The Journal of the

100+ pages of the Best in APL
+ 16-page Educational Supplement 17

- Statistics Library News 33
+ APL.68000 Level Il Reviewed 67
- Parkhouse on Graphics 83
- Gay on Assembly and J¥A 100
- Jordanon J«f g R 119

British APL Association

ISSN 0955-1433

A Specialist Group of the British Computer Society Vol.7 No.4 April 1991

Contributions

All contributions to VECTOR. may be sent to the Journal Editor at the address on the inside back cover. Letters and
atticles are welcome on any topic of intetest to the APL commuriity, These do not need to be limited to APL themes,
nor must they be supportive of the language. Articles should be accompanied by as much visua! material as possible
(ideally with a photograph of the author and a brief biographical note). Unless otherwise spocified, cach item will be
considered for publication as a personal statement by the author.

Please supply as much material as possible in tmachine-readsble form, ideally as a simple ASCII text file on an IBM
PC compatible diskette (any format). APL codo can be accepted as camera-ready copy, or in workspaces from
APL*PLUS/PC, IBM APL2/PC or Dyalog APL.

Except where indicated, items in VECTOR may be freely reprinted with appropriate acknowledgement. Please inform
the editor of your intention to te-use material from VECTOR.

Membership Rates 1991-92

Category Fee Vectors Passes
UK Private £12 1 1
Overseas Private £20 ' 1 1
(Suppletent for Ainmail) £8

UK Cotporate Membership £100 10 5
Crverseas Corporate £155 10

Sustaining £430 50 3
Non-voting Student £6 1 1

The membetship year runs from 1st May to 30th April. Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passes are required for entry to some association
events, and for voting at the Aunual General Meeting. Applications for student membership will be accepted on a
recornmendation from the course supervisor. Overscas membership tutes covet VECTOR surface mail, and may be
paid in stetling, or by Visa or Mastercard at the prevailing exchange rate.

Corporate membership is offered to organisations where APL is in professional use. Corpomte members receive 10
capies of VECTOR, and are offered group attendance at association meetitgs, A contact person must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is scen as a method of promoting the
growth of APL intcrest and activity, As well as receiving public acknowledgement for their sponsorship, sustaining
membets receive bulk copics of VECTOR, and are offered news listings in each issue.

Advertising

Advertiscments in VECTOR should be submitted in typeset cameta-ready A5 portrait format with a 20mm blank
border, [llustrations should be black-and-white photographs or line drawings. Rates are £250 per full page, £125 for
half-page ot less (There is a £50 surcharge per advertisement if spot colour is required).

Deadlines for bookings and copy are given under the Quick-reference Diaty. Adverttiscinents shauld be booked with,
and sent to, Alison Chatterton, whose address is given on the inside back cover.

VECTOR

Vol.7 No.4

CONTENTS

EDITORIAL: a Babel of APL Dialects?

APL NEWS

Quick Reference Diary

British APL Association News:
Recruitment Officer’'s Report
News from Sustaining Members

ATL91 Abstracts
The Education Vector

The Random Vector

REVIEWS

APL Product Guide

ZARK: an APL Tutor

APL.68000 Level 11
APL*PLUS/PC PostScript Support

RECENT MEETINGS

GSS Graphics with APL*PLUS/PC
The Ideal Screen Editor
APL Graphics - First Principles

L GENERAL ARTICLES

- Writing Assembly Language Functions for [JNA

Mandelbrot Sets

TECHNICAL SECTION

NED: A nesting editor for APL*PLUS/PC

Thoughtson J+f g &
Full Screen Methods with APL2

A Note on the Match Function in APL

The Steam-Hammer and the Fly

Index to Advertisers

Page

Jonathan Barman 3
5

Jill Moss 7
Alison Chatterton §
11

Alan Sykes 17
David Eastwood 33
Alison Chatterton 52
Emily Timson 62
lain Hayward 67
Adrian Smith 74
George MacLeod 76
Anthony Camacho 78
Graham Parkhouse 83
Allan Gay 100
Ray Cannon 110
Oille Evero 116
Maurice Jordan 119
Peter Branson 126
Joseph L.F. De Kerf 133
Gerard A Langlet 138
143

dyalog M[DJ|

GETS YOU THERE FASTER!

ESAIRAWGHARNS SSaDRAHE

DR YL ; O TUTH; XTIT; YYIT; Nt
fralog GRAPH

Diysi liogg: VYL
8,085 (16,105
I DLEEEGHET 16,3
7 PLEGHT L6, {Sli“l!
7 TOELELGET 16.7

BOK CHARGEDES T CHANGED ISP
DYALOG FRAME FPANCE GRADES O) 46 433N (798
HIST WISY_AYES HONGRAFHS 6. 160EEERET 18,15

) 5.9 14,35
"
DUTPUT PATTER! omaCh 6 633333333 1955

6. 366666667 19 TS RIY
/6. 11EA66667 109331 133
SaMELP SSAINIT G
TITLE XAl

XCREATEPLYMAP B ALGALEEET 20, BLGES]

115: 216666667 20.7
5.05 20, SGE66 871
Rk L AMNRLAGERT 21.016060

n | 3333 . 21'166&&:
ETSTIPRLE 57124, I8 e
1075
¥ SEIseALr Bnaion SESCALE
y BET,; HIN; HAX
FAX, INCRFMENT. nod LABEL to smmotute ss nils

T and dot Tyaiog NICE

|
L1 +Xi1 <1, 42421
5 101 [11=10ANAL, DpTe 300 |

Ah)e(=HL)nLIH]=" od=(X]2
s {uVIL 1L IVI1D=X(1]4V(31=11 2
VIV 102X 1)+V13)
JP=VLLI+AVIL)+1-XUL14VI31 b0, 0P002
=VIZ] k2 VI21-X[2 1V
1 214Y13)
VEZ1- V2= VI2]-4 HIX(2I+ V(3344 1=V21 <0, 0002

ABEL-¥ (1 “pLADFL ppitt
IN MAX INCHEMENT{ fod (MAZ

Hewy it rixten

You can “iconify”
and restore your
windows as and
when required.
Here you see icons
for an APL graphics
window and a
second Unix
session

You can edit
character matrices
and vectors of
character vectors

You can execute
expressions in the
Session whilst Edit
and Trace windows
remain open

You can edit
several functions
and/or operators
at the same time
Lines can casily

be copied/moved
berween functions
or to and from the
Session

The TRACE facility

lets you step
through your
application line by
line, As you do so,
the APL stack is
displayed and the
current execution
line is highlighted.

Watch your
variables change as
you run your code.

A l-user licence for Dyalog APL/X costs just £1,500 and is available for a range of UNIX
workstations including IBM RISC System/6000, Sun SPARCStations, and Hewlett-Packard
HP9000-300/400 Series.
In addition to the unique Development Environment pictured above, Dyalog APL/X provides

a powerful set of tools to help you produce good-looking, responsive and easy-to-use interfaces
for end-user applications. Other important features include graphics support, external variables,
a really fast component file system and a native file interface. You can easily access external
functions written in C or Fortran, and an interface to Oracle is available on most systems.

All Trademarks, Servicemarks and Trade Names are the acknowledged property of the Companies concerned.

For further details contact:

Dryadic Systems Limited
Riverside View, Basing Road, Old Basing,
Basingstoke, Hampshire RG24 0AL
Tel: (0256) 811125 Fax: (0256) 811130

DYADIC

VECTOR Vol.7 No.4

Editorial: a Babel of APL Dialects?

by Jonathan Barman

Are there too many versions of APL? Moving applications from one version to
another seems the most painful, pointless and unrewarding task, only to be
undertaken when absolutely necessary. How one wishes for absolute uniformity
when doing such work.

However, it would be a very sad day if APL were so moribund that all
implementations were the same. The new generation of APL interpreters are full
of exciting features, which is evidence of an alive and progressive APL
community. We need discussion and debate of the relative merits of the various
features so that eventually a consensus view can be incorporated in the APL
Standard.

The APL Standard seems to have had very little influence in removing
differences between APL implementations. The idea of ‘conforming extensions’
means that most implementations can conform to the standard whilst retaining
all the various extra features. In my view this just allows all the differences to
persist, and the real crunch will come when the next Standard has to decide
between competing features. At the moment the features battle is being decided
in the market place.

The principal contenders in the market place for second generation APLs are
IBM's APL2, STSC's APL*PLUS II, Dyalog APL, and MicroAPL who have
entered the fray with their APL.68000 Level II interpreter which is reviewed in
this issue. All these versions are slightly different, but not as fundamentally
different as Sharp APL with its grounded system of nested arrays. Sharp APL is
in a minority at the moment, so it is possible that the grounded system will fade
away.

If it were possible to stick to just ore flavour of APL then there would be no
problem. Obviously, when one writes an application one can only use the
interpreter available at the time, and the problems of migration to another
version of APL can seem to be quite minor compared with the problem of getting
the job done on time. However, migration is becoming more and more necessary.
Mainframe applications are being transferred to Personal Computers.
Applications on old PCs subject to the DOS memory limits are being revitalised
by transferring to the 386 architecture where memory limits are removed. Scon

VECTOR Vol.7 No.4

everyone will want windows and networks which may require different APL
implementations.

When writing APL it is good practice to ensure that the design does not rely on
special features. This is much easier said than done. Quite minor "features” can
cause extraordinarily difficult migration problems, which cannot be predicted in
advance. An example of a very minor change causing migration problems was
the change in the Format primitive made by APL2. In VSAFL a leading space
was guaranteed when using monadic format on a matrix, but in APL2 there is no
leading space. The ramifications of such a tiny change were very surprising, with
migrated code falling over in quite unexpected places.

Designing function calls which can be tailored to cater for major differences in
features is quite a difficult task. Screen handling is the prime example of the
problem. STSC's 0OWIN leads to screen driving functions being written in a quite
different way from those that use Dyalog’s 0SM, which is different again from
the AP124 processor in IBM’s PC APL2. File handling is another area where a
plethora of radically different features often makes an otherwise good design
difficult to migrate. The article on WAGS in the Random Vector in the last issue
(7.3) was a particularly interesting exercise in designing graphics functions
which could be implemented in any APL implementation.

The wide range of different features that are currently available needs to be
reduced. Of course there are problems. APL vendors are obliged to provide an
upgrade path for their existing users so that their code continues to work with
any new version. Special features are bound to be seen in the light of competitive
advantage. However, convergence is possible, and actually happening now.
MicroAPL have deliberately made their Level T as compatible as possible to
IBM's APL2.

Everyone who uses APL should be aware of those features that are likely to be
included in the next Standard and those that should be avoided. There is a need
for publicity and debate so that nobody is surprised should a feature be
downgraded at some time in the future. Those who work with more than one
version of APL have a duty to the APL community to give their views on the
relative merits of the various features. Let us see if we can make Vector the
forum for discussion on this topic.

VECTOR Vol.7 No.4

Quick Reference Diary 1991

Date Venue Event

26 April IEE London BAA Meeting

7 June {EE London AGM and BAA Meeting
4th - 8th August 1991 Stanford APL91: The Next 25 Years
20 September IEE London BAA Meeting

25 October IEE London BAA Meeting

22 November IEE London BAA Meeting

Starting from February 1991, all British APL Association meetings will be held in
the IEE, Savoy place. Nearest tube outlets: Temple or Embankment.

Meetings are normally held on the 3rd Friday of the month throughout the
autumn and spring.

Overseas APL User Groups

The Vector working group are anxious to maintain contact with as many
overseas associations as possi'ble. If you are running an APL group and would
like to receive Vector in exchange for your own newsletter or journal, please
contact Alison Chatterton at the address on the inside back cover. We will
endeavour to compile and maintain an accurate list of contacts of overseas
groups, and publish this regularly with our APL Product Guide.

Dates for Future Issues of VECTOR

Vol.8 Vol.8 Vol.8

No.1l No.2 No.3
Copy date 1st June 91 5th Sept 91 1st Dec 91
Ad booking 8th June 91 12th Sept 91 1st Dec 91
Ad Cepy 15th June 91 21st Sept 91 12th Dec 91
Distribution July 91 Qctober 91 January 92

dyalog WAIBJI/X

AS YOUR USERS SEE IT!

DASHBOARD

xelock

Directory Beowses

This photograph illustrates the sort of modern windows applications you can
develop using Dyalog APL/X. At the heart of the user-interface is a system
variable [JSM which represents the layout, content and behaviour of a set of
ficlds within an X window on the display. Users interact with [ISM using the
keyboard and/or mouse through a system function [JSR. Together these tools
provide an extremely powerful yet natural and easy-to-program user-interface
for your APL applications.

Dyalog APL/X is just one of a fully compatible family of APL products for UNIX
workstations, multi-user UNIX systems and DOS/386 PCs.

All Trademarks, Servicemarks and Trade Names are the acknowledged property of the Companies concerned.

For further details contact: Dyadic Systems Limited D S/AD I‘
Riverside View, Basing Road, Old Basing,

Basingstoke, Hampshire RG24 0AL
Tel: (0256) B1H2S5 Fax: (0256) 811130

VECTOR Vol.7 No.4

British APL Association News

Recruitment Officer’s Report by Jill Moss

The role of Recruitment Office for the British APL Association is to endeavour to
increase the membership by encouraging people to join and by persuading
lapsed members to renew. The Recruitment Officer also tends to be the focal
point for enquiries about the Association. I always try to send a personal letter in
response to each individual enquiry, accompanied by one of the Association’s
leaflets, a membership form and information about Vector. Invariably, this has
the desired result, with the enquirer deciding to take the plunge and join!

During the two years in which [have held the post of Recruitment Officer for the
Assoclation, various other initiatives have been tried. These have met with
varying rates of success, and have included mail shots extolling the benefits of
membership:

- to lapsed members, both in the UK and abroad

- toindividuals on APL People’s own mailing list

- to attendees of the ASL Conference in Swansea (drawing their attention to the
support provided by the BAPLA)

- to delegates of APL 90

Mail shots have proved to be quite an effective means of pulling in new members
and convincing former members to rejoin. We have also tried:

- Advertising in the Computer Bulletin (Journal of the British Computer
Society}

- running a competition to encourage existing members to persuade other
people tojoin (by offering them the chance to win a trip to APL 90 in
Copenhagen)

- getting all the major APL vendors to promise to enclose one of the
Association’s publicity leaflets with every APL interpreter sold

The latter of these is quite effective (provided vendors remember to enclose the
leaflets of course!). Unfortunately, the previous two initiatives failed to produce
much in the way of resuits and therefore will not be repeated.

As far as future efforts go, we plan to target specific groups of people, such as
teachers, and also to produce a range of leaflets to promote certain benefits of
membership, such as the Software Library. Anyone who would like to help with
writing or distributing leaflets, or who has any bright ideas for other ways of
promoting membership, please let me know - all offers gratefully received!

VECTOR Vol.7 No.4

News from Sustaining Members
Compiled by Alison Chatterton

APL People Limited

The New Year got off to a promising start with several people taking new jobs
and more contract work being secured for the Company. However, signs that the
economy has slowed down considerably are now becoming evident as more
companies are reluctant to commit themselves to taking on extra staff. We now
find ourselves in the unusual position of having more people seeking jobs than
we have vacancies! So any companies out there who are thinking of taking on
skilled ‘APLers’ this year, why not get in touch with us now, while we have a
good selection of candidates for you!

APL Manufacturing’s production control software continues to sell well,
particularly to companies in the defence industry (so some good will have come
out of the Gulf war after all!) The latest version of PEFAC, which is designed to
run much faster on the hard disk, is currently on trial with the Ministry of
Defence, who are looking for software to control the pricing of all their sub-
contract work.

HMW Computing Limited

HMW Computing Limited continue to support, develop and market “4XTRA”
our front end Foreign Exchange Dealing and Position Keeping System.

Each time 1 write news for Vector it seems that we have just released another
upgrade of software. To keep the tradition going, we release another upgrade on
1st of March (tomorrow) which includes enhanced user monitoring software,
This allows us simultaneously to menitor all machines running 4XTRA on a
network from any point on the network. The monitoring software (4ARMS)
picks up any stations AFPL errors instantly, and can then “take over” the users
machine, investigate and fix it up, and return control to the user. With over 100
users, this gives us the facility to offer instant support, without physically having
to visit the station on the network.

We have recently moved to larger offices within Hamilton House which has
given us much more room for our consultancy teams and for visiting clients.

VECTOR Vol.7 No.4

If you would like to see the latest 4XTRA system, we are exhibiting at a number
of exhibitions and would be please to offer invitations or if you prefer a
demonstration can be arrange at our offices or on your own premises. a

Dyadic Systems Ltd

Dyadic is now shipping Dyalog APL Version 6.1 for DXOS/386, and certain UNIX,
and X Windows implementations. The new version contains the following
enhancements:

Browsing/Editing Variables

You can now open a display/edit window for a variable. The window is opened
in the same way as for functions and operators, i.e. by using)ED or by
positioning the cursor over the name and pressing the <EDIT> key. In Dyalog
APL/X you can also “point-and-click” with the mouse. The appearance of the
variable in the window is exactly as if it were displayed using standard output
ignoring OFPK.

Data in an Fdit window can be scrolled vertically and horizontally so that you
can easily browse through a large array. ANY variable can be displayed,
although not all types of array can be edited. Additional colour parameters may
be specified to distinguish between variables and functions and between
“editable” and “non-editable” arrays.

If you assign new values to a variable for which there is an open Edit window,
the window is immediately updated. This is particularly useful for debugging
when using the TRACE facility, because you can watch the value of one or more
variables change as you step through a program.

U&D

A new system function, OED, has been introduced to permit the browsing
and/ or editing of variables and functions/ operators under program control.

Screen Manager Improvements

The Dyalog APL Screen Manager (0SM/0JSR) has been enhanced. In all
implementations, the handling of TIMEOUT events has been improved. In the
UNIX and X Window versions, JSR can now be interrupted by another process
(e.g. another APL task or an Auxiliary Processor) and the interrupt trapped. This
allows several independent APL tasks to signal events to one another and
broadens the scope for processing “real-time” data feeds.

VECTOR Vol.7 No.4

MicroAPL Ltd

Sales of our new second-generation APL - APL.68000 Level II - are continuing to
be very strong and we are now shipping significant volumes to the USA, We
have made a couple of minor alterations to the interpreter since its release last
year and we are now shipping release 1.17. Users who have not received
upgrade notes should contact MicroAPL (or their local distributor) for details of
the changes.

We are pleased to announce the appointment of Uniware as a distributor for
APL.68000. Uniware are probably the leading French APL specialists and their
appointment fills a major gap in our overseas representation. France has a large
and enthusiastic APL community and we feel that a local supplier for AFL.68000
will enable us to offer a better service to our current and prospective French
clients.

In addition to Uniware distributing our APL software in France, MicroAPL has
been appointed as a dealer for Uniware’s range of software products for the PC.
The Uniware software range includes an APL debugger, report formatter, menu
generator and spreadsheet-like data entry utility. The software is available for
APL*PLUS and AFPL*PLUS I. We feel that the APL Debugger is an especially
powerful utility, enabling APL programmers to view the code being executed
and the result generated at the same time, with a facility to coexist with APL
software which itself makes window calls.

The entire range of products is very reasonably priced and offers a significant
boost to programmer productivity for APL*PLUS users. Site licences for the
software are also available.

As well as adding the Uniware range of software to our product list, MicroAPL
has released an upgrade to our MicroPLOT software for the IBM PC -
MicroPLOT/GSS. MicroPLOT provides a number of simple but powerful
graphics commands to facilitate the production of two dimensional business
graphics. MicroPLOT/PC, the implementation for APL*PLUS PC, has been
available for some time now, incorporating drivers for the various types of PC
display and also for HP-family graph plotters.

MicroPLOT/GSS is an implementation of MicroPLOT which uses the APL*PLUS
PC interface to the GSS subsystem. APL programmers can use the GSS
subsystem via the high level MicroPLOT functions and produce device
independent graphs without having to invest a large amount of time and effort
in understanding the ramifications of the many GS5 interface calls.

10

VECTOR Vol.7 No.4

MieroAPL is now shipping release 10 of APL*PLUS PC. The upgrade includes a
number of useful new features including N4 for access to non-APL routines and
a new system function OMOUSE (what else!) to allow access to the mouse under
program control,

REUTER:FILE

Reuter:file are unable to attend the Vendors’ Forum meeting on 26th. April. We
will continue to support the BAA as a sustaining member and take an interest in
its work.

APL91 Paper Abstracts at 13 March 1991

from Charles Schiulz

A0 Systemn - APL in Constrtction Planming. Alexei 1.
Miroshnikov, Central Research Ecenarnic Institute,
USSH. This paper describes an auternation system,
named AQ, for construction planning. A0 was developed
for use by big building companies at various stages of
preparing and axecuting construction works. it supports
different tasks starting with calculation of project
astimates, bills of materials, and schedules of works,
and ending in providing the company exacutives with
complete information for tha supervision of the building
process in their company. AQ also includes a DBMS or
the all-Union data base on construction. The amaount of
data in the data base is about 45MB for the Leningrad
ragion alone. At present, the systam Is used by the
Leningrad Building Corperation. AQ Is written in
APL*PLUSIPC. The system will be distributad with the
run-time version of APL"PLUS for Soviet customers
after performanca tasts. AQ was developed in market
competition with six simitar projects based on different
programming systemns: FoxBase, Clipper, Turbo-
Pascal, and MS C compiler. The advantages of the
systemn under consideration were in many ways
ensured by cheosing APL, Some advantages and
disadvantages of using APL for this kind of application
are discussed as well.

An Oracle 5QL - APLZ/PC Auxiliary Processor.
Stephen Deerhake, Westport Systems, Inc., USA. An
APLP/PC auxiliary processor for interfacing CRACLE
SQL with APL2/PC modelled after APL2f370's AP 127
auxiliary processor, is described. While providing direct
compatibility with AP 127 service requests, the AP
described here also offers several enhancements to AP
127 servica requests. Although written for ORACLE
SQL and 16-bit APL2/PC, the programming style

employed provides a great deal of isolation between the
DBMS and target interprelter, thus providing a high
degree of portability to other DEMS implementations
(e.g., Database Manager under O5$/2) and target
interpreters, Besides providing SQL. servicas for a
desktop APL environmant, the AP demonstrates that it
is possible to write large auxillary processors in a high-
level language for APLZ/PC which can be installed in
extended memary and run In protected 80x86 CPU
axecution mode,

APL as gn Embedded Language: The Ultimata
Application? Jean Jacques Girardot, Ecole des Mines,
France, This paper describes a new approach to the
development of customized applications. It first
discusses two problems with APL programming: writing
efficient programs and building user inlerfaces, It then
describes the proposed salution, canslsting of writing
tha skeleton of the application in an efficient compiled
language, using some predefined buflding blocks, and
developing the other parts in APL This approach Is
closer to integrated systems, such as spreadsheets or
data-base managers, than to traditional APL
applications executed under the control of an
Interprater. It differs from these Integrated systems in
the fact that the development cast is kept low, so that
new applications, highly customized for specific end
users, may be built from scratch or, mora exactly, from
predefined bailding blocks.

APL Compasition, Inversion and Evaluation of
Programs Synthesized with Monadic Functions, Alvin J.
Surkan, University of Nebraska, USA. APL is used o
facilitate the automatic inversion and execution of
programs which are synthesized by strict functional

VECTOR

Vol.7 No.4

composition. Programs for petforming high level
functions and their inverses can be logically
synthesized and then tested in arbitrary instances. APL
is used to compose higher lovel functions by repeated
left application of functichs and operators dasigned
exprassly so thal their syntax is limited to be monartic.
A small systern of auxitiary functions is sufficient to do
the synthesis of inverse programs. This system
operates on sequences of applicative functions which
must be provided originally with their forward form
caded in functicnal style APL. The system inverts
higher level user-defined functions and generates
carrectly sequenced function calls which are used in
testing the synthesized inverses. Using this system, the
mechanistic reformulation of the forward functions and
their exact, or even their approximate, Inverses can be
produced and then checked for consistency.

APLITDS: An APL Development Systern. Carla Alberto
Spinicci, APL Italiana srl, ltaly. APL ITaliana
Development System (APLITDS} s tha internal
application development system for APL ltaliana, which
alms to reduce development efforts, simplify
mainlenance, and standardize programming styles. It
was originally produced by one programmer in his
spare time. Details of the system and development
methods are discussed.

An APL Rufe-Based System Architecture for image
interpretation Slrategies, P, Bottoni, P. Musslo, M.
Protti, Universita di Milane, ltaly. APL is both a prefored
language far image processing and description tasks,
and a language for antificial intelligence applications,
typically expert systems. This paper presents the
architecture of an APL rule-based system to realize
description synthesis strategies, i.e. sequences of
acticns evaluating the properties of structures detected
in an image and to be refated with objects in the real
scene from which the image was drawn. Descriptions of
Images are stored in a data structure which is formally
presented in terms of the APL2 syntax. The system
processes rules whose format is: search for inslancas
of an antecedent, evaluale a condition on the attributes
of the found instahice, perform an action if the condition
is satisfied. Describing an image often requires that
reflective actions be taken, Le. actions in which the
system examines the state of the computation and its
Internal state lo select the next action to be executed. It
is shown how APL provides all the features by which a
reflective mechanism can be realized through the use of
metarules of the same format and to be interpreted by
the same program as rules,

APL Technology of Computer Simulation. A.Yu. Boozin,
1.G. Pospeloy, Academy of Sciences, USSR,

Advantages and disadvantages of APL language usage
for computer simulation are considered, The |

University, USA. Conventional computer-aided design
(CAD) systems are described, The addition of new
mathematical tools to an existing design system is
generally difficuit since it has to be accomplished
through a software interface to an extemal system.
These difficulties are compounded by the structural
complaxity of the data representing an engineering
design. The sofiware interface should include a rich set
of tools to extract appropriate data for external analysis,
Furthermore, it Is expected that results of anafytical
processes be inserted back into the design database for
further use in the design process, An APL2-based
engineering design system, which includes both the
requlsite data management capabilittes and a rich set of
mathematical tools suitable for engineering design and
analysis, |s described.

Assemblar Utility Functions for APL2/PC, Tauno Ylinen

Firland. Efficiency obsessicns of APLists may date

from years when interpretive overhead was a financial

penalty an mainframes and a prohibitive handicap on

micros. Now, when the general tendency is towards

graphical interfaces and other complexities, which

ustally also lead to prohibitive costs, such still-

managable systems as APL suddenly appear

competitive with regard o speed, space, and cost.

However, compiled functions still have benefit for

boltlenecks. There is also a pleasura in writing -
lightning-fast and very small routines In assembler !
which is not very different from finding more and more
concise fdioms in APL. Several approaches to compiled
sub-programs in APL are discussed: compiling APL
itself, building interfaces between APL and compited
language programs, and building assembly language
modules called from APL,

Avtomated SQL Documentation Using APL2. Rexford
H. Swain, Indepandent Consultant, USA. An application
programmer working with APLZ and SQL/DS will often
want to Investigate and/or document the definitions of
SQAL tables and views, particularly when working with
tables created by others. Unlike conventicnal APL file
systems, SQL "knows" quite a bit about the objects it is
storing, but this information is scattered throughout
several system catatogs. An APL2 tool which combines
and neatly formats available information about a table s
presantad. Intarpretation of this information may point
out conditions which are causing SQL to perform less
than optimally. Seme issues which Influence SQL
performance are considered, and some general
guidelines for impraving performance are suggested.

The Boston University Manufacturing Expert Systom
(BUMES): An APL- hased CASE appiication. T,
Shojaie, S. Sadr, L Zeidner, Y. Hazony, Reuters
Information Services and Boston University, USA.

has been actively used in the Compuling Center during
the [ast ten years for simulation of socio-economic
systems, The criginal software package was developed
with the aid of APL*PLUS/PC. This package makes the
simulation researches easy and helps to get the results
in graphical form.

Application of Nested Arrays to Databases for
Engineering Design. Yehonathan Hazony, Boston

12

facturing engineering involves the processes and
equipment required to design, analyze, fabricate, and
test products. The transition from an engineer's first
sketch o a finished machined part is tradiffonally a long,
expensive, difficult path. This path includes a varisty of
saparate software solutions to individual subproblems.
These solutions raise confusing issues of capability,
compatibility, and dasign integrity. This paper presents
the design and implementatioh of a fufly integrated
solution: to this problem. Thie system enables a

VECTOR

Vol.7 No.4

designer to sketch a part graphically, and immediately
have it machined. Because this rapid-prototyping
system was designed as an integrated solution, it
allows the process rules to be available in the part
design stage, so that unmanufacturable design features
are identified immediately when the designer attempis
ta add thern to the part, Design changes and
subsequent machining are rapid because of
retationships between the part's geometric elements, so
that if some are changed, all can be adjusted
autornatically, The prototype Bostan University
Manufacturing Expert System (BUMES) was designed
and implemented using the Expert System Generalor
(ESQ) CASE too! in APL2,

Bullding an APL2 X-Window Interface for VM and AIX
with & General APL2-to-C Interface. John R. Jensen,
Kirk A. Baaty, {BM Corp., USA. This papar describes
APL2/X, an interface between X-Windows and APL2,
designed and built at the IBM Cambridge Scientific
Center. [t currently runs under VIM/CMS and A1X. The
AlX verslon of APL2 is an expetimental prototype of
APL2 in that environment; |t was demonstrated at the
APLY0 conferenca held in Gepenhagen. The APLZ/X
VM version of the interface uses the APL2 associated
procassor 11 to communicate with X. The APL2fX AlX
version uses a new auxiliary processor to achieve the
same functionality.

Calling APL2 from COBOL. Dot Erickson, The
Travelsrs Insurance Company, USA. This paper will
discuss the reasons why a need came up for COBOL lo
call APL2 functions as execulable modules, the
methods used to complets the interface, and the
benefits and concems that arese during implementation
and raintenanca.

CATS - Computer Aidled Testing of Software. Maurice
Jordan, British Airways, England. This paper describes
the implementaticn of an automated test system lor
APL functions. It extends assertive cornments in APL to
derive a natation for formal specification using pre and
post canditions. Thase conditions are APL staternents
and so can be built into test functions. Data supplied to
provide examples is subjected to mutations so that
adge conditions can be lested for, It makes extensive
use of modern APL Ideas such as defined operators,
phrasal forms, and function assignment,

Comparison of the Functional Power of FORTAAN 8x
and APL2, Robert G. Willhoft, IBM Corp., USA. APL2
and FORTRAN, althcugh very different, share the
challenge of remaining "competitive” in the light of an
onslaught of "modemn” computer languages. To meet
this challenge, both have attempted to enhance their
position by adding significant new features to their
language. APL2 Is a specific axample of an extension of
APL. FORTRAN has also attempted to meet the
challenges of modern programming by developing a
new FORTRAN draft standard called FORTRAN Bx.
The standard revises many areas of FORTRAN, but
this paper will concentrate on those that affect the
camputational power of FORTRAN. Many of thase
changes werae rrativaled by the increased use of vector
and array "supercomputers”. Therefore array leatures,
the ability to act on enftire arrays instead of individual

elements, are an importan! part of this new standard. In
doing this work, the FORTRAN community looked to
APL as an example of a powerful array language. This
paper will answer saveral questions regarding this new
standard. First, from a computational or functional point
of view, what are the major features of FORTRAN 8x?
Next, how do these features compare with APL2? And
finally, what can APL2 learn from the FORTRAN 8x
work?

Compifing APL for Paralle! and Vector Execution.
Timothy A. Budd, Rajeev K, Pandey, Qregon State
University, USA. The inheren parallelism of applicative
languages such as APL and functional languages such
as FP* prasent a litle-axploited somewhat unorthodox
means of parallel programming. Here we summarize
our investigation of a new approach to compiling such
programs for execution on various types of parallel
hardware. Our methad centers around an intermediate
form that is an axtension of the lambda caleulus. Wa
present avidenca that APL. programs are easily
translated into this intermediate form, and that this
intermediate representation lends itselt readily to code
generation for a variety of parallel hardware.

A Dance of Rounds. J. Philip Benkard, IBM Corp., USA.
Two different methods of getting sums of rounded
numbers 1o add up to the raunded sum are discussed.
The case of cascaded rounding, in which the individual
numbers are replaced by sets of numbers to be
rounded, is covered. Gecmetric properties of grade are
Teviewed.

Dependence of Leaming Rate and Generalization on
Number of Processing Elements in a Sparse Distributed
Marnory. Richard M. Evans, Alvin J, Surkan, Defense
Training and Parformance Data Center and University
of Nebraska, USA. A simulated neural network was
developed with APL on an 80388 microcomputer, The
network was configured lo assoclale fask descriptions
with ten categories of military occupatlonal specialty.
The number of processing elements in the problem was
varied. increasing the numbar of processors increased
the speed of learning in the simulation. Generalization
was not significantly different for various numbers of
processing elaments, axcept for one intermediate
number at which generafization eccurred about 15
percent higher. Analysls of the performanca of the
present network suggests that low level, natural
language understanding Is a form of text processing
which promises to become an important application
area for neural model-based cotnputing.

Designing a Kanban Manufacturing System Using the
Saerver Network Generator (SNG) CASE Tool. A.
Bouchentoud-ldriss, L. Zeldner, Reuters Information
Sarvices and Boston University, USA. Developing
concutrent real-world software systems requires a
different sort of CASE tool than those designed for
standard sequenlial von Neurmann software
development, [ssues of concurrency, data flow,
distribution, botlienacks, lcad levelling, and distributed
versions must be addrassed. For cocporative
distributed computing to be widely applicable, suitable
CASE tools must ba developed, This paper presents a
manufacturing enginesring application, a concurrent

VECTOR

Vol.7 No.4

cooperalive processing model of this application and
the CASE tool that was used o design and implerment it
as a distributed software system. The application is a
Japanese manufacturing control sirategy called the
"Kanban System®, The application CASE tool used for
implementation is the Server Network Genarator (SNG).

DSS Structure and Algorithmic Transparency in APL.
W.E. Cundlif, Griffith University, Australia. Earller
diseussion focused on APL, a5 an executable notation
for understanding the inner workings of dialogue
generation and datamodel base management in
dedislon support systems (DS5). The present work
applies the notion of algarithmic transparency to the
broader properties of system structure that connect the
technology components of DSS. Using a concise set of
idioms, embodying only the control construct of
sequence, APL’s direct definition form is smployed in
revealing pattems in the specification of a functional
prototypa, Group DSS.

The Dual Structure of Ondered Trees. Gerard A.
Langlet, Commissariat 'Energie Atomique, France.
Although they were described by K. Iverson in his 1952
book, ordered trees have never been implementad as
APL objocts. However, APL2, as well as |S0-APL,
provide many facifities to handle them. This paper
llustrates with simple examples the duality between the
tree structure and what will be presented as an "object-
oriented definition structure”. APL functions are
proposed to fadlitale the conversion of the one form
into the other one. The utility of trees is greatin DB
processing, in science as well as in business
appfications. Interfacos with the "outer world” - e.g.
word processors or LISP and PROLOG can becoma
easy to build with the help of this simple concept of
duality.

Extending Struetire, Type, and Expression in APL2.).
Philip Bankard, IBM Corp., USA, The two principal
directions of APL are compared. Suggestions are made
for the future enhancement of APL2.

Forecasting Systemn of Employmaent Pension Scheme.
Timo Karpela, Bo Lundqvist, Central Pension Security
Institule, Finfand. This paper describes the long-term
forecasting system of the Finnish employment pension
scheme. All employees and seli-employed persons are
Included in the scheme. The forecasting systam has
three main models: demographic, pension expenditure,
and financing. All models are programmed in APL2,
with use of other products in the same envircnment,

2.0, APE, SQL, ICU, AFP. The medels are compased ot
modules, which make it possible to change the model at
all levets. This structure also gives self-documentary
programming code. Flexibility and documentary
reasons have guided the programming so that compact
and efficient code have not been primary objectives.
The system gives all end users - also thase who have
no knowledge of APL - the ability to make tables and
ICU graphics of the data.

Genetic Algorithms. Manuel Alfonseca, IBM Corp.,
Spain, Genetic algotithms, etmulating biological
evolution, are easy ta pregram in APL. This paper

shows a simple way in which they can be tested and
analyzed,

Gerunds and Representafions. Robert Bernecky, Snake
Island Research, Inc., Canada. Gerunds, verbal forms
that can be used as nouns, are recognized as having
uiility in the realm of programming languages. We show
that gerunds can be viewed as arrays of atomic
representations of verbs (functions) in a way which is
censistent with the syntax and semantics of APL. We
define derivations of verbs from gerunds for the J
dizlect of APL, show how these derivations perform
sequencing, salection (in the sense of generalized
forms of CASE and IFfTHEN/ELSE), lteration (DO
WHILE)}, recursion, and parallel (MiMD) computation.
Wa conclude with alternative represaentations of verbs
which are useful in other contexts.

How 1o Manage Large APL Projects - a User Interface
Management System Approach. Richard R.N. Eller,
TMT-Team Oy, Finland. Many new graphical user
interface (GUI) needs can be handled by user interface
toolkits or libraries. However, use of these wlll not solve
all the complexities of a good user interface. Ancther
approach is to choose, or design, a user Interface
managemant systemn (UIM8) that is responsible for all
user interface actions and, only when necessary, will
call actual application code to perform spedlic
application tasks. What Is APL best for? Calculations,
exparimentation, and data handling? So why should
ane include all the user interface complexitias in the
compact APL application code? This paper describes
the architecture of a UIMS-based large APL application
project. Sihoe a UIMS approach differs from traditional
hierarchical programming, many of these differances
are described in detail. Particular emphasis has been
given 1o the effect of this approach on project
management and the various tasks of a software
project. The paper ends by presenting sorme thoughts
about future APL application development systems.

An Interactive Data Analysis System Developed Under
APL Peler |. Day, Unocal, USA, Unocal has used
STSC APL*PLUS to build a software system for
analyzing data from oil wells. Such data is routinely
gathered from a variety of sloctrical, mechanical, and
nuclear sensors lowered into the well- bore and, for our
purposes, can be regarded as colncldent depth-serles
vactors. The system was designed to allow the data
analyst to perform two key tasks: rapid "visualizing” of
the data; and selecting algorithms and parameters for
interpreting the data. We have used APL, to fulfil two
ditferent needs. At a fundamental Jevel, there is one set
of algorithms that actually performs the data analysis.
Al a higher level is a second set of functions that
provides an interactive interface between the user, the
data, and the interpretation algorithms. This interface is
provided through menus that operate in both text and
graphics moda, through text-entry panels, and through
anh extensive series of graphical routines. In text mode
aperation, we have made considerable use of [[WIN
and related functions under keyboard control, whereas
in graphics mode we have used [|G-style graphics
under mouse control provided through [JINT 51. A
demonstralion of the system, concentrating on the
higher-level intertace, will be given.

VECTOR

Vol.7 No.4

L1...1.3: Considered Hamful., F.H.D. van Batenburg,
Leiden University, The Netherlands. It Is said by nan-
APL-programmers that APL code Is hard to read and
that it is unstructured. Here we argue that APL
programmers may refute this by pointing out some
misunderstandings, but that a final analysis will show a
deepear truth in these crilidisms. We will show that APL
gives ample oppartunity far unstructured code. Two
proposals are presented to address this problem. The
first cne rejects the established standard for labslling
and suggests the adoption of a proper style of
pregramming, enforced by a new standard of labelling.
This standard will abolish unstructured code. Some
negative aspects as well as the positive aspect of this
proposal are discussed. The second proposal revives
an old idea to introduce one single proper control
structure in the language. This would make the current
branch supetfluous and enforce structured code.

Mastering J. Donald B. Mcintyre, Scotland. It is exciting
to recognize a major advance after three decades of
APL experience with the infroduction of the dialect
called J, This paper introduces the readsr to J by
showing what problems the author had to overcoms in
learning it and what techniques he developed to aid him
in writing programs in J.

An N-dimensional Data Structure in Support of
Electronic Data Interchange (EDI) Translatlon. Georges
Brigham, Edward Shaw, The AP Group, Inc., USA. A
method is desctibed by which data in a database
system are narmed using sets. The sets exist in an n-
dimensional data space in which each axis represents a
homegeneous set and all axes (sets) are orthogonal.
Data are named using an ordered combination of the
natnes of the sets. Elements of data are identitied by
referring to the coordinates along the sets (axes of the
database). An executable notation is used to dascribe
refationships between the sets for purposes of
discusslon of execution en the computer. This
methodology lends itself quite conveniently to APL, and
currently forms the foundation for a robust commercial
application performing electronic data interchange (EDI)
translation.

Notes an C Programming for APL Programmers.
Stephen Deerhake, Westport Systems, Inc., USA. As
the domain of "caltable” languages from APL increases,
it is quite likely that APL programmers will find an
Increasing need for the ability to program in other
languages as part of their support activities for APL
prograrnming. This is already becoming prevalent in
mainframe APL2 (APL2/370), where it Is not utncommon
tes find hybrid systems consisting of APL2, AEXX andfor
FORTHAN. Since most "axternal language® activity in
APL-based systerns centars on manipulating APL
arrays, it is appropriate to examine the programming
technigues in callable languages fram the standpoint of
facilitating APL array manipulation. Specifically, G
language programming techniques for handling
APL2/PC arrays are reviewed, The lechniques
discussed emphasize isolation of the application code
trom the underlying array structure, thus maximizing
application code portability, While immaediately
applicable to the management of APL2/PC arrays, the

15

programming techniques and tips offered are applicable
to other APL array implementations as well.

Nuclear Power Plant Diagrostics in APL. Alexander Q.
Skomorokhav, Institute of Physics and Power
Engineering, USSR, This paper discusses the
application of APL to the development of diagnostic
technology for the aperation of nudiear power plants.
The application is illustrated by an example of detecting
and locating failed fuel elements through the use of
Celayed Neutron Detectors (DNDs). This Is
accomplished by APL algotithms examining DND
signals as the power distribution in various regions of
the reactar core is altered.

On Performance and Space Usage Improvements for
Parallielized Compiled APL Code. Dz-ching Ju, Wai-
Mee Ching, Chuan-lin Wu, University of Texas at Austin
and IBM Corp., USA. Loop combination has been a
traditfonal optimization technique esnployed in APL
compiters, but may intreduce dependencies inta the
combined loop. We propose an analysis method by
which the compiler can keep track of the change of the
paralelism when combining high level primitives. The
analysis is necessary when the compiler needs to
decide a trade-off between more parallelism and a
further combination. We also show how the space
usage, as well as the performance, improves by using
systems calls with the aid of garbage collection to
implement a dynamic memory allocation. A modification
of the mamary management scheme can also Increase
available paraltslism. Our experimental results indicate
that the performance and the space usage jmprove
appreciably with the above enhancements.

Programming for Events. [.5. Eastwood, MicroAPL
Ltd., England. Modern windowing user interfaces offer
hoth a challenge and an opportunity for the APL
programemer. This paper discusses some of the faclors
that need to be taken into account when designing APL
applications in a windowing environment, Scmea of the
typical techniques required to produce a robust
windowing application are discussed, and applications
examples are quoted using APL.68000 on the Apple
Mac.

Psycho-hiographical Analysis with APL. Andrew V.
Kandrashev, Alexander A. Kronik, Academy of
Sciences, USSR, This paper deals with computer
methods of psychalogical age maeasuring, psycho-
biographical express-diagnostics of personality, and
data analysis with APL.

Pure Functions in APL and J. Edward M. Cherlin, APL
News, USA. Any expression in combinatory togic made
up of combinators and variables can be abstracted into
a pure combinator expression applied to a sequencs of
varlables. Because there are great simiarities between
combinators and certain APL operators, a similar result
obitains in many APL dialects, However, rewriting
arbitrary APL expressions as pure functions requires
new cpetators, not provided as primitives by any
diafect. This paper defines functional completeness,
gives a construction for achieving it, proves a
canjecture of Kennath [verson that J is functionally

VECTOR

Vol.7 No.4

complete, and shows how closely the major APL
dialects approach thase conditions,

The Server Network Generator (SNG): A CASE Toof for
Distributed Cooperative Processing. LE. Zeldner,
Boston University, USA. The Server Network Generator
{SNG) is a CASE tool that employs a problem solver's
akility to rapresent an application as an ordinary block
diagram, a graphical specification of its macrascopic
structure. This functional decomposition provides a
natural mechanism for subdividing the application into
processing tasks that can be distributed across a
computing network. Each "server” is a software process
that assumes the rofe of one block in the diagram,
perfarming one processing task, employing interprocess
communication as indicated graphicaily. A distributed
network of IBM 7437 VM/SP Technical Workstations
are shown as a powerful platform for problem solving
using the SNG. Distributed computing models based
upon networks of microprocessors have long been
proposed as an alternative to centralized mainframe
computing. The 7437 provides a genuine VM/370
computing environment, and so can use mainframe
systems as powerful nedes in the network, rather than
atternpting to replace them. An auxiliary processor is
presented that was required to support interprocess
communication via the shared-variable interface
between virtual machines on differant hosts.

Supply-Chain Management at Rowntree: Critical
Success Faciors for APL. Adran Smith, Rowntrea
Mackintosh Ltd., England APL has been in use at
Rowntree Mackintosh since late 1978; during this time it
has developed from an initial appfication to Tittle local
systems’ to play a vital role in the supply-chain
management of the company. APL systems are now
deeply embedded in all stages of company operations,
from recipe modelling to the scheduling of raw
materiats, from five-year planning to detailed shift-by-
shift production scheduling. This paper sets oul to
explain the critical success factors which encouraged
the directors of Rowntree Mackintosh to entrust such a
vital part of their business operations to an obscure
Greek language which executes backwards.

Tacit Definition. Roger K.W. Hui, Kenneth E, [verson,
Eugene E. McDonnell, Iverson Software, Inc., Canada
and USA. J permits a form of functional pregramming
we cail tacit definition, in which no variable or
assignment appears. We show how many conventicnal
pregrams can be fransformed into tacit definitions.
Many uses of thesae forms are given.

The User Command Processor. Jim Weigang, APL
Consultant, USA. The User Command Processor is a
new feature of several APL*PLUS systems which
allows vusers to define commands, analogous to system
commands, that can be executed from within any
workspace. This enhancement is effected by means of
two simple changes to the APL interpreter. Coupled
with a suite of two-dozen predsefined commands, the
result is a file-based program storage and execution
environment that integrates many important features
not provided in standard APL systerns. Using the
command processor, applications of unlimited size can
ke developed, run, and maintained without many of the
headaches that are characteristic of workspace-based
systems. This paper describes the basie methods
whereby the command processor operates, provides an
averview of the predefined commands, shows how a
new command can be defined, and illustrates how a
large application can be builit using the command
processor.

Using Boolean Arrays to Build and Completely Analyze
Furrction Networks. Kenneth Fordyece, Jan Janizen,
Gerald Sullivan, Gerald (Jay} Sullivan, Jr., IBM Corp.,
Technical University of Denmark and Rensalear
Polytechnic Institute, USA and Denmark. A critical
computationaf requirement for many of the decision
technologies in the fialds of MS/OR, AJKBS, and DSS
is the development and manipulation of a function
network describing the relationship between "actors”
involved in the application of the decision lechnalogy lo
a spedfic problem. This paper describes how we can
fully bulld and manipulate a function network with
boolean arrays incuding focusing networks, finding
circular conditions, and grouping functions based on
relative independence to identify parallel computational
opportunities and substantially reduce the nen-
procedural aspect of the problem.

16

VECTOR Vol.7 No.4

THE
EDUCATION
VECTOR

April 1991

Editor Alan Sykes

This Education Vector has been reprinted from VECTOR Vol.7 No.4. VECTOR is
the Quarterly Journal of the British APL Association. For more information about
the British APL Association, contact: Anthony Camacho, 2 Blenheim Rd, st
Albans, Herts ALY 4NR Tel: 0727 860130.

Contents
Editorial Alan Sykes 18
Shape, Ravel and Roll Walter G. Spunde 19
Execution Time Alan Sykes 25
APL Booklist Ed Shaw 32

Dr Alan Sykes,

¢/ o European Business Management School
Swansea University

Singleton Park, Swansea SA2 8PP

Wales, UK

17

VECTOR Vol.7 No.4

Editorial
by Alan Sykes

‘Hello and Welcome’ as they say. The compilation of this Education Vector
comes at quite a busy time, The APL Statistics Library Project (ASL!) is preparing
for its launch, and not surprisingly I have been very much involved in such
activities. I hope that in a future edition the ASL project and particularly its
library of functions for basic statistics (up to A-level standard) will be reported.

Hence [am particularly grateful to Walter Spunde for his timely article entitled
‘Shape, Ravel and Roll’.

It is now nearly three years since I took up the editorship of Education Vector. 1
have enjoyed my involvement with members of the British APL Association and
particularly the opportunity to contribute to the columns of Education Vector.
Readers of it have been very kind in expressing appreciation of the efforts that
have been made to build up material that is intended to be helpful in introducing
newcomers to the delights of using APL.

Nevertheless 1 am well aware that there is so much more that could be done. If
only there were more than 24 hours in a day!

So 1 end this editorial with yet more words of encouragement to users of APL
throughout the world to submit to Education Vector material that is appropriate
to the aims and aspirations of it, together with any news and notes that readers
may be interested in.

18

VECTOR Vol.7 No.4

Shape, Ravel and Roll

by Walter G. Spunde

For over a decade keen mathematics instructors have been searching for ways to
incorporate computing power into their teaching of maths. Language
requirements have tended to deflect attention away from mathematical
principles and the maths class has been in danger of becoming a lesson in the
syntax of some computer language or package. An obvious answer was to use
APL, but it was expensive, and difficult to justify to un-informed superiors.

I-APL opened new doors. Free, and nearly as convenient as a calculator, it
should be the answer to a maths master's dream. One of the most appealing
features of APL for the newcomer is the ability, after only a few minutes’
exposure to the interpreter, to produce results, and, with a little additional effort,
to make improvements and enhancements. There is an immediate reward for
every effort made, and immediate feedback on mistakes. It is a superlative tool
for education; but, since the power of using APL is as seductive as the drudgery
of other languages is confining, it has even more potential for itself becoming the
focus of attention. This note is intended to show how little APL notation is really
necessary to make working with an [-APL disk productive in a maths class, with
the focus clearly on mathematical concepts, at tertiary, or upper secondary level.
At the same time too, it may sound a little warning to APL enthusiasts.

A Mathematical Perspective

Linearity is a central concept in much of mathematical theory, and the study of
linear algebraic equations is one of the first non-trivial examples illustrating the
properties of linear operators that students encounter.

The small square systems of equations usually presented, since they are
manageable with hand calculators, provide only poor examples of these
properties, as they are apparent only in the non-typical cases and are difficuit to
discern. Solving a square system of equations is, in any event, such a common
operation that, like taking the square root of a number, (i.e. solving the quadratic
equation x2 = n) there should be (as there is in APL) a primitive to do the job.

By a “primitive” we should understand a mathematical operation that is so
common and well understood, that the details of the algorithm producing the
result need not be a concern (even when they are not, or have never been, known
to the user.)

19

VECTOR Vol.7 No.4

The typical problem leading to a system of equations is an arbitrary number of
equations in any number of unknowns. Setting up a system of four equations in
ten unknowns, from data in Figure 1, is conceptually no more difficult than
setting up two equations in two unknowns. It may actually be easier, since the
pattern in adding up certain fracdons of varicus quantities is more apparent
when there are several of them.

1 NUTRITIVE CONTENT OF FEEDS i
1 (POUNDS OF ELEMENT PER 100 POUNDS OF FEED)
| I
| FEED DIBESTIBLE DIBESTIBLE CALCTUM PHOSPHORUS 3
I MUTRIENTS PROTEIN !
| f
| CORN 78. 40 &. 50 0.02 0.27 I
| aATs 70.10 9.40 0.09 0.34 i
HILO MALIE BO. 10 a.80 0.03 0.30 I
i BRAN 67.20 13.70 C.14 1.29]
! FLOUR MIDDLINGS 78.90 16.10 0.09 0.71 I
! LINSEED HEAL 77.00 30.40 0.41 0.84 '
[COTTOMSEED MEAL 70.40 32.80 0.20 1.22 I
| SQYBEAN MEAL 78.30 37.10 0.24 0. 59 1
| BLUTEN FEED 76.30 21.30 0.48 0.8z t
| HOMINY FEED 84,50 8.00 0.22 9.71 I
i [
| DESIRABLE INTAKES 74.20 17.90 Q.21 0.47 k
| {POUNDS DAILY) !
| — 1
Figure 1

The computing power available from APL implies that the size of the equations
we work with in class is limited only by what can be conveniently displayed on
the screen, and that we need no longer be concerned with the errors that students
might generate (and thus destroying a discussion of the patterns apparent in the
working).

Fundamental concepts

The procedure for “solving” equations involves subtracting multiples of one
equation from the others until an equivalent reduced system is found. This
conceptual structure can be maintained if we can assign a name such as EQN1 to
the string of ceefficients in any equation together with the demands. Working
with equations as in Figure 2 requires a knowledge of only the assignment arrow
beside the elementary operations and the ease of doing it would in jtself be
sufficient justificaion for using T-APL in teaching elimination techniques.
However, if we concentrate on the idea of linear combination - the sum of
multiples - which underlies the very formation of the equations, we soon depart
from this approach to the problem.

20

VECTOR Vol.7 Mo.4

EGONL ¢ 78.4 70.1 80.1 &7.2 78.9 77 70.6 78.% 7&.3 84.3 74.2
EGNZ + 4.3 9.4 5.8 13.7 14.1 30.4 32.8 37.1 21.3 8 19.9
EBNS + 0.02 0.09 0.03 0.14 0.09 0.41 G.2 0.26 0.48 0,22 0,21
EQN4 «+ ©0.27 0.34 0.3 1.29 0.71 0.846 1.22 0.59 0.82 0.71 0.47

0 + EGNL « EGNL # 78.5
1 0.891F 1.019% 0.853 1.0038 0.979& 0.8982 0,9987 0.9707 1.0751 0.7944

0 « QN2 + EGN2 - &.5xEQNL
O I.6029 2.174 O.1427 9.5732 24.0323 246.9414 30.46083 14,9902 1.0121 13,7639

O ¢ EON3 + EGNS - 0.02xEGNL
0 0.0722 9.6E™3 0.1229 0.069% 0.3I704 0.182 0.24 0. 4406 0.1985 O0.1911

O + EQN4 + EQBNA ~ 0.27xE0N1
0 0.0992 0.0248 1.0592 0.439 0.5933 0.9775 0.3203 0.5579 0.4197 0.4131

b o vt A e st

Figure 2

A linear combination is the essential construct in discussing linearity. An
operator is linear if the transformation of any linear combination of elements is
the same linear combination of the transformations of each of the elements. In
the notation of APL2:

FN Coerricients +.x Elements = Coefficients +.x FN~ Elements

Linear combinations occur widely in mathematics: polynomials are linear
combinations of powers, Fourier series are linear combinations of trigonometrics,
the familiar dot product is a linear combination of scalars, pre-multiplying a
matrix by a vector forms a linear combination of the rows of the matrix, pre-
multiplying a matrix by another matrix forms several linear combinations of the
rows of the multiplied matrix, and, of course, solving equations by subtracting
multiples of one equation from another is forming linear combinations of the
equations. When we represent a set of equations by a matrix containing in its
rows the vectors (EQN1,..) for the various equations, it is easy to see that the
elimination procedure is equivalent to a matrix pre-multiplication.

This observation is one of the basic goals of an elementary linear algebra course,
and once it is appreciated, we can deduce the possible existence of an inverse
matrix for a square system, and more generally, of LU factorisations. In APL,
though not by hand, it is also a very practical observation, since we can write a
function (Figure 3) which produces the required multiplier for a particular
reduction, and use it to actually do that reduction.

21

VECTOR Vol.7 No.4

YREDUCERCO1%

[0? I ¢ Piv REDUCER Mat 3DjE3M
C11 N + (p Mat)L1]

£21 2 + (N,N) p 1,Npo

[31 D + MakC Pivill 3 PivE2] 1

Piv im pivot location in matrix Mat
ssasures the nusber of rows in Mat
creates an NxN jdentity satrix

gives the value of the plvot slesent
C41 ZLsPivL1YY + — Matf;PivE22]2D 2ltors appropriate column of I,except
£51 2{PivCLIsPivE1]] & +D for the diagonal entry, which Is 1+0
£51 A The result iz the pre-sultipliier for a Gauss-Jordan reduction of Mat.

REDACE 1 (Piv REDUCER Mat) +.X Hat @ Perforas 8-J reduction

Figure 3

This considerably simplifies the reduction process (Figure 4), and facilitates
changes from one set of leading wvariables in a “solution” to another, thus
opening the doocr to easy discussions of Linear Programming.

EQNS
78.4 70.1 BO.1 &7.2 7H.% 77 70
4.3 2.4 8.8 13.7 1a.1 Jo0.4 32
[+
1

-5 78.5 76.3 84,5 74.2
-8 37.1 21.3 -] 19.9
-2 0.26 0.48 0.22 0.21
.22 0.59 0.82 0.71 0.67

0.02 0,09 0.03 O.14 0.09 Q.41
0.27 0.34 0.3 1.29 0.71 Q.84

1 1 REDUCE EUNS

i 1
1 |
| I
| I
| I
i I
1 I
[0.8 1.02 0.83 1 0.98 0.9 1 0,97 1.08 0.94 1
1 0 3.6 2.10 8.14 2.%8 24,03 24.9& 30.61 14.99 1.01 13.7& ;
1 © 0.07 Q.01 0.12 0.07 0.39 0.18 0.24 O0.44 0.2 0.19

1 © 0.1 0.02 1.06 0O.44 0.6 ¢.78 0.32 0.556 0.42 0.42 |
1 1
1 O+« ECHELON « 4 4 REDUCE 3 3 REDUCE 2 2 REDUCE 1 ! REBUCE ECNS |
1 1 o]] [+] 2.5 “5.2 T9.465 T12.13 T0.51 3,74 "3.42 |
1 © 1 [+] 0 Q.04] 0.03 2.1 7.03 3.8 2.1 |
| ©] 1 o I.18 2.48 9.72 11.17 "4.69 "H.53 2.32 |
1 © o Q 1 0.54 0.03 0.49 ~0.14 "0.02 0.24 0.14 |
1 1
| 0 ¢« HAT + 2 B REDUCE ECHELON H
[3.74 0 Q T2.7F 22.64 T9.33 [+] 40,1 21.352 B.58 |
i 0 0.48 0O [} ~0.02 2.38 0.02 1 I.33 1.47 1 i
1 0 T5.31 1 o 3.39 T23.92 F.45 [+] “42.1 "21.8%9 “8.682 |
| © 0.07 0O 1 Q.34 0.4 0.49] 0.5 0.47 0.3 |
L 'l

Figure 4

Interpreting the “sclutions” shows that the leading variables are given as the
sum of the basic solution and an arbitrary linear combination of the columns of
the coefficient matrix associated with the parameters (Figure 5). The basic
sclution is the particular solution obtained when the parameters are set to zero.
The general solution is seen to be the sum of a particular solution and an
arbitrary linear combination of vectors each of which must satisfy the associated
homogeneous equation. This is the structure characteristic of all linear equations,
be they algebraic or differential.

———r —————

VECTOR Vol.7 No.4

—
{ HMAT |
1 1 5.76 0O] 2,73 22.64 T9.53 o 40.1 21.52 8.48 |
[+ 0.48 0] ~0.02 2.38 0.02 1 3.39 1.47 1 |
| @ *E3.31 1 Q 3.39 T23.92 T.435 [+] T4Z.1 T21.89 TH.B2 |
| 2.07 0O 1 a.34 O.d 0. &7 Q 0.3 0.47 0.3 |
K i

i.w. writing the squations out in standard fore
Xi = B.&6B — J.76 X2 + 2.73 AT - 22,64 K& + F.35 X7 - 40.1 A9 ~ 21.32 X190

I

1

1

1

1

1

|

I

I

| 8 =1 - 0.48 %2 +* 0.02 X% - 2.38 %& — 0.02 ¥7 - I.3T X¥ - 1.47 X10

| mtc.

| UNKQMOWNG + 110

1 LEADING +« 13 48 Tdentifying tha lesading

| PARAMETERS+ UMNINCWNS ™~ LEADING and paramstsr variables

t RHS + 11

I

1 O + BASIC + (MATIJLEADINS)+, <t EADING) ,£1.5] MATC;RHSI

1 1 8.678975114

] -] 0,9974347095 Displaying a basic saluticn

| 3 ~B.814863837

| 4 0,.297091354351

|

I 1 « NULL + & MAT{ PARAMETERS] '
1 T.TA221345 Q. 4752073928 T3L 307316511 0. 074ATT 74413 1
| 27794615 T0.Q019109B723 3. I74ATI066T 0.330591928 Dasim I
1 22 6353464639 2.378120786 ~Z3. 719934874 0. 40411469768 vectors |
3 =9, 349743815 Q. 02447 145983 2. 4502154 0. 4737043338 for 1
] 4Q. 09878804 3. 349135557 ~42.,09817458 0. S01TT21457 rmuall [
] 21.9243152 1. 469355154 =21.893I9I719 G. 4667109407 spacw 1
1 1
i O + PARS + PARAMETERS,L[1.3] PVALUES + ? &p#10 1
| 2 9 |
1 5 3 3
] s 5 Attaching arbitrary values ta the paramaisrs 1
1 7 & 1
| ? 9 i
1 10 3 |
§ 0 « SOLUTION*{{BASICL;11),01.SIMATE;RHSI-PYALUES+. XMUILL) sPARS I
1 1 TES7. 1414214 |
1 a TI4.40127483 |
i 3 347.BITI074 1
I 4 ~11,48500937 Presenting i
] 2 9 a r
1 5 3 completm 3
1 & -3 splution]
1 7 & F
l 9 S 1
] 10 3 L
1 O + SOLUTIOM « SOLUTIONK4SDLUTIONY T
1 1 T357.1416214 L
| 2 9 Ordaring]
] 3 357.83T3076 the]
1 4 T11. 48500737 variabies]
1 s 3 1
] & 3 {Note the new primitive 1
] 7 [introduced for this 1
]] ~34.4012748% purpane.) '
] L 3 3
1 10 3 :
1

[EUNGL;RHE] — EQNSC;LINKNOWNS] +. % SOLUTIONC2] 1
o000]
L —_—

Figure 5

The shift of emphasis to linear combinations of columns that occurs in the
process of writing the general solution opens further avenues of theoretical
investigation, but no further computational tools are required to discuss the
ideas of linear dependence, spanning sets and bases for n-dimensional vector

23

VECTOR Vol.7 No.4

spaces, or of column, row and null spaces, and the rank of a matrix. The concept
of orthogonalify can be seen as an algebraic convenience in the discussion of bases,
which can be given an insightful geometric interpretation later.

Essential APL

To get to this stage, which may be second vear tertiary linear algebra, we have
not needed (beyond the usual mathematical symbols and the assignment arrow)
anything more than shape, ravel, (roll is convenient for generating arbitrary
examples — and it's fun), the index brackets, transpose, the inner product and some
knowledge of how to define and edit functions. The latter should not be
regarded as a purely technical matter, since a concentration on the nature of a
function is not only an essential pre-requisite to calculus but indeed a central
mathematical concept.

One of the very pleasing side benefits from introducing APL notation to students
is the opportunity to revise and to re-examine elementary concepts in
mathematics - concepts that are not always as well understood by students as
they should be, but that cannot be broached at tertiary level without inviting the
scorn of students who suspect they're being insulted. This applies to the concept
of a logical proposition (as embodied in an equation or an inequality) and the
function concept, for which APL notation is superbly suited.

The history of APL’s origins makes it no surprise that the notation provides so
many insights to mathematical concepts. It really is a joy to work with (if only I-
APL had a full screen editor!), and one can only wish that every student had a
laptop with APL in front of him in every class. For many students, it is the lack of
easy access to a micro that prevents their use of the notation, and it is with
continual use that the best results come,

In providing material for teachers, recalling the history of the spreadsheet may
be instructive. A great deal can be done with just the assignment arrow and the
four arithmetic operations. Every element of APL notation represents a
significant operation and should not be introduced any more quickly than
normal mathematical notation. It should also be remembered that one’s own
discoveries are the most satisfying. Students who are stimulated to solve
problems using APL will ask the questions they need answered. There is no
virtue in giving them one iota of information more than they need, and it is a
wonderful feeling for a teacher when the students clamour for more.

24

VECTOR Vol.7 No.4

Execution Time
by Alan Sykes

The aim of this shott note is to discuss the ‘execute’ function ¢ and to present
some important ways it can be used with great effect.

What is 2?

Newcomers to programming sometimes have difficulty distinguishing between
‘string variables’ and ‘numeric variables’. For example in APL, the definitions

A+'1 2 3¢
B+«1 2 3

are quite distinct. To see this note that p B yields the answer 3 and pA 5. This is
because A has allocated to it five characters- *1', ' ', '2', ' ', '3%;
in fact the APL expression A<121'," ', 72! ' ' '3" is equivalent. Further
differences arise if we try to execute the commands

1+B
2 34

1+4
DOMAIN ERROR
1+4
fa)

The statement with 4 can be rectified by “executing’ 4 first.

1+24
2 34

showing that the string contents of A have been converted into their numeric
equivalent.

The use of + however is more far reaching than this. Let's take a slightly different
example.

25

VECTOR Vol.7 No.4

A+'B+1 2 3 uy°

The string contents of 4 now contain an executable APL statement. So not
surprisingly when 4 is executed, the statement in quotes is processed by the APL
interpreter.

123tk

At the very least this provides one with a mechanism for repeatedly executing a
complicated APL statement without having to write an APL program - possibly
an attractive proposition for teachers who would like their students to use
programs as soon as possible but cannot afford the time to show them how to
write programs in APL. (Of course direct definition is a much better approach in
this situation.)

However there are a number of ways in which execute can be exploited with
great effect, particularly in the area of making choices within a program. The-
following sections demonstrate some ideas on this topic.

Incidentally, if we wish to allocate a string variable to B in the above example,
then we must use a repeated quote:

AvIBer11 2 3 v
4
B+'1 2 3t

Choices

Suppose in a program, you have a variable ¢ which can take the values 1, 2.
Also suppose that if C=1, you wish to perform TASK1, whilst if C=2, you wish
to perform TASK2. If TASK1 and TASK2 both require a right argument X say,
then instead of branching on condition €, s may be used in the form:

2 ' TASK' ,(¥C),*' X

26

VECTOR Vol.7 No.4

This works because if ¢=1, then v¢ (format €) becomes the character ‘1" and so
the argument of ¢ is the string ' TASK1 X'. (Note the space to the left of ‘X’ is
crucial.)

A second possibility for choice in programming makes use of the fact that

1/'THIS IS A STRING!
'PHIS IS A STRING!

whereas

0/'THIS IS A STRING'

What is happening here is that the Boolean reduction (0 1 1/'CAT" giving the
string ‘AT’) is being used with a scalar argument (1 or 0) which is then
effectively replicated to the same size as the string - hence 1/.... gives the whole
string, whilst 0 /.... gives the null string,

Hence an alternative version of the previous choice of TASK1 and TASK?2 can be

wtitten

£{C=1)/'TASKL X!
2(C=2)/'TASK2 X!

This use of ¢ is particularly useful in programming, conditionally to execute a
statement or pass through to the next line, without the need to branch.

IF ... THEN ... ELSE

This is a familiar construct in many programming languages, but not in APL. But
if you want it, because you feel it helps you to read your programs, then you can
have it, at the expense of writing three small programs. The idea is to construct
I¥, PHEN, ELSE so that we could write an APL statement such as

IF '¢=1' THEN 'TASK1 X' ELSE 'TASK2 X!

First the program ELSE which is designed to combine the two executable
statements into a two-row character matrix.

27

VECTOR Vol.7 No.4

VY R+LA ELSE RA; M
[11] =r R4 is string vector or scalar APL command
[2] =w» LA is string vector or scalar APL command
[3] » R Is a two row matrix containing both commands
[4] M«(pLA+,LA) [oRA<,RA
[5] R+(2,M)p{M+LA) ,MtRA
v

R+'X+1 2 3' THEN 'X+1 2 3 4!

Rk
X+1 2 3
X+1 2 3 4

pR
29

Now THEN uses as its right argument the two-row matrix constructed by ELSE,
and together with its left argument which when executed tells it which row to
select, returns the command to be executed.

VR+CONDITION THEN ACTIONMAT
1] R<ACTIONMAT[1+~sCONDITION;]
v

And finally, a ‘syntactic sweetener’ IF which merely executes its right argument

VIF STRING
[1] s STRING
v

Hence piecing these together we can write, for example:

O+l
IF 'C=1' THEN 'X+1 2 3' ELSE 'X+1 2 3 4!
X

123
C+2
IF t(C=1' THEN 'X+1 2 3' ELSE 'X+1 2 3 4!
X

12 34

28

VECTOR Vol.7 No.4

A MENU Program

Finally in this article, we use ¢ to construct a MENTU program which activates a
set of different functions by the careful selection of an appropriate key.

First we define the keys to be used; for example assume that there are four tasks
denoted by the keys A,B,C,D.

KEYS+'ABCD®

Secondly, we wish to explain on the screen what the options are that are selected
by these keys. So we might use the BOX program of a previous issue to construct
a matrix called EXPLAIN.

EXPLAIN«BOX 'Opticn 1/0ption 2/0ption 3/0ption 4/°*
EXPLAIN

option 1

Option 2

Option 3

Option 4

Thirdly we list in matrix form the action programs that require execution. (Fach
line of ACTTON could be a complicated APL expression which requires execution
when selected.)

ACTION+BOX 'ACTIONA/ACTIONZ2/ACTION3/ACTIONG/MENU/®

Then a MENU program might look something like the following,.

TMENU
[13 'Choose one of the rolloving using only the keys ', KEYS
[2] KEYs,'-*,' ' ,EXPLAIN
[3] s, ACTIONLKEYS1140;]

v

Some readers may not be familiar with the use of the 1 symbol in this way
(usually referred to as the ‘dyadic iota’” construct). It is basically a vector look-up
table function. For example

312 41l

29

VECTOR Vol.7 No.4

as the first occurrence of 1 in the left-hand side is in position 2. Similarly

'BACD'1'4A!

However, note what happens when there is no occurrence.

'BACD v X!

What is returmed is 1 more than the length of the lock-up table.

Hence in our application, XEY St 1 4[] returns the value 1 2 3 4 according to
the first key pressed equalling AB,C,D and 5 if the first key pressed is not in
XEYS. To cater for this case we have appended MENU to the end of the action list
so that if an incorrect key is pressed, the menu is repeated.

(INote also the reason for the comma after the execute symbol. This is because the
argument of » must be a string scalar or vector. As the code is written, 14[]
returns a vector of length 1 and hence the indexing of ACTION uses a vector,
hence a one line matrix is created.)

As you can see, this basic MENU program is very concise, and a good
demonstration of the usefulness of the execute function.

30

VECTOR Vol.7 No.4

British APL Association Monthly Meetings

From February 1991, we have decided to change the venue of our monthly
meetings in London. Meetings are now be held at the Institute of Electrical
Engineers, Savoy Place, London (nearest tube outlets: Temple or Embankment).
The committee believe that this move will greatly enhance the quality of our
monthly meetings - but they are still free, and of course non-members are still
most welcome. Come along and see if we've made the right decision.

Date Venue Event
26 April IEE London BAA Meeting: Vendor Forum
7 June [EE London AGM and BAA Mesting:
Modern Productivity Aids for APL
20 September IEE London BAA Meeting
25 October |EE London BAA Meeting
22 November IEE London BAA Meeting

42%;3504(

WATERLOD

= Renaissance Data Systems
Enlightenment Thru Information Processing
ALL APL. BOOKS IN PRINT
Catalog excerpts as of September 1, 1990

ACCOUNTING STRUCTURED IN APL, ljif, 1984, 4010, ..t s aresecsressasscsnosmosscseontassessessasessassass sssemsiesst secssasssss sees $10.00
Tha basie principles of accounting with numerous APL expressions 1o modet ther.
COMPUTING IN STATISTICAL SCIENCE THRU APL, Anscomba. 1981, 426D, ..o eniersncssneosissmmsssimsssssasssssisiosicsios $42.00

Lots of statistics and APL. His workspaces afe available from Yale University, A classic,

MATHEMATICAL EXPERIMENTS ON THE COMPUTER, Grenander, 1982, 525p.
Case sludies usnng APL in a number of fields, including stafi stics, linear algebra, geomelry. asymptoti
networka, invariant curves. Detailed dnscrlphon and analysis of APL functions in al topics discussed,

$64.00

3
3
£
[

A delighttul, yet serlous development oP 31 funetions tor fun and learning with roll, deal, binemial distributiops, combinaticns,
rmutations, Seomemc distributions, and the World Saries. Friendly examples. No previous APL required.

DISKI FOR ABOVE containing functions covered in book. $22.00
APL WITH A MATHEMATICAL ACCENT, Jores, Reiter. 1990, 200D, ..ot siesss s ss s ssemsss cssssass s sesssnsssss $41.95
Specially wiitten for use in advanced high 'schoal of college math coursas, By & student of Alvord’s made goodi
APL - THE LANGUAGE AND ITS ACTUARIAL APPLICATIONS, de Kerf, Goovaerts, Stiers. 1987, 223p.oceueeenneens $89.00
Introduction to APL. Loss leserves, ¢redibility, probability, numerical analysis, forecasting, with APL functicns.
COMPUTATION FOR THE ANALYSIS OF DESIGNED EXPERIMENTS, Heiberger, 1889, BBIDo..ooovpevvereccensesinnsrennns $59.95

Ana'{ﬁls of the constructlon of ANOVA programs using least squares technigues, indluding the parsing aigorithms by
which a language sggolllcahnn is interpreted, Emphasizes the Eeometry as well as the algebra of the methadclogy.
All programs in the k are inciuded on 5 1/4" diskettes in APL, BASIC, C, and FORTRA

APLZ2 AT A GLANCE, Brown, Pakin, POIVKa, 1988, 448 . ..v.icuminrmirssssss sy sy st s s sssss pesens $35.00
Salid, ummlmldanng, introduction to APLZ. Clear ||lustrahons moderr: exercises in each chapter, Gets you started,
LEARANING APL: AN ARRAY PROCESSING LANGUAGE, Mason, 18B5, 259D, ... s i o $21.50

Emphasis cn arreys, naturally. A reaciable, detailed introduction with thorough examples,

APL - ADVANCED TECHNIQUES AND UTILITIES, Bergquist. 1986, 450p.
Good discussion of alternative approaches to a wicla range of programming tasks - efficiency, searchlng. dates,
workspace documsntation, file design, boclean techriques. Assumes knowledge of the basics, Many idioms
DISKETTE FOR ABOVE.
Contains all functions described in text. Formatied tor APL*PLUS/PC, uploadable to Sharp APL, VS/APL, APL2,

APL AS A TOOL OF THOUGHT, PROFESSIONAL DEVELOPMENT SEMINARS, NY/SIGAPL; Tha first 5 years.
A wide range of topics in education and business, Logig, insurance, statistics, A. 1. accuuntmg,iractals teachers toolbox, computer
science, biclogy, graphics, enginesring, data basas, and much more, 1983 - 1987, apprcmmal-?y BOOD, v 355,

APLAS - STATISTICS TUTORIAL, Alvord, Traberman, et al, 72p. . eeereesteeeestisareesnts teresmenstsatans ... $10.00
A uniqua callection of papers on stalistica and its exposmon in ARL.

[e e e e i e T —— — — — — — —

] MName: Date: Payment in check or money order payabie
In $U, 5. must accompany erder. Send to!

] v

Street: Eegaléganf&ggla Systems

X
Park West Finance Station

] Ciy atate: Bostat Coda: ?fﬁgj‘é’ork New York 10025-1510
| : :H ostal B: | 64-3078
| Country Telephcne Day: Evening:
| Wa regret that we cannot accept purchase orders or credit cards,
1 Tiife Peice Quantity _ _ Total
I
| Titte Pelea Quantity Total
[Titte Prica Quantity Total
{ Subtotal: i ——

Postags and handling - U S. and Canada {$2.50 minimum; £2.50 each item over $25.00):
| « Internalional (suslace mail add 15%. airmail add 40%): ——
| [O—
| Teotal:
I Thank You For Your Order!

l Flease send complate CATALOG of APL books and software [

VECTOR Vol.7 No.4

THE
RANDOM
VECTOR

The Newsletter of the APL Statistics Library

Editor David Eastwood
April 1991
Contents
Editorial David Eastwood 34
The Third ASL Conference 35
The Genesis of ASL (2) Tony O'Hagan 36
The Regression Shelf Alan Sykes 11
Sterling’s Function: a Case Study in APL David Appleton 47

33

VECTOR Yol.7 No.4

Editorial

In this second issue of ‘Random Vector” Tony O'Hagan continues to explore the
genesis of the ASL project, seeking to prove that if no one present at a meeting
can remember what was said, he who writes something down creates the
history! During the period in question {late 1988 to date) T have been a member
of both the BAA Committee and the ASL Management Committee and so 1 can
add some comments regarding the feelings of the BAA Committee when we
were first officially approached for funding. I think it is fair to say that there was
an immediate and enthusiastic acceptance of the ASL project within the BAA -
we felt that ASL combined a number of themes dear to our hearts:

+ ASL represents a means of demonstrating the appeal of APL in a key area of
current usage.

« Within that area, ASL offers a route to enhance APL’s level of acceptance by
supplying the basic, tested, algorithms that new users have a right to expect.

+ The proposal seemed unlikely to receive any commercial funding.
- The project proposals seemed to be realistic and not over ambitious

The initial queries raised by the BAA were largely concerned with points of
detail within the various proposals put forward by the ASL team.

In the first issue of Random Vector we gave a brief overview of the contents of
the "Bottom Shelf’ ASL functions. By the time this issue is delivered the official
launch of ASL will have taken place at the March 1991 meeting of the BAA. In
the run-up to this launch, a meeting was held on February 12 1991 at University
College Swansea. Maurice Jordan and Jake Ansell braved the uncertainties of
British Rail and its attitude to snow. Norman Thomson was unable to be present
but communicated by telephone. Also present were Alan Hawkes, Alan Mayer
and Alan Sykes from University College.

A profitable day was spent reviewing the mountain of paper produced by
Maurice’s “APL test bed’ as applied to the functions on the bottom shelf. This
largely automatic approach to APL code testing was discussed by Maurice at the
second ASL conference at Swansea in September 1990. Also discussed were the
comments that had been received from testers who had attended that September
meeting. Alan Mayer presented his work on producing accurate tail probabilities
and quantiles for Normal, t, F and Chi-Square, which have subsequently been
tested by Maurice.

VECTOR Vol.7 No.4

Norman Thomson has been maintaining the specification document for the
Bottom Shelf and has been incorporating the results of discussions such as this in
the document. I shall publish as much of Norman’s document as space permits in
a future issue of Random Vector.

This issue, however, takes a look at the Regression Shelf in some detail. We
reproduce some notes written by Alan Sykes which were issued with the first
test versions of the Regression Shelf. Although, as Alan says in his article, these
notes are now being revised, they do offer an insight into the scope of the
Regression Shelf,

The last article included is not so directly related to the ASL theme, but David
Appleton does offer an interesting view into the way in which the APL
representation of a particular mathematical formula can be progressively refined.
As with any article which dares to introduce the theme of coding techniques and
style, I expect a lively reaction from readers, so, having lit the blue touch paper,
shall retire and await the postbag with interest.

The 3rd ASL Conference

[would like to conclude this introduction by making a preliminary
announcement about the third ASL conference. This will be held at:

The University of Wales Conference Centre at Gregynog
from Monday 30 September 1951
till Wednesday 2 October 1991

As with previous ASL conferences, this is an invitational conference and the only
costs for delegates are their travel costs. We are hoping to review the status of
ASL and to chart out the next phase of development for the project. In particular
we are hoping to attract more volunteers to work on the project!! The ASL team
will be delighted to hear from anyone who would like to attend - we are trying
to continue the mix of Statisticians from Higher Education and the state or
private sector as well as theoretically professional APL programmers. If you
would like to find out more about the next conference, why not contact one of
the ASL Management Committee who are:

Chairman: Tony O’'Hagan, Department of Mathematics,

University of Nottingham, University Park,
Nottingham NG7 2RD. Telephone: 0602-484848 x2800

35

VECTOR Vol.7 No.4

Deputy Chairman: Alan Sykes, Department of Management Science and
Statistics, University College of Swansea,

Singleton Park, Swansea SA2 8PP.

Telephone: 0792-295296

Manager: Jake Ansell, Business Studies, University of
Edinburgh, William Robertson Building, 50 George
Square, Edinburgh EHS 9]Y. Telephone: 031-667-1011

BAA Representative & Newsletter Editor: David Eastwood, MicroAPL Ltd,
South Bank Technopark, 90 London Road, London SE1 6LN.
Telephone: 071-922-8866

BAA Representative: John Searle,
13A Mount Ararat Road, Richmond,
Surrey TW10 6PQ. Telephone: 081-948-6737 (home)

The Genesis of ASL (2): October 1988

by Tony O’Hagan

First Approaches to the BAA

The very earliest beginnings of the ASL idea were chronicled in the first article in -~
this series. The next key event was a meeting on 5th October 1988 at IBM South
Bank, London. Present were Jake Ansell, David Eastwood, Norman Thomson
and myself. This meeting drew up the following list of goals as part of
“establishing an APL service to statistics users”.

1. Define standard functions for basic statistical operations. Identify good
implementations, pessibly by soliciting cede from the statistics/ APL
community.

2. Identify standards for delivering functions/workspaces to different APL
systems.

3. Draft standards for more complex functions, their syntax and means of
verification.

4. Create a library for statistical functions, comprising the standard basic
functions and others submitted by users.

36

VECTOR Vol.,7 No.4

5. Prepare housekeeping procedures/functions to administer this library. These
should cover receipt, verification and storage of new functions/workspaces,
plus selection, packaging and delivery of requested functions/workspaces.

6. Document functions in book form, possibly loose-leaf.

Several ways of achieving these goals were discussed, but the favourite was for a
student to do it as a one-year MSc project. I agreed to look into the possibility.
Finally, the meeting considered ways of funding the project. The idea of an MSc
student was attractive because it would be cheap, but still substantial money
would be involved. It was here that involvement of the British APL. Association
was first suggested. Another possibility was funding by IBM.

My investigations concerning the MSc idea were not very successful, for similar
reasons as caused us to drop the thought of a PhD project in our earlier
discussions. But David Eastwood made contact with the BAA on our behalf at a
BAA committee meeting in November. They expressed an interest in principle in
providing support for our project. In particular, they suggested that the ball
could be set rolling by having a conference on ‘APL and Statistics’, to establish
demand and collect ideas. This very positive response to our tentative enquiries
was extremely encouraging. For the first time, it looked like the ‘statistics library’
might be in business!

[have no record of what happened in the next couple of months. I believe that
we were asked to clarify our thinking, but no written proposal seems to have
been made then, nor any meeting held. The BAA committee met again in January
1989, Alan Sykes, who was the BAA Education Officer at the time, wrote me a
letter dated 18th January reporting the committee’s conclusions. A substantial
part of Alan’s Education budget for the year was to be given to the proposed
conference. He had already made a booking for it at the University of Wales
Conference Centre at Gregynog for that September, Furthermore, a firm proposal
for funding of the project itself would be welcomed.

Another meeting took place on 24th February, again at IBM Socuth Bank. This
was publicised by Jake Ansell through the APL Statistics Users” Group, and
attracted several interested people from industry. In all, the attendance was Dick
Bowman, Mike Day, David Eastwood, Peter Lane, A MacGillivray, Robin
Morphet, Alan Sykes, Norman Thomson and myself. A great deal was discussed.
Dick Bowman suggested that Sig APL might also contribute to the ASL project.
Dick Jater followed this up without success. It seems that the American group are
very wary of supporting an initiative which might later compete (‘unfairly” is
implied) with commercial products,

37

VECTOR Vol.7 No.4

The main achievement of this meeting was to establish two interim committees.
A Conference Committee, chaired by Alan Sykes, would meet to plan the
conference in September. A Proposal Committee, with me in the chair, was
charged with drawing up detajled proposals for funding of the project proper,
for submission to Sig APL and the BAA.

Another interesting suggestion made at this meeting was that in due course the
Royal Statistical Society might be prevailed upon to put some kind of seal of
approval on the functions produced. Although this has not been pursued any
further, we still hope to do so when sufficiently battle-hardened software is
ready. The meeting ended with a discussion of a name for the library, and for the
project. S-APL was tentatively agreed.

My records are hazy again here. It is clear that 1 prepared a first draft proposal
and sent it to members of the Proposal Committee only four days later, on 28th
February. It seems likely that when the meeting on the 24th ended it
metamorphosed into a Proposal Committee meeting, which went on to discuss
detailed proposals at some length. The text of that original draft is no longer with
me, either, It went through a series of medifications, including further feedback
from the BAA in April, and emerged on 5th June 1989 as a substantial five-page
document. The name had changed to ASL = APL Statistics Library (because S-
APL was already used by I P Sharp), and that name has stuck. Since this
document defines ASL in basically the form which BAA agreed formally to fund,
it is worth setting down here the essential features.

1. The objectives were set out as “to establish:

{a) a setof standards which will give coherence to the assembly of functions,
make them easy to use singly and in combination, facilitate porting to a
range of interpreters and hardware, and help with verifying their
correctness;

{b) a ‘bottom shelf’ of functions comprising the most fundamental statistical
routines (descriptive statistics, calculations on standard distributions,
etc.), plus utility functions (data handling and I/O, graphics, numerical
procedures, etc.);

{c) various other ‘shelves” of functions for specific statistical applications,
such as regression (linear models), categorical data analysis, multivariate
statistics, reliability, analysis of variance, sample survey analysis, time
series and forecasting, all taking functions from the bottom shelf, and
possibly other shelves (e.g. a shelf for generalised linear models may take
functions from the regression shelf).”

38

VECTOR Vol.7 No.4

2. The benefits were described as follows. “One of the best-selling categories of
software is statistics packages... We want ASL to be a flagship for APL in this
important market.” But it was stressed that ASL would not be just another
statistics package. “... it will not be a closed package, allowing the user to do
only what the programmers have thought to include. The full power of APL
will always be available, ASL merely providing a sophisticated set of
functions, which the user will then combine with each other, the APL
primitives and his/her own functions. For the lay user, the documentation
will provide idioms for operations such as selection of variables and cases,
data transformations and passing data between functions. To such a user ASL
will appear as a complete package, as general and user-friendly as
conventional packages. To the APL user it will be much more.”

3. It was also boldly claimed that “ APL is the best language for doing statistics.
Data analysis is essentially exploratery. It is not a simple matter of applying a
single standard analysis to the data, but of trying different kinds of analysis,
looking at the data in different ways, and drawing together a range of
conclusions. The APL environment is ideal for this activity. The APL language
also uniquely supports the processing of arrays of data neatly and simply.”

4. Management of ASL was to be by a Management Committee, to be elected at
the September conference. [n addition to a Chairman, Manager (responsible
for day-to-day running of the ASL effort), Treasurer and Secretary, it was
hoped to have BAA involvement through its Projects, Technical and
Education Officers.

5. A programme of work was described, culminating with a general release of
the first ‘shelves’ in September 1990, These were to comprise a bottom shelf as
in 1(b) above and a regression shelf. Although both first and second
generation APLs were to be supported, ‘APL2’ implementation was not the
first priority.

6. Funding was requested for a programmer, working for about 2 days per week
for a year, for a PC for the programmer, and a small amount for expenses and
consumables. The BAA was asked to commit money on a phased basis,
payment at the second phase being subject to satisfactory progress in the first
phase (to March 1990).

Since then, there have been minor changes in the formal objectives, the
management and the timescale, which will be described in later episodes of this
series ... (watch this spacel), but the ideals of (2) and (3) have kept ASL going
ever since.

39

VECTOR Vol.7 No.4

The ASL Regression Shelf

by Alan Sykes

Introduction

The ASL project outlined initial ‘shelves” to be produced in the first year. One of
these was a Regression Shelf. An exploratory workspace was produced and
discussed by the ASL committee. That workspace built on the work of Jake
Ansell and Alan Sykes over recent years in using APL routines that behaved
similarly to those implemented in the Royal Statistical Society’s Software
Package ‘GLIM’. It was decided that the Regression Shelf should contain a set of
functions that performed GLIM-type calculations in a way that allowed them to
be incorporated into user functions.

Introduction to Regression

Most users of Statistics, or for that matter users of APL, understand the basic
principle of ‘Simple Linear Regression” where a response variable’s average
value depends on a predictor variable in a linear way. The equation of that line is
estimated from bi-variate data by the method of least-squares, which in APL
means the use of the dyadic version of “domino’,

In this introduction, some basic terminology is explained and the simple linear
regression model is extended into the concept of a statistical linear model.

There are three major atiributes of a statistical linear model. First we have the
RESPONSE variable, often referred to as the ‘y-variable’. This is usually random,
with distribution assumed to be NORMAL or GAUSSIAN. Secondly, we have
one or more PREDICTOR variables, usually regarded as non-random, which
predict the average value of the response variable in a linear way. If E(Y) denotes
the “expected” value or mean value of the response variable Y, and U,V,.W are
predictor variables then we assume that

E(Y} = a+bU+cV+....dW ,
where a,b,...d are unknown constants.

So much for the mean of Y; what about its variance? The simplest assumption to
make is that the variance is constant, given by k say. Hence y has a Normal
Distribution with mean a+bU+cU+..+dW and variance k. Regression Analysis

40

VECTOR Vol.7 No.4

concerns itself with the statistical procedures appropriate to estimating the
unknown linear regression parameters a,b, ...d, together with the nuisance/scale
parameter k. As such it is merely one example of the basic paradigm

Observation = Signal + Noise

Given a collection of values of the response variable, and the associated values of
the predictor variables, the machinery of statistical linear models concerns itself
with:

(a) Choosing appropriate models;
(b) Validating a chosen model;
{¢) Estimating the parameters;
(d) Using the model for prediction.
Hence, functions are required to enable the user to:
{a) Specify a model;
(b) Estimate the parameters of the modek;
(¢} Testhypotheses concerning that model;

(d) Perform diagnostic tests and graphical plots to investigate the validity and
appropriateness of the model.

Generalized Linear Models

Over the last twenty years the success of statistical linear models has been
strengthened by relaxing two of their basic assumptions. First the assumption
that the response variable has a Normal distribution is relaxed. Alternatives
(from the ‘Exponential family’) such as Poisson, Binomial, and Gamma
distributions are allowed extending the scope considerably. For example if Y is a
count of radioactive particles emitted from a source in a time period of size x,
then, rather than assuming that y had a Normal distribution with mean atby, it
is likely to be more appropriate (since the y values are counts) to assume that Y
has a Poisson distribution with mean a+bx - hence the idea of ‘Poisson
Regression’.

The second assumption that is relaxed is the idea that the ‘linear predictor’, i.e.
the function atbu+cv+.dw, need not specify the expected response E(Y). Rather,
the linear predictor specifies a function of the expected response. For example in
Poisson regression we may assume that atbU+cV+.dW = log(E(Y)). This

41

VECTOR Vol.7 No.4

concept of a “Link Function’ extends the scope even further. Generalized Linear
Modelling is now an accepted part of an applied statistician’s armoury of tools. Tt
is not surprising that the success of the package GLIM has resulted in the
inclusion of such tools in many other statistical packages, such as SAS,
GENSTAT and now ASL!

The Facilities Within the Regression Shelf

The first, draft, version of the Regression Shelf was distributed to interested
parties during and after the second ASL conference in October 1990. Feedback
gained as a result of that exercise has resulted in some modifications to the shelf
which I shall detail below.

In the remainder of this article, I shall introduce the faciliies offered in the
Regression Shelf and in a future article T shall discuss the operation of the
functions supplied within the shelf in more detail,

A Database of Examples

In order that the Regression Shelf may be tried and tested, a number of databases
have been provided in a separate workspace. Each database is stored under a
variable name, which specifies a character matrix with a simple but specific
format:

1 Introductory Lines, specifying appropriate references
2 Blank Line

3 Variable Names; one per line with at least one space between the name and
the (tabulated) start of the explanation of the variable names

4 Blank line
5 Lines of Data

As an example consider the data set #OUSEPRICES

HOUSEPRICES
HOUSE PRICE DATA, SOURCE: Genstat 5 An Intreduction, by Lane,
Galwey and Alvey, Page 55. 20 similar houses rfor sale in
Harpenden in 1977

VECTOR Vol.7 No.4

PRICE House price in pounds sterling

SPACE Total floor space of the house Iin square-metres
GARDEN Area of the garden in square-metres

AGE Age of the hkouse In years

11500 131 140 88
15500 154 245 70
1295C¢ 137 150 66
14¢0C 121 1BO 43
16500 135 260 17
1760¢ 172 40O 23
1245C¢ 112 90 52
18500 124 120 190
14900 141 180 u3
16250 149 350 36
1840¢ 170 320 7
11950 83 350 19
10409 111 280 62
17250 162 380 12
13450 148 190¢ 23
10950 128 160 75
13950 152 45 92
11500 101 450 42
17500 145 275 0

Functions are supplied to allow you access to the explanation, the names and the
data. A function is also provided to extract the data into numerical form attached
to the names provided.

EXTRACT HOUSEPRICES
PRICE +S5PACE +GARDEN +AGE

(N.B. the explicit result of using EXTRACT is a string variable containing the
variable names, separated by plus signs - this is useful for feeding into the
regression routines. But in addition of course, the variables PRICE, SPACE,
GARDEN and AGE are now in the workspace.)

An Introductory Example

A simple example of the basic regression directives using the database on
HOUSEPRICES as described above gives a flavour of the Regression Shelf.

EXTRACY HOUSEPRICES
PRICE +SPACE +GARDEN +ACGE

43

VECTOR Vol.7 No.4

The aim of the use of regression here is to attempt to explain the variation in
house prices in terms of the information about the houses contained in the
variables SPACE, GARDEN and AGE. Intuitively, a large house with a large
garden will command a higher price than a smaller house. As for age, perhaps its
influence on house price is debatable.

Since the object is to predict house prices, the variable PRICE, or some
transformation of it must be declared to be the ‘y- variable’. This is done using
the directive YVAR.

YVAR 'PRICE/1900°
Y variable is PRICE/1000
units set to 19

To predict this variable, we have the choice of using all or some of the variables
SPACE, GARDEN, AGE, together with any variables that can be constructed
using them, such as for example SPACExSPACE, SPACExGARDEN, =AGE,
etcetera. In addition, we usually require a constant term, which is denoted by
‘GM’. Let’s try using just the variable SPACE, and of course a constant. Predicting
PRICE using 'GM+SPACE’ is then equivalent to finding the regression line of
PRICE on SPACE.

The linear predictor is specified by using the directive LP.
LP 'GM+SPACE!
To fit, fallow this with the directive FIT.

FIT

Response Variable is PRICE/1000
Fitted Model is GM+SPACE

source 55 dr ns
Due to model 66,223 1 66,223
Residual b6.083 17 2,711
Total Corrected 112.306 18 6,239
Percentage Variation Accounted for = 58,97
F-statistic = 24.43
p~value= 00

VECTOR

This table presents a summary of the ability of the chosen linear predictor to
predict PRICE+1000. It takes the form of an 'ANOVA’ table which breaks
down the variation in the ‘y-variable’ (in this case 112.306), into that explained by
the model (66.223) and the residual variation of the data about the fitted
regression line (46.083). Hence we can see that using SPACE as a predictor
variable explains 100 %66 .223+112.306 or 58.97% of the variation.

This summary does not however give the estimated coeffictents of the predictor

variables (M and SPACE). The directive DISPLAY does.

DISPLAY
var Est Std Err
oM 2.576 2,410
SPACE .086 017

Now it should be clear from this simple one-variable model how to fit more
complicated models. Let's use all the supplied variables, for example.

LP 'GM+SPACE+GARDEN+AGE"

FIT

Response Variable is PRICE/100¢
Fitted Model Is GM+SPACE+GARDEN+tAGE

t-stat p-

val

source ss
Due to model 96.986
Residual 15,321
Potal Corracted 112.306

Percentage Variation Accounted for *

F-statistic «

p-valuew

DISPLAY
var Est
GM 6.079
SPACE 077
GARDEN -.001
AGE -.0u8

Std Err

45

86.36
31.65
.00

VECTOR Vol.7 No.4

From these results, we can see that with the additional variables, the total
prediction capability is 86.36%. Note from the estimates, that the coefficient of
AGE is negative (older houses tend to be sold for less than younger houses, other
things being equal), and that the coefficient of GARDEN is less than its standard
error, indicating that its predictive capabilities in the presence of the other
variables is very small.

Fitting a model such as the above is fraught with problems. There are so many
assumptions involved which should be checked. There is a vast array of
suggested techniques for doing this and the regression shelf includes a number
of the most popular regression diagnostics as well as a repertoire of functions to
run and test more complex models. In the next article on the Regression Shelf T
shall illustrate the full scope of the code supplied in the Regression Shelf.

Since January 1991, 1 have been working on a complete revision of the Regression
Shelf. The basic weighted least-squares routine has been changed from one based
on Householder's method to a version of Beaton’s method.

The criticism raised by early testers that the Shelf was ‘too packaged’ has been
considered seriously. However it does seem that it is difficult to provide useful
functions including output without a good deal of packaging. So, in the revision,
we have tried to reach a compromise - the package is there, but it is more
modular, with core functions, such as the weighted-least-squares routine
available to the user directly. With the aid of good documentation, a user has a
choice of using the Regression package or choosing core routines for his own use.

The numerical computations have now been checked by reference to published
examples in the GLIM manual and in Aitken’s book on Generalised Linear
Modelling. Additional functions have been added including Summary Statistics,
correlation matrices (both for estimates and regression variables), and Box-Cox
loglikelihood for power transformation.

46

VECTOR Vol.7 No.4

Sterling’s Function: a Case Study
by D R Appleton

Theme

Several different APL functions, for the evaluation of Stirling numbers of the
second kind, are presented. Their advantages and disadvantages are discussed.

Exposition

A colleague doing some theoretical statistical work on the analysis of an
experiment which had resulted in counts from the truncated Poisson distribution
being observed, recently asked me if T had an APL function to evaluate the
Stirling numbers of the second kind. I did not have such a function, but he told
me they were defined for positive integers nand t by

a formula obtainable from Abramowitz and Stegun (1964}, With APL it is easy to
turn this expression into executable form, for example:

< STIR1 >

However this function can be improved: it ignores the fact that the first term is
identically zero, it does not make it clear that the result is always positive, and
APL has a more concise way of summing alternating series. A better function is
therefore given by

< STIR2 >
It may or may not be numerically preferable to factorise out the n! and use

< STIR3 >

Of course APL’s power comes from its ability to handle several different values
simultaneously. We could easily have a vector for 7.

< STIR4 >

47

VECTOR Vol.7 No.4

However, it is likely that the values of T we would require, at least to form a
table of the Stirling numbers (which might be useful in the long run to save
calculation) would be all the positive integers up to T. This leads to

< STIRE >

and we could have, had we wished, developed STIR2 to this form instead of
STIR3.

If we wish to produce and save a table of the numbers we may build STIR5 into
aloop:

<
STIRG

>

it is now time to look at the table of numbers this function produces; this is
shown in Table 1 for N=6 and T=5. It becomes very clear that a function which
wastes its time calculating values for ¥>T is unsatisfactory. This, of course,
should have become evident if a little more algebra had been done before
turning to programming, or if STIR2, say, had been propetly tested, but the
functions are so simple it hardly seemed necessary to test them all individually!

Table 1 t
------- 1 2 3 4 5 5
1 1 1 1 1 1 1
] 0 1 3 7 15 3
n 2 0 0 1 6 25 20
4 0 0 0 1 10 61
5 0 4] 0 0 1 15
& 0] o o ¢ 1
Development

It is important to define more coherently the problem we are tackling. We now
want to procuce a table of Stirling numbers in which the element at row n and
column p contains o, and to solve the practical problem underlying the
computing problem we would like n to take values up to at least 100 and p to
reach at least Zn for as many values of n as possible. This means rewriting
STIRS as

< BTIRT7 >

48

VECTOR Vol.7 No.4

Running this in a loop produces Table 2 for N=8 and P=6. The magnitude of the
values appearing in the table gives rise to concern for the function: when will it
overflow? This is certainly a matter which will have to be investigated, but there
are other interesting aspects to the table.

Table 2
------- <]
1 2 3 4 5 6
1 1 1 1 1 1 1
2 3 7 15 XS 63 127
3 6 25 20 301 966 3025
no4 1¢ 65 380 1701 7770 34105
5 15 140 1050 6951 42525 246738
6 21 266 2646 22827 179487 1323652
7 28 462 5880 63387 627396 5715424
8 36 750 11880 152027 1899612 20912320

From row 2 it is clear that 0%,,, = 2 0%, + 1, and from row 3 it is not too difficult
to deduce that 03,3 =3 0%, + 02, , and hence to discover the recurrence relation

U“' =n g-nt + gn-it
This enables us to write a function without calculating the factorials or binomial
coefficients in our original definition.
<

STIRS

>

But what is this? An APL function with a double loop? Surely that is
unnecessary. Instead of working a row at a time we must evaluate the table by
columns.

<
STIRS

>

Now we have a much faster function (taking about a quarter of the time STIR8
does for N=80 and P=80), which is approaching its final stage, but let us look
more closely at the table and the function we have written. Column 1 is just
+\1¥ and column 2 is therefore +\(1N}x+\1N. Indeed column P is
214 (7%xP)p ' x+\{1N) ' an expression so concise it is hardly worth writing a
function for. Notice that +1+4 (9xP)p '*+\ {1 N} ' prints out the entire table
given by STIR9, although it transposes it and prints each line to a different

49

VECTOR Vol.7 No.4

format. This is avoidable, for small wvalues of ¥ and P, by
224 {(12%P)p 20«10 O¥+\X'}, '+ 1N' but we wish to store the table, not
print it, a task which is done by our final version

< STIR =

which is slightly faster even than ST7R9.

Recapitulation

We have seen how it is worthwhile to Jook at the problem from a theoretical
point of view so that we may obtain different algorithms for calculation. Even
with an apparently obvious formula, simply translated into APL, it may be more
appropriate to use a recurrence relation. This is not only for reasons of time,
which are not of vital importance if the values obtained are to be stored in any
case, but for reasons of numerical accuracy. In passing we suggested that STIR2,
which involves the calculation of a factorial and a set of binomial coefficients,
might have different numerical properties from STIR3 which involves two sets
of factorials.

To investigate this suppose ¥=5¢ and T=60, the sort of numbers which might
indeed arise as the result of a small experiment. STITR1 and STIR?2 give 0%, =
2.02x10% while STIR3 and STIR4 give 5.06x10%. The sensitivity of each
function to the order of summing the series can be looked at by changing -/ in
STIR2 and STIR3 to ~/¢; the results change to 1.71x102 and 7.09x10%
respectively, With STTR4 we can even alter the calculated value of § depending
on which values other than 60 we include in vector 7. STIR (and STIR9 which
uses the same arithmetic) gives 9.55x102 for o5, which I believe to be correct,
Not only is the algorithm contained in 1+ {7xP)p ' x+\ {1 N)" remarkably
succinct, it is numerically preferable to the others. STIR works whenever
350>N+2=P and occasionally outside that range. When the function fails it is
sometimes because the workspace becomes full, and sometimes because a
domain error occurs. The figure shows an isometric plot of the common
logarithm of the Sterling numbers of the second kind, for values of n and t-n up
to 80. The values given above, except for that of 9.55x10% , are system-
dependent; the ones quoted were obtained from IBM APL on a Personal
Computer, the same phenomenon occurs with different values using TRYAPL2.
Other systems give a domain error instead of inaccurate results.

50

VECTOR Vol.7 No.4

Coda

The style of programming illustrated in STIR can be utilised in many instances
of recursion, though the Stirling numbers of the second kind may be the most
elegant. Readers might like to deduce what the following expressions evaluate.

< TXT® >
< TXT9 >
< TXT1Q0 >

Reference

[1] Abramowitz, M. & Stegun, [A (eds). Handbook of mathematical functions with
formulas, graphs, and mathematical tables. Washington: US Govt. Print. Off.
1964.

51

VECTOR Vol.7 No.4

APL Product Guide

Compiled by Alison Chatterton

VECTOR's exclusive APL Product Guide aims to provide readers with useful
information about sources of AFL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We do depend on the alacrity of suppliers to keep us informed about their
products so that we can update the Guide for each issue of VECTOR. Any
suppliers who are not included in the Guide should contact me to get their free
entry - see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage.

The listings are not restricted to UK companies and international suppliers are
welcome to take advantage of these pages. Where no UK distributor has yet been
appointed, the vendor should indicate whether this is imminent or whether
approaches for representation by existing companies are welcomed.

For convenience to readers, the product list has been divided into the following
groups:

* Complete APL Systems (Hardware & Software)
* APL Timesharing Services

* APL Interpreters

* APL. Visual Display Units

* APL character set printers

* APL-based packages

* APL Consultancy

* APL Training Courses

* Other services

* Vendor addresses

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

Note: “poa’ indicates ‘price on application’.

All contributions to the APL Product Guide should be sent to Alison Chatterton,
at the address on the inside back cover.

52

VECTOR

Vol.7 No.4

COMPLETE APL SYSTEMS

COMPANY PRODUCT

Active Workspace Lid

PRICES(E)
WL.486 4,450
AWL 386 3,095+

APL Paopla IBM PCs & compatibles poz

Dyadic IBM RS/8000 MDS320 11,736

IBM RS/6000 MD320 13817

iBM RS/6000 MD320 22,658

{BM R3/600C MD520 ErARL

{BM RS/6000 MDS30 72,054

IBM RS/6000 M540 122,842

MicroAPL Aurora 20,000+
Spectrum 7.000+

M.T.LC. 386sx AT 2600+

APL TIMESHARING SERVICES

COMPANY PRODUCT PRICES(E)

REUTER:FILE SHARP APL pea

Unlware APL*PLUS call

APL INTERPRETERS

COMPANY PRODUCT PRICES(£)

Active Workspace Ltd DYALOG APL DOS 386

APL Softwars APL*Plus{PC Release 9 B35
Run-ime poa

DETAILS

485 based 25MHz PC, 140MB Disk, 4MB RAM, VGA Colour,
{Ing. 1 year on sits maint.)

385 based 25 & 33MHz PC, 140MB Disk, 4MB RAM, VGA
Coloue. (Ine. 1 year on site maint)

incluctes PC, menofeoiour monitor, APL interprater, cperating
system scftware, plus optional printers, graphics boards,
addlticnal memory etc.

APL POWERSstation (Grayscela) 27.5 MIPS, 7.4 Milops RISC
Processor 8MY RAM, 120Mb Disk

19" 128011029 Grayscale Graph Display AlX, OSF Motif, Dyalog
APL (1-user}

APL POWERSstation (Calour} 27.5 MIFS, 7.4 Milops RISC
Processor 8Mb RAM, 120Mb Disk

16" 1280x1024 Colovr Graphlcs Display AlX, CSF Motf, Dyafog
APL (1-user)

Advancad APL POWERstaton 27.5 MIPS, 7.4 Mflops RISC
Procassor 16Mb RAM, 320Mb Disk, 150Mb Tape

16" 12B0x1024 Colour Graphics Display AlX, OSF Metf, Dyaleg
APL (1-user)

APL POWERSsystem {8-users) 27.5 MIPS, 7.4 Mtiops RISC
Processor 16MbB RAM, 320Mb Disk, 150Mb Tape CD-ROM

Driva, 18 Ports
AlX, Dyalog APL (2-8 user licance}

APL POWERSsystem (16-users) 34.5 MIPS, 10.9 Mfiops RISC
Procassor 32Mb RAM, 1.24Gb Disk, 2,3Gb Tape CO-ROM
Drive, 14 Ports

AlX, Dyalog APL (8+ user licence)

APL POWERsystam (32-users} 41 MIPS, 13 Milops RISC
Processor 64Mb RAM, 1,7Gb Disk, 2.3Gb Tapa CD-BOM Drive,
32 Ports

AlX, Dyalog APL (8+ user licance)

Muldl-user APL computer using 88020 GPL. Std. configuration.
2Mb RAM, 16 AS232 ports, 68 Mb hard disc, 720K diskette

Expandable muld-user APL computer using Motorola 85000. Std.
conguration 1 Mb RAM, 12/36 Mb disc, 12 ponts.

Entry level 32-bit compact AT with DYALOG APL. 2MB ram,
VGA, 40MB hard disk, 1.44MB floppy disk, 102-key keyboard,
menlktor, mause, MS-DOS 4.01, WORKS and WINDOWS-3E8.
Many expansion opticns availabla,

DETAILS
Internatienal Network application systems and public databases.
STSC's malnframe service

DETAILS
Dyadics PC 383 APL interpreter

STSC's APL for IBM PC, PC/AT and P52,
Upgradas frem earller Releases alse avallable.

Closed version of APL*Plus/PC which prevents user exposurs o
APL.

53

VECTOR Vol.7 No.4

APL*Plus It 1600 Incorporatas malinframe features & performance In a version of
APL for the PG

Run-tme poa

Dyalog APL 1000-10,000 2nd generation APL for Unlx systems

APL2IPC 376 [BM's APL 2 far the PC.

Cocking/Drury APL*PLUS PC Ral 10 477 STBC’s full featured AP for IBM's and gompatibles - Version 10
includes the quad-NA facllity te Interface to non-APL, software,
support far MS Windows and reuss devices. The User-
command processor has been built In to the interpreter.
Upgrades to varslon 10 are avaliable from Varsion 9 and earlier
releasas,

APL*PLUS PC Run-Tima poa Closad version of the Interpreter for developers, prevents user
exposure ta APL.

APL'PLUS Il System 1600 High pawared APL interpretar for the BO336 chip.

Prica Includas one ysars malntenanca end fres upgrades -
volume discounts
VERSION 3 NOW AVAILABLE,

APL*PLUS Il Developer Systom poa All the fealures of the APL*PLUS |l System plus unlimited free
run-times te enable davelopers to distrouts thelr applications.

APL'PLUS UNX poa STSC's 2nd generaton APL for all major Unix computers and
workstations. Version 4 for existing platforms and for the IBM
R&/6000 avallable from January.

APL*PLUS VMS poa 2nd generation APL for DEC VAX computers running under
VMS.

APL"PLUS Malntrame pea Enhances VS APL with many high perfermance, high
productivity featuras. For VM/CMS end MVS/TSO offars simple
upgrade fram VS APL.

Dyadic Dyaleg APL for DOS/386 995 Sacond ganeration APL for DOS.Runs In 32-bit mode, supports
very farge workspacas. Unique “window-based® APL,
Developmant Envirenment and 8SM Screen Manager. Reguires
386486 based PC or PS{2, at Isast 2Mt: RAM, EGA or VGA,
DOS 3.3 or later.,

Dyalog APL for Unix Syslems295-12,000 Second generation APL for Unix systems. Avalfable for Altos,
Apolle, Bull. Dec, HF. IBM 6150, IBM RS/5000, Masscomp.
Pyramid, NCR, Sun and Unlsys machines, and fer PCs and
PC{2s running Xenix or AlX, Oracie intarface avaliable for IBM,
Sun and Xenlx versions.

I-APL Lid I-APL/PC or RML Nimbus 4.50 I1SC conferming interpreter. Supplied only with manual. (see
‘Cther Produc!s’ for accompanying boeks)

I-APL/BBC 4.50 As above

FAPL Archimedeas 4.50 As above

{BM UK IBM PC APL2 348 APL2tor the (BM PC, Program §799-PGG/, PRPQ number RJ-
04t1. From all IBM dealars,

MicroAPL, APL.68000 Leve! | 2000 Flrst ganeration APL with numaraus enhancements. Multl-user
versian (Unlx, Mirage, MCS),

APL.6ED0O Lavel It 2500 Second generatlon APL. Nested arrays, user defined operators,
selective spedification elc. Multl-usar version {Unlx, Mirags,
MGS)

APL.680O00 Leval |

Mac, ST, Amiga, QL 87 First generaticrs APL. Single user, full windowing interface,
software floating point support.

Mac, Amiga 260 First gsneration APL. Single user, full windewing Interfaca,
hardware Hloating palnt.

APL.BB000 Level Il

ST 170 Second generation APL. Full windowling Interfaca, soitwara
flcating paint support.

Amiga 260 Second generation APL. Full windawing interface.Hardwars and

software Moating point support,

54

VECTOR

Vol.7 No.4

Mac 520
APL-PLUS Rel 10 450
APLTPLUS Il V3.0 1398
REUTER:FILE SHARP APL poa
Unfware APL*BLUS/PC 495
Run-Time call
APLEPLUS/UNX call
APL PLUS I call

APL VISUAL DISPLAY UNITS

COMPANY PRODUCT PRICES(E)
APL People 1BM & compatibles pea
Dyadic |BM 3161 599
iBM 6154 1,228
General Software Mellordata poa
Shandell HDS3200{10 APL 965
HDS3200/25 APL 1065
HOS3200/35 APL 1265
HDS3200/6C APL 1395
APL PRINTERS
COMPANY PRODUCT PRICES{E)
APL People Epson series 200
CQuen-data & Quime etc 500
Dyadic Varigus poa
MicroAPL Datasouth DS150+ 1,195
Phlilps GP43¢ 2,137
Quma Letterpro20 548
APL PACKAGES
COMPANY PRODUCT PRICES(E)
Active Workspace Lid
Syndicate Mapager poa
APL-385 APL-385 50(PC),125(mf}
FSM-385
DRAW-385

Second generation APL. Full windowing Interface. Hardware and
software floating polnt support.

for IBM mainframes
STSC's full featura APL for IBM PC/XT/AT, Compag, Clivetti.

Glosed verslon of APL*PLUS/PC which prevents user exposure
to APL.

STSC's tuli feature APL for UNIX based computers
STSC's full feature APL for 386 machines,

DETAILS
IBM and ‘budgst’ APL VDUs - menochremefcolourigraphics.

Monaochrome APLJASCIT vdu with APL keyboard. Supports
downloaded Dyalog APL font.

Colour APL/ASCI| vetu with APL Keyboard. Supports downloaded
Dyalog APL fant.

18" screen, 8 page memory, windows, 80/132 columns, full
averstrke. Multi-host mufti-sessien support. ANSI X3.64, DEC
VT100, VT220, Tektronix 4010/4014 1024 x 300 rasolutlon.

As above plus switchakle 25 or 50 line screen. 75 Hz refresh.
Resolution 1024 x 780 in graphics mede,

As HDS3200/25 plus local pan & zoom.

14" colour monitar. 75 Hz refresh. 8 or 16 colours froam palette o
258. Clsplay memory 96 lines of B0 or 132 columns. APL
processing & keyboard with full overstrike. Windows, muiltl-hast,
multi-sesslon support. ANSI X3.64, DEC V1220, VT100, vT52
emulation.

DETAILS

Inaxpensive dot-matrix and NLQ printars

Dalsy-whael printers

Hange of APL printers availzbla.

See Datatrade sntry

Marix printer with lstter & draft quallty and APL (480 cps).
APLASCI Dalsy-wheel printar

DETAILS

Lloyd's managing agent's syndlcate [company acsounting
system. Stamp & Parsonal accounts (ing, Run offs)
insluding ...

Screen development

Scraan dasign

55

VECTOR

Vol.7 No.4

APL Software Ltd
(mainframe)

{microcamputer)

AFL IMPETUS

Cocking/Drury
{for VSAPL)

{for ARL2)

{for PC's}

H.M.W.

HRH Systems

{NFOSTROY
Interprocess

{mainframe)

0B-385
GEN-385

RDS
{PLS
AEGGPAK

POWERTOOLS

REGGPAK
ADS
Impetus

E'MENTS & SHAREFILE

COMPILER
FILEPRINT
FILECONVERT
FILEMANAGER
TOOLS + UTILTIES
DATAPCRT

SHAREFILE/AP

FMT
WEDOC
FILEMANAGER

APL*PLUS PC Tools

IHMA Module
FIN & STAT. LIBRARY
SPREADSHEET MGR

AXTAA
Arbltrage
Baskst
Menu-Bar
AFL Utilitles

Russfiicator

IEDIT

AFM

Format
FSM124

poa
poa

poa

295

990

poa

poa
poa
poa
poa
poa
pea

poa

poa
poa

poa

275

250
150

poa
poa
pea
pea

poa

poa

1600-3200

B200-9800

1650
1650

Relational W.S,

Miscellanecus Utilities

Relatiors Data Base System
Project Management System
Regression Analysis Package

Assembler written replacement function for commonly used
CPU-consuming APL functions, includes a Forms Processer.

Regrassion Analysls Package
Relational Database System
Higrarchical Planning System

Component files, quad- functions & nasted arrays for VSAPL
under VM/CMS & MVS/TSO

The First APL compilert

Print APL component files

Converts non-APL files to APL

Exteands APL primitives to database management
APL Software development tools

Information Centre spreadsheat incorparating data exchange
betwaen APL, FOCUS, IFPS, SAS, APL/DI, ADRSII, Lotus123,
Visleale, Multiplan & DIF

STSC's shared access component file system far APL2.
Comparable te all APL*PLUS flle systems: multl-user storage of
APL2 arrays with sfficient disk usage

Full featured FMT for APL2
Workspace documentation utilties
Extends APL primitives to databass management

Utiiitias including: RAM disk, full screen data entry, menu Input,
report gensration, excepticn handling -and games.

327x IRMA support.
Financial & Statistical routines

APL-based spreadshest for APL*PLUS/PC. Cell arithmetic;
transfers to ASCI| & Lotus

Front-end Foreign Exchange dealing { pos keeping
Arbitrage madelling

Basket currancy medelling

puli-down menu for APL*PILUSIPC

PC Utifitles including: APLMAC {windows); Unfock (unlocks
functions in .AWS); DTEX (text and spreadsheet impfexp).
Mostly avallable In English ar French,

Drivers and documantation for use with APL*PLUS/PC system
and other STSC software with Cyrlllic alphabet (PC).

Full serean APL2 editor with Immediate APL execulicr, and a
full-screen debugger

High parformance component and kayed file system (VS APL
and APL2)

A QuadFMT data farmatter for VS APL and APL2
AP124 programming for APL applications without GDDM (APL2)

56

VECTOR

Vol.7 No.4

(PC}

Marcla

MicroAPL

AEUTER:FILE

Uniware
{malnframe)

PowerCode
CALUAP

UCF

AFM
STATGRAPHICS 4

Upgrade 3 to 4
Upgrade pra 3 to 4
MICROSPAN
LOGOL

TWIGS

T

MicroTASK
MicroFILE
MieroPLOT
MicroLINK
MicroEDIT
MicroFORM
MicroSPAN
MlcroGRID
APLCALC
MicroPLOT{PC
MicroSPANJPC
STATGRAPHICS Rel 4

GLOBAL LIMITS
iPSA/CONNECT
MAILBCX
MAILBCX/FC v.2
upgrade to V.2
NEWSFLASH
VIEWPQINT

ST5C's ENHANCEMENTS

5T8C's SHAREFILE

1300

1800
115
684

215
s
250
pos:

199
99

599

250
250
250
250
260
250
250

peca

250
250
590

poa

poa
75
15
poa
pea

poa

pea

Extarnal functions for APL2

for calling hon-APL programs (VS APL and APL2)
Inter-user data transfer for VM users via ILVC
Singla user component and keyed fles for APL2IPC

Integrated statistics/graphlcs system for the PC, Now with
macros. Bulk and educational discounts avallable.

Comprehensive APL tutor

Leglstics managemeant system for PC and 388, Sales
Foracasting, Inventery Centrol, Master Schaduling, Distribution
Requirements, Planning stc

A modular library of tools to teach and expiore state-of -the-art
mataerials management concapts,

Time serlas feracasting
Warshouse replenishment
inventory Management

Grouping requirements inte EOQ's
Schadullng producticn/purchasing

All 5 modules above

All 5 modules sita licance
Preduct devalopment alds

Flie utflities and database
Graphics for HP plciters ete
Genaral device communlicatians
Full screen APL editor

Full sereen lorms deslgn
Comprehansive APL tutor
Ethernet & other networking
APL spreatishest system

For APL"PLUSIPC product
APL self Instruction for APL"PLUS/PC

Exposure management for banks
Malintrame to micre link

Electronic Mall

Full screen front end to IPSA mallbox

Real ima message exchange
4GL - Info cantre product

Cuad-luncticns & nested arrays for 1BM VSAPL under VM/CMS
and MVSTSO

compenent flles for IBM VSAPL under VM/CMS and MVS/TSO
amnd for IBM APL2

57

Vol.7 No.4

VECTOR
PROGRAMMER TOOLS & POA
UTILITIES
FILEPRINT poa
FILESCRT poa
FILECONVERT poa
FILEMANAGER(EMMA) peoa
EXECUCALC poa
{mlerocomputer)
STATGRAPHICS poR
STATGRAPHICS UNISTAT poa
APL'PLUS TCOLS
-YOL1 poa
-AOL2 poa
SPREADSHEET MNGR
APL*PLUSIPC FIN & poa
STAT.LIBRARY
POCKET APL poa
UNIASM poa
UNITAB poa
Tha APL CEBUGGER poa
APL2C poa
Warwick University
BATS 250
FAB free
APL CONSULTANCY
(prices quoted are per day unless ctherwlse marked)
COMPANY PRODUCT PRICES(E)
Active Workspace Lid
Consultancy pea
Adfes Consultancy poa
APL Pacple Consultancy poa
Buckiand Management
Systems Censullancy poa
Camacho Consultancy poa
Chapman Caonsultancy 150-300

STSC's database package

Mainframe spreadshee! compatible with VISICALC and part of
LOTUS 1-2-3 under VSAPL(VM or TSO,

Stalistics and graphlocs for PCa
An add-on module to STATGRAFPHICS: Data analysis software,

Incl. 327 A IRMA support, RAM disk, full screen data entry,
menu input, report generation, games

Incl. Fife documentor, screen editor, exception handling.

poaAPL spreadsheet with bullt-in ASCIL, |OTUS and
SYMPHONY interfaces,

Collection of tinangial

and statistical utllities.

Smaller version of APL*PLUSIPC.

Cellaction of assembler routines for APL*PLUS/PC users,

APL*PLUS/PC spreadsheet-like data entry and valldatien
system.

Flrst released APL*PLUS/PC debuggsr.
Interface batween APL*PLUS/PC and DATALIGHT G language

Menu driven system for ima series analysis and ferecasting
uslng Bayaslan Dynamic madelling. Prics Is raduced to £35 for
academic Institutions.

Trainlng program for the above.

DETAILS

PG Based APL system design, programming and
Implementation.

Devalopment, maintenance, conversion, migration,
documentation,.of APL products In all APL environmenis

Consultants available al all levels, with experience in: VS APL,
APL*PLUS, APLZ, Sharp APL, Dyalog APL, APLEB00, C/Unlx,
TSO/MVS, VMICMS, graphics, Operationat Raseareh ete,

Expertisz In APL system deslgn, project management,
proletyping, finandal applications, decisien support systems,
MIS, links to non-APL systemns, documentation, stc.

Business and Technlcal systems in comimerce and Industry -
designing, programming and implementing applications,

Speclalising In programming & manual writing.

24-hour programmer: APL. C. assembler, graphics; PC, minl,
mainframe, network,

58

VECTOR Vol.7 No.4
Cocking/Drury Consuitancy 178-.275 Junior cansultant
275-350 Consultant
300-450 Senlor consultant
400-600 Princlpal Consultant
450-750 Managing consultant
Peter Cyrlax Consultancy 100-150 Juniar Consultant
120-200 Consultant
16G-300 Senlor Gensultznt
Dalphi Consuliancy poa APL system developmen? on mainframes and micros.
Dyadic Consultancy poa APL and Unix system deslgn, consultancy, pregramming and
tralning.
E&S Consultancy poa Systemn pratotyping: all types of informaticn system, engineering
software, graphlcs and decislon support systems APL*PLUS/PC,
APL2, Dyslog APL
General Softwars Consultancy from 120
H.M.W, Consultancy poa Systemn deslgn consultancy, programming. HMW specialize In
banking and prototyping work.
lan A. Clark Consultancy poa Computer-based Infermatien Systems Implamentation where
acceptance is critical. APL on PC and Macintosh. Human
Factors gt HCI; novise ease of use; online assisiance,; training
courses; distance-leaming materials.
INFOSTROY Consultancy poa Localization of APL software for the Soviet Union software
market
Intaligent
Programs Lid Cansultancy 175-350 Systems development, enhancements, support,
Documentation 150-250 Preparation of naw manuals, rewriting of existing materials.
Tralning 150-250 Training for APL experts through to non-technical system users,
Marocila Conaultancy poa APL*PLUS & VSAPL consultancy.
MicreAPL Consultancy poa Technical & applications consultancy.
MTLC. Cansulitancy 240-500 Business analysis and APL consuliancy
Parallax
Systems Ine Censultancy $750 Introductory APL, APL for End-user & Advanced Topics In APL
QB On-Une Consultancy 250 Speciallsing in Banklng, Financlaf & Planning Systems.
REUTERFFILE
Cansultancy poa Consultancy & suppart service world-wide.
Rochester Group Consultancy poa Speclalise in MIS using Sharp APL
Rex Swain Censultancy poa independent cansultant, 15 years experiance. Custom soltware
developmant & training, PC andfor mainframe.
Wicklitfe
Computer Lid Consultancy poa System design, censultancy, pregramming and documentaticn.
Especlally project managemant and decislon support systems
OTHER PRODUCTS
COMPANY PRODUCT PRICES(E) DETAILS
Adles Employment pea Contractors and permanent employees
APL Peaple Employment Agency poa Permanent employees placed at all lavels. Contractors supplled
for shori/lang-term contracts, supervised or unsupervised.
Executive Search service available,
HMwW Employmant poa Contraciers and permanent smployees placed.
FAPL Ltd An APL Tuterlal 2,580 45pp by Alvord & Thamson

59

VECTOR Vol.7 No.4
An Encyclopaedia of APL (2nd Edn)5.50 228pp by Helzer
APL in Soclal Studiss 2,50 3Gpp by Traberman
I-APL Instruction Manual (2nd Edn)2.50 65pp by Camacho & Ziemann
APL Programs for the Mathematics Classrcom (Springar-Varlag)
14,50 185pp by Thomson
** Please add one pound packing charge per order **
REUTER:FILE
Productivity Tools poa Utilities for systems, cperations, administration & analysts;
auxiliary processors, comms software, International network.
Databases poa Financial, aviation, energy and soclosconomic.
181 Tangible Math $18 An APL Approach 1o Math - Shareware, includes base Sharp
APL
J $24 Dictionary APL simplified and enhanced - Shareware (Mac,PC)
SharpAPLFC §74 Registared Shareware and Referenca Manual
15! APL $99 Impreved APLPC - enhancements, performancs, large
workspacas
Renzlssance
Data Systams Bocksellers The widest range of APL books available anywhere. Ses Vector
advertisements,
OVERSEAS ASSOCIATIONS
GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub. Visa/Med
APL Bay Area USA N. Californla APLBUG Manthly Mestings (2nd Monday} $15 N/N
DCutch APLU.G, Holland - Mini-congress, APL ShareWare Initiative
APL Club Austrla Austria - Quarterly Meatings Z00AS{person, 1000AS per
company NN
VENDOR ADDRESSES
COMPANY CONTACT ADDRESS & TELEPHONE Mo,
Active Workspacs Ltd Ross D Ranson Moulsham Mill Gentre, Parkway, Cheimsford, Essex, CM2 7PX. Tal: {(0245)
252414 ext,240
Adfes Bemard Smoor Dorpssiraat 50, 4128 BZ LEXMOND, Netherlands. Tel: 31.3474,2337, fax;
31.3474.2342
APL 385 Adrian Smith Brook House, Gilling East, York, Tel; 04393-385
APLBUG Jorge Mezsi 117 East Creek Dr., Menlo Park, CA 940265, USA
APL Club Austrla Erich Gall |BM Osterreich, Obare Conaustrasse 95, A-1820 Wien, Austria
APL tmpatus Lid Cacric Heddle Rusper, Sandy Lans, Ivy Hatch, SEVENOAKS, Kent TN15 OPD
Tel: C732-885126
APL Paopla Jili Moss The Cid Malthouse, Clarence St, BATH, BA1 NS, Tel: 0225-462602
APL Softwere David Alis The Cid Malthouse, Clarence ST, BATH, BA1 5NS.Tel: 0225-462602
Jill Moss
Buckiand Managemen!
Systems John Buckland Westwood, 19 Grange Road, Camberley, Surrey, GU5 2DH
Tel: 0276 684327
Anthony Camacho 2 Blenhelm Road, St. Albans, Herts AL1 4NR.
Tel: St. Albans (0727) 860130
Faul Chapman 18, Trevelyan Road, Lendon, SW17 9LN Tel: 081-767 4254

Cocking & Drury Ltd.

Romilly Coeking 180 Tattenham Court Road, LONDON, WP SLE
Tel: 071436 9431 Fax: 071-436 0524

60

VECTOR Vol.7 No.4
Datatrade Lid. Tony Checkseld 34 Bliling Road, Northampton, NN1 SDQ. Tel: 0604-22283
Delphi Consultation David Crossley Chureh Green House, Stanford-n-the-Vale, Oxon SN7 BLQ.
Tel: 03677-384
Dutch APL UG, Bernard Smoor {Sec) Postbus 1341, 3430BH Nleuwegein. Tel: 03474-2337

[vadlc Systems Lid.

E & S Assoclates
General Software Ltd
H.M.W, Computing L.

HRH Systams

lan A. Clark

[-APL Lid

J C Business Services

{BM UK Ltd
INFOSTRCY

Interprocess Systems
Intelligent Programs Ltd
181

Mercia Software Ltd.
MicroAPL Ltd.

MT.LC.

Peter Cyriax Systems

Parallax Systems Inc,
QB On-Line Systems

Peter Donnelty

Frank Evans
M.E.Martin
Stan Wilkinsen

Dick Holt

Antony Camacho
June Cuns

NatEng, Centre
Alexel Miroshnikov

Stella Chambertain
Mike Bucknall

Eric Iverson
Crders

Gareth Brentnall
David Eastwood

Ray Cannan
Peter Cyrax

Kevin Weaver
Phillp Bulmer

Rsnalssanca Data Systems Ed Shaw

REUTER:FILE
The Rechester Group
Shandell Systems Ltd.

Sugar Mill Scfiware Corp.
Rex Swain

Uniware

Wickliffa Computer Ltd
Werwlck Unlv.

Paul Jacksan

Robert Pullman

Maurice Shanahan

Lawrence H. Nitz

Eric Lescasse

Nick Tetfer
Prat.Joff Harrisan

Riverside View, Baslng Road, Old Basing, Basingstoke, Hants RG24 0AL.
Tel: 0258 811125 Fax; 0256 811130

19 Homasdale Road, Grpington, Kent BRS 1J8. Tel: 0689-24741
22 Russell Road, Narthhalt, Middx, UBS 4Q5, Tal:081-864-9637

Hamilteh House, 1 Templs Avenus, Victerla Embankment,
LONDON EC4Y OHA Tel: 071-352 4212
Telox: 926604 HAMHSEG Fe: 071-353 3325

Box 4498, Sllver Spring, Maryland 20804

9 HIll End, Fresteriey, Bp. Auckland, Co. Durham DL13 25X
Tel: 038852-7190

2 Blenhalm Read, St. Albans, AL1 ANR. Phene 0727-860130 for querles,
order farms, pulk crdars

£8 The Crestant, Milton, Westen-super-Mare, Avon, BS22 BDU N.B. PAID
ORBERS ONLY

414 Chiswick High Rd, Landen W4 STE Tel: 081-747 0747

3 5, Tulenin Lane, Leningrad 191186 LUSSAK. Tel:812.238-6392 Fax:812-
319-9709

9040 Roswell Acad, Sulte 890, Atianta, Georgla 30350-1131
Tel: (404} 892-8400

Unit 7, Hermltage Court, 6-10 Sampscn Street, London E19NA Tel:071-
4814813

33 Major Strest, Toronto, Ontario, Canada MBS 2K Tal:(416) 525-6098
3512 Cameron MIila Aoad, Alsxgndria, Virginia, USA 22305-1103 Tel:(703)
548-179%

Aston Sclenee Park, Love Lane, Birmingham B7 48, Tel: 021-359 5098

South Bank Technopark, 90 Londsn Road, LONDON SE1 6LN
Tel: 071-022 8868

7 Pine Y¥eod, Sunbury-on-Thameas, Middx. TW1{8 65H Tal:
Sunbury{09327) 0848

213 Goldhurst Terrace, Lendon NW6 3ER Tek 071-624 7013
(Answerphone) CBE0-377983 (Mobile}

Avery Road, Box 319, Garrison, NY 10524, U.S.A, Tel: 914-424-4265

8 Surrey Housa,Ponsmouth Rd Gamberley, Surrey, GU15 1LB.
Tel: 0278-20789

P.O. Box 20023, Park West Finance Station, New York, NY 10028-1510,
U.S A, Tel (212)864-3078

7th Floor B Block, Coventry Point, Market Way, Coventry GV1 1EA
Tel: 0203 256562

50 S.Union 5t Rochester NY 14807, U.S.A. Tel;716-454-4360 or 716+
484-4641

Chiltern Hausa, High Stree!, Chaifant St. Giles, Bucks., HP8 4CGH, Tel:
02407-2027. Fax:02407-3118

1180 Kika Place, Kailua, Hawail 96734 Tel: (B08) 261-7538

8 South Strest, Washington, CT Q5793, LL.S.A. Tel:203-868-0131 or 212-
242-5816

15 Rue Erlanger, 75016 Paris, France. Tel:(1) 45-27-20-61, Fax:(1)45-27-
20,61, Telex: B48348F UNIWARE

76 Victoria Rd., Whitehavan, Cumbria, CA28 BJD. Tel:09456-692588

Dept of Statistics, University of Warwick, Ceventry, CV4 7AL
Tel:0203-52336%

61

VECTOR Vol.7 No.4

ZARK: an APL Tutor for APL*PLUS/PC

reviewed by Emily Timson

ZARK is a software package which aims to teach APL to novices whilst
providing a valuable reference aid to experienced APLers. My parents both work
with computers and seem to be infatuated with the things: I have been fairly
successful in avoiding anything to do with them. Then my husband bought one
and also tried to get me interested and that’s how I was persuaded to try ZARK
and relate my experiences for Vector, a magazine 1 have never read. When 1
began I knew almost nothing about APL.

The ZARK APL Tutor Kit

The Software was on 4 floppy disks and a couple of pages of information about
getting ZARK up and running on your PC all in a small disk container. The
instructions were brief and straight forward for my husband. They worked first
time. Within a couple of minutes he had started ZARK for me and I was sitting
comfortably and ready to begin.

Zark is written in American, which sometimes makes it hard to follow, and is
frequently amusing. I laughed out loud on many occasions. Here is a sample of
the style from the &tarting instructions:

The Zark APL Tutor won’t do you any good if your computer won’t talk APL. These
instructions may help fo get you going. Follow them carefully.

1. Find someone who's installed APL on his or her computer. Get down on your
knees and ask for help.

2. Failing that, read the installation instructions that come with the APL product.
Do what they say.

3. Failing that, follow the steps below. We"ve distilled them from the manuals . . .,
If you have trouble, return to step 1 or 2 above.

4. Failing that, learn COBOL.

The Introduction

I thought it would be wise to give this section a visit. (You see the Zark style is
catching). Getting here was simple, 1 just pressed the SPACE BAR. Instantly, full
colour easy to read text screens (we have VGA, but they work on Hercules too

62

VECTOR Vol.7 No.4

because we used to have that). Six pages followed in which I was told about the
structure of the lessons and more importantly which THREE keys I had to press.
SPACE BAR to proceed with the lesson, F1 for HELP and best of all ESC to get
me out of all difficulties and back to the main menu,

Feeling in control and not yet confronted with anything confusing or difficult I
moved straight on to the first lesson (SPACE BAR).

The LESSONS

ZARK seems to be meticulous in the way it has covered aspects of the language
with a lesson for each one. Tf you know what subject you want to be taught you
can quickly select a topic from the index screen and move straight into the
required lesson. However you get there you are faced with a three part lesson:

Part 1. Tutorial

This section is like an extract from a text book. This is where ZARK teaches you
about whatever topic you have selected, The text is very easy to follow and quite
humorous. The lessons never seem to get too deep and yet at the end of each
tutorial T felt I had covered everything well. Knotty points are sometimes
covered by a discussion between three “APL creators” which are represented by
faces which pop up on the screen under the words expressing their point of
view. Sometimes they argue with each other, but they always seem to agree on
the best way of solving each problem.

Part 2. Reading

This is the shortest part of the lesson. ZARK illustrates the usage of the function
being taught and invites you to predict the result of the expressions shown. This
truly tests your understanding. Every usage is illustrated:

Predict the result of the following APL expressions:

3 + 7 (Press Enter)
10
3 - 7 (Press Enter)

n

Note the () sign, it signifies that the result is negative. The (-} sign is a function
which subtracts the right argument from the left argument.

63

VECTOR Vol.7 No.4

7 + (Press Enter)
SYNTAX ERROR
7 +
P2

... addition needs both left and right arguments.

It is easy to work through each example (Press Enter) and if you experience any
trouble you can easily go back to the tutorial section to recap (Press ESC). You
can also interrupt the lesson at any time by pressing SCROLL LOCK to enter
immediate execution mode to experiment as you choose. Pressing SCROLL
LOCK again returns you to the lesson at the place where you left it.

Part 3. Writing

This is the best part of the lesson. In this section you find yourself working in
immediate execution mode. ZARK presents you with a simple problem such as:

“What length of fence 1s required o enclose a garden of length 7 metres and width 5.5 metres. Assign the
answer to the variable LENGTH.”

You are required to type the APL expression to satisfy the question and then
press ENTER. You can then check it by entering other APL expressions or submit
it to ZARK by pressing SCROLL LOCK. ZARK replies with “Correct” if you are
correct and gives you some alternative (equally valid) expressions. If you are
wrong then ZARK offers you the chance to try again (twice). 1 enjoyed this
hands-on practice. The problems posed by the tutor were worded to test your
knowledge of APL, not your knowledge of solving puzzles. The questions are all
very interesting and kept my attention all the way through the lessons.

LENGTH = 7 + 7 + 5.5 + 5.5
LENGTH

25

[SCROLL LOCK]

Correct, the answer is 25, Other possible expressions are:

2x(7 + 5.5} {2%5.5)+2x7 (7+5.5)x2

64

VECTOR Vol.7 No.4

Topics Covered

ZARK contains 26 chapters labelled A to Z. As a tutor ZARK should be followed
in sequence as the ‘writing’ section assumes that you have covered all preceding
topics. The APL functions and the unique APL concepts such as Vectors,
Matrices and Rank have separate sections of tutorial. The index seems thorough.
The quantity of information in the index is immense. By searching I found a few
topics which brought up a message that the topic was not covered in this course;
encode and decode produced this message.

ZARK allows you to search through the index by function. This means you can
scan the index for '+ and ZARK will take you directly to the appropriate point in
the series of lessons and commence at the ‘reading’ stage. This is a very effective
way of providing speedy and efficient reference after you have been through the
course,

If, on the other hand, you know what you want to do but you do not know
which APL function is appropriate then you can search the topics by subject
index. This means you can search the index for ‘Magnitude’ or ‘Modulus’ and
ZARK will swiftly transport you into the lesson which deals with the relevant
APL function. If you know another programming language and you want to
learn APL then this index would help you make the translation.

General Comments

ZARK impressed me because I did not expect it to be so much fun or such a
variety of tricks to be used in the presentations. My husband says the
instructions to install ZARK are terrific. The ZARK environment is clear and
simple to negotiate.

The depth and variety of information offered by ZARK is staggering. I did not
know there was so much in APL. I think that if I were going to write programs in
APL this would be a very good way to learn. The truth is that I found APL rather
difficult and haven't yet finished all the sections of the Tutor, but T think that
anyone could pick up this package and be able to make good effective use of the
language after working all through it.

What I found was that too often I was waylaid by the Tutor into making notes
about the APL I was learning and forgetting entirely to make notes about the
package I was supposed to be reviewing.

65

VECTOR Vol.7 No.4

Little details such as telling you where a symbol is on the keyboard are never
overlooked. It may seem trivial but how would you deduce or guess where the
symbol for transpose is.

The tutor is positively enthusiastic about the versatility, flexibility and power of
this language. This enthusiasm comes across in the lessons. A little has rubbed
off on me!

Conclusions

1 think this is a very good tutor for APL. Of course it is only for use with STSC's
APL*PLUS/PC. T was lent version 8.0 for the review,

I am impressed with almost everything about Zark. I recommend it to anyone
who wishes to learn APL or would like a handy encyclopedia of APL for quick
reference.

APL PEOPLE

Serving the International APL Community

Consultancy advice and assistance with all aspects of
APL systems development

Recruitment unique placement service for companies

and individuals

Software Competitive prices on all APL software
tools and interpreters

Contact: Jilt Moss, APL People Ltd.,
The Old Malthouse, Clarence Street,
Bath BA1 SNS

Tel; 0225 462602 during office hours
0225 333618 evenings and weekends

66

VECTOR Vol.7 No.4

APL.68000 Level IT

reviewed by lain Hayward

Introduction

APL is almost unheard of on home computers, even though a full specification
interpreter has been available for years. When MicroAPL ported APL.68000 onto
popular machines like the Macintosh, Amiga and Atari, it was pioneering the use
of WIMP interfaces in APL, and it made APL available to almost everyone.

MicroAPL recently announced the release of APL.68000 Level [I, and renamed its
original product as Level . As an existing user of Level I for two years now on
my Amiga, my only complaints have been the rather limited printer support,
which I rectified using an auxiliary processor (Vector Vol.6 No.1, page 127}, and
the lack of nested arrays. Now it seems that MicroAPL has more than
compensated for the latter problem by providing an upgrade which it claims is a
superset of APL2. Although this review is based on the Amiga version, it
concentrates on the machine-independent enhancements to the interpreter.

First Impressions

Any doubts about it being worth the price begin to fade as soon as you remove
the wrapping; the manuals and disk come in a respectable looking box file as
befits a serious software product. An initial glance at the contents gives further
reassurance that MicroAPL has not tried to skimp on production costs. Even the
disk containing the software is of an unusually high quality.

Two sets of APL key stickers are provided, one for the standard APL keyboard
layout and one for the alternative Unified layout. The stickers should be attached
to the front of each key rather than on top; an arrangement that works very well
in practice but is surprisingly awkward to install (this shouldn’t affect real
APLers, of course, who already know where all the symbols are!).

For those whoe don’t know quite where to start but are impatient to see their new
purchase do something, MicroAPL has provided an automatic demonstration
workspace which is quite impressive and inspiring.

67

VECTOR Vol.7 No.4

Documentation

The package includes two conveniently sized A5 format manuals which stack
well alongside copies of Vector and MicroAPL News. The first, thinner manual is
concerned with system-specific information such as the user interface and access
to features of the native operating system: graphics, windows, multi-tasking, etc.
It is rather brief however, and doesn’t really do justice to the software it
describes. It also Jacks an index.

The second manual however, the APL.68000 Level II Language Reference
Manual, is superb. It is about two centimetres thick and ring bound so that it
opens flat without one having to stand a coffee cup and a paper weight on it. It
was obviously written by someone who knows and loves APL, and if you've got
this manual then you may not need to buy a copy of Gilman and Rose. More
than a third of the manual is devoted to teaching AFPL, and MicroAPL's
experience in giving courses is clearly in evidence. There are convenient entry
points for the complete beginner, for programiners who don’t know APL, and for
programmers who know APL but are unfamiliar with this implementation.
There is also advice for users who are upgrading from Level I. The reference
section of the manual should serve as an example to other suppliers. 1t is very
readable, and gives carefully selected examples of how a function or operator
might be used, rather than just a dry, technical definition. It is worth mentioning
that the manual was completely re-written for Level II, instead of just having a
new section added.

New Features

All of the enhancements to be found in Level II seem to have been added to
provide compatibility with the APL2 standard. They include nested arrays,
mixed arrays, multiple and selective specification, vector notation, four new
primitives, defined operators and extensions to existing ones, and AFPL2-style
error handling. Readers who are familiar with APL2 may wish to skip the next
few sections and continue reading from the section on compatibility.

Nested Arrays

All of the functions that T had expected to see were there, together with a few
that were new to me, All appear to conform to the APL2 standard.

1 found the Partition function particularly useful. It divides its right argument
into an array of nested vectors according to the specification given in its left
argument, which is a scalar or vector of zeros or positive integers, A new element

68

VECTOR Vol.7 No.4

is created in the result whenever the corresponding element in the left argument
is greater than its predecessor, whilst a zero causes the corresponding element to
be discarded. This can be used to good effect in text processing, where you might
want to separate words into a nested vector. First identify all the non-space
characters as a boolean, then use this as the left argument to Partition. As a
bonus, all single as well as multiple spaces are removed in the process.

Enclose increases the depth of its argument by one, producing a scalar. It has no
effect on a simple scalar. [t can be used with an axis specification to split and
rearrange an array. Disclose used on a scalar reverses the effect of Enclose. If the
argument is a nested vector then the result will be a matrix, with rows padded as
necessary with their elements’ prototype. Disclose can be used with an axis
specification on higher dimensional arrays to rearrange the data. The shape of
the result of Disclose is derived from a combination of the shape of its argument
and the shape of the items within the argument.

The Pick function lets you pick out an item from a specified position and depth
within a nested array. First returns the first element of an array, or its prototype
if it is empty, and is a little more flexible than 1 Take. Enlist has the effect of
ravetling and catenating every item in its argument (removing nesting in the
process) to produce a simple vector out of anything. Depth returns the depth
{(amount of nesting) of the deepest part of an array. Although a simple scalar has
a depth of zero, for some reason a simple array is considered to have a depth of
1. Thereafter the depth increases by one for each level of nesting,

The powerful Each operator has been provided of course, which lets you
perform an operation on each element of an array without the need for a loop.
The system functions OCR, OFX, (1S5 and DR have all been extended to support
nested arrays, and a utility function DITSPLAY has been provided which displays
the structure and contents of a nested array.

Mixed Arrays

It is now possible to mix character and numeric data in a single array. I don’t
think | would ever use this feature with simple arrays, but it is very useful with
nested arrays where you might want to keep related data together, some
elements containing numeric data and others character data.

Multiple and Selective Specification

Multiple specification or assignment is permitted, allowing you to assign a
vector to a list of variable names in brackets, each element of the vector being

69

VECTOR Vol.7 No.4

assigned to a separate variable. It doesn’t seem to work on system variables
though, and I find that the diamond separator makes this feature largely
unnecessary, but it’s there for those who want it. Much more useful is selective
specification, which makes it possible to assign to items deep within a nested
array. The idea seems to be that if you can select it, then you can assign to it.
There are some restrictions on the complexity of the expression used for
selection, but I don’t think AFL.68000 is alone in this.

Vector Notation

Just as it has always been possible to create a numeric vector by entering a list of
its elements, now it is possible to construct much more complex data structures
in the same way. Each element can now be an array in itself, with parentheses
and quotes being used where necessary to delimit the elements. This facility is
particularly useful for constructing nested and mixed arrays.

Other New Primitive Functions

The Index function (squad character) is also implemented, providing a more
powerful and neater way to do indexing than using brackets and semicolons. It
can be used with an axis specification. Match will test if its arguments are
absolutely identical in every way. This function is a welcome addition because it
is quite tedicus to have to write such a test in APL. Find is a generalized search
function. It behaves like the string search system function but its arguments can
be of any rank and type. I like the Without function, and feel it should have been
included in APL from the very start. It returns its right argument with all the
items occurring in its left argument removed. It only works on vectors though,
but they can be nested.

Extensions to Operators and Defined Operators

Some of the most exciting enhancements to be found in the new product are still
to come; operators can now be used with any primitive functions and with user-
defined functions, so expressions such as , /DATA and MYFN/DATA are now
valid. Purthermore, it is now possible to write your own operators, just like
writing functions. The possibilities are enormous.

Error Handling

In a nuishell, APL.68000"s error handling functions are still there, and IBM's error
handling functions have been added.

70

VECTOR Vol.7 No.4

The new system functions are:

JF4 Execute Alternate
0FS Error Simulate
{(FC Execute Controlled
OET Error Type

OEM Error Message

This apparent duplication of functionality actually turns out to be a good thing,
Apart from the obvious benefits of compatibility, the two sets of error handling
functions are in fact complementary, since the existing functions provide error
handling at the function level, while the new functions provide it at the
statement level.

Other Enhancements

The Ovetrbar and Underbar characters can be used in object names, although not
for the first character. Comments are allowed in function header lines, and
spaces before comments are preserved (something [had wanted for a long
time!). Ravel can now be used with an axis specification to create a new axis of
length 1, or to combine a range of axes into one. Take and Drop can also be used
with an axis specification to achieve Take and Drop along specified axes only.

Compatibility
Level 11 is upwards-compatible with Level T with just three slight exceptions. The

first and most important one concerns the indexing of numeric constants. The
following expression:

12 3 4 53]

would give a RANK ERROR under Level 1T because the index binds to the scalar
immediately to its left. The second exception concerns object class codes as
defined for the system functions QNI and ONC. Code 4 in Level T meant invalid
name; now invalid name is -1 and 4 means user-defined operator. The third
exception is simply that numeric arrays are now displayed with each column
formatted separately. These differences won't cause any of your existing
applications suddenly to start behaving differently, though. A system variable
1€ (compatibility setting) has been provided to cause the interpreter to behave
like Level I for all or any combination of the above three cases, and it is
automatically set to give full compatibility when you load a Level T workspace.

71

VECTOR Vol.7 No.4

I was particularly pleased to find that my assembler-coded auxiliary processor
routines continued to function correctly. The original auxiliary processor
interface (AP'1} has remained the same, and just gives a DOMAIN ERROR when
passed a nested or mixed array. A new AP interface (AP2)} has been provided
which will accept the new data structures.

MicroAPL has expressly stated that Level 11 is designed for close conformance
with TBM's APL2 standard, and while there are some divergences, it is
MicroAPL’s intention to remove most of these in future releases. Even where
Level 11 is different from APL2/370, it is usually comnpatible with APL2/PC, and
in some cases it is more compatible. Among the features still to come are
complex numbers, N-wise reduction, format-by-example, axis on scalar functions
and matrix arguments to the sort primitives.

Portability

It has always been the case that a workspace saved on one machine can be
loaded on any other machine running APL.68000, since the workspace format is
identical. MicroAPL also claims that any workspace saved under Level I can be
loaded under Level II, provided that the state indicator was clear when it was
saved. You are warned however, that since the new interpreter is about 50K
bigger, you may have less workspace available on single-user systems. So far, |
have had no problems,

Due to the high degree of compatibility with APL2, it is now possible to move
applications to and from APL2/370 and APL2/PC. This is achieved quite easily
by using the system commands }0UT and) IN which create and read transfer
files. How you move the files between machines is up to you, but you must
ensure that no character translation takes place. There is also a system function
called JTF which returns the transfer form of an object, or alternatively, decodes
an object from its transfer form. The transfer form is a text representation that is
suitable for transmission between dissimilar machines or implementations of
APL.

System Limits

Most of the limits seem absurdly generous, for example the maximum depth of
an array is 100, and the largest number allowed is about 1.8E308. The only limits
which might conceivably be a problem are the maximum rank of an array (8), the
maximum length of a name (30 characters) and the maximum symbol table size
(6,021 symbols).

72

VECTOR Vol.7 No.4

Performance

[am not keen on benchmarks, preferring to judge for myself whether the
performance of a system is acceptable, but I did once run some standard
benchmarks on APL.68000 Level [on my Amiga and found it to be slightly faster
than an IBM PC/ AT running APL*PLUS/PC. T found the overall performance of
Level T to be a bit slower than C code, but it saved me so much development time
that I would never go back to programming in C. MicroAPL has certainly
optimized the displaying of text; results are flashed up on the screen like
lightning. So far, [have not noticed any degradation of performance when
running my existing applications under Level 1L [can see one reason why this is
so: the internal structure of simple variables has not changed, only the new data
structures are more complicated, and they have been given a new type code. On
the occasions where I have been able to replace existing code with a nested array
solution I have in fact achieved a considerable improvement in performance, not
to mention simplified code.

Conclusion

I have to conclude that Level II does everything that is claimed of it and, in the
case of personal computer implementations, much more. The standard libraries
provided with APL.68000 make it unbelievably easy to use the features of the
native operating system; a single function call replaces many lines of quite
difficult code and hours spent studying the reference manuals. There is even a
terminal emulator included so that you can log on to remote APL systems. Now
MicroAPL has enhanced its product to the standard of APL2 on a mainframe and
made it portable as well. All this, together with a WIMP user interface that has to
be experienced to be appreciated, would seem to make APL.68000 the obvious
choice for anyone who wishes to do serious programming in APL.

73

VECTOR Vol.7 No.4

APL*PLUS/PC PostScript Support

notes by Adrian Smith

On page 70 of Vector 7.3, Jonathan Barman regretted his lack of a PostScript
printer, and hence his inability to test out the PostScript APL font shipped with
APL*PLUS/PC release 10. Accordingly, I borrowed the review copy, and had a
quick look at the font:

SJGKHZxWY . ETOQDMF [UN«I
571 9B+PRVCAO/XL, ~07?L |-
123846A\20;%Z({T>1L*xpuna
TTE<2=>)vicrt €[oV A
IVVYAdROo®~¥A! S X feo5all0AcE
abcdefghi jkl1{}_HaiouinN
mnoparstuvwxyz £ $Z2&#"@

- v

-8 ¢ ¢ Z«» 5 0R

Aesthetically, I'm afraid I don’t particularly like it; the whole font looks a bit big
and heavy, and there is no variation in the character height (e.g. 1 think that
symbols like [| should show above and below the caps). It also bothers me that
there is no attempt to be consistent about the overstruck symbols ... v jumps all
over the place depending on what has been combined with it! None of the PC
line-drawing characters are included, which T would find an annoying omission.

Speed of printing is a little slow (the font is encrypted which must slow it down},
a typical function listing took 156 sec to print on GoScript, as against 32 sec using
my APL-2741 font.

The good news is that if you want to use the Portl0 driver, you can easily
substitute any other PostScript font which uses the same encoding, and the
encoding is in plain text in the font definition (it looks like standard
APL*PLUS/PC 04V). For my part, 1 shall continue to work with my own font,
trivially recoded to work with the APL*PLUS character encoding,

74

VECTOR Vol.7 No.4

RECENT MEETINGS

This section of VECTOR is intended to document the seminars given at recent
meetings of the association; it is of particular value to members who live away
from Londen. It also covers other selected events which may be of general
interest to the APL community.

If you would like to speak at one of the regular British APL Association
seminars, please ring the Activities Officer {(address on inside back cover) who
will respond enthusiastically to your offer.

75

VECTOR Vol.7 No.4

The Trials and Tribulations of using GSS
Graphics with APL*PLUS/PC

talk by George MacLeod November 1990, notes by Jonathan Barman

George MacLeod gave us a heartfelt commentary on the problems in getting
decent graphs out of GSS graphics with APL*PLUS/PC.

First George explained why high quality charts are needed. APL Impetus Ltd
develop and market a financial planning package Impetus which is a descendant
of the Boeing’s TABAPL. Impetus is often used high up in companies and as a
result the quality of the output is important, and high quality output must
include high quality graphics.

The initial prototypes for Impetus used the DG graphics available with the
APL*PLUS/PC interpreter, The functions mirror those available in ROM BASIC,
and the facilities provided are quite simple, for example only one font is
provided which is increased in size by pixel replication. Sizes increase by
squaring the number of pixels, so big characters look very crude. 0G graphics can
be used with a relatively limited range of graphics boards and printers, but there
are now a huge array of graphics devices. It has become impossible for STSC to
support all the devices on the market,

GS5*CGI was introduced by STSC to solve these problems. GSS is a American
company, Graphics Software Systems Inc, who concentrate on providing
graphics drivers for every device on the market. CGI stands for Common
Graphics Interface which is set of standardised graphics calls for programming
languages such as C and FORTRAN. STSC have provided a set of functions in a
workspace which reproduce each of the calls provided by GSS*CGI. Using these
functions forces the use of extensive looping, as the GSS functions are really
designed for compiled languages which can only manipulate scalars.

The first essential before using GSS*CGI is to buy the GSS Frogrammers Guide
costing £50. The APL*PLUS/PC manual gives a simple list of functions and their
titles, but not the details of the arguments and values required. For example, the
function V_OPEN_HKST takes an eleven element numeric right argument which
specifies default values for the device named in the left argument. The exact
numbers to be used are only given in the G55 Guide.

George showed a sample chart using GSS*CGI as supplied. The fonts are only
marginally better than the (G fonts, and the quality is quite low. To get better

76

VECTOR Vol.7 No.4

fonts you need the GSS Completer Kit at £70, which contains lots of device
drivers, FONTDRIV.SYS, but no fonts! Bitstreamn supply fonts at £140. What you
actually get is sets of bezier curves defining the characters, together with a font
maker. To actually use the Bitstream fonts you have to buy the GSS Font Maker
which is part of the GSS Developers Toolkit costing £400. An apparently simple
addition turns out to be quite expensive!

Now you have everything the problems really start. Whilst screen display works
well the major problem is printing in high resolution. George showed sample
charts which took many hours each to produce, and some of them were plainly
wrong with headings missing! The problems are almost certainly to do with the
way GSS manages memory, and GSS own up to having a problem with bitmaps.
Whatever memory is given to GSS it always seems to need more. The memory
has to be below the 640K boundary, and any memory allocated to GSS cannot be
used by APL,

At this point George & Co. gave up and tried to use the Metafile Interpreter
supplied by GSS at £225. The Metafile Interpreter consists of five diskettes full of
subroutines, and you have to write a program in C or FORTRAN to produce
what you want. So they had to buy a MicroSoft C compiler at £250.

Basically this is as far as George has got with high resolution graphics using
APL*PLUS/PC and GSS*CGI. Other alternatives are being looked at such as
APL*PLUS II and DYALOG APL. Both these versions of APL can run above 1
Meg and can let GSS run below 640K. APL*PLUS II and APL*PLUS/PC have
essentially the same interface with about 120 APL functions matching each of the
GSS commands. Dyadic have done rather better in that you can pass many GSS
commands to the Auxiliary Processor in one nested array. Also, Dyadic have
made some functions ambivalent so that settings can be passed as an optional
left argument.

George summarised the situation as follows:
The GSS Graphics system is unsatisfactory when used with APL*PLUS PC.

Very limited experience suggests GSS will work satisfactorily with APL*PLUS
Il and DYALOG APL.

Other PC products that offer graphics use GSS and they seem to work well.
Perhaps most of the problems are due to poor cohabitation of APL*PLUS/PC
and GS5.

(3SS is probably the best PC Graphics System available.

VECTOR Vol.7 No.4

The Ideal Screen Editor

a talk given to the BAA on 23 November 1990 by Anthony Camacho

Five overhead projector foils were shown as an introduction to the screens which
made defining a screen easy. Foil 1 was an introduction.

WHY A NEW SCREEN SYSTEM? [foil 2]

Most applications need one
Vendors” systems incompatible
Takes too long to write

Wish to make APL widely used
Wish to restore APL’s advantages
Wish for sereen to respond fast
Cannot spare much workspace

The motives for writing a screen system were to provide something independent
of vendors that required as little beyond ISO APL as possible, written in APL so
that anyone could amend it and straightforward enough to be used without a
great deal of effort. Once, APL gave its users the best interface for interaction
between the keyboard operator and the system; it would be nice to restore the
advantage. Also a system would have to be fast enough and use little enough
workspace so that it would be practical even in I-APL.

ORIGINS AND THE IDEA [foil 3]

Paul Chapman’s port from Viz:APL
Use only window get/put cursor
All screen inpul/output is character
Pre-calculate variables for speed
Hold items on file 1o reduce space

To use:
R+SNAME AFS CHARVEC
SNAME <+—screen name on file
CHARVEC +~chars for rields
R ++ chars from fields

D L DD

78

VECTOR Vol.7 No.4

The idea was that a perfectly adequate screen system can be written using conly
four special functions, which are available in most versions of APL on micro-
computers. The originator of the idea was Paul Chapman, who had to port a
system from Viz:APL to APL*PLUS/PC in a hurry. He never completed or
documented what he wrote, but it was in daily use for several years and the
response was adequate even on an 8088 at 4.77MHz. Most data was held in
vectors and as much as possible was pre-calculated. I learned about it by having
to enhance the system that used it and the Ideal Screen Editor {ISE) was born
when T considered how Paul's screen system could be adapted to meet the
objectives mentioned.

The main limitation of ISE is that all input and output of the screen display
functions is in characters. The file referred to on the foil is tied to ASTIE. A
secondary limitation is that the main function AFS has to call subsidiary
functions for any field which has more than one line.

FEATURES OF THE DESIGN [foil 4]
Three functions for simplicity
AFS Full screen (many fields)
AMA Matrix amend (one fid only)
ABB Bounce bar (one field only)
AMA & ABB handle multi-line fields

For each AF'S the file has 9 components

The subsidiary functions are A#4 which displays any matrix for amendment in a
window (which may be a pop-up window) and 4BE which handles the bounce-
bar method of choosing an option; the choices may be scrolled past the window
and selected with the highlight bar or, if the lines are numbered, by entering the
option number.

The pre-calculated variables are held on a component file (or a pseudo-
component file) in nine compenents, containing:

The design so that it can be re-entered with variations
The window for the screen

The initial contents of the screen

The indices of the characters that may be varied

The attributes of the initial contents

ol el

79

VECTOR Vol.7 No.4

A table giving details of each field

A small matrix of executable lines (mainly standard validations)
A vector of the codes from keys that cause special actions

A corresponding character vector of labels (the action for the key)

© 0N ;s

The field table contains the window for each field, the navigation from field to
field, three attributes of the field:

on display,
when highlighted with the cursor in it
and when validation has failed and it must be re-entered.

It also contains a pointer to the validation required, a peinter to any special
action required on moving the cursor into the field, and, for multi-line fields,
details of what is required.

To get the system into use, once it was established that it was feasible, the author
had te do three things:

1. Preduce an example to show how to use the screen functions
2. Demonstrate that the system was robust with a demanding test
3. Provide the potential users with an easy way of entering screens

These three needs could all be met if the screen system could prove its worth by
using it to write the screen entry system. The screen entry system is the most
important part of the design. If it is really easy to use then people may use it
even if other features are less than perfect. On the other hand if the entry method
is difficult to use then it probably will get ignored.

The author's purpose this afternoon therefore was to describe the entry
procedures and to ask the BAA members present whether they could think of a
simpler way of doing any of the tasks that are an essential part of entering a
screen design.

WHAT IS THE EASIEST WAY? [feil 5]

Enter by amending a similar screen
Defaults (sensible) for everything
Never a need to count (characters)
Specify position by cursor

Choose from lists where possible
Show effects as soon as possible
Allow easy corrections

80

VECTOR Vol.7 No.4

The simplest way to enter a new screen design would be to amend one which
was gimilar. It is easier to alter a heading and an instruction or two than to key in
a complete design. The simplest way to enter colours, validations, field
sequences and the action to be taken on each kind of key depression is to have
them all default to standard settings. The standards to which everything defaults
should themselves be settable so that all the screens in an application can be
given a distinctive house style. At every stage the delay between specifying
something and showing the result should be as short as possible and the
sequence to respecify it if needed should also be short and quick.

A series of draft screen designs were then shown and the proposed method of
use for each described. In every case the aim was to find the entry method which
would give the least trouble to the keyboard operator entering the design.

Fields are specified by putting special characters at the ends of the field (outside
it so that default contents could be entered within the field). Ruled lines are
specified by their ends, boxes by their corners and multi-line fields by marking
the first and last lines after the fashion of single fields but with special characters.
The screen may be framed with single or double lines by entering ‘+ or “#’ in the
top left corner.

Pop-up fields are specified by moving the cursor to the top left, marking the
spot, and then to bottom right and fixing that. The same procedure is used to
specify colour for the areas of the screen outside the fields. Fields themselves
have three colours; all may be left to default values, the defaults may be changed
and any field may have special colours set by moving the cursor into the field
and specifying the colour.

Validations are specified by entering a character corresponding to one of the six
standard validations or to a special validation in the field. If a special character is
used then the validation required is entered as a line of APL (best to give a
function name} which returns the validity as a boolean.

The fields may be navigated in two sequences and there is a third sequence for
inserting the variable data into fields. The sequences have defaults. The default
for any sequence may be amended by entering a decimal number in a field to
give its new position in the sequence (like inserting a line under the del editor).
On moving the cursor from the field the new sequence is calculated and
displayed.

The allocation of actions to keys is done by displaying two bounce-bars. In one
the key and a two letter code for its current action is shown; in the other a list of

81

VECTOR

Vol.7 No.4

possible actions is shown. To allocate a different action to a key, first highlight it,

then highlight or enter the new action, then press an F-key.

During the discussion afterwards only one improvement to ease of entry was
proposed, by Peter Branson. Peter suggested that the method used for specifying
a pop-up field should be used to specify multi-line fields. The author was glad to
accept it and hoped that, as nobody could think of any further improvements,

the design was now as good as it could be.

APL.68000
Level Il

APL.68000 Level Il is a full
specification APL2 for the
68000 family of processors. It
incorporates all the user-
oriented enhancements of
APL.G8000 Leve! | as well as
MicroAPL’s acciaimed
windowing interface. APL.6B000
Level Il is available for
computers such as the NCR
Tower, Sun, HP, Bull, Nixdorf,
Wicat, Mac, Amiga and ST.
Features include:

Nested and mixed arrays
User-defined operators
Selective specification
Upwards compatibility with
APL.68000 Level |

For more details contact:

MicroAPL Lid.,

South Bank Technopark,

90 London Road, London, SE1 6LN.
071-922-8866

82

VECTOR Vol.7 No.4

APL Graphics - First Principles

by Graham Parkhouse (Dept. of Mechanical Engineering,
University of Surrey)

4 This is a demonstration of AFL and computer graphics, written
interactively with my computer. Text rfollowving a slx space
indentation is mine: all other text Is my computer's response to my
instructiens., Some of my text Is prefaced by the Iamp symbol, m. This
is to Indicate that the text rfollowing it Is commentary and ls to be
Ignoraed by my computer.

a The runction PRINT displays a boclean matrix as a small-scale
bitmap. All the functlons used are listed at the end of the article.

BACKGROUND+10=7120 160p10

PRINT BACKGROUND

A BACKGROUND is a 120 Dby 160 boolean matrix with a sparsity of
10: of the 19200 numbers, 1920 are likely to be 15, the rest zeros.

+/,BACKGRGUND a Count the 1s
1888

A Only 32 short: pnormal feor a randol process! Had I printed
BACKGROUND as 05 and 1s I would have filled ten pages. This
Iliustrates the efficiency of displaying information as a bitmap.
Next I am going to expiore the bottom right hand corner in more
detail.

BRHCORNER+"24% T 32+BACKGROUND

PRINT 10 MAGNIFY BRHCORNER

-5-511 Pl |

R 1= R
l.I
Il g s S

fn These big dots, each of 100 black pixels, are still much
smaller than the space occupled by the character 1. The wadge of

83

VECTOR Vol.7 No.4

white space polinting up from the bottom of this pattern ls visibkle |
the bottom right khand corner of BACKGROUND.

A If I think of BRHCORNER as my picture, then I can use
BACKGROUND as Its background by combining both matrices stuitably
magniried using v,

PRINT BACKGROUNDvS MAGNIFY BRHCORNER

=E,

a I am gofing to choose PICTURE as the array I shall draw on,
and with the help of the function BLOCK I can write on it as well. B
assigning values tc appropriate blocks of 'pixels' I can draw a set
of axes onto PICTURE with the following instructions:

PICTURE<L120 160p0 A Take a clean sheet

PICTURE[60 61;]+1 R Draw the x-axis

PICTURE(;80 81]+1 A Draw the y-axis

PICTURE[56+:18;,1 200,420%0,17]+1 AR brawv ticks on the x-axis

PICTURE[,1 20:,+20%0,15;76+181+1 A Drav ticks on the y-axls

pTEN+BLOCK '10°' A Block of pilxels showing 1
ie 16

pMIRUSTEN«BLOCK '-10" A Block of pixels showing -
i6 2o

BIGTEN+10 MAGNIFY TEN A Magnify TEN

BIGTEN[10%116;13+1 ¢ BIGTEN[;10%116]+1

PRINT BIGTEN A 16 x 16 plxel array
HHHH

PICTURE[4O+116;28+128]1+MINUSTEN A Numbering x-axis

PICTURE[UO+146;112+116]+TEN

PICTURE[S2+116;85+1 2u]+HINUSTEN s Numbering y-axlis

PICTURE[12+4116;85+116]<TEN

PRINT 2 MAGNIFY PICTURE f Labeled akxes

Il@
~-10 1o
r L] L] L) L] L) I L]
+-10

VECTOR Vol.7 No.4

AXES«PICTURE R Copy PICTURE for future use

PICTURE+120 1BCGp0 a Pake a cledn sheet

a Indexing pixels is low level APL graphics: very userful
sometimes, but rather riddly. I nov wish to draw some lines and
circles onto my PICTURE, which I wish to describe wilh referepnce to
my new axls system. I have writtem some functions that will enable me
to do this quite simply. They need [nformation about my axis system,
and I have chosen the variable WINDOW to hold It. WINDOW Is a 2x%2
matcix holding:

3 L3p' XMIN | XMAX ------ dmm————— YMIN | YMAX ¢
XMIN | XMAX
______ fmmmm———
YMIN | YMAX

A The axes I have drawn cocrespond to:
WINDOH+2 2p720 20 ~15 15
4 To reglster thils information I call the function SETTINGS

which echoes the values In WINDOK and the size of PICTURE.

SETTINGS
WINDOW = ~20 20 pPICTURE = 120 1690
“15 15

A I am golng to draw a solid circle centred on the origin (the
point 0 0) which has diameter 28 and Is black (intensity 1}.

ADDCIRCLE 0 0 28 1

PRINT 2 MAGNIFY AXES#PICTURE

ADDCIRCLE "5 "5 8 0 r White circle, intensity 0
PRINT 2 MAGNIFY AXES#PICTURE

a ADDLINE is a companion to ADDCIRCLE, having six components In
its argumemt: x1 y1 x2 y2 thickness and intensity.

ADDLINE T15 10 15 T10 2 0.5

ADDLINE 0 20 0 ~20 3 ¢.25

85

VECTOR Vol.7 No.4

PRINT 2 MAGNITY AXES=PICTURE n 2 circles overwritten by 2 lines|
1

% The last line was clipped by the window, Both ADDCIRCLE and
ADDLINE c¢ilp automatically.

A I am now geing to lcok at the middle of FICTURE magnified so
I can see the pixels clearly.

BRINT 10 MAGNIFY FPICTURE(45+130:60+140]

A The Intensities of the two lipes are 0.5 and 0.25,
corresponding to & half and a quarter of the pilxels belng black. I
have 65 Intensitles available to me. The pattern ror cach is
described by the way the numbers 1 to 64 are distributed In the Bx8
array MASK:

HMASK

1 33 9 ui 3 35 11 43
49 17 §7 25 51 19 59 27
13 45 5§ 37 15 u7 7 a9
61 29 53 21 63 31t 55 23

L 36 12 44 2 3L 10 42
52 20 B0 28 50 18 58 28
16 48 B 40 14 46 & 38
64 32 56 24 62 30 54 22

A I am going to see what I can achieve by draving a strip
across the page Increasing uniformly In Intensity from 0 to 1. First
I shall create a string or 901 fntensities.

INTENSITIES+(0,t900}+900

(5+INTENSITIES), S5+INTENSITIES
¢ 0.001111 0.002222 0,003333 0.00G4LY 0.9956 0.9967 0.9878 0.9989 1

% Convert them to integers ranging from 0 to 6L,

INTENSITIES+|0.5+5uxINTENSITIES

86

VECTOR Val.7 No.4

(10+INTENSITIES), 10+INTENSITIES
00000000 1 163 63 64 &4 6% 6% B4 64 64 BL

r My strip is going to be made up of 72x901 pixeis, BIGMASK is
going to be this size as well, got by repeating MASK both across and
dowi,

BIGMASK+72 901p%301 B8p{MASK
PRINT i,BIGMASKs72 901pINTENSITIES

a Notice the loss of conptrast at the dark end. Two problems are
being demonstrated: Isolated white pixels or a black ground are less
extensive than Isolated black pixels on a white ground, a weakness of
the printing process, but even If this Vere not sco there remains the
problem, or rather the rfact, that eyes judge contrast to a different
scale. The printer problem disappears with magnification. The penalty
of magnirficatlion 1s sparsity of information: the same Informatlion
takes up more space. Alterpatively, Iintensities can be kept below 0.5
or 0,25 so that black pixels never run Iinte each other.

INTENSITIES+0.25%(0,1800)+900

(S+INTENSITIES), S+INTENSITIES
0 0,0002778 0.0005556 0,0008333 0.001121 ¢.2489 0.2492 0.2494% 0,2497 0.25

INTENSITIES+|0.5+64xINTENSITIES

(10+INTENSITIES), 10+INTENSITIES
000000000 C 16 16 16 16 16 16 16 16 16 16

PRINT 1,BIGMASK=s72 901pINTENSITIES

a The pattern within MASK is rather beautlfyl and leads toc a
family of pixel patterns that blend into each other very
harmoniousliy. A random array of integers between 1 and 64 in BIGMASK
provides a less orderly but equally versatile pattern.

BIGMASK+?72 901p6t

PRINT 1,BIGMASKs72 901pINTENSIPIES

a KNow I shall move to a higher level, a level above ADDCIRCLE
and ADDLINE, to consider graphical objects described not as
arrangements of plixels but by their geometrical apd material
structures., I have chosen to descrlibe each object by 3 items: an
Identirier, & co-ordinate array and a component array. HEXAGGN is an
example of a graphical object.

87

VECTOR Vol.7 No.4

HEXAGON
HEXAGON 10.83 10.83 ¢ T10.83 T10.83 0 1 1 1 1 1
6.25 76.25 T12,.8 76,25 6.25 12.5 0 0 0 [+ 0
0 [+} 0 ¢ 0 0 2 2 2 2 2
1 1 1 i 1 1 0.5 0.5 0.5 ¢.5 0.
1 i 1 1 i 1 1 2 3 4 5
2 3 4 5 6

n I shall unpack HEXAGON and explain what it contains,
ID COOR COMP+HEXAGON
p"ID COOR COMP
56 6 6
A ID is a scalar enclosing the string 'HEXAGON', COOR and COMP
are numertc arrays of size 5=6 and 6x6. I shall label thelir rows and

columns:
("' 'x-ceor' 'y-coor' 'z-coor' 'h-coor (should be 1)! 'L (1e)
1 2 3 4 5 4]
X-coor 10,83 10.83 0 “10.83 T10.83 0
y-coor 6.25 "6.25 512.5 T6,25 .25 12.5
Z-goor 0 0 0 o} o} 0
f-coor (should be 1) 1 i 1 1 i 1
1 i 1 1 1 1
("type' '* 'thickness/dia.* ‘intensity' ‘'‘end 1' 'end 2'),C0MP
type 1 1 1 1 1 1
] 0 0 Q c Q
thickness/dia. 2 2 2 2 2 2
intensity 9.5 0.5 0,5 0,5 0.5 0,5
end 1 1 2 3 [5 6
end 2 2 3 4 5 6 1

A Two rows are redundant and the h-coor row must alvays be
filled out with is. Pype 18 0 for circles and 1 for lines. The
numbers in the rows marked ends 1 and 2 rerer to the columms of COOR
HEXAGON appears to be a hexagon having each of Its sides 2.0 thick
and dark grey (intensity = 0.6). The hexagon should nearly fill the
current window, so I do not need to change WINDOW. I can drav HEXAGO,
using my function DRAW.

PICTURE+120 160p0

DRAW HEXAGON

PRINT 2 MAGNIFY AXESvPICTURE

a I have a set of fupctions that take graphical objects as
their arguments and return transformed graphical objects as their
results. An Important cne [s AND, which collects the components In
each of the objects of its arguments and presepts them as a gingle

88

VECTOR

Vol.7 No.4

object.

ID+cc ' NODES'
COMP{1;1+0
COMPL3;1+4
COMP(%;]+0.25

NODES+ID CGOR COMP

OBJECT<HEXAGON ARD NODES

OBJECT(1]

HEXAGON AND

OBJECT(2]

10.83 10.83 Q
6,25

o
1
1

N RO RO

W N O R O

T6.25 T12.5
0 0
1 1
1 1

OBJECT[3]

11

0
2
0.5
y

wm

w o N o
o

SN OO R

4 5
PICYURE+12¢ 1
DRAW OBJEGT

PRINT 2 MAGNIFY PICTURE

NODES

1

60

0.83
6.25
0
1
i

1

Q

2
0.5
6

1
p0

D O F OO0

1

0
6
0
1
1

.25

A
A
]
A

.83 0
.25 12.5

Set type to circles

Set diameters
Set intensltlies

COOR Is not changed

Identifrier

Co~ordinates

10.83 10.83 0
6.25 76.25 ~12.5
0 0 0
1 1 1
1 1 i

Components

0 0 0
0 0 o
& 4 4
25 0.25 0.25 0
10 11 12
11 12 7

First I shall create another object, NODES, which will be 4.0
dia, clrcles centred on each of the vertices of the hexagon,

T10.83 T10.83
6.25 12,%

6.25

0
1
1

.25

A TRANSLATE and ROTATE operate on graphical objects,
RINGS+OBJECT AND 5.41 0
PICTURE+120 160p0

DRAH RINGS

“4 TRANSLATE OBJECT

PRINT 2 MAGNIFY AXESvPICTURE

89

0
1
1

1]

o
1
1

VECTOR Vol,7 No.4

A Note that It 1s the object that has been translated, not the
axls system nor the windov. The z translation of "4 has affected the
z co-ordinates of RINGS but has no effect on what DRAW does. DRAW
uses only the x and y co-eordinates: It draws an orthogonal projection
of the object onto the x-y plane.

A Perspective projection can be performed using the function
FROJECT which projects the co-ordinates of its right hand argument
through the point SIN onto the x-y plane at the orfgin. PROJECT
returns a graphical object possessing not just the correct x,y
co-ordinates but also the z co-ordinate of the middle of each
component In the redundant row 2 of its component array. DRAW uses
this rowv to order the elements before drawing them so that, provided
STN has positive z, elements are drawn from the bBack of the scepne
towvards the front. This permits hidden lline removal,

A Before advancing into 3-D, I want to add reallsm to my lines
and circles to make them look like cylindrical rods and spheres.
Fupnctlon HIGHLIT will do this by providing a white reflection roughly
in the middle and siightly in front of each component,

DRAK PROJECT RINGS AND HIGHLIT RINGS

PRINT 2 MAGNIFY PICTURE

% I also have a function HALO that puts a thicker white
component just behind each component to blot cut some background to
heip components stand out.

PRINT PLAN

Ob Ject

Station Folnt |

Z

50

VECTOR Vol.7 No.4

a PLAN is a projection onto the z-x plane and shows a typlical
arrangement for a perspective drawing of an object, in this case a
box. The picture plame is always the x-y plane through the originm:
the system cannot entertain any other arrangement, The statfon point
SIN can be located anywhere, but in this lnstance is on the z-axlis.
The corners of the box are projected onto the picture plane by the
four raint lines,
PRINT PERSPECTIVE i

=

S

f PERSPECTIVE is a perspective of the perspective projection
layed out in PLAN, vieved from the lisolated poipt in the bottom right
hand corner of PLAN. There are nov eight faint construction lines,
and the wvindow Is shown surrounding the drawing.

A Much of what I Iliustrate either Includes mathematical
curiogity or demands engipeering precision. My APL graphics functlions
are my sophisticated tools, while my simple tools are raw APL, which
can help me both at a lower and at a higher level. PERSPECITIVE was
drawn with the help of a little Iover level manipulation, and mow I
shall draw a latticed deck using the power of raw APL rfor high level
data derfipition.

WINDOW+2 2975 20 "7.5 7.5

PICTURE+300 50050

STN+7.5 15 50

DRAW PROJECT XYZ AND BOX AND CELL AND HIGHLI? CELL

PRINT PICTURE

a1

VECTOR

Vol.7 No.4

n CELL, which contalns 8 lattlce members and two nodes, is a

convenlent unit cell ror a latticed deck. BOX marks the boundary of
the upit ceil and XYZ shows the axes. The components of CELL can be
distlngulished rrom the rest by the highlighting.

A Hefore I replicate CELL I shall practlise the replication on

BOX. BOX has a top and bottom which is 10 units sguare. To replicate
1t I need to TRANSLATE it by multiples of 10 unlts In the x and 2
directions. In Dyalog APL Is well sulted to helping me do this:

1
1
1

N

1
2
3

R

3

1
i
1

=

12 3 4
112 113 11w
122 123 t2¢4
132 133 134

2412 213 2128

222 223 224

232 233 2 34
p12 3 4§

A So ,(10x"1+18 1 6) will give me 36 translations appropriate

to a 6x6 deck. Applying these to BOX:

about

STN+STNx6 A Stand back 6 times rurther
WINDOW<2 20715 80 ~30 10

PICTURE+«LOO 950p0

DRAWR PROJECT XYZ AND oAND/,(10%71+16 1 B)TRANSLATE =BOX

it mhah s s fmma 2 ae e e o

, / 7 /-
g ,
i/ SR/ N/ L

/A "4
/7y —rs
Ay A,

s 14 i
/74

A A

A Repeating this replication on CELL and calling the result 0B:
OB<«2AND/,(10%x71+16 1 6)TRANSLATE cCELL

n Translate the deck towards the orlgln, rotate it 0,25 radians
the y axis, and translate it back again:

0B+35 0 35 TRANSLATE ¢ (.25 0 ROTATE 30 0 —35 TRANSLATE 0B
STN+32 2 100

WINDOW+2 2p10 50 ~7 18

PICTURE+300 LBOpO

DRAW PROJECT {(HIGHLIT OB) AND 0B

PRINT PICTURE

92

VECTOR Vol.7 No.4

A Thls is a close-up or the lattliced deck. Much of the
structure has been clipped by WINDOW.

a The last racility I wvant to demonstrate Is HAZE. HAZE 15 a
two rov matrix contaiping z-values (n its top row and intensity
factors in Its bottom row. Currently HAZE has just one column:

HAZE
T100

1

a All Intensities of components having z-values greater than
T100 had their Intensitles multiplied by 1. If I now define HAZE as:

HAZE+2 20p(20+4%120),0.8=40,119

2 T7tHAZLE
3B 40 U 48 52 56 60

0.2621 0.3277 ©0.4096 0.512 0.64% 0.8 1

PICTURE<«300 480pQ

DRAKW PROJECT (HIGHLIT OB) AND 0B

PRINT PICIURE

a Now components fucrther back, with smaller z-values, have had
thelr intensities reduced more, giving an attractive haziness toc the
picture.

n All the rfuntions that have PLeen used In this demonstration
are listed below. They have been run uander Dyalog AFL Versionm 6.0 on
a 33 MAz 386 PC with 8 Mb of memory. The original was printed on A4
paper by a Kyocera P-2000 PostScript laser printer, with graphics
mode set to 150 dots per inch.

JOFF

93

VECTOR Vol.7 No.4

ADDCIRCLE CIRCLE;CENTRE;RADIUS;INTENSITY;PANE;BLACK;SIGN;0CT
A ADDS A CIRCLE TO THE PICTURE

CENTRE+CIRCLE[1 2] o RADIUS INTENSITY+0.5 41xCIRCLE(3 4]
ACALCULATE THE PANE FRAMING THE CIRCLE

FANE+(CENTRE-RADIUS), [1.5]1CENTRE+RADIUS

sINTERSECT IT WITH APERTURE

OCT+1E"12 ¢ PANE+((APERTURE[PANE),APERTURELPANE)[:1 4]

+(71 Tigx~/PANE}/O RNO INTERSECTION
PANE«STIGN® L(SIGN+2 2pi T1 T1 1)=xPFX+.x1;PANE APIXEL LIMITS
+{v/0>1 T1x-/PANE) /O RNC INTERSECTION

R LIST OF PIXEL INDICES
PANE«, {PANE([1;2]+0,-/PANE(C1;]}e.,PARE(2;11+0, 1-~/PANE[2;]

A LIST OF PIXELS WHOSE CENTRES ARE INSIDE TRE CIRCLE
PANE+(RADIUS2(+# ((XFP+.%1;8+FPANE}-§((pPANE) ,2)pCENTRE)*2)%0.5}/PANE
+{C=pPANE) /0 n IF NONE, EXIT

A IS INTENSITY 0 OR 17
+{~v/0 1=INTENSITY)/GREY o PICTURE([FANE]+«INTENSITY ¢ =0

GREY: A WHICH PIXELS ARE BLACK?
BLACK+MASK[1+(cpMASK) | PANE)sLO.5+INTENSIPYxx /o HASK
PICTURE[BLACK/PANE]+1 o PICTURE[(~BLACK}/PANE]~0D

ADDLINE LINE;OTRAP;A;AB;AP;AT;APTR;B;BLK;C;:D;D1;EDGES:I;IND;INTEN. ..
OTRAP+c3 'E' '+TRAP' c..3L:M N PFT; S
A ADDS 4 LINE T0 THE FPICTURE

AB+j2 2p4+LINE o D INTEN+ 24LINE ¢ D++XPP[{1:3] a D IN PIXEL UNITS

A TRANSFORM T0 P,Q HOMOGENEQUS COORDINATES

AB+(PFX+.%174B)v1 ¢ APIR+(PFX+.%x1-APERTURE)s1

R CALCULATE TRANSFORMATICON MATRICES PFT AND TFP

AP+AB,{AB[1 2;12+1 ~1xé~/4B[1 2:7),1 aP,Q COORDS CGF A,B.C
AT+§3 3p0 0-1 ¢ AT((1 2)(2 3}I+«L+{+/(-/AB[1 2;1)%2)%0.5 aT,N COORDS
TFE+QPFT+AP+ xEAT

A CALCULATE T COORDS OF I/SKECK OF EAGK LINE EDGE HITH EACH SIDE OF APTR
APTR+APTR,$APTR ¢ APTR[2;3+APTR(2;1 1 2 2] ¢ APTR++§TFP+,%APTR
EDGES++%3 up0 O0,5,L,("1 1 1 T1ixDs2),1 1 1 1

T+(EDGES CRUSS"1¢EDGES)[2 4J..CR0OSS APTR CROSS"16APTR

P+(+T)(;34 3] ¢ T[;;2]1+02 T[;;2] AROFFSET ZEROS IN 2ND COL.

T+4 2p2/7 o T+T:C5 T o AB+({/0,L#P),L/L.[#T

+{0x-/4B) /0 A NO INTERSECTION

a SET UP SATURATION BOMBING GRID

SC+|2pPFT o A+++/5C o Di+(+4)-Axx/5C o N+1[1+[(D-D1}:4
B+{D-D1}+1[N-1 ¢ L+|~/AB ¢ M+1+[L3A o A+LiM-1

IND+{M,H,3)p1 ¢ IND[;;1]+8(N ,M)pAxQ,1M-1 o IND[;;2)+(M,N)pBx0, 1N-1
INDL;;4)++14+AB o IND[;;2]1-+0.5xBxN-1 o IND+Y§((MxN),3)pIND
>(N>1)/COON o IND+((D+D1)}>0.001xMpRND+MORND)/IND
GOON:T++ (1)1 OVIND+|0.5+PFT+.%xIND ¢ +CONT
TRAP: aREMOVE THOSE OUTSIDE THE NINDOW
C+(IND(1;1>0)A{IND[L;]sL+pPICTUREIA(IND([2;)>0)1AIND(2:] <" 14pPICTURE
I++[1]171 04C/IND
CONT:+{0=pI)/0 A NO PIXELS, EXIT
a IS INTENSITY 0 OR 17

+{(~v/0 1=INTEN)/GREY ¢ PICTURE[LI]J+INTEN ¢ +0

94

VECTOR Vol.7 No.4

GREY: a WHICH PIXELS ARE BLACK?
BLEK+MASKU1+(epMASK) | I1sL0.5+INTEN=x/pMASK

PICTURE[BLK/I]+1 ¢ PICTUREL({~BLK}/I]+0

R+A AND B;COMP

aR IS AN OBJECT WHICH CONTAINS THE COMPONENTS OF BOTH A AND B

Af1l<c(+' ', 4+24[1]),ctAND) o B[1]=cy!' ', 42B[1]
COMP<2BL3] o COMP[5 6:]++ 1t+p2d4[2] ¢ B[3]+~cCOMP
R+4,"B

R+A AND B; COMP
AR IS5 AN OBJECT WHICH CONTAINS THE COMPONENTS OF BOTH A AND B

AC1]+c (4 ', 424A01]),< AND' ¢ B[1]}+cé¢' ',42B[1]
COMP+>B{3] ¢ COMFL[5 6:;]++ 1tp>4[2] o BL3]+cCOMP
R+4,"B

R+BLOCK TEXT
Re{16,8%p,TEXT)p2 1 3IRIMAGECCHLR\.TEXT::]

R+4 CROSS B
A CALCULATES THE CROSS PRODUCT OF A AND B
Re{(18A4)%71$B)-{"144) =143

R+C8 B
a RETURNS R AS B EXCEPT FOR V. LARGE NOS. WHOSE SIGNS ARE REVERSED
B+ R+«B o BL(1E12<|B)/1pBlx+ 1 ¢ R+~{pR)pB

DRAW OBJECT;ID;COOR;COMP;C;I;N;ORDER;P;¢Q

s DRANS AN X-Y PLANE PROJECTION ONTO THE BOOLEAN PICTURE MATRIX
s IT IS5 A COVER FUNCTION FOR ADDCIRCLE AND ADDLINE
SETTINGS

ID COOR COMP+OBJECT ¢ O+{((pIDl),1)pID

ORDER+~,COMP[2;] ¢ I+l
LOOP: a PROCESS NEXT COMPONENT

H«ORDER[I] o C+COMP{;N] ¢ B++ACOOR[2 2p1 2 & u&;C[5]]
+C[1]J$CIRCLE,LINE

CIRCLE:ADDCIRCLE P,CG[23 %] ¢ ~CONT
LINE:Q++#CO0R[2 2p1 2 4 u;C[6]]

ADDLINE P,Q,C[3 4]

CONT:M«14+C[1]¢*CL' ¢ +{{(pORDER)2I+I+1)/LO0OP

[]4_!1

R+HIGHELIT OBJECT;ID;COOR;COMP;F;I;CCO0R; CCOME; LOOOR:; LCOMP
A PRODUCES THE HIGHLIGHTS FOR ORJECT

Fe3 n FACTOR DIA OF OBJECT + DIA OF HIGELIGHT

ID COOR COMP+0BJECT

ID«ID,c'HIGHLIGHTED'

a CIRCLES

I+(0=COMPL1;]1)/ 1 " 14+pCOMP

CCOMP+COMPL;I]1 o COOMP[3;]++F ¢ CCOMPLU;]+0 o CCOMPLS;J+ipI
CCOOR+COORL; COMPL5:1I1]

CCOOR[3;]++(3,pI)p{+4x3%0.5)*xCC0OR[4;I*xCOMB(a;1]

95

VECTOR Vol.7 No.4

A LINES

I+(1=COMP[1:])) /1" L+pCOME

LCOMP+COMP(;) o LCOMP[3;])++F o LCOMP[4:]+0

LCOMPLS 6;]+&{{el),2)p(14pCCOOR)+12%pT

LCOOR+COOR[; ,RCOMP[5 6;I]]
LCOORE18;1++(3,2x%pI)p(+4x3%0.5)«xLCO0OR[4;]%,8COMPLa 3:1]
R PACKAGE THE RESULT

R+ID{CCOGR, LCOOR) { CCOMF ,LCOMP)

R+F MAGNIFY A
A MAGNIFIES THE BOOLEAN MATRIX A BY AN INTEGER FACTOR F
R+(FxpA)pZ 4 1 a§(F,F,ed)pd

R+MOD A
R+{+/4%x2}%0.5

R+0Z B
A RETURNS R AS B EXCEPT FOR ITS ZERCS, WAICH GO BACK VERY SMALL
B+ ,R+B ¢ BL(1E 12>|B)/1pBI+1E 12 ¢ R+(pR)pB

R+«PROJECT OBJECT;ID;COOR;COMP;CiL:iM:T

A PRGJECTS THROUGH 4 STATION POINT,STN,ONTO THE XY-Y PLANE
ID COGR COMP+OBJECT ¢ ID+ID,c'PROJECTED THROUGH ',vSTN
COORLS;]+2#£CO0RLA 431 8 CALC. DISTANCES
A CALCULATE TRANSFORMATION MATRIX

M<1200C ¢ M[1 3 6 7 11 12]+(STN,1)(3 1 3 2 u 3}

M+3 u4pM o M[;3]x+"1

COOR[1 2 4:3+M+.xCOOR[1t:] A TRANSFORM COOR
A CALCULATE COMPONENT DISTANCES
C+(0=COMP[1;1)/I+1"14pCOMP o L+(1=COMP[1:1}/I
COMP(2;C1+CO0R(S: COMPL5;C]] A CIRCLES
COMP([2;L]+0.5%+#COOR(5;COMP(S 6:L1] A LINES

f MODIFY THICKNESSES

COMP[3;]»+5TN(3}+5TN[3]-COMP[2;]
a MODIFY INTENSITIES

COMPLU ;] %« (1, HAZEY[2;1++/COMPL2; o . »HAZE[1;1]
A PACKAGE THE RESULT

R+ID COOR COMP

R+THETA ROTATE OBJECT,ID;COOR;COMP;S:T.MCDT

A ROTATES AN OBJECT THROUGH THE PSEUDOVECTOR THETA

5+3 3p7 6 2 3 7 45 1 7

§+(THETA, (-THRETA) ,0)[8] A AUXTILIARY MATRIX
MODT«MOD THETA

T+«{23 3p1 0 0 0}+({10MODT)+MODY) xS

T+#+0.5%(((100, 5xMODT)Y+0 . 5xHODT)#2) X5+.%5 =& TRANSFN MATRIX
ID COOR COMP<OBJECT

ID+ID,c'ROTATED BY ' ,¥THETA

COORLC13;)++COOR[3pk;])

COOR[3;3+F+ . xC00R[13;]

R+ID COOR COMP

96

VECTOR Vol.7 No.4

ReSETTINGS ;M;N;X1:X2;Y1:¥2

A CHECK WINDOW: X2>X1 AKD Y2>Y1

WINDOW<{ | /WINDOK),[1.81[/WINDOW

A SHOW SETTINGS

R+ HINDON ="' (wWINDOK)

R, +! pPICPURE ='(¥vpPIGTURE)

A CALCULATE TRANSFORMATION MATRICES XFP AND PFY
X1 X2 Y1 Y2+ WNINDOW ¢ M N+pPICTURE

XFP+2 3po0

XFPL1;1 3]+70.5 1x[X2-X1)+N

XFP[2;1 2]+0.5 “ix{Y¥2-Y1)+¥M

XFP[;1]++X1,Y2

PFX+"2 3tH1 0 0;XFP

8 CALCULATE APERTURE

APERTURE+NINDOW+(2 2p1 T1)x82 2p0.5x{(X2-X1):K),(Y2-Y1)+M

R+D TRANSLATE CGBJECT;ID:COOR;COMP

A TRANSLATES THE OBJECT BY THE 3 COMPONENTS OF D
ID COOR COMP+OBJECT

ID+ID, e\ PRANSLATED BY ' ,¥D

COORE3; J++COO0OR[3p4; xR { (" 14pCCOR) ,2)pD

R~ID COOR COMP

The PRINT runction files its output which may be flushed to the
printer by KYOFLUSH.

{FYPRINT A;CMD;SIZE;X;Y;010
A FUNCTION TO PRINT To XYOCERA P-200C PRINTER
A IF A I8 A MATRIX, IT IS TREATED AS BOCLEAN, AND PRINTED AT 300+F DPI

A 0 AND 1 REPRESENT WHITE AND BLACK 0I0 IS8 LGCAL AND SET T0 ZERO
I1o+¢

e{0=0NC ' pret')/ KYOINIT! A INITIALISE PRINTER

(A=)y/'pre OFMT''FF' ‘owBXIT! a FORM FEED IF A 1S EMPTY

+(2=ppAd) /BOOM ¢ A<POST_esc +OFMT>A a ESCAPE SPECIAL CHARACTERS
A«(c'NL ('},74,"<') show' a NL FOLLOWED BY EACE LINE IN PARENTHESES
pre OFMT 4 o +EXIT

BOOM: 2 (0=0NC'F'}/ ' F+2! A SET DEFAULT VALUE OF F AS 2

A+I2H A n TRANSFORM BOOLEAN T0 HEX GCHAR MATRIX
prt(Ll,pCMDYpCMD+ /Bitmap <',(,4),'> der' a DEFINE bltmap

X Y4 1ixdp4d A DIMS OF bitmap
CHD+c'gsave! A BEGIN SCRIPT

CMD,+c ' /DEPTH ', (¥FxY),' 300 div INCH PITCH add der!
CMD,+c'VPOS DEPTH sub BM It { FF } i

CMD,+<' /VPOS VPOS DEPTH sub def!

CMD,+~c'LM VPOS translate’

CHMD,+c(¥X F),' mul 300 div INCH'

CMD,«c (%Y F),' mul 300 div INCH scaie'

CMD,+e{vX ¥),' 4 [',{(¥X,0 0 71 0 1x¥),'] {bitmap) image’
CMD,+c'grestore!

CMD, +c ' KL
SIZE<«pCMD++CMD o CMD<,CMD
CHDL(CHMD=""1 Y /1pCMD] +1 =

97

VECTOR Vol.7 No.4

prt SIZEpCMD
EXIT:+0

KYOINIT;X:TM;LM:BM;PGHEIGHT;PITCH;FONTSIZE
A INITTIALISES KYOCERA P-2000 PRINTER

'prit()SE prit;
prtargs'postscript' '' 1 APLPOST.ERN'

I'M+1.,1 a Tep margin (In.}

LM+1 A Lert margin {(in.)

BM+1 A Bottom margin (in.)
PGHEIGHT+11.65 A Page helght {in.}
PIPCH+13 A Pitch in points (1/72 in.)
FONTSIZE+11

XecV /INCH {72 mul} def'

X,+ct/TM ' (vTM),) INCH def'

X, 4V /LY ', (vIM},' INCH der'

X,+c'/BM *,(vBM)," INCH der!

X,«c!' /PGHEIGHT ', (YPCHEIGHT),' INCH def'

X, +ct /PITCH 'S {(¥PITCR),' der'

X, +<'/TOF { /VPOS PGHEIGHT TH sub def LM VPOS noveto} der:
X,+<!'/FF { showpage TOF } der'

X,+='/NL { /VPOS VP05 PITCH sub def: A 2 LINE DEFN
X,+c'VPOS BM gt (LM VPOS moveto) { FF } ffelsge } der:
X,+c'JAPL-2741 tindfont "W(YFONTSIZE),' scalefont setrontt
X,<«c!' TOF!

prtt+x

KYOFLUSH

A Flush Information to printer

prt 1 2p'Fr

prieff

0 0p03H'copy c:\dyaiog\fonts\aplZ?ui.fnt+ap1post.prn Ipt1!

R+I28 B;SHR;SHR

A Return Poolean as hex array, 1 bit per sample.

A N.B. «<FFs> Iz white in PostScripti!

B+0=((140B),8%[0.225x"14pB)48 & SHR+(pB)+1 u
(0=0NC'hex')/ ttxutitstr OSH 111 R Invoke xutils ap if no hex
SHE+({1+pR+36+hex B)$9),9 o R+SHRp(SHE-0 1}+8HHpR

R+POST_esc R A et each rov of text for printing
({Re' (IN")/R),Sxrye A Bscape all of *(', *)', '\t yipp vy
R+=2, /R A Return simple vector

Lower-case functions such as prt and hex come with Dyalog APL,
ADDLINE requires a global variable RND. Execute RFD+?10001000 before
first calling ADDLINE,

For the past rfive years I have been sponsored by the Venture Research
Unit or BP Interpational Ltd, to whom I am most graterul. I alse wish
to thank the authors of byalog APL and many friends within the APL
community for thelr support and encouragemant.

98

VECTOR Vol.7 No.4

(GENERAL ARTICLES

This section of VECTOR is oriented towards readers who may neither know
APL, nor be interested in learning it. However we hope you are curious about
how, under the right conditions, such impressive results can emerge so quickly
from APL programimers

VECTOR Vol.7 No.4

Writing Assembly Language
Functions for VA
by Allan Gay

Look. I know the Reverend. I've read his sermons on ON4 in Vector and
trembled. 1 mean, don’t get me wrong - I'm a religious man myself - but I prefer
to do my crusading in carpet slippers and with a good book in hand. Well - not
that Good Book exacily. Not APL2 Programming: System Services Reference for
heaven’s sake!

Sigh.

I'm not making much sense, am I? I suppose I'd better start at the beginning,.

It is an ancient Programmer and he stoppeth one ...

Evening was drawing in and I was sprawled in a chair with my heels up on the
mantelpiece, toasting the old buns, when the ‘phone rang. With one convulsive
leap, 1 switched off the budgie, catapulted myself to the desk and snatched up
the handset before the second ring. “Hi”, I said, as nonchalantly as I could
manage.

“My son,” said a voice, “how dost thou fancy writing some ONA Assembler
functions for APL2?” It was the Reverend.

Well, it sounded like work and you know me and work (I could watch it for
hours, etc.) But the old annual fitness rating was imminent and I knew the
Reverend was big in the Synod, so 1 gave his challenging (read gruesome)
proposal the big hello. “Your Grace,” I said, “you know me and work”.

T thought he sniffed, but it may have been line noise. “Thy mission - shouldst
thou choose to accept it - is to produce three partitioned functions, namely Or
Reduce, Or Scan and LessThan Scan. They will be dyadic, handle only Boolean
vectors and will produce Boolean vector results. And,” he said, “one assumes
thou wilt also supply a FirstGroup routine if time permits.”

Next morning, 1 tried some deep thinking but it was no good. I'd already taken
compassionate leave to bury every elderly aunt which 1 possessed - some of
them three titmes - and there had been barbed comments in the office of late

100

VECTOR Vol.7 No.4

about the marked and ongoiﬁg reduction in the population of northern England.
It had to be faced: [was cornered.

So I dug out a pile of old hymnals, fired up the Shareware 370/Assembler
simulator on the old PS/2 and did some heavy coding. The Reverend seemed to
be locking for some pretty startling reductions in CPU time and I for one wasn’t
going to disappoint him.

Piece of cake ...

Well, you know, after reading an old sermon or two, dashed if things seemed all
that bad. I'd a fair idea of what the inputs and cutputs would have to look like in
CDR format, the interface details between APLZ and me seemed a pretty
straightforward piece of groined cross-vaulting apart from the odd ECV or so,
the actual logic to do the bit manipulations would all be done in the cathedral
organ’s registers for reasons of speed and tone quality and - most important of all
- [had faith.

So, when I presented myself at the tradesman’s entrance a couple of days later |
was feeling pretty holy. I had the relevant tracts with me, the Assembler prayers
were on diskette and all in all I thought it was going to be a piece of cake.

While [used a magnetic card at the holy water vending machine in the south
transept, an acolyte asperged and fumigated my diskette and checked it for
impure thoughts. Then the prayers were copied into the bowels of the cathedral
organ and battle commenced.

Now I don’t know if you've ever groped blindly down a drain in an attempt to
pick up a lead weight with a piece of limp string and a sweaty sock. Take it from
me, the TSO TEST facility isn't like that at all. Heavens no! When you are
running APL2 under TEST, it's more like using a B-52 to strangle a chicken. What
[mean is there’s a strong chance that you'll overshoot the target area and have to
go round again. And that's no joke after a 7,000 mile flight from the initial LOAD
command, believe me.

I had some initial troubles. T admit that. But I knew that once I d decoded the
cryptic words of my guide, the aforementioned System Servi es Reference, I'd
crack the interface and it would be all plain sailing. After all, the algorithms were
implemented entirely within the registers. I mean, what could possibly go wrong
with that?

The troubles mounted until, after two days, I came to doubt that my guide was -
how shall f put it? - strictly au fait with all the nuances. [based this suspicion on

101

VECTOR Vol.7 No.4

the fact that whenever I followed its advice my prayers, instead of winging
heavenwards, tumbled on the mat with their paws in the air. Consequently, it
came as something of a relief to Jearn from the Reverend that my guide had been
excommunicated in 1987. Yes, the true faith was being expounded nowadays by
APL2 Programming: Processor Interface Reference and, with its help, I got my
prayers to implement FUNCTION linkage (the fanciest, detailedest and most
sanctified type) to the point where they were returning explicit APL results at
last.

The real stuff...

Now at this point, some of you fellow pilgrims out there will want to know the
magic formula. Frankly, it seems pretty unfair that you chaps should be purified
by my suffering but, heck, I'm going to tell you. In a word: it's services, and I
don’t mean Matins. The services I'm talking about are the interpreter’'s VP, VQ,
XC and XG services. Look, will someone at the back push the kids and those
crazy BASIC fans out of the room? This is grownups’ talk. Thanks.

Okay, here’s the real stuff. First off, every time the APLer runs the name-
associated function, we get called with a perfectly normal MVS parmiist hanging
off register 1. Dangling off the parmlist, there are pointers to the System Services
routine, the ECV, and a gash, zerofilled, persistent doubleword which can be
used to remember things between successive runs of our function.

It's good style to be re-entrant so that we can serve multiple communicants from
the one chalice. Of course, cutting down on the crockery means we've got to
watch the hygiene aspect. We aren’t allowed to modify ourselves, so we can't
embed work ¢ in our routine but must instead acquire storage for them
dynamically. We use ... ™" service for this and AFL2 makes it easy for us by
bolting a VP parameterlist into the initial parameterlist, Just pop in the byteage
required, call System Services and bingo! After VP has delivered the goods by
giving us a slice of the area reserved by APL2's FREESIZE parameter, we store
the slice’s address into the gash doubleword. Every time we're called, we check
the current instance of that doubleword. If it's zero, we do a VP; if it's not, we use
it to reach the area we acquired in a previous life. We may not be able to take it
with us, but we certainly can get it back afterwards; our camel slinks around the
eye of the needle.

Whenever we get called, there’s a request code in the ECV to tell us what's going
on. If it's a delete-linkage request and we previously got an area from VI, we use
the VQ service to free it and then we grab a couple of hotel towels, use our credit
cards and check out. The holiday is over. This is either because the AFLer has

102

VECTOR Val.7 No.4

just JOFFed himself or because he has severed our name association. Otherwise,
it's a function-linkage request, meaning the APLer is on the blower and there’s
work to be done.

Although I've just given you the goods on getting and managing work area, T
wouldn't like you to think 1 knew it all along. Golly, no! I'd read and
misunderstood a remark to the effect that storage acquired via VP is
automatically reclaimed when the process terminates. Believing, erroneously as
it turned out, that my prayers were processes within the meaning of the act and
that termination meant returning control to APL2, [initially refrained from any
use of the V(Q service, nor did T use the gash doubleword to remember where my
area was. Instead, assuming that each previous execution’s storage had been
released, T blithely requested storage afresh at each invocation of my prayers.
The eventual effect was to consume all the freespace and wreck the application.

You at the back ...

Right, I'll pause here and take a few questions. You, sir. Whassa what? Whassa
ECV? Thassa big control block which contains all sorts of information about the
function arguments, together with a parameterlist for the XG service and various
items of session info. Using its contents in conjunction with the XC and XG
services, we can access the input arguments, get room in the workspace for the
result and, when we've constructed it, return it to APL by connecting it to this
ECV.

Whassa CDR, did I hear you say? That stands for Common Data Representation
and it's just the descriptive information for an APL variable. You know, its tho,
rank, type, and so forth. By examining a variable’s CDR, we can find our way to
its data and also know how to interpret that data when we get there. It can get
pretty complex but there are ways of forcing input variables into a straitjacket so
that we don’t have to program every conceivable possibility. My prayers handled
Boolean vectors exclusively. We also have to construct a CDR for our result
variable.

Yes, madam? How do you find out about the ECV’s format? There are diagrams
in the Processor Interface Reference and there’s an AP2ECV macro which maps it
and gives mountains of documentation. Speaking of macros, you should all note
that there’s an AP2CDR macro, too. You'll probably find those macros in an
APL2 AP2MACS library on one of the DLIBs; check with the sysprogs. Oh, and if
[suddenly start to speak in tongues, the first three letters of each word will be
CDR or ECV and you'll know I'm talking about fields defined by the macros.

103

VECTOR Vol.7 No.4

it's good to see you writing all this down, because there’s going to be a short
catechism afterwards.

The moving target ...

That covers the working storage aspect, so let's now take a look at creating
variables. There are various ways of playing it but I'm just going to tell you the
way I did it. You see, there are lots of choices because the APL2 environment
isn't static. As APL objects are created, modified and deleted, things get moved
around by the interpreter to reclaim released areas and gemerally defrag the
workspace. This means you can start creating a variable, go back later to wrap it
up, and find it has moved elsewhere. Obvicusly, while your [I¥4 routine is
actually running, this doesn’t happen. But, when you make certain calls to the
interpreter, any workspace addresses you are currently working with will
probably be invalidated. ECVXRLOC contains a relocation count which will have
changed if a garbage-collect has occurred.

This mutability aspect is a pest but APL2 gets round it by using tokens. Now
when APLers talk of tokens they are usually discussing APL statement parsing,
but that’s not what we mean here. Just get the idea that every separately
addressable object in the workspace has a unique badge. That means each
variable’s descriptor (CDR) and each related string of data has a unique token
which is unaffected by workspace defrag activities. APL2's XC service exists to
supply the current virtual storage address for any valid token we care to supply.
APL2's XG service, which allocates space in the workspace (as opposed to VP,
which allocates it in the freespace) returns not only the address of the allocated
space but also its token. APL2 can distinguish between addresses and tokens, so
you can pass either to APL2 interchangeably. What APL2 will pass to you vaties
according to circumstances and I preferred to inspect such pointers and find out
for myself.

The rule for pointers is: if the high-order bit is on, we have a virtual storage
address which we can use as it stands. If the bit is off, we have a token and we
need to use XC to get the equivalent virtual storage address. This finds
application when we process the input variables. Their respective CDRs’ tokens
reside in ECVXCDRL (left-argument) and ECVXCDRR (right-argument). Within
each of those CDRs is a pointer to the argument data.

If you are just creating a simple result, the strategy is straightforward. First, you
inspect the input arguments, determine the maximum possible size your result
could be, use XG to get a suitably-sized piece of the workspace in which to build
the resuit data, and note its token. Second, you manufacture the data in that area,

104

VECTOR Vol.7 No.4

using the virtual storage address from XG to access it. Third, you use XG again to
get more workspace in which to manufacture the result’s CDR. Fourth, you build
the CDR and you put the retained token of the data area into CDRPTR, in effect
hooking the data to the descriptor. Finally, you put the CDR area’s token into
ECVXCDRZ to make the result available to APL2 when you cede control.

Now if you look at that carefully, you'll see that we always complete using one
area before we call XG to get another. That means the virtual storage addresses
supplied by XG are never invalidated until we've finished using them. And
because we retain the tokens supplied by XG, we're able to connect everything
together without needing to use XC at all. In fact we don’t even need to look at
ECVXRLOC to see whether things have moved, either.

Getting it wrong ...

A while back, I observed that the algorithms were all implemented in the
cathedral organ’s registers and T - rather unwisely as it turned out - used the
expression “piece of cake”. I also asked, rhetorically, “what could possibly go
wrong with that?” Read on, brothers and sisters! Read on!

When [at last got the prayers to produce explicit results, [thought my troubles
were over. So when I heard from the Reverend that those results were
occasionally wrong I was not at all gruntled. If they had been wrong all the time,
I could have handled that, but subtle intermittent errors are bad news. I tried
putting the prayers in the fridge for a few hours in case the problems were
temperature-related but it was the Reverend who spotted the cause: early
bunkout.

Okay, | have a letter here from a listener who asks “What the heck is early
bunkout for goodness sake?” [won't read the rest of the letter because the style
deteriorates and he gets abusive, (cheese it, pal!) but I'd better explain. To do so, |
need to describe the way in which the algorithms were implemented and I also
need to explain where we get our performance improvements. Bear with me a
moment.

Why and how ...

The whole idea of writing these routines was to get things to go faster. If you
look at the Reverend’s partitioned functions they are extremely terse but,
inevitably, they use several APL2 primitive functions. Those primitive functions
don’t know that the Reverend intends to deal only with simple Boolean vectors,
so they have to be prepared to field anything that comes along, which means

105

VECTOR Vol.7 No.4

they are overqualified for the job. Also, they produce intermediate resulis along
the way which have to be allocated and deallocated, with the potential for a
workspace defrag at any stage. Finally, APL2 is not aware that they are being
used to do, say, a Partiticned OR Scan.

Conversely, our Assembler prayers are highly-specific to the expected data, are
atomic, and have inside knowledge about the task. Consequently, they are
smaller, they have less overhead and they can cheat. (Early bunkout is a form of
cheating.) Even better, we can do almost everything in registers and avoid much
of the overhead of accessing virtual storage.

The organists among you will know that the top-end IBM cathedral organs have
sixteen 32-bit general purpose registers which, unlike those in the 80x86 series
harmonium, lack almost all flavour and celour. By this, | mean that you can use
any of them for almost anything, so there’s a freedom that you just don’t find on
smaller instruments. In some of the prayers, I even preloaded constant
comparands into spare registers for use within loops. As you can imagine, by
eliminating repeated storage fetches of comparands, this expedited comparisons
no end.

The basic processing technique, once the input arguments and the output result
area had been connected up, was to lope along the inputs 32-bits (a fullword) ata
time. Each pass of the loop entailed loading a fullword of left-argument data into
one register, a fullword of right-argument data into another, and using a third
register in which to generate result data. Apart from the Partitioned OR Reduce
prayer, which could generally be expected to produce a result which contained
fewer bits than the input, all prayers produced results of exactly the same length
as their inputs. Consequently, at the end of each pass of the loop, another
fullword of result bits would be stored in the output variable’s data area.

My big mistake ...

Let’s take a look at one of the algorithms - Partitioned LessThan Scan - in detail.
A LessThan Scan produces a result which is a copy of the input argument in
which all onbits except the first have been turned off. Partitioned LessThan Scan
does this for each partition in the right-argument input data; the partitions are
defined by onbits in the left-argument mask data. For instance:

10010¢0 0 10 PARTITIONED_LT SCAN 0 2 1 0 0 1 1 1 1
010001020

106

VECTOR Vol.7 No.4

In this example, the left-argument mask data specifies three partitions of lengths
3, 4 and 2 bits respectively, In real life, however, we're talking about thousands
of partitions each of which could be anything from one to thousands of bits long.
Because the cathedral organ’s registers go like greased lightning, we can happily
loop along, shifting register contents to isolate each bit in turn, inspecting it and
deciding what to do with it. We have no alternative. Or do we? The cathedral
organ’s repertoire includes many facilities which act on a whole fullword at once.

Imagine what would happen if, having already output the first onbit in the
current partition, we loaded the next fullword of left-argument mask data and
found it to be all zeroes. It would mean that the current partition continued for at
least another 32 bits and, since we'd already output the single onbit permitted for
it, we'd have to output 32 offbits. The nature of the corresponding fullword of
right-argument data would be completely immaterial. Instead of looping
through the 32 bits one at a time, we could store a zerced fullword with a single
instruction. This trick of segment-skipping can pay performance dividends when
long partitions occur frequently in the input.

What's more, at any time during the processing of a nonzero maskword on a bit-
by-bit basis, if a test reveals that all remaining bits are off, we can ignore the
remaining dataword bits and store offbits for them in the result. This trick of
loop-truncation can pay performance dividends when data onbits are infrequent.

This sort of trickery is the early bunkout to which I previously alluded.

There’s another loop-truncation trick we can play, and this one is where 1 tripped
myself up. Let’s suppose that we've looked at the maskword and we find that
there are some onbits in it. This means we've got a new partition starting within
the next 32 bits so we can’t do a segment skip. But suppose all the databits were
off? We can’t produce onbilts in the result if the corresponding databits are off, so
couldn’t we store zeroes and bunk out early in that case?

The answer is that we could, but with one important proviso: first we must reset
the partition metabit, that status flag which records whether we have yet found
an onbit in the current partition’s data. If we were to go into the next partition
with the flag still on, we’d produce an all-zero output partition even if the input
partition data contained some onbits. Guess who forgot to reset the partition
metabit.

107

VECTOR Vol.7 No.4

Connecting things up ...

Okay, we're on the homewards stretch now. All that remains is to recount how to
make the prayers available to the APLer in his pew and to put some numbers on
the resulting CPU-time savings.

The first thing we have to do is to package our prayers as one or more
loadmodules, How many we put in a loadmodule is immaterial because the
packaging process entails coding and assembling a frontend table which lists all
the entrypoints in the individual routines, With this table in place, the usual limit
{imposed by the Linkage Editor) of 16 entrypoints within a single loadmodule is
eliminated. Instead, the loadmodule ends up with a single entrypoint via which
APL2 enters to look at the table when it wants to name-associate a given
function. The number of routines which may be declared in the table is
potentially huge.

In the project under discussion, there were only four routines and the application
used all four, so they were packaged as a single loadmodule.

To announce each routine to APL2, we create a member in a partitioned dataset
termed the Names file. Each member names its corresponding routine and gives
a DDname and membername to enable the package loadmodule to be found.
Each member also uses a simple shorthand to declare the format of the input
arguments and the result. Argument data supplied by the AFLer to our functions
will be coerced to suit if at all possible; otherwise, a DOMAIN ERROR occurs
and we aren’t called. This saves us from the chore of writing complex input-
validations.

Before starting the application, we preallocate the Names file and the
loadmodule library (the latter using the predetermined DDname coded in the
Names file members). Then we hook each routine up as an APL function by
entering

'{NamesrileDDname)' 11 [ONA 'rfunction'

After this, the function runs exactly as if it were written in AFPL. But a lot faster.

The score ...

50 how did they do? Partitioned OR Reduce was the worst. Overall, it averaged a
CPU-time saving of 44%. This means that, on average, for every 100 CPU

108

VECTOR Vol.7 No.4

seconds taken by the all-APL function, the Assembler version took 56 CPU
seconds on the same data.

The other three functions did much better. They each saved 92%. Altogether,
replacing these four much-loved utility routines knocked nearly 10% off the
overall CPU-time cost for the entire application. Since it was a very large and
heavily used application, this represented a very substantial reduction in
machine costs.

All four functions were pretty much the same size. The average was 870 bytes
and the total size of the package loadmodule was 3,592 bytes. The source code
per function came to about 320 lines, excluding comments and macro
expansions.

Development time averaged about 35 man hours per function. This reflects the
learning curve and initial blind man’s buffery. The last function (Partitioned
FirstGroup) was taken from inception to completion in only four hours by taking
a copy of the Partitioned LessThan Scan function and writing a new logic core,
the argument handling and environmental processing being the same. Tf it's got
Boolean vectors, I'm your man.

The aftermath ...

Hosannas ringing in my ears, [totter across the cathedral close. Back home,
curtains drawn, I slump in the gloom with an icepack on my head. The 'phone
rings. Wincing, T1ift the handset. “Hi”, I croak feebly.

“My son,” says a brightly enthusiastic voice, “how dost thou fancy deing a
Partitioned Plus Reduce?”

109

VECTOR Vol.7 No.4

Mandelbrot Sets

by Ray Cannon

Let me say first of all, that this article has very little to do with APL. 1 did write
some Mandelbrot code in APL for an IBM PC compatible, but it took too long to
calculate even the simplest areas.

The reason it takes so long is that a single image 480 x 480 pixels in size, requires
1,200,000,000 odd floating points instructions.

Question: What is the Mandelbrot set? Answer: It is the set of all the connected
Julian sets. (Ask a silly question and...)

OK, think of a number, square it, add the number you originally thought of
(2.4,6), square it, add first number again (36,38), square it , add the first number
(1444,1446)... Nothing much strange there, the result rapidly rises. Try -1 (-
1,1,0,0,-1,1,0...), or zero (0,0,0,0...). Al numbers seem to fall into these 2 groups.
Hither the number shoots off towards infinity, or the result stabilises in a cycle
(which may only have one element).

Now try it with complex numbers, plotting each starting point on the complex
plane (x/y graph) as either black (cycles} or white (shoots off). The result is a
Mandelbrot diagram. (To speed things up, please note that ALL points outside
the circle of radius 2 starting at the origin 0,0 are white, so only points INSIDE
this circle need be considered.)

Thus the Mandelbrot set can be described via the transformation of z goes to z
squared plus ¢, where ¢ is a complex number.

To produce a picture of part of the Mandelbrot set, follow the following steps:
1} Decide on the number of (pixels) points in your picture (say 480x480) and map
these onto a part of the “complex plane” within the region 2.0 to +0.5 on the

real (x) axis, and -1.25 to +1.25 on the imaginary (y) axis.

2) Each pixel represents a point within a small section on the complex plane.

Loop for each point in turn, taking its co-ordinates as the value for “¢”, with a
starting value for z of zero.

3) For each “¢”, calculate the value of z1 by squaring z and adding c.

4) Reset z to the value of z1 and repeat step 3).

110

VECTOR Vol.7 No.4

5) Continue doing steps 3} and 4} until either the absolute value of z is greater
than 2, or the loop count is greater than an arbitrary value (say 256).

6) Set the colour of the pixel dependent on the loop count. Plot the point in black
if it repeated, or reached the maximum value chosen.

7) Go on to the next point.

See the function called MANDOT for a specification in APL of steps 3, 4 and 5. (I
have written MANDOT in a very simple manner which may become apparent
later.)

One method of speeding things up is to utilise the fact that large areas in any one
picture contain the same value, and as the MANDELBROT set is “connected”
there are no “local maxima or minima”. (Please don’t ask me to prove that
statement.)

From this it became apparent to me, that if all the points on the boundary of an
area have the same value, then all the points within the boundary have the
SAME value as the boundary. This can be used in a kind of “binary search” type
algorithm.

So, define a square within the area te be mapped, (say 128 x 128 pixels). Calculate
the “values” on the boundary, and if they are all the same, fill the complete area
with that value.

I boundary has not the same value, divide the square into 4 smaller squares (64
x 64) and repeat the process on each of the smaller squares. Although the process
can be repeated until the square is 2x2, due to the overheads involved with this
process, squares of about 8 x 8 may not be worth sub-dividing,.

This method reduces the number of calculations required in the BLACK area
from an X squared to an X times 2 (plus) where X is the size of the square
“filled”. (I know the square has 4 sides, not 2, but boundaries between adjacent
squares are common and only need to be calculated once.)

As [have said, APL is to slow to do this work in a reasonable length of time. So [
wrote my MANDELBROT calculator in C with the MANDOT function written in
PC assembler using the floating point maths co-processor.

I did find it useful however, to model the 30387 floating point co-processor
assembler code in APL. This let me write and test the basic assembler code
within an APL environment. The top level function MA¥ can be compared with
the resulting assembler listing.

111

VECTOR Vol.7 No.4

(NOTE on 80387 maths chip. The 80387 chip works on the principle of a floating
stack, and has 8 internal stack registers, Most instructions act between the top of
the stack and other stack registers. Programming it is a bit like programming a
pocket calculator in “reverse polish notation”.)

The ATL listing and the resulting assembler code are shown below.

Notes on Functions

Functions Comment

MANDOT Normal (but very simple} APL

MAN Produces same result as MANDOT, calls FP fns

FADD Floating point FADD machine code instruction simulatox
FLD Floating peoint FLD (leoad fxom stack}

FLDM Floating point FLD {load from memory)} etc.

;assemblexr to do the MANDELBROT calculation. called fxom C
;¢ calling syntax "man{x,y)”
;return mandot value for given U and V values

@CODE SEGMENT BYTE FUBLIC fCODE’
MAN PROC near
push bp
mov bp,sp
fninlit ;clear stack
XOr ax,ax ;cleaxr AX
;atack constant 4
fId glval4l ;Push 4 into stack 4
;get x,¥y u and v f£from parameter string
£1d glbp+oc] H stack ¥a
£14 q[bp+04] ; stack xy4d
fld 1 ; stack vxyd
£ld 1 ; stack uvxyd
XOI CX,CX ;Clear registers
xor dx,dx
mov dl,off ;Inltialliese leoop control
mov bx, 1
MLOOP ! /Main loop
FRIFIEGiRiiiiiveiitiriicicale y2 estack uvxyd
£14 3 push ¥ atack yuvxy4
fmul 0,0 w2 stack {y2)uvxyd
JIPraridiriiriiiiiiiiiiiiicale x2
£1d 3 iPush x stack x{y2)uvxy4d
fmul 0,0 %2 stack (x2) {y2) uvxyd
fxch 4 ;exchange etack xi{y2)uvix2)y4
FRiiiiisiviiiiiviiilipiiiinew Y value calculationa
fadd o,0 icalec 2x stack (2x) {¥2)uvix2)y4d
fnul 0,5 icale 2xy stack (27y) (y2)uv({x2)y4d
fadd 3 ;icale axy+v atack Yi{y2)uvi{x2)y4d
fatp 5 jBtore new ¥ atack {¥2)uvi{x2)Y4
JRIFI3IFIINIIIGIiiiiiiiiinew X value calculaticns
£14 3 ;push x2 stack (x2) {y2)uvi{x2) ¥4
fesub 0,1 jeale xX2-y2 stack (x2-yz2) {y2)uvix2)y4
fadd 2 ;cale xz-y2+u stack Xiy2)uvi{x2) Y4
fxch 4 ;store new X stack ({x2) {¥2) uvXyqd
P iiiriiiiiRiiiiiisiiii;icoompare x2+Y2 4.0
faddp 1,0 jcale y2+x2 stack {y2+x2) uvXyd
foomp 5 jcomp va 4,0 stack uvxy4
Fiitiiidiiibeiiiiziirilizicheck answer and loop or exit
fnatsw ax

112

VECTOR Vol.7 No.4

and ax,9410¢

jz FOUND ;Found to be 4 or more
inc bx increment loop control
cmp bx,dx ;teat againet loop max
JNE C8:MLOOP rnext loop
Pdiridireriidiiidisiiiiliirot found so return 0
BLACK:
XOr ax,ax
Jmp FIN
FPddidipisidyaiiciiiiiii;iFound so return count
FOUND :
XOI aXx,aXx jclear return value
mov AL,BL ;ignore top byte
FIN:
mov Bp,bp
pop bp

et

APL Functions

Vv FADD ARGS V FADDP ARGS;RES
(1] ~w30387 FADD [1] ~A30387 FADDP
[z2] ARGS+ 245T[0],8TLARGS] [21 RES++/5T[ARGS]
[al STACK[C}++/ARGS [a] STACKCARGS[0]]+RES
4] ST+848TACK 4] STACK+145PACK

v [s] SP<84+8TACK

v

v FLD MEM Vv FLDM VAL
[1] =& 30387 FLD (11 ~A30387 LOAD FROM MEMORY
[23 STACK+STIMEM] ,S5TACK [2] STACK+VAL,STACK
[3] SP+B4STACK [al ST+84STACK

v v

v FLDZ Y FMUL ARGS
[1] ~a30387 FLDZ [11 ~A30387 FMUL
[z] STACK+0,5TACK [23 ARGS+"245T[0],5T[ARGS])
[3] ST<B+5TACK [3] STACK[0]+x/ARGS

v [4] ST+84STACK

v

v FNINIT v FSTP ARG
[1] ~A30387 FINIT [1] ~A30387 FSTP
£2] waINIT FLOATING POINT [z1 STACK[ARG)+3TACK[0]
[3] STACK+1 0 [3] STACK+1+8TACK
[4] ST+84+8TACK [4] ST+84+5TACK

v v

113

VECTOR Vol.7 No.4

vV FSTPM NAME Vv FSUB ARGS
[1] n303%7 FSTP STR TO MEMORY [1] n30387 FSUB
[2] s NAME , '<ST[0]" f2] ARGS+"2+48T[0],STLARGS]
[3] STACK+145TACK £3] STACK[G)+-/ARGS
[t&] ST+8+STACK [ul Sr+84STACK
v v
v FXCH ARGS

[1] ~a30387 FXCH
[2] STACK[ARGS[0I3+ST[ARGS[1]]
[a] STACK[ARGS[1]13+5T[ARGS[0]]
fu] ST+8+5TACK

v
Vv R+ MAN V;MAT;COUNT:5T; STACK Y R+V MANDOT U;X:Y:1X2:Y2;AL
[1] nSIMULATE ASS MANDELBROT [1] wRETURN MBT VALUE FOR U V
[23 R+0 F2] wLONG WINDED LISTING -
[3l MAT+0 raj RCOMPARE AGAINST MAN
Cul COUNT+G £y4] AL«1
[5] FNINIT fs] X+X2+U
[e] FLDM 4 £e] Y«¥Y2+V
[7] FLDZ (7] LP:X2+X2xX
[8l FLD 0 [X: 2] Y2+¥Ya2xY
[9] FLDM U [9] Y+¥xX
[10] FLDM V [10] X«Y
L11] LP: [12] Y+Y+X
[12] FLD 3 [12] Y+Y+V
[13] FMUL 0 0 [13} X+X2
[14] FLD 3 [14] X+«X-Y2
T15] FMUL 0 0 [15] X+X+U
fie] FXCHE 0 4 [16] X2+X2+Y2
[17] FADD ¢ 0 [17] X2+X2-4
{18] FMUL 0 5 [18] +{(X2=0)}/END
{19] FADD 3 [19] AL<«AL+1
{20] FS8TP 5 [20] +(AL>255}/END
{211 FLD 3 [21] X2+X
tz2] FSUB 0 1 [22] Yz2+Y
[23] FADD 2 [23] =+LP
f24] FXCH 0 4 [24] END:R+AL
(28] FADDP 1 0 v

(26] FSUB &
[27] FSTPM'MAT'
[28] -+ (MAT=0)/FOUND
[29] COUNT+COUNT+1
[30] —+(COUNT<256)}/LP
[31] FOQUND:R+COUNT

v

114

VECTOR Vol.7 No.4

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of
fluency in APL.

Contents
NED: A nesting editor for APL*PLUS/PC Olle Evero 116
Thoughtson J+f g F Maurice Jordan 119
Full Screen Methods with APL2 Peter Branson 126
A Note on the Match Function in APL Joseph L.F. De Kerf 133
The Steam-Hammer and the Fly Gerard A Langlet 138

115

VECTOR Vol.7 No.4

A Nesting Editor for
STSC’s APL*PLUS/PC

by Olle Evero (Evestic AB)

Though nested variables were first introduced in 2nd generation APL, nested
functions had been there all the time. The concept of nesting is actually central to
control flow in APL. Typical APL code contains functions calling functions,
calling yet other functions - all the activity that is monitored by the State
Indicator.

This boxes-within-boxes approach is of course absolutely trivial, almost a natural
law of computing. Maybe the triviality accounts for its lack of support in the
average APL development platform.

However, do not fear, rescue is at hand... T give you (drum roll, please): NED, the
Nesting Editor! NED is a simple cover to the STSC JFDIT command, that will
help you explore and maintain an application in a natural, ‘nested” way.

Picture yourself using JEDIT to browse through the main function of a system,
called MATNMENU. Suddenly (in the middle of line 13, say), you stop dead in
your tracks. Before you is a reference to another function FO0% 4. Of course, you
need to know what it contains.

Normally, you would have to exit the editor and start another editing session on
Foouu to find out. But since you are using NED, you just place the cursor over
FOOu Y4 and press ctit-E (or ctrl-Q). This takes you immediately inte JEDIT with
FOOUL UL, After finishing browsing FOOUY4, simply place the cursor on an empty
space in the function and press ctrl-E once more. This returns you to MAINHENU,
at the exact spot where you left (line 13, remember?).

Well, there you have the whole idea: navigating the code structure of an
application in a fashion similar to the application itself. Here follows the APL:

116

VECTOR Vol.7 No.4

[1]
[2]
£al
[4]
[51]
[s]

[71

fa]

[a]

[10]
[11]
Li1z]
[13]
[14]
[16]
[16]
[17)
[181
[18]
[20]
[211
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[23]
[30]
[31]

Y A NED B;C;D;E;F;6H; K: N;OELX; ONINDON

A Nesting Bditor for APL objects. Example call:; NED 'HAINMENU'
n A = ambivalent argument, unassigned at invocation
a B = valld APL object name

n [0JC assumed to be 1 Qlle Evero, Evestic AB

OELX«'CSOUND 140 200¢+LX' n beep and exit at error

OWINDON+ © & 24 80 A set window

+(2=0NC '"A'}/L0 n skip init status string I1f A exists

A«B o +*L1 n init status string, skxip append
LGiA+B,' ', 4 n append status string 1f A assigned
Li: 24 O 1 80 OWHPUT 8044 n put status string onto status line

+(Q=ONC B}/Lt5 o DINBUF 262 70 , A+[JAViH » new gbject changed to fn
L15:0EDIT B ¢ +{0 2 8 =0NC B)/LX,L[2,53 n edit and Pranch acc to type

L2:0+s8 o C+(72% 1 1 ,pC)pC o +LU A 1r variable,make matrix
Laic+)CR B n if fupcticn,canonize
Luy:De1+{OPEEK 4191 192),256L0PEEK 19% 193 m last cursor pos In OEDIT
DL11+D[1]-6xJPEEK 179 na subtract 6 if lime numbers
K+~ 1++/D[2 3] n calculate row In object
+(N>1tpC)/LX n 1f out of bounds, exit
E+'A_ABCDEFGRIJKLMNOPQRSTUYNXYZ0123456789' a char candidates
E+E, "abcdefght fxlmpopgrstuvvxy2s’ m for APL name
F«C[N;) ¢ G+FeE n produce row, and bit vector of char candidates
K+(3=0NC B)Aa~(F{1l='na')v':'=14(~G)/F a nonlabel,noncomment rows in In

G+(Kp0),5 n allow for indentaticon ol ponlabel,poncomment fun rowvs
HeK+{$a\§D[L146), L4aN{T1+4DI1]}4G n find name string

BE+H/F o +(0epH)/LX n if no pame, exlit

A NED H » else recursive edit sessicn

OQIFBUF{ 1+4D[3 2 1])/ 421 420 389 m buffer cursor moves

+L1 A return to ‘'old* edit session
LX: n axit

Some Usage Notes:

« NED is recursive; you can follow a whole chain of function calls from top to
bottom, then return to the top again.

- In the absence of programmable function keys in JEDIT, NED operation is
controlled by where the user puts the cursor. If there is a character under the
cursor at exit, this character and the adjacent characters will be interpreted as
a valid APL name, and a new QEDIT session on this name will be invoked. If
there is no character under the cursor at exit, you will return to the calling
environment. This protocol may take some getting used to.

+ You can use NED to build a system from scratch. After filling your main
function with references to subfunctions, just place the cursor on any one of
them, press ctrl-E and start coding it. No need to memorize a plethora of
names - and it saves typing too!

117

VECTOR Yol.7 No.4

+ Screen line 25 is used to line up the names that are passed te NED. Think of
this as (18 I raveled, if you will.

+ The input buffer (used by JINBUF) does not normally hold more than 256
characters. This could be a problem if you tend to write functions exceeding
200 lines or so, On the other hand, if you write such huge functions, this may
well be the least of your problems...

- NED operates on functions and text matrices alike.

+ Peeks and pokes are used as indicated in documentation pertaining to the
somewhat obsolete version 7.1 of APL*PLUS/PC. You might want to check
their applicability to the version you have got.

At Evestic, we have compiled a library of utilities related to the STSC
APL*PLUS/PC product. The focus is on novel ideas and items otherwise hard to
come by. There is guaranteed te be no assembler or locked code, just short stand-
alone AFPL functions. Please drop a line to the following address, if you want
more information on this.

Evestic AB, Attn: Olle Evero
Frejgatan 6/B-133

114 79 Stockholm

SWEDEN

Ed: This is a super idea, and in most cases it works very well, however there is one
interesting snag: if any lines in the edit stack are wrapped by OEDIT, it fails to return fo
the right place! This is a particular problem if you write functions with lots of local
variables, and hence long header lines.

Resolution of this litte dilemma is left as an exercise for Vector readers ... answers on the
back of a postcard please in time for 8.1, and we will print the best in the conference
special. Tharks.

118

VECTOR Vol.7 No.4

Thoughts on 7«r ¢ »
by Maurice fordan

Introduction

These notes arise from ideas first stimulated by Iverson’s presentation at APL83
on yoke (which allows among other things infinite sets to be handled simply in
APL), and function assignment e.g.

sum<+/

Yoke has been superseded by the phrasal forms hook and fork (APL89) and these
are now implemented in] {APL90). These phrasal forms assign meaning to
phrases such as

Jef g B

where f g and h are functions. Powerful though the concepts are, are they the
best use of this phrasal form?.

Experiments using Dyalog APL

Function assignment has been available in Dyalog APL since their introduction
of defined operators in 1986. When used with operators it becomes possible to
build quite complex functions in a simple sequence of assigned functions.

As soon as | got my hands on a Beta-release version of Dyalog/386, I began
experimenting with fork and hook. Hook is simply expressed as an operator:

v Z+{4}(r Rook ¢g)B a Elidakle lert args must Bbe enclosed Iin {}
eV Iverson/McDonnell's hook phrasal form.
B Z++d f g B (dyadic); B f g B (monadic}
+{0=0NC 'A')+L1 o A+B
L1:%Z«A £ g B
v

But the trouble with fork is that it needs a mechanism for deriving an operator or
a way of passing more than two functions to an operator. I quickly found that [

119

VECTOR Vol.7 No.4

could use Bob Smith’s NARS composition operator as implemented in Dyalog
{analogous to & in J) to bind 3 functions so that they looked like one

Legoh

and thus fool the interpreter. Once inside the operator, the internal
representation can be exarmined:

fgh¢+/n+up
ADISP {ICR 'rgh' a ADISP Is a utility to display nested
a structure

and in simple cases (where f g and h are primitive) the original f g and h can be
reconstructed easily:

V E+{A}{rns fork)B;r;g;h;FN5
n Iverson/McDonnell's phrasal rorms idea.
A Ins++fegeh; Z+{({A} £ B) g ({A} R B)
» F g h are primitives here.
FNS+[ICR' rns"
f+#>>FFS o g+23232FNS ¢ h+s 35FNS a Monadic o is + In APL2
+(0=0ONC'A')tMonad ¢ Z+{4 £ B)g A h B ¢ =)
Monad:Z2+«(r B)g h B
v

This allows

mean++/e+ep rfork
mean 1 2 3 4 5

I was able to experiment enough with these operators to realise that their
combination with function assignment leads to a powerful tool.

120

VECTOR Vol.7 No.4

A Better Way

This representation of fork depends on a fudge. The fudge is clumsy and difficult
to generalise so that it deals with defined, derived-from-defined, and assigned
functions. Instead of the composition primitive, relying on undocumented
internals (therefore liable to change), why not regain control and use a defined
operator?

v Z«(f j_ g)B
aV 4 Join operator to stack functions together for operator
a calls and unstack them within the operator.
+{B=0)+L1 o Z+f o >0
L1:Z2+g
v

This enables two (or more) functions to be joined together for syntactic binding
in operator calls, and provides an easy means of unscrambling them again within
the operator. This is used in the next generation of the fork operator:

v Z<{AY(fgh J _)B;fg:r;g:h
a¥ Performs J's rork construct when fgh is of form I j_ @ j_ B
2 (0=0NC *A}/'A~right!
Fg«rgh 0 a rgh must be of rorm f j_ g j_h
f+rg 0
gerg 1
h+fgh 1
Z«{(A f Blg(4 h B)
Azo MHJ 075ep%0
v

mean«+/ j_ + j_p J_
mean 1 2 3 45
3

right is simply the right identity from Dictionary APL:

Vv B+{A}right B
aV Right identity (- inm Dictionary APL)
v

as this is not a primitive in Dyalog APL. The idea of assigning an identity

function for elided left arguments in ambivalent functions and operators comes
from Phil Last. What a pity we can't write

121

VECTOR Vol.7 No.4

Y Ze{A+r}(fgh J) B

to supply a default for an elided left argument and avoid clumsy conditional
executes or computed gotos.

Even Simpler

A simpler construction, requiring only cne call of j _ results from

V Z+{A}{fg Fork h)B:;f:g
AV A simpler form of fork depending on the ‘'stack! cperator j_
2 (0=0NC 'A4")/ A~right’
I+fg ¢ m fg must be of form £ j_ g
gerg 1
Z+(A r B)g A B B
Aia MEJ 075ep9o

v
mean++/ j_ + Fork p
mean 1 2 3 4 5
El
Other Forms of Fork

Other forms of fork can be derived from

V Z«{A}(f strand g)B
s (O=0ONC'A')/ 'A<right
Z+«{A £ B){4 g B)

v

mean+as«(+/)e(+/ strand p) a rather unlovely
or

mean+=<{(+/}e{+/ j_ p fnarray}

where fnarray is an operator to simulate Benkard’s function array ideas but lacks
the elegance to be shown here.

122

VYECTOR Vol.7 No.4

Back to the Yoke

Although forks may be simulated in these ways their usage lacks the elegance
achieved by simply, but tediously, building a series of defined operators to cover
the g functions in the £ g & fork (as in the original yoke idea) e.g.

g Z+{A}(r and g}B
AvY AND operator for proposition runctiens f and g
2 (O=ONCYAY)/ 'A«right!
Z+{A Fr B)nd g B
v

v Z«{A}(f or g)B
AV OR operator for proposition functions I and g
2 (0=0ONC A)/ 'Asright!
Z«(A r B)vA g B
v

80 e.g.
integer_matrix+integer and matrix
This approach has the advantage that with very little added complication an

early exit and/or error handling may be provided, allowing DOMAIN ERROR to
be avoided in functicns such as

probability+{se1) and {z+0) and numeric

Alternative Meaningfor £ ¢ A

The experimentation with fork, hook and function assignment thus made
possible confirm the expressive power of these constructs. However, much is due
to the composition operator, this operator very soon starts to get in the way with
simple functions such as matrix:

matrix<«sel2a=eopop

which can be applied to any array:

any_array+ielert

123

VECTOR Vol.7 No.4

APL allows me to assign from the right in a simple expression:

E«f g h A

Z+f Yeg X+h 4
When assigning functions, why can’t [write expressions such as

Z«(rgh+~r {gh+~g h))4

In other words, why shouldn’t APL allow me to write

matrix+«=2=pp
any_array<i-

In this context dyadic functions with left arguments are regarded as deriving

monadic functions. Commute can be used for the rarer cases where we want a |
monadic function derived from a dyadie function and right argument e.g, |

spe«e~ a 'spe'+¢'eps’ |

For example, rewriting some] assignments from Vector 7.1 p 72 with APL
equivalents:

cps=. 20. A COS+20C

g=. %&180 A g++alB0 n or g+180%=
rrfd=. o.g R rfd+eg

cosd=. cos rrd A cosd+cos rid

sind=, 10.0.(%8&180}) &m sinpd+icoiBQ=~

This last expression was originally

sind=. 180.8(0.8(%8180)) n sind+«looo{ee«{22180)) }

I have found that insertion of composition (and parentheses) into phrases for
function assignment is often non-trivial. Yet, with the exception of cases like the
definition of g above where an alternative is available through the commute
operator, the expressions can be read simply if composition and parentheses are
ignored. Why not provide the facility to write them without composition?
Unfortunately this is in conflict with fork and hook. My experience so far is that

124

VECTOR Vol.7 No.4

fork and hook are a (not insignificant) minority of useful function assignments.
For my purpose, it is more useful to use the yoke concept for fork, even if it
means writing a family of operators which could have been derived from yoke.

Conclusion

Although composition (¢ in Dyalog and NARS, or & and other operators in])is
the basis for a lot of useful assigned functions and other constructions, it quickly
ends up in the way. It should be possible to reduce it to an elided operator with a
suitable definition of APL syntax. My impression is that there is a language of
exceptional beauty simplicity and power struggling to emerge. Which constraint
on our current thinking must be broken to release it?

References and Further Reading

[1] Iverson A Commentary on APL development Presentation at APL88 published
in QuoteQuad 19.1

[2} Iverson, McDonnell Phrasal Forms APL89 Proceedings

[3] Hui,lverson,McDonnell, Whitney APL\ 7 APLS0 Proceedings

[4] Iverson | Vector7.1

[5] Cherlin APL Trivia APL90 Proceedings

[6] Benkard Nonce Functions APL90 Proceedings

[7] Benkard Structural Experiments with Arrays of Functions APLSS5 Proceedings
Maurice Jordan
91 Coldershaw Road,

West Ealing,
Londen W13 9DU

125

VECTOR Vol.7 No.4

Full Screen Methods with APL2

by Peter Branson

Introduction

This is mostly concerned with APL2 on the mainframe and, although there is a
widespread tendency to move APL applications down to PC’s or the RS 6000,
etc., there is still plenty of mainframe code out there. In most cases, APL
mainframe systems are likely to have been around a while, and the full screen
techniques well established, possibly with a set house-style. Nevertheless,
mainframe APL development does still go on, and a review of some of the full
screen methods available may be of interest to relative newcomers.

My primary interest is alphamerics for menus, reports, tables, etc. but graphics
will get some mention. T will cover four approaches: (1) Character Matrix, @
GDDM (AFP126), (3) ISPF and (4) AP124 (yes, AP1241). As always, everything is in
origin-1. I use TSO, but most of what I have to say also applies to VM.

Character Matrix

For simple menu systems, this is the oldest, the easiest and the cheapest method.
Obviously, all you need to do is clear the screen (AP100 and TSO CLEAR),
construct and display the matrix, have a little prompt/response function and use
0rc2]. By the way, APL2 provides a rather neat way for that prompt function:

VIPX[OIV
[el Z+IFX MSG:0PR
(1] ~ APL2 prompt/response rn

(2] OPR«'

[3] @O+MSG

[4] Z+m~"
Z+WGET 1

(This won't work on APL2/PC since (PR is not yet implemented)

I can anticipate screams of horror at the thought that a “professional’ APL-er
might still do full screens this way, but it does actually work! Of course, a prime
objection is that it is too easy to interrupt back to raw APL, so there are many
systems where you should NEVER use it. In some of our systems, though, for

126

VECTOR Vol.7 No.4

historical reasons we still have menus created this way, and with several
hundred users over many years I am not aware of many complaints. I think the
essential point is that our users are relatively sophisticated and would not be put
off by accidentally hitting a wrong key. Of course, you shouldn’t nest these
simple menus too deeply since this makes backing out frustrating,

Graphical Data Display Manager

I suppose that GDDM (assessed via AP126) is regarded as the main [BM tool for
full screen work, both text and graphics. However, it is expensive, and buffering
of the GDDM calls where possible should be used to minimise CPU time. There
is a good paper by Dick Bowman on how to set about this (Bo89).

As Dick points out, the APL2-supplied GDMX function (in workspace 2 GDMX)
has very complex internal logic and seems to be designed on the basis that it will
still work and access any new GDDM calls that TBM might invent in the future.
However, I live in the here and now, and Dick’s simpler type of code is far
preferable. For serious full screen work a design tool is essential. Many sites will
still have [BM's 2 FSDESIGN which does this, but this is obsolescent; in any case
it does not support buffered GDDM calls. Dick Bowman's paper, though, does
give the bones of an alternative design tool which works quite well. Be warned
however! If you start copying his code, by the time you have nearly finished you
come across that most helpful of all APL lines:

FIELDPOS[26] etc, etec, etc,

Yes, you need about another 60 lines here, so you will have to understand the
code after all - which is always a good idea anyway!

FTELDFPOS does all the work to add, delete, move, resize, etc. screen fields and
uses a couple of unexplained functions (NOTOVER and FMAP) which are not
listed. Their purpose, though, is pretty clear if you remember that you cannot
overlap screen fields in GDDM. The way FIELDPOS works is to generate the
new format row and column details each time a change is made and put these
with PFMT which holds the parameters for the fields already set. PMAF starts
with a screen-size ‘map’ of ¢s and goes round PFMT adding a 1 in each ‘position’
of each field. If we end up with only (s and 1’s it's O.K,, otherwise an overlap so
throw it away and start again. This is a much simpler method than trying to
detect entry errors and putting up messages, etc. and the user soon learns to be
careful with cursor positioning.

127

VECTOR Vol.7 No.4

For what it's worth, my origin-1 code for those functions (combined together) is
given at the end. (I wonder if anyone will complain about that loop?). Finally,
before leaving FTELDPOS, there is a nice little idiom there for turning a vector
into a 1-column matrix, which T don’t remember seeing before:-

» [10]1VECTOR <+ ({pVECTOR),1)pVECTOR

Interactive System Productivity Facility

Or ISPF for short. Many people routinely use this without realising that it is a full
screen design system and that you can use it with APL2. Useful documentation
is, however, scattered about.

The APL2 manual (IBM1 pp 72, 73) is not very helpful, although it does tell you
how to use the ISPF editor to edit APL2 functions. For long functions (and, yes,
they are sometimes necessary, viz. FIELDPQS) this is much better than
}EDITOR 2 because of its powerful insert, move, copy, delete etc. facilities for
both single lines and blocks of lines. Worth looking at even if you don't use ISPF
for panels. Minor restrictions: (1) You can’t ring-edit - a pity! (2) You cannot have
function lines longer than around 230 characters - but who wants to, anyway?

Where next then? You will need up-to-date ISPF manuals (IBM2), (IBM3) and
there is a reasonable amount of APL2 there, including some example code (more
on which later). You can learn how to write ISPF panels from these sources (and
it s not difficult) but it is still not easy to see how to set up a reliable APL2-ISPF
bond.

The best starting reference that I have come across is the paper by Loren
Mayhew (Ma86) which gives a very clear and detailed account (with code) of cne
method of proceeding, including the sort of logic needed to incorporate 1SPF
split-screen mode. (You must not allow APL2 to be called twice! It has, as they
say, ‘unpredictable results’l) The key to the success of this method is the use of
an AP101 stack to do a)RESET and then re-call the original (OLX) calling
function.

One small point; the full-stops (periods) don’t always show clearly in the code as
printed and there are names like . HELF, which is not the same as “HELP. Look
for suspicious indentations if in doubt. All in all, I recommend this paper as a
good place to start.

One thing the above paper doesn’t touch on is ISPF tables, but (IBM3)} is quite
good here and has a worked telephone book example with two APL2 functions

128

VECTOR Vol.7 No.4

TELEBK and TELESY. This code can be tidied up somewhat but it is worth
coding up to learn about ISPF tables. One thing to be aware of is that it is not
fully robust. If, for example, you try from the panel to delete a report before you
have created it, you will have a nasty ABEND. There are a few like this, all
sequence dependent, but they are easily covered by initialising some flags in
TELEBK and trapping/switching them in TFLESV to enforce correct
sequencing.

The telephone book and (Ma86) between them cover almost everything you need
to know about APL2 with ISPF. One exception is perhaps dynamic table
building, a useful technique for large tables. (IBM2) has a selection on this with a
worked PL/1 example. Even if you don’t know PL/1 this is easy to translate into
APL and gives a good insight, including how to use the excellent supplied
scrolling facilities e.g. PF7, PF8. Also things like DOWN 500 or M for MAX on the
command line, then PF8 to jump straight to the bottom of the scrolled data, etc.

With a properly set up ISPF system, there is no need to back out of menus; you
can jump from almost anywhere to almost anywhere else. For example, ‘=3.4'
will go straight to option 3.4, and ‘=X’ will get you home wherever you are. |3
you want to do this sort of thing yourself, perhaps using GDDM, the logic is not
exactly trivial and with ISPF it is already done for your.

Amongst the things I like about ISFF is the excellent heip tutorial; you may need
to write some application-specific help panels, but all the stuff about scroll
commands, etc. is already there. Another thing is toggling the PF key display. A
beginner can type PFSHOW ON on the command line to get them displayed
and, when they are familiar, the PFSHOW OFF will get rid of them. Apart from
the default PF key settings, application-specific ones can readily be set
dynamically.

One piece of advice is to never waste time typing in a complete ISPF panel;
instead, copy one of your own, or someone else’s, and change it. For example, for
your first ‘primary” panel, pick the ISPF primary panel itself and modify a copy
of that. If you see a panel you like somewhere just type PANELID on the
command line to get its member name, then go look in the SYS..ISPPLIB
libraries, or wherever, to grab a copy.

Someone mentioned to me a while back that a possible problem with ISPF-APL2
was competition for attention interrupts. Our relations with our end users are
such that we can simply tell them not the use the attention key and they meekly
obey. However, if this matters to you, 1 think it can be handled with an “attention
exit routine’ in the calling CLIST; this is discussed in (IBM2) but [have not tried
it yet.

129

VECTOR Vol.7 No.4

I like ISPF panels. The APL code is a litle messy because everything (even
numbers) has to be passed as a character string, but the panels are easy to set up
(almost WYSIWYG) and a whole raft of excellent data validation routines comes
ready-supplied.

ISFF is also available on the PC, 1 gather, but 1 have not tried it because you
cannot link it to APL2/PC. IBM tell me that I am the first person to request this
option, and I hope that they can find time to build it in.

AP124

This was IBM's precursor to AP126 and allowed full-screen panels without the
GDDM overhead. Well, IBM don’t supply this any more, so why bother to
mention it? Firstly, old VSAFL systems converting to APL2 (if there are any left
who haven't done so already) either have to rewrite the full screen work or
simulate this, perhaps even using GDDM (Yuk!). Fortunately 1 don’t have this
problem. What T am more interested in are commercial packages like TSM124
from Interprocess Systems which simulates AP124 without using GDDM, and is
reportedly cheaper to use. I am hoping to test run this in the not too distant
future.

Coming down from the mainframe for a moment, T am also interested in
APL2/PC which doesn’t have AP126 but does have AP124 so I am also getting
involved there. The supplied workspace for AP124 (called AT’124) does have a
modest full-screen design function, FSDEF, but this requires all the individual
field parameters to be hard-coded inside application functions, which is not very
satisfactory for serious design work. Also, the code has been brought down from
VSAPL and is distinctly APL1, with a plethora of global variables, etc.

If you want an AP124 full-screen design kit, which itself exploits the full-screen
capabilities, then it's (almost) all there in Adrian Smith’s book (Sm82), if you can
beg, steal or borrow a copy. You will need some modifications for the PC (see the
IBM PC manual} and, interestingly, you can now use overlapping fields for
things like adding a uniform background colour. Finally, you will need to get rid
of the embedded 4V code, and (I'm sure Adrian would agree now that APL2 is
available) might nowadays prefer using a nested array to avoid those global
names.

Alternatively, if you prefer Dick Bowman's GDDM approach, it is not too
difficult to modify this for AP124.

130

VECTOR Vol.7 No.4

Graphics

Of the above four methods, only GDDM will do graphics on the mainframe, but
as one keeps repeating, it is expensive. If you need mixed text and graphics
GDDM can do this but, if your work is mostly text with a small graphics content,
consider using ISPF and calling GDDM from there, which is possible with the
latest release of ISPF.

I think, though, that these days many people would recommend downloading
the data to a PC and using one of the excellent PC graphics packages like
Harvard Business Graphics or Lotus Freelance, elc. This is the approach that we
now use.

Is GDDM obsolescent?

References

{Bo89] Bowman, R.*APL and GDDM - A High Performance Toolkit” APLS9
Conference Proceedings pp 43-53

[Ma86] Mayhew, L. Increasing Productivity with ISPE/APL2" APL86
Conference Proceedings pp 243-251

[IBM1] ‘APL2 Programming: System Services Reference’ IBM Publication
5H20-9218-2 (Nov §7)

[[BM2] “ISPF: Dialog Management Guide: MVS’ IBM Publication S5C34-4112-
00 (Jun 87)

[[BM3] “ISPF: Dialog Management Services and Fxamples: MVS' [BM
Publication SC34-4113-00 (Jun 87)

[Sm82] Smith, A. “APL - A Design Handbook for Commercial Systems’ (1982) -
QOut of print

131

VECTOR Vol.7 No.4

Appendix
VOVER[OIV
[0] R«TL_NM OVER PFMT;FF;M;I;F;R5;CS
[1] » Check for overlapping fields
f2] A-~-——----rrv v e e A
(3] a M - 'Bitmap*' matrix of screen. M[LJ/;K] is :-
[4] A O If unused, 1 if 0K fid posn, »1 If coverlap
[5] A=———— e —s b L s L e n L A
[6] FF«+{u4[2}14(2]1PFMT),[1ITL_NM n Add nev rld
[7] M«{55- 0 1)p0 m S5 is global screen siZe
[8] I+0
[9] LP:+{(14pFF)<I+I+1)/0LAP
[10] F«FF[I;]
[11] (RS CS)«(1+F[13+:F[31) (" 1+F {21+ FL41)
[12] M[RS:CS1+1+MLRS;CS] A Note addition
£133 +LP
[14] A~mmmmmmm e e A
{15) OLAP:R+lel<,M a R - 1 If overlap, 0 irf 0K

132

VECTOR Vol.7 No.4

A Note on the Match Function in APL
by Joseph L.F. De Kerf

Abstract

In SHARP APL, empty arrays of the same structure always match. In APL2-like
implementations, empty arrays only match if they are of the same structure and
prototype. As a compromise, the APL Working Group - designing the new
standard ISO APL. Extended - defines the match function such that when the
arguments are empty arrays of the same structure a domain error is reported. It
is suggested in this note that the definition of the match function for arrays with
the same structure should be consistent with the definition of the primitive scalar
functicn equal.

Introduction

In ISO APL 8485 (1), the dyadic scalar function equal Z«4=B is defined such
that, if the arguments 4 and B are arrays of the same structure, the explicit result
Z is a boolean array of the same structure as the arguments, containing a 1 where
the corresponding elements of A and B are equal, and 0 otherwise. If one
argument is a scalar or one-item array, or if both arguments are one-item arrays,
so-called scalar extension is applied. If the arguments 4 and B do not conform,
an appropriate error message is reported. Comparison Tolerance OCT is an
implicit argument.

Apparently there is no problem with this definition. With the introduction of
arrays of arrays however, a controversy has arisen about the new dyadic
function match Z<4=B. In some implementations, empty arrays of the same
structure always match. In some other implementations, empty arrays of tl.e
same structure only match if they are of the same prototype. Confronted with
this controversy, the APL Working group ISO-IEC/JTC1/5C22/WG3 - designing
the new standard ISO APL Extended - defines as a compromise the match
function such that when the arguments are empty arrays of the same structure a
domain error is reported.

The SHARP APL Approach

In SHARP APL (2), based on the grounded array concept, the dyadic function
Z+«A=B, if the arguments 4 and B are of the same structure and data, returns as

133

VECTOR Vol.7 No.4

explicit result Z a boolean scalar 1, and 0 otherwise. Two empty arrays of the
same structure such as the empty character vector ' ' and the empty numeric
vector 10 match, as they have no elements; ' "'=t0 <> 1. The definition
conforms to Ken Iverson’s APL Dictionary (3).

The NARS Approach

In APL*PLUS NARS (4) and IBM APL2-like implementations (5), based on the
floating array concept, two arguments 4 and B match if they are of the same
structure and data, and if empty, they are of the same structure and prototype.
Two empty arrays of the same structure but different prototype, such as the
empty character vector ' ' and the empty numeric vector 10, do not match:
"l=10 +> 0.

The basic idea seems to be that two arrays match if and only if they behave in the
same way. For example, the first function +B applied to the empty character
vector ' ' gives a blank, while applied to the empty numeric vector 10 gives a
zero, and as such they do not match. However, match doesn’t guarantee the
same behaviour. For instance (the example is from a private communication by
Eugene McDonnell):

Ocr«1E~13
A+1
B+0.99999999999999%
A=B

1
(1-4)=1-B

0

The reason is of course that, such as for the dyadic scalar function equal,
comparison tolerance [JCT is an implicit argument. If comparison telerance is set
to zero, or the match function is defined as independent of comparison tolerance,
two non-empty arrays of the same structure which match, always behave in the
same way. And in the example given above, 4 and B no longer match:

gcr+¢
A+l
B+0.999999999999999
A=B

0
(1-A}=1-B

o

134

VECTOR Vol.7 No.4

Defining the dyadic function match as independent of comparison tolerance
however would produce situations which do not conform with the definition of
the dyadic scalar function equal and are unacceptable. For instance, the product
of an integer with its inverse could give a result which never matches the value
one:

A+100p1
B+«B»+B«1100
OCcT<i1E™ 13
A=B

acT+0
A=B
0

the discrepancies being dependent from the particular implementation used. For
the implementation used in preparing this note (VAX APL Version 3 - DEC):

A+100p1

B+100

OcT«o

(A=Bx:B)/B
23 27 46 54 89 92

which means that for this implementation the identity Bx +B<—1 does not hold
for the integers listed (23-27-46-54-89-92). Consistency of the concept match with
the basic idea of assuring the same behaviour seems not to be feasible.

The ISO APL Approach

In the meantime, the APL Working Group I[SO-IEC/JTC1/SC22/WG3 is
preparing a new APL standard, provisionally called ISO APL Extended. At its
Copenhagen Meeting in August 1990, the APL Working Group decided that
"APL Extended must include the generalized array facility by defining the
functions enclose « and disclose o (as defined by APL2)". As far as the inclusion
of the dyadic function match = is concerned however, it was clear that it would
be very difficult to come to a concensus about the controversy described.

Finally, based on an earlier proposition from Eugene McDonnell (6), it was
decided to define the dyadic function match in such a way that, when the
arguments are empty arrays of the same structure, a domain error is reported.
This gives the implementor the opportunity to choose - as a consistent extension
- whether in this case the explicit is 1 or 0. This has no sense. In addition, as Jean-

135

VECTOR Vol.7 No.4

Jacques Girardot stated at the APL 90 Conference (7), "it means that what the
standard defines as a conforming program should not use A=B without first
checking the case of empty operands of the same dimensions” - an unacceptable
situation.

Suggestions

There is however a plausible solution. APL, as every higher level programming
language, even assembler, contains a lot of redundancy. Redundancy increases
the power of a language, but redundancy must be consistent. For the dyadic
function match 4=B for instance, this means that its definition must be consistent
with the definition of the dyadic scalar 4=B as given above; if two arrays 4 and B
have the same structure, they should match if and only if the conjunction A of the -
enlist of A=B is 1 or A=B ++ A/ENLIST A=B (ENLIST R being a monadic
function that returns as explicit result a simple vector whose elements are all the
single scalars in the right argument R taken in eventually nested row major
order, as for instance the primitive function IR in some APL2-like
implementations and the monadic system function OENLIST R in VAX APL
Version 3 of DEC). This gives for two empty arrays with the same structure as for
instance the empty character vector ' * and the empty numeric vector 1 0:

A/OENLIST ''=10

which means that those empty arrays match. Maybe the APL Working Group
ISO-IEC/JTC1/5C22/WG3 could reconsider its decision taken at the
Copenhagen Meeting of August 1990. and discuss this proposal of consistency
which, as far as the author of this note is concerned, is a must.

136

VECTOR : Vol.7 No.4

References

]

2]

8]

(4]

5]

(6}

ISO 8485; 1989 (E); Programming Language - APL;First Editon - 1989 11-
01; Edited by A. Morrow; International Organization for Standardization -
IS0, Geneva, Switzerland, 1989. See also : ISO 8485 (F).

K.E. Iverson; Composition and Enclosure; SHARP APL Technical Note
SATN-41; LP.Sharp Associates Limited, Teronto, Ontario, 20 June 1981.

K.E. Iverson; A Dictionary of APL; Publication No. 0402 8703 E3; LP.Sharp
Associates Limited, Toronto, Ontario, March 1987. See also: APL Quote Quad,
Vol. 18, No. 1, September 1987, pp.5-40.

C.M. Cheney; APL*PLUS Nested Arrays System - Reference Manual;
Publication No. P046-0381; STSC, Bethesda, Maryland, March 1981

D. Rabenhorst; APL2 Language Manual - Installed User Program 5798-DJB;
Publication No. SB21-3015-0 - First edition; IBM Corporation, APL
Development Department, San Jose, California, June 1982.

E.E.McDonnell; Rationale for the Match Function - Proposed text for ISO
Daocument; APL Working Group ISO-IEC/JTC1/ SC22/WG3-N200; Dated 19
May 1988.

1J. Girardot; Arrays and References; APL 90 Conference Proceedings,
Copenhagen, Denmark, 13-17 August 1990; Edited by I’ Gjerlov; APL Quote
Quad, Vol. 20, No.4, July 1999, pp.161-172

137

VECTOR Vol.7 No.4

The Steam-Hammer and the Fly
by Gerard A Langlet

A French proverb says: “Never use a steam-hammer to smash a fly”. It (or its
English counterpart) should be repeated on every page of any book or tutorial
devoted to APL.

Vigorously attacked in Vector 7.1 [1], I shall answer in a way that may not fulfil
Bob Bykerk’s criticisms completely, but as much as I can in a few pages; indeed a
whole book would be better - that may come in the future.

First, I have been programming in APL for almost 20 years, writing sophisticated
applications for research and industry, i.e. some important subset of the “real
world”. Quite often, I also have to translate my algorithms into other compiled
languages for various reasons; execution speed, compatibility with other existing
programs or systems, absence of APL implementations, hatred or incompetence
of colleagues about APL, or simply the still high cost of good APL interpreters on
some hardware.

The real world has many many constraints of all kinds, so, when programming
in APL, which still is the best language ever designed to test a new idea and
build a prototype, it does not seem to me superfluous to think of what will come
next. The “RISC” programming style is the fruit of hard experiments. It may not
correspond to what is taught in manuals about data structures and/or the usage
of APL notation. But T am nothing of a masochist, and T would gently conform to
any other so-called “healthy coding style” if I were convinced of its real
superiority. APL should not remain like an ivory tower, the real world is indeed
a multi-language environment, full of traps e.g. ambiguous and fuzzy
(sometimes erroneous) data.

Many people often believe that the beauty and the expressive power of the APL
notation on paper, especially in extended implementations, will lead them to
write easily nice and efficient code. Just try R+e:”V with, for example,
V+<10000p3 4 5 0 2 3 onsome APL2 compatible interpreter and compare
the CPU time with R+V/V-+/V ¢ R<R+1pR.

Let us now talk about data structures; one is taught to represent sales data in 3
dimensions - salesman x month x year. Why not, if you just want to use the
power of +/ on any of the major axes? But this is in fact a simplistic case; one
might want to extract much more sophisticated information from this array - see

138

VECTOR Vol.7 No.4

below. The ideal data structure has not been discovered yet. Tt is certainly not an
array. It may be a “fuzzy fractal”. But some APL implementations (e.g.
APL.68000, AFL90, and to a certain extent, Dyalog-APL and APL*PLUS), offer
fast reversible matrix to vector conversion tools such as 1BOX.

In general, a text page is shorter when kept as a vector. This is also true for
numeric data with heterogeneous length, but JB0X accepts them only in the first
two implementations. Most of my data are kept in vectors, and if and only if it is
necessary to handle them in matrices, or in vectors of vectors, or in vectors of
matrices, they are TEMPORARILY, rapidly and internally reshaped with
automatic mechanisms which accept ANY of the possible data structures as
input.

Another item of my short letter to Vector [2] has been misunderstood. I never
wrote not to use locals; I think that locals should be avoided when they are
unnecessary, except e.g. for voluntary didactic purposes. I would appreciate an
extended APL implementation in which all one character names would be
automatically localised; this would save typing time and space. Since [deprecate
the use of parentheses, APL expressions are shorter and do not lead so
frequently to the ¥§ FULL message; then, I do collect the intermediate results
within the minimum of locals. With “RISC” programming style, [don’t burn my
bridges. My programs are easier to debug than before. Nobody is obliged to
believe me; just try, if you wish, and criticise only in six months from now.

Try to write ex nihilo with branches, the PERM function listed in {3]. It is not an
easy way of doing it. Then, try to write a screen manager using some
combinations of the 3 buttons of a mouse as well as the key-pad, in order to
handle several recursive pop-up menu-windows with lifts, travelators, automatic
clipping, shadows and help files. I did that once, in APL*PLUS PC, and [doubt
that I could have succeeded with branches and labels [4].

The result is a short general-purpose RISC-APL function which respects several
other rules of my anathematised programming habits; the display of a function
should not exceed the screen size, so that you never have to scroll up or down to
see what it does; every procedure (simply a character string or vector) is defined
before the one which uses it; the resulting code executes quickly in APL and can
be translated easily i.e. by hand or with another small APL program into any of
the important programming languages in the real world outside APL (yes! it
does exist).

139

VECTOR Vol.7 No.4

Are Salesmen Fly-smashers?

Suppose we have 20 salesmen who have worked for 10 years from 1981 to 1990.
Y is the vector of the number of days in each year, and ¥ its sum:

1 20xN++/{0+Y+10p03 1/365 366
365 365 365 366 365 365 365 366 365 365
3B52 73040

Let us introduce the following two functions. FSUM which produces the partial
sums of B according to 4, and EXECR which EXECutes A with Rank A

YR+A FPSUM B;D;N:0I0
[1] QI0«1 ¢ D+"14pB++\B 0 N+[D+1[+/4 ¢ Re1ii«|N=p, A o A«Di+\Npd ¢ N+ppB
[2] N EXECR 'B+{,-B[AJoR+B[R]-B{R+1]"'

v

VA EXECR A A APL.GBOCO Level IY

[1] a«'[',148p';' o 2055 A '[' & n 055 accepls strand neotaticon: 4 B C
v
vA EXECK A A APL.68000 Level I

[1] aD08S(A:'['3a+"[*, 14803 ") n 053 kas 3 arguments (A;B:C)

v

Note: []55 substitutes every occurrence of B by ¢ in character vector 4.

Function PSUM is programmed “thinking of vectors”, but it also works, reducing
any rank array along the last dimension, due to EXECR which is a general
purpose tool (JUST LOCK IT IF YOU DISLIKE IT), or adapt it to your own APL
implementation if you have no [1§5. Rub it if you never use arrays.

Now, let us suppose that you want the results per week, per month, and per
semester. What will you do if you have organised your data in an array and if
you cannot use nested arrays? With vectors, heterogeneous groupings are easy.
The number of full weeks in these 10 years is W<V L&+ 7, i.e. 521 and the number
of extra days in the same period is £«7 | ¥ i.e. 5. You may try: RW<7 PSUM 20
3652p T if you just want to start “as the data are” and love reshaping, but what
happens if you want full weeks starting on Sundays - in the English way - or on
Mondays - in the French one? Incidentally, January 1st, 1981 was Thursday, so
that the first group of days is 3, and the last one is E-3 when the week starts on
Sunday.

140

VECTOR Vol.7 No.4

K<20xpV+1 521 1/3 7,E-3
G«KpV
RSW+«G PSUM T a for "Sunday veeks"

Now let D be the day/month-vector in a normal year, reshaped for 10 years:

D+120p31 28 31 30 31 30 31 31 30 31 3¢ 31 ¢ I«120p1240 1
M<2400pD+IA12/¥=366 ¢ S+«G PSUM M o RM«M PSUM T o RS5+5 PSUM T

RM is the result per Month, and RS the result per Semester.

Note: “Replicate” is frequently used here. Although absent from The ISO-
Standard APL it will be in the next standard and is available in most present
implementations. If you have APLZ, all this will also work; then, try to measure
CPU time using enclosed arrays instead... Will the fly survive?

References
[1] Bykerk, B. The Dangers of APL RISC programming, Vector, 7.1, 112.

[2] Langlet, G.A. APL RISC Programming Style, Vector, 6.2, 23-24.

3] Langlet, G.A. The Travelling Salesman Problem revisited with APL, APT90
Conference, Copenhagen. APL Quote Quad, 20.4, 228-232 (July 1990).

[4] Langlet, G.A. Presentation of GLOS, all-purpose software integrator on PC, in
“Modelling of Molecular Structures and Properties”, Elsevier Science
Publishers, ISBN 0-444-88714-8, 767 (1990).

Ed: The above is a shortened version of Gerard’s original article, which was too long for
the space available in Vector.

141

VECTOR Vol.7 No.4

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+1 and discuss themes for issues n+2
onwards. Please send the text of submitted articles (with diskette as appropriate)
to the Editor:

Jonathan Barman,

Hill Top House,

East Garston,

NEWBURY, Berks RG16 7HID

Tel: 048839-575 {not after 10.00pin please!)

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members news) should be sent to Vector Production, ¢/o Adrian
Smith, Brook House, Gilling East, YORK Tel: 04393-385 (6.00pm - midnight).

Product Guide updates should continue to go to Alison Chatterton, as should
requests for advertising space.

MicroAPL for ...
Consultancy and Training

MicroAPL has 10 years’ experience with small-computer APL systems -

stand alone, networked or multi-user - and using all the major versions of APL.
We provide a full range of consultancy services including feasibility studies,
project management, programming, documentation and support services.

Our programming skills cover all areas of APL and systems programuning.
MicroAPL also offer a comprehensive range of APL training courses.

For more details, contact David Eastwood at:

I:I DDDDDD g?)ilf::%z::kl::‘:‘chnopark

EHE“I‘[E@D 90 London Road
LONDON, SE1 6LN

%E%}%‘EE’ Telephone: 071 922 8866

142

VECTOR

Vol.7 No.4

Index to Advertisers

APL People (half)
Dyadic Systems Ltd
MicroAPL

APL Booklist (Renaissance Data Systems)

66
2,6
82,142

32

All queries regarding advertising in VECTOR should be made to Alison

Chatterton, at the address on the inside back cover.

143

VECTOR Vol.7 No.4

BAA: Membership Application Form

Membership of the British APL Association is open to anyone interested in APL.
The membership year runs from 1st May to 30th April.

Name:

Address Line 1:

Address Line 2:

Address Line 3:

Post or zip code:

Country:

Telephone Number:

Membership category (please tick box): 91792

UK privatemembership, £12 Q

Overseas private membership £20 Q
Airmail supplement (not needed for Europe) ., £8 d

Corporatemembership £100 d

Corporate membershipoverseas £155 d

Sustaining membership, .. 00 L, £430 g

Non-voting student membership (UKonly) .., £6 d

I authorise you to debit my Visa/Mastercard account

" J |]—I Expiry date: [D]]

for the membership category indicated above,

Number:{|J|ﬂH|”[i

a annually, at the prevailing rate, until further notice
one year’s subscription only

(please tick the required option above)

Signature:

PAYMENT
Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to "The British APL Association”, or you may quote your Access
or Visa number. Please send the completed form to:

BAA Administration, Alison Chatterton, 9 Qak Grove, HERTFORD SG13 8AT, England

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by a Committee
of officers who are elected by a postal ballot of Association metmbers prior to the Annual General Meeting. Working
groups ate also established in areas such as activity planning and journal production. Offers of assistance and
involvement with any Association mattets ate weloomed and should be addressed in the first instance to the Secretaty.

Chairman:

Secretaty:

Treasurer:

Journal Editor:

Activities:

Education:

Publicity:

Technical:

Recruitment:

Prajects:

Administration:

Editor:
Secretary:
Production:
Support Team:

1990/91 Committee

Peter Donnelly Dyadic Systetns Ltd.,

0256-811125 Riverside View, Basing Road,
OId Basing, BASINGSTOKE,
Honts RG24 QAL

Anthony Catacho 2 Blenheim Rd,

0727-860130 ST ALBANS,

) Herts AL14NR.

Nichelas Small 8 Cardigan Road,

081-980 7870 LONDON E3 SHU

Jonathan Batman, Hill Top House, -

048839-575 East Garston, .

Dr Peter Branson
081-848-8989

Dr Alan Sykes
0792-295296

Jonathan Martin
081-362 5697

David Eastwood
071-922 8866

NEWBURY, Berks RG16 7THD

Electronic Data Systems, Stockley Park,
UXBRIDGE, Middx UB11 1BQ

European Business Managerment School
Swansea Univetsity,
Singleton Park, SWANSEA SA2 8PP

{5499} British Airways,
PO Box 10, Heathrow Airport,
HOUNSLOW, Middlesex TWo2JA

MicroAPL Ltd
South Bank Technopatk,
90 London Road, LONDON SE1 6LN

Jill Moss APL People Ltd, The Old Malthouse
0225-462602 Clarence St., BATH, Avon BAI 5NS
John Searle 13A Mount Ararat Road,
081-948 6737 RICHMOND, Surtey TW10 6PQ
Alison Chatterfon 9, Oak Grove,
0992-552489 HERTFORD,
5G13 8AT

Journal Working Group
Jonathan Barman 048839-575
Anthony Camacho 0727-860130
Adrian & Gill Smith Brook House, Gilling East, YORK (04393-385)

John Searle (081-948 6737), Ray Catmon (0252-874697),
Sylvia Camacho, Bridget Barmoan, Gitl Smith

Typeset by APL-385 with MS Word 5.0 and GoSctipt
Printed in England by Short-Run Press Ltd, Exeter

VECTOR

VECTOR is the quarterly Journal of the British APL Association and (s distribuled to Association members
in the UK and overseas. The British APL Association Is a Specialist Group of the British Computer Society.
APL stands for "A Programming Language” - an interactive computer language noted lor its elegance,
conciseness and fast development speed. Il is supported on many himesharing bureaux and on most
mainframe, mini and micro computers

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financial support of the
following Association Sustaining Members. In many cases these organisations also provide manpower and

adminisirative assistance to the Association at their own cost,

APL People
The Old Malthouse

Clarence St, BATH, BA1 5NS
Tel:0225-462602

Compass R&D Ltd

15 Frederick Sanger Rd

Surrey Research Park
UILDFORD, Surrey GU2 5YD
el:0483 302249

Fax:0483 302279

HMW Computing Lid
Hamilton House,

1 Temple Avenue.
LONDON EC4Y OHA
Tel071-353 4212
Fax:071-363 3325

Cocking & Drury Ltd

180 Tottenham Court Rd
LONDON, W1P SLE
Tal:071-436 9481

REUTERFILE

1-4 Singer St,
LONDON EC2A 4BQ
Tel:071-867 1166
Fax:071-867 9792

Intelligent Programs Ltd
Unit 7, Hermitage Court
6-10 Sampson St
LONDON, E1 8NA
Tel071-481 4813

Dyadic Systems Lid
Riverside View. Basing Road.
Old Basing, BASINGSTOKE,
Hants, RG24 0AL

Tel0256 811125

Fax;0256 811130

APL Impetus Ltd
Rusper, Sandy Lane

Ivy Hatch, SEVENOAKS
Kent TN15 OPD
Tel0732-885126

MicroAPL Lid

South Bank Technopark
90 London Road
LONDON SE1 6LN
Tel:071-922 8866

Peter Cyriax Systems
213 Goldhurst Terrace
LONDON NW6 3ER
Tel.071-624-7013
Mobile:0860-377963

The British Computer Society, 13 Mansfield Street, London W1M 0BD.

