The Journal of the
British APL Association

A Specialist Group of the British Computer Society

100+ PAGES OF THE
BESTIN APL
e improve your fibbing.

® APL System design — rules of
thumb.

The APL debates.
® New awards announced.

The latest UK and
international APL news

Vol.3 No.4 April 1987

Contributions

All contributions to VECTOR should be sent to the Editor at the address given on the inside back
cover. Letters and articles are welcomed on any topic of interest to the APL community. These do not
need 1o be limited 10 APL themes nor must they be supportive of the language. Articles should be
submitted in duplicate and accompanied by as much vistal material as possible, including a
photograph of the author. Unless otherwise specified each item will be considered for publicationasa
personal statement by its author, who accepts legal responsibility that its publication is not restricted
by copyright. Authors are requested wherever possible to supply copy in machine-readable form
ideally text files on a 5%" IBM-PC compatible diskette. For other standards, please contact the Editor
beforehand. Program listings should indicate the computer system on which they have beenrun. APL
symbols should be displayed on a separate line and not embedded in narrative. Except where
indicated, items published in VECTOR may be freely reprinted with appropriate acknowledgement.

Membership Rates 1986-87

VECTOR
Category Feep.a. copies Passes
£ $

Nonvoting student membership 5 1 1
UK Private memmbership 10 1 1
Overseas private membership 18 27 1 1
Supplement for airmail

(not needed for Europe) 8 12
Corporate membership (UK) 85 10 5
Corporate membership (Overseas) 140 210
Sustaining membership 360 neg 5

The membership vear runs from 1st May to 30th April. Applications for membership should be made
on the form at the end of the journal. Passes are required for entry to some Association events and for
voting at Annual General Mectings, Applications for student membership will be accepted on a
recommendation from a course supervisor, Overseas membership rates cover VECTOR surface
postage and may be paid in £UK or $US.

Corporate membership is offered to organisations where APL is in professional use. Corporate
members receive multiple copies of VECTOR and are offered group attendance of Association
meetings. Partaking individuals need not be identified buta contact person should be nominated for all
communications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of
promoting the growth of APL interest and activity. As well as receiving public acknowledgement for
their sponsorship, sustaining members receive bulk copies of VECTOR, and are offered news listings
in the editorial section of the journal and opportunities to inform APL users of their products via
seminars and articles.

Advertising

Advertisements in VECTOR should be submitted in typeset camera-ready AS portrail format with a
20 mm blank border. Tllustrations should be black-and-white photographs or line drawings. Ratesare
£250 per page. A6 and A7 sizes are offered subject to layout constraints.

Deadlines for advertisement bookings and receipt of camera-ready copy are given beneath the Quick-
Reference Diary.

Advertisements should be booked with and sent to Cathy Dargue, whose address is given beneath the
Index of Advertisers.

VECTOR

Contents

EDITORIAL: 3 years on

APL NEWS
Quick-reference diary
APL course diary
General Correspondence

British APL Association News
Notice of 1987 Annual General Meeting
Minutesof 1986 A.G. M.
News from Sustaining members
International APL News
APL87-Dallas, U.S.A,
APLS88 - Sydney, Australia
Ineernational APL society news

The Education VECTOR

REVIEWS
APL Press Review
APL Product Guide

RECENT MEETINGS
The Qutside World

APL 86

APL eghancements don’t help the spread of APL

APL Entreprencurs

GENERAL ARTICLES

Stepstoabetter BASIC

Coming out of the closet

The Programmer as Designer, The Designer
as Detective

The Road Not Travelled

TECHNICAL SECTION

Technical Editorial: Mind your language
Technical Correspondence

APL Trivia: Wimbock-APL Application Notes
Prize Competition: Sweeten your Combinations
Intreduction to Technical Contributions
Polynomial Curve Fitting

Mare on “Fast Fibbing”

More Fibbing

Using Name Association for Data Translation
Diary of an implementer

PUBLIC DOMAIN SOFTWARE LIBRARY
INDEX TO ADVERTISERS

Vol.3 No.4
Page
David Preedy 3
David Preedy 5
7
Thomson, Fiegenschue, Branson,

Montour & Wiggins 9
Anthony Camacho 13
Anthony Camacho 14
Cathy Dargue 22
David Preedy 25
Neville Holmes
David Preedy
Norman Thomsen 31
David Preedy 32
Cathy Dargue 43
Dick Bowman 56

70

85

Anthony Camache 95
Dick Bowman 97
Robert Pullman 100
Sylvia Camacho 102
Jonathan Barman 108
Piper, Wiggins 109
Dan Wimbock () 111
Derck Wilson 114
David Ziemann 115
1 B Douglas 117
Josephde Kerf 120
Alan Sykes 121
David Piper 123
Paut Chapman 129
139

143

Dafault Screen 1 MIGRATE Terminal Emulator V1.33

{ MIGRATE

Professional Terminal Emulz
for the Atari ST

MIGRATE is a powerful terminal emulator program for the Atari ST computer.
MIGRATE will operate on any model in the ST range, provided it is fitted with a high
resolution monochrome monitor. MIGRATE offers a wide range of features that allow
the Atari ST to be used as a low-cost, high performance terminal emulator for many
different host computer systems. MIGRATE is available on a single sided disc together
with a comprehensive reference guide and sample fonts for £99 plus VAT from:

MicroAPL Limited
Unit 1F Tideway Industrial Estate

L]
87 Kirtling Street D

London SW8 5BP

Telephone: 01-622 0395 D

Telex: 896885 I0TA

VECTOR Vol.3 No.4

Editorial: 3 years on
by David Preedy

As this will be my valedictory contribution as editor of VEGCTOR it seerms appropriate to
take stock of APL’s current position, assess what the APL community has achieved over the
recent past and anticipate the major challenges over the coming years.

‘The past few years have seen several landmarks — the conference at Loughborough, the
launch of VECTOR, the “Best of APL 84 seminar — culminating in last year’s APL 86
Conference at Manchester. The success of that conference can be gauged by the supporting
material produced, with the normal Proceedings supplemented by a Tutorials volume and
by the various reports on debates published in recent issues of VECTOR.

These events have been highly visible, but should not detract from the wealth of
background work to which many in the APL cormmmunity have contributed. There have
been major technical developments bringing APL interpreters onto a widening range of
machines, producing an APL compiler and extending the language itself into such realms
as nested arrays, user-defined operators, and the like. There has been a wealth of innovative
applications (far too many of which remain under wraps), and a growing extension of the
use of APL in the bastions of higher education.

However, despite the B.A.A. being one of the thriving specialist groups of the British
Computer Society, APL is still an elirist language, largely unknown in the computing
community and widely misunderstood in those areas where it is known. The membership
of the B.A.A. may have grown over the past few years, but most of us believe that it remains
a small fraction even of those who use APL — at least as measured by sales of APL
interpreters —and it must be a minuscule percentage of those who could derive a significant
benefit from using APL.

On the education froni, the majority of students on computer-related courses at
Universities and Polytechnics graduate without having heard of APL, let alone used it in
anger, and the position in the schools is even worse despite the widespread availability of
microcomputers and the evident suitability of APL, together with other languages such as
LOGO, for educational work,

The public image of APL has barely changed over the past three years. APL is largely
ignored by most of the British computing press. It is symptomartic that only wo
publications (VECTOR excluded of course!) mentioned the APLS6 conference, even
though it was the first time that APL’s international event had been held in the U.K. The
articles that do appear show little sign of a growing understanding of APL — they still tend
to comprise the standard contents of an introduction to APL explaining how miraculous it
isthat 1 + 1 can still produce the answer 2 and then introducing a hand-full of the amazing
APL hieroglyphs; my own favourite is the x symbol that I was taught when [was eight or
nine but had to un-learn in order to tell computers to multiply!

VECTOR Vol.3 No.4

However, times have changed! We are now standing on a threshold of opportunity created
by the achievements of the past years. The B.A.A. accounts for 1986/87 will show the scate
of the success generated by the hard work of all who helped organize APL86, but it can be
no secret that part of the reward has been a substantial profit for the B.A.A. Since then the
B.A.A. commitiee has been actively drawing up plans 10 ensure that the proceeds of the

conference are directed towards the long-term interests of the APL COMIMUMILY.

Various schemes have been proposed and elsewhere in this issue of VECTOR we announce
rwo which have been approved — an Qutstanding Achievement award to recognise those
who have made a significant contribution to the advancement of APL; and a plan to provide
financial backing te proposed projects.

However the most significant challenge must surely be how to extend an awareness of APL
‘nto the schools. Computing within education is moving out of its phase of development.
Today’s methods, based around the dominant position of BASIC, are becoming
entrenched as best practice. It will soon be too late to establish a new approach
incorporating widespread use, not only of APL, but also of other languages such as LOGO,
which place the interests of the user, in this case the schoolchildren, above those of the
computer.

It is for these reasons that the B.A.A. has become one of the major backers of the separately
established 1-APL project to develop a free interpreter targetted towards schools. The
B.A.A.’s contribution to this venture has been crucial and I am sure that the committee will
have the foresight to continue supporting the project through to its fruition.

Of course these plans require more than just money; to be fully successful they nced the
whole-hearted and active support of those of us already lucky enough to appreciale the
advantages of APL. The I-APL team will carry out the technical development of the
interpreter; they are already fully immersed in the preparation of the supporting material,
particularly that aimed at showing teachers how APL can be used most effectively in the
classroom; they can also develop a marketing plan to spread the word among the teaching
profession.

However they are too small a group to be able to spend a couple of hours in front of a P.C.
with each teacher interested in finding out about APL. This is precisely the sort of role
where every one of us can help. 1f we can rapidly build up a nucleus of schools where APL
is in use, the word will go around the teachers’ grapevine, and a chain-reaction will develop.
There is then a realistic chance that our own children’s first experiences of computers will
encompass more than the constraints of BASIC.

VECTOR

Date

1987
10-14 May

5 June

8-11 September

18 September
16 Qctober
20November

1988
15 January

1-5 February
18 March

20 May

16 Seprember
21 Qcrober

18 November

Vol.3 No.4

Quick-reference diary

compiled by David Preedy

Venue

Dallas
London

Strasbourg

London
Londen

London

London
Sydney
London
London
London

London

London

Event

APL 87— APL in transition
British APL Association AGM & meeting

European Software Engineering Conference
organised by AFCET, Paris

British APL Association meeting
British APL Association meeting

British APL Association meeting

British APL Association meeting
APL88—“APL - Past, Present, Future”
British APL Association meeting

British APL Association AGM & meeting
British APL Association meeting

British APL Association meeting

British APL Association meeting

All British APL Association meetings are to be held at the Royal Over-Seas League, Park
Place, near Green Park tube station and start at Zpm.

Please note the changed date of the A.G.M., which has been re-scheduled to avoid a clash
of dates with APLS7 in Dallas.

Dates for future issues of VECTOR

Copy date
Ad. booking
Ad. copy
Distribution

Vol4
Nol

24 Apr87

22 May 87

29 May 87
July 87

Vol4 Vol4 Vol4
No2 No3 No4
24 Jul 87 16 Oct 87 29Jan 88
21 Aug 87 13 Nov 87 19Feb 88
28 Aug 87 20Nov 87 26 Feb 88
October 87 January 88 April 88

Enhancing APL.68000

An intriguing computer for an &
exciting language —the WS-1 :
and APL.GRO00. At last the APL
programmer can have portability
without sacrificing power or
capability. Dodge the qucue
waiting for time on the main-
frame and discover the sudden
freedom of being able to try out
programs anytime, anywhere.

The APL.GB000 interpreter is
irnplemented in 86KB of ROM,
running wnder a multi-user,
multi-tasking operating system
called BIG. DOS. Speed is the
essence of APL programming,
and now the WS-1 makes
development even faster.

Come and
see us at APL 'B6.

APL.G8000 on the WS-1 has
attractive enhancements such as
a powerful component file
system, QUAD. FMT function
for alpha report formatting,
QUAD. CC function for full-
screen control, and extended
error trapping facilities.

FOR DISTRIBUTORSHIP INFORMATION AND PRODUCT DETAILS PLEASE CONTACT:

Bundled with the WS§-1

are four workspaces: SYSFNS,
APLUTIL, FILEUTIL, and
SYSCOM. Each gives access 10
the WS-1°s unique capabilitics
such as control of the built-in
speaker phone, microcassctte
unit, RTC (real time clock), bit-
mapped graphics LCD screen,
and optional 3.5-inch floppy
disk drives.

Cormpress these capabilities
into a sleek footprint measuring
less than 13 inches by 11 inches,
and you hiave the ultimate
definition of power.

dmpere

am E‘I"E Asahi Bldg., 7-5-20 Nishi-Shinjuku, Shinjuku-ku, Tokye, Japan, Phore: 03-365-0825.
Hmm,mm Telefax: 03-365-0999. Telex: 133101 AMPERE. IP Sharp Mail Box Code AMP (Greup Code APLWS),

VECTOR Vol.3 No.4

APL course diary

Many of the APL vendors included in the VECTOR APL Product Guide offer courses in APL
and related topics, For a full list readers are recommended o look under the relevant section of the
product guide. This section gives course dates for those suppliers who have prepared thetr course
schedule at the time of going to print.

April 1986

7-9 APL Fundamentals Cocking & Drury
21-22 APL*PLUS/PC Enhancements Mercia Software
28-30 APL Fundamertals Cocking & Drury
May 1986

5-6 APL*PLUS/PC Enhancements Mercia Software
11-14 APL System Design Cocking & Drury
12-14 Systern design with APL*PLUS Mercia Software
19-21 APL Fundamentals Cocking & Drury
19-21 APL*PLUS/PC Introduction Mercia Software
27-28 Statgraphics Cocking & Drury
June 1987

9-11 APL Fundamentals Cocking & Drury
July 1987

7-9 APL Fundamentals Cocking & Drury
14-15 Statgraphics Cocking & Drury
28-30 APL Fundamentals Cocking & Drury

APL Courses

APL Fundamentals
APL Fundamentals
System Design
APL Fundamentals
Statgraphics

APL Fundamentals
APL Fundamentals
Statgraphics

APL Fundamentals

April 7—9

April 28 -30
May 11 —14
May 19-21
May 27 —28
June 9—-11
July 7—-9

July 14—-15
July 28 —30

£375
£375
£595
£375
£240
£375
£375
£240
£375

Discounts are avallale to companies making more than one booking

atatime. All prices exclude VAT. To book, or for further dstails,

contact Beverley Sattetley at the address below.

COCKING & DRURY LTD.
THE APL PROFESSIONALS

— 16 Berkeley Strest, London W1X SAE

Tel: 01 - 4938172

VECTOR Vol.3 No.4

General Correspondence

The VECTOR working group welcomes corvespondence on any topic affecting the APL
communiry. All such letters should be addressed to the Editor and should indicate whether they are
intended for the gemeral or the techmical section. Letters containing APL code will normaily
appear in the Technical Section of VECTOR, and authors are asked 16 observe the requirements
on the inclusion of APL code stated on the inside cover. The Editor reserves the right to edit any
lester unless the writer states that it is 1o be published in Jull or not at ali.

APL takes wing
From Mr Norman Thomsen 24th December 1986
Sir,
I found the following as part of the results of a recent bibliographic search on APL.

“Bird-borne sazellite transmitter and location program” Strikwerda, Fuller, Seegar,
Howey

Several birds carrying APL-developed transmitters have been tracked by
satellite with good results, but more work should have been done to develop
lighter, more reliable hardware.

Yours,

Norman Thomson,
17 St James Terrace,
Winchester, Hants., SO22 4PP.

P.S. lunderstand that APL is the Applied Physics Lab at John Hopkins University.

(Editor: It sounds as though this development puts our laptop systems in the shade!)

APL 87 in Dallas
From Mr Jim Fiegenschue 15 December 1986
Sir,

I am writing 1o tell you about the upcoming international APL conference, APL87, which
I think will be of interest to your readers.

I thoroughly enjoyed APL86 in Manchester; the B.A.A. has set a very high standard of
excellence for us to try to march!

Yours ruly,
Jim Fiegenschue,
Dallas

(Editor: The detuils Fim sent are included in the International APL News section of this tssue of
VECTOR.)

VECTOR Vol.3 No.4

APL. Publicity
From Dr Peter Branson 20th January 1987
Sir,

I enclose a copy of an article as it appeared in PC Week on 26th November 1986, There
were several typos in the code. (I sent camera-ready copy, but, of course, they re-set itl]
The text however is pretry faithful 1o the original except that “insufficiently known” for
APL becomes “sufficiently known”,

The APL technical content is deliberately low, but at least it got published (with alacrity —
somewhat to my surprise). There were perhaps a couple of reasons for this:

(1) a careful study of previous issues of PC Week gave me several hooks to latch on to and
attract the editor’s interest;

(2) 1 photocopied bits of everything I referred to, so that he would have no trouble
checking accuracy.

1t won’t always work, but perhaps the above points could be commended 1o other
VECTOR readers struggling with the hard job of publicising APL.

Yours faithfully,

Peter Branson,
Qaklands Cottage,
Wray Common,
Reigate, Surrey.

(Editor: I hape that other budding authors will bear your points in mind — and perhaps let us
publicise other tricks of the trade. This may be especially relevant in the light of the proposed
B.A.A. prizes, announced in the B.A.A. news section of this issuc.)

PortaAPL
From M Normand Montour
Sir,
In VECTOR Volume 3, No. 1, I contributed an article about PortaAPL on the

Mackintosh, where I included a forwarding address for comments. Please could you ask
your readers if they could forward enquiries to my new address as given below.

Yours truly,

Normand Montour,
260 Castlefield Ave.,
Torente, Ontario,
M4R 1G7, Canada.

10

VECTOR Vol.3 No.4

The cost of APLs
From Mr A N Wiggins 19th February 1987
Sir,

I write this fetter for one reason: I am fed up trying to promote the use of APL, when I
receive little or no support from the producers of APL interpreters. It seems 10 me that
whilst APL has always had great potential as a language, it has never quite made it.

If I write a program in C, I can compile it into machine code and then give it or sell it o
anyone. The price will be a matter between myself and the customer. No one, unless I tell
them, would know the original language. In this case [pay a one-off cost and reap the
benefits of my labours.

If I write a program in BASIC, I can give it to anyone with the same BASIC interpreter. In
terms of (International) business machines, BASIC seems to come whether it is wanted or
not.

Our machines are used for accounting functions, so it is not surprising that a copy of a
spreadsheet product is bought for each when the machines are purchased; in our case it
happens to be SYMPHONY. [can write a program in SYMPHONY for use throughout
the department.

So why is there a problem with APL? [can’t compile jt, so a copy of the interpreter has to
be made available for third parties to run my programs. This is where the problem arises.

['use APL*PLUS PC. If I judge that a program is better written in APL*PLUS, I haveto
provide a copy of Runtime APL with the workspace, That, in itself, does not bother me —
but the cost does. Each copy of Runtime APL costs £130, with 2 minimum purchase of 5;
a total of £650,

By comparison, a copy of C can cost as little as £30 or as much as £500. BASIC comes
bundled with MS-DOS ata cost of £60. SYMPHONY costs £400 (after discount), butitis
usable by anyone after a few hours for simple applications including report formatting. The
cost comparison shows that APL*PLUS is effectively a non-starter.

How can this position be resolved to make APL a mote attractive proposition for small
developers such as myself? One answer is for STSC to price Runtime APL at a minimal
amount. The most that should be charged for it is that portion of the cost of MS DOS
attributable to its BASIC interpreter. As DOS is a must, the cost relating to that side of the
product must be greater than that relating to the BASIC portion. It would not, therefore,
seem unreasonable for £20 to be charged for each copy of Runtime APL.

Possibly IBM should automatically bundle their APL with their PCs. This would show thar
IBM is truly committed 1o APL, as well as encourage the buyer to try his new “free-bee”.

I cannot complain about the cost of my copy of APL*PLUS, nor the cost of the upgrades,
as they have proved to be good value for money. Bur if the banner

“WRITTEN IN APL”

11

VECTOR Vol.3 No.4

is to appear at the front of more and more programs, then the cost of Runtime APL must
come down. This is a way 10 spread the message and to let the world at large know that APL.
exists. Keeping it restricted through price will not enhance its use or current reputation; it
will only serve to promulgate the myths and mystique with which it is currently
surrounded.

1_APL is another way to encourage APL, but surely $TSC and the other APL suppliers
could nip this project in the bud by making their own producis more easily available.

My only interest is in seeing the use of APL grow so that it achieves its rightful place in the
computing community. 8TSC, IBM, and the rest, can do something now . . . or will they
eventually sink under a tide of [-APL. users?

Yours faithfully,

A N Wiggins,
8§ Kidworth Close,
Horley,
Surrey, RH6 8]P.

(Editor: I am sure that if STSC could secure the sales volume achieved by MS BASIC — for

whatever reasons — then the economics would enable them 1o cut prices. If I-APL ts the way to
stimudate that demand, then maybe STSC and IBM would be wiser not 1o strangle it at birth.)

12

VECTOR Vol.3 No.4

British APL Association News

Notice of Annual General Meeting
and elections to the Committee

The British APL Association AGM will be held on 5 June 1987 at the Royal Over-Seas
League, Park Place, London SW1 starting at 2 pm. The AGM will be followed by a
technical meeting as usual.

—

AGENDA

Minutes of 1986 AGM. (These are reproduced below so that they may be taken as read if
there are no objections).

Officers’ Reports: The Chairman will review the highlights of the year, the Secretary and
Treasurer will report on the discharge of their offices and the Treasurer will present the
accounts. Other officers may take the opportunity if they wish to make a report and
members may ask questions relating to their duties of any member of the committee.

Nominations of candidates for office 1987/8. These may be sent or given to the Secretary
beforehand which would save time. All candidates should be proposed and seconded by
members and should provide a brief statement outlining suitability and intentions
should they be elected. Candidares should be paid-up members. Standing for election is
taken as an undertaking to attend all possible committee meetings.

Election of committee: the procedure will be to take the posts in the order below and for
each post
a display the list of candidates;
b read out each candidate’s nomination and statement of suitability and intentions;
¢ take a vote by show of hands counted by Chairman and Secretary on each candidate
in the order their nominations were received.

Any other business. Items will be included only if they have been approved at the
Committee meeting to be held on the morning of the AGM. Notify in advance if you want
to raise something.

List of posts in the order they are to be filled:

Chairman (who must be a member of the BCS)

Secretary

Treasurer

Journals Officer (Editor and organiser of VECTOR)

Activities Officer (who organises meetings and special events)

Education Officer (who promotes educartion in APL and APL in education)

Technical Officer (who organises technical verting and reviews of products, articles
and papers)

Publicity Officer (who arranges promotion and coverage of the Association’s
activities)

13

VECTOR Vol.3 No.4

Projects Officer (any special projects)
Recruitment Officer (who recruits new members to the Association and advises the
committee how to retain old ones)

Cominittee members are (normally) members of the B.C.S.

Each Officer is encouraged to form a working party of Association members to help with the
job, to provide a deputy in case of unavoidable absence and to allow members who might
like later 10 join the commitiee to see what the work is like.

Anthorry Camacho 9th February 1987

Minutes of the A.G.M. held at the Royal Over-Seas League
23rd May 1986

The Chairman, Dick Bowman, reviewed recent progress of the Association. The success of
Loughborough had enabled us to launch VECTOR and change the venue for meetings, but
last year’s bad news was that it was costing us far too much. We would not have been able
to carry on if we had not turned VECTOR round: the effort had led to some trouble with
regularity of publication but VECTOR Vol 2 No 4 was already printed (to be issued as soon
as bound) and VECTOR Vol 3 No 1 would be out in time for ATPL 86.

Our regular activities were well attended and the new venue well received. There were no
special events — APL 86 had taken all the spare effort. We held an Education Day last vear
which was a stimulating day but has (so far) led 1o no noteworthy increase in the use of APL
in education. We are organising an Education Day before APL 86.

Many of the officers were also on the APL 86 committee and had been working very hard to
make it a success. The exhibition has been fully booked, a full programme has been
arranged and delegate bookings are buoyant.

If the theme for last year had been consolidation, that for next year must be recruitment.
We believe there are at least 2000 people in the UK who should benefit from membership
and if a higher proportion were members we would be able to offer more and better services
to all. To encourage recruitment, members could earn their subscription by recruiting
three new members and the Committee had decided (o appoint a recruitment officer.

The Treasurer displayed the accounts. The subscription increase accounted for nearly all
the difference in income as recruitment has not been rapid. VECTOR’s new production
method and increased advertising revenue meant that it was now close to self-financing (not
over the whole year shown because that included one issue at the old costs and the transition
issue, so the year showed only two issues al the new rate). He held up the membership
renewal form being circulated and gave warning that non-payers would not be sent
VECTOR. Nobody objected 10 his proposal not to issue membership cards. Payment will
be accepted in dollars or by standing order.

14

VECTOR Vol3 No.4

The Secretary held the election of officers for 1986/87. First the offices were listed. Two new
offices were added to last year’s list. Then nominations for each office were called for in turn
— the commitiee proposing and seconding everyone to save the time that would have been
taken by formal proposal and seconding of each candidate — and then, if there was any
contention, a vote was taken by show of hands. The following were elected:

Chairman Dick Bowman Activities Roy Tallis
Secretary Anthony Camacho Publicity Gerard Paul-Clark
Treasurer Mel Chapman Education Norman Thomson
Journal David Preedy Recruitment Christine McCree
Technical David Ziemann Projects David Eastwood

It was explained that the Commijtiee wished to be abie to initiate projects such as would
promote the use of APL, enhance the reputation of the Association, increase its
membership or help its finances, without detracting from the attention that members of the
Committee could give to their regular work. The Projects Officer could manage any
Association projects that were outside the scope of other Commirtee members ot which a
Committee member was too busy to handle. Of course the Projects Officer could also
propose projects.

24th May 1936:
Anthony Camacho, Hen Sec Signed: Dick Bowman, Chairman

Secretary’s report on Committee meetings
by Anthony Camacho

Since the last AGM there have been seven committee meetings; there will be two more
befare the 1987 AGM, on 20 March and on the morning of the AGM itself. Below I list the
dates and attendances. P means the member was present; A means apologies were sent; R
means that the member’s resignation had been received since the previous meeting. At the
end of each row the numbers separated by the oblique stroke are actual and possible
attendances.

11Jun 13Aug 198Sep 220ct 21Nov 12Dec 28Jan
P

R JBowman P P P P P P 77
A] Camacho P P P P P P P 77
M Chapman P P P P A P P 6/7
D K Preedy A A P A A P A 27
R Tallis P A P P A R 3/5
P S Goacher P 1/
N D Thomson P A P A P A A 37
DM Ziemann P P P P A P A 57
G Paul-Clark P R 1/2
B C Leverton P P P P A 45
D Eastwood P P A A P P P 37
C McCree P A P P P A P 577

I5

VECTOR Vol.3 No.4

The praciice that officers send writien reports of what has been done and has 1o be decided
1o each member of the committee a week in advance is getting to be more common.

Summary of the meetings:

11 June 86:

This was an extra-ordinary meeting for the new officers to take over their
responsibilities. The major tasks and budget for each officer were agreed and many
minor tasks were actioned. As it was a month before APL 86 many committee members
were fully occupied!

13 August 86:

This was an extra-ordinary meeting to discuss the proposed Public Domain Software
Library and I-APL. A way of working for the PDSL was agreed for an experimental
period of six months. Guidance was given to I-APL on preparation of a case for B.ALA.
to support the project. Sales of stock left over from APL 86 were discussed and a journal
exchange with other APL groups agreed.

19 September 1986:

The Association’s finances were in good shape and its membership too small. There was
concern at the amount of volunteer work required o run VECTOR, the Activities and
various proposed extra initiatives. A conditional contribution o I-APL was agreed. We
heard that APL 86 had made a substantial profit which would rake some ume to finalise
and agreed that we would not use the profit to subsidise regular Association activities.

22 October 1986:

This was an extra-ordinary meeting to discuss recruitment. It was agreed that we have
far woo small a proportion of the UK’s APLers among our members but we don’t even
know whether our guess that there are between 2000 and 5000 of them is right, We
discussed the extent to which our efforts should be directed towards keeping current
members, attracting new members from APL users and promoting new use of APL
among non-APLers (e.g. in schools}. It was pointed out that we are failing to do many
simple and obvious things like arranging meetings well in advance and getting them in
all the free event listings in magazines and the BCS publications. Most of the discussion
was inward looking and restrictive and we discussed a B.A.A. Oustanding
Achievement Award (open to members only) and how we could stop non-members
benefiting from the Association.

21 November 1986:

This meeting bad-temperedly reviewed the excessively long list of undischarged actions
and never got as far as officers’ reports. Activities were not getting arranged sufficiently
in advance so various people were to be asked for help.

12 December 1986:

An extra-ordinary meeting to discuss a five-year plan. Our relationship with the BCS
was discussed and a list made of all five-year plan proposals for expenditure. Roy Tallis
resigned.

16

VECTOR Vol.3 No.4

28 January 1987:
It was agreed we would not raise next year’s subscriptions. The five-year plan proposals
which had been elaborated were discussed and a subsidised teachers course in APL, a
sponsorship scheme for members projects and an outstanding achievement award are to
go ahead, together with the Chairman’s proposal for better communication between
APL groups, We heard that Mine of Information were discontinuing their bookselling
activities. Philip Goacher was co-opted as Activities Officer.

I will be pleased to answer questions about the meetings of 20 March and 5 June ar the
AGM.

Secretary’s report on Conscientiousness and the Committee
by Anthony Camache

The work of the Committee should not be very onerous. It entails attendance at six to nine
half-day meetings a year, sending round a report before each and carrying out the actions
proper to whatever post is held. The main work is done outside the committee by the
officers who have the most responsible jobs and their working groups. The major jobs are
VECTOR and organising Activities. There is also a steady workload for the Treasurer,
keeping the accounts and membership list up to date and for the Secretary, writing
minutes, circulating papers, booking rocoms and responding to queries.

When somebedy fails to do their duty the whole committee suffers and through them the
Association.

It is essential to have reports beforehand, proposals for discussion, a financial statement
and a room booked for every meeting. Minutes should come out within a week, letters
should be answered and cheques banked promptly and so on.

I am not trying 1o put you off! Please do stand for the Committee: contested elections are a
sign of a thriving Association -- but if you are elected please be conscientious about it.

The British APL. Association Outstanding Achievement Award
by Anthony Camacho

The British APL Association invites applications for this new annual award. There is no
restriction on who may be put forward as a candidate to receive it, but the proposer and
seconder must be members of the Association. Any person or group that has achieved some
outstanding task with or for APL or performed some outstanding service to the APL
community or in the promotion of APL 1o the non-APL world may be a suitable candidate.

The award for 1987/88 will consist of a Trophy (1o be held for a year or until the next time
the award is presented) and a cheque for £500. The presentation will be made on a suitable
occasion when the Association and recipient will get the maximum publicity.

17

VECTOR Vol.3 No.4

Each year the nominations are asked for by 30th August. When they are all received the
APL Association Commirttee will appoint a sub-committee, chosen to minimise any
associations between judges and candidates, which wilt decide who should receive it. If, in
any vear, there are no suitable candidates in the subcommittee’s view, then the award may
be held over till the following year.

The Associaton’s objectives in promoting this award are to show the world that
achievement in APL is rewarded and 1o get the widest publicity possible for outstanding
achievements. We want to encourage efforts on work which might not be commercially
viable, and to strengthen and re-inforce the APL community’s view about what is best for
the future of APL.

Nominations should consist of the name(s) and address(es) of the candidate{s) and two
signed and dated statements, one from the proposer and one from the seconder, explaining
what the outstanding achievement is and why this year the prize ought to be awarded to
this/these candidate(s), The statements should each be not more than a single page of
typescript.

Nominations for the 1987/88 award should be sent to the Secretary, British APL
Association, 2 Blenheim Road, St Albans, Herts, AL1 4NR not later than 30th August
1987.

£5000 Award for Membership Projects

by David Eastwood

Have you got any pet projects languishing for want of funds? Could you make APL a
household name given a bit of time and money? Could you write the definitive APL book?
Well the B.A.A. Committee have decided to give you some material assistance.

Following the success of APL86 the B.A.A. has been able 1o embark on a wider range of
activities than in previous years. The B.A.A. committee has launched some new activities,
and in addition has decided to support B.A.A. members in projects they would like to
undertake themselves. The B.A.A. has allocated the sum of up to £5000 1o be awarded in
1987 to the project or prejects which will do most to further the aims of the B.A.A., viz:

®m Promote the use of APL

m Help people 1o use APL well

m Conrribute to the development of APL and international standards
® Exchange technical information about the language

B Increase the membership of the B.AA.

If the scheme proves a success it will be repeated in following years, so we are looking for
exciting project ideas to get the scheme off the ground. Not all requests for funding will
need the full amount so we may decide to sponsor a number of projects, or even none at all!
1’s all up to the calibre of the submissions. The choice of the project is very much up to you,
the members of the B.A.A., but examples might be:

18

VECTOR Vol.3 No.4

B Writing/publishing a new APL book

® Development of new APL software

® Development of the APL language itself
® Establishing an APL bulletin board

The award can be used to finance time off work, the purchase or rental of equipment, the
preparation of material for publication, etc. The awards will be made at the B.A.A. 1987
AGM on June 5th and selection will be made by members of a B.A.A. subcommittee and
ratified by the full committee. The rules governing the award are simple:

Principles of the Schemc

1.
2.

Projects must be proposed and carried out by paid-up members of the B.A.A..

A sum of up to £5000 is available for the project or projects deemed most suitable by the
B.A.A. committee.

3. The decision of the B.A.A. committee in choosing suitable projects is final.

. B.A.A. committee members shall be excluded from judging any project in which they

have an involvement.

. A contract governing the terms and methods of payment will be drawn up between the

B.A_A. and the recipients of awards.

. If the project has some commercial worth, the award will be treated as venture capital

funding and the B.A.A. will expect some suitable return on the investment.

. The awards will be made to the project or projects which, in the opinion of the B.A.A.

Committee, are the most original, best further the aims of the B.A.A. and will not be
carried out in the absence of this funding.

. Submissions for project funding should be drawn up 1o include some budget, timescale

and objectives. The progress of the project will be monitored by the B.A.A. committee
and in many cases the funding will be released in stages as objectives are met.

Requests for project funding

Proposals for projects should be submitted to the Projects Qfficer or the Secretary of the
B.A.A. Commitiee by Friday, 15th May 1987 and short-listed candidates will be
interviewed by the B.A A, if necessary.

B.A.A. Projects Officer B.A.A. Secretary
David Eastwood Anthony Camacho
¢/o MicroAPL Lid., 2 Blenheim Rd.,
Unit1F, St.Albans,
Tideway Industrial Estate, Herts.

87 Kirtling St., AL14NR
LONDON SWS8SBP

19

VECTOR Vol.3 No4

Journal Officer’s report
by David Preedy

As this is my final issue as editor of VECTOR, a (perhaps misplaced) sense of duty compels
me to report to the VECTOR readership on recent performance and future plans of the
journal working group.

Qver the three years of its existence, VECTOR has made some notable strides. Most
importanuly it has established an international platform where a blend of articles on more
general themes as well as the latest technical developments in APL can be expounded.
Already the number of contributors to VECTOR is well over a hundred, although we are
always looking to broaden the base of authors still further.

Many of our readers may be unaware of some of the background improvements that have
been made. The VECTOR style owes much to the pioneering drive of Robert Bittlesione,
its first editor. Since its inception one of the VECTOR greup’s main targets has been to
combine the objectives of maintaining a quality journal with the inevitable limitations of a
restricted income. Due to the unstinting efforts of the members of the working group, this
objective has been successfully achieved over the last 18 months. We have searched out
typesetters, printers and a mailing house who can provide us with the service we require at
the most cost-effective rates. At the same time we changed the typeface used so as to
improve legibility.

Qur internal production methods themselves have changed. Gone are the days when the
entire copy had to be entered by the typesetters; almost all the copy is now submitted on
diskette — the exceptions being items like the Product Guide where it is more efficient for the
typesetiers to edit the previous copy. The improvements are seen not only in the costs
incurred but also in the task of the proof-readers, the time needed and the final quality of the
journal.

We have improved our own timetabling. We would be the first to admit that in the early
days, the date on the outside cover was more a wishful hope than a realistic estimate.
Deliveries are now normally in the correct month, although even we cannot always allow
for the entire copy being held up in a snowdrift for a fortnight!

On the income side, the improved reliability (and the work of our advertising officers) have
contributed to a growing list of advertisers, VECTOR is now the prime medium for
advertising 1o the international APL community, be it for new products, consuliancy
services, conferences or recruitment.

Finally we have started to develop a forward plan of major themes. The coming issues are
intended 1o focus more specifically on the following selected topics:

Voi4,Nol July 87 Graphics & user interface
Vol4,No2 October 87 APL applications
Vol4,No3 January 88 Education

1 hope that all readers with an interest in these subjects will take the opportunity to
contribute to these special issues.

20

VECTOR Vol.3 No.4

What then are the major challenges facing the VECTOR working group over the coming
months? On the technical side, we still submit all APL code as artwork which is cut and
pasted into the type-set copy. This process is not only time-consuming but also liable to
introduce errors — the technical editors are unable to simulate all APL environments and so
cannot test all the code. We are working on a methodoloegy 10 enable the complete electronic
transfer of articles and code from workspace to type-set copy. As we progress on this front,
the results will be published in VECTOR, setting standards for electronic submission to
VECTOR.

The second challenge is to shorten lead-times for production. Every so often we find that
the passage of time has overtaken the relevance of some of our news material. The previous
issue of VECTCR, for instance, contains an advertisement for Mine of Information’s APL
book service, together with an inserted slip announcing that they have had 1o discontinue
their service.

The final challenge must be to continue striving to generate the highest quality of content.
Ultimately the responsibility for that must lie with you, the readers, and I hope that you will
take every chance to submit articles, lerters and competition entries.

I hope that our readers will judge the history of VECTOR so far as a success, To the extent
that they do, the credit lies with all those who have contributed to ifs content and
production. In particular, I would like to acknowledge the conscientious input from all
those individuals who have served on the VECTOR working group, and the generous input
from those organisations that have supplied us with time, space or equipment.

21

VECTOR Vol.3 No.4

News from Sustaining members
compiled by Cathy Dargue

“Sustaining membership” of the British APL Association is available to any company
trading in APL products or services. [t provides a tangible way for such companies to
express their commitment to APL and to promote increased interest and activity in APL
and in the Association. Would-be sustaining members should contact the Association
Treasurer or any committee member.

This issue we are pleased to welcome yet another company — Peter Cyriax Systems — to the
ranks of our sustaining members. It says much for the buoyant activity in the APL market
that our original six members (three years ago) have now increased 1o eleven.

The Committee of the B.A.A. would like to acknowledge the generous financial support of
all of our sustaining members. In many cases these organisations also provide manpower
and administrative assistance to the Association at their own cost.

APL People Lid

The A.P.L. Group continues to grow apace. Whilst APL People is expanding its activities
as an employment agency, APL Consulting is busy with a number of major contracts in the
U.K. and APL Tran Plan has become involved in a car park design study.

Applied Production Logic is the new name under which H Walton Technical Services now
operates, following the acquisition of Computerline, the authors of MANTRAC
{MANagement by Time Resource And Capacity). This production management package
complements the PEFAC system, providing a powerful twin spearhead with which to
tackle the manufacturing market.

APL Software has added new mainframe and micro computer packages to its growing
portfolio of software. Under a marketing agreement with the Electricity Council,
REGGPAK -- an APL Regression Analysis Package — is being offered for mainframe
(VSAPL, APL2) and APL*PLUS/PC environments. This package has been developed by
the Electricity Council to meet their needs for econometric analysis in a way that no other
package could. It has been well tested by the area boards in the last three years and the latest
release is now 10 be made available worldwide.

Also included among the latest software releases is IPLS (Integrated PERT Linking
System), a PERT-based planning and management system developed over more than five
years by British Aerospace because no existing project management system met the
engineering needs of large-scale development projects.

APL Software Technology (UK) Ltd.

APL Software Technology is centributing 1o APL Software’s portfolio of AFPL. packages
with new releases of both POWERTOOLS/PC and RDS, the Relational Database System.

22

VECTOR Vol.3 No.4

Release 4 of POWERTQOOLS/PC provides some very flexible and fundamental
enhancements in the design process for screen-based user interfaces in an already powerful
system-building package. This release provides a consistent programming environment for
APL*PLUS/PC, Dyalog APL and C, thus giving much greater operating system
independence to user applications.

The microcomputer version of RDS, based on Release 4 of POWERTOOLS/PC, is
expected to be announced very soon, available for APL*PLUS/PC environments. A Unix-
based version is expected to follow.

Cocking and Drury Ltd.

The first U.K trial of the APL*PLUS COMPILER has now been completed. The results
clearly illustrate the improvements in performance obtainable through the introduction of
compiler technology. A major APL application speeded up by 30% will save £200,000 in
computer time, and the reduced machine load means that a costly computer upgrade can be
delayed.

APL*PLUS PC is now available on the AMSTRAD PC1512. Tt runs with an IBM Colour
Card compatible soft generated APL character set. The full release 6 product is supporied.

APL*PLUS for the DEC VAX range of computers, running under the native DEC VMS
operating system, is now being beta-tested in the U.K. The interpreter is based on the
APL*PLUS UNIX product and is therefore a full second generation APL interpreter
integrated with the VMS operating system.

Cocking and Drury are currently evaluating available PC network software for internal use
within the company.

Dyadic Systems Limited

Dyadic is delighted to announce that Dyalog APL has been selected as a “Vendor-Logo”
product for the IBM 6150 microcomputer. This means that Dyalog APL for the 6150 will
be marketed by IBM itself, and through the IBM 6150 dealer nerwork.

Dyalog APL has so far been announced by IBM in the United Kingdom, France, Germany,
Holland, Finland, Norway, Sweden, Denmark, Belgium, Italy, Turkey and Switzerland.
IBM’s operating companies in the remaining European countries are expected to follow
suit shortly; to be followed by IBM’s Americas Group and Asia/Pacific Group in the near
future.

As an authorised IBM 6150 dealer, Dyadic is pleased to announce a new and more powerfi
series of IBM 6150 models. The series has two to three times the processing speed of the
original models. The floating point performance of up to 1.6 million Whetstone
instructions per second is up to § times better than before, and disk I/0 is three times faster.
‘The system also offers extensive and powerful networking capabilities, and supports 1024
by 1024 graphics displays and windowing,

23

VECTOR Vol.3 No.4

Dyadic has also released Version 5.0 of Dyalog APL. The latest version contains some
major performance enhancements for common scalar operations on large arrays. As a
result, applications that make use of large arrays will run up to 3 times faster than before.

Mercia Software Limited

No. 1 news item from Mercia this issue has to be the cracking of the APL*PLUS/PC
workspace size limit. With DOS addressing only 640K, AFL workspaces couldn’t get
much bigger than about 487,500 bytes. But now Mercia can supply a memory management
unit which lets DOS address 952K —allowing a free workspace of almost 750,000 bytes; it’s
called the ALL card. T1 can also help with other PC size problems as it supports LOTUS/
INTEL/MICROSOFT EMS — AST EEMS — IBM XMA extended memory specsand a 10
megabyte RAM disk. Prices vary according to your machine and how much RAM you
want; for example an ALL card with 1 megabyte for an IBM PC/XT costs £695 —including
documentation on how to invoke a large APL workspace (and you will get a 700K battery-
backed RAM disk, if your PC had its own 640K to start with).

If you are running out of workspace, and you want (or need) te stay with APL*PLUS/PC
under DOS, then Mercia say that this is for you!

On the applications front, old favourites such as STATGRAPHICS, APL*PLUS/PC and
EXEC*U*STAT continue to be popular, with Mercia’s new STATGRAPHICS
customisation service generating interest amongst users who wish 1o add new statistical
routines but don’t have the time or APL experiise to do it. Integration into
STATGRAPHICS is such that a customised procedure behaves exactly as if it were an
original feature of the software — you can’t even see the join!

Moving up an order of magnitude, LOGOL should be available by the time this VECTOR
hits the streets. Designed by R G Brown for forecasting, inventory management, master
scheduling and distribution planning and control, LOGOL is one of the larger and more
sophisticated systems written in APL*PLUS/PC. Naturally, with Brown’s name behind
the system, Mercia are already stimulating plenty of interest for LOGOL.

Peter Cyriax Systems

PCS has been trading successfully as an independent consultant for over four years. Asa
result of growth and developing areas of special expertise, PCS has now decided 1o become
a Sustaining Member of the British APL. Association, and 1o participate more fully in its
activities.

A recent project has brought together such fundamental ideas as fast search structures,
database theory, and language design. These have been combined to produce a relational
database system of considerable power and flexibility, to which an Application Generator
can easily be added; technical Graphics is another natural extension.

This is the basis for further work. PCS will continue to develop their expertise at handling
large volumes of data, and expect te announce a commercial database product in due
course.

24

VECTOR Vol.3 No.4

I P Sharp Associates

SWIFT and IP Sharp have entered into a joint venture agreement to market exposure
management services to the international banking community. These services will be based
on IP Sharp’s own or Global Limits package that has already established itself as the market
leader, The joint venture will combine IPSA’s strength in software development and
communications with SWIF s understanding and experience of the international banking
industry. The result will be a larger impact on the banking communiry,

Reuters have recently bought Securities Clearing International Corporation which,
together with IPSA, owned and ran the INSTANT LINK service for the international
securities industry. Reuter’s multi-million dollar service agreement with [PSA should
ensure that the INSTANT LINK becomes the dominant communications medium for the
international securities industry.

The city's Big Bang has made borrowing and lending of stocks very attractive to market
makers and large fund managers. IPSA’s BLEND product is aimed at just this activity and
has proven very popular since its recent launch in the UK.The Dow Jones informarion
service has recently been added 1o the extensive list of databases available through IPSA’s
INFOSERVICE. The Dow Jones information includes a wide range of texrual and
numeric information geared to the needs of business.

IPSA’s network development project, NET90, is on targer and the new communications
nodes are now on test within IPSANET. NET90 provides the basis for the next generation
of IPSA’s communications services and will ensure that IPSA continues to offer state of the
art communications to its customers.

One of APL’s early strengths was its very convenient applications development
environment. However APL has failed to keep up with the development environments now
available to other languages. LOGOS is a major product from IPSA designed 10 provide
APL with the rools and controls necessary for large scale APL project development. A new
pricing scheme for LOGOS has just been announced based on the number of users of the
product. This should make it easier to justify for those companies with relatively small APL
development teams.

International APL News

compiled by David Preedy

International conferences
APL37 - Dallas, U.S.A.

With the approach of the APLS7 conference in Dallas, the organisers’ main
announcements require a more rapid distribution than is allowed for by VECTOR's
production schedule. I am sure that they will have been mailed out with other B.AA,
publicity in the meantime. The basic information we received from Jim Fiegenschue,
provided the dates and venue, which we repeat below:

25

VECTOR Vol.3 No.4

Venue: Fairmont Hotel, Dallas, Texas, U.S.A.
Dates: 10-14 May 1987

Contact: APLS7 Registrar,
440 Northlake Shopping Center,
Suite 210,
Dallas, TX 75238,
U.S.A.

APLSS — Sydney, Australia

Consequently our main conference feature looks even further forward, 1o APLSS in
Sydney. Since he prepared the following Call for Papers, Neville Holmes has stayed up to
the early hours specially 1o telephone us with the dramatic news that the Bicentennial
cricket test has been scheduled for the week before APL88. I am not sure whether this
represents the limitless influence of the APL88 committee keen 1o attract a large Pommie
audience with the prospect of yet another thrashing of the traditional foe, or whether the
cricket authorities themselves have recognised the significance of the APL segment of their
crowds. In either case this must be an unparalleled opportunity for our friends from Europe
and America at last to come to grips with the subtleties of our traditional form of warfare.

APL 88 — “APL — Past, Present, Future”.
by Neville Holmes

Call for papers

The International APL Conference for 1988 will be held in Sydney, Australia, as an official
event of the Australian Bicentenary Year.

The Conference will be held at the Universiry of Sydney, close to the centre of Australia’s
first city, over Monday to Friday, February 1-5, which is the week after the main
Bicentenary Year celebrations.

Because of its historical context, the Conference will have as its theme “APL — Past,
Present, Future”.

The Organising Committee is therefore looking for papers o be submitted in the following
areas :
The Past of APL:
Mathematical notation generally, early days of APL, history of various APL user
groups, review of APL machinery and software, review of past APL conferences,
development of the ISO APL standard, influence of APL on computing generally.
The Present of APL:

This is the most important and immediate part of the Conference, and will be devoted to
applications of APL. The value of APL is best demonstrated by explaining how it has

26

VECTOR Vol.3 No.4

been used in practice to do something which has not been done before, to do something
better through use of APL, or simply 1o do something differently because APL makes it
possible,

The Future of APL:

Extensions to the APL notation, improvement of APL interpreters, APL and future
workstations, revision of APL and the different approaches 1o general arrays, directions
for the [SO APL standard, the promotion of APL in the computing world generally,

The Organising Committee believes that the future of APL would be best promoted by
recoguition of present achievements. Too many uses of APL go unnoticed. APL users who
have shouted to themselves “Hooray, it works and it is good” should share their joy with
others by submitting a paper for APLSS.

Submission of Papers

31 May 1987:

Authors should submirt a brief description of their intended paper and presentation by
the end of May. This will not be refereed but is to help with programme planning. A
submission of intent should include a title, a few hundred words outlining what the
paper/presentation is about, and mention of any special equipment needed for the
presentation. Submissions can be made as detailed below or will be accepted at the
APLS8 stand at APL87 in Dallas. ‘Instructions to Authors’ will be sent to submitters as
acknowledgement.

31 July 1987:
Final papers must be submitted for refereeing by the end of July. All papers shall be in
English, and the bedy of the paper should not exceed 6000 words. The refereeing
process may include requests to the author for modification or explanation.

31 August 1987;
A notice of acceptance will be sent to all authors by the end of August together with any
requests for editorial revisions, and details of the presentation time and duration. Al
accepted papers will be published in the Conference Proceedings,

Modes of Submission:
Electronic submission is to be preferred over hard copy submission, where possible.
(This is intended to help the organisers — aurhors who cannot make electronic
submissicns will not be discriminated against or disadvantaged except by the various
postal organisations.)

Either hard copy or floppy disk submissions may be made to:

APL88 Programme Committee,
P.O. Box 1425,

G.P.O.,

Sydney,

N.S.W. 2001, Australia.

27

VECTOR Vol.3 No.4

Floppy disk submissions must be labelled (written, not electronic) with the name and
address of the author (in case of postal glitches), and include a covering message with
author’s address and phone number as a file on the floppy disk. Such submissions will be
accepted 10 be run under MS-DOGS or PC-DOS (plain text or marked up with DWScriptor
DisplayWrite).

Direct network submissions may be made to ADR Code NHOLM on the 1.P.Sharp
network. IBM VNET address SHCHOLM at SYDVM4 is available for IBM employees
able to employ this facility.

Direct nerwork submissions must be accompanied by a message explaining what has been
sent, how it may be formatred, and how messages may be sent to the author, Submissions
may be marked up using DCF (VM/CMS, TSO) or submitted already formatted.

International APL society news
compiled by David Preedy
Swiss APL User Group

We have a couple of amendments to the names and addresses of some of our fellow groups
overseas. Dr. J.L. Metzger, the previous acting President of the Swiss APL User Group
(SAUG) has written to tell us of his resignation from that role. Their loss is our gain, as he
is moving to work with De Beers at Ascot, and he plans to keep in touch with developments
in APL on the British scene.

We understand that SAUG is now under the watchful eye of its vice-President Claude
Henriod. The address for correspondence is: Swiss APL User Group (SAUG), CH-3000
Bern 1, Switzerland,

APL-Club Germany e.V.

As part of the international APL journal exchange scheme, we have received the latest issue
of the German APL-Journal. The 57-page booklet includes a wide variety of notes and
articles. Major topics include “Cryptography” — a continuation of an article by Dr Willy
Kattwinkel; “STSC’s APL compiler: User experience so far” by Jerry Turner; a wealth of
product announcements and update information, literature reviews, club information and
letters.

More information can be obtained from:
APL-Club Germany e.V.,
z.Hd. Priv.Doz.Dr. C.O. Koehler,
Deutsches Krebsforschungzentrum,
Im Neuenheimer Feld 280,
6900 Heidelberg.

Southwest APL Users Group

Despite the incipient arrival on their doorsteps of the APL87 bandwagon, the Southwest
APL Users Group has maintained a busy schedule of meetings and still produces a monthly
newsletter which manages to find its way across the Atlantic. Recent meetings have

28

VECTOR Val.3 No.4

included APL on the Macintosh and a second course in APL. by Steve Jaffe. They have also
been taking a close look ar flat-screen technology. Jim Fiegenschue pointed out that a
couple of recent articles in PC Week were the direct result of a letter to the editor; he is now
encouraging members to write supportive letters to any journal publicising APL describing
how the writer himself uses APL. For further details contact: Don Hatfield, 2809 Apple
Valley, Garland, Texas 75043,

APL Bay Area Users Group

We also receive regular bulletins from the Bay Area Users Group. The September
newsletter explored the area of “Interpolatory, Cubic, Natural Splines” with a paper by
Robert Korsan, and a tutorial to be given by Jim Brown on the topic of “APL2 and Artificial
Intelligence”. October’s issue looked at various idioms for handiing vector lists of data
organized into groups. In November the main topics were a meeting about teaching I.E.
and O.R, using APL, and a review of Gene McDonnell’s talk on “A Perfect Square Root
Routine”,

The January newsletter covered the December meeting where Roy Sykes had discussed
“Whatever will happen to APL?”, The meeting clearly stimulated a keen debate ranging
over the scope for further enhancements (those of us who have Yet 1o master nested arrays
may be relieved to learn that APL3 is not around the corner), and the bias towards APL as
a vehicle for applications rather than user programming (ADRS users neither knew nor
cared that it was written in APL and only about 10% of mainframe API, installations used
APL for programming). Several reasons were suggested to explain why APL was not used
more for programming, and it was suggested that there were too few newcomers being
introduced to APL - only one member of the audience had learned APL in the last four
years.

New England APL User Group

We also here hear that a New England group has been formed. Despite our initial fears that
this was z rival society this side of the Atlantic, it transpires that their address is: New
England APL User Group, P.0O.Box 2163, Cambridge, MA 02238, U.S.A.

New York SIG-APL

We owe an apology to the New York group whose address has been mis-quoted. It should
be: New York SIG-APL, Suite 524, 660 Amsterdam Avenue, New York, NY 10025,
U.S.A.

Finally we understand that user groups have been formed in South California and ar
Princeton. We wish both groups well and hope that they will send us details of what they
have been doing,

29

INFORMATION

= Your hicdden assat

o Do you have large volumes of data?
@ Do you want effective access to the information?

@ Would your staff benefit?

If so, we should be talking.
Let us turn your Information Resource into Revenue.
We offer you the skills to achieve this:

Data Audit
Data-Base Design
Project Management
Information Presentation
In-depth Knowledge of Computers
Dedication and Enthusiasm
APL Programming

Interested?! then ring Peter Cyriax on:
0l 624 7013 {answer phone)
0860 337963 {mobile phone)

Dater Cyrian Systeims

213 Goldhurst Terrace, London NWB 3ER

VECTOR Vol.3 No.4

The Education VECTOR
by Norman Thomson

Those who have read the last few VECTORs will, we trust, have got the message that this
is the column which tracks the inexorable march of APL into the realins of schools, Further
Education, Polytechnics and Universities. On the first of these fronts the news is of the
continuing progress of [-APL. Paul Chapman, who is writing the interpreter, is well ahead
with the work and demonstration versions will soon be available. On the University front,
IBM will soon be giving APL2 to Warwick University, who will make it available 1o
selected individuals for educational and research use., Contact the director of the Computer
Centre for more information,

Readers are reminded that [-APL, standing for International APL, is the world-wide free
APL, conceived at APLS6, to be available as public domain software, thar is free for all to
copy and distribute without any copyright bar. This is the fireside APL for children to learn
at their mother’s micro (Ed: and mothers to learn at their children’s micro!), butis nonetheless
a full-blown ISO standard APL working with APL characters on BBC micros and Sinclair
Spectrums (or should it be Spectra?). On standard CP/M and MS/X machines, and also on
Apples and Commodores, a transliteration scheme wil? be necessary so that, for example,
the familiar idiom 1o remove duplicates will appear as:

CVivi=irvi/y

—niot too unlike the real thing! Watch this space and keep informed - like a weil-known life
insurance company, we pay no commission and rely on personal recommendations to
broadcast the superiority of our policies!

In July, the British APL Association is sponsoring a 3-day course for teachers and other
educationalists at King Alfred’s College, Winchester. This will be a concentrated, but we
hope also enjoyable, way of involving enthusiastic teachers and others, and thereby
spreading the word; more details will be available soon. We want both to talk and to listen,
that is to hear the professionals’ advice on what is required to promote APL in schools at the
fastest possible rate. Qf course mathematics is not the only area of teaching to which APL
should be applied - statistics, science and social science are all queueing up for attention;
nevertheless, mathematics seems a natural first area to tackle in order to hasten the day
when the three fundamental skills are seen to be reading, writing and APL — a vision that
does not seem to be too outragecus when printed in the columns of this magazine. After all,
what is the best way to do maths on a computer?

From school to university the natural progression is from APL to 2 mix of APL and APL2.
The realm of nested arrays, and user-defined operators is one of great untapped worlds of
computing pessibility, and the arrival of APL2 in the universities is a marter of grear
promiise for the future. There are now at least two University statistics departments which
make APL a compulsory course, and this sort of practice must in time produce downward
pressure on school mathematics at just the time when 1-APL will be there to fill the void. At
the other end of the spectrum, we anticipate seeing in due course research in which APL2
will be used to make the computing element both easier and less obtrusive. The
simultaneous arrivals of [-APL in schools and APL2 in universities complement each other
well,

31

VECTOR Vol.3 No.4

The third main area of Education is one that could be broadly termed vocational education,
i.e. the practical education offered by Technical Colleges, Further Education and the
Polytechnics. In this area course content is driven by the demands of employment, and itis
not unreasonable that the prime consideration for inclusion in the syllabus should be that
people actually use it (whatever “it” is) in the work-place. Itis therefore important that APL
believers (and it is likely that this term applies to YOU by virtue of the fact that you are
reading this journal), who are not directly employed in education, should bring what
pressure they can to insist on APL asa prerequisite for employment.

In short, the promise of the immediate future is that Education is the area in which APL will
make the fastest progress. The harvest will be truly plenteous -- what about signing on as a
labourer? (There’s room in the workspace for Tories and Alliance too!)

APL Press Review
compiled by David Preedy

For various editorial reasons, the Press Review has been held over for the last couple of
issues. The following column reports about ¢ months’ coverage of APL by the world
compulting press — time in which as you can see from the length of this column, APL has
been hitting the headlines.

In the previous Press Review I looked forward with eager anticipation to the massive
coverage of APLE6 that we could expect from the UK’s computer press. And so as each
postal delivery brought another weighrty thud onto the doormat, I pounced to pick up the
copy so I could include its coverage in time for the VECTOR copy date, Alas, time after
time, there was no comment! At the last count I had mustered a grand total of three - and
that includes a deliberate plant I inserted in my own letter w0 Datalink (see below).

Computer Weekly (July 17th) managed one entire column inch (38 words no lesst),
announcing 1 P Sharp’s Logos, which “is said to reproduce many features Unix users
enthuse about.” The other two mentions were both in Datalink, which does continue to be
the one weekly newspaper that seems to be conscious of the existence of APL. The on-going
correspondence following Datalink’s unveiling of a major split in the VECTOR working
group {see VECTOR, Vol 3, No 1, Page 28) has hopefully been finally put to rest with their
publication of a letter from myself (7th. July), and the following week they provided the
other coverage of the APL86 Conference under the heading “Double treat for APL
programmers.” This covered IP Sharp’s presemtation of their LOGOS product and
Cocking & Drury’s announcement of release 6 of APL*PLUS/PC with unrestricted
variable sizes. Yet again we had a chance 1o admire Romilly Cocking’s smile beaming ot to
us from Datalink’s pages; third time this year, and a new photo this time!

Earlier in the vear (191th May), Datalink had covered a major APL announcement:
“The APL language is getting a shot in the arm with a tie-up between big
North American svstems houses, 1P Sharp and Scientific Time Sharing
Computers.”

32

VECTOR Vol.3 No.4

[can understand both companies’ keenness 1o get immediate national press coverage, but
have they thought it might be worthwhile telling the APL commumnity directly via
VECTOR?

A couple of weeks later (9th June) and Datafink tells us about MicreAPL’s release of
APL.68000 for the Macintosh, promising future implementations on the Atari ST, with
“plans for the Commodore Amiga being held back until the future of Commeodore becomes
clearer,”

In fact so keen do Datalink appear to be to publicise APL that our scouts had completely
missed two mentions earlier this year. On 24th February they covered Dyadic’s
announcement of its APL for the IBM 6150/51 or RT PC, and the week before they
published a letter from Clark Wiedmann of Haydenville, Massachusetts. This lerter
ostensibly corrected their comments on the APL compiler which “doubled execution
times” (see VECTORSs 2.4 and 3.1), but was surely only published to give Datalink yet
another chance to show us what Romilly really looks like! Wiedmann concludes his letter:

“It is my contention that the STSC APL*PLUS compiler encourages the
production of ‘good code’ because it removes the interpretive overhead and
allows a wider range of programming solutions to be applied. It allows
solutions that are clear, forthright, correct, and that would have been
considered ‘bad code’ because of efficiency considerations if a compiler were
not available.”

It seems that the letters pages are good ground for APL publicity — probably because few of
the reporters really know a lot about APL. In Computer Weekly (6th March), it was another
of our Sustaining Members who went to press. Dave Weatherby, of IP Sharp, was replying
to a previous article on the merits of various programming languages for the world of
education. In a well-argued letter, Dave points out that:

“Education involves the understanding of standard concepts and the
development of an individual’s own ideas through trial and error. The
computer is merely a tool in this process and the programs written are likely to
be small and used only by their creator for a very short time. Once the ideas
have been assimilated the programs will be discarded. . . . Logo is one attempt
to address this form of programming. . . . Other languages also address the
same area as Logo and I would point to the more advanced versions of APL as
having a great deal to offer schools and colleges, especially in the teaching of
maths and science at secondary level and above.”

Much of the press coverage of APL features new products either in the form of
announcements or of product reviews. Fortunately the eager sales managers from most of
our Sustaining Members send me capies of their own mentions. For those of you who
missed the Dutch review of APL on the QL (see VECTOR Vol 3, No 1), there’s been a
chance to catch up with a similar review, this time by Glyn Moody in Practical Computing
(February 1986). The format of most of these reviews is largely predictable, starting as they
do from the premise that few readers will have heard of APL, let alone know much about it

33

VECTOR Vol.3 No.4

consequently there is the obligatory line pointing out how APL can add two numbers in
‘desk-calculator’ mode. and so on. The variations tend to come in the final summary. Inthis
case the article concludes:

“There is no doubt that freed from the shackles of an impenetrable notation,
APL emerges as a very powerful and usable language. APL represents
one of the first products simuitaneously to use something like the real power of
the QL as well as offering the serious user or professional the possibility of
advanced programming on a home micro.”

Byte (March 1986 issue) also had a long product review — this time of Pocket APL and
spread over some seven pages. Obviously Byte readers are regarded as APLiterate, since
they are denied the chance to see how 1 and | can be made to make 2. Instead they were
given two separate comparisons of how 1o add up a list of integers in APL and in BASIC.
This review made several reasonably sophisticated comparisons between Pocket APL and
BASICA on the IBM PC. Out of nine benchmarks, Pocket APL won on seven
comparisons, lost barely on one test, and was comprehensively beaten on the ‘calculations’
benchmark, where as the reviewer pointed out, “there were no parallel operations”. But
Fric Johnson made some other important comparisons:

« show some of the advantages of using APL, in terms of time, accuracy
and the generality of the solutions. But APL also has a dark side. While the
BASIC program and variables . . . occupied only 132 bytes of memory, Pocket
APL hogged nearly 20K bytes to do the same job.”

On the subject of parallel processing, Computing’s “Over the Horizon™ series looked at the
area of Vectorising Compilers (19th June). This article was interesting for more than the
claim that:

“the future of VECTOR processing is secure” (my capitals)

which is a relief to all members of this journal’s working group! However Tony Durham’s
article has several more direct references to APL, as he compares how an APL programmer
might approach the problems of parallel processing, compared to, say, a Fortranner.

“To an APL programmer it might seem perverse that Fortran programmers
are carefully specifving the sequence of operations which, as the smart
compiler will discover, could actually be done in any order.

“But habits of thought are strong. The APL programmer would be
uncomfortable thinking explicitly about sequence. The Fortran programmer
would be uncomfortable thinking explicitly about parallelism. The world of
supercomputing is full of Fortran programmers.”

Later, Tony Durham looks towards special languages for supercomputing.

“There is still no sign of a serious move to vector or array languages, which
match the Cray architecture better than Fortran or C. APL is & non-starter for
supercomputing because it is interpreted, not compiled. It also uses unusual
symbols and needs a special terminal.

34

VECTOR Vol.3 No.4

“But Wallach (Ed: Steve Wallach, Technical vice-president at Convex, one of the
firms developing cost-effective alternatives to the Cray machines) who once
designed an APL machine, says it would be interesting if sorneone produced a
good APL compiler. He and his colleagues actually used APL to describe
some of the algorithms they used in their own Fortran compiler.”

Back to Byte, whose May issue again featured AFPL, albeit less flatteringly than in the
Pocket APL review. The letrers page, under the caption “Choose Your Language” argues
for having a range of languages in one’s repertoire. The illustration given is one of thase
popular lists of undesirable combinarions:

“A fatal flaw amongst programmers is the desire to use one language for
everything, Do you drive nails with a pair of pliers? Cut wood with a butter
knife? Write numeric-intensive applications in C, screen editors in COBOL,
or system code in APL?”

Later in the same issue, Kent Smith, reviewing Easy C, makes a similarly unfavourable
comment:
“Because we have had bad experiences with other powerful but ‘compact’
languages (most notably APL), we were also less than thrilled by our first
exposure to C.”

It’s always interesting 1o read the views of a genuine user, rather than the hype of the
salesmen or the padding of the professional reviewer who rarely uses the product reviewed
in anger, [was pleased therefore to see Computer News (29th May), where Helen Sturridge
looked at the link between Information Centres and PCs. The user chosen was the Hoechst
company which introduced Apple Hs in 1981:

“It was the development backlog that sparked an interest in the new machines
at Hoechst UK. But the interest was coupled with a desire to offer mainframe
personal computing through APL. Mainframe APL users are divided
between those who want sophisticated graphics and those who want access to
corporate databases. Some do it through PCs, some through terminals,”

In September, APL finally made it into the hallowed pages of The Times (Computer
Horizons, 9th September). Chris Naylor was reporting on the mass of languages available.
APL merited 19 words:

“APL simply stands for A Programming Language and contains particularly
powerful commands for doing such things as matrix operations.”

The descriptions of other languages were similarly terse, with more space devoted to the
origins of their names than to their characteristics. The description of Ada devotes 16 lines
to Lady Lovelace and Babbage’s Engine and only 3 10 the US Department of Defense.

Later in September, Computer Weekly took a look at Parallel Processing with an article by
Dr Chris Jesshope from Southampion University. After looking at the communications
bortleneck — “rypically the processor-mermory interface, the bane of the von Neumann
architecture” — he turns to software and Occam,

35

VECTCR Vol.3 No.4

“Describing structure parallelism in Occam, although possible, is rather
awkward. Notations and techniques that were pioneered by Iverson in APL
are far more suitable for expressing this form of parallelism.

“In fact Fortran, the language that refuses 1o die, is about to be blessed in the
current Ansi standards deliberations, with constructs which support
structural parallelism, as applied to arrays. Such facilities may be added 10
Ada, although not supported in the language standard.”

In October, PC Week reviewed the most widely used computer languages, concluding that
“Cobol and Fortran have stood the test of time” (8th October). APL was included in the
glossary of languages:
“APL: A Programming Language, designed for solving mathematical
problems, noted for its matrix-gencration capabilities.”

However, the body of the article contained no reference to APL, even though Pascal, C,
Madula 2, Prolog, Lisp, Forth, Basic, Algol and Ada were mentioned.

We were not the only people to notice this omission. On 26th November, PC Week
published a two page response by Peter Branson. Peter picks up on some of the myths
propagated in the previous articles —its unsuitability for business applications, dependence
on expensive memory, and the dreaded ‘Greek svmbols”:

“The fact that it uses funny Greek symbols for many of its operators is true, but

if you don’t like them use a keyword version which reads as easily as BASIC.”

¢(Editor; In fact it only uses ¢ handful of Greek symbols, and they are not particularly humorous as
Hellenic hievoglyphs go!)

Peter Branson then proceeds to show how the Simpson numerical integration code — used
in the previous series — can be written in the KEY*PL dialect. Peter also gave some
publicity to the I-APL project, although he mistakenly gave credit for its inception to the
B.A.A. Ttis, of course, an independent venture.

Sill in Novemnber, EXE's News Editor, Nick Roach, gave his “first impression of the APL
community”, under a bold banner heading:

“Not Just For Nutters”.
Having spent some time at MicroAPL, he commented:

“A glance at the APL world may give programmers and DP managers reason
to look more seriously at APL for mainstream applications.”

He then proceeds to survey the history, the hardware, the language and a variety of
applications of APL. The hardwarc coverage may have been, perhaps understandably,
somewhat biased towards the 68000-based machines:

“]BM PC machines have hardly had a look in to the APL scene”

but the applications sections mentioned several good examples of APL in business use.
Roach concludes:

36

VECTOR Vol.3 No.4

“Word is out from Xephon that IBM’s given APL a low priority in preference
for a thing called AS. If that’s the case, the continuance of APL could well be
due solely to the micro-based suppliers and consultancies. In the U.K., it’s
precisely these people who've been driving APL. ['m sure they’ll continue.”

And just to make the point he listed the principal APL UK suppliers — a list remarkably
similar to our own list of Sustaining Members!

Despite his writing a fairly favourable article, Nick Roach found cut in EXE’s January 87
issue that the APL community will always rise to the language’s defence in order to
“respond to, and hopefully clarify, a number of statements.” In this case the knight in
shining armour on the letters page was David Ziemann. Among the points he challenged
were the definition of APL as a ‘mathematical’ language, the belief that it is inevitably heavy
on machine time, the ‘abnormality’ of the right-to-left evaluation, and the problems of
reading and understanding someone else’s code.

Back to November and our old friends Datalink. Their front page was emblazoned with the
news that “APL is fast falling out of favour”, covering the Xephoen survey of Information
Centres. APL is described as “cumbersome, difficult to use and inefficient”, and the report
describes the emergence of AS which “IBM has consistently pushed as the strategic
Information Centre and decision suppoert product”, By the following week things had
clearly deteriorated still further because by 17th November, Kenny Mclver was able to tell
Datalink readers that “APL, once the big hope for application developers, has been all but
abandened”. Mclver gives fuller coverage to the Xephon report and includes an interview
{and the ubiquitous photograph) of guess-who — Romilly Cocking! Romilly points out that
“APL should never have been used as an end-user language” and believes that IBM has now
changed its plans for APL:

“IBM’s key information centre product, InfoCenter/1, is implemented in APL
and will continue to be strategic but not in the way that IBM originally
envisaged.”

However, Mclver does point out an atmosphere of optimism in the APL community:

. “The general impression in the APL community is that the language is on the
edge of an explosion, as big as the boost it received with IBM’s adoption of
APL for the information centres in the 1970s,”

Romilly confirms this, identifying the two factors fuelling such growth as the relatively
recent availability of APL on the PC and the introduction of APL compilers.

Yer again, however, the adverse publicity is not accepted silenily by the world at large, Two
weeks later, on turning the the Datalink letter page, we hear that “APL is alive and
kicking”. On this occasion the correspondent is Peter Donnelly of Dyadic Systems. Peter
points out that the Xephon report was by definition restricted to mainframe uses where the
user “must choose between writing an entire application in APL or not using it atall”. Peter
concludes with a strident defence of end-user APL:

37

VECTOR Vol.3 No.4

“Finally, I must disagree with the view that APL is ‘unfriendly’ and unsuitable
for end-user computing. It is true that it is not everyone’s cup of tea; but
neither is Basic. APL is superb for quantitative analysis and is a surong
favourite among actuaries, investment analysts, statisticians, planners and
other numerate professionals, The Big Bang has brought about a much more
analytical approach in the City, and a growing number of analysts look to APL
on super-micros for their computing needs.”

Meanwhile Data Processing (November 1986) published three pages on the “Uses and
limitations of APL” written by Anthony Camacho. Unfortunately Amheny’s article
encountered several atacks of the printer’s devil, who kindly shuffled most of the
paragraphs on the first page. It appeared that the history of APL jumped without any
significant event between the first implementation on a computer in 1964 to VIZ: :APL in
1982. There was an interesting section on the Bang and Olufsen system, as described at
APLS6, and an exposition on the benefits of prototyping and some of the main reasons why
that approach has vet to be fully exploited. However, I found the article somewhat
disjointed with rapid jumps from one theme to another, as if a somewhat cack-handed
editor had been at work. So we found a useful discussion of the atributes of an APL
programmer and the benefits of thinking with parallel processes went under the sub-
heading:
“APL is not COBOL”

which was not only self-evident, but also irrelevant. No doubt David Ziemann will also
write a letter reproaching the author for describing APL as the “mathematically-based
programming language”!

Still in November, obviously a bumper month for APL publicists, Computer Weekly
(November 13th) has a Background Briefing on Fourth Generation Languages. One sub-
category are those “conventional third-generation programming languages which, in the
view of their advocales, are substantially more advanced than the others” in respect of the
fourth-generation characteristics. RPG 11 and APL, which “has a very high level of
functionality per source program statement” are the only two languages specifically cited in
this sub-category.)

November and December were good months for publicity in America as well, and T am
grateful to our friends in the Bay Area and South West User Groups who spotted the
following articles. In JEEE Spectrum, Paul Wallich and Glenn Zorpette discussed
“Whatever happened to APL?” (Editor: If’s noticeable that the Americans seem to think that
cverybody has heard of APL; the British assume that nobody has!) They quote a Hacker’s
proverb:

“It 1ook God seven days to create the world, but an APL programmer could do
it in one line.”

The article tries to explain why APL has fallen from favour, particularly in the academic
community, even though “it is used for banking, brokerage, image processing, database
operations and any number of other applications.” Having cited a number of case-studies

38

VECTOR Vol.3 No.4

from business and science — mainly drawn from the New York SIGAPL’s successful
serninars “APL: a tool of thought” — the authors point out:

“The CRT terminals that spread rapidly through the computing world during
that period (about 1980) were for the most part unable to display APL
characters. (Allen) Rose attributed the decline of the language in significant
part 1o its non-standard character set and the insistence of Falkoff and Iverson
on retaining it.”

They then describe APL’s continuing popular status in the important area of the
information centre, and point out the growing popularity of APL on personal computers.

In PC Week (2nd December) there were three linked articles by Winn L. Rosch. The first
describes how “APL Developer Recalls the Language’s Birth” and reports a lengthy
interview with Ken Iverson; the second comments on how “Business Users Flock to
‘Oddball’ Language”; the final section shows how “APL Language Helps Developers and
Analysts in the Design of Software”.

Only about a third of the interview with Ken Iverson concentrates on the development
history of APL. The rest summarises the key concepts of APL as an extended mathematical
notation:

“APL is different from mathematics because mathematics is incomplete™

and then highlights some of the strengths of implemented APL over conventional computer
languages such as BASIC and Fortran. Finally the article reports Ken Iverson’s
explanations of why APL has remained a minority language:

“The reluctance to adopt something new is not specific to APL, even if you're
just looking at notation. T like to think that APL is in good company. Look at
something that was even a more important step forward than APL — the
decimal system. Compare it to the Roman numeral system that it replaced.
You'd think something as efficient as decimal notation would be adopted in
not more than a week. But it took centuries — and even longer in commetcial
data processing.”

The interview cencludes:

“The greatest strength of APL is that it makes it possible for people who know
a particular area of application to use a computer effectively. If someone has
been doing an inventory for a number of years, he knows more about that than
you or [or any pregrammer. In many cases you will find that the people who
do the most interesting work are those who learned APL themselves and
simply use it.”

The second of PC Week's articles reports the views of three executives at STSC — Pat
Bureux, Clark Wiedmann and Jerry Turner. The article gave a bullish outlook on the use of
APL, explaining why APL actually gets used for business applications:

39

VECTOR Vol.3 No.4

“The problems that the typical APL user must solve, Pat Buteux explained,
are too large and complex for ofi-the-shelf data-analysis software such as
spreadsheets, ‘They are people who have large amounts of data to go through
— one guy told me he had to solve 50,000 simultaneous equations. Theyare not
necessarily mathematicians. They want to use maths to solve their own day-to-
day problems.””

Clark Wiedmann points out:

“something of the order of 3 to 5 percent of programming is being done in AFL
... What makes APL special is that it has a devoted following of people who
are its advocates. Few languages can boast regularly held conferences
concerned particularly with them, APL is a unique phenomenon.”

And Jerry Turner’s conclusion is that:
“APL is fun 1o program in.”

The smallest of the PG Week articles describes APL’s use as a prototyping tool at CBS
Magazines and by Qualitas Inc. Chris Oakleaf of CB5S Magazines summarises:

“When prototyping in APL, vou sit down with man and machine and
immediately begin to implement the idea. You've got the guy there, and he
can answer your questions right away. Because you are dealing with a
prototyping language, you can quickly change anything.”

More recently, and moving back to this side of the Auantic, Compurer News covered the
announcement by Mercia Software that it has cracked the problem of limited APL
workspace on PCs. Gareth Brentnall said that he believes “this breakthrough will breathe
new life into APL generally” and an enthusiastic response was also forthcoming from an
APL Association spokesman — Anthony Camacho, who predicted new growth in the use of
APL on PCs, but doesn’t believe there will “necessarily be any trend away from mainframe
APL use”.

The ‘big three’ U.K. weeklies all mentioned APL. in the last week of January. In Computer
Weekly, Michael Powell reported that Cobol remained very much the dominant
commercial language:

“But there are other languages, such as LISP and APL, which have been
identified as vehicles for the future. The latter was tipped as important in the
1970s but never quite made it. According to David Weatherby of 1.I. Sharp,
this was because of the cost of machines and memory, which is no longer so
important.”

On January 29th, the Compuring letters page included a strong defence of Cobol by Barrie
Thompson, from Sunderland Polytechnic. He was reporting on the experiences of his data
processing students during their sandwich year in industry.

40

VECTOR Vol.3 No.4

“42 reported the use of Cobol . . . 22 reported some use of 4GLs (as identified
by James Martin in his text Fourth Generation Languages and hence included
APL, Filetab and Dbase as well as languages such as Natural and Manris); and
two reported a minor use of Pascal.”

In Datalink (26th January), Frank Brett went “Blue all over”, reviewing [BM’s mainframe
software, with more reports of APL’s decline within [BM.

“Despite the growing use of personal computers, end-user computing on the
mainframe is still very much alive and well. The tools being used are
changing, however. The APL and APL-based products which used to be
popular appear to be falling out of favour. Gaining in popularity is a relatively
new product, Application System (AS) which can be run under VM or MVS
(TSO).”

Interestingly, the following week (2nd February), Datalink reported that “IBM unveils
better Fortran, APL”, announcing that a release date for the APL2 Vector Capability had
been set for Spring 1988, “IBM”, we read, “is promising to enhance APL2 . . . so that it will
be directly supported by the 3090 Vector Facility”, which will allow vector processing to
speed up large number-crunching exercises.

The final wave of publicity in time for this column was led, again, by Daralink (23rd
February) under the banner:

“APL altruists aim to assist schoolchildren”,

The article reported the work of the I-APL project and its aims to provide a public-domain
interpreter, targetted largely towards schools, Similar reports appeared in the March issues
of Practical Compuring and Personal Computer World. The former gave a straightforward
announcement, but PCW’s coverage was presented under the more colourful headline
“Religious instruction”. It started:

“A Programming Language, APL, is a religion which even Sinclair Spectrum
users can now have. Well,soon. A group of religicos called I-APL, the Free
International APL greup, has decided to write and issue an interpreter.”

and finished:

“I'm not getting involved in religion. I’s a programming language, and
mathematicians like it, and it needs special characters, and how they’re going
to make the same version run on Spectrum and IBM machines, I'm blessed if
I can guess. But I’m not getting involved.”

No mention, unfortunately, of the targetting towards schools, nor that the interpreter will
be free. Still, I suppose some publicity is better than none!

Moving to less serious topics it was reported in PC Business World that apparently “Tandy
is facing a summer rebellion among employees having just decreed that beards and the
Miami Vice look will not be tolerated in its special Computer Centres. As one manager put
it, “shave and wear a dark suit, or be fired’.” Well I hope such extreme rulings don’t cross
the Atlantic o quickly, or the B.A.A, will be low on committee members!

41

VECTOR Vol.a No.4

Qur reporters were also really excited to come across an advertisement for an APL not
included in our extensive product list, advertised in, of all places, Farmer's Weekly under
the banner heading:

“APL, 300 — gives better steering, whichever way you irn”

This is undoubtedly going 1o challenge the ISO standards committee since it suggests that
in operation there may be a different lock to the right and left! Fortunately it’s all concerned
with tractor axles. However pride of place this issue must go to that renowned and much-
read journal PSLG — Public Service & Local Government {February 1986). Where ¢lse could
you read within one issue about such diverse topics as the merits of mulching, asbestos
removal, care of bowling greens, vandalism at schools, Avon sending its rubbish by rail and
a ‘new’ computer language. In a mere page, Henry Law describes the history of APL from
its invention by Ken Iverson, through to its advantages in modern-day computing:

“What is likely to boost APL is the rising cost of programming time and the
tumbling cost of computing power; after nearly 25 years in relative obscurity,
APL looks set to catch on. An IBM commentator has predicted that
within five years, the use of APL could increase {rom s present 5 per cent of
all computer applications to a dominating 50 per cent.”

It must leave commentators on the computing world with a difficult decision. Do they
believe the Xephon report or the more prestigious PSLG?

BACK NUMBERS OF VECTOR

Back mumbers of VECTOR are available from the BCS. If you don’t have them all,
now is the time to complete your collection. Apart from the technical contents,
every issue includes book and product reviews, letters, news and a competition.
Send in your order before they run out. These will one day be unobtainable
collectors’ items, like the early issues of Quote Quad.

The prices inclusive of postage and packing are as follows:
Prices in Pounds Sterling

UK Surface Airmail
(inc. Eurcpe)} (outside Europe)
Single issues 3 3.75 5.75
Volume 1 10 14.00 22.00
Volume 2 10 14.00 22.00

Please send sterling cheques or money orders (payable to The British APL
Association) to the Treasurer:
Mel Chapman, 12 Garden Street, Stafford ST17 4BT.

Don't forget to include your name and address and to be clear which VECTORs
you want.

42

VECTOR Vol.3 No.4

APL Product Guide
Compiled by Steve Lyus

VECTOR'’s exclusive APL Product Guide aims to provide readers with useful informarion
about sources of APL hardware, software and services. We welcome any comments readers
may have on its usefulness and any suggestions for improvements.

We do depend on the alacrity of suppliers to keep us informed about their products so that
we can update the Guide for each issue of VECTOR. Any suppliers who are not included in
the Guide should contact me to get their free entry — see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a fair market
coverage.

The listings are not restricted to UK companies and international suppliers are welcome to
take advantage of these pages. Where no UK distributor has yet been appointed, the vendor
should indicate whether this is imminent or whether approaches for representation by
existing companies are welcomed.

For convenience to readers, the product list has been divided into the following groups:

Complete APL Systems (Hardware & Software)
APL Timesharing Services

APL Interpreters

APL Visual Display Units

APL character set printers

APL-based packages

APL Consultancy

APL Training Courses

Other services

Vendor addresses

* % ok ok A % o A %

Every effort has been made to avoid errors in these listings but no responsibility can be
taken by the working group for mistakes or omissions.

Note: ‘poa’ indicates *price on application’
All contributions to the APL Product Guide should be sent to:

Steve Lyus

Metapraxis Ltd.,
Hanover House
Coombe Road, Kingston
KT27AH

43

VECTOR

Vol.3 No.4

COMPLETE APL SYSTEMS

COMPANY PRODUCT PRICESE DETAILS

Analogic The APL Maching 360,000+ AP500 array processor, 4 Mb data memory, B0 hib disk drive.

Dyadic Dyalog APL Coprocessor 3500+ 32-bit coprocessor board for IBM PC. N$32000 cpu with FPP, up
1o 4Mb RAM, 16Mb virtualmemory. Software includes Unix V.2,
Dyalog APL, graphics support, DOS Interface, Provides multi-user
UnixDO0S environment.

IBM 6150 15000+ Multi-user Dyalog APL system with Fast 32-bil RISC processor,
FPP, uptoMb RAM, 210Mb Disk, 16usars. Interface to SQL,
graphics and APL support for standard IBM petipherals.

Altos 3068 25000+ Multl-user Dyalog APL systsm with MCG8020 cpu & MCB8881 FPP.
AlsofeaturesaLAN which supporis IBMPCs as Dyalog APL
terminals.

Sund 15000+ Multi-user Dyalog APL systems which can beconfigured asa
network of workstations and ora traditional lime-sharing cpu. Withits
25MHZ 68020 cpu, the Sun 3/200 s the fastest APL microcomputer
on the market.

Gen, Soltware Myriade poa Tlcomputer + APL & APLoperaling system

Inner Product IBMPC 2,000 IBM PCs supplied fortumkeay applications

-5,000
MB.T. MBT Serigs 10 poa UNIX/68010based mutti-user APL system
TORCH poa GBO00/ZB0 muttiprocessor
MetaTechnics — poa Details en application—iBM PG compatible
MicroAPL Aurora 23,500 Multi-user APE computerusing 68020 CPU. Std. configuration
2Mb RAM, 16 RS232 ports, 58 Mb hard disc, 720K diskette
SPECTRUM 13,000 Expandable mulfi-user APLcomputer using Moterola B3C00.
-15,000 Std. configuration 1 Mb RAM, 12/36 Mb disc, 12 ports.
STRIDE 440 8500 Multi-user APLcomputer, 1 Mb RAM, 12118 My disc.
Atari $10408T 799 1 M Mano/Colour System, includes 1 Mo disc drive & mains
-5499 transformer bullt into Console.

APL TIMESHARING SERVICES

COMPANY PRODUCT PRICESE DETAILS

Boeing Mainstream APL poa Enhanced |BM VS AFL (CMS)

Mercia APE*PLUS poa 5TSC's Mainframe Service—MAILBOX efc.

LP. 8harp SHARP APL poa Intermational Network application systems and public databases.
Uniware APL“PLUS call §TSC’s mainframe service

44

VECTOR

APL INTERPRETERS

Vol.3 No.4

COMPANY PRODUCT PRICESE DETAILS
APL Software Dyalog APL 1,000~ See Dyadic Systemsentry
8,000
Cocking/Drury APL'PLUS/PCRel 6 475 STSC'sfull featured APL for IBMPC, PC/AT and compatibles
Upgrade5to6 120 Extensicnfrom rel 5 which incorporates 64K object support,
Upgrada 2,3,4106 220 Extension upgradestorelease 5.
Run-time poa Closed version of APL*PLUS/PC which prevents user exposure
l0APL.
APL"PLUS UNIX poa STSC’s 2ndgeneration APL for IBM PC/AT, DEC, ATAT
and other Unix computers.
Dyadic Dyalog APL 785 2ndgen. APLfor UNIX systems, e.g. IBM 6150, Sun, Vax, NCR,
-10000 HP9000, AT&T, Altos, Apollo, Whitechapel, Sperry, etc.
Gen. Software APL"MYRIADE poa Auns on Texas Instuments TI990range.
IBMUK Product Sales 1BM PC APL poa Event-handling & APs forfull-sereen 40 disks, diskettes,
asynch. comms,
Inner Product VIZ:APL 250 8-bil Zitog 7-80 CPM
-350
APL'PLUS/PC 600 See under Cocking & Drury
MB.T. Dyalog APL poa See Dyadic Systems entry
MBTAPL poa Erhanced Dyalog APL for MBT hardware.
VIZ:APL poa Customized for TORCH hardware
Mercia APL'PLUS/PCRol6 450 STSC'sfull-fzature APL for IBM PC, and compatibles,
No 64K object sfze lImit.
Upgrades 23546 225
Upgrades 516 130
APL'PLUSMUNIX pod interpreter for UNIX systemns: WICAT, CADMUS, CALLAN,
FORTUNE 32:16, HP, 8000/500, OLIVETTI3B2, SUN etc.
MetaTechnics APL'PLUS Rel6 475 Discounton quantity.
MicroaPL APL.68000 1,000+ Fullimplementation with component files, eror trapping ete. for
SPECTRUM, SAGE & other MCE8000-based compulers.
QL/APL {keyword) 87 Full keyword APL for QL withmany extrafeatures.
QUAPL(APL chars) 87 VSAPL compatible APL for QL withmany extra features.
APL.68000 for Appie Macintosh 257
APL.58000 for Commadara Amiga 200
APL.68000 for AtarisT 170
APL'PLUS/PC~REL§ 450
Portable PortAPL. $185 {BMPC Software
3275 Mackintosh
$2,995 DECVAX
|.P.Sharp Sharp APLIPCX 2575 ForlBMXTIAT
1,000+ ForlBMmainframes
Sharp APUPC 325 ForlBMPCorPC/XT
Uniware APL'PLUSPC 495 STSC's fullfeatura APL for
Release 6 call IBMPC/XT/AT, Compag, Olivetti
Release5 update call Extension upgrade from release 5
Release 4update call Extension upgrade fromrelease 4
Release 3update call Extension upgrade fromrelease 3
Run-Time call Closed version of APL"PLUS/PC which prevents user exposure
o APL
APL'PLUS/UNX call STSC's full teature APL for UNIX based computers,
PartaAPL 260 PORTABLE SOFTWARE's APL for APPLE MACINTOSH.
2,895 PORTABLE SOFTWARE's APL forthe DEC VAX,

45

VECTOR

Vol.3 No.4

APL VISUAL DISPLAY UNITS

COMPANY PRODUCT PRICESE DETAILS
Dyadic Lynwood j300 1,560 Marochrome ANSES.64 APL vdu, 15-inch highquality screen, Tek
graphics, local macro keys.
Lynwood j500 2,295 Colour ANS13.64 APL vdu, 15-Inch high quality screen, Tek
graphics, local macro keys.
IBM 3163 791 Low-cost Monochrome APL vdu, Supports downloaded Dyalog APL
fonb
IBM 3164 1,093 Low-costColour APL vdu. Supports downloaded Dyalog APL font.
Famal} Tandberg TDV 2221 985 Ergonomicdesign APLterminal, 50-18200 baud, 15" anti-reflex
screen, low profile keyboard
Tandberg TOV 2271 1,195 Combined APL/ANS! ergonomicarminal as above.
Gen, Software Mellordata 400 Second-hand
Elite 3045A
MET. varnious Contact MBT for details
Meta Technics IBMEGA compatible 299 Emulates EGA & Hercules, Half Card
MicroAPL, Insight VDT-1 795 Inexpensive APLVDY
Insight GOT-1 1,450 Withmonochrome graphics
Concept201 1,295 APL VDU with 8 page memory
Concept201G 1,650 Graphics VDU
Shandell HD§2010 1,215 ANSI3.564 DEC VT52H 007220 compatible. 15" tilt'swivel screen,
low profile keyboard 8 page memary, windows, viewporls, B0/132
columng, full overstike, 2 or 3camms, poris, 55 PF keys,
NVMstorage.
HDS2010G/GX 14954 Asabove plus Tektronix 4014, Relrographics VT640/D0640 and
Visual 500 compatible. 1024 x 390 ar 1024 x 780 resolution.
Tekironix 41148 13,500+ 19"D.V.5.T.:Graphics: 3120 x 4096 displayable; Intalligent: up to
800K memory; APL keyboard (option 4E}
4125 21550+ 19" 2Dcolourgraphics; Workstation (1280 1024);Intelligent: upto
800K memory; APL keyboard (mod AP)
4128 26,8224 As4125plus 3D wireframe
APL PRINTERS
COMPANY PRODUCT PRICESE DETAILS
Datatrade Datasouth D5180+ 1,205 180 epsmatrix printer with 4K buffer, 9x 7 dot matrix and APL optian.
Datasouth DS220 1,655 Letterquality; graphics capability, APL option {both available with
1BM Twinex or Coaxinterface).
Dyadic 1BM 4201 Proprinter poa 100, 200, 40(nlq) cps. matrix printer, with graphics. Supports
downloaded Dyalog APL font.
Toshiba P351 poa 24 pin high-quality matrix printer 10 cps lettar quality, 192cps draft
tnnerProduct Epson FX80 500 Softchar, sef, 160 cps, B0 column
Anadax 9620 1,150 200¢ps., 132 col., ractorfeed
Siemens PT88 620 180¢ps., B0 col., silent
TGC Starwriter 1,160 40eps., lefter quality
MBT. Facit4565 poa 4Depsletter-quality
Facit4510/11/12 poa Maltrix printers
MetaTechnics Quen-data 285 Low-cost APL Daisy-wheel printer
MicroAPL Datasouth DS180+ 1205 SeeDatatradeentry
Philips GP300 1,924 Matrix printerwith letter & draft quality and APL.
Qume L etterpro20 549 APL/ASCI Daisy-wheel printer

46

VECTOR

APL PACKAGES

Vol.3 No.4

COMPANY PRODUCT PRICESE DETAILS
APL<> 385 FSM 385 50 Scereen development
DRAW 385 Screendesign
DB 385 Mainframe: 125 Relational W.S.
GEN385 Lhilities
AP Software Ltd Mainfame
AFM/AP 11,035 Interprocass Software for VMICMS & MYS/TSO.
~Keyed Access 2,650 Companent File Management System (VSAPL/APL2}
—Interactive Link 1,325
~Mail Excharge 2,650
CALL/AP 4030 Non-APL program executicn (VSAPL/APL2)
APLPRINT 2,205 Quiputto high speed ine printer or 32Bx davices (VSAPL/APLZ)
ENHANCED FORMAT 2205 Extends Formatoperator to full “Quad-FMT” status (VSAPL/APLZ)
ISP 750 Inputand Quiput Stack Pracessors for manipulating terminat 10
0spP 2,205 with facilities for Error Trapping (VSAPL)
DISPLAY CAPTURE poa Allowsterminal gulputto be collected andheld for retrieval by an
APL function (APL2}
UcF poa User Communication Facilityfor data transfer between users (APL2)
RDS poa Relation Data Base System
PANEL poa Fullstreenmanagement system
PFS poa Program File Systemn ~ APL Systems development aid
IPLS pea ProjectManagement System
REGGPAK poa Regression Analysis Package
Microcompulter
POWERTOOLS 295 Assembler written replacement function for commonly used CPU-
<onsuming APL functions, includes a Farms Processor.
Microcomputer
REGGPAK poa Regression Analysis Package
RDS 990 Relafional Database System
Beta-plan BETA-FONT poa Muttiple font PG character generator, Dealers required fornan-
Scandinavian countries.
Bosing TABAPL poa Hierarchical Pianning System
Butel Merin 5,000 Mainframe APL spreadsheet runs under VM/CMS, TS0, VSPC
Medin/PC poa Version for APL"PLUS/PC
Cacking/Drury For VSAPL
STSC's SHAREFILE & 30,000 Componentfiles, quad- functions & nested arrays for IBM VSAPL
enhancementsto VSAPL under VM/CMS & MVSITSO
SHAREFILE only 15,000
ENHANCEMENTS only 17,000
COMPILER 30,000 First APL compiler Availabla with APL*PLUS enhancements and
Sharefile under VMICMS & MVYS/TS0
FILEPRINT 8,000 Print APL component files
FILESORT 8,000 Sost APL component files
FILECONVERT 8,000 Convertnan-APL files o APL files
FILEMANAGER 8,000 Extends APL primitives to database management
TOOLS + UTILTIES 8,000 APL Saftware development tools
DATAPCRT poa Powerlul Information Centre spreadsheet incorporating data
exchange between APL and FOCUS, IFPS, SAS, APL/DI, ADRS!I,
LOTUS123, VISICALC, MULTIPLAN, DIFfiles
ForAPL2
SHAREFILE/AP 15,000 STSC's sharefile for APL2
FMT 2,000 Fullfeatured FMT for APL2
WSDOC 5,000
FILEMANAGER 8,000

47

VECTOR

Microcomputer
STATGRAPHICS Rel2 545
Release 2 update 165
APL'PLUS PCTools
voL1 328
voLz2 125
APL*PLUSPCFin& 350

Stat. Library
SPREADSHEET MANAGER 195

Vol.3 No 4

Powerlul Statistics and graphics on IBMPC's, PG/AT's arv
compalibles
Updatafrom release 1o release 2

Ingl, 327 IRMA support, RAM disk, full screen dalaentry,
menu input, reportgeneration, games.

Incl.file documentor, screen editar, exceplion handler.
Financial & statisticalroutines

APL-hased spreadsheet for APL*PLUS/PG. Cell arlthmetic;
transfersto ASCII, LOTUS

APL Debugger 95 Debugging tool for APL"PLUS PG
UNITAB 250 Spreadsheet for APL'PLUS PC
E&S PROTOPAK Packages lor prototyping management information systems—
consistingot: PC & mainirame
RAMS Modules Relational databases.
AMS 250+ Multi-dimensional arrays
RAMS Combined AMS & AMS,
BMS Dynamic financialmodelling & forecasting
FMS Full-screen handler for APL"PLUS/PC. (AP 124-based)
CMS Communications package.
505 poa Scheduled ardering and stock contral.
Gen. Software PROPS 500+ Spreadsheet systemfor Product and/or Project Planning.
HMW. INPUT poa Marix manipulation package or data.entry & repori generalion
PRINTPAK poa Blockprinting for VAM/CMS
VIEWPAK poa AP124 Protocol emulator for IBMPC
Holtech CASH 3,500 Accounting package & hotel management system an MicroAFL
10,000 SPECTRUM&SAGECFUs.
Inner Preduct Viewcom 150 Control Viewdetafrom APL
APL/dBASE! 150 Interface APLwith dBase Il
APL/BASEI 150 Interface APLwithdBASE IIl
APLLOTUS 150 Interface APL with Lotus
APLAWORDSTAR 150 Interface APL with Wordstar
APUMULTIPLAN 150 Interface APL with spreadsheet
GEMAS 3500 EEC monetary and agrimenetary analysis.
MBT. RHOMBUS poa Integrated Office System
HASLEMERE poa Hotsl Accounting Systermn
Mercia STATGRAPHICS 2 535 Integrated stat. graphic systemfor PCs.
Upgrade taRelease 2 175
EXEC'U'STAT 395 Easytouse Statistics formanagement.
APL*PLUS toals
VOL1 225 IBMPC Ulilities:| AMA3270 comms, full screen, RAM Disk report
generator
voLz2 125 Filedocumentation, screen editing. Exception handling.
FINANCIALAND 325 Finariciatand Statislical analysis
STATISTICALLSB.
INFOCENTRE 2,000 Full-screen entry, display & muiti-cimensional analys’s. Interfacesto
~20,000 other|.C. products. Runsunder YMVSAPL on IBM mainirames.
APL Spreadsheet 185 APL spreadsheet—links o popular spreadshest software.
Manager
EXECUCALG 4,000 Mainframe Spreadshestwith VisiCale and Lotus 1-2-3 functionality

requires VSAPL under TSO or VM.

48

VECTOR

Vol.3 No.4

EXECUPLOT 3,200 Mainframe Graphics display system with VisiPiot functionality
requires VSAPL under TSO or VM and GDDM.
MICROSPAN 260 Comprehensive APL tutor
LOGOL poa Lagistics management system for PC, Forecasting, inventory
Contral, Scheduling, Distribution, etc
MetaTechnics MetaScreen 939 Full-screen handlerfor APL*PLUS/PC, based on VSAPL AP124
MetaPack 495 Comprehensive utilities package for APL"PLUS/PC. Includes
MetaScreen, MetaWs, Browse, Toolbox, Numeric Editor.
APL-IEEE488 99 Controls [EEE488/GPIB Bus from APL*PLUS/PG.
PLOT/PC g9 2D & 3D Graphics package. Includes interactive diagram Editors,
Browse 9 Serolling of DOS files, large APL variables.
ADAPTADLS poa Production & purchasing scheduling for process manufacturing.
ADAPTAMSP poa Job-shoploading & scheduling formulti-stage production.
MicroAPL MicroTASK 250 Product development aids
MicroFILE 250 File utilities and database
MicroPLOT 250 Graphicsfor HP plotters etc
MicroLINK 250 General device communications
MicroEDIT 250 Full screen APL editor
MicroFORM 250 Full sereen forms design
MicroSPAN 250 Comprehensive APL tutor
MicroGRID poa Ethernet & ather networking
APLCALC 400 APL spreadshest sysiem
MicroePLOT/PC 250 For APL*PLUS/PC product
MicroSPAN/PC 250 ForAPL'PLUS/PC product
PCTOOLS Vol 295
STATGHAPHICS Rel 1 495
STATGRAPHICS Rel 2 535
Parallax ExecuCalc $5,000 Mainframe-based electronic spreadsheet for VMACMS & MVS/TSO
wilhJinks fo mitere products.
ExecuPlot $5,000 Mainfrarme-based colour graphics with micro ks,
1P, Sharp ACT poa Actuarial system
APS poa Financial Modelling
BOXJENKINS poa Forecasting technique
CONSGL poa Finanial Consolidation
COURSE poa APLInstruction
EASY poa Econometric Modelling

49

VECTOR

Vol.3 No.4

FASTNET poa Project Management
GLOBALLIMITS poa Exposure management forbanks
MABRA poa Record maintenance/reporting
MAGIC poa Time seriesanalysis/reporting
MAGICSTORE poa N-dimensional database system
MAILBOX poa Electronic Mail
MICROCCM poa Mainframe to microlink
SAGA poa Generalgraphics, most devices
SIFT poa Forecasting system
SNAP poa Projectmanagement
SUPERPLOT poa Business graphics
VIEWPOINT poa 4GL-Info centre product
XTABS poa Survey Analysis
Sugar Mili Statt $129.95 Statistical toolbox, menudriven
Uniware Majnframs
STSC's ENHANCEMENTS 10,715 Quad-functions & nested amays for IBM VSAPL under VM/ICMS and
MVSTS0
STSC's SHAREFILE 10,715 Component fles for 1BM YSAPLunder VM/CMS and MVS/TSO and
foriBMAFL2
PROGRAMMER TOOLS & 5715
UTILITIES
FILEPRINT 8718
FILESORT 5,715
FILECONVERT 5,715
FILEMANAGER (EMMA) 5715 STSC'sdatabase package.
APL'PLUS COMPILER 21,430 First APL compiler. Complements APL"PLUS enhancements and
Sharefile under VW/CMS and MVS/TSO.
EXECUCALC 3,995 Mainframe spreacsheet compatible with VISICALC and partof
LOTUS 1-2-3under VSAPL (VMor TSG).
Microcomputer
STATGRAPHICS 725 Stalistics & Graphics for PCs.
STATGRAPHICSFCA 140 Anadd-on modu'e to STATGRAPHICS: Factorial Correspendence
Analysis.
APL*PLUSPCTOCLS
VoLt 325 Inel, 327 % [RMA support, RAM disk, full screen data entry, menu
input, repartgeneration, games.
voLz 125 Ing). Fite documentor, sereen editor, exception handling.
SPREADSHEET MNGR 250 APLspreadsheetwithbuilt-in ASCII, LOTUS and SYMPHONY
interfaces.
APL*PLUS/PGFIN.& 350 Collection of financial and statistical utilities.
STAT.LIBRARY
POCKET APL 140 Smaller version of APL*PLUS/PC.
UNIASM 275 Collectionofassemblerroutines for APL'PLUSIPC users.
UNITAB™ 240 APL*PLUSIPC spreadsheet-lke data entry and validation system.
The APL DEBUGGER™ 105 Firstreleased APL"PLUS/PC debugger.
OVERLAYS 250 Fastassembler routines to handle overlaysin APL*PLUS/PC.
R:BRIDGE 380 Interface betwaen APL'PLUS/PC & R:BASE 5000.
DMA 380 Aversion of EMMA {APL database manager) for APL*PLUS/PC
users.
APL2C 295 Interface between APL*PLUS/PC and DATALIGHT Clanguage.
ADAPTA/DLS 33,333 Production & purchasing schedulingfor process manufacturing.

50

VECTOR Vol.3 No.4
APL CONSULTANCY
(prices quoted are par day unless otherwise marked)
COMPANY PRODUCT PRICESE DETAIS
APLConsuktancy Consultancy pea Projectmanagement, financial appfications, relational databases,
Ditficult problems solved.
Managementconsultancy,
Linksto non-APL systems.
From consultant fevel lomanaging consultant.
Documentation a speciality.
APL Softwars
Technology Consultancy poa Technical & business systems, micros, networking &
communicalions a speciality.
Boeing Consultancy poa
Camacho Consultancy poa Specialising in programming & manual writing,
Chapman Consultancy 150-300 24-hour programmer: APL, C, assembler, graphics; PC, mini,
mainframe, network,
CockingDrury Consultancy 120-150 Juniorcansuttant
140200 Consultant
185-300 Senlor consultant
275400 Managing consultant
Delphi Constltancy poa Specialisingin management reporting systems and APLon
microcomputers.
Dyadic Consultancy poa APL system dasign, consuftancy, programeming & training for
Dyalog APL, VSAPL, APL'PLUS, IPSA APLefc.
E&S Consuhancy 150 System prototyping: all types cf information system,
—-250
FASTCODE Consuitancy pca Specialise inimproving performance of APL applications on
micras & mainframes.
Gen. Software Consultancy 100+
HMW. Consultancy 100-250 System design consuftancy, programrming.
Inner Product Consultancy 200 On-site micro-mainframe APL, PC/DOS & Assembler
Lloyd Savage Consultancy poa Decision support, particularty specialising in Sales & Marketing
systems.
M.B.T. Consultancy poa
Mercia Consultancy poa APL"PLUS & VSAPL consultancy.
MetaTechnics Consuftancy poa Managament Informatian & Production. Engineering
APL-C/Assembler custom programming
MicreAPL Consultancy poa Technical & applications consultancy.
M.TL Consultancy poa Specialisein Maintenance and developmentof exlsting APL systems
Parallax Consultancy $750 Introductory APL, APL for End-user & Advanced Topicsin APL
QB On-Line Consultancy 200 Specialisingin Banking, Financial & Planning Systems.
Rochester Group Consultancy poa Specialisain MiS using Sharp APL
|,P, Sharp Consultancy poa Consuttancy & support service world-wide.
Peter Cyriax Systems Consultancy 100-150 Junior Consultant
120-200 Consuttant
160-300 Senior Consultznt
Uniware Consultancy call Juniorto managing consultancyin APL.

51

VECTOR

Vol.3 No.4

APL TRAINING COURSES

{Prices quoted are per course unless otherwise stated)

COMPANY PRODUCT PRICES £
Cocking/Drury 3day APl Fundamentals ars
4 day APL*PLUS/PC Intesmediate 525
5day APL System Design 585
4day Introductionta APL2 (in-housg) 2,500+
4 day APL2in Depth (in-house} 2,500+
Inner Product poa
MBT. poa
Mercia 3day Introdutionto APL*PLUS/PC 350
(in-house) 1,250
2day APL*PLUS/PG Enhancements 240
(in-house) BOD
3day APL"PLUS System Design 378
{in-house) 1,200
Parallax poa
Uniware Courses
5 day Introductionis APL call
5 day Advanced APL call
2day Getthe best from STATGRAPHICS cal
5day Getthe best irom R:BASE 5000 call
OTHER PRODUCTS
COMPANY PRODUCT PRICESE DETAILS
APL People Employment Agency poa Pemanertemployees placed at alllevels. Contractors suppliedior
shortfong-term projects, supervised.
Mercia ALLCARD 495+ Memorymanagement unit, allowing 952K under DOS - extra 31 2K
APL*PLUS/PC warkspace.
MULTI-APL 195+ Multi-askMulti-user/Network APL*PLUS/PG with flle focking, etc.
1.P. Shamp Proguctivity Tools poa Utilities for systems, cperations, administration & analysts;
auxiliary processors, comms software, international network.
Databases poa Financial, aviation, energy and sotioeconomic.

VENDOR ADDRESSES

COMPANY CONTACT ADDRESS & TELEPHONE No.
AnalogicCorporation Denise Favorat 8Centennial Drive, Centennial Industrial Park, Peabody, Mass. LL5.A. 01961
o2 617-246-0300
APL385 Adrian Smith Brock House, Gilling East, Yerk. & 04393-385
APY, Consulting JltMoss 17 Barton Street, Bath, Avon BA1 1HG 2 0225 62602
APLPeople Valeria Lusmore 17 Barton Street, Bath, Avon. & 022562602
APL Software Lid Philip Goacher 27 Nowns Way, Epsam, Surrey XT18 5LU == 03727-21282
17 Barion Street, Bath, Aven BAt 1HQ ‘& 0225-62602
APL Software JohnHagger 14 Bosewood Avenue, Alveston, Bristol BS12 2PP & (454 415737
Technoloqg;‘ PerHultin 46 Vicarage Road, South Benfleet, Essex SS7 1PB & 0374550501
{UK) Limik

52

VECTOR

Beta-plan APS
Boeing Computer
Bute! Technology Lid.
Anthony Camacha
Paul Chapman
Cocking & Drury Lid.

Datatrade Ltd,

Dalphi Cansuttation Lid.
Dyadis Systems Lid.

E & 5 Assoriates

Farnell International
Instruments Ltd.

FASTCODE
General Software Ltd.

HM.W. Programming
Consultants Ld,

Haltech Ltd.

IBM UK Ltd
Innar Product Ltd,

Lioyd Savage Ltd
Mercia Software Ltd.

MetaTechnics Systems Ltd

MicroAPLLtd.
Mine of Information

Modern Business
Technalogy Ltd. [MBT)

MTL
Parallax Systems Inc.

Peler Cyriax Systems

Portable Software

QB On-Line Systems
The Rochester Group
Shandell Systems Ltd.

|.P. Sharp Associates Ltd.
Sugar Mill Software Corp.

Tektronix UK Ltd.
Uniware

Kim Andreasen
Suzanne Hunt
Mike Munro

Romilly Cocking

Tony Checksfield
David Crossley
Peter Donnglly
FrankEvans

R. Fairbairn
or Roger Attard

Andrew Dickey
M.E.Martin
Ken.Jackson

Jan Bateman

Chris Sell
Dominic Murphy

Philip-Johnson

Gareth Brentnall
Barris Webster

John Stanbridge
David Toop

Bernadetlz Leverton
Richard Ross-Langley
Michael Branson

Ray Cannon
Kevin Waaver

Pater Cyriax

Richard Smith
Philip Bulmer
Rabert Pullman
Maurice Shanahan
David Weatherby
Lawrence H. Nitz
PaulMargan

Eric Lescasse

Vol.3 No.4

Stengrade 75, DK-300G Helsingor, Denmark, 5452 21 46 48
P.Q. Bex 747, 364 Euston Road, London NW1 3BQ

Butel House, 3 Great West Rd., London W4 504 & 01-995-1433
2Blenheim Road, St. Albans, Herts AL1 4NA. 2 St. Albans 60130
18 Trevelyan Road, London, SW179LN & 01-767 4254

16 Berkeley Street, London W1X 5AE. & 01-4936172
155 Friar Street Reading RG1 THE. 2 0734-588835

38 Billing Road, Northampton, NN1 5DQ. = 0604-22289

Church Grean House, $tanford-in-the-Yale, Oxon SN7 8LQ. & 03677-384
Park House, The High Street, Alton, Hampshire, & 0420-87024
19Homesdale Road, Orpington, Kent BRS 1JS. & 0639-24741

Jubilee House, Sandbeck Way, Wetherby, W. Yorks. & 0937-61561
DavenportHouse, Bowers Way, Harpenden, Herts. & 05827-63071

P.0. Box 281, Croton-on-Hudson, New Yark 10520, U.S.A. 2(914) 271-3200
22 Russell Road, Northolt, Middx. UBS 4Q5. 2 01-864 9537
142 Feltham Hill Rd, Ashfore; Middx. TW15 1HN. & 07842-41232

‘0" Block 4th Fior, Metropolitan Whart, Wapping Wall, Londor E1 9S5.
& 014813207

PQBox 32, AlenconLink, Basingstoke, Hants. RG21 1EJ. ‘& 0256-56144 |

Eagla House, 73 Clapham Common Southside, Lendon SW49DG,
E01-6733354

Cambridge House, Oxford Road, Uxbridge. Middx, UBS 2UD. 2 0895-59826
Aston Science Park, Love Lane, Birmingham B7 4BJ. & 021-355 5095

Unit 216, 62 Tritton Road, Lendon, SE21 8DE. Z& 01-6707959

19 Catherine Place, London SW1E 6DX ‘& 01-834 9022
PO Box 1000, St Albans, Herts AL 6NE. & 0727 52801

P.0. Box 87, Guildford, Surrey GU4 868
22 04868-23955

7 Pine Wood, Sunbury-on-Thames, Middx. TW16 65H = 09327 80848
60 Wes15th Street, New York, New York 10011, U.S.A. & 212-475-4001

213 Goldhurst Terrace, London NW6 2ER & 01-624 7013 (Answerphone)
0850-337963 (Mobile)

60 Aberdeen Ave, Cambridge, Mass. U.S.A, 02138, & 617-547-2018

5 Sutrey House,Portsmouth Rd Camberley, Surrey, GU15 1LB. & 0275-20789
164 Pinnacte Rd., Rochester NY 14620 &716-461-3169

12High Street, Chalfont 81, Giles, Bucks HPB 40A. & 02407-2027
10DeanFarrar Street, London SW1, & 01-222 7033

1180Kika Place, Kailua, Hawail 96734 = (808) 261-7536

Fourth Avenue, Globe Park, Marlow, Bucks SLY 1YD. 2 06284-6000
15Rue Erlanger—75016 Paris — France & {4) 45-27-20-61
Telex:648346F UNIWARE

53

Info Center/1

an 1BM licensed program that helps business professionals
perform their daily tasks quickly and productively

Info Center/l provides an integrated,
multifunction information center environ-
ment compatible with predecessor pro-
ducts such as ADRS Il and APLDI II. A
full-screen interface, with prompts and
extensive help facility, provides easy
access to the following powerful general
business functions, as well as providing
the full power of APL:

Query System

The Query System provides a simple,
effective way to interactively access,
analyze, manipulate, and report informa-
tion stored in files of up to several
hundred megabytes.

Reporting System

Provides an organization with a single,
comprehensive system for generating and
maintaining reports. Standard calcu-
lations can be defined and stored for
future use. Calculations can be made
with predefined functions and with APL.

Data Entry and Validation

This tool allows information center per-
sonnel to tailor panels for users to display,
update, and enter data in column format.

Financial Planning System

The Financial Planning System provides a
set of 60 modeling routines that work with
the Reporting System and address peri-
odic data. Some examples are:

Financial analyses and plans
Statistical analyses and projections
What if analyses and modeling
Project evaluations and risk analyses.

Business Graphics

The Business Graphics facility is a partic-
ularly powerful yet flexible tool for inter-
actively producing the following types of
charts: line graphs, surface chatts,
histograms, pie charts, scatter plots, bar
charts, stacked bar charts,

Technica] Data

Info Center/1 is an IBM Licensed Program, Program Number 5668-897.

The program runs under CMS and TSO together with the following IBM programs or their equivalents:
APL2Z or V8 APL, Application Prototype Environment, GDDM (Graphical Data Display Manager).
Some examples of terminals supported are: IRM 3277, 3279, 3270 PC/G and GX.

VECTOR Vol.3 No.4

RECENT MEETINGS

This section of VECTOR is intended to document the seminars delivered at recent
meetings of the Association, particularly for the benefit of those members based away from
London who often find it hard to find the time to attend. It also covers other selected events
which are likely to be of interest to the wider APL community.

We are dependent on the willingness of speakers to provide us with a written version of
their talk, and we would remind them that “a picture’s worth a thousand words”. Copies of
slides and transparencies will enhance their articles.

The Activities Officer (see inside back cover) will respond enthusiastically w offers from
individuals who wish to contribute seminars and supporting papers.

55

VECTOR Vol.3 No.4

Recent meetings

Our coverage of recent meetings in this issue s limited to the paper given by Dick Bowman,
of C.E.G.B., last November, looking at APL’s links with the outside world.

On Friday 20th February, the topic of the B.A.A. meeting at the Royal Overseas League
was ‘Are Your Systems Reliable’. The two speakers, Linda Kindred from the Wellcome
Foundation and Chris Campen from the British Airports Authority, gave their views on
good systems development practice through quality assurance. Their talks were followed
by a panel discussion. A full report of this meeting will appear in the next issue of
VECTOR.

A riumber of people expressed an interest in the Quality Assurance Forum mentioned by
Linda Kindred during her talk. Anyone interested in finding out more about it should
contact:

Gordon Irving,

17 St Catherine’s Road,
Ruislip,

Middlesex, HA4 7RX.
Tel: 0895 635222

56

The Outside World
by Dick Bowman

A feature becoming commonplace in newer APLs is the ability to use routines written in
other languages. The object of this paper is to review some limited experience in using these
features, suggest where the benefits 10 APL lie and pose some questions about the
applicability of this sort of link.

There is no pretence that this is an exhaustive survey — it is merely the collection of some
recent experience.

1. APL*PLUS/PC Assembler Functions

An expected corollary of the [JCALL system function is that use of assembler routines in
appropriate places should lead to some speedup in application processing. Certainly use of
the <CSSMATML> routine described in the STSC documentation and incorporated in
their distributed <INPUT> workspace had helped lead to this expectation,

Some experimentation with the ASMFNS distributed workspace was inconclusive. There
was a measurable performance increase with test data but in the context of an application
(where function calls were frequent, but arguments were brief) the achieved improvement
was judged unjustifiable in contrast to the effort which would have been required to
implement the necessary changes. My problem seemed to centre around wanting to use
routines subtly different from those provided in pre-written form; not having the patience
or skills to write my own Assembler routines I burdened those that I used down with APL
prologues and epilogues converting data between what had and what was wanted.

Questions:

W Does anyone have a good reliable way of measuring performance on the IBM PC - can
we see quantification of the speed gains achievable?

W How much effort is required to learn enough Assembler to be able to cost-effectively
integrate APL and Assembler if performance is the only criterion?

2, IBMICU

In their manuals IBM provide an example of a function which can invoke ICU to produce
routine ‘business’ graphics diplays; it's a lintle rudimentary, suffering lack of flexibility.
Straightforward generalisation produces the <CHART> function (see Figure 1); a little
more work results in <CHARTFREE> (Figure 2) which handles ‘free data’ {to use the
vernacular). A description and examples of use are shown in Figure 3; the most useful
mode of operation, of course, is with pre-defined chart formars,

For all its faults — the main one being that there seems to be absolutely no scope to extend its
capabilities — being able o link direct 10 a pre-writren graphies package (and one used by
lots of people in non-APL applications) carries obvious benefits.

One notes with interest that future plans for ICU appear to be along the lines of integrating
mere capability into it; in the context of the infamous ‘line smoothness — enter a number
from 1 to 99", one wonders whether a more desirable evolution path would be as an
appendage to programming systems with flexibility and rigour than for [CU to grow into
yet another “all-purpose’ system with its own rules, idiosyncrasies and expertise.

57

VECTOR Vol.3 No.4

3. APL2[INA

APL2Z Release 2 introduced the facility to call programs wrirten in other languages,
Assembler and Fortran (with some restrictions) from both CMS and TSO, REXX from
CMS only (my personal experience is limited to use within TSO). The potential is very
attractive — by contrast to previous excursions by IBM AFPLs into the omside world, the
implementation was surprisingly clean. The most awkward part of the process was Lo come
to terms with the format of the NAMES file which provides the cross-relation between APL
variables and Fortran/Assembler arguments and results — the best advice 1 can offer is to
worlk your way into it gradually with programs which you are familiar with and which are
under your control.

Once you're over the hurdle of setting up properly-formed NAMES file entries (more
plentiful examples in the documentation would help) usage is simplicity personified.

For example, given a Fortran subroutine which we want to call <NELLY> all that's
necessary is 1o type:

3 1% W4 'NELLY?

You now effectively have a locked function named <NELLY> which (assuming that the
Fortran routine has been properly link-edited into a library which you have allocated) you
can treat just as if it had all along been written. in APL. The left argument to [JNA is
presently a little over-elaborate (the 3 means that you want 1o create a function; the 11 that
your victim is a Fortran or Assembler routine); one awaits future extension with great
anticipation, Having the function not only can you use it, you can move it around with
JLOAD, YCOPY and)PCOPY.

Having got the feature, and knowing how to use it, what does it give in return? Essentially
three things:
a) Doing Things Faster

This is the obvious payoff — given a utility function you can avoid interpreter overhead.
Equally obviously it should be possible to measure the performance gain; a place to start
is the example provided in the IBM manuals. Compiling and linking were
straightforward (we’re using MVS/XA and | found that it was only necessary to specify
AMODE(31) at the link-edit stage, which is a slight departure from the official word,
and may well be installation-sensitive. As an aside, the state of the Fortran art vis-a-vis
Fortran66/Fortran77/VSFortran/XA is a veritable quagmire - I've (temporarily?)
adopted the ultra-conservative line of compiling and link-editing what I need myself
rather than rely on standard libraries, at least I have only myself to blame.

Comparison with equivalent APL was that with vector arguments up to 10 elements

there was a very slight advantage to the Fortran which steadily widened as the argument

length increased until at 1000 elements the Fortran was about 2.5 times faster. Bear in

mind that:

) You have to do a little preparatory work in APL setting up arguments that the Fortra
can swallow (this is universal and can lead to APL being a better performer tha
compiled code in the right, and not uncommen, circumstances).

58

VECTOR Vol.3 No.4

ii) The Fortran routine (as written) has an upper bound on argument length which is nat

b)

there for the APL (within reason).

One could be contentious at this point and ponder the relative values of APL compilers
against making wider use of facilities like this ~ but [don’t really think that ‘deing it
faster’ is in any way the major attraction of the feature.

Doing Things Better

This is what gets much closer to the point; there’s a vast legacy of pre-written code in
other languages which performs well-defined tasks to a predictable standard. We don’t
have to rewrite it ali in APL and we can be confident of accuracy. Given the CEGB
situation as a case in point — here’s 2 list of bought-in software which is available to
anyone developing Fortran software on the system:

NAG Library —Mathematical/Scientific Subroutines
NAG Graphics — Graphical Supplement

Harwell Library ~AERE main sofiware library
FACSIMILE - Ordinary Differential Equations
EISPACK - Eigenvalue Analysis Solutions
REDUCE —Computer Algebra

DASL —Darta Approximation Subroutines
MINITAB - [nteractive Statistics

IBMSSP ~IBM Scientific Subroutines
GLIM — Statistical medel building
GENSTAT — Statistical model building

It’s nothing like a complete list, libraries like NAG conrtain hundreds of routines
themselves, and it’s all available now 10 the APL user as well. Why does this matter?

Here’s an example:

The Generating Board owns many cooling towers at power stations; they’re hundreds of
feet high and have walls of reinforced concrete less than six inches thick. The problem s
to deduce a complete wall profile from accurate measurement at a few select positions;
we had a Fortran program which could do this and was of satisfactory aceuracy, but it
didn’t return the figures in a machine-readable format which we could use for further
analysis; we needed a new program of comparable accuracy and for a variety of reasons
APL was the preferred development route.

The obvious technique to use was a spline-fit (which was also what our existing program
used); immediate candidates were in IBM's GRAPHPAK warkspace and Gilman and
Rose. But the problem was that neither of these got within an acceptable margin of our
ariginal program (which had had exhaustive checks for accuracy). Up to this point one
had had a certain amount of faith in the accuracy of these routines.

NAG offered a pair of routines {E¢1 BAF and E02BBF) which seemed 1o fit the bill (they
are intended for use as a pair); Figure 4 shows them in context of being used {most of the
activity in the APL is to marshall the various arguments and set up space for results). It
also points up the shortcoming of such a lot of scalar programming; EO2BBF is a one-

59

VECTOR Vol.3 No.4

C

—

shot subroutine and you loop around (1 guess “each” might be useable by the brave—but
1 was under time constraints to deliver).

At the end of the day results agree well with our target performance.

Another example using NAG routines is the <POLYFIT> function shown in Figure 5 —
what makes this relevant being that it provides the solution to the APL2 “domino”
problem which I raised in an earlier issue. Whereas a naively-coded APL2 function
failed to fit a curve after order 2, with VSAPL and APL*PLUS/PC carrying on to order
5 _ on the specific data in the previous discussion <POLYFIT> was willing to produce
results all the way up to order 10. To save effort with pencil and graph paper, Figure 6
shows a calculated third-order fit to the data.

Again some oddities that you find when you use pre-written code: <E02ADF> is happy
to provide an array result giving coefficients all the way up to your desired order,
whereas the closely related <E02AEF> resolutely insists on taking single x-values only.

Note that the passing of time since wriling <RCALC> has led 1o a slightly more
confident coding style.

Question — How much APL code is ‘good enough’ and how much fails if accuracy
constraints are rigorous?

Doing Things You Couldn’t Otherwise
Again an example:

We make extensive use of Tektronix (and other) graphics terminals, which operate in
response 1o sequences of ASCII characters. Back in the old davs of VSPC/VSAPL this
was no problem; type:

VSR PUNCH CONTROL

and what you send arrives at the terminal untranslated, unadulterated and
uncontaminated.

Migration to TSO/APL2 brought BIG TROUBLE (parenthetically, this is the only
conversion problem which has ever worried us)— if it wasn’t printable it got mangled.
We had an investment in graphics hardware and at the time (this is now changing
dramatically) some reluctance to get involved with [BM ‘graphics’ terminals (because
they really weren't graphics terminals).

Some IBM conversion manuals told us where the problem came from (‘fa TPUT with
EDIT’) and led us off in the general direction of writing an AP which would bypass the
problem. We never really got anywhere (our friendly SE offered to sell us a few 3277/
GAs) and APL2 Release 2 came along, accompanied by an unattributed verbal remark
that [JNA made our problem trivial. We didn’t really see this, but there was also an offer
of TBM sorting the problem out for us at a fee of £77 a manhour; we figured that if
knowing this sort of thing let you earn £77 an hour we’'d like some of the action for
ourselves.

60

VECTOR Vol.3 No.4

Fortunately (?) we have a well-endowed Fortran system, and the Fortran graphics
peaple had got round the problem themselves some years earlier; 50 what we did was to
use their solution and [INA o reach it. The outcome is shown in Figure 7;
<DRAWABS>isa device-independent function which draws 2 line to a specified point,

With device type specified in global <dev>, function <DRAWABST4107> constructs
specific code for the Tektronix 4107 terminal; it gets translated to ASCII by the
<ASCHOUT?> function before finally being chopped into 256-byte (maximum imposed
by the assembler routine) chunks by <OUT> for transmission to the terminal by external
function <VTADEQ31>. Apologies for the convoluted route, the bug(s) and the
extraneous code. Note again the imposition of finite size limits and the consequent loop
potential of the APL code (in practice this application very rarely wants to send a string
of more than 256 characters in one go — ideally we should also do some blocking for
transmission, bur we don’t).

The associated Assembler code is shown in Figures 8 and 9; there is some allegation that
one or two of the translate table entries are incorrect.

At the end of the day it really was trivial, but we didn’t ever get 1o see the £77 either.

4. APL2 JEDITOR

IBM Reference documents for APL2 contain sketchy comment about use of *any operating
system editor that you choose to use’ for function and operator editing; curiosity led to
investigation of this feature. The IBM literature seems somewhat imprecise — what follows
here is an attempt to provide a specific example of use of the feature in one specific
installation; the environment is TSO with Release 1 of ISPF, the objective is to use the
ISPF editor to edit an APL function.

a) Augment standard CLISTs with a few of your own; Figure 10 shows the necessary TSO
allocation and this is best done before invoking APL. There are two new CLISTs
involved, called <ENT> and <CEDIT>, shown in Figures 11 and 12 — the IBM manuals
lead one to the impression that <CEDIT> would suffice, but this wasn’t the case; <ENT>
is excessively complex and repeats some dataset allocation ncedlessly - what you see
here is something which works rather than a honed-down version.,

b) Specify the name of the editor you want to use with the)RDITOR command — in this
instance the name is <ENT>

c) Edir as required; a typical display is shown in Figure 13,

Having gone to all this trouble, the resulrs are none too exciting; first intimation of trouble
being the time elapsing between wanting 1o edit and being able to.

Very ad-hoc timing comparisons for a simple editing exercise gave the following results:

JEDITOR 1 29 ms
JEDITOR 2 235 ms
JEDITOR ENT 789 ms

61

VECTOR Vol.3 No.4

An obvious candidate for speedup is the excessive amount of work in the <ENT> CLIST;
some experimentation with chopping this about {and also taking the hint in the IBM
manual) was none too conclusive; my personal resolution has been to avoid the facility until
either someone shows me that it can be made to work satisfactorily or I can find a strong
reason for needing 1o use the ISPF editor to edit APL objects.

Further reflection leads me to the opinion that my <MYALLOC> and <ENT> CLISTSs are
pretty awful, but I rernain dubious that refinement would lead to this route becoming my
preferred editor — I feel that the overhead of creating and using data files must slow things
up ulimately. But I stress that this is all based on very limited experience in one
environment — Phil Last tells me that use of the CMS editor is preferable t0)EDITOR 2 in
a CMS environment (again with a proviso or two); I suspect that if I were invoking APLZ
from within ISPF (rather than the other way about) there could be a different congclusion,

Question — Aside from the option of newcomers to APL. using a familiar editor what is this
feature for?

Acknowledgements:

My colleagues John Dedman and David Leal for their patience in the face of my ignorance
of Fortran programming and ISPF; Gill Darbyshire for doing the spadework on
<POLYFIT> as a first task in APL.,

References:

. STSC APL*PLUS/PC System Reference Manual

. APLZ? Programming: Language Reference; IBM Corporation; SH20-9227

APL?2 Programming: System Services Reference; 1BM Corporation; SH20-9218

. APL2 Programming: Using the Supplied Workspaces; IBM Corporation; SH20-9233
. APL - An Interactive Approach; Gilman and Rose; Wiley

. NAG Fortran Library Manuel; Numerical Algorithms Group

. VEGTOR Vol 3 No 1, Page 99; Technical correspondence.

Figure 1. The <CHART> function

" v gm:r Wi CHRTCTL L OTL ; DAT: PATACTL s HEADING L KEXY 53 LABEL S RO X Y3 1110
1 0+1

121 +{2+.=R+126 0SV0 2 3 p'CTLDAT')/SHAREOK

[31 'AF126 NOT SHARING'

[al +0

[5] SHAREOK:X+2oW

[6] Y«(72¢ 11 ,pYloY+d=i

[7] CHRTCTL+TGp" '

(8] CHRTCTLL4J+k 10 0

[9]1 CHRTCTLIM+ 41«4 IO 2

[10) CHRTCTLIB+4]«4 JO O

(111 CHRTCTLI12+14]1+% JO O

[12] CHRICTL[16+18]+8415W

£13] CcHRICTLIZ5]+ "

[14] CHRTCTLIAZe14)e4 JO C

[15) CHRICTLI36+131«4 JO LtpY

[16) cHRICTT[30+:3]+4 TOpX

(171 CHRTCTL{ub+ 8]+l JO “14p5oW
[18] CHRICTL{48+18]+4 JO “14p6aV
(191 CHRTOTLIS52+ 15144 IOpHEADING42W

[e N - SR WE I]

VERSION OF IcU

JCU PUNCTION REQUIRED
PFKEY INFORMATION DISPLAY
SAVE/RESTORE PERMITTED
NAME OF SAVED FORMAT
NAME OF SAVED CHART DATA
TIED OR FREE DATA
NUMBER OF COMPONENTS
NUMBER OF X ELEMENTS
LENGTH OF EACH XEY
LENGTH OF EACH LABEL
LENGTH OF CHART HEADING

FEE R NI R]

62

VECTOR

[20]
[21]
[223
(23]
[24]
[25])
[26]
[27]
[28]

CHRTCTLIET]+
CHRICTLIE%+112)+,% I0 0 80 2
DATACTL+Cp0

KEYS+ 53K

LABELS+ 60
DAT«CHRTCTL KEYS LABELS HEADING
Ye,r

Vol.3 No.4

® PRINTER OR GDF FILE NAME
A PRINTER DEFTN, WIDTH, COPIES

CTL+"10, (pCHRTCTL) , { pPATACTE) DATACTE (X)X Y} Y, (0KEYS) . (pLABELS) , pHEADING

RewCTE
v

Figure 2. The <CHARTFREE> function

¥ CHARITFREE WiCHRICTL;CTL;DAT; DATACTL HEADING ;XEYS LABELSIRC, X3 Y300

1]
[21
[3]
(%)
5]
(8]
{71
[
(9]
[10]
[11]
{122
£13)
{1n]
(15]
[16]
[17]
[18)
[13)
[z0]
[21)
{22]
[23]
[24]
L2582
[25]
[z
(28]
(23]

{roel

+(24.280¢126 0SV0 2 3 p'CTLDAT'}/SHAREGR

'APL26 NOT SHARING'

0
SHAREOK 3 Xe2W

Ye(T2t 11 ,pY)pYedow
CHRTCTL+TEp" !

CHRATCTE 4)+ Io O

CHRTCTL 4141+ G 2
CHRTCTL{B+1k]+4 IO 0
CHRICTLU12+14]+4 TQ 0
CHRTCTLI16+18)+84 10
CHRICTLL 25D+ w?
CHRTCTLL 32+ 6k)e4 TO 1
CHRICTLI 3614]+% Lopx
CHRTCTLI4O0+ 4 e fOpeX
CHRICTLI e 1t Jel T “1tp5oK
CHRICILL 48+ 41k T ~1%pBoy
CHRICTLLS2+14 34 TOpHEADING4oK
CHRTOTELST]+
CHRTCPL64+112]+,4 fO D 80 2
DATACTLvep ™ X

KEYS+, 57

LABELS+ 6oW
DATMCHRICTL .KEYS ,LABELS HEADING
XeeX

Yee¥

n VERSION OF ICU

A ICU PUNCTION REQUIRED

A PFEEY INFORMATION DISPLAY
A SAVE/RESTORE FERMITTED

n ¥AME OF SAVED FORMAT

n NAME OF SAVED CHART DATA
A TIED OR FREE DATA

A NUMBER OF COMPONENTS

A FUMBER OF X ELEMENTS

R LENGTH OF EACH XEY

A LENGTH OF EACH LABEL

A LENGTH OF CHART HEADING

A PRINTER OR CDF FILE NAME
& PRIRTER DEPTH, WIDTH, COPIES

CTL+"10, (pCRRTCTL) , { pDATACTL) , DATACTL «(pX) X, (oY) Y. (DKEYS) , (pLABELS) , pHEADING

RC-CTL

v
Figure 3. How to use <CHART>
The <CHART> function provides a link to the IBM CHART utility.

Prerequisite: If you wish to save or retrieve chart format definitions you must have a file

called

<tsoid. CHART . ADMCFORM>

allocated to the ddname

<ADMCFORM?>. This is done automatically if the workspace is used stand-
alone (see <LX > for specifics).

Note that terminology is CHART-terminology; for a full description of facilities consult the
relevant IBM manuals,

To

draw 4 chart:

CHART name xvalues yvalues heading key labels

where;

63

VECTOR Voi.3 No.4

¢name> —either “* (do not use a stored chart format) or name of stored chart format
<xvalues> — vector of xvalues (at present this link is restricted to ‘tied” data)

<yvalues> — either vector of yvalues .
or matrix with each row of ihe matrix a set of yvalues
Missing values are enterable as LE72.

<heading> — Overall title for the chart. May be elided by entering as ™
<key> — Chart key (matrix with one row for each key). May be elided by entering as ™.
<labels> — Chart labels (matrix with one row for each label). May be elided by entering as ”.

For example: NAME T
X+ 5
Y+«hp?100
HEADI WG 'FIVE RANDOM NUMBERS"
KEY+1 Bp ' RARDOM'
LARELS+5 1p'ABCDE"
CHART NAME X Y HEADING XEY LABELS

Function < CHARTFREE> provides an experimental equivalent for free data. Syntax of
usage is the same, but both <xvalues> and <yvalues> are nested vectors; for example:

xe(1723) (8567
¥+(73p100) (?4p200)
CHARTFREE '+* X Y '* '+ !

Figure 4. <RCALC> —using E01BAF and EO2BBF

9 ZeRCALCIMIX: Ys KOs LOK VRN s LWRN s IFATL T3 RES
[1] ® R J BONMAN - CALCULATE SPLINE-FIT RADIUS AT REQUIRED HEIGHTS
[2] M(pZACT)
[3] xezACT
(31 Y+RACT
[5) E+{usM)p0.1
[6] O+ls+M)p0.2
7] LCKeusM
[8] WAK+(16+6%M}p0.1
{9 LWRK“16+B=M
[10] TPATL+C
[111 RES+EQLRAF M X Y K € LCK WRK LWRK IFATL
[12]1 K+aRES[1]
{13] (+>REs(2]
(18] I«0
[158] Z«0
[46] NEXT:+((T¢I+1}>pZREQ}+0
[17] +{zkEQLIY>1/ZACT)*ERR
(18] &D.1
(19] pez,o(E02BBF(aeMIK C(ZREQL11)S IFATLIEL]
[20) +pEXT
[21] FERRIZ+Z.0
[22] <NEXT

¥
Figure 5. The <POLYFIT> Sunction

¥ I+DEG FOLYFIT XY3AsT:TPATL: K1 NEXTL; PiStHi¥1 (W2 X; 1:010
(1] APOLYNOMIAL FIT
[2] o=
[31 KelsDEC
[v] {X D)eXY
(81 welpxipl A WEIGHTS

64

VECTOR Vol.3 No.4

[6] Wi«(3,pX}p0 n REQUIRED WORK AREA

[7) w2e{2,K)p0 n REQUIRED WORK AREA

[8] A«(2pK)p0 n RESULTS AREA [11

[9] s+xp0 m RESULTS AREA [2] .
[10) IFAIZ<0 A RESULTS AREA (3]

[11] (4 5 IFAIL)+EQMUDF(pXIX X X ¥ # WL W2 4 & TFAIL

{12] Alali2 n REQUIRED COLLMN ONLY

[13] ret

[14] Ze(pX)p0

[15) xeX XCAP1pX A NAG "NORMALISATION'

(18] NEXTL«{(pX)pNEXT),0
[17) NEXT:i(P IPAIL)}+0
(18] (P IPAIL)«EQ24EF X & XUI1P IPAIL
[19] Z[IleP
[20] <+REXTLLI+I+1)
[211
¥

¥ ZeX XodP T
[1] A "NORMALISATION' - AS IN KAG MANDAL

[2] e ((XLr)-L/x)=(0/X)-XLINsA1/x)-L/x
v

Figure 6. The resudts of using <POLYFIT>
CURVE-FIT EXAMPLE

x %
42 x
x
40 =
38
= THIRD ORDER

* DRIGINAL DATA
1 x

x
H

T L] T L] J 1 i T T 1
1385 1986 1987 1986 1989 1990 199y 1992 1993 1894 1445

Figure 7. Achieving ASCIT ourput to Tektronix 4107

¥ DRAWABS 43D
(1] n DRAV TO POSITION <d>

£2] oLOCPecP

[3] ¢k

[4] A«comvoc A

[5] +'OUT ASCIIOUT (DRAWABS',DEV,' A),DIYPR+NEWLINE'
(6] DpOOL IDLES0.1 T

65

VECTOR Vol.3 No.4

¥ R+DRAWABSTS107 A
(1] » T4107-SPECOIFIC <DRAVABS»
[2] FR«ESC,'LC',TY107C0DE A
v

¥ Z+ASCIIOUT W
[1] ~ CONVERSION FOR ASCII OUTPUT
[2] Z+0AVIASCITCORIOUV1F])

v

¥ OO STRING:L
E1% A SEND <STRING» 10 TERMINAL

2
[3] STRING+ .STRING
[4] FEXT:+(0=pSTRING)*C W <¥TAPE(31> FAS INTERNAL 256-BYTE LIMIT
[5]1 L+256lp5TRING
(6] VTADEOIL L{LtSTRING)
[7] STRING+L+STRING
[B] =¥EXT

v

Figure 8. Assembler code to un VTADEO - part 1

IRESETITEEAREATAARAARLARNATAERRNAN TOP OF DATA IEXREXFEXSTEEEAARALLT-CAPS ON-12
Bonnnnan CHECT UTADED---svn---sommnmeammweo- etmmmmesmmess-amcoctem==e
t!ltitttittlt:lttltttttltlltlttltttttltttttltllt!lt!tttttltttltttttltlt
TLE UTROED SET UP 11/4/85 FOR TO BRAPHICS x
* s:rm.m TO TCAM ADECUT, EXCEPT DIFFERENT TRANSLATE x
* TRELES . *
RN EAESRERAE RN R LR LI ESR RS AN RS LK KRR E SR RRSRETEES EENRRTREXRALRE
VTADED CBECT

08 oH
S™ 14,12, 428(13)
BAalLR 12,0
usING x,12
8T 13,8RV+4
LA 13,880
L 9, = (VTRASRA)
L &, =R (BUFFER)
LM 7.8,0(1) R7 IS A(LEN), R8 IS A{BUFFER)
L 7.0(7)
LR .7
LOoP MG 0(L1,5),3(8) PACK THE DUTPUT ARRAY
LA 6,1(B) INCREMENT
LA 9.4(8)
BCT 7,L00P TEST
TR BUFFER(2B6).0(9) CONVERT FROM RASCIT
- 1,RO0OR
N 0,8IIE
TPUT (4).1(0).R REQUEST THE OUTPUT
L 13,5V +4
LM 14,12,12(13)
o a) 14
sau ns 19F
ROOR oc xro2'
oC AL3(BUFFER)
BUFFER [=-3 266C
SIZE oc X' DOOOFFFF *
END

AXEAEARERLETAXAARRIRTEXIEXARAIRE BOTTOM OF DATA ESAXKXEXXEXAKERESLNES-CAPE ON-X¥

66

VECTOR Yol.3 No.4

Figure 9. Assembler code to run VTADEQ — part 2

FERERREREARRRREXARXQNARERRLARRAAAT TOP OF DATA EXREREANNERKERAXBRENE -CAPE ON-%8
VTRABA

THIS FILE I5 VTRASA, BRA 4/86
OUTPUT

|
E
;
|

Cl234E67T89ARABCDEF
X000 102033 7202E2F 160625080COD0EQF *
X' L01L12133CI032261819F 271CLOLELF *
X' 404F JF TREBECE0 7DADEDECAE6R604D6 L
X 'FOF LF 2F 3F 4F6F 6F TF OF 9 TOBEACTEGEGF *
X ' 7CCLC2CAC4CBLAL7COCI0 L020304DE0E *
X' D7DEOSE2E JE AECEGE 7TEOE 940E OBAGF 60 '
X'790 182836466068 760699 19293949596
X ' I TIEIIMBAINIAEAEATABRICOGRDMNLO7 *
QDOEQF *
X'101112133CA03226160193F 271CIDLE LF *
X' 406A7F THEBSL S0 70406DEC4E 6B604P6 1 '
X' FOF LF BF 3F 4FGF 6F 7F 5F 9 7AGEAC TEGEGF *

A0203040606 *

NODORNDPALLDN-O

X*FCCLCRCICACECGLTTRCoD

X' ITIEFIBAINAAEACATABRIBEIFIBEF 07 F
EERERERERRARKKARXRASNRRTAERARAE BOTTOM OF DATA ENRERAERRRRARESNARN RN -CAPS ON- 2%

geBBRRARARARRRARESR
i
o
8
E

Figure 10. TSO Allocation

FREFRRFUERAXRNEARARRARAAXARKAXREEK TOP OF DATA AREXRERAXRARARANERENL-COPS ON - AX

PROC O G0O30000
FREE F(SYSPROC) 00360000
ALLOC F(SYSPROC) DA('HCCHOL6.CLISTS', + QOAB0000

'HCCK , TBPF ,LIBRN . CLTST', + 00460000
'SYBC. TBOER .CONTROL * + Q0470000
'8YS8.5PF.VLRIMO, cu:a' + 00471000
‘8Y88, ISR. VLRIMO . IBRCLE‘) SHR 00480000

EREXRFAREAREFARALAENEXBRANEARKNE BOTTOM OF DRTA FEANEAAERSEXCENERARE-CAPSE ON-2R

67

VECTOR

Figure 11. CLIST<ENT>

EARERXRAXAREARELNRSRRIRARELREREASR TOP OF DATA SEXREXEEEREENTIRKANLAE ~-CAPE ON-3X

PROC 1

D8N
MAIN MSE NOPROMPT

ALLOC F(BYBPROC) DA('HCCKOL16.CLISTE',

'HCCK . I9PF , LTBRN.CLTST',

'8YSC . TEOER . CONTROL *

'BYS8.BPF . VIRIMO.CLIB',

Figure 11. CLIST <ENT> (continued)

AlLLOC

ALLOC

ALLOC

ALLOC

ALLOC
ALLOC
JIPOF:
EJECT

‘8v88, ISR .VIR1MO.ISRCLIB ")

F(ISPLLID) DA('HCCKOL5.I8PF.LOARD',

'SYSH . TBR . VIRLMO . TERLOAD ",
'SYS8.I9PF ., VIRIMD . ISPLDAD ")

F(ISPPLID) DA('HCUKOLE.PANELS',

*HCCH . TEPF . LIBRN . FANEL * ,
'8YyS88,.IBR,VIRIMO,. ISRPLID ',
'SYSS ., IEP . VIRIMD . ISFFLID ')

F(ISPM_IB) DA('HCCKOLE.MESSABES',

‘HCCK . 1I5PF . L.TBAN . MEBSREE * ,
'8YS8. ISR . VIRLIMG , TBRMLIB ",
'SYSH, TOP . VIRIMO . IBPMLID")

F(ISPSLTB) DA('HCCKOLE.BKELETON',

'HCCHK . ISPF .LIBAN . SKELETON ',
'SYeR . IBA. VIR1MO . JBRSLIB" ,
'8YS8 . ISP . VIRIHO . TBPSLIE ')
F(ISPTL.IB) DA(‘'BYS8.IBR.VIRIMO,ISRT.ID',
'BYS8, ISP . VIR1MO. ISPTLIB ")

F(IBPPROF) DR('&DSNAME.') OLD
F(EYSABEND) DUMMY
RTTN OFF

3

68

- -

$.8...5...5...5..3

Vol.3 No.4

CO030003

VECTOR Vol.3 No.4

IBPSTART CMD{CEDIT) Q0700002
FREE F(IBFLLTE) 00710000
FREE F(INDPPLIN) 0720000
FREE F(IBFM_IR) 00730000
FREE F{IBPELIN) QO740000
FREE F(ISFrTLIN) QO7E0000
FREE F (IBPPROF) 90760000
FREE F (S8YSBABEND) Q0770000
CONTROL NOMBE NOPROMPT CO7BOO
FREE F(SvePus) QO7I0000
ALLOC F(SYBPFDS) DA('TSOEASY.4SYBUID..DATA'} BHR 00800000
L21ERROR RETURN 008 L0000
CONTROL HOMEE NOPROMPT 0820000
EXIT CODE (0O) COBI0000

END Q0840000
TAXRARSAERAERNAREXNTARERARALRALS BOTTOM OF DATA EEXRAEREANRINTRRAS NN -CAPE ON~ %K

Figure 12. CLIST <CEDIT>

SAREEAARERRAREARNERRARRARNALRARNAT TOP OF DATA EEEIREREXRRXANAERLREA-CAPE ON- X8
PROC © CO0L0000

ISPEXEC EOIT DATABET{ 'HCCKOL6.APLR,EQIT') Q0020001
SARKXEASFERESARNENRRNIREARENRRNNE BOTIOM OF DRATA EXSESRRIEEXARANEXREAS-CAPE ON- %%

Figure 13. The final result — editing an APL object

FEEEOOER ISR st TP OF DATA SESrsrarnsss b s s At
000001 ZeDEG POLYFIT XY;A; 13 TFAIL;K;NEXTL;P;S; W; W1 ;W2;X;Y;010 APOLYMOMIAL FIT
000602 DI0+1
000003 Kef+DEG
000004

(X V)XY
000005 W+ (pX)pt A WEIGHTS

006006 W1+(3, pX) o0 a REQUIRED WORK AREA
600007 W2+(27K)p0 a REQUIRED WORK AREA
060663 m(zpk A RESULTS AREA [1]
006009 A RESULTS AREA 2]
000910 lF 1 a RESULTS AREA [3)
000011 (A S IFML»Eeznnmx)K KXYWW W2 AS IFAIL
060012 A+AL:K] A REQUIRED COLUMN ONLY
000013 1+l

000014 Z+(pX)pd

000015 XX XCAP1pX n NAG 'NORMALISATION'

600016 MEXTL *{(FX);*EXT) 0
0000!7 HEXT: (P IFAIL)+g
000018 é?l;fglL)*EOZFEF K A X[EIP [FALL

SHEXTLLI+1+1)
JOTTON OF DATA SEEESEEIIEEEREErErissinsss

69

VECTOR Vol3 No.4

APLS6 Debate — 8th July 1986
APL Enhancements Don’t Help the Spread of APL
Reported by Anthony Camacho

Chairman (Mel Chapman):

11 s traditional, so far as the Olympics are concerned, that the host nation is entitled to
nominate a new sport at each Olympiad. The APL86 Commitiee are therefore exercising
that right and introducing into the conference proceedings DEBATES. I think itisthe first
time that such a concept has found its way into an APL conference.

The motion before this house is “APL enhancements do not help the spread of APL”. Mr
Richard Nabavi will speak first for the motion, and will be supported by Mrs. Valerie Lus-
more. Speaking against the motion we have Mr Steve S chiavo supporied by Mr Fohn
Myrna. I therefore call upon Mr Richard Nabavi to speak for the motion.

Richard Nabavi:

Mr Chairman, ladies and gentlemen, 1 must confess it was with very considerable trepida-
tion that I accepted the invitation to speak in this debate on this side of the house in this par-
ticular venue. As I look around the people who are sitting in this room today, there are cer-
tain very well known faces in the APL world and 1 feel a bit like someone who has been in-
vited to host a wine tasting at a meeting of the Temperance Society. What we are going to
say on this side of the house may not be very popular with certain people here today, but |
believe it is very important 1o the future of APL and indeed may determine whether APL
has 2 long term future as a working computer language.

Now if we have a wonderfu} product, a really fantastic superb wonderful product, which
no-one buys then there is something wrong. And the temptation at each successive APL
conference over the Jast seven years has been to say “well the reason that no-one buys our
product is because they are all stupid.” You only have to look at some of the snide remarks
{hat are made about other computing languages at successive APL talks (and 1 must confess
1 have made the same snide remarks) to see that our attitude to the outside world is one
which can be characterised by the word “arrogant”.

Let me just briefly say what we mean by enhanced APLs to avoid any confusion. We are not
talking about file systems. We are not talking about having a decent error trapping primi-
tive. We are not talking about good formarting routines. We are not talking in fact about all
those good things that were done in the 70°s by 1.P.Sharp, 5.T.S.C. and others. What we
are talking about is what happened next which is the enhancements such as nested arrays,
user defined operators, all those good things. In brief we are talking about APL2 and simi-
lar products from other vendors.

Now 1 want you just to imagine a brief scenario. We are going 1o talk about something dif-
ferent from APL. We are going to talk about a man who wants to buy a car. (I mean au-
tomobile for the American contingent!) So he goes into his local car showroom, speaks to
the salesman and says he wants to buy a car. Now when that happens salesmen are normally
very pleased because people often come in saying they don’t want to buy anything. Some-

70

VECTOR Vol.3 No.4

one who comes in saying they do want to buy something gets a really good reception. So the
salesman says “Yes sir. What kind of car would you like?”

‘The man replies “I want a nice practical runabout just to go round town with the kids and
the wife, do the shopping. I don’t do many long distance trips. I want something with space
so I can put luggage in it when we go on holiday; something cheap to run; something cheap
to insure.”

So the salesman says “Well we’ve got this fantastic Italian sports car. It is really amazing and
very very powerful. It will do nought 1o sixty in 5.6 seconds and its top speed is 160 m.p.h.
And it’s really nice, look at it, isn’t it beautiful, isn'tit elegant!”

The customer says “Yes it is really beautiful, really elegant, { would really like to drive one
of those some day. Bur actually what [am looking for is a nice runabout about town 1o go
shopping with the kids.”

So the salesman says “Electric windows —it’s got the lot! [t’s got everything you want, Two
seater, you can put a beautiful blonde next door and drive her off, and she will be really
stunned by that!”

And the customer says “Thart’s great, but how much petrol does it use? Can [afford to in-
sure it? Where do I put the luggage? Where do 1 put the kids? Where do I put the wife when
I've got the blonde in the front seat?”

So, not surpringly, the customer goes elsewhere and buys a boring standard old car. Now
this story gets repeated again and again in car showrooms all round the country. Eventually
the people who are trying to sell this product get the message - the customer is stupid! But
they have got to react in some way so they go back to the R & D Department of the manufac-
turer and they explain the problem, saying “No-one is buying this car”, so the R & D peaple
say “Well we’ll look at ir” and they have got some really bright people, some of them sitting
in this roem. And they go back and they spend two years doing intensive R & D. They come
back two years later, get all the sales people together at a big conference, maybe in Man-
chester, maybe in Seattle, maybe in Helsinki, and they say “We’ve got it now - this one is
really going to go. This one is going to answer all the customers’ objections to our product.
Top speed ts 164 m.p.h. and it will do nought to sixty in 5.2 seconds. Isn't it powerful!”

Now it may seem that no-one is that dumb, but I believe that the APL world has been that
dumb. You can hear it, in fact we have heard it today, people are talking about the old APL,
about how much more powerful the new APL is. But the old APL isnotanold APL, it's not
old hat, it is the most fanastic, exciting, amazing concept that the computing world haso’t
seen. It's a brand new concept for everyone out there. {tisn’tan old APL atall, it’s a totally
new unknown product which we are not selling to the outside world.

Now some of those things they say about APL. we know are not true. (The customer is
stupid!} But some of those things undoubtedly are true, and some of them are facts which
cannot be denied. And what has been the APL world’s response to those objections? They
have made it even more powerful! But despite the fact that they have made it even more
powerful, they have not made it any more accessible to the outside world. Now there is a
theory — and let me emphasise that it’s a theory which I don’t subscribe to - that IBM is 2

71

VECTOR Vol.3 No.4

great conspiracy machine that produces conspiracies that are hatched in dark rooms some-
where in the United States. And one might think at first glance that APL2 was a conspiracy
to stop the spread of APL. Of course 1 don’t subscribe to that theory, but you have to admit
that the timing is very very suspicious. I mean just look at it: just as the 1SO standard for
APL becomes fully developed and fully accepted, after years of work, IBM say “Yes but we
are now going to move people from VS APL to APL2” which although it in theory conforms
more or less to the 1SO standard is such a radical extension that in effectit’s a new language.

And look at the timing in terms of hardware. It may be coincidence, no doubt it is, but just
as APL becomes available on small cheap micros that schools can afford, we change the
ground rules so that APL2 and its lookalikes are not available on the small cheap micros that
schools can afford. Because, make no mistake about it, the facts used te be that you could
take an APL program, develop it on a small machine, a PC, even a Sinclair QL, and with
very few exceptions that identical code would work on a mini computer, on a large super-
micro, and on one of those big blue main-frames; and vice-versa. We have had customersin
the company which I work for taking VS APL code and running it on a £150 micro compu-
ter.

Now it’s not just an inconvenience that you can't do that with an APL2 system that uses
APL?2 features, it’s an absolute disaster! The reason it’s an absolute disaster is that you can-
not really go to someone and say, “We have this wonderful product called APL. Here, try
it on this cheap micro.” And when they have tried it and got to like it turn round and say,
“Well actually we didn’t really mean that. That’s old hat, that’s ISO APL. What you really
need is this wonderful APL2 product that can only run on a big mainframe.”

All you have 1o de is to return to the terms of this motion and just think what is actuaily hap-
pening in the real world. We, on this side of the house, are saying that the enhancements to
APL, typified by APL2 but also on the STSC and .P.Sharp interpreters, are not spreading
the word about APL,. Now that’s a pretry gloomy statement. I think it’s true however, and
if we want a ray of hope, let’s look and see what is spreading the word about APL. Well I'll
tell you, APL*PLUS PC has probably done more to spread the word about APL than any-
thing else which has been discussed in these conference sessions. QL APL on small
machines, other PC APLs, other cheap inexpensive micro APLs that are coming out - they
are the vehicles which are going to spread the word about APL if anything is. But APL2Z and
the large mainframe systems — all that’s happening there is that customers are migrating
from VS APL to APL2. We are not getting new customers from that process; we are merely
confusing the old ones.

So Mr Chairman, I would submit that we need to look at the real world, see what actually
happening out there, and address the needs of the market, not what we think they ought to
want.

Chairman: I now call upon Mr Steve Schiavo to oppose the motion.
Steve Schiavo:

I enjoyed my learned opponent’s point of view and took anumber of interesting points from
it. I beljeve it is important that we clearly define what we mean by enhancements and what

72

VECTOR Vol.3 No.4

is the base upon which we are building enhancements. I believe that’s made even more
important, but if we can extend Richard’s analogy about the automobile (the car for those of
you on this side of the ocean), the runabout he described that the chap was trying to find
down at the local car dealer did exist in a number of cases and does exist in some cases today,
in some of the terms that he described it. But the kind of enhancements we propose and
kind of things that his prospective auto manufacturer was installing are two different
things. The kind of enhancements which we have installed in our line of business . . . are
not simply the things to make his car go 170 m.p.h. They're to overcome certain
inconveniences and offer additional conveniences beyond those described in the little
runabout. For example some of the inconveniences in this little runabout are that its
windows don’t open, the fact that it has a roomy back seat but there is no way to get in and
out of it. More importantly the litle runabout that is available now, and has been for a long
long time, gets about two miles per gallon. Now one might presume to take it upon oneself
to improve that and actually tinker with the engine a bit but when you attempt to do so you
find that the hood is welded shut.

All of which I believe leads us to clearly understand amongst ourselves, what do we mean
by the enhancements. To start with, what is the base from which we are enhancing? [
belicve the base we talk about depends on what period of time we are talking about. Itbegan
some time ago with something called APL\360. For most of the 70s, and the 80s so far, it
was a base of VS APL, In the 90s, possibly APL2, possibly APL PLUS, possibly a
combination of one or the other or both. The enhancements that 'm describing I will limit
to . . . medifications to the interpreter that add function for the APL user. I think the things
we are talking about do include the file systems of various vendors, such things as CALL
AP that extend also the environment and scope for APL users, SQL DS interface of APL2
and others, Sharp’s packages, various . . . tasks that include interfaces to the rest of the
world — I consider those to be enhancements.

For the purpoese of this discussion what I will not consider to be enhancements (and you
may argue but I wish you would defer it until I've left the country) [don’t consider POrts to
different computer hardware with no additional function to be enhancements — it’s just
taking the same environment and moving it around. It’s certainly of value to the market
place, Lord knows it’s been of value to us, but it’s not an enhancerment 1o the language. I
certainly don’t consider additional functions written in the language itself to be
enhancements; those are merely conveniences which the customer could himself have
written,

And finally what do we mean by the premise: have we spread the market, are more people
using it. I think it’s important that we are able to take credit for a net improvement in the
market over what it would have been if there had been no enhancements.

We see the world in four classes of people, if you would visualise a little two by two matrix:
those who know APL and use it; those who know APL and don’t use it; those who don’t
know APL and don't use it; and a growing class of people who don’t know APL and do use
it—the way I describe the premise sounds strange but I do seriously include in this class the
vast number of people who use applications created in APL and neither know nor care that

73

VECTOR Vol.3 No.4

it is written in APL in the first place. And that number is definitely increasing. I think all we
need 1o do 1o demonstrate our side of the case is to argue whether movement amongst that
two by two array is in our favour or to our detriment.

For example are there more people who know and use APL than there would be without a
share file system, without a formatter? There are certainly more than there would be
without a compiler — several of us in this room know of projects where APL would not be
used today were it not for the availability of a dramatically less expensive more efficient user
of CPU time.

Secondly are there more who use APL but don™t know it than there would have been
otherwise? Those are those who are using the applications and did nothing to write them
and don’t know what is inside them. Are naive users running APL applications today that
would not have been written in APL without a fully featured error handler; without a secure
multi-user file system; or without PC specific graphics and screen handling enhancements?
You’ll remember, to be precise, I don’t consider simply moving the language to another
piece of hardware an enhancement, but certainly a language that takes unique advantage of
the additional features of that new hardware could be construed as an enhancement.

Let's talk about a net improvement to be gained by reducing the rate at which people exit
APL: have fewer of those who know APL and not use it, have given up on using it. Fewer
sites or applications have moved out of APL than would have done so without
enhancements, 1 believe. T know of at least one firm which extended the life of its APL
installation only because they were able to reduce the burden on the system by the use of
certain important enhancements. And there are many sites who have fled the high cost of
their APL timesharing applications, intending to re-write them in-house in some
conventional language, only to re-write them on micro-computers in any of the wide
number of enhanced APLs now available, with additional user-friendly features such as
screens, graphics and so forth and all at a fraction of the original cost.

Finally, have fewer applications migrated away from APL because of the enhancements?
Who could argue that enhancemnents have done nothing to persuade those using functional
APL applications to avoid the costly conversion of their old systems? In fact their numbers
are increasing even as we speak. STSC has many affiliated re-sellers, and 1 am sure a
number of the other companies represented in this room have, who create and sell
commercial applications as a business based on APLs that did not exist a few years ago. And
their competitive advantage, those resellers, is based upon the speed and efficiency and
user-friendliness provided not by the base APL systems but by an enhanced APL.

Meanwhile, more vulgar languages of the common people adapied to the day to day usage.
They added an “alspufen” here and a “tickety-boo” there until they had enriched the
language to an extent that they could make use of it everyday in everything that they did. It
was no longer consigned to a small corner of their life for describing obscure species of plant
life. It was no longer used as a way to set themselves apart in an esoteric conflab of like
minded academics. 1t was used to conduct their daily worl; to conduct their daily lives, and
it expanded across what is now the whole industrial developed world. And that’s what we

74

VECTOR Vol.3 No.4

would like to see come of meetings of groups like this; that's what we would like to see come
of enhancements and centinuing enhancements and continuing diversity and continuing
arguments. Sometimes it's useful 1o discuss how many angels can dance on the head of a
pin, although I think we would be much better served if we were to gather our strength and
begin to tell the rest of the world why we have committed so much of our own resources and
attentions to this language. Mr Chairman thank you. That concludes my point.

Chatrman: Thank you. I now call upon Mrs. Valerie Lusmore to speak second Jor the motion.

Valerie Lusmore:

[find it quite ironic in a way that I suppose if [was still working for my first ernployers in
APL, I would probably be sitting on the other side of the house, because I worked for many
years for Sharp’s in the stages when they were doing what I would call the original
enhancements to APL. I came in at a base level where APL had what I would call the rwo
basic and original enhancements, the formatter and the file system, which we would
perhaps not consider enhancements but necessities. Without those I think APL would
never have spread at all. Without those it would have been so difficult to do anything that
nothing would ever have happened. Have I gone to the other side? No. ... I left Sharps, [
went out in the real world, And, like many of us in this room, I thought APL was so
marvellous that we wouldn't really need to sell it. That’s a classic mistake we have all made.
APL has spread despite the fact that most of us do not sell very well because we feel thar
something so obvious - yes, the customer is stupid! He must realise the advantages of this
wonderful tool, after all if | find it a marvellous tool it’s quite obvious the customer should
discover it’s a marvellous tool, ’m afraid the customer doesn’t understand that at all — he
says “Tough. I can buy this, that and the other, and I have a salesman dancing in
attendance.”

I think what would help is if we got our act together with the marketing; if we took things
out there into the market place. In the times that we have sat here, all of us 1alking to
ourselves, and we are still talking to ourselves, we haven’t brought in very many people
from the outside world to this conference. After all this is our private time away from the
rest of the world. In that time, if we had put as much effort into spreading the word outside
as we have put into improving things inside for ourselves, we could probably have doubled
what is going on, and ensured actual continuity.

But the market place is outside and if we followed through (there's a very nice little phrase
that [have heard in some of the literacy campaigns and [think we should adopt it for
ourselves; and because it’s APL we could each do it twice a year.) If we went into this and
said “Each one, teach one” we’d be taking that out into the market place. We wouldn’t be
staying in here. We wouldn't be sitting here argning about whether we can nest arrays or
urn things upside down or whatever else. We would be going out and spreading it and [
think that’s what will spread APL, not us all staying here. And I would ask you to look at
that Mr Chairman and say because it’s APL “Each one of us, teach one twice a year. Each.
Two rho.” Thank you.

Chairman: May I now call upon Mr Johm Myma to speak second against the motion.

75

VECTOR Vol.3 No.4

John Myrna:

The automobile analogy of course is delightful. All of us, I'm sure, would love 1o be driving
Model T Fords. There’s the excitement of starting it every morning in the cold with the
crank with your wife all bundled up in the car turning the choke. There’s the thrill of
excitement that comes from the knowledge that you’re the mechanic, and if something
breaks you're responsible for lifting the hood and fixing it. The fact that a trip to the edge of
town is a thrill through the deep and endless mud; that there are no gauges to learn because
of course there are no gauges; that there are an absolute minimum number of gears. Butif
we were to have continued manufacturing that kind of car as the road system improved, as
the size of families changed, as the desire was to spread the use of that technology over an
ever increasing number of people — people who were not necessarily interested in becoming
mechanical engineers, road engineers, diagnosticians — the Model T would be - well I'll tell
you what happened: Mr Ford got a little bit on that path in the 20s in which he said “You
can have any colour you want as long as it’s black”, and while he was following on that
purist Core Car Concept as he called it in those days, General Motors came out of nowhere,
a consortittm of people wheo just bothered 1o listen to what they were hearing their users ask
for, and became a dominant force in the automobile industry. So 1 think the analogy is quite
appropriate.

Now listen as I say let’s talk about the real world. What is the real world? The real
world is meeting the needs of the people who are using your technology.

Once you have learned the APL technology it’s the easiest approach for you to use; why
would you stop using it? Well you would stop using it because you need to produce pop-
down menus, full screen applications, gain access 1o commercial databases, be able to run
vour applications in a preduction or batch environment, When you reach a point at which
vou can no longer do those things with your current technology, when you reach a point
where you are forced to learn Lotus because the work-sheet organisation for entering and
displaving dara is the only way, the obvious way to do it, or you're forced out of it because
you need just encugh text editing that Del type editors are not satisfactory, then you will
cross the barrier, you will invest, and you will learn something else. You'll learn a Lotus;
vou'll learn a DB2. The largest impact on keeping the level of APL usage up is on meeting
the needs of the current users. And that means listening to the current users and enhancing
the products, not based on what folks who are sitting back in Toronto, or sitting in
Rockville, or sitting in San Jose are conceptualising, but in reacting 1o what the users are
telling them they need to solve their problems.

The argument is that enhancements somehow inhibit the learning of APL. Well there is a
simple APL. There is an 1SO APL which is at the core of every single APL which is
available. And those enhancements, all of them are layered. You don't have 10 know about
complex numbers in order to become a beginner APL user. The idea that enhancements are
available doesn’t inhibit the decision to invest. It enhances it because when you sit down
and you say “I'm going to invest so many hundreds of my hours in learning a new
technology”, you look forward to what is being done with that technology o convince
yourself that there is value in making the investment. Are you keeping up with the new
needs in the market place? Are you supporting the new hardware? As the needs change. is
the technology going to change so that the investment] make today will continue to pay
dividends in the future.

76

VECTOR Vol.3 No.4

If you freeze things at the level of a Model T Ford, that’s fine if you say that you're always
going to live in the wilds on a muddy farm. But if you’re looking to move to the big city in
the future, you’ve got to be investing in a kind of technology that is going to move with with
the tmes, is going to be driven by the needs of the user. Thank you very much Mr
Chairman.

Chatrman:

Thank you. I now wish to throw the motion open for discussion to the house. I will take
points that are short and relevant from anvone who wishes to raise their hand and catch my
eve. Mr Camacho.

Anthony Camacho:

[don’t believe either of them! It seems to me that the motivation is what you have to look at
before you discover the real reason for enhancements to APL. And the motivation, it seems
to me again, may be OK, fine, you’ve got customers who say “you’ve got to do this for me
or else ['ll go away” fine, you add something. But that’s only half of it. The other half of it
15 to have a product that the others haven’t got. And as soon as you split the products so that
the others haven't got it, you have the problem that was raised at this morning’s session,
thart the schools who are going to teach APL are faced with Product A and Product B, and
they can’t choose so they keep their hands in their pockets and they don’t have an APL. And
it seems to me that the people opposing this metion just haven’t addressed that question.
And [would like to hear them address it in their summing up.

Jim Lucas:

My question is with this debate. Both sides defined the scope of enhancements, and it
seemed to me that the definitions were mutually exclusive. I don’t think they have argued
against each other at all. I don't know what they have argued against.

George Schlereth:

[was very much impressed by the idea that each of us should teach one (“Each one teach
one”). I have been trying since 1975 to teach a lot of people APL; and in that time there have
been enhancements in hardware, there have been enhancements in the APL offered. But
one thing, in order to teach somebody, you must not make it complicated. Not everyone is
so sporty that they want to become a mechanic before driving the car, so the approach [
have taken is the approach of the standard of living. I ask them “If you want to drive a car,
why do you want to become an automotive engineer?” Now, in that context, I found thar it
was an absolute necessity to have a screen editor, and to Hell with the Del editor. . .

Howard Peelle:

I would like to underscore the point made by Mr Camacho by saying that I found it
surprising, if not reprehensible, that neither the pro nor the con positions mentioned the
use of APL in schools. And schools, or the educational system, the formal system as we
know it, comprises a very important part of the real world. Therefore [would like to ask if
the debaters might address the question, in particular with regard to the introduction of
APL notation to elementary school children.

77

VECTOR Vol.3 No.4

Bernard Barnett (?):

I have heard one set of speakers today saying they want a language like this. I've heard
another set of speakers today saying they want a language like that. 1t’s the packages we are
all selling. Who cares about the language. One of the previous speakers, Mr Chairman,
from the floor, started by saying “I don’t believe either of you.” Let me finish by saying:
Who the hell cares?

Malcolm Hawkes:

The number of people at the bottom, like myself, is massive. As we go up the pyramid we
find the numbers decreasing. So obviously the sales of equipment elc. are greatest at the
bortom where the equipment is the simplest. There should be all types of APL available
from the most basic to the most advanced. The greatest sales will obviously be from the
basic APL, where there are the most potential users. Those that want the most advanced
features will be the ones at the top where there are fewer of them.

Neil Mitchison:

What] wonder is what we are really arguing about, it’s a question of what we mean by the
spread of APL. And 1 ask you just your emotional reaction to the news that some new
package written in APL has sold ten thousand copies and none of the people who use it are
aware that it's written in APL. Has that helped the spread of APL or hasn’t it? What’s your
emotional reaction? I think it has, but my emotional reaction is to say “That’s not what APL
is about, That’s not why I'm interested in APL.”

Jonny Osterman:

1 think you should sell, as some of you have said, solutions, or you should sell smaller parts
of APL, not all the big things from the beginning. This has nothing to do with the
enhancements.

Bob Sanderson (?):

I’ve come to the wrong meeting! 1 haven’t got an APL. I've never used quad, Except for
about two weeks I've never used APL in the sense that you use it, because I discovered an
implementation of Iverson notation that works fine ... on my son’s QL in November of last
year when 1 was looking at an educational problem. I agree with both sides. Richard you
definitely have 10 change the name of your package. 1 really do wish you would enhance it
to do some of the things I need.

James Wheeler:

APL is today in use in artificial intelligence research abs in the United States by people who
have at their disposal Smalltalk, Lisp, Prolog, the other buzzwords of the current leading
edge of software technology, nonetheless have elected to use an enhanced APL for their
software prototyping and for research into this area. And it is because APL has been
enhanced in ways that allow them to represent the class of problems they’re seeking to solve
that, they adopted AFPL. They are new users of APL

78

VECTOR Vol.3 No.4

Jim Lucas:

I have not heard of any company that has gone away from APL because of APL2. Almostall
of the shops that I've heard of have converted to APL2 from VS APL very enthusiastically.
And while 1 don’t know that any new corporations have gone into APL because of APL2,
the input that I have gotten from the people working in these other places is that the user
base has expanded considerably as a result of APL2,

Mr Holmes (?):

Now I'm a bit mystified by this whole debate. But it seems to me that the most important
- part of the subject of this debate is not so much the enhancement as the spread of APL. Now
if we look at the original book, the original intention of the APL notation as [believe it was,
the original intention was to reform mathematical notation. Now if we can only get back to
that grand idea we would see that we are falling down miserably because the sort of spread
you people are talking about is nix, is nothing. What we have got to do, if we are going to
realise what we all in our hearts believe should happen, is to kill off that old bloody notation
that has been doing us such a disservice all these years.

Adrian Smith:
Firstly, we ought to look very hard at Pascal, which was solely an academic language until
about a year ago, when someone sold it for fifty quid, That’s the way you spread a language.

In the last five years, the APLs have halved in price at the same time as the enhancements
were taking place — so there has been a phenomenal increase in price-performance. The
second issue [would like to point out is that I think, at the time of the Model T Ford, Ford
was probably asking the same question: “Why are people not buying automobiles rather
than buying horse drawn carriages?” And the point is the shift was taking place, and I think
that is what’s happening in APL. We are just not recognising it. In my country I train
between fifty and a hundred people in APL every year. The number is increasing year by
vear. I simply think more and more people are moving towards APL precisely because of
the enhancements and the reduction in price which has taken place.

Ed Myers:

I learned APL and I didn’t even know what a matrix inversion was. Same thing in
educational systems. There’s no reason you have to bring someone in, settle down at the
table and say “I've got five thousand eight hundred and iwenty three different squiggles we
could use.”

The English language is the same thing. I can get a dictionary out that has 50,283 words in
it. Do you teach someone spelling by telling them to learn every word in that dictionary? Or
do you teach them to read by explaining every single word in that dictionary? No, of course
not. You explain that “Dick sees Spot. Spot runs fast.” You learn things by building upon
things, and you want 1o have languages that get things built.

This is all a bunch of rubbish.

79

1BM's announcement

notice for Dyalog APL

LIS LT i
O e T T T AT AL L

——

-,

:
o f
)

y

Sl

e

« [BM 6150 Model 125

45MIPS

HighSpeedFlaating Polnt (1650 Kwip:
High Performance disk 1,08 Mbisec)

Dyadicis pleased to
announce another distributor
for Dyalog APL '
|

Dyalog APL Is a second generation APL
thatincludes nested arrays, defined
operators and other APL2 extensions.
The 6150 impiementation also provides
support for standard IBM consoles,
terminals and printers, graphics facilities

and aninterface to SQL/6150.

OG APL FOR THE 6150

IBM UK outiets
for Dyalog APL
Over 66 authorised iBM
6150 dealers and your
local IBM branch. .
Announcedasa | IBM Austria IBM Netherlands
endor Logo product by: | 1BM Belgium IEM Norway
—| {BM Denmark IBM Portugal
IBM Finland IBM Saudi Arabia
IBM France IBM Spain
IBM Cermany IBM Sweden
IBM iceland g 1BM Switzerfand
IBM Ireland IBM Turkey
IBM Israel 1BM UK

Sales Departmant .-
. Dyadic Systams Limited
Park House, The High Street, Alton, Hampshlre, GU34 1EN, UK
Tel: (04201 87024 .

1M 15 A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION

VECTOR Vol.3 No.4

Chatrman:

DI'm sorry I must now draz this debate to a close and I therefore call upon Mr Stepe
Schiave to stm up for the opposition.

Steve Schiavo:

Before 1 get into my actual summary notes I do want to respond directly to some of the
questions. Number one: where is the so called bicycle? Where is the simple version with the
major features stripped out so that we can get back to basics? Well it does exist. T know of at
least one version —it’s called the Pocket, Itis of the order of ten per-cent of the cost of the full
system. It is available primarily not 1o people saying are we pursuing this as a profit oriented
thing and not taking the long term about how we develop the market. It is a distinctly
unprofitable product designed with the expectation that that would be the case because it is
provided at ridiculously low price to educational institutions all over the world and threugh
our dealer network. The point of it is to provide a starting base, not because we believe the
availability of the enhancements makes it difficult to learn the unenhanced features of the
language, but because we can therefore sell copies at a price that is attractive te schools.

Seriously, the enhancements to APL have brought the language out of the strictly academic
and scientific communirty, and into regular use in many sectors of the business communmnity.
1t is fast becoming the language of choice among actuaries and Wall Street analysts who are
hardly likely to have so widely adopted it without even the most fundamental
enhancements.

APL Plus, for one, is today used in the academic side of nearly five hundred colleges and
universities. The important thing to remember is that the program has only been in
existence for two years. I challenge anyone to say that that has not contributed to the spread.
And it’s used in those colleges and universities among not only the engineering and
mathematics students, but also among students of finance, psychology, social sciences and
business administration. It is no longer a purist’s reflection of a clever mathematical
symbolism.

And finally, and I think this is very important to all of us here in ways that may not be
immediately obvious, the need for enhancements, the suggestion of a need for
enhancements, has spawned an industry. S.T.5.C., L.P.Sharp, Dvalog, Analogic,
MicroAFL, 1.8.1., Pormable Software, etc., etc. These firms have taught APL to thousands
of paying customers. We have employed and nurtured hundreds of practitioners of the art
who have in turn gone abroad in industry as enthusiastic emissaries of APL. They and you
have used APL to create quality solutions for industry and government around the world,
demonstraring the need, flexibility, and function of APL features which are not in any
standard and without which the APL community would be a barren and lonely place even
today. Thank you, Mr Chairman, thank yeu.

Chairman:
I now call upon Mr Richard Nabavt to sum up for the proposition.

82

VECTOR Vol.3 No.4

Richard Nabavi:

Thank you Mr Chairman, Thank you ladies and gentlemen for your interesting comments.
[am actually quite surprised, at a conference of this kind, to find so much agreement with
what [have been saying. Agreement even from people who think they don’t agree with me.
T just wish I hadn’t brought up that analogy about the automobile. Next time I won’t bring
up any analogies.

I would like 1o take up two points from people who I think oppose this motion. One was
made by the honourable speaker over here who I presume opposed the motion. Another by
Ed Myers who I understand also opposes the motion. The strange thing is that both of them
gave very cogent arguments for supporting this motion. Now the problem with a debate
like this is that people get confused over what we are talking about. So let me re-state what
we are saying. We are saying that enhancements to APL, by which we mean enhancemenuts
to the APL language, are not doing anything to help spread APL. And, as the honourable
gentleman over here said, the world outside, the non-APLers, they don’t care about strand
notation and bracket notation and rank operators, It’s precisely what he said. Exactly. They
don’t care. It doesn’t matter. The fact that we get those right or get them wrong or don’t do
them or do do them will not help to spread the use of APL. Precisely.

Ed Myers’ point was even more cogent. Except that it was cogent on the opposite side to
what he thought. Because what Ed Myers said was that when he was learning APL he didn’t
know or care about the matrix divide operation {the matrix divide primitive). Precisely. If
that enhancement if you like, or that feature, had not been there he would still have been
interested in APL. It was not an issue, This is exactly what we are saying. The reasons that
people do not use APL are not to do with lack of fearure, We all know that APL, even the
simplest, even the most basic APL, has got much much more feature than any other
computing language. Adding more feature may or may not be a worthwile thing to do. We
are not saying it is wrong necessarily. What we are saying is what this motion says: that it
does not address the point, which is to spread the use of APL.

Now there has been a diversionary tactic used by the opposition in this debate. They have
talked about full screen editors. They have talked about file systems. They have talked
about graphics interfaces on the PC. And we wholeheartedly support such features. They
are absolutely essential if APL is 1o be widely used. But let’s not get confused, those are not
enhancements to the APL language. They are environment specific features which you add
either as defined functions or possibly as quad functions. Bur they don’t affect the APL
language itself. They don’t address the point which is being made which is that the
enhancements to the APL language are not needed. Yes, of course we need all those things,
We need the windows. We need the icons. We need the full screen editors. Wonderful.
Let's go on and write those, deliver those to the customers. But let's not argue about what
notation we use for nested arrays.

83

VECTOR Vol.3 No.4

There is one very interesting point which I think is one which is perhaps alittle unpalatable.
This is a point which several speakers have alluded 1o, and I think George Schlereth in
particular mentioned it, which is the following. We have got to make APL less frightening,
more accessible, Now that means that there is a cost associated with putting exira features
into an interpreter, into the APL language. Clearly you can go on adding features ad
infinitum, and indeed some APLs give the impression that they have gone on adding
features ad infinitum. And people have been saying “Well that doesn’t really matter. You
don't have 1o use it. You don't have to worry whether it’s there or not. Maybe I'll come
across it one day but in the meantime it doesn’t matter.”

That is not true. The extra complications inevitably make it more difficult to teach people
APL. They make the manuals look more frightening. They make the teaching courses
longer. They make the product more expensive (someone has got to pay for all that R and
D). They make the interpreters larger, so they can't fit on the small machines. Thereisa
cost associated with every feature you add. And the question which we are agking here is:is
that cost oo high? When we ask that question we are asking it not from your point of view,
not from the point of view of people who already know APL. We are asking if that cost istoo
high for the school kids, the universities, the small businesses, the large businesses which
are tight on budgets. Are those extra features, which cost something, gaining us anything in
helping to spread APL?

1 keep coming back to this: you have got to get back to the real point about about the
motion. Not are these things desirable, are they elegant, are they powerful, but do they help
spread APL? Ask yourself this question: do you think it would be any easier to sell APL to
someone who hasn’t used it, who has never seen it before, as a result of extra language
features that are put in? Or is that an irrelevance 1o the main problem which is how we get
out there and sell the product, Mr Chairman, ladies and gentlemen thank you for your
time. 1 hope that we have learned something from this debate. What I have been surprised
by is the lack of anyone really saying that all these advanced language features make much
difference. The only strong arguments we have heard have been on the interfaces, the
environments, and there we agree with you. I think this motion should be carried
unanimously. Thank you.

Chairman:

I now propose to put this motion to the vote. The vote will be taken by a show of
hands.

¥* * *

T declare the motion carried. Thank you very much ladies and gentlemen.

84

VECTOR Vol.3 No.4

The APL Entrepreneur
Panel discussion at APL86 in Manchester

reported by Val Lismore
Introduction.
The participants were:

Stan Wilkinson, Chairman, is a founder of HMW Programming Consultants and, as such,
has experience of the world of APL business himself. The large and enthusiastic audience
was divided between those who might already consider themselves as APL business-
people, and those who were wondering whether this might be an interesting option for
them. Many were quite good at self-publicity, having found this a necessity for being in
business, so Stan had quite a difficult task keeping them to the topic.

Henry Brudzewsky, from Denmark, has been an APL consultant for many years — his wife
also works in the business, and they have wide experience in several countries. This 2-
person consuliing team is the typical size of many APL companies — so Henry was
representing the majority of APL consultancies.

The other 3 panel members were from some of the largest APL consultancies in EBurope, all
of which started off very small. They all shared advice and experience for those wishing to
follow the same route.

Romilly Cocking, of Cocking and Drury, the English consultancy established 10 years ago
as a two-person operation, now has 35 staff — most of whom are consulting full-time in APL
and related problem-solving tools. He also has the UK agency for APL*PLUS, and makes
about 10% of his revenue from APL Education.

Valerie Lusmore, of APL People, started as a freelance consultant when she had her first
baby in 1979. Two years later she joined up with two other like-minded spirits and now has
a linked group of five companies all related 1o various vertical market-places where general
APL problem solving has been used as a tool. They employ between 20 and 30 people, and
operate an employment agency solely devoted to the APL community.

Timo Seppala, of TMT team in Finland, started 5 and a half years ago with some of his
colleagues who had been with him at [BM — they now have 30 people doing APL
consultancy in four Scandinavian countries, with annual revenue of £2.5 million. The
group has people doing non-APL consultancy as well, but it was the APL side that started
the business.

All the panel members gave some personal thoughts of how and why one might start up an
APL business —a general consensus was that, at first, it was marvellous to get paid for doing
things one enjoyed and that the service was much required. They all touched on the
standard problems of being a consultant at a client ~ and pointed out that one has to have
both the ability and the personality to do this and that many people do not enjoy it when
they find that consultants and contractors are often resented by the permanent workforce.
They also discussed the myth that one was much better paid as a contractor than as a

85

VECTOR Vol.3 No.4

permanent employee — the view is that one ends up just about as well off as someone on a
good permanent salary with benefits, and that one should think very hard about the whole
thing before throwing up a good job (o go contracting.

Val, who spends much time counselling members of the APL community on their career
plans, has also dealt with many people who have been made redundant overnight - a
shatlering experience for anyone, even if a reasonable golden handshake is offered. She
finds that most of us in the APIL, community spend no time on planning our lives and
careers. All of the panel agreed that you should look carefully at whether you are suited
temperamentally to running your own business and what your options are.

The three who had experienced the growth from a very small company to a much larger one
discussed the problems of growth, although all agreed that in general business terms their
firms are all still tiny. Growth problems are chiefly those concerned with management,
cash-flow, people (how to find them and how to keep them), the market-place you are in,
and how to handle the changes. All agreed that finding work is always a problem, and
handling the peaks and troughs is always difficult.

There was general consensus that the main objective was to increase the size of the market
where APL could be used for problem-solving, and co-operating where possible, rather
than allowing the customers to force them to compete. Romilly said they found themselves
bidding now more for work against other non-APL companies, where their lower total cost
should always win, but all said they had found they had 1o use their consulting skills and
also to use other non-APL tools where apprepriate — rather than being dogmatic. APL is
seen as a tool for problem-solving that should give them the competitive edge over others
rather than an end in itself.

Edited transcript of panel discussion

Stan: This session is called the APL entrepreneur. We have four people who have admitted
10 being such — Romilly, Timo, Henry and Val, They will introduce themselves before they
start arguing.

Romilly: My name is Romilly Cocking of Cocking and Drury. We started up about 9.5
years ago as a 2-man business with 2 objectives — we were going to do something which was
fun and we were going to do something which was profitable and we figured we could get
away with both those things by offering an APL consultancy service. We have grown a bit
since then and have continued te achieve both those objectives. There are three key secrets
in the way that we have developed our business, The first is to find out as best you can what
IBM is doing or planning on deing; the second is to try and understand why; and the third
is to look at all the many opportunities that creates and pick the ones which are easiest and
most profitable to attack. I think I probably speak for all of us —we owe our business to IBM
who created a demand for APL services which in effect they chose not to provide
themselves and thus gave an opportunity for other people to fill the vacuum created.

86

VECTOR Vol.3 No.4

Hemry: I started in 1972 —and as an example to illustrate my work I have borrowed a special
shoe from my wife, which has the very rare property that it was shaped according to the
human foot, not according to fashion, My work is o shape the system to fit human beings
and not to cripple people into the existing systems.

[wrote down five things, you should remember if you start on your own. First you must be
prepared to keep up to date — APL2, PCs, DOS, UNIX, VM, VSPC, CMS, and also
hardware. Secondly, how do you organise the company? In Denmark vou can either have
a private company or be personally responsible to your customers. | think the customers
trust you more if you are personally responsible and this is the way 1 do it. Thirdly, you
must choose whether to be an agent for software or hardware or be truly independent.
Whenever you make a study which involves a choice the one which loses will blame you
even if it is the choice of your client. The fourth problem with being small is the changing
workload — sometimes I work day and night and have very little time to sleep and then
suddenly there is some delay and we have wonderful opportunities to take a vacation off-
season. One way of getting around this is 1o cooperate with competitors. Lastly, you must
be better than the others — do a first class job, give very good documentation to solve the
problem of maintenance. Many of you have seen our baby son. He has not started walking
yet, but we have decided to give him shoes that fit his feet so that he will be able 1o walk
through life without being crippled.

Timo: Five and a half years ago [started a company with two of my colleagues from IBM.
We didn’t really have a clear idea of whar we were going to do, but we thought like Romilly
that it had to be fun. My advice is firstly to make a study of the market place. Is there one?
Secondly, if you are a consultant, you can either consult or sell your consulting services but
you can’t do both. You may be living on social security for some time. Thirdly, remember
that consulting is a very lonely job. You are usually in a customer’s premises which can be
a hostile environment. The staff like to have your work but you aren’t really part of the firm.
Lastly, what makes you think you are better than others in the marketplace — have you
anything special? If so0, go out and sell ix,

Val: 1 started off on my own in 1979, and unlike the others I didn’t decide I wanted a
business. I had my first child and with 10 years’ consulting experience in small companies
on 3 continents I wasn’t exactly a novice. However the powers that be didn’t know how to
cope with someone like me who didn’t conform to the accepted working patterns —so it was
easier to organise if [became my own boss. When we had timesharing it was easy to
freelance and very enjoyable. After a couple of years [was joined by Dave Alis and Tim
Perry and we’ve now got 5 associated APL companies. That sounds very glib but it all
seemed to happen quite naturally. My advice would be similar to that given by all the
others, bur because we run an employment agency our perspective and experience of the
job market is different and T think the audienc¢e may find this experience useful. What does
this business of running an employment agency mean to our customers, and to the way we
run our business?

87

VECTOR Vol.3 No.4

It means we employ contractors half the time as our way of coping with overloads. Our
infrial aim was not to grow faster than we could afford. However, we found the advantage of
using people with expertise in particular areas outweighed this. The extension of the
business into finding permanent staff came in because of customer demand. This aspect
means that I talk to many people working in APL about what they want to do and also to
employers about their needs, both shoert- and long-term. We give advice, acting as a
sounding board for people to think about planning their own carcer; 0 talk about growth
and progression. All these are things that many of them last did when they were in school,
but were too young to appreciate. We also have had many people recently, who are made
redundant almost overnight (often after 20 years) who have never thought of themselves
outside the context of that particular employer. Some give a golden handshake, but it’s
difficult to accept that it’s difficult to move when you are 45, especially if you don’t want o
go into management.

Some people we try doing contract work and thus starting their own business. Some like i1,
others loathe it. That is only the start; you then decide if you’re a loner or if you are happiest
with somebody like me finding your next job or working for someone like Romilly or where
you feel happy temperamentally. It may be possible to take that as a short term option and
really look for the kind of job that suits you, Well we have had the lecture on jobs —let’s go
back to being an entrepreneur.

Romilly: Can 1 start with a question? The market has changed a lot since we all started up.
It has got bigger and there are 2 lot more people in it. Do you think it is easier or harder now
for someone starting up?

Val- 1 think it is harder. There is so much advice available to would-be business-people that
you could be swamped in it. We were lucky in that we didn’t always realise all the pitfalls—
we just went ahead and did it.

Henry: Today it is far easier to start up. Why just 5 years ago, when you needed a terminal
with the funny symbols we all know and nobody had that if they didn’t use APL -you had
{0 subscribe to a time-sharing service or you had to have APL in-house. Today you can
bring one or two small diskettes 10 a future client. He already has the PC and then you can
demonstrate what APL is able to do for him. You can even bring the latest package you did
for another client (if your other client allows you, of course), and demonstrate it to your
future client. Then he will get enthusiastic, especially if you tell him how cheap itis to
develop such a system. I find it much much easier thanks to the PCs.

Timo: 1 don’t think consulting in a PC environment can be profitable. People think
anything on a PC costs less than £100 so that when you are quoting work for, let’s say, a very
special upper case that takes a month of your time and you get £100 for thatso

Henry: Well I don’t agree with Timo. 1 didn’t say I was going to continue using the PC but
1 can demonstrate what APL can do on the PC and then] can seil APL 1o the customer and
he can run it on his mainframe and we can continue with big business,

88

VECTOR Vol.3 No.4

Romilly: There is presumably a simple solution, If consulting costs a lot more than the PC
— why not sell the consulting and give the PC away free? y

Val: 80 many people think they will get rich writing software — they don’t understand the
economics of development, marketing and maintenance. Unless you are extremely well
organised, it’s an easy way to lose a lot of money fast, It’s like any other task that everybody
knows how to do — remarkably simple in concept, just difficult in practice. Several times
every year we get people who think they’l] sit down with their PC and just develop a piece
of software 1o sell - and make their fortune.

Question: Do runtime APLs help bring the cost of software down?

Valerte: 1f the volume is big encugh, then the run-time APL interpreter is obviously useful
— we have looked at one particular project where the projected volume would be tens of
thousands of copies of the software — and for that we'd negotiate a very cheap rate for the
interpreter as a part of the software. The problem is when you only sell 10 copies of a piece
of software ~ you might well not cover the development costs.

Timo: 1 think it is a question of the market place you want to be in, Nowadays few
companies buy our services because we are APL consultants — it is solutions they are buying
and I have found that we do not promote APL as such very much. We are compelting against
other consulting houses that deliver applications using ICIS and Cobol and if we can make
our proposal half of theirs we will still make a nice profit.

Romilly: Going back 1 Val's point about profit in consulting I think if you are selling
people’s time instead of solutions it’s hard to make a profit. As a rough rule of thumb once
you have fixed overheads you have salaries and rent to pay, you can lose in a month what
you make in a year and that is something to consider before you take on staff.

Val: I think it’s the only thing [agree with Mrs Thatcher on - [prefer not to spend money
[haven’t got. We set up very small and if we didn’t have money coming in, we didn’t spend
it. We used contractors so we didn’t spend money on people unless we had money coming
in from clients. It is easy to lose money unless you have enough wotk coming in and that is
the problem with being on your own. It’s very easy to lose money in many classic ways by
doing the wrong things. Look at the APL engineering company we bought last year. They
had been around for years, they have a great product but were selling it at the Wrong price
and giving all the enhancements, which cost a lot te write, away free. We stopped that
immediately. You can’t afford 1o give the consulting work away — you must sell things at a
price that is perceived as good value for the job. That is obvious if you stop and think about
it.

Question: Are there still business opportunities?

Val: We are constantly looking at other business opportunities. We have to because the
market place s surely not just APL and in order 10 survive we are all going to have to go out
and grow that marketplace — I agree with Timo, we are selling solutions, not APL. Qur
main objective is to survive —and if anyone has a good sound proposition I'd be happy to
look at it.

39

VECTOR Vol.3 No.4

Question: How much of your work is purely APL and how much is APL working with other
languages?

Romilly: About one job in three involves the use of either pre-existing software that isn’t
written in APL or coding specially developed. On the mainframe, if you have efficiency
problems that cannot be solved neatly by APL, you may have to drop out of APL for a
while. On the micro it tends to be again that you want to do something really close to the
operating system so that you come out of APL fora while and then come back again. Now
it’s about one job in three, a year ago it was about one job in ten.

Val: How many of you are based outside Europe, because I suspect that the North
American experience of running your own business is different to ours. People I meet seem
to work in the US as independents. We in Europe are working in groups that have grown.
We're not really in competition but jeined together in pushing out the frontiers. Is it like
that elsewhere?

Answer . Virtually every APL contract I've been on has other APL firms on the same
contract, and this makes it harder.

At this point Ed Cherlin from APL Market News produced a survey of the leading APL
comsultancies in North America, most of which have one or two people. The largest is 8
consultants.

Romilly: Things have changed in the last two years — years ago, in nearly all the contracts we
did they said ‘We want an APL system and we want you to do it.” That was it. These days
it’s very rare indeed 1o be so lucky.

Val: We find ourselves bidding more against other APL companies. [notice that the
customers try to force us into spurious competition.

Romilly: We find we are bidding more and more against non-APL companies who are
offering solutions and the fact that you’re using APL is not necessarily relevant to the
contract as Timo says. What you’re doing is simply going in a1 a lower total project costand
that should be why APL is going to win every time. We also tend to see people looking atan
externally developed solution vs an internally developed 4GL solurion.

Question : Who are your customers? The Informatics dept or the users?

Romilly: it splits about 50-50, For us customers are TIMES 1000 companies — they have at
least a million pounds of hardware in their machine-room or they wouldn’t be running
APL.

Timo: What has been changing is that 10 years ago there were no 4GLs, no package
programs, no PCs. What APL was used for were PC applications. That’s why VM/CMS
was so popular — it was a massive virtual PC, Now we have PCs and 4GL packages, that side
of APL work is gone totally. They do it themselves with Focus, Ramis 2 etc. APL is now
used for serious data processing. Serious means the application is difficult and the most
profitable thing to do is to write applications that give the customer the competitive edge. If
you find applications where the customer can make more profit, you can price them much
higher.

90

VECTOR Vol.3 No.4

Val: The aspect of providing added value is really important to our profitability. I'm
constantly surprised at how much of our revenue comes from giving added value — project
training, extra software, hardware, applications in other departments ~ this may be 10-20%
of the contract.

Henry: This time [do agree with Timo. I was abroad for some years and my Health
insurance was in Denmark. During a visit there I went to their offices to complain that [was
underpaid. While I waited to talk to the manager 1 thought it over and saw it was quite
difficult for the insurance company to pay the exact amount — | was in a country with 400%
inflation and that’s why I got too litde. So I asked the manager if it was a very difficult
problem with people travelling all over the world and he told me he had many long letters
even if he enly erred by a small amount and I asked him if he would like a solution, and he
is one of my very good clients now. I was very lucky that I came at just the right moment.

Question: Valerie suggested that one should fund eneself from one’s own resources and I’'d
like to ask the panel how much they had to borrow to get going.

Timo: When we started we cut our salaries o half what we had at IBM and we didn’t have
any summer vacation for two years. Then after a year the bank manager came 1o us and said
‘Hey guys, don’t you need any money? Don't you need a credit line?” When you get big
then you need capital - if you want to buy an IBM 3090 that is really expensive. But you are
making a big mistake if you start by borrowing a lot, you may well do no better than if you
had no capital, and you alse have the debt to pay off, Wait until you need money for capital
items,

Val: I didn’t get a penny for three months and then the cash started to come in, so I didn’t
start by borrewing — I think I lived on my maternity benefit. Now we are bigger we have
borrowed for partcular projects.

Romilly: When we started up we had enough money to live on for 2 few months with the
help of a working wife, but since then we’ve typically needed to goup to 6 weeks’ turnover
in credit facilities.

Val: Stx weeks is exactly what we find. Cash flow is very important — most of our customers
are big companies who pay late, probably because of their complicated computer systems.
You have to be prepared to go in right at the start and sort out how they pay and who is
responsible for getting your bills paid, even though it is much more interesting to get on
with solving their technical problems. If you don’t, you will regret it.

Romilly: If you are expanding fast then the net negative cash-flow can get very high and
when you take somebody on they expect to get paid from the day they start working for you
—they may not fit into a job the day they join you and if you include the ¢ost of recruitment
(advertising, agency fees, interviewing) it may be 4 or 5 months before they make a positive
contribution to cash flow. That 6 weeks figure is against a rate of growth of 70% per annum
compound internally funded, but that’s about the limit that way. If you go any faster you
need (a) money and (b) management.

9N

VECTOR Vol.3 No.4

Val- It's the management people that are most difficult to find, the money is relatively easy
once you are growing and have a track record. You also have to make a personal decision
whether you go on being a technician or whether you enjoy running a business —and if you
don’t enjoy that change, recognise this and organise to stay on the technical side. You must
work as hard at finding the new skills as you once did acquiring APL expertise.

Romilly: 1f you grow at that rate the fundamental problems your business is facing are

changing over a two-year horizon. You start worrying about structure, long-term planning,
and I don’t know what comes next.

Question: What are the implications of having employees? Quiside the USA — where they
come and go relatively freely.

Romilly: 1f someone has worked for you for about a year then it’s not possible to get rid of
them without having either a very good reason or because they are fundamentally and
demonstrably unsatisfactory or because you can show that the job they were doing has gone
away and you then have to make some sort of compensating payment.

Val: One of the main problems everyone has is finding enough skilled staff. I did study the
cost of our setting up a training scheme just for APL - 1aking on juniors, teaching them
APL and then teaching them to become consultants. If they didn’t learn APL you could tell
quite quickly, without too much loss on either side, and if they weren’t going to make the
grade as consultants you could tell within a few months and we could sell them on to
customers as trained programmers. 1 found we would need to take on about a dozen at a
time to not lose money — the Investment per person was two or three thousand pounds, and
there is 2 fairly high level of risk — so we’ve put that on the back burner for now.

Timo: The other side of the problem is how you keep your people. Ina consulting company
the only real capital you have is people and your reputation. Qur policy is that after you
have been with TMT for 2 years you can get shares in the company — most of our people are
shareholders. Evervone wants to be a capitalist.

Val: 1 think our business will never grow unless all the people working for it feel that it’s
their business and contribute to that growth, and that the profits are not just going to the
people who started it up. They’ve got to feel they are vital to the success of the company —
but they all have to be salesmen too because the best salesman you’ve got are all those
consultants out there — doing a good job.

Question: How many people are in APL Education?

Romilly: About 10% of our revenue — quite significant.

Time: You have to train your customers to buy from you.

Henry: Giving a course in APL usually gives you one or two good clients. Also at
universities and schools you may get very interesting business.

92

VECTOR Vol.3 No.4

Val: If we don’t teach the APL community stays static — and besides survival I would see
our main task as co-operating in enlarging and improving that market place.

Stan: On that note, I must thank the panel — they have given us a lot to think about. As you
have heard there are many opportunities to make a living out of APL — but you must be
prepared to grasp every onel

3 (b APL CONSULTANCY

* Debugging

* Support and maintenance

* Feasibility studies

* Interfaces to mainframe systems
* Conversions

* Major developments

Our highly experienced consultants are capable of
tackling any APL problem large or small.
For further details call Valerie Lusmore on 0225 62602

APL People Ltd
17 Barton Street, Bath BA1 1HQ
Tel: 0225 62602

93

VECTOR Vol.3 No.4

Introduction to General Articles

Our General Articles start this issue with the latest extract from Anthony Camacho’s series
of “Steps to a Better BASIC”. These articles were designed to introduce the concepts of
APL to an audience familiar with the conventional BASIC language, and were originally
published in Datalink magazine, with whose kind permission they are re-printed.

Dick Bowman, the Chairman of the British APL Association, has written explaining the
thinking behind an APL prize scheme to reward those whe have contributed most to
extending the publicity of APL to the world outside the APL community.

Robert Pullman is director of The Rochester Group, a New York based consulting
company. He has sent us some ROTs (Rules-Of-Thumb) on APL system design. “The
Programmer as Designer, the Designer as Detective’ is a valuable but light-hearted look at
this problem.

Our final contribution comes from Sylvia Camacho, who looks with the benefit of hindsight
at developments in computing and the role therein of a mathematical notation

94

VECTOR Vol.3 No.4

Steps to a better BASIC
by Anthony Camacho

Each with each: the table maker

In the introductory article to this series, I suggested that a useful innovation in BASIC
would be the command EWE{*) which could take any symbol in the brackets and would
combine each of the members of one array with each of the members of the other using the
chosen mathematical or logical symbol between themn.

APL has just that function. Itis called the outer product and it is written as the small circle,
the full stop and the symbol for the operation required. Ifin L we have the integers 1 1o 12,
here is “L. jot dot times L”

Le=,aL

2 13 4 5 6 7 8 9 10 11 12
4 6 8 10 12 14 16 18 20 22 2y
6 9 12 15 18 21 24 27 30 33 36
8 12 16 20 24 28 32 36 40 44 1@
10 15 20 25 30 35 40 45 S0 55 &0
12 18 24 30 36 42 48 Sk 60 66 T2
14 21 28 3% 42 439 56 63 T0 V7 84
16 24 32 40 48 55 64 72 B0 88 96
18 27 36 45 5S4 63 7z 81 90 99 108
10 20 30 4 S0 60 70 80 S0 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 1uy

WE MW E WK e

It makes things look rather better if we embed this in a defined function which also prints
the values of the arguments along the top and left side, and puts the symbol being tabulated
in the corner of the table.

Here is a function that does all thar;

¥V R+FN TABLE VEC
[1] a PRODUCES TABLE OF VEC=,'FN' VEC
[2] £'BeVECe." ,FW, *VEC"
[3] Rev10,0,VEC 103 (({oVEC) .1 3pVES) 0, R
[4) RE2:1+(T1toR)p' =1
[57 RE1:R0L; 010" JeFW
6] RURLL; 10000 Je(1raRbpt |0

v
The header shows that it gives an explicit result (we could store the result in a variable if we
chose}, and that it takes two arguments: the left argument is the function symbol and the
right argument is a vector or a row of numbers. Line 1 is just a comment. Line 2 calculates
the table; the first character ‘executes’ the string of characters following as an instruction —
that is how it is possible to give a choice of symbol to make the table from. Line 3 puts the
variable values down the left-hand side and across the top, with a row of zeroes in between
them and the main table. Line 4 replaces the line of zeroes with a line of hyphens. Line 5
puts the symbol being tabulated in the top left corner and line 6 replaces the column of

zeroes with a column of vertical bars.

95

VECTOR Vol.3 No.4

Here are some results. A division table up to 5 (with the print precision reduced to show
only four places of decimals — APL can show up to sixteen):

"#'TABLE 15
+ 1 2 3 L] 5
.5 0.3333 0.25
0.6667 0.5
1 0,75
1,333 1
+5 1.667 1.25

|
| ==
|
|
|
|
i

W E WM

L e

23 KD ke O
o

A table of powers up to 6:
"+ ' TABELE 16

* | 1 2 3 4 H 5
----------.'--------------_------- ------- [p—

1 1 1 1 1 1 1
2 [} 8 16 a2 B4
3] 27 [:} 243 729
4 16 &4 256 1024 LOS&E
-] 25 125 B25 3125 15630
B 36 216 1296 7776 46660

2
3
L]
5
6

And here is one of the more interesting functions — combinations - which gives Pascal’s
triangle:

TI'TABLE 0,19

0 12

|

w
£
wn

@

~3
L
w

-
o

i 1
& 9
15 21 28 36
20 35 55 B4
15 35 70 126
[
1
o
0
0

e -
L3
~3

(=N N- NN == N

21 56 126
T 28 B4
1 8 3B
g 1 9
oo 1

W ahinF W~
- E-E-E-X-X-X-wC]
COoODOOO0 0N
COO00ODORN-
[=R-R- - RN -SR]
cocooOR»FRHER

And of course vou can get Boolean results too. Here is the greater-than-or-equal-10

function:

‘2" TARLE L
1 2 3 N

x| 5 7 B 91011 12
..... | -emmmmmmmm - smmmr—sscocmssmaeos—
1+] t 000090 QCO0O0COC0D
2 11100 00060©0Cc00T00
3 1111000¢%000C0C0O 0D
v | 1111000000 O0CD0
5] £ 11 11000D0O0CCODO
5 J 111111 0000020
7] 111111100002
g] 111111110000
g 1 11111111 1000¢C
¢ | 111 t11111100
11 p 1011111111110
12 10ttt 1 11111111

96

VECTOR Vol.3 No.4

Coming out of the closet:
taking the Message to the People

by Dick Bowman

In recent months the B.A.A. Committee has increasingly been thinking about the way the
APL community meets its own needs for communication about APL and the perception of
APL which is held in the rest of the computing industry. Qur conclusion is that there’s a
gulf; we now want to see if there are ways in which we can help bridge the gap. Asis our
wont, we want to do this in a way which involves a lot of other people in doing the hard work
— but bear with us because we also offer rewards.

The way we see it is as follows. The APL community is doing an absolutely splendid job of
talking to itself; journals like Quote-Quad and some of the other national group
publications are essential reading for the practising APLer, and we have an excellent annual
conference which bursts at the seams with material we can use. But if you're not already
within the APL community, you don’t know about this activity, and even if you did know
it’s unlikely that you would find it compulsively attractive,

What the rest of the world knows about APL is culled from the general computing press and
the various conferences and seminars which take place. The press is voicing opinions like
“APL is a language that looked promising in the 70’s but never really made it”, or it has
short intreductory pieces from people who have just found out about APL (and often seem
to have grasped the wrong end of the stick). APL is very rarely mentioned at major
computing events; we hear rumours about people submitting papers describing APL-
based work which get rejected purely because APL isn't one of the ‘officially-approved’
languages.

One thing which APL does have going for it is that most of the computing world knows of
us; they may have weird notions, bur at least we have some awareness (evenifit’s the wrong
sort). We have notoriety, let’s change it into respect. The current view of the B.AA.
Committee is that we should encourage people to try to present papers at events outside the
APL circle and to write articles for the non-APL press; the people who are really using APL
effectively should share their experiences and knowledge. What we’ve done so far is to
create a starter list of events and publications which we think would be improved by
contributions from the APL world. This is only a starter list and we will be overjoyed by
anyone pointing out the virtues of the ten zillion places we haven’t included. As it stands we
have (in no implied order):

Events
Siggraph Annual Conference (ACM)
OR Society Annual Conference BCS Human-Computer Interaction Group
Conference (annually, September)
BCS Expert Systems Group Conference (annually, December)
Royal Statistical Society events
BCS Software Engineering Group Conference (annually, September)

97

VECTOR Vol.3 No.4

BCS Medical Group events

RCS Computer Education Group events

BCS Computers in Education Group events
Independent Schools Microelectronics Centre

Publications

BCS Expert Systems Group Journal
Computing

BCS Computer Bulletin

Computer Weekly

BCS Software Engineering Group Journal
Datalink

Mass-market ‘personal computing” magazines
Practical Computing

OR Society Journal

Byte

BCS Computers in Education Group Journal
BCS Human-Computer Interaction Group Journal
BCS Medical Group Journal

Data Processing

Note how the British Computer Society figures in both lists; we are a Specialist Group and
one of the benefits that this brings is that we have somewhat easier access to a vast range of
computing interests, events and publications. We want to exploit our advantages.

Topics

Obviously suitable material for one place is not necessarily attractive to others; some events
or publications may have restrictions which do not apply to others; and some routes may
already be heavily over-subscribed.

The general themes which we, innocently, think are most sensible to expound on are biased
heavily toward applications — the why and how of using APL effectively; the benefits 1o an
organisation of doing certain things in APL; how to choose whether APL is a suitable
vehicle. Essentially it seems good to emphasise novelty (give them a new viewpoint on
things they believed they knew all about) and lace it with alittle controversy (even if only in
the tide).

What we think needs empbhasis is the effectiveness of APL. as a problem-solving tool, and
the fact that it is a tool which is relied on as a means of delivery in many organisations. APL
is already in place, it’s not a solution looking for a problem.

Remember that just because YOU are the person doing it, something need not be boring.
You almost certainly have things to say and to write about which are worthy of a public
airing. The B.A.A. is more than happy to offer pre-publication counselling; if you have an
idea which you think could go further and you want to discuss ways of advancing it, then
contact any of the B.A.A. Committee.

98

VECTOR Vol.3No.4

We are also interested in collecting information after the event — reviewing how it went on
the night. Even if the unthinkable happens and your efforts are rejected, we would like to
know why. It helps us understand the world’s perception of APL, and other people to avoid
making the same nistakes.

Sticks

The ‘mainstream’ computing world is capable of totally ignoring us; some factions within
that world might even see this as a positive strategy. If we want APL to grow and be used in
those places where it can most effectively earn its keep, then it is our responsibility to keep
the language in the public eye. If we don’t do it ourselves then no-one else will do it for us;
do you really want to spend your remaining days writing RPG-II?

Carrots
(Offered not to donkeys, but as some form of incentive.)
Every year the B.A.A. is going to look at the coverage of APL in non-APL activities and

publications; when we find things that are really excellent in terms of advancing the cause,
we're going to acknowledge the originators,

So, notonly can you look forward to fame and fortune (sorry, we don't give those away), we
might also give you a trophy. We're negotiating even now (more news next time).

But (and it’s a serious proviso), we're not just handing out prizes to anybody — if all your
papers and articles are dogs then we reserve the aption not to award any prizes (this ts the
B.A.A., not Cruft’s),

And the usual disclaimer of course applies - even if they could read and write, the B.A.A.
Committes members are disqualified from getting a prize either while in office or for work
done during their period of office.

(Editor: Presumably these are very special carrots — they help other people to see in the dark!)

99

VECTOR Vol.3 No.4

The Programmer as Designer, The Designer as Detective

by Robert Pullman
Rule of Thumb 1:
The more time one puts in design, the less time one puts in programming.

The assumption being that the design work progresses towards simplifying the problems
that the system poses.

The essential problem that a system poses is how 1o satisfy all the constraints of the system
simultaneonsly.

The first step, then, is to consider the constraints. Even on the smallest project, though,
both the programmer and the client ought to share each.

Rule of thumb 5:

The responsibility should begin with the programmer being in on the
specification.

1 think we're in 1987 now, a safe distance from the notion that programmers are oddball
introverts, more comfortable with machinery than with people. We have all the natural
urges and characteristics of the most “moyen” John and Jane. There is simply no reason
why the programmer should not be there from the very beginning — taking notes, asking
and answering questions, making suggestions.

The less experienced the programmer, the more important it is, at least 10 the
programmer’s long-term development, to be involved full-cycle in the project. Sure, it
might be an array of confusion at first, but with time come poise and polish.

One of the worst predicaments to be in is 10 have responsibility without authority: authority
as in author, as in author of the spec.

Conversely, if the programmer participates in formulating (formula: little beauty) the spec,
and the brainsterming that precedes and surrounds it, the programmer can identify with
the project.

Rule of thumb 6:

There is always a tolerance range in a computer system. The client “lives with”
certain shortcomings, enjoys certain surplus features. It never hurts to deliver
more than was required. Sometimes a pittance of exira time on something
seemingly uncalled for makes all the difference.

I’ve yet 1o write a system that implemented squeaky cleanly. 1 don’t think that perfection in
a system is any more [easible than the perfect automobile or cheesecake.

100

VECTOR Vol.3 No.4

There are, however, essentials in the importance of the system. From a pure point of view
they are mechanical in nature, something to be put in code and executed by a machine.
From a practical point of view, the essentials reside in what the client could tell you, in what
vou know from experience to be required,

The key, as best as I can summarize, is not in some sort of combinational strategy for
optimization. The key is in isolating the truly important requirements in their present
sense, and satisfying them in a way that leaves ample room for meeting future
requirements.

In short, . .
Rule of thumb 7:

If you don’t understand the spec, don’t write the program. If you want (or
have) to write the program, rewrite the spec so that you understand it.

And, nearly a corollary:

Rule of thumb 8:
If you understand the spec, you have already solved the crucial design
problems. The hardest design problems might be ahead of you, but youareon
the right track.

APL SOFTWARE

A selection of currently available software:

* INTERPROCESS SYSTEM SOFTWARE — includes
many significant enhancements to both VSAPL and
APL2 including AP124 for APL2 and the very efficient
‘AFM’ shared file sub-system.

* PANEL Full Screen Manager

* PFS Program File System

* RDS Relational Database System
* POWERTOOLS/PC

Full training and support available with all our software.

For a more comprehensive list or details contact Philip Goacher
on 03727 21282 at 27 Downs Way, Epsom, Surrey KT18 5LU.

VECTOR Vol.3 No.4

The Road Not Travelled
by Sylvia Camacho

If aworking lifetime is 40 years, I have already spent three-guarters of mine connected with
the computer industry, being employed by it, married into it and, over the last 5 years,
fighting for living space among proliferating micro-computers. This gives me more
hindsight than most and, with the wisdom this is suppesed to confer, I intend here to draw
some conclusions,

Despite their reputation, there has been nothing spectacularly fast about the development
and exploitation of computers. Mary Goldring pointed out that technelogical innovations,
the motor car for instance, take about a generation 1o get from the drawing board to the
mass market. Computer technology has been, in general, no exception although I think a
case might be made that the increase in power per pound has been greater than for any other
technology and will lead over the next 20 years to more extensive exploitation of micro-
computers as components of other products than as general purpose caleulating machines,

When, in 1965, 1 left computer manufacturing to start a family, the pattern for the use of
computers as general purpose calculating machines was already set although there was still
a debate in the trade over the rival merits of several (now called 3rd generation)
programming languages. 1 left as magnetic disks were coming into use as a storage medium
and although now larger and cheaper, they are still the preferred method of holding data.
The advantage of disk over cards and tape is that portions can be overwritten leaving the
rest of the data undisturbed. During the late 19605 and early 1970s video terminal
equipment became cheap and reliable and this, together with the indexed files and
databases made possible by disk gave rise to interactive program development and use.
Changes since then in commercial computing have been largely consolidations and serial
processor hardware performance is now close 1o physical limits. An increase in speed will
require a change to parallel processing and, although the first experiments such as the
transputer are in the laboratories, on the basis of previous experience we can expect this to
take another 20 years w bring into widespread use.

I expect that my reader will by now be protesting that whereas the received wisdom is that
we are al the beginning of a computing era, I am saying that we are near the end of one. This
is difficult to reconcile with the recently buoyant market in micro computers and the
attention of Government and Media. My reasons are that the scientists and engineers who
set such a brisk pace in hardware innovaton have not been equalled in imaginauon by
software theorists. The attempt 10 use languages developed for linguistic analysis in the
hope of realising something approaching ‘artificial intelligence’ is notably misplaced as it
takes no account of what we know about the nature of the “real intelligence” manifest in the
brain. This, of course, does not stop vendors who need to bring a useful product 1o market
advertising as ‘artificially intelligent’ softiware packages that are more properly called
‘expert systems’, [believe that for the foreseeable future the bread and butter of computer
system vendors will be packages, including expert systems, directed at a restricted market,
developed by or in close collaboration with experts in the problems and practices of workers

102

VECTOR Vol.3 No.4

in that market. There is plenty of scope here for small enterprises but packages need a large
market or a rich one and programming estimates being notorious for understatement,
software development is likely to be viewed suspiciously by merchant bankers.

However successful the package market, computer users will need bespoke systems to
handle those parts of their enterprise which are not ‘run of the mill’ and which give them a
competitive edge. It is here that there is a major obstacle. The measure of it is the
proliferation of data management packages widely called 4th generation languages.
Turning over the pages of one or two trade journals will provide the names of 30-40 of these
products, mostly directed at mainframe users and priced in tens or hundreds of thousands
of pounds. As the market cannot support this number an unenviable job for computer
department managers is to try 1o spot the vendors who will still be around in 10 vears time.

In looking for reasens for this fragmentation, the history of software development is
instructive. The transition from machine code (strings of ones and zeros) to a symbolic
equivalent which the computer itself could translate into binary notation took only a few
months to get started and a year or two to perfect. The need was great and although there
was a difference of opinion about the choice of mnemonics for the various functions there
were no issues of principle 1o be settled. What is more, as each manufacturer’s machine had
different registers, instruction sets & word formats, they each had to develop their own
assemblers (2nd generation languages). The race to come to market with a language which
wauld be a lingua franca between different machines led to much more acrimony but,
perhaps because they were more aware of the importance of catching the marker or perhaps
because they were backed by the US defence establishment, the COBOL team produced
the product which has been dominant for 20 years. For the sequential design of computer
now used it cannot be challenged — the investment in software and programmer training
makes wholesale conversion to any other language unthinkable. Theoretical arguments
about language design are simply beside the point. I note that ADA, a language promoted
by the Pentagon for real time applications and backed by our government with money for
retraining, is finding an unenthusiastic response among software suppliers. They would
rather use CORAL, the special purpose language they invented in the 60s, in which there is
a small but stable pool of expertise.

[f COBOL is so well placed, why are so many looking for an alternative? Programs whether
or not written in COBOL will run faster as the speed of the hardware increases. Qne reasen
is that cheaper hardware has carried computers down-market where organisations do not
expect to spend maore on the programmers, whom they perceive as clerks operating the
machines, than they do on the machines themselves. Unfortunately the speed of thought
not having changed since COBOL was introduced in the 60s, a page of code takes about as
long to produce as ever it did. What is more, the expeciations of the custorners has been
raised by the use of package software and not least by recent, highly interactive micro
systems produced for the mass market.

103

VECTOR Vol.3 No.4

The heavy promotion of the many 4th generation preducts tempts data processing
managers to use them in place of COBOL when new code is required, Many considerations
influence them in this direction. They are told that the programs will require less code, that
good work can be produced with less training, that the analyst himself can do the coding
and stop acting as the middle man between the customer and the programmer and so avoid
the delays and misundertandings that result from indirect communication. All of these
claims are true but there are prices to be paid.

The relationship between 3rd generation languages and the machine code into which they
are compiled is direct and easy to understand. A COBOL instruction to MULTIPLY is
converled into a loop of many machine cycles to perform repetitive addition, Even
extensions to the language used to access databases are easy to understand in principle. The
instruction follows a succession of pointers *navigating’ among the inter-connected data-
groups until the key of its ‘search argument’ is matched. Although most of the tedious detail
of the machine code is hidden, 3rd generation code ‘maps’ quite closely to the code which
it generases. This gives the coder a feeling for what he is telling the machine 1o do and the
relative costs of different approaches. Moreover, he can choose berween different paths to
the same goal and plan the interactions between major sections of his job to minimise the
ume and resources used.

It is quite otherwise with 4th generation database managers, reporl generators, query
languages and the like. The code provided is intended to specify what is to be done, not how
the computer is to do it. Some people hope that this idea can be developed to the point
where the customer will be able to dispense with the analyst as well as the programmer and
generate his own code. It is seen that this would require a jargon-free language directed to
the expression of the job to be done and making minimum concessions to the fact that it is
to be run on a computer. The instruction input however still has to be translated into
machine code only now without a programmer to imterpret the ‘what’ into ‘how’. Not
surprisingly this lack of a directing intelligence often produces tortuous machine code. The
diificulty of producing generalised algorithms to translate from loosely structured user code
1o robust and consistent machine code has led the vendors to concentrate on those facililities
which are most in demand — data capture, report generation and file handling and enquiry.
When used for these purposes and with a sustained attempt to keep the code simple, these
tools are effective. They can be used 1o create some forms of bespoke system but they can
never have the control over all the functions of the computer that is implicit in 3rd
generation languages.

In 1957, six months out of University, I answered a small, classified advertisement in the
Daily Telegraph: “Wanted, keen and enquiring minds, knowledge of Boolean algebra an
advantage’. I had read Philosophy because it excited me and Boolean algebra as part of the
course in Formal Logic. It was my good fortune that my degree turned out to be vocational
training! Thirty years ago 1 felt priveleged 1o be standing at a new frontier. What is the
prospect now?

104

VECTOR Vol.3 No.4

We seem to have reached an impasse. We want to produce software that is closely matched
to the unique requirements of particular users yet the 3rd generation languages that have
the power to produce such individually tailored software are expensive and so slow to
specify that the requirement may have changed before the program is completed and
attempts to modify it just start the whole slow cycle over again. On the other hand ingenious
attempts to use 4th generation code 1o create sophisticated software are heavy on machine
resource and make code hard to amend.

I think there are alternative roads which we might take but which of them we do take will
depend on the view that influental members of the computing indusry and the
organisations that support them, both public and private, have of their enterprise, They
can choose to see it as part science, part engineering which will progress only if effort is put
into software research to match the effort that went into hardware, Alternatively they can
choose to see it as a new craft which has now matured and requires only regulation and
consolidation to turn it into a profession closely refated to accountancy. I think that the
former is desirable but that the latter is more likely and that users who are still looking for
a tool 10 help them think may settle for a tool to help them keep their books.

The reason that I think computing is at the moment more craft than science will sound to a
layman, paradoxical. Itis that mathematics has been excluded from computing. In 1957 the
Chief Programmer of my organisation was a Doctor of Mathematics. That was thought to
be necessary to master the complexities of binary arithmetic. I was employed though I was
not a mathematician (nor any sort of scientist) because I had to talk to customers and the
Company ‘knew’ that scientists would be no good at that sort of thing. Mathemarticians, of
course, soon tired of hack coding and commercial computer departments were taken over
by peeple literate but mostly innumerate. They are now the driving force behind the money
going into ‘artificial intelligence’ research because they need software which will accept
natural language instructions {preferably spoken, not typed). It is sad they will not live to
enjoy it.

Mathematics is the queen of sciences because it makes possible the communication of ideas
not easy to express concisely and unambiguously in extended prose. Advances in science
are often accompanied by extensions to mathematics, particularly extensions to notation
although these may not be invented by the man who breaks the new ground — Kepler
managed without a multiplication sign! The inventors and beneficiaries of the new notation
are often the inheritors of the new science and they use it to create a sound theoretical base
for the next advance. The notation which makes the breakthrough and converts a craft into
a science is not always mathematical. The medern science of chemistry owes much to John
Dalton who drew up a table of atomic weights based on the proportions in which elements
combined and used some crude diagrams to explain his hypotheses, As this approach
seemed fruitful, others suggested a more systematic notation which has developed into the
modern symbolism. Modern chemistry would not be possible without the formulae which
underpin its concepts and are now so well known that H20 is a stang term and even H2504
1s recognized by connoiseurs of limericks. Is there any sign of such progress in computing?

105

VECTOR Vol.2 No.4

Some progress has been made in developing a systematic description of the raw material
processed by computers. Data analysts have invented terms to describe abstract
characteristics of data items such as the relationship between them. They set down the data
structures to be processed as “entity diagrams’ showing items grouped and the one-to-many
or many-to-many relationships between the sets. While drawing up these diagrams often
helps define the requirements of the system, they cannot be manipulated like formulae.
What is required is an analytic notation and preferably one which can be directly executed
by a computer. As so much conventional commercial computing is concerned with
comparisons between sets of data, the notation needs to express both mathematical and
logical algorithms but I shall use ‘mathematical’ as shorthand for both.

So long as computer departments Jimit their ambitions to helping the accountants keep the
books 2 mathematical notation is unlikely to be adopted. Systematisation in accounting is
confined to double-entry balancing and litle mathematics is needed beyoend powers for
compounding and discounting and ratios for bringing performance in different
departments or companies (o a common base. However, accountants directly concerned in
the management of companies need tools to allow them to project performance. This calls
for statistical analysis and forms the basis of what is often called a ‘Company Model’. There
are, of course, other fields where modelling is appropriate from Astronomy to Zoology and
such models are usually coded in a 3rd generation language like FORTRAN or more recent
s#ih pgeneration statistical packages like SAS. Unfortunately such code, although
executable, is not analytic. Using the analogy with chemistry these are the languages of
alchemists. They also have all the drawbacks identified above. Therefore accountants
needing models are abandoning the mainframes and learning to adapt micro-computer
packages, usually some variety of spreadsheet. This has the advantage of being 1 or 2
precent of the price of mainframe software and allows them to by-pass the rigidities of DP
departments. However, to get the power necessary to model a large company may require
a network of micro-computers and file-servers and needs technical know-how in the
complexities of micro-computer hardware.

My wisdom of hindsight is therefore that users will continue to be frustrated until they use
a mathematical notation to analyse and specify their requirement and a notation that is
executable to enable the computer itself to prove their algorithms. Micro computers
currently share the language limitations of the mainframes and have additional limitations
in speed. However, the new, cheap mass market will respond more quickly than the
traditional, expensive and small one. This should enable an analytic and executable
language to penetrate fast and deep. Is there any reader who thinks I am saying there is no
road worth travelling until someone has invented such a notation for computer science? |
am not saying that because there is a notation. Thirty years ago it was called ‘Iverson’s
Notation’ but now it is known as APL. To penetrate it must of course, like chemical
notation, be taught in every school. Unfortunately, while textbooks with non-alphabetic
notation are more expensive than others, they are not prohibitively so but as yet there is no
cheap, readily accessible APL interpreter for the most common micro-computers.
However if my ambitions are realized we shall have one long before I end my working
career.

106

VECTOR Vol.3 No.4

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already know
APL. [t will contain items to interest people with differing degrees of fluency in APL.

107

VECTOR Vol.3 No.4

Technical Editorial: Mind your language
by Fonathan Barman

What other languages should APLers learn, and why? There is concern that the APL
community is closed and does not take account of the ‘real’ computing that is going on. APL
is, after all, a tiny part of the overall computing activity. Naturally, as this is an APL
periodical, we think that it should play a much more important role.

Previous editorials have raised the issue of where APL should or should not be used, and we
were hoping that articles would be written on the subject. So far there has been very little,
and we feel that one of the reasons could be that there are very few ATPLers who are
comfortable in using another language.

If this is true, then it could explain why APL is such a small part of the computing world. If
someone does not know another language reasonably well, and is not aware of the way in
which the majority of computing is carried out, it is then very difficult for them to describe
the benefits of APL in a rational and convincing manner.

Siandard APL is a non-looping language. Part of its charm to those who love it is the
amazing solutions that are available where, at first sight, looping would appear to be
essential. The “or each’ operator in the extended APLs allows looping solutions to be
defined naturaily, but extended APLs need lots of memory and computing power. If a
looping solution is the easiest to implement, and extended APL is not available, what are
the alternatives? BASIC is so horrible after the elegance of APL that most of us shudder at
the thought, although compiled BASIC s quite fast. In fact pretty well all the options come
down to a compiled language. PASCAL and C seem to be the most pepular alternatives, C
seems to have the edge in our view as you can, if needed, get down to basic machine
operations, and it is easy to prepare lots of modules which can be pulled off the shelf when
needed. This is similar to the the way in which functions can be copied from a utility
workspace in APL. PASCAL is used for teaching programming and may be the best for a
relative novice. Many APLs now allow ASSEMBLER routines to be called, and if the
added speed is worth the considerable investment in programming time, then it s relatively
easy to include special functions in the workspace.

There are masses of specialised languages with much the same level of use as APL, some of
them such as PROLOG are much further away from the normal computing traditions.
Which ones should we be looking at, and what are the problems that they can solve more
easily than APL?

Fourth generation languages are much in the news, and we need articles about them so that
we can see if they really do offer the advantages claimed, and if we should seriously consider
their use in place of APL for specific problems. Has any reader of VECTOR ever used a
fourth generation language?

Please write to give us your personal experiences of successful (and unsuccessful) use of
other languages, particularly their use alongside APL, or in applications that might be
considered ‘natural’ for APL.

108

VECTOR Vol.3 No.4

Technical Correspondence

APL2 bug update
From David Piper 18 February 1987
Sir,

Following my letter to the last edition of VECTOR, I am pleased to say that [BM have seen
fit to cure some of the bugs I reported in APL2. Three of the four bugs I reported last time
have been fixed. The fourth is claimed not to be a bug anyway, and who am I to argue,

The following problems have been fixed:

® Fractional line numbers in Editor 2.
® Problems with APL WSID after YCOPY,
™ Problems with APL QUIET (IBM claimed this was not 2 bug, but then fixed it).

[have also found some undocumented changes in the most recent release of APL2 (Version
1 Release 2). Since these may be of interest to other users, a brief resume follows,

1. QSAM AP 111

The QSAM AP has been upgraded to allow multiple writes to be driven from one
assignment to the RECORD variable. The cover functions I have already implemented
allow advantage 10 be taken of this feature simply by enclosing the entire left argument (see
my article in the VECTOR Vol.3,No.3).

If a text array is assigned to the record variable, each line of the array will be processed as a
record, WITHIN THE AP. I have done some benchmarks, and it looks as though this
enhancement can save upto 75% of the CPU associated with writing a file. Unfortunarely
this technique cannot be easily used with the VAR conversion option, variable length
records. No enhancement has been made 1o reading dara.

2. JCHECK system command

This system command allows various invocation options of APL2 to be changed “in-flight’.
JCHECK SYSTEM displays the current settings. YCHECK SYSTEM option (value) will
change the value associated with the relevant option.

3.)CHECK TRACE

If the SYSDEBUG level is set above 128 (using YCHECK SYSTEM), a new type of trace
can be placed on functions. This trace counts the number of times each line of code is
executed and the total cpu time used. The trace can be set up as follows:

JCHECK SYSTEM SYSDEBUG (128)

JCHECK TRACE TIME

17 Di» trop* A Set the trace option on function FOO
19 018 *FOQ"* A Check the initial values of the counters

109

VECTOR Vol.3 No.4

The function (FOO in this case) can now be used normally. Any further referenceto 15[JIB
‘FOO’ will display the updated trace results, Note that if either of the YCHECK commands
is omitted, the trace will not work. In fact trying to reference []IB without setting
SYSDEBUG > 128 results in a SYNTAX ERROR.

I hope the above will be of interest to other users of APL2,

Yours sincerely
D.B. Piper
Cocking and Drury, London.

Use of [JWIN
From Mr A N Wiggins
Sir,

[have just read Martyn Adams review of APL*PLUS release 6. 1 agree with his comments
about the [JWIN functions and their descriptions in the manuals.

Maybe the following function will be of help 10 any readers trying to get to grips with this
area,

V RES+SCN ARGiINP:WND
[11 s¥SCN - CREATE OR EPIT A FULL SCREEW PANEL : A N WIGGINS 12 FEB BT
121 =~ THE GRAPHICS CHARACTERS ARE IN THE 'F' KEYS
[31 » WHEN YOU ARE STATSFIED WITH THE SCREEN, FXIT USING THE <ING» XEY
T4l n PHIS IS WRITTEN AS A BASIC DESCRIPTION OF THE WAY IN WHICH
[5) n THE OW FUNCTIONS WORK ... AND NO MORE !
[6] a E.0. HESeSCW '' n START CREATING 4 NE¥ SCREEN
[7]1 & E.G. KRE5+SCN RES m EDIT AN EXISTING SCREEN

[8]

(9] GKEYS n AVAILABLE IN THE SUPPLIED <APLDEMO> WORKSPACE

{101 OICFF n CLEARS THE SCREEW

[11] W¥D« 0 0 25 80 = NEW WINDOW SHAPE :
121 wND OWPUT ARG ® FUT UP THE SCREEN |

[13] 0 Q p 1 [WXEY 433 n REDEFINE THE <INS> KEY (SEF BELOW} |
[14) Loop: rvp{IWIN WHD |
[15] +(433=TNP[2]}/LOOP m CAN ONLY BREAX OUT OF LOOP VAEN <I¥S> IS PRESSED

{16] RES+VND OWGET 1 n COLLECT THE WINDOV AND OUTPUT
T
Yours,
A N Wiggins,
Lombard North Central,
Lombard House,

London, WiA 1EU.

110

VECTOR Vol.3 No.4

APL Trivia
Wimbock-APL Application Notes
by ‘Dan Wimbock’

Some of the technical fearures of this litle-known implementation were described in an
earlier edition of VECTOR (April 1985); regular readers will be pleased 1o know that Dan
has not been idle over the past two years ~ indeed he was unable to exhibit at APL86 dueto
pressure of other commitments.

The major thrust of development has been not so much in advancing technological features
of the interpreter (although the ‘airborne’ generalised array implementation is an advance
on both “floating” and ‘grounded’ which is worth an article in its own right - maybe next
year); rather it has been in emphasising useability and the pragmatic nature of this
particular incarnation of APL.

An instance of this combines Dan's interest in both Expert Systems and a new approach to
*help’ facilities within applications.

When we look at the conventional ‘help panel’ approach we find a number of problems
which limit the possibility of actually providing the assistance which our user really wants.

a) Information displayed is in a quite rigid format -- once seen it can only be re-seen; if it
fails 1o create understanding there is rarely an alternative phrasing which could shed
light.

b) Analysis of the user’s problem is the user’s responsibility — the system doesn’t attempt to
gain insight into why help is needed.

Dan’s view of the solution to this problem also falls into two parts,

a) The ability to construct meaningful and grammatically-correct sentences in the user’s
own language.

b) A diagnostic facility which can analyze underlying problems.

Taking the first, consider a sentence encountered very early in the education process of
most English-speaking humans — yet one which is only uttered under the rarest of
circumstances by the most advanced computing hardware. . .

“The cat sat on the mar’

Grammatical structure is subject-verb-object; a structure which is able to tolerate
considerable distortion in terms of additional qualifiers (adjectives and adverbs), plurality
(‘the cats sat on the mats') and abstraction (‘a cat sat on a mat”), This single sentence
structure is capable of embracing an immense diversity of subject matter (cats, dogs, mats,
rugs, even computers) and the most advanced of technological concepts. . .

‘The X-195A computer architecture is based on 73-bit Gallium Arsenide VI.SI
technology’

111

VECTOR Vol.3 No.4

Dan has therefore implemented a help-message-generation-facility (HMGF) which is
based on this expert-system-paradigm (ESP) using Appropriate Vocabulary (AV), with
pseudo-random phrase selection (PRPS) as a methodology for perceptual diagonalisation
of the underlying message (invocation of the facility successively under the same stimulus
does not generate repetition of the message, nor does it take the user to a deeper level before

understanding of a first-order message is attained).

Taking as an example the sub-phrase structure illustrated below. . .
DPY GGBLIN

3=, 6 . R e e L I B o

(i
1 lorol isMALL) 1 | PELFY 1
] ' |

RPN R D, |) re—-t

i |
I‘ iTRE: 14 VERT) |
i

This example uses the APL2-emulation mode of Wimbock-APL:
D4PL+*APL2"

DPY is from Brown (1986)

The PRPS algorithm is simplicity itself:

vz+pPrPS TEXT:URL
(43 Oatex/ 30750
[2) zev(?p TEXT)> TEXT
v

Hence:

PRPS GOBLIN
THE SMALL ELF

PRPS GOBLIN
A VERY 0L ELF
The system designer needs only feed in a suitable vocabulary in order to create a full and
varied selection of relevant help messages; future extensions planned at Wimbock
Enterprises include automatic extraction of vocabulary from system design documentation
and utilisation of the [JNLT system variable to create narional-language customisation
(although this latter may require some work on the Generalised Grammar Interface— GGI).

The other half of the solution entails straightforward analysis of the)S1 stack to determine
the context of the user’s problem, and this is combined in the full implementation with a
pseudo-ELIZA dialoguing technique to elicit the user’s state of mind. This is presently the
subject of a patent application and Wimbock Enterprises are unable to divulge full details of
the technigues and algorithms used; however Dan feels that the averagely diligent
VECTOR reader should be able 1o devise a suitable solution fairly quickly (it is unlikely
that using the full capabilities of Wimbock-APL the necessary function would be longer
than <PRPS> above).

Reference:
Algorithms for Al in APL2;Brown, APL86 Tutorials
(Editor: Gettem while we gotiem).

112

VECTOR Vol.3 No.4

Recent Enhancements to Wimbock-APL:

Dan has just announced a new release, containing a number of enhancements among them
being . ..
[JAPL System Function

Ensures application portability from other environments; (JAPL may be set 10 values
‘APLZ’, “IPSA’, ‘STSC’, ‘VSAPL’, ‘APL68000’, ‘DYALOG’ in addition to default setting
"WIMBOCK'. When set all symbols are interpreted in the context of the parent
implementation. Attemnpts to set JAPL to an unrecognized value will result in a DOMAIN
ERROR, €.8. DAPL~1 LAPL

DOMATN ERROR
[MPL+'TAPLY
A

Monadic iota domain extended

Negalive integers: -5

R, |
17273475

Complex integers: V22
1J1 172
2J1 252

Further extension to non-integer arguments are anticipated ‘soon’.

‘And So Forth’ Operator

This is a new niladic operator intended to improve productivity at the function definition
stage; it is only available on the dedicated Wimbock-APL Machine and takes advantage of
the advanced Al features of the machine. Arany point during function definition when it is
obvious to the programmer how to continue the ‘and so forth’ operator may be invoked, for

example: [12] ABC+L 2 18KYZ
[13]) x¥zZe$"10510
[14] ...
{21] O+pxy¥z

Conrrol of function definition is regained by the programmer at-the explicit line number
entered. This feature has been incorporated 1o make Wimbock-APL more attractive 1o
conventional systems analysts and Dan wishes to express his gratitude to his supervisors in
earlier years for making him aware of the usefulness of this notation.

‘Circle’ reclassified as an operator

This is an enabling move for a further generalisation of array structure (away from
rectangularity to a more general ovoid form}; in the present implementation its usefulness
is limited, but for example

9002 2014
3y
12

Nate that this assumes prior use of the[JANGLES system variable which allows user choice
between radians and degrees as measure of rotation.
Note also that domain is severely restricted with present array limitations

8732 2p:4

DOMAIN ERROR
87402 2p14

Fy

113

VECTOR Vol.3 No.4

Prize Competition: Sweeten your Combinations
by Derek Wilson

A popular brand of sweets comes in coats of many colours, and is sold in tubes and packs.
These are filled at random from the set colours. What is the probability that a tube will be
missing one or more colours?

The problem is to write a function which takes a left argument of the number of sweets in a
pack and a right argument of the number of colours, and returns a vector of all the
probabilities. The first element is the probability that there will be exactly 1 colour in the
pack, the next element the probability that there will be exactly 2 colours, and so on. For
example, if there were only 5 sweets ina pack and 3 colours available, then the result would
be as follows:

5 COLOURS 3
8.B12345679@1 B.3783703784 2.6172839586

Competition rules

m Entries must be in legible English or APL as appropriate and should preferably be
machine produced,

B Entrants must declare the type of computer and the version and release level of the APL
interpreter on which any functions were written.

m The date and the entrants’ full name and address must appear on each sheet of the entry.

m Entries should be physically separate from other contributions such as letters, and
should be clearly marked “Competition Entry”.

m Al submissions should be sent to the Editor.

m Members of the B.A.A. committee, activities working group or journal working group
are ineligible.

m DOS format diskettes containing APL*PLUS, TBM or SHARP APL workspaces are
acceptable; diskettes will be returned.

m Unless otherwise stated, entrants should submit only one entry. We encourage
submission of alternative approaches, but the entrant must indicate clearly which one
answer is the entry in the competition.

m Non-members of the B.A.A. are encouraged to enter the competition. If they should
win, then part of their prize will comprise free B.A.A. membership for the current year.

® Late competition entries may be accepted if the competition has not yet been judged.

114

VECTOR Vol.3 No.4

Introduction to Technical Contributions

Our first contribution comes from the statistics department of the University of New South
Wales, Australia.] B Douglas responds to Dick Bowman’s domino difficulties (See
VECTOR Vol.3, No.1) with a short piece entitled ‘Polynomial Curve Fitting’.

In the same issue of VECTOR, John Sullivan wrote about “Fast Fibbing”. His article has
stimulated two replies from our readers. Joseph de Kerf — the Chairman of the Belgian
APL-CAM Users Society (BACUS) has contributed his thoughts on the subject. Alan
Sykes has written from the Department of Management Science and Statistics at the
University College of Swansea, providing an APL2 view of the subject.

David Piper is a consultant with Cocking and Drury; his latest foray into the depths of
APL2 is entitled ‘Using Name Association for Data Translation’.

Paul Chapman is an independent consultant who is currently employed by the I-APL team
to write the free APL interpreter for schools. Paul has made his arduous and lonely task
mare bearable by writing an I-APL diary, the first instalment of which is published in this
isste of VECTOR. Watch out for more diary instalments in future issues!

Call for Technical Articles

If you are interested in publishing an article in the technical section of VECTOR, please
contact David Ziemann or Jonathan Barman, the technical editors. Our backlog of articles
has now been exhausted, so we can guarantee to getyou in print immediately.

If you receive VECTOR regularly, you will appreciate the articles and correspondence
created by athers. You are of course familiar with your own work and views, bur others are
not; please consider sharing your knowledge with the other readers by making a
contribution of your own.

Please note also that we are trying to orient future issues of VECTOR arcund more specific
themes. Obvigusly we are particularly keen 1o receive articles based on these topics. Our
current plans for volume 4 of VECTOR are as follows:

Number Capydate Issue date Theme

| 24 April July 87 Graphics and user interface
2 24 July October 87 Applications
3 16 Qctober January 88 Educarion

115

H.M.W. PROGRAMMING CONSULTANTS LTD

Why not discover more about
* Consultancy/Support Service
* APL on the IBM PC
% VM/CMS Packages
Ring Ken Jackson at

H.M.W. PROGRAMMING CONSULTANTS LTD
142 FELTHAM HILL ROAD,
ASHFORD, MIDDLESEX TW15 1HN
Telephone: Ashford 41232

VECTOR Vol.3 No.4

Polynomial Curve Fitting
by 7 B Douglas

[refer to Dick Bowman’s and the Editor's comments (VECTOR Vol.3, No 1, pp 99-100)
on the different responses of different APL systems to a dyadic use of demino for
polynomial curve fitting,

Dick’s remark, that it is ‘interesting” when the same code applied to the same data gives
different results, is certainly valid. But without downplaying the importance of having good
algorithmic and numerical procedures (“the code™), I should like to emphasize the ather
aspect, the data, of what is a perpetual problem. The “perpetual problem” is to devise
methods sufficiently robust for appropriate amlysis of any data; it is perpetual because
whatever method may be devised it is always possible to invent data for which the method
will misbehave.

What is often soughtisa “. . . fitted curve . . . to look nice and smooth . . .” So let’s graph
Dick’s data {see Figure 1). The curious behaviour at odd and even “years” is obvious, and
no meaningful smooth curve seems plausible - in particular, a cubic cannot possibly
reproduce the marked oscillation of the Y-values at the later “years™ X, To obviate readily
removable DOMAIN or LIMIT ERROR difficulties, which may arise simply because
large numbers like 1995 are raised to high powers in the calculations, subtract 1984 from X.
This gives numerically reliable regression coefficients and a smooth fitted curve (see Figure
2) which is basically nonsense when thought of as representing the data. (APL*PLUS PCis
capable of giving an equivalent to this result without having to subtract the 1984.)

A more detailed analysis shows that of the four regression coefficients, only the first,
associated with the constant term, is “large” {compared with its standard error) and likely to
be meaningful, and that the mean square about the fitted cubic really isn’t much less than
that about a constant fitted value.

The numerical resuits are as follows, with the dara first:

X: 1234567891011
Y: 3736393841394338433542

OBGYEAG-XD .*0 1 2 3
returns the regression coefficients

34212 2.040 -0.225 0.00777
for which the standard errors are:

5.1 3.5 0.67 0.037;

fitted values are calculated from a+.xs

Inspecting the data, the graph suggests that two distinct quadratics would represent them
well at the years recorded: one quadratic for the odd, and another for the even, years. This
fitting can be achieved by replacing the mairix A by the matrix C; both are shown below.

117

VECTOR Vol.3 No.4

A C
11 11 1 1 1 0 o
1 2 4 8 1 o o0 2 4
13 9 27 1 3 9 0 0
1 4 16 64 1 o 0 4 16
T 121 1334 T o1 o210 0

Then executing:

YBC
returns five coefficients all of which are large compared with their standard errors, the fit
being displayed in Figure 3. (The coefficients and their standard errors are:

34,141 2.082 -0.1234 1.632 -0.1507
072 029 0.024 0.31 0.029)

So in some sense this smoothly, and quite closely, reproduces the data. It leaves uncertain
what meaning should be attached to interpolated values - but so do the data.

1 believe the principal message to be that one should always look at the data and what any
procedure predicts for the data, to see that the question and the answer are reasonable, The
‘mishehaviour’ of domino is minor compared with the mis-specification of a cubic for the
representation of the data.

Figure 1. Bowman's original data

35.0]
|
!
i o o
42.5]
+ | o
|
Y : o
v 50.04
A |
L | o] [}
U |
E | o]]
s 37.5]
| o
|
] o
|
35.01 l | i | | | 1 | | o | |
1984 1986 1988 1990 1992 1994 1996
YEARS - X VALUES

118

VECTOR Vol.3 No.4

Figure 2. Original data with a fitted cubic

45.0|
I
|
|
i o o
42.5)
+ | o]
I
Y | o
[
v 40.0} * - * * * * *
A ! *
L [c o
U I *
E | o o
5 37T.51 *
1 lo]
|
[* o
|
35.0] I I I ! f 1 | I I o ! I
1984 1986 1988 1990 1992 1994 19396
YEARS - X VALUES -~
e QRSERVED * FITTED CURIC
Figure 3. Original data with a fitted pair of quadratics
45.0]
|
1
|
| o *
52.5] -
+ 1 *
| *
Y ! &4
I
v 40, 0|
A I *
L | o o]
i | * *
E I o o
s 37.5| -
| o o«
|
| + o
| *
35.0] | t [1 I | | I | o ! I
198y 1986 1988 1990 1992 1994 1996
YEARS - X VALUES =+
O OBSERVED * PITTED QUADRATICS

119

VECTCOR Vol.3 No.4

More on “Fast Fibbing”
by Foseph de Kerf

In a previous issue of VECTOR (see ref 1), John Sullivan compares the Fibonacci function
FIB}, based on the recurrence relation:

¥V R+FIBL N

{11 A1 1

[2] +{N¥rofeR,+/ 2tR)/OLC
v

with the loop-eliminating Fibonacci function FIBZ:

U ReFIBZ N
[17 BeLl0. 5+ (2RI ({0 5% 1+RYEN) = (0, 5x1-Re5+0.5)al+ 1N
v

The defined function FIB2 is based on the well-known golden section formula:
i (1»,\/?)” R (1-\/—5\’1

T TR T2 Vi 2
The second term of the formula is very small, even for lower values of n, and converges to
zero. By setting:
NI I e
n Vs 2
we gel:
u= 0.7230
1.1708
1.8944
3.0652
4.9597
8.0249
12.9846
21.0095
33.9941
10 55.0036 eic...

Rounding off to integers gives the exact values for the Fibonacei Numbers. This means that
we can replace FIB2 by the Fibonacci Function Mark 3:

V R+FIBI N
[1] Rel0.54(2R)x(0,5x1+/e520, 51N
¥

n=

(Vo ll-L RN N e AR RN SRV R S

Apart from some overhead, the execution of FIB3 versus FIB2 is speeded up by an extra
factor of about 2.

This trick is well known in the literature {(see e.g. ref 2). So, to the recommendation
“Always do the systems analysis before you write the program”, we should add “Censult
the literature before you do the systems analysis.”

References.

1. Fast Fibbing, by John Sullivan, VECTOR 3.1, July 86, pp 113-114

2. Motivaring Arravs in Teaching APL, by Garth H Foster, Proc. of Sth Internarional APL
Users' Conference, Toronto, May 1973, pp 3-1/3-8. Theme: APL applications in Education
and Business. Printed by Canadian Printco Lid., Toronto, 1973.

120

VECTOR Vol.3 No.4

More Fibbing
by Dr Alan Sykes

John Sullivan’s article (VECTOR Val.3, No.1), raises some important issues concerning
APL and its relationship with other languages. APL provides only rather inefficient tools
(some more inefficient than others!) for solving those computational problems typified by
the Fibonaccel sequence. The most namral method is to consider looping (or function
recursion) and the search for alternative methods, whilst intellectually stimulating, ofien
give computer scientists (justified?) cause for concern! After all, John Sullivan’s solution
(FIB2} isn’t recursive, nor does it involve only integer arithmetic.

However, to avoid such criticisms completely, it would be necessary 1o write our program
in machine-code — undoubtedly the ‘best’ language for recursive integer arithmetic! Many
computer scientists would not readily follow this course, and clearly some compromise
between the efficiency of the program execution and the efficiency of the program
construction s usually made. What we APLers must do is to show our readiness to
construct auxiliary processors for those applications which demand them, thereby showing
our compuiter science colleagues that we can “have our cake and eat it”.

In a wider context of computing solutions to difference {or differential) equations, John
Sullivan has a point. Numerical solution of even simple difference equations can he fraught
with the likelihood of numerical instability. Hence, if an exact solution is known, this may
lead 10 an efficient and error-free methed of computation. In this context, FIB2 is a good
solution,

Incidentally, at the risk of invoking my own criticism, may I present an APL2 solution
(which 1 hasten to add is much slower than FIB2). FIB3 calculates the first 2N Fibonacci

numbers:

VE-PIBY N
[1] Re,(t+.=\¥pc2 2 p 1 1 1 21[,,12
v

This example is interesting in the context of becoming familiar with useful ‘second-
generation’ APL idioms. It is inefficient because the powers of the matrix

1 1
1 2
created by

+.0\¥pc2 20 1112

are not created recursively. The ‘scan’ operation \” aperates recursively with some binary
operations; for example

+\1 10000

is much faster than

-\1 10000

because ‘+' is ‘associative’ whereas *- is not. Although ‘+.x" is an associative operation on
matrices, the APL2 interpreter does not recognise this and hence the inefficiency.

I 'am very grateful o John Scholes of Dyadic Systems for his helpful comments on FIB3
during APL’86 at Manchester.

121

APL CONSULTANTS

LONDON & READING

Account Managers (6 years) 25K

Senior Consultants (4-6years) to 21K
Consultants (2-4 years) to 17K
Junior Consultants (1-2 years) to 13K

Are your APL skills and potential being recognised
and rewarded?

Cocking & Drury consultants have been implementing
successful decision support applications for 10

ears, with clients who appreciate the productivity
Eeneﬁts of APL.

in our professional team you will experience a
range of APL environments - APL*Plus, VSAPL, APL2
and Unix, on both mainframes and micros. You will
also be developing systems which, increasingly,
need to interface with non-APL Information Centre
products.

Of course as the leading APL consultancy, in o
rapidly expanding market, we offer a rewarding
career with first class benefits - profit sharing,
free health insurance, and a non'contributory
pension.

For further details coll Ralph Wilson on 0734 588835

COCKING & DRURY LTD.
155 Friar Street, Reading, RG1 THE

O ——
—+ — ———
—— —

VECTOR Vol.3 No.4

Using Name Association for Data Translation
by David Piper

1. Introduction

When used in a commercial data processing environment, systems implemented in APL
will often be required to address significant volumes of data from ‘external’ (i.e. non-APL)
files. Since these files are not generated by APL code, they may well contain data in formats
not readily accessible by APL. Prime examples of such formats include packed decimal and
the IBM 5/370 floating point formar,

One of the supplied workspaces in both the VS APL and APL2 environments contains
functions for translating external darta into APL numeric form. Since these functions are
coded in APL, making use of some of the most complex APL primitive functions (index-of
and encode/decode), execution speeds tend to be somewhat slow. This poor performance is
of especial concern when large volumes of data are being translated.

2. Name Association ({JNA)

ONA is a system function provided as part of APL2 {Version | Release 2 and later). It is
designed to allow routines coded in languages other than APL and stored outside the
workspace to be invoked in exactly the same way as APL functions.

The functions are invoked by use of an associated processor, one for each language type
being used. In the CMS environment, two associated processors are provided; 10 allows
use of the REXX language, 11 allows languages compiled into machine code 10 be called.
'TSO provides only processor 11, since there is no equivalent to the REXX language.

3. Properties of Associated Objects

One of the key properties of associated objects is that they obey all the rules associated with
‘normal’ APL2 objects:

® They appear in [JNL, JNMS etc.

® [INC returns the correct name class for the object.

® Associated functions and operators can generate APL2 errors.

B The association is preserved in a)SAVEd workspace.

® Associations can be YCOPYed from another workspace.

B Associations are dissolved by)ERASE or [JEX.

B [JAT returns the correct information (even a timestamp can be defined.)

An associated function appears identical to a locked function as far as the application
programmer is concerned.

4. Interface Definition

The interface between APL2 and the associated object is defined in a ‘names’ file. Amongst
other factors, the names file contains descriptions of;

123

VECTOR Vol.3 No.4

B The name of the associated function.

B The load library where the function can be found.

The module name and entry point if different from the associated name.
m Interface type (object, fortran or function).

m Descriptions of the arguments, including structure and data types if these can be
anticipated.

® A description of the function and time-stamp.

The most complex feature 1o be defined is the pattern of the arguments. The pattern
definition must include details of structure — that is the pattern of nesting in the argument.
Details of rank, shape and acceptable domain must also be included. To facilitate the
implementation of assembler coded functions, translation options can also be specified.
These will cause an argument to be translated from APL format to 8/370 on input to the
function and the resuli to be re-translated on output.

5. Supplied Functions

With APL2 several functions coded in assembler are provided. The lack of documentation
makes these more difficult to use, several of the functions are, however, extremely useful.

Several of the functions allow a vector to be partitioned in various ways (see also my letter in
VECTOR Vol.3, No.3). These include:

CAN - partition on zeroes in a boolean vector.
DAN — partition on delimiters, removing the delimiters.
SAN — partition on delimiters, retaining the delimiters.

Other functions are more esoteric such as SVI which allows a systems programmer 1o
investigate which associated processors are functioning, The functions used for converting
data berween APL and 5/370 formats and back again are RTA (record-to-array) and ATR
(array-to-record).

6. RTA and ATR functions

These two functions translate $/370 data to APL formats and back again respectively. The
left argument takes the form of a pattern specification of the data to be translated. The
pattern specification is similar to that used to describe the left and right arguments in the
associated functions name file definition.

The RTA and ATR functions are capable of translating an entire record, with fields of
varying lengths and types at one call. The cover functions presented here are more limited,
they are designed to replace the IBM functionsin 1 UTILITY. Each function translates any
number of occurrences of a given data type into APL format (or vice versa).

For example, when read from a file, a series of 6 byte packed fields will each be represented
as 6 APL characters from [JAV. In this form, the data cannot be used by APL. Using the
P (packed decimal input) function the 6 character representation is converled into valid
APL numerics. Supplying an N by 6 array of packed decimal data will result in a numeric
vector of length N.

124

VECTOR Vol.3 No.4

7. Pattern Arguments ‘

The key factor in performing the data translation is the creation of the pattern argument.
The pattern argument is of two separate forms, depending on the direction of the
translation.

When translating from $/370 into APL, the inpurt data is always supplied to the RTA
function as a vector. The rank and shape of the output is implied by the rank and shape of
the argument to the cover function.

The first part of the pattern argument defines the translation option. The option is in two
parts, the data type (e.g. ‘P’ for packed, ‘I’ for integer) and the number of bytes per field
(‘P8’ will translate 8 byte packed decimal data). The next part specifies the rank (always 1)
and length of the resulting APL vector. The resulting numeric vector is reshaped into an
array that conforms with the input argument.

When translating from APL 1o /370, the input data is supplied as an array, the result is
always a character vector. In order to be the inverse of the ‘input’ cover function, this vector
is reshaped. The pattern argument is created slightly differemtly. The first item is an
asterisk (*) stating that the count of items to be translated is unknown. The next itern
describes the translation option {as above). The last item is another asterisk, informing that
the rank of the array being translated is variable.

8. Efficiency

The main aim of using the assembler-coded functions is to gain performance and execution
speed. The following benchmarks show just how effective the assembler-coded functions
are relative to the APL equivalents. The tests are performed by averaging over 1000
conversions of a specified array.

For the BIT conversion functions, 256 bytes of data are converted each time. For the
PACKED and INTEGER conversions, integer arrays of 24 rows by 10 columns are
converted. Both negative and positive data are included. Floating point conversion uses a
24 by 10 array of floating point numbers, of both negative and positive sign.

Converting from AFL to $/370
(CPY milli-seconds per array conversiom)

Type Oxa APL Ona/apL (2} Rank
Logical (Bic) 2.68 20,13 13.31 2
FPacked Decimal 3.48 23,28 14.95 3
Integer 2,58 11.39 212.65% 4
Floating 7.56 210.58 1.22 1
Average 2.B3 66.3% 4,27

125

VECTOR Vol.3 No.4

Table 2

Converting from 5/370 to APL
(CPU milli-seconds per array conversion)

Type Ona AFL ONA/APL (%) Rank
Logical (Bit) 1.23 10.52 10.87 4
Packed Decimal 3.68 72.88 5.05 3
Integer 2.09 101.35 2.06 1
Floating 2.50 77.26 .24 z
Average 2.74 68.22 4,02

9. Function Changes

The functions listed below are as identical as possible to those supplied in 1 UTILITY. A
few changes have been forced by restrictions in the ATR and RTA functions:

m The 11 and 10 functions will now only accept half or full word integers.

m The FO function is capable of producing single precision as well as double precision
floating point cutput.

The integer processing restrictions imposed are not very serious. Nearly 2ll integer fields
are either half- or full-word. Additionally, the performance of the IIYIO functions in 1
UTILITY is so poor with integers greater than 4 bytes, that processing any volume of data
is made impracticable.

The FI function in 1| UTILITY is capable of converting full or deuble precision floating
point into APL numerics. The FO functien only produces double precision output. Single
precision can be produced by ‘dropping the last four columns of the output’ (quote from
comments in the function). This technique is obviously inefficient. By default, the FO
cover function will produce double precision output. The required precision can be
specified in the left argument.

10. Conclusions

The requirement to translate data between 5/370 and APL formats arises quite frequently
in the commercial data processing environment. The use of assembler coded functions to
speed up such translations makes the processing of significant volumes of data a realistic
proposition.

The functions given are intended to cover the use of the IBM supplied functions in 1
UTILITY. To this end, their syntax and functionality is mirrored as closely as possible.
The RTA and ATR functions could easily be utilised in a different manner which would
further facilitate data conversion work,

The documentation of the supplied assembler coded functions is very poor. Improvements
in this area would make use of the supplied functions much easier.

126

VECTOR

11. Sample Functions

[AlY FI.3 pr I}

0}

et e e e e e i I
w
—

alalalalalelata Tt Ta bt Pl
»

——
B3t €3 A0 00 3 O LA e Ll R = D g

[y S P P S T P T P -}

o

[alala et e R e e T]
g

OV WO
fed b e i L L e abr Ly]

>

L L L e R]
[=N IRV SRV R T = L
e e e e b L e <

——

FO.3 p: 13

I1.3 p: 12

T0.3 p: 12

1987~02-19 13.04.32
R+FI Da;HD;0T0

A FN: Convert from 5/370 floating point

A DA - Character array

A R~ Numeric array

Oto-t

DES(~(=DA)eC 1}/5 4
OES{~{RD+"1+1.pDA)ek B}/5 4

={3 11 DAY *RTA'}/ok

DEs 1 2

okiR+='{E5 9 5555559)*¥ND,1,x/ 1+pDa
R+(l+pDAJpR RTA.DA

1386-10-22 14.45.44
R+LE FO Da;D10

Vol.3 No.4

te APL2 numeric
§5/370 Floating point data
AFL2 equivalent data

Error not simple.

Full or double words only
Create/check association
Unable to associate
Conversion pattern
Convert and form array

I DF BB

A FN: Convert APL? pumerics to $/370 floating point (full/double word}
A Extension: Function will allow full word floating point

A LE - Numeric¢ scalar
A DA - Numeric array

A R - Character array
010+l
+(2=0nc
LE+8
dy:0ES(~(LEc4 8)A0==LE+'"'pLE)/5 &

+(3 11 [ONA 'ATR')/ok

Oes 1 2

ok:R+((pPA).LE)p(*(+ E5 *)"YLE)JATR DA

YLE')/dy

1987-02-19 13.05.27
R+II DA;ND;0I10

Number of bytes per element
APL2 dats to convert
5/370 representation

Dyadic call

Default double-word

LE scalar and LEe4 §
Check/create associatian
Unable to associate
Convert and form array

A FH: Convert §/370 integer data to AFL integer array

A Restrictiont Will only accept 2 or & byte

A DA - Charvacter array

a R - Numeric array

Oio-1

OES(~(=DAYel 11/5 4
OES(~(HD+"1t1,pDA)eZ 4)/5 &

+(3 11 ONA 'RTA')}/ok

DEs t 2
ok:R+*{I5 9 5555559)'¥ND,l.x/ 14pD4
R+(T1+pDA)pR RTA,DA

1986-10-22
R+LE 10 Da;[0I0

14.45.44

Restriction: Output
LE - Numeriec scalar
DA - Numeric array
& - Character array
O19+1
OES(~(LEe2 4}A0=3LE+'"alE}/S &
DEs(v/.nAzlDA)/S &
=(3 11 ONA "ATR')/ck
DEs L 2
oW:!R+({pDA},LE)p (' (4 15

length is

D2 x

*~)'YLE)ATR DA

127

integers.
Integers tao be converted
APL integer array

Error mot simple

Error not 1«7 bytes
Createfcheck association
Unable to associate
Conversion pattern
Convert and form array

> »>» 233

FN: Convert APL2 inctegers to 5/370 representation of integers
limired ta 2 ar 4 byte integers

Byres per output integer
Data to be converted
5/370 representation

LE scalar and LEe2 4
Error, not integer
Createfcheck association
Unable to associate
Convert and form array

VECTOR Vol.3 No.4

[ale L1.3 p: 10 1986-10-22 14,45 44

[o] R«LT DA;0I0

[1] A FN: Convert system/37C bit dats into APLZ boclean array

L2] A DA - Character array Bit data to be converted
[3} A R - Beolean azray AFL boolean array

{41 D1o+1

£s] DEs(~(=DA)eD 1)/5 4

[6l ~(3 11 ONA 'RTA')/ok

71 Oes 1 2

[8] ok:R+'{B5 9 55555350)'%1 1.8xx/pDA
[9] R+({"1+pDA).Bx " 14pDA)pR RTA,DA

Not simple

Create/check associationm
Unable to associate
Conversion pattern
Convert and ferm areay

DmERPID

RJ¥ LO.3 p: 11 1986-10-22 14 45,454

L

[o] R+LO DA;0ID

[1] n FN: Convert from APL? boclean array to S$/370 bit data.

[2] A DA - Boolean array Data te be convarted

£ al a B - Character array Output S/370 bit data
[4] O1o+1

£ 5] OEs(~(=Da)el 12/5 & p Not a simple array

[6] DES{R#|R«{ 14} ,pDA}4BI/5 & A Cheek last dimension

[7] +{3 11 ONA TATR")/ok # Createfcheck association
{ 8] QJes 1 2z A Unable to associate

[9] ok:R+*{B5 9 5555559)°v1 l.x/pDA A Conversionm pattern

{1 R+({ " l4pDA),("14pDA)4B)pR ATR.DA a Convert and form array
[al¥ PDI.3 p: 11 1987-02-19 13.04.36

[ol R+PDT DAiND;010

[13 n FN: Conwvert 5§/370 packed decimal format te AFL aumerics

Cz] A D& - Character array Packed datas to be converted
[3] s B - Kumeric array APL numeric data

L 4] 010+l

[53] OES(~(=DA)eD 1}/5 & s Error mot simple.

6] NES(~(ND+"1+1,pDA)erl61/5 & A Error not L-16 bytes.

L 71 +(3 11 Ona *RTA"}/ok n Createfcheckh association
[81 Oss 1 2 A Tnable Lo associate

[9] ok R«"(P35 § 5555559) '¥ND,l .=/ l+pDa A Conversien pattern

(10] «{"14pDA)pR RTA,DA m Convert and form array

[al¢ PDO.3 ps: 11 198B6-10-22 14.45,48

{ 0] R+LE FDO DA;[IO

[1] A4 FN: Convert APL numeric array to S5/370 packed decimal format

{ 2] a LE - Numeric scalar Number of bytes per element

[33 a DA - Integer array Data array to be converted

[&3 A R - Character array Packed decimal representatien

[5] O10-1

6] Oes{~{LEe116)A0=zLE+"'pLE)/5 4 a LE scalar and lsLE<l6 :
171 OEs(v/,.DAXLDA)SS &4 A DA must be ipteger i
f 8] +(3 11 DNA TATRT)/ ok A Createf/check association

[9] CES 1 # Unsble to associate 1
[10] ok R*((DDA) LE)p('(+ P35 *)'YLEJATR DA s Coavert and form array

128 4

VECTOR Vol.3 No.4

Diary of an implementer
by Paul Chapman

{Editor’s note: This article comprises vartous thoughts recorded during the initial stages of the
development of the I-APL interpreter. They have deliberately been left un-edited, in order to give
readers some insight into the issties that becorne uppermost tn the mind at various stages of such a
profect. I hope that Paul can be coerced into producing a more leisurely retraspective overview of
the project when it has been completed.)

Monday 10th November 1986 00:10

I’'ve spent a week getting started on the development language and environment for
tmplementing [-APL. [wish I had six months instead of three weeks to finish this part of the
project alone — it’s proving possibly more interesting than the APL itself. Romilly Cocking
told me that at the moment the fight is on for the world’s sixth most popular language (how
do they judge these things?) between FORTH, LISP and APL. Perhaps DE (for that is
what this new language is called at the moment - [started by calling it DEL, but typing
DEL to a DOS prompt causes other things to happen. Not too expensive, that mistake. . .),
perhaps DE might be up there somewhere in a couple of years.

Some compromises have been forced, however, because of lack of space on the target
machines for the APL itself. For example, it is important to know exactly how much stack
space is going to be used by -APL (porters shouldn’t have the responsibility of having 1o
put in stack overflow checks and handlers), so it must be possible to analyse completely (by
machine, of course) the full calling structure of the interpreter. This means no recursion,
and that is a decision I may live to regret.

Recursion is easy in a language like APL, since the workspace has a fully flexible heap
manager, but I can’t afford such luxuries {I must take pity on the poor porter and not give
him too much original code to write). Languages like C are recursive, but then the system
goes BANG when the stack overflows, and anyway, starting with 20K too much on the
stack is not much of a penalty in a 512K machine.

This complete analysability also means function pointer variables are out, since they hide
the structure: you may know when they’re stored, but how do you know how full the stack
is when the function being pointed to is actually executed? After six months of the freedom
of C, these jackets will be severcly straight.

Still, it means that the structure of the language, which is sort of FORTH-like but with local
variables (which, as I’ve rediscovered from my FORTRAN days, don’t have to be on the
stack) and nicer looking blocks (surrounded by familiar pairs of braces, with the occasional
semicolon) and some powerful self checking abilities (to reduce programmer-error— yes, it
does exist, but don’t tell the guys who are paying me. . .), anyway, it makes the structure a
lot simpler.

129

VECTOR Vol.3 No.4

P’ve actually got the compiler working. A week ago I was phoning up Geoffrey Roughton
(the sugar daddy of V1Z::APL) asking if he had any compiler-compilers for the PC, and
generally panicking as 1 tried to remember about LR(2) and recursive descent, which only
analyse the syntax anyway and are a far cry from actual code generation. But everything
came out QK in the end (thanks to recursion — ok dear, what shali do without it?), but now
the symbol-table structure is groaning under the pressure of putting local variables in {into
DE, not APL —I haven’t started the APL yet, but don’t tell the guys who are paying me. .
), and now I wonder if a general namespace approach is possible (which makes DE itself
much more saleable in the end), and how many pointers and two-way linked lists are
needed and whether there is an elegant solution.

Elegant solutions are satisfying, of course, but they are also maintainable. Note well,

About four o’clock yesterday morning | discovered that my rationalised algorithms for
compiling the likes of IF, FOR and WHILE structures were the same as those
implemented in MVP FORTH. | know I'm on the right track.

Only three more weeks to finish DE. Yet to go inare: the DE interpreter, the DE assembler
(which produces the final target code from the source), the DE debug/trace facilities (all full
screen and interactive), the virtual memory manager (if I need it — 1 hope not. Maybe T’ll
buy another 128K for this machine). And I move house next weekend. I'll have to work 12
or 16 hours a day to get it done. Please tell the guys who are paying me. . .

Monday 17th November 1986 16:44

I had thought of putting the development environment up under Microsoft Windows. But
then I saw the size of Windows. There simply wasn't going to be enough room, and
learning the Windows system calls and so on would have taken far toolong. And my budget
doesn’t stretch to a mouse at the moment.

Anyway, why use a pre-existing package when you can re-invent the wheel yourself? Most
consultants would tell you that there is every reasen, and despise the “not invented here”
attitude. But when you invent something yourseif, you don’t have to learn how to use it.
And it doesn’t come overloaded with features you'll never use, which just use up space in
memory and in the manuals. And if you don't like the system limitations, you can modify
them. And if, after a while, it turns out that your system doesn’t quite do what you had
hoped, why, you can start again from scratch.

And when you've finished it, you can cobble together some obscure documentation, think
up a thousand and one new uses, and then sell it at a premium to all those people who took
their consujtants’ advice.

So 1 wrote 2 windows system. It runs on a text screen, has exactly six windows {always
open), has a user editor for changing the relative size of the windows on the screen, and is
small and fast.

130

VECTOR Vol.3 No.4

Now [have a prototype front end, which allows me to define tables (ROM resident fixed
lists of addresses and/or constants), strings (zero terminated sequences of characters), data
areas (uninitialised RAM vectors), constants (numbers or characters), and functions.
Functions and tables can have tables, strings, data areas, constants and functions included
explicitly in-line, or, in the case of functions, in the header by name.

After 1 wrote the last entry, I spent some more time rationalising the workings of block
structures. Here is an extract from the C source of the definitions which govern their
behaviour:

{"tase", 'b', (int) “{ocPomDpjs :xfgUpxsjflomdpis IxfgUpxsiflocH"},

{"do", 'b’, (int) "{ocN }"},

{"for", 'b', (int) "{ocPombpjsxfmUpxsjflipjs }jfvqd"},

{"if", '9%, (int) "{ocFpis :jfqxfglpxsjflojs }jfl"},

{"repeat”, 'b', (int) "{acNpis }ifvgl"},

huntil", 'b', (int) "{ocNpjs }jfvgF"},

{"while", 'b', (int) "{ocNpjs }jfvgT"},

(Editor: I hope that little lor has not been mysteriously transiated in one of the many electronic
ransfers between Paul’s diskette and the typesetting equipment/)

A little bit of code in the compiler just interprets the one letter instructions. The capitals are
codes for acrual intermediate code instructions to be compiled into the object. The *{’s, *}’s
and *:’s just label the pieces 1o be inrerpreted when those characters are encountered in the
source. You can see I've been having fun.

Now the operation of the user interface is in the process of being designed. Golly, how L hate
designing things -~ APL programmers will know what I mean; with APL you just keep
playing around untl you like it, at no extra cost. (However, I would not recommend this
approach for designing files and file based systems.)

At the moment, I'm using a word processor and program editor called WeordVision, in
which the function keys in the first column have global meanings {extracts, search/replace,
format, files and print), and the second column have meanings depending on which of these
five modes, plus one more (text entry), the operator is in, This is simple. [will try to do the
same, The trouble is finding five (or six) functional headings which are logical, consistent
and cover all options which are needed now or might be developed in the future.

And I still can’t actually execute any of the code [type in, though I can save it on disk. By
next week, however, . ,
Tuesday 25th November 1986 04:05

By next week, I sull can’t execute the code. But all the C 1o execute code is written now, and
all [need is a front end to get at it.

Talking of front ends, it is mostly finished now. It uses nearly every finite combination of
function keys 1o provide facilities to edit source, examine source by token, examine object
by word, list names of all objects of a particular type — constants, arrays {which used to be
called data areas), functions and lists {(which used 1o be called tables)—and so on. [caneven
find out how much space I've got lefi. Needless to say, the structure is logical, consistent
and covers all the options I’ve thought of so far.

131

VECTOR Vol.3 No.4

Dave Ziemann and Anthony and Sylvia Camacho were here on Sunday to talk about the
schedule. Naively, I gave them an idea of what 1 thought mine might be. 1t is rather
daunting to look at the amount of work to be done.

In the end, it all comes back to design. It seems tome that the best thing to do when you’re
tight for time is leave the design until as Jate as possible. Again, this sounds like rather the
wrong advice for consultants to give, but it is possible to work this way. You just make sure
that every element of the system is as general and as self-contained as possible.

Dave Ziemann lent me a book called Reliable Software through Composite Design by an
1BMer called Glenford] Myers (would IBM ever take me on with a dull name like Paul
Chapman?). He’s got some crazy ideas about Module Strength and Module Coupling
which are wonderful in an ideal world filled with ideal programming languages, and aren’t
(00 bad in the real world. He stresses these ideas with a view to making systems more
maintainable, and they do indeed work, so I hear.

So we have the traditional development strategy: firstly, specify the problem; then design
the solution, then implement it using Myers ideas, then maintain and extend it as
necessary.

My approach is to regard the implementation phase as just another maintenance exercise,
which means the design of the solution can be skimped a bit. To me, the absolute top-level
design (what it does) is fairly obvious, and the absolute bottom-level functionality (how all
the bits work) shoutd be made up of units which are as general as possible. Then the middle
level (how it does it) is just {inevitably, in my experience) the rules which best suit the
requirements today, which everyone knows are different from the requirements tornorrow
(or usually yesterday, because nobody’s bothered to tell you yet).

Enough of these ramblings. Goodnight.
Wednesday 27th November 1986 05:00

Just a quick note to say WOW! not only is 1 plus 1 equal to 2, but 2 to the sixth power is 64.
1 can execute things. Now all I've got left is local variables and a few more primitives and
user I/O and breakpoints and source level trace and object level trace and. . .

Monday st December 1986 07:15

In principle, at least, the deadline for completing the first phase of the implementation of-
the APL interpreter passed a little over seven hours ago. However, I measure the passing of
days by going to bed, and I haven’t done that yet.

It is finished. In this last session, breakpoints finally went in, as did checkpoimnts (show
current state without stopping), and the facility to record on file all changes to any source
code throughout an entire session. One important aspect of the system is that source code is
stored in a straightforward text file, so that it can be examined and edited off line, i.e.
outside DE itself.

132

VECTOR Vol.3 No.4

[t was only in the last day that [actually checked that garbage collection worked, which it
did without trouble. There are still one or two features that I would like to have, but I shall
strictly Limit any further enhancements to DE to one hour a day. I would like 1o be able to
change the contents of arrays without having to write 2 one-off function to do it, and for that
matter [have to write a function every time I want ro execute anything - at the moment
there is no equivalent of immediate execution mode in DE.

I have started looking at the APL standard. What a nightmare. It looks like it might be
possible to implement each definition and evaluation sequence as a subroutine, and then it
would all work by the end. What’s wrong with this approach, then? Well, vou don’t know
whether it works until it’s finished, and even if I correctly interpreted and implemented
each aspect of the standard definition, which is in the form of a formal model of 2 particular
implementation of “Standard APL”, 1 doubt that the standard itself is without error,
Perhaps 2 good control for the standards committee would be to employ a team of
programmers who knew nothing about APL to impterment the language using just the
standard and without reference to any existing APL system or document. It couldn’t be
done, of course.

One sad fact about the standard is that it abandons the beauty and simplicity of APL
constructs and algebra in favour of straight mathemarical concepts such as sets, counting
numbers, dense sets, open and closed intervals, and so on. [am lucky enough to have
received a formal education which covered rhese ideas, although I find them difficult now.

I sympathise with the committee’s desire to avoid having to refer to any existing APL, or to
have to use a lot of circular definitions. However, it seems absurd that APL itself, which
was originally developed both 10 express mathematical ideas in a more accessible way than
that available with traditional notation, and 1o describe the behaviour of computers
(particularly the IBM System/360), cannot be used to express the concepts and algorithms
which underlie the language. Ah, well. At least once the APL standard is published, all
future standards in other fields will be able to use the APL notation to clarify and simplify.

So now my first task is to get the free storage {(heap) management subsystem working, and
then to concentrate on the design of fundamental things like the symbol table, internal
storage of arrays, the state indicator, and the APL tokeniser. Maybe by next week I will
have found that DE is 1otally unusable. T hope not.

Tuesday 9th December 1986 04:40

Well, not bad. I have the free storage manager running, and the symbol table, and two
different versions of the lexical analyser — one based on a code-driven version of the actual
ISO standard diagrams, and one based on a finite state machine (FSM),

The first works fine, but is a little slow, since it has to try to fit the arriving characters to
various patterns, which means the character *+’ would be attacked as if it were the first
character of a numeric vector, a name, or a character constant before the software realises
that it must be a primitive.

133

VECTOR Vol.3 No4

S0 1 tried the FSM approach. Backtracking is more difficult here, and must be sidestepped
by using more states. [have 15 at the moment, and it looks as though I might end up with
many more if I'm not careful.

The problem lies in the fact that the characters +” and overbar (high minus), as well as
having meaning in numeric constants, are also designated as “primitives” for some bizarre
reason. So have a look at this:

11.1E1 parses as you would expect as a two element vector;

11.E1 100; and then not surprisingly

11.1E parses as a syntax error; but, hold on

11.E as the vector 1 1, the inner product operator *.’, and the identifier E.

Now, as far as it goes, this doesn’t matter too much, because inner product isn’t defined in
the standard for array or user defined arguments. But from the treatment of characters like
+*_ overbar and underbar as having af least lexical meaning in this version of the standard,
one can deduce with reasonable confidence that extensions are envisaged that would also
give meaning to these characiers when they stand alone. In some visions of APL, they
already have meaning (‘. for the generalised inner product, where 1 1 . E is defined
semantically at least, and overbar and underbar have been used for plus/minus infinity).

Now, the standard insists that a conforming APL system must behave in a consistent
manner on a conforming program. Consider this:

11.LEFOO2

According to the standard, this statement will be successfully decomposed into “lexical
units” (as explained above), and the part-expression “E FQO 2" must be executed before
the erroncous .’ is found. Nowhere in the standard does it specify that a conforming
program must run without error, although one part of the definition of a conforming
program does relate 10 the signalling of errors. T shall come back 1o this in a moment.

So, FOO itself is called and executed before the inner product operator is parsed and the
error is detected. 1 think 1 would prefer to be told that “1.E” is a badly-formed number
before FOO destroys my data base (E contains 2 0, and of course you realise that FOO
males the tea if the first element of the leftargument isa 1 (as intended), and deletes the data
base if it is a 2 {as it turned out)).

So now here are the problems. There are two, one for me (the implementor striving o
produce a standard conforming APL), and one for 180 (the international organisation
attempting to standardise the implementation and use of APL).

Mine is that 1 can’t figure out if I am allowed to decide that 1.E is a syntax error before 1
execute FOO. On the one hand, this is specifying behavicur different from that required by
a litera] interpretation of the standard, and is certainly not a consistent extension, which
may only be made by removing an error signal, not by inserting one. On the other hand, to
quote the standard: “A conforming-program shall not depend on the signalling of any error

134

VECTOR Vol.3 No.4

by a conforming-implementation.” The question arises, is my program conforming? Does
it rely on the signalling of an error by a conforming implementation?

Well, that depends on whether it is possible to build a conforming implementation which
produces a different left argument for FOO. Suppose we have an implementation which
interprets “1.E” as “1.E0”. This would certainly change the behaviour of tht program, but
is it conforming? Tt removes the syntax error which would have been reported after FQQ
was executed, so in that sense it is a consistent extension. But it changes the way the lexical
analyser works, although no error is reported by either version at the lexical analysis stage.

Finally, if this new interpreter is standard conforming, then my program is not. If the
program is conferming, then the interpreter is not. But who is to say which way round?

Now, if you’re still with me, what about this?
1.J2.

Again, according to the standard, the lexical analyser has no problem with this. It is the
number “1”, the inner product operator *.’, the identifier “J2”, and the inner product
operator again. Of course, there is no semantic analysis pessible within the standard.

So what if [want to build an APL interpreter which uses this well-known syntax for
complex numbers? Can [write a standard conforming interpreter? It definitely removes an
error, at the semantic analysis stage. But it alters the behaviour of the lexical analyser
significantly.

So now you are as confused as [am.

Now for the ISO. The first part of their problem is the very specific interpretation of the
behaviour of the lexical analyser. This could be easily fixed (except that it is too late for
that. . .}, either by insisting on one or more decimal digits after a decimal point in a number
(1.1J2.2 produces a syntax error during lexical analysis according to the standard, so a
comsistent extension is obviously possible), or insisting that the .* (and preferably also the
overbar and underbar), when not used in a numeric constant, be separated from any letter,
digit, ©.", overbar or underbar by at least one space (as, for example, numbers must be
separated from letters: 123ABC is a syntax error according to the standard).

The second part of their problem is catastrophic. The standard goes to great lengths 1o
define the terms it uses precisely, and prints such defined terms in bold letters. Forward
references are avoided where possible, and are usually pointed out where they do occur. It
seems to me that the definitions of conforming-implementation and conforming-program
are central if the purpose of the standard is 1o assist interpreter writers and APL
programmers to produce conforming implementations and programs, and to assist the [SO
in determining whether implementations and programs submitted for approval are in fact
standard conforming.

So here are some extracts. Part of the definition of conforming-implementation is this:

135

VECTOR Vol.3 No.4

“A conforming-implementation shalt provide all defined-facilities and
implementation-defined-facilities. Each such facility shall behave as specified
by this standard.”
The words “defined-facility”, “implementation-defined-facility” and “facility” are defined
terms. Here is part of their definition:

“Facility (of an implementation): A unit of behaviour. Every facility is one of:

“Defined-Facility: A facility fully specified in this standard and not designated
optionaf or implementation-defined,

“Optional-Facility: A facility fully specified in this standard and designated
optional.

“Implementation-Defined-Facility: A facility not fully specified by this

standard that is designated implementation-defined.”
Now there are specific places in the standard which refer 1o the terms optional facility and
implementation-defined-facility (eg the shared-variable-protocol is defined as an optional-
facility). But nowhere is any algorithm defined as a defined-facility (at least, the term has
only three references in the index: its definition, its use in the definition of conforming-
implementation, and its appearance in the notes accompanying the definition of the shared-
variable protocol, pointing out, tautologically, that this optional-facility 1s not a defined-
facility). In this sense, the terms facility and defined-facility are defined in terms of cach
other (hee hee). To make matters worse, section 16.2.1 is called “User Facilities” and the
word “facility” is used freely throughout the section, presumably standing in this instance
for itself since it does not appear in bold type.

So what is a defined-facility? If everything is, then everything has 10 be implemented
literally. But the symbol-table is defined as “A list of all symbols whose names are unigue”,
which, if interpreted literally, would require, for 2 maximum symbol length of 6, in excess
of 27 gigabytes to store! So they can’t mean that. Which calls into question the specific
behaviour of the lexical analyser. If it is a “defined-facility”, must it be implemented
literally? Can the lexical analyser and syntactic analyser and semantic analyser be taken
together as a single defined-facility, in which case, aslong as an error is eventually produced
for “1.E”, does the error have to be signalled in the lexical analyser?

The standard doesn’t say, and 1 have tried to demonstrate that there is no common-sense
solution to these difficulties of interpretation.

Well, there is one. Ignore the standard, and do the sensible thing. But what will the ISO do
then? Of course, if everybody’s idea of the sensible thing is the same, there is no problem.
The ISO can adopt this sensible interpretation of the standard, and verify implementations
on that basis. But IBM, IPSA, STSC et al all believe that they are each pretty sensible, and
look where they’re leading us...

Wednesday 17th December 1986 01:56

The floating point representation has been decided and implemented. It is 8-digit BCD
with a 7-bit binary biased exponent. This means that all arithmetic is performed imernally

136

VECTOR Vol.3 No.4

in decimal rather than binary. This proves to take rather a long time — division in particular
must be implemented as long division, which is almost as hard for computers as it is for
pecple.

There are a few reasons why I decided to do it this way. Firsily, [had alot of rrouble when
writing VIZ::APL with converting between ASCII representatons of numbers and
internal binary (or, in fact, hexadecimal) floating point. The only way of working out the
internal format for 1E70 is to raise 10 to the 70th power (effectively — in fact, I had power of
two powers of ten stored ready, 5o that 1E70 was calculated as 1E64 x 1E4 x 1E2). This
could lead to loss of precision in the floating point routines even before the user started his
calculations. Using BCD this problem is overcome.

Another reason is to be sure that 1 divided by S really is .2 - children expect this, and with
binary representation, the calculation produces a recurring binary (like 1/3 is a recurring
decimal, .3333. . .}, which may not come out quite as intended.

Now, [know a lot of work has been done on this sort of thing, and it is possible to get binary
floating point representations to behave in a sensible and predictable way, so that most of
these sorts of problems are removed. Unfortunately, [skipped numerical analysis (for that
is how the subject is known academically) during my degree, so { am still in ignorance of the
techniques involved,

In fact, I have a strange superstition regarding floating point numbers — [do not quite
believe that they’re real (get the pun?). I very rarely program in floating point, and when
faced with the inevitable (like graphics for example) I try to avoid floating point urit the last
minute, and even then will prefer to write my own graphics interface 1o address the pixels
directly, rather than having to try to figure out how to scale my numbers o fit the 1024 by
1024 (or whatever) co-ordinate system used.

Also on this point, [weuld like to say that there seems to be a confusion in graphics between
points and cells — in other words, is a pixel a point with floating peint co-ordinates, or is it
a finite cell which is addressed by its centre? The problem becomes important when trying
to find the distance between pixels in the internal scale of the package (eg STSC APL) when
you know the number of pixels. On the Hercules card there are 720 physical pixels
horizontally, and this is mapped (o the range 0 to 1024 in APL. If the pixels are cells, each
is 1024/720 units wide. But if they are points, each is 1024/719 units wide.

In fact, both of these are wrong. The answer is 1023/719! Figure that one out. This is why
I don’t like floating point. . .

The last reason for choosing BCD is that I haven’t done it before — it was different, and why
shouldn’t I have a lirtle fun?

Anyway, it all werks. T'm a litlle worried about speed — worse case division (99999998 /
33333333) takes 40 seconds on the development system. I anticipate about a one-
hundredfold speed-up for the live version, but still .4s seems a little long, [will have to
think on this further.

137

APL + PC’s

Whatever your area of interest, if it includes APL on a PC,
Mercia will have something to offer. Hardware, Software, Liveware -
we're sure you could use some of our products or services to make
vour APL work even more productive. Take a look through this
summary — then give us a ring for more details.

APL SYSTEMS SOFTWARE/HARDWARE

ALLcard - A REAL benefit to APL*PLUS/PC users with
workspace size problems. Up to 750,000K REAL
workspace, Check your OWSSIZE ina CLEAR
WS, and think how you could use those extra
bytes. If that's not enough, it does up to 10Meg
battery backed RAM disks, and all the standard
expanded memory specs.

Multi-APL - Multi-user/Multi-tasking/LAN for APL*PLUS,
includes APL file component locking etc.

APL*PLUS/PC- The old favourite — Lower price, full support, plus
all the add-ons.

APPLICATIONS SOFTWARE IN APL

STATGRAPHICS - Comprehensive statistical Graphics System —
PLUS our unicue customisation service for users
who don't think it's comprehensive enough.

Exec-U-Stat - Stats and graphics for the business user.

LOGOL - R G Brown's latest logistics decision support
system for the PC. Forecasting, Inventory
Control, Distribution, Master Scheduling.

CONSULTANCY

Could you use some extra Liveware? Mercia's consultants are
experienced APL'ers, specialising in OR, stats and math's
applications — both London and Birmingham based.

TRAINING

See our course listing elsewhere in Vector, if none suits please
contact us regarding In-house and specialised courses,

MERCIA SOFTWARE LIMITED

Aston Science Park, Love Lane, Birmingham BY 4B].
Telephone: 021-359 5096

Public Domain Software Library
Call for Software

Purpose

The purpose of the British APL Association Public Domain Software
Library (PDSL) is to provide useful software to the APL community. In
order to achieve a high level of service, we need a good supply of
quality software. During the initial phase of the library, we are
therefore advertising for submissions from everyone in the APL
community.

What kind of software?

We are looking for anything that could be of interest to the APL
Programmer, user or manager. It might be a tool for migrating APL
workspaces between different interpreters, general APL utilities, APL2
functions for simulating component files, z reverse Polish model of
APL or even a DOS adventure game. Each of these examples is an actual
disk from the library. There are no restrictions on the type of
software, type of APL or the type of machine on which the software is
to be run. As long as it is of interest to APLers, then it is worthy
of consideration. The programs do not even have to be APL, although we
have nc desire to flood the FPDSL with non=-APL software available
elsewhere. Public domain software should normwally include 'unlacked?
scurce code wherever possible.

Transfer medium

The transfer medium for the BAA PDSL is the DOS-format
five~and-a-quarter inch floppy diskette. If ¥ou can get it onto a
floppy disk, then we can make it available to others. If the target
machine is not a PC, then appropriste transfer instructions should be
included on the disk.

Documentation

The library will not currently handle any medium other than the floppy
disk. In particular, we do not undertake to distribute paper
documentation of any kind. All disks must therefore include sufficient
user documentation to permit effective use of the software. The donor
may include an address where paper documentation c¢am be obtained,
possibly at a nominal cost.

Charges

It is not intended that the BAA PDSL make a prefit. Our charging
policy is designed to cover the direct costs of materials, postage and
handling, although we do make a reduced charge to BAA members in order
to encourage membership.,

A PDSL software donor must not require payment from the user, although
reasonable charges for 'registration' or paper documentation may be
advertised on the disk. Disks that demonstrate commercially available
products are acceptable, provided that this is made clear.

Liability

The donor's signature is required to declare the donor's right to
allow the BAA to copy the software, and to permit anyone to copy and
use it. Software is accepted by the BAA on good faith, and we do not
vouch for or make any claims regarding donated software. The BAA
cannot be held responsible or liable for any damage, however caused,
by the use or misuse of library software.

Tf you are considering creating software for the library. please read
the software submission form first, so that you know what is expected
of you. Please share the fruits of your work with others.

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION FORM - Page 1 of 2

Piease copy and fill in this form for EACH disk you submit .

Details corresponding to items flagged (¥) will not be made publically
available, but are fer our recerds omnly.

Use BLOCK CAPITALS for all items except pumbers 6 and 16.

0.

1.

10.

11.

12,

13.

14.

15.

Submission date?

Name of doner: 2., Daytime phomne(*):

FULL address(*}:

Electronic mail addresses{*):

Disk titlet

Brief description of disk contents:

List target machine:

List additional software requireds:

Indicate special hardware requirements:

1s user documentation provided on the disk7(¥/N):

List titles of any paper documentation included with your submission:

Is this documentation, or any other, available to users upon [

applicatien to youl{(Y/N): __ ___ TFlease give details:

Does the disk include any form of payment request from users of the

software?(Y/N): __ Please give details:

Does your submission constitute 2 'demonstration disk' in that it

demonstrates software that is available for purchase?(¥/N):

If the TARGET machine is NOT a DOS-based PC, does the disk include

imstructions for transfer to the target machime?(¥/N):

British APL Association Public Domain Software Library
SOFTWARE SUBMISSION FORK -~ Page 7 of 2

16. File rames and descriptions. This information will be made publically
available in the software library catalogue. Please save us some work
by including these details on a file named <CAT> (no file extension)
e¢n your submitted disk. Please enter these details for all files an
the disk, except <CAT> itself. You can affix a print of <CAT> below.

For APL workspaces, please use the space below to document fupctions.

FILENAME.EXT SHORT DESCRIPTION

17. Please use extra space above for any comments you wish to appear in
the library catalogue.

18, Your signature is necessary. It declares your legal right to make
the disk freely available for copying and use, 2nd grants the
British APL Association a similar right.

Signature:

Mail your submission to: The BAA Public Bomaln Software Library
¢fo Flat 3, 63 Queens Crescent
London NW5 4ES5
ENGLAND

NEW MAINFRAME SOFTWARE
FOR IBM'S°APL

Now available in the UK, two new offerings from
STSC that enhance IBM’s mainframe APL

implementations

If you’re staying with VS APL ...
COMPILER The first commercial compiler

for APL compiles functions
individually. Results in
significantly faster execution.
Interpreted functions can call
compiled functions and vice
versa.

If you’re migrating to APL2 ...
SHAREFILE/AP STSC's popular APL

component file system is now
available under APL2. Multi-
user, nested array storage,
libraries, access matrices.
Multiple file system support.
International language
translations.

For full information, contact the APL*PLUS ™ Product Group,
Cocking & Drury on 01-493 6172.

Trademarks/Owners: IBMilnternational Business Machines Corparation - APL‘PLUS/STSC, Inc.

==— COCKING&DRURY LID.

THE APL PROFESSIONALS

16 BERKELEY STREET- LONDON-WIX 5AE
Tel: (01)493 6172 Tlx: 23152 MONREF G

VECTOR Vol.3 No.4

Index to Advertisers

Ampere 6
APL People 93
APL Software Lid 101
Cocking & Drury 8,122,142
Dyadic Systems Lid 80,81
HMW Programming Consultants 116
[BM (Sweden) 54
Mercia Software 138
MicroAPL 2
Peter Cyriax Systems 30
Vector — Back Numbers 42

All queries regarding advertising in VECTOR should be made to the advertising editor,
Cathy Dargue, at the following address:

Cathy Dargue,
60 Downhall Ley,
Buntingford,
Herts SGY 9TL.
Tel: 0707-32516

Advertisements should be submitted in typeset, camera-ready A5 portrait format with a
20mm blank border. Illustrations should be black-and-white photographs or line
drawings. Rates are £250 per page. A6 and A7 sizes (at £150 and £75 respectively) are
avatlable, subject 10 layout constraints.

143

VECTOR Vol.3 No.4

BRITISH APL ASSOCIATION
Membership Application Form

Please read the membership information in the inside front cover of VECTOR before completing this
form. Use photocopies of this form for multiple applications. The membexrship year runs from Ist
May - 30th April.

Name:

Department:

Organisation:

Address Line 1:
Address Line 2:
Address Line 3:
Address Line 4:

Post or zip code:

Country:

Telephone Number:

Membership category applied for (tick one): 86/87
Non-voting student membership UK only) £ 5
UK privatemembership .. _................. £10
Overseas private membership £18 §27
Airmail supplement (not needed for Europe) . £ 8 512
Corporate membership- £ 85
Corporate membership Overseas £140 5210

Sustaining membership oo £360

For student applicants:

Name of course:

Name and title of supervisor:

Signature of supervisor:

PAYMENT

Payment should be enclosed with membership applications in the form of a UK sterling cheque or
postal order made payable 10 “The British APL Association”. Corporate or sustaining member
applicants should contact the Treasurer in advance if an invoice is required. Please enclosea stamped
addressed envelope if you require a receipt.

Send the completed form to the Treasurer at this address:

Mel Chapman, 12 Garden Sweet, Stafford ST17 4BT, UK.

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered
by a Committee of officers who are elected by the vote of Association members at the Annual General
Meeting. Working groups are also established in areas such as activity planning and journal
production. Offers of assistance and involvement with any Association matiers are welcomed and
should be addressed in the first instance to the Secretary.

1986/87 Committee
Chairman: Dick Bowman CEGB, 85 Park Street,
01-634 7639 London, SEIL.
Secrerary Anthony Camacho 2 Blenheim Road, St. Albans,
0727-60130 Herts., AL14NR.
Treasurer MelChapman 12 Garden Street,
D785-53511 Stafford, ST174BT.
Activities Phil Goacher 27 Downs Way, Epsom,
03727-21282 Surrey.
Journal Editor David Preedy Metapraxis Ltd., Hanover House,
01-341 1696 Coombe Road, Kingston, KT2 7AH.
Education Norman Thomson 1BM Mail Point 188, Hursley Park,
0962-54433 Winchester, Hants., $021 2JN.
Publicity Bernadette Leverton MicroAPL Ltd., Unit IF,
01-6220395 Nine Elms Industrial Estate,
87 Kiruling Street, London, SW8 SBP..
Technical Dave Ziemann Cocking & Drury Ltd.,
01-4936172 16 Berkeley Street, London, W1X 5AE,
Recruitment Christine McCree Beecham UKCS, Beecham House L/2,
01-560 5151 (ext 3414) Great West Road, Brentford, TW89BD,
Projects David Eastwood MicroAPL Lid., Unit 1F,
01-622-0395 Nine Elms Industrial Estate,
87 Kirtling Street, London, SW8 5BP.
Journal Working Group Activities Working Group
Jonathan Barman 0374-588835 Philip Goacher 03727-21282
Anthony Camacho 0727-60130 Maurice Jordan 01-362 3090
Cathy Dargue 0707-32516 David Parker 01-834 2333
Val Lusmore 0225-62602
David Preedy 01-541 1696
Adrian Smith 0904-53071
David Ziemann 01-4936172

WP disks converted to photosetting by Capella House, Stowmarket (0449) 677663,

Printed in England by Short-Run Press L., Exeter.

VECTOR

VECTOR is the quarterly Journal of the Brtish APL Association and is distnbuted to Association members in the
UK and overseas. The British APL Association is.a Specialist Group of the British Computer Society. APL stands
for "A Programming Language” — an Interactive computer programming language noted for its elegance,
coneiseness and fast development speed. ILis supported on many imesharing bureaux and on most mainframe.
mint and micro computers

SUSTAINING MEMBERS

The Committee of the Briish APL Association wish to acknowledge the generous financial suppon of the
following Association Sustaining Members In many cases these organisations also provide manpower and
administrative assistance to the Association at their own cost

APL People

APL Software Technology

Cocking & Drury Ld

Dyadic Systems Ltd

H MW, Programming
Consultants Lid

Inner Product L1d.

Mercia Software Lid

MetaTechnics Systems L1d

MicroAPL Ltd

| P Sharp Associales

Petar Cynax Systems

17 Barton Streed,
Bath, Avon.
Tel. 0225-62602

14 Rosewood Avenue,
Alveston, Bristol, BS12 2PP
Tel 0454-415737

16 Berkeley Streel, London, W1X SAE
Tel 01.4936172

Park House, The High Street, Altan, Hams
Tel 042087024

142 Feitham Hill Road,
Ashitord, Middiesex, TW15 1HN
Tel 07842-41232

Eagle House, 73 Clapham Commion Southside,
London SW4 3DG.
Tel 01-6733354

Aston Science Park, Love Lane.
Birmingham, B7 4BJ,
Tel 021-359 5086

Unit 216, 62 Tritton Road.
London, SE21 8DE
Tel 01-6707959

Unit 1F, Nine Elms Industrial Estate,
B7 Kirtling Street, London, SW8 5BP
Tel.01-622 0395

10 Dean Farrar Streel,
London, SW1H0DX
Tel 01-2227033

213 Goldhurst Terrace,

London, NWE 3ER

Tel, 01-624 7013 (Answerphone)
T.B.A. Mobile)

The British Computer Soclety, 13 Mansfield Street, London W1M 0BD.

