (CR)
System variables
Comparisontolerance (CT) Random link(RL)
Print precision (PP) Index origin (10)
Latent expression (LX)
3.1.2 Miscellaneous
Assignment, branch, parentheses, quotes, labels and end ofline comments,asspecified,
3.1.3 Quad and quote-quad input and output.
3.1.4 Stop and trace
The‘stop and trace control’ optionalfacility for querying and setting function trace and
stop control.

120

VECTOR Vol.3 No.3

3.1.5 System commands
CLEAR JCOPY)DROP JERASEJFNS)LIB JLOAD JSAVEWWSID SIC)SINL)VARS

It will probably not be possible to provide)COPY on machines which are tape cassette
rather than disk-based.
3.1.6 Function editor
A del-type line editor for defining and editing functions. Blanklines will be allowed indefined functions.
3.2 Consistent extensions
The followinglist of consistent extensions is planned for inclusion in I-APL:
3.2.1 Replicate
Theleft argument of compressionwill be extended to the domainofpositive integers.
3.2.2 QuadCALL
A facility for executing programs written in the machine languageof the host computer.
3.2.3 QuadPW
A facility for querying and specifying a printing width parameter.
3.2.4 Scalar extension
Dyadicscalar extensionwillbelessstrict than describedin the standard, andwill be behave
as implemented on most APL systems. Thatis, a single element array of any rank will
conform with any otherarray.
3.2.5 Base value shape requirements
The shape requirements for the argumentsofthe base value function will belessstrict than
described inthe standard. Thatis, a unit dimensionin thelastaxisofthe left argument orin the first axis of the right argument will be replicated to match the length of thecorresponding axis in the other argument
3.2.6 PCOPY
The)PCOPYsystem commandwill be provided in disk-based versions of I-APL.
3.2.7 Join on empties
Joining (catenating) two emptyarraysofdifferent type will produce an empty result, rather
than theerrorsignalled in the standard.

121

VECTOR Vol.3 No.3

4 Environmentalfeatures
Thefollowinglist offeatures related to the APL environmentis plannedfor inclusion in I-
APL:
4.1 Atomic vector
A 256-element single character atomic vector will be implemented. All the ASCII
characters will be included andwill appear in their usual positions. A full range of APL
special symbols will be included.
4.2 Character representation
There will be no difference betweenthe internal and external representation ofcharacters in
the system.
4.3 Provision ofAPL characters
APLspecial characters will be provided on at least one target machine. Forother target
machines which permit a programmable characterset, the APL characterswill be provided
in a form thatwill easily allow a porter to install the set, The target machines known to
include a programmable character set are the BBC modelB,the Sinclair Spectrum and the
PC (with colour card). The target machinesthat are not knownto include a soft character
set are the AppleII, the CP/M-based machines and the PC with monochromegraphics
adapter.
4.4 ASCII representation ofAPL
All the target machines will allow APL to be entered and displayed using an ASCII
representation. The details of this are currently being worked out, and a proposal will
appear soon. A keyword or mnemonic approach is considered less desirable than a direct
transliteration scheme,althoughthis may notbepossible.
4.5 Alphabet
The upper-case alphabet will be available for constructing identifiers, comments and
character constants. The lowercase alphabetwill not,if as expected it is reserved for use in
the ASCIItransliteration ofAPL symbols.
4.6 Internationalisation
All I-APL error messages and system command nameswill be stored in special tables at
identified locations so thatalternative languageversions of I-APL mayeasily be created.
4.7 Porting and upgrading
Porting hooks will be provided whenver possible to encourage the transfer of I-APL 10
other machines, andtofacilitate the provision ofextra features. For example, hookswill be
provided to permit the developmentoffull-screen I/O andarbitrary outputtranslation.

122

VECTOR Vol.3 No.3

4.8 Numeric representation
The internal representation for the numbershas not beenfinally decided. There are two
possibilities; either a single representation will be used for all numbers, or a multiple
representation will be used. If a single representation is chosenit will be a single precision
floating point representationofeither 4 or 5 bytes. Ifa multiple representation is chosen,a
three-fold split is likely; the floating point representation, 2 byte integers and 1 bit
booleans. Note that the advantage ofthe bit booleans would be purely one of space — no
boolean processing optimisations are planned.
4.9 Printing
A facility to echo the currentsession to a printer will be provided, as will the capability 10
print the contents of a character array.
5 Exclusion
Thefollowinglist is a checklist offeatures that are not currently plannedfor inclusion in the
1-APL base product. It is here to indicate that the features were considered for inclusion
and rejected rather than not considered atall.
5.1 filing system
Otherthan the transparent one required to save workspacesin a library.
5.2 Sharedvariables
5.3 Graphics support
5.4 QuadPEEK and QuadPOKE
5.5 A statementseparator
5.6 Complex numbers
Complex numbers and complex arithmetic will not be implemented. Also, raising a
negative numbertoa fractional powerwill produce a DOMAIN ERROR,even whena real
result is possible.
5.7 Generalised arrays
5.8 Extensions to upgrade and downgrade
5.9 A defined function locking mechanism
5.10 RESET
SIC will be implemented.
5.11 S-delta and T-delta
The S-delta and T-delta mechanism for setting handling stop andtrace vectorswill not be
implemented. The corresponding system functionswill be present.
5.12 Change nameclassoffunctions on the stack
It will not be possible to expungeorfix a function that is pendent, waiting or suspended at
a lowerlevel than the top of the SI stack.

123

VECTOR Voi.3 No.3

5.13 Invalid assignments to system variables
An attempt to assign a system variable with a value outsideits valid value set will signal a
LIMIT ERROR.
5.14)COPYfor tape machines
The system commands)COPYand)PCOPYwill not be providedfor tape-based machines.
Theywill be included in the disk-based versions of I-APL.
5.15 Screen print
Theability to print the current screen contentsto a printer will not be provided.
5.16 Program execution of system commands
System commandswill not be in the domain of the primitive execute function.
5.17 Workspaceslarger than 64K bytes
A theoretical limit of 64K bytes for workspaces will exist, even for machines that could
support larger ones.

124

VECTOR Vol.3 No.3

A Commanddriveninterface for BDAM and QSAM
Auxiliary Processors using APL2 under TSO

by David Piper
1. Introduction
The requirements for the successful use offiles from within APL can be summarised asbeing:

Efficient inpuvoutputprocessing
A robust, consistent and easy to use interface.

The auxiliary processors associated with the QSAM and BDAMaccess methods (APII1and AP210 respectively) are moredifficult to use, and generally consideredto beless robustthan other auxiliary processors associated withfile handling in APL (e.g. the VSAM AP,AP123).
Increased difficulty of use arises from the protocols associated with the APs. These are notcommand driven,but rather dependontheorder ofassignmenvuseofthe shared variables.Theinitial values of the shared variables are also crucial, since the file to be accessed isopenedatthe pointofsharingthevariables, and closed at retraction, rather than by explicitcommandafter sharing. Also note the data shared variable (prefix REC not DAT) must besharedfirst.
The APs are considered less robust, since the order of assignment/use of the sharedvariablesis crucial, forming the commandinterface. Misuseofthe variables,in the sense ofan incorrect order of assignment/use, can cause the auxiliary processors to abend.If thisoccurs, the APs may be unavailable for the rest of the TSO session. The QSAMAPisespecially proneto thistypeof failureif only a single (data variable) is shared. In this case,even simpleerrors, suchas attempting to continue processingafter end of file, maygive riseto an abendin the AP.
2. Designing a newinterface
Thecriteria behind the design ofaninterface to cover the use ofthe APsare threefold:

Efficiencyoffile I/O.
Robustnessofthe interface.
Easeofuse for the application developer.

Since the cover functionsare intendedfor use within an application, ease ofuse in terms offlexibility ofcommandspecificationetc.is given the lowest Priority. Efficiency is given thehighest priority so the commandinterface has as little impact as possible on applicationperformance.
In order to minimise theefficiency impact, each commandis made as simple as possible tointerpret. Onceinterpreted, the minimum possible codeis used to execute each command.

125

VECTOR Vol.3 No.3

The range of commandsis extended to include ‘block’ operations to further minimise
overheads. During the execution of blocked commands, the commandis interpreted once,
then executed in a loop, with no more code than would haveto be used if shared variables
wereused directly by the application code.
Furtherefficiency is gained by avoiding theuse of execute for all operations (except the
initial openingofafile). The technique usedisto fix an access function, with a given name,
in whichthe references to the shared variables are explicitly coded. Fora fuller discussion
of this technique,see my article in VECTOR3.2. Robustnessis achieved by containingall
file operations within the cover functions. This ensures thatall uses of the shared variables
are executed in the correct order. It also allows a certain amountof error checking to be
performed, such as preventing attemptsto write datatoa file open in read only mode. Error
checkingat this point also prevents attempts to processfiles after an endoffile condition is
received. Thus the major sources of errors within the auxiliary processors are avoided.
Easeofuseis improved by removingthe need for initialisation of variables before being
shared. The open commandperformsthecorrectinitialisation and performsall checking
necessary to ensure the share was successful. From the applications point of view, the
complexity ofopening thefile is reduced to the simple use ofa single command. The same
can be said of the close command. The cover function takes care of shared variable
retraction and checking of return codes.
Ease of use is further enhanced by the use of the same commandstructure (as far as
possible) across both APs. The commandstructure has been implemented to resemble as
closely as possible that implemented for the VSAM auxiliary processor (AP 123). The
similarity of the commandstructuresacrossall three access methods allowsfile processing
to be used far moreeasily than when makinguse ofa variety offunction driven interfaces.
3. Creating/Deleting Access Paths
Before any files can be accessed, the path function hasto be created (or LINKED). For
QSAMfiles:
RC+AQSAM_LINK tnamet A <name> is used to customise the

A names of the access path function
A and the shared variables)

Commandscanthenbeissued using the path function:
RC*+QSAM_name ‘command’ R Opening, Closing or reading
RC+data QSAM_name ‘command! aA Writing data
When file processing is complete, the path function can be erased. The process of
UNLINKINGissues a close commandin case any files have been left open. Paths are
deleted using the UNLINKfunction:
RC*+4QSAM_unlink ‘namet

The path function is expunged along with the shared variables.

126

VECTOR Vol.3 No.3

4. Opening and ClosingFiles
Asalready discussed, opening andclosingfiles is one of the most complex operations underAPs 111 and 210. First the variables haveto beinitialised:
CTLQSAM+'filename (ctl?RECQSAM+*filename (mode conv'
Afterthis, the variables can be shared — record variable first:
SS+1l11 OSVO 2 7p*RECQSAMCTLOQSANt

Return codes from the open operation mustbe checked:
RC*+CTLQSAM
Using the commandinterface, the above steps are reducedtoa singleline ofcode (assumingthe path hasalready been linked):
RC+QSAM_path 'Om filename conv!
Acceptable values for <Om> — the access mode — are R(ead), Write) or U(pdate). BDAMfiles can additionally be opened for F(ormat) processing. Thereturn code given by the openoperation is fully descriptive of any error that may have occurred. The code can be passedto the relevant error message function to obtain a textual description ofthe error.
When opened for FORMATprocessing, the next command given for the file must be theformat command:
RC+data BDAM_path 'F' ann a <nnn> is the number of records
Thefile is then left open in update mode.
The BDAM file interface ensures that the open/format commandsare processed in thecorrect order withoutintermediate attempts to read and writeto thefile.
Closingthefile is simply a matter of using the close command. This commandretracts theshared variables (thereby closing thefile), but leaves the path function intact. This allowsfurtherfile processing to take place, either in a different access mode, or to anotherfile.
5. Reading/Writing Data
Theonly significant differences in syntax between the twofile access methods are in thecommandsassociated with reading and writing data. The syntax is boundto bedifferentsince BDAM offers direct access to records while QSAM offers only sequential access.BDAMalsooffers sequential access, the syntax for sequentially processing single recordsisidentical for both access methods.
Forefficiency offile access, ‘pseudo-blocked’ access commandsare also provided. Theseread or write a series of records using only onecall to the path function. A loop of codewithin the access function performs the multiple calls to the auxiliary processor. Thecommandis parsed only once, the code loop simply assigning/using the shared variablesasrequired. As soon as a non-zeroreturn code is encountered processing ceases. If a write isbeing performed, any unwritten recordsare returnedin thedata item ofthereturnvector.

127

VECTOR Vol.3 No.3

Toread a single record,the following syntax is used:
(RC DA)+QSAM_path 'R! A QSAM
(RC DA)*+BDAM_path 'R! A BDAM sequential(RC DA)}*BDAM_path 'R' record_number a BDAM direct
The data is returned as a nested vector, each item of the vector is a record from thefile.
Since onlya single record is read, the vector has only one item.
To perform a ‘blocked’ read:
(RC DA)+QSAM_path ‘'R’ number_of records A QSAM
(RCO DA)+BDAMpath 'R' nl n2 n3 «ee A BDAM direct

The blocked access terminates as soon as a non-zero return codeis encountered. The length
of the vector of records (DA)is the same as the numberofrecords read. The return code
indicates why the read was abandoned.
To write a single record, the following syntax is used:
(RC DA)*+data QSAM_path ‘wt fA QSAH
(RC DA)+data BDAM_path ‘Wt A BDAM sequential
(RC DA)*+data BDAM_path ‘'W!' nl A BDAM direct

A data vectoris always returned, normallythis will be an emptynested vector. Ifa non-zero
return code is generated by the write command,the unwritten recordis returned.
To perform a ‘blocked’ write:
(RC DA)*+records QSAM_path ‘W! A QSAM
(RC DA)+records BDAM_path ‘W‘ nl n2 n3... A BDAM direct
When performing a ‘blocked’ write using BDAM, recordsare written until:

Recordsare exhaustedin the data vector.
Record numbersare exhausted in the commandvector.
A non-zero return codeis received.

Any over-written recordsare returned in the data componentofthe explicit result. The left
argumentis a nested vector, each item representing a record to be written.If only single
record is to be written, consisting of a simple vector, this need not be enclosed.
The convention ofusing a nested vector to contain data recordsis adoptedto enable the use
of the VARconversion option. This option allows APL2variablesofany type, rank orlevel
of nesting to be written to file without conversion. To write a series of such arrays, each is
enclosed to form an item ofa nested vector which is presented astheleft argument.
6. Conclusions
The primary aim of any system of functions covering the use offile access auxiliary
processors should be to maintain the highestlevelofefficiency possible. Thisis true simply
because of the numberoftimesthe auxiliary processoris likely to be used, especiallyif file
processing is involved.

128

VECTOR VOL NO.3

The concept of a command driven interface also enables the following advantages to be
realised:

Reduction in the numberof functions in the workspace.
Implementation ofa similar syntax across access methods.

Generating a function containing the shared variable names explicitly allows multiplefiles
to be accessed without the need to continually retract/re-offer shared variables, and
removes the need to use execute.
(Editor: David supplied more APL2 code than we have room for here. A listing of the functions
produced by the BDAMand QSAM‘LINK’functionsfollows.)
ABDAl
n Ge:

MLLINK ‘TESTLINE?
nerate the function below

UBDAM_TESTLINK(O]¥¥ RC*DA BDAM_TESTLINK CMD;CO;LIM;{T0roelCOTS 4CHD* .CHD) /opRC+lsVO 2 12p*RECDTESTLINKCTLETESTLINK**COFRC+] 22xV/28RO Ver*ClORWCF 'etCMD)/operdswrsclsfoRC+(1 12)"+0oprRC+*TESTLINK' ABDAM_OPEN CHD*L+CHDCAAA 132 4RCV/0bdam_TESTLINR+(A/0=¢RC)/#CMD+0rdi+(O#RCel 15a-bdam_TESTLINRe *RU!)/erDA+ (LIM “14p ,cuD)ect**((CO*1)=p cub) /arrI:CTLbTESTLINX*(19CO)2CHDar :DACCO]+cRECBTESTLINK*CORRCCTLETESTLING)/rx+CLIMRCO*CO+E D/Pra rDAt(LIML1+CO)*DARC+(CABDAK_CODE RC}.cDA*CCL2HEERCVAV/E 1274RC)/O+O(BDAM_TESTLINK 'C')wrisCOaRCel 1Sx~bdam_TESTLINKE WO")/er+(OxRcel 33x2e0NC DAT) ferLIM+("1+pCHD)LeDA*, SETS DAcostw(1=p CMD} /awwIiCTLbTESTLINK*(CO+1)5CKDaw: RECDTESTLINK*CODDA+ COFRCACTLETESTLING /ux.w{LIM2CO*COF1 fwdwx: DA+(LIML~1+C0)4DARC+(CABDAM_CODE RC),cDA=CCL2eaeRC)av/B 1229RC)/0OC BDAM_TESTLINK 'C*)fors(OZRC+] 15*bdam_TESTLINES'F*)/er+(ORCOL 12x22pCHD) fer+COFRCe] 33x240NC 'DA')/erCTLDTESTLINE+29CHDRECHTESTLINK+DA+(v/O7RC*ABDAM_CODE CTLBTESTLINK)/erbéamTESTLINK+'U?+0er:RC+(RC)"*+0el:RC+OSVR 2 22p*RECbTESTLINKCTLDTESTLINE?RG*(2 22xv/2aRc)ttbdam_TESTLINK+¢ *¥ 30.10.1986 15.42.39 (GHT)

AQSAM_LINK 'TESTLINK!
A Generate the function below

129

VQSAM_TESTLINELOI?
RC*DA QSAM_TESTLINK CHD;CO;LIM:DI0Oro+1=(10'=4CMD)/opWeeMSVO 2 12p RECqTESTLINKCTLGTESTLINE?+(OFRC#L 2ENV/25NC)/er+C1ORWCTCHCMD)/operdswreclRoe(h 22)1"+0op:RC+'TESTLINK? AQSAM_OPEM CMD+1+CHD+(A/1 1324R0)/0quam_TESTLINK+(4/0=+RC)/+CHD+0rdie(OFRCel 15x~qaam_TESTLINK€ RU")/er((2=pCHD)alzs__cMD) /ebCHD+CHD.1rbhre(v/OFRC41 12x0xt OpLIN+220MD)/er+(¥/OFRC+l L2eLIMN<CO*! }/erDA+(LIM*LLIN pet?1 :DACCOJ*eRECgTESTLINE*(OFRCOCTLETESTLINE)/rx+(LInzco*cdel /rlrxiDA*(LIML 14CO)+DARC+(cAQSAM_CODE RC), CDA*CCL2e4 eMC)AV/R 1229RCI/O+0(QSAM_TESTLINK 'C")writ(QeRCol [5x~qeam TESTLINKe "WU! fer+COeRCoL 33e270NC 'DA')/erLIM*pDA* ARIS DACorlv1 iRECqTESTLINK+CO2DA+(O8RC+CTLQTESTLINK) /wx+(LIM2C0+6001)/v1wx DAS(LIML 1400) 9DARC+(CAQSAK_CODE RC) EDAaCCL2et4RC)Av/B 1229RC)/0+0(QSAM_TESTLINK 'C')errRC+#(RC)*"+0eL:RO+USVR 2 12p'RECqTESTLINKCTL@TESTLINK?RO*(2 22xv/22RC)"?qaan_TESTLINK+" *¥ 30.10.1986 15.53.40 (GuT)

VECTOR Vol.3 No.3

Using [JFX to facilitate the use of Auxiliary Processors
Anarticle with the abovetitle, written by David Piper, appeared in the last VECTOR(volume 3, number 2). Unfortunately the accompanying APL2 programs which Davidsupplied were accidentally omitted from thearticle. We apologise to David and any readerswho have been inconvenienced. The codethat should have appearedfollows:
Cal? aVSAM_LINK.3 pz 14 1986-03-20 14.45.43£0] RC+AVSAM_LINK PN;DA;S¥;TSOC2] A PN: Generate access function for VSAM path <PN> (AP123)(C2) a PN - Character vector path name to be used(3) oa RC ~ Numeric sealar RC - O=ok,l=failed[4] S¥+(2 4p 'CTLyDATv’),(7,.pPN)pPN Create SV namesC $1 +(v/~{ONC SV)e0 2)/ev Report name clase problemst 6] RO+t23 Osvo sv Share with AP123C7] +(V/0=RC)/er Error: if no offer failedC aj RC+fisvo sv Check degree of couplingC 9) ~+(v/2eRC)/er Error: if not fully coupledc Generate access functionC Exit if fixedc Report name clase problemsC Report unable to share

10) RC+SV AVSAM_GEN PN11j +COERC)/012] ev: "INVALID PATH RAME' DES 2 313} er:'VSAM NOT AVAILABLE’ GES i 5 Dr
ee

ar
re

rr
e

Cal¥ AVSAM_GEN.3 p: 12 1986-03-07 12.47.18to} RC+SV AVSAM_GEN FN;CD€ 1] on FN: Generate access function for VSAM file (AP123)C 2] a SV - Character array Shared variable names to be used€ 3] a FN - Character vector File nameC 4] a RC - Numeric scalar Return code - O=ok, l=failedCs] CDec'RC+DA VSAM_'sFN,' CMD' a Function called ¥SAM_<FN>C 6] cpecd,ct+(2=ONC ''DA'')/dyt a Check for dyadic useC7] CD+CD,c'DAet rt tt a Default null data SVC 8} CDeCD.c'dy:',SVE2;),%+DAt ®B Aspign data SVC9] Cpecd,csvC15J,'+CuD? A Assign control SVCie] CD+CD,ctRCet, 14,8¥,1 * a Return code is CTL DATCir] RC+O=#0pRC+l t 0 O OFX cD a Fix the function

Caj¥ aVSAM_UNLINK.3 pz 9 1986-03-20 14.48.09Co RC+AVSAM_UNLINK FNZNA(1) @ FN: Destroy access function for VSAM file <FN> (API23)(2} a FN - Character vector file name to be closed[3] a RC - Numeric scalar RC - O=ok,l=failed{4} NAe(2 4p'CTLyDATv').(2.pFN)pFN A SV namesCs] Nas (NA.t 8) CLI ‘VSAM_', FN Access function name(6 +(rCe3x0ne NAL331)/0
(7) RG+aNAL3;],' "tort & VSAM close file
[8] RO*v/1eDEX NA A Expunge the objects

AVSAM_LINK 'TEST?a

¥VSAM_TEST(DO-JvCol] RC+DA VSAM_TEST CMD
[1] *C2sDNc tDat)/dy(2) Dattt
3] dy: DATVTEST*DA[4] CTLYTEST+CMD5) RO+CTLYTEST DATVTEST

130

VECTOR

VREPORTI(OO-}

RC*REPORT!

;

VSAM_INPUT: CTLVINPUT; DATvINPUT; DATARC*AVSAM_LINK "INPUT? A Link to pach INPUT*COxRO er a Report error if failedRC*tVSAMINPUT 'OR ALINPUT’ A Open file RIIRPUT for Read*(v/07RC)/er * Report error on openDATA*O 809? ' . A Fixed length 80 byte dataeU:RC+VSAMINPUT ‘Rt A Read a recordttA/8 ATERO) Jef ws End of file, no record read*OV/O24RC) er a Report error reading file.DATA*DATA,[1] 22RC A Join record to data arraytet A Get another recordef:CREATESREPORT] DATA A Do something with dataRC+O A All ok,» ao return 0aqt A Now tidy up files etc.ers4VSAM_ERROR RC @ Report errorReod a Exit with bad codeQtiVSAM_INPUT ‘Ct A Alvays try to close file.AVSAM_UNLINK ‘INPUT! A Deatroy link to path INPUT

aJ]¥ AVSAH_ERROR.3 p:MS*AVSAM_ERRORa FN: Return error mea RC - Numeric vectoraus*CHSERC)/siRAKE
> Character vector

49

1966-03-13 10.49.06DEN

ge from VSAM processing vis API23
Return code to be analysed
Measage associated with codeA Return code is simple vector

A First bit only

iCDeE 12.13 15 16 17 1819 20 21 22 27 3% 33 42 45 480 8 116CDeCd.4 8 16 20 28 32 40 88 $6 100 110 126 128 136 152 168 192ene ((19t17p1).4,17p8) 01 .5)cDEN+(CDA.=RC}t1ativeteEN+0+00+0+0+0+000+070+0+0+0+0+0290+000+0+040+0+0+0+0+0+0070+0+00+0+0+0

MS*'¥SU1001MSe'YSULOI2MS+'¥VSDLOL3MS*'VSDIOISMS*"¥SULOI6MS+TVSDLOI?MS**¥SU1018MS'VSU1019MS*"'¥S01020Ms'ysul021us*'¥S01022MS~'¥sD1027Hs«'YSU1032MS+t¥SU1033MS*'¥SU1042MS*'¥SU1045MSe'VSU1048MS*"¥sD0000HS*"Y¥SU0CO8MS**¥SU4II6HS+"VSU8004HS*tVSUBOOBHS+'¥SU8016MS*1¥SU8020MS* 'VSU8028MS« tysug032HS+!¥suB040MS*'VSUBO8BUS*'VSU8O96MS* 'VS08100WSe"¥SU8110MSe*'VSUBII6MS+*¥SU8I28MSs t¥508136MS*'¥S0B152MS**VSUB168MS¢17S08192MS+'V¥SU1099

EEIEEEssEEgEssEE8E1¥.8EEEzgEE8E&EE8EEEEEE

Error creating/ending link with VSAM file.tInvalid command syntax in the CTL.?Open request against file already open.?Command not allowed in current open mode-!Erase on entry sequenced VSAM dateset.?
Key data too tong (or too short in RU command).!¥SAM interual error detected (KODCB error).YSAM internal error detected (SHOWCR error).Data variable does not contain character data.?Data variable is not of correct length.!File is not currently open.?VSAM internal error detected (TESTCB error).tInaufficient FREE apace for 1/0 areas.'No data in the BAT SV for a write request.A.P. sequencing error (eee Osvc).?VSAM internal error detected (GENCB error).Invalid command sequence (eg W before RU),Command executed successfully.!Duplicate keys on file» only the first read.’File aot closed correctly, uae AMS VERIFY.?End of file. or key greater than any on file.?Duplicate keys record not vrittea.?Record not found.tRecotd io use by another user.!VSAM datacet ia full.?Invalid relative byte addreInsufficient virtual atorage.?Seq- read requested without prior positioning.?Attempt to change key of record,?Cannot change record length in non-keyed DS.!Attempt to open empty file for read/updateFale not closed correctly. use AMS VERIFYAttempt to open file not property allocated.!Insufficient virtual storage.Passvord error.!Dataset in use by another user!Invalid record number in relative record file.Unknown return code: ',¥RC

131]

 APL FOR

BOARD LEVEL
SYSTEMS
£9,000 - £20,000
Metapraxis is a managementconsultancyspecialising in corporate financial
control. We normally work with the Senior Directors of groups with annual
turnover of over £250 M. Our approach helps Directors to interpret the
mountain of data which they face using conventional methodsof present-
ation. We have developed two techniquestofacilitate this process:
% RESOLVE is the first of a new generation of corporate control

systems, and is used in econometric, banking, and project control
environments, as well as for financial controlof large organisations.

% VISION is a software control system to coordinate Boardroom
presentation media, including computeroutputs, such as RESOLVE and
Prestel, alongside 35mm,T.V., videotape and video-conferencing.
Wenow seek exceptional individuals to join our software development
team. You will develop innovative new products, some of which border on
the expert system field, as well as enhanceourexisting systems and provide
in-depth technical support to ourclients. Working with advanced graphics
techniques, you will use a mix ofskills in areas such as APL, Assembler,
graphics hardwarecontrol and on-line data communications.
You should have a good honours degree in a numerate science, and a
demonstrable track record of using APL in the implementation of complex
commercial projects, in mainframe and/or micro environments.
This is a unique opportunity to influence and share in the growth of a new
industry. Please sendrelevantcareer details to:

David PreedyDevelopment Director
Metapraxis Limited, Hanover House, Coombe Road, Kingston-upon-Thames, Surrey, KT2 7AH.)

VECTOR Vol.3 No.3

The British APL Association
Public Domain Software Library

The BAA Public Domain Software Library is now up and running. The library will bemanaged by the BAA as anon profit-making service for the APL community worldwide,althougha discountis offered to BAA members. At the end ofApril 1986 the scheme will bere-evaluated and changes may be madetoits operation.
Thelibrary catalogue will be printed regularly inVECTOR, and we hopealso to runreviews of popular andinteresting software.
So, where does the software comefrom? You guessed it~ the PDSL can only work ifyousend us your software. The DOS formatdisk is used as the exchange medium,althoughthisdoes not meanthatthe software has to run on the PC. We encourage mainframeusersalsoto share their VS APL, APL2, Sharp APL, APL*PLUS (and any other)utilities or evencomplete systems. We make absolutely no restrictions on the larget machine — providedyou can downloadthe software onto a disk, then the library can acceptit.
Please think back over the last year or two. That litle APL system you developed, thoseutility workspacesor even that database.It doesn’t even have to be APL software,althoughwedo stipulate that it should be‘ofinterest’ to the APL user, programmer, educator orstudent. When you have something to send us, fill in the PDSL Submission Form(overleaf) and sendit off with the software. Before making a submission, rememberthatifyou are not the software owner you shouldfirst get permission from that person. You mustsign the submission form in orderto allow usto distribute the software on your behalf.
Although donors maynotsell submitted softwareto the library, we have taken the decisionto permit donation of free demonstration disks, thatis software that provides a taste of acommercial product. Software operating under the ‘shareware’ conceptwill likewise beallowed, provided thatthisis explicitly stated on the submission form. Atthis early stage ofthe service we do not undertaketo distribute paper documentation or any other non-diskmaterials.
If you are ordering software (use the PDSL Order Form) please understand that we canmakeno claims or promises whatsoever regarding the software, but we will endeavour toensure that contributions behave as described by their donors. Furthermore, we cannotaccept responsibility for any damageorlegalliability caused by using library software. Ifyou do have any positive or negative comments though, let us know and wewill takeappropriateaction.
Finally, please help us get this worthwhile project off the ground by sending us somesoftware, earlier rather than later. You never know, you might even win the prize fordonating the most populardisk.

133

VECTOR VoL3 No.3

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION FORM

Please copy and fill in this form for EACH disk you submit. If you have
any difficulties: see the ‘SOFTWARE SUBMISSION INSTRUCTIONS form.Details correspondong to items flagged (+) will not be made publicallyavailable, but are for our records only.
Use BLOCK CAPITALS for all items except numbers 6 and 16.

10.
ll.
12.

13,

r4,

15.

0. Submission datez_wo__
Name of donor():_..-._--2. Daytime phone(*)s
FULL address(*):___ _ ----.

Mailbox codes(*): IPSA: STSC;: — IBM:
Disk title: _
Brief description of disk contentas_.

List target machines: _
List additional software required: ~~.~---__.u-__-_____----__.
Indicate special hardware requirements:
Indicate special software requirements:

Is sufficient documentation provided on the disk?(¥/N):_____
List titles of any paper documentation included with you submission:_

Is this documentations or any other, available to users upon
application to you?(¥/N):_. Please give details:

Does the disk include any form of payment request from users of the

software?(Y¥/N)i
If the target machine is not a DOS-based PC, does the disk include
instructions for transfer to the target machine?(¥/N):_-

134

VECTOR Vol.3 No.3

British APL Association Public Domain Software LibrarySOFTWARE SUBMISSION FORM (continued)
16. File names and descriptions. This information will be made publicallyavailable in the software library catalogue. Please save us some workby including these details on a file named <CAT> (no file extension)on your submitted disk. Please enter these details for all files onthe disks except <CAT> itself. You can affix a print of <CAT> below.

FILE NAME EXT SHORT DESCRIPTION

17. Total space occupied by all files on the disk, in Kbytes:
18. Please use any extra space above for any comments you wish to make.

- Your signature is necessary. It declares your legal right to makethe disk freely available for copying and use, and grants the
British APL Association a similar right.

Signature:

135

VECTOR Vol.3 No.3

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION INSTRUCTIONS

The numbered points on this sheet of instructions correspond to items onthe SOFTWARE SUBMISSION FORM, which must be filled in and included with
with each disk you submit.
1. The donor's name will be made publically available as a part of thesoftware library catalogue. If you wish to make an anonymousdonation, please supply your name anyway. but place an asteriskithin the parentheses:

2. Please supply a daytime telephone number at which you can usually becontacted. This will not normally be used, and will not be released.
3. The address will not be released. If you wish to make your addressavailable it must be included in an appropriate file on the disk.
4. Please supply any electronic mailbox codes by which you may becontacted. They will not be released.
5. The disk title should be a single short sentence or list by which thedisk can be uniquely identified. and which expresses the purpose ofthe disk.
6. Please supply a short description of the overall purpose of the disk,which may be used as a part of the software library catalogue.
7. List target machines. PC DOS format diskettes are the exchange medium

for library software. NO restrictions are made on the final
destination of software. Therefore appropriate responses might be:
'1BM PCt, "PC and clones’, "Mainframe with APL2’ or ‘Any machinerunning Sharp APL'.

8. List additional software required to use the disk. For example.
specifiy the APL interpreter needed if the disk contains APLworkspaces.

9. Indicate special hardware requirements. For example: ‘640K memory
needed', ‘Hercules graphics board needed' or ‘Math co~processor
recommended’ etc.

10, Indicate special software requirements. For example: 'APL*PLUS PCrelease 6 needed’, ‘APL? release 2 needed! or ‘Best results with
DOS 3' etc.

ll. Indicate if suitable documentation is provided on the disk. A
positive response indicates that documentation exists on the disk or
that none is necessary. If you are supplying any APL workspaces,
you are strongly encouraged to provide variables containing summary
descriptions of the primary functions.

12. The British APL Association does NOT at this time undertake to
distribute or otherwise make available any paper documentation, or
other non-disk materials. You may however choose to submit such
material for review purposes - we plan to review library software
periodically in VECTOR. the journal of the BAA.

13. Indicate if documentation or other non-disk materials is available to
the software user directly from yourself. If so. you must remember to
include the details and a contact addrese ON THE DISK itself.

136

VECTOR Vol.3 No.3

14,

16.

7.
18,

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION INSTRUCTIONS (continued)

Does the disk include a request for payment? If your response is YES;the software library catalogue will indicate that the software is‘USER SUPPORTED’. This warns potential users that the author requiresPayment under certain specified conditions, eg for privilegesavailable to ‘registered’ users of the software, such a6documentation or future releases.
If the target environment is NOT a PC or PC clone running DOS, youare advised and encouraged to provide the necessary instructions tohelp the user to move the software from such a machine to the targetenvironment.
Please specify the file name, extension and short description of EACHfile on the disk. To ensure accuracy and to save us extra work,please enter these details into a file named <CAT>. with no fileextension, on the submitted disk. You can then print the file <CAT>and affix to the submission form.
The preferred format for the <CAT> file is 'filename/extn//desctwhere the / represents a spaces filename as an 8 character filenamesextn is a 3 character file extension and dese is a 66 characterdescription. Use a new-line character to delimit these entries.
If you are submitting APL workspaces, you are strongly encouragedto include variables containing summary descriptions of the primaryfunctions.
Specify the approximate amount of space that the disk files occupy.
Signature. A submission cannot be accepted without the signature ofthe software donor.

137

VECTOR Vol.3 No.3

British APL Association Public Domain Software Library
tunes ORDER FORK *##88%

To: The BAA Public Domain Software Library
c/o David ZiemannFlat 3, 63 Queens CrescentLondon NW5 4ESENGLAND

PLEASE SUPPLY THE DISKS CIRCLED BELOW:

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 037 38 #39 4O 41 42 43 44 45 46 47 48 49 50 51 52 53

5455 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 75

72 73 74 %Y 76 77 78 #79 80 81 82 83 84 85 86 87 88 B89

go 91 92 93 94 95 396 97 98 99 100

TOTAL DISKS ORDERED (please double-check):
library disks at 2 Pounds each ¢ BAA Member's rate
library disks at 3 Pounds each = Non Member's rate

I want to join the BAA, and enclose
the 10 Pounds annual membership fee t

Postage and handling: 1,00
Add 2 Pounds for orders outside the UK:
Total order - remittance included:

Please make cheques payable to the British APL Association.
Payment can be made in US Dollars - pay 1.5 US Dollars for each Pound.
All orders must include payment - allow 30 days for delivery.
BAA membership year runs from 1 May - 30 April. People joining partway through the year will receive appropriate back numbers of Vector.
Software is accepted by the British APL Association on good faith and
we do not vouch for or make any claims regarding donated software.The British APL Association cannot be held responsible for any damage,however caused, by the use or misuse of library software.

138

VECTOR

Index to Advertisers

Vol.3 No.3

Ampere 18
APL People 96
APL Software Lid 17,46
Cocking & Drury 8,45, 100
Dyadic Systems Lid 84,85
HMWProgramming Consultants 116
IBM PC 22
TBM (Sweden) 2
Mercia Software 6
Metapraxis 132
MetaTechnics 58
MicroAPL 12,94
Mine ofInformation (APLBooklist) 32
USADirect Software 76
Vector — BackNumbers 92

All queries regarding advertising in VECTORshould be madeto the advertising editor,
Steve Lyus, at the following address:

Metapraxis Ltd
Hanover House
Coombe Road
Kingston, KT2 7AH
Tel: 01-541 1696

Advertisements should be submitted in typeset, camera-ready A5 portrait format with a
20mm blank border. Illustrations should be black-and-white photographs or line
drawings. Rates are £250 per page. A6 and A7 sizes (at £150 and £75 respectively) are
available, subject to layout constraints.

139

VECTOR Vol.3 No.3

BRITISH APL ASSOCIATION
Membership Application Form

Please read the membership informationin theinside front cover ofVECTORbefore completing this
form. Use photocopies of this form for multiple applications. The membership year runs from Ist
May — 30th April.
Name:
Department:
 Organisation:

Address Line 1:
Address Line 2:
Address Line 3:
Address Line 4:
Post or zip code:

Country:
Telephone Number:
Membership category appliedfor(tick one); 86/87

£5
UKprivate membership... 2.0... eee eee eee £10
Non-voting student membership (UK only)

Overseas private membership ...-.....0--0-0055 £18 $27
Airmail supplement (not needed for Europe)-- £8 $12
Corporate membership ...,.. 0.0.00 ee eee eee £ 85
Corporate membership Overseas-----.---- £140 $210
Sustaining membership «1... 22. ee eee eee eee £360
For student applicants:
Nameof course:
Nameand title of supervisor:
Signature of supervisor:
PAYMENT
Paymentshould be enclosed with membership applications in the form of a UK sterling cheque or
postal order made payable to “The British APL Association”. Corporate or sustaining member
applicants should contactthe Treasurer in advanceifan invoiceis required. Please enclose a stamped
addressed envelopeifyou require a receipt.
Sendthe completed form to the Treasurerat this address:
Mel Chapman,12 Garden Street, Stafford ST17 4BT, UK.

140

The British APL Association
The British APL Association is a Specialist Group of the British Computer Society and a memberof
EuroAPL, an organisation supported by the Commission of the European Communities. It is
administered by a Committee ofeight officers whoareelected by the vote of Association membersat
the Annual General Meeting. Working groupsare also established in areas such asactivity planning
and journal production. Offers of assistance and involvement with any Association matters are
welcomed and should be addressedin thefirst instanceto the Secretary.

1985/86 Committee
Chairman: Dick Bowman CEGB,85 Park Street,

01-634 7639 London SEI.
Secretary: Anthony Camacho 2 Blenheim Road, St. Albans,

0727(56 from London)-60130 Herts AL] 4NR.
Treasurer: Mel Chapman 12 Garden Street,

0785-53511 Stafford, ST17 4BT
Activities: Stan Wilkinson 26 Leith Mansions Grantully Road

01-286 7068 LondonW9 ILQ.
Publicity: Romilly Cocking Cocking & DruryLtd.

01-493 6172 16 Berkeley Street, London W1X 5AE.
Journal Editor: David Preedy Metapraxis Ltd. Hanover House,

01-541 1696 CoombeRoad Kingston
KT27AH.

Education: Dick Gray Horseshoe House,
0476-860483 Sproxton, Melton Mowbray,

Leicestershire LE}4 4QB
Technical: David Ziemann Cocking & Drury Ltd.,

01-493 6172 16 Berkeley Street, London W1X SAE

Activities Working Group
Peter Donnelly 0420-87024
Steve Margolis 01-6707959
Tim Perry 04626-77375RoyTallis 01-405 7841
Stan Wilkinson 01-286 7068

Journal Working Group
Jonathan Barman 01-493 6172
Anthony Camacho 0727(56 from London)-60130
Steve Lyus 0272-666961
David Preedy 01-541 1696
Adrian Smith 0904-53071
David Ziemann 01-493 6172

WPdisks converted to photosetting by Capella House, Stowmarket (0449) 677663.
Printed in England by Short-Run Press Ltd., Exeter.

oye alias DAS ee iD be ted PRE oad di I “1 afta
paPTE (eds ele Pate (i aE Cp Lace ae CARNE MMS: ole ev epeh if hiliaySVPad. ape tatrsl Wlia a cr Le We on ees Fi. Hogde Saw oth yaiigsit}
vi sis Beep WP Gefen aps gp dey RH fife stenetin iafeutt

AARe EE Eta

 Har edthelfiigs [tin APTS, a Mrlinis ie A Viahai
vA Lede ia He apy : i : eae ail Wo jegis

Sevjieps alc tp) ViPsai ie dbe dies. op dr fe iis ide cfeithisnp aye 8 de

ui : an)

ee ‘

“ ide 1.

: hoa a ied: |
|

ha ; |
|

er :
ws

. |
|

‘ |

SideEG, vee tide Sd pcsadidsade WEE Garp el

