

The Journalof the

100+ pages of the Best in APL
+ 16-page Educational Supplement 17
+ Statistics Library News 33
+ APL.68000 LevelIl Reviewed 67
+ Parkhouse on Graphics 83
- Gay on Assembly and OVA 100
+ Jordanon J+f g A 119

British APL Association

ISSN 0955-1433
A Specialist Groupof the British Computer Society Vol.7 No.4 April 1991

Contributions

All contributions to VECTOR maybe sent to the Journal Editor at the address on the inside back cover. Letters and
atticles are welcome on anytopic ofinterest to the APL community, These do not need to be limited to APL themes,
nor mustthey be supportive of the language, Articles should be accompanied by as much visua! material as possible
(ideally with a photograph of the author and a brief biographical notc). Unless atherwise specified, cach item will be
considered for publication as a personal statementby the author.
Please supply as much material as possible in machine-readable form,ideally as a simple ASCII textfile on an IBM.
PC compatible diskette (any format). APL code can be accepted as cameta-ready copy, or in workspaces from
APL*PLUS/PC, IBM APL2/PC or Dyalog APL.
Except where indicated,items in VECTOR maybe freely reprinted with appropriate acknowledgement. Please inform
the editor of your intention to te-use material from VECTOR.

Membership Rates 1991-92
Category Fee Vectors Passes
UK Private. £12 1 1
Overseas Private £20 1 1
(Supplementfor Airmail) £8
UK Corporate Membership £100 10 5
Overseas Corporate £155 10
Sustaining £430 50 5
Non-voting Student £6 1 1

The membership year runs from Ist May to 30th April. Applications for membership should be made to the
Administrator using the form onthe inside back page of VECTOR.Passes are required for entry to some association
events, and for voting at the Annual General Meeting. Applications for student membership will be accepted on a
recommendation from the course supervisor. Overseas membership rates cover VECTORsurface mail, and may bepaid in sterling, or by Visa ot Mastercard at the prevailing exchangerate.
Corporate membership is offered to organisations where APLis in professional use. Corporate members receive 10
copies of VECTOR, andare offered group attendance atassociation meetings. A contact person mustbe identified for
all communications.
Sustaining membership is offered to companies trading in APL products; this is seen as a method of promoting thegrowth of APLinterest andactivity. As well as receiving public acknowledgement for their sponsorship,sustaining
members receive bulk copies of VECTOR, andarc offered news listings in each issue.

Advertising

Advertisements in VECTOR should be submitted in typeset camera-ready A5 portrait format with 2 20mm blankborder, Illustrations should be black-and-white photographs or line drawings. Rates are £250 per full page, £125 forhalf-pageotless (There is a £50 surcharge per advertisementif spot colour is required).
Deadlines for bookings and copyare given under the Quick-reference Diary. Advertisements shauld be booked with,
and sent to, Alison Chatterton, whose address is given on the inside back cover.

VECTOR Vol.7 No.4

CONTENTS
EDITORIAL:a Babelof APL Dialects?

APL NEWS
Quick Reference Diary
British APL Association News:
RecruitmentOfficer’s ReportNewsfrom Sustaining Members

APL9I Abstracts
The Education Vector
The Random Vector

REVIEWS
APLProduct Guide
ZARK: an APL Tutor
APL.68000 Level II
APL*PLUS/PC PostScript Support

RECENT MEETINGS
GSS Graphics with APL*PLUS/PC
TheIdeal Screen Editor
APLGraphics- First Principles

sy GENERAL ARTICLES
Writing Assembly Language Functions for JNA
MandelbrotSets

TECHNICAL SECTION
NED:A nesting editor for APL*PLUS/PC
Thoughts on d+f g fh
Full Screen Methods with APL2
A Note on the Match Function in APL
The Steam-Hammerandthe Fly
Index to Advertisers

Jonathan Barman

Jill Moss
Alison Chatterton

Alan Sykes
David Eastwood

Alison Chatterton
Emily Timson
Jain Hayward
Adrian Smith

George MacLeod
Anthony Camacho
Graham Parkhouse

Allan Gay
Ray Cannon

Olle Evero
Maurice Jordan
Peter Branson
Joseph L.F. De Kerf
Gerard A Langlet

Page

il
17
33

52
67
74

100
110

116
119
126
133
138
143

Youcan “iconify" Youcan execute —-You can edit Youcan edit The TRACEfacility Watch your

and restore your expressions inthe character matrices several functions lets you step variables change aswindows as and Session whilst Edit and vectors of and/or operators through your you run your code.whenrequired. and Trace windows character vectors. atthe same time, application line byHere you see icons remain open Lines can easily line, As you doso,for an APL graphics be copied/moved the APL stack iswindowanda between functions displayed and the
second Unix orto and fromthe current executionsession, Session, lineis highlighted.
A userlicence for Dyalog APL/X costs just £1,500 andis available for a range of UNIX
workstations including IBM RISC System/6000, Sun SPARCStations, and Hewlett-Packard
HP9000-300/400Series.
In addition to the unique Development Environment pictured above, Dyalog APL/X provides
a powerful set of tools to help you produce good-looking, responsive and easy-to-use interfaces
for end-user applications. Other important features include graphics support, external variables,
a really fast componentfile system and a native file interface. You can easily access external
functions written in C or Fortran, and an interface to Oracleis available on most systems.

All Trademarks, Servicemarks and Trade Namesare the acknowledged propertyof the Companies concerned.
For further details contact Dyadic Systems Limited DY. A | ICRiverside View, Basing Road, Old Basing,

 Basingstoke, Hampshire RG24 OAL.
Tel: (0256) 811125 Fax: (0256) 811130

VECTOR Vol.7 No.4

Editorial: a Babel of APL Dialects?
by Jonathan Barman

Are there too many versions of APL? Moving applications from one version to
another seems the most painful, pointless and unrewarding task, only to be
undertaken when absolutely necessary. How one wishesfor absolute uniformity
when doing such work.
However, it would be a very sad day if APL were so moribund that all
implementations were the same. The new generation of APL interpreters are full
of exciting features, which is evidence of an alive and progressive APL
community. We need discussion and debateofthe relative merits of the various
features so that eventually a consensus view can be incorporated in the APL
Standard.
The APL Standard seems to have had very little influence in removing
differences between APL implementations. The idea of ‘conforming extensions’
means that most implementations can conform to the standard whilst retaining
all the various extra features. In my view this just allowsall the differences to
persist, and the real crunch will come when the next Standard has to decide
between competing features. At the momentthefeaturesbattle is being decided
in the marketplace.
The principal contenders in the market place for second generation APLs are
IBM’s APL2, STSC’s APL*PLUS II, Dyalog APL, and MicroAPL who have
entered the fray with their APL.68000 LevelII interpreter which is reviewed in
this issue. All these versions are slightly different, but not as fundamentally
different as Sharp APL with its grounded system of nested arrays. Sharp APLis
in a minority at the moment, so it is possible that the grounded system will fade
away.
If it were possible to stick to just one flavour of APL then there would be no
problem. Obviously, when one writes an application one can only use the
interpreter available at the time, and the problems of migration to another
version of APL can seem to be quite minor compared with the problem ofgetting
the job done on time. However, migration is becoming more and more necessary.
Mainframe applications are being transferred to Personal Computers.
Applications on old PCs subject to the DOS memory limits are being revitalised
by transferring to the 386 architecture where memory limits are removed. Soon

VECTOR Vol.7 No.4

everyone will want windows and networks which may require different APL
implementations.
Whenwriting APLit is good practice to ensure that the design does not rely on
special features. This is much easier said than done. Quite minor ‘features’ can
cause extraordinarily difficult migration problems, which cannotbe predicted in
advance. An example of a very minor change causing migration problems was
the change in the Format primitive made by APL2. In VSAPL a leading space
was guaranteed when using monadic format on a matrix, but in APL2 there is no
leading space. The ramificationsof such a tiny change were very surprising, with
migrated codefalling over in quite unexpected places.
Designing function calls which can be tailored to cater for major differences in
features is quite a difficult task. Screen handling is the prime example of the
problem. STSC’s OWIN leads to screen driving functions being written in a quite
different way from those that use Dyalog’s oSM, which is different again from
the AP124 processor in IBM’s PC APL2. File handling is another area where a
plethora of radically different features often makes an otherwise good design
difficult to migrate. The article on WAGSin the Random Vectorin the last issue
(7.3) was a particularly interesting exercise in designing graphics functions
which could be implemented in any APL implementation.
The wide range of different features that are currently available needs to be
reduced. Of coursethere are problems. APL vendors are obliged to provide an
upgrade path for their existing users so that their code continues to work with
any new version.Special features are boundto be seen in the light of competitive
advantage. However, convergence is possible, and actually happening now.
MicroAPL have deliberately made their Level II as compatible as possible to
IBM's APL2.
Everyone who uses APL should be aware of those features thatare likely to be
included in the next Standard and those that should be avoided. There is a need
for publicity and debate so that nobody is surprised should a feature be
downgraded at some time in the future. Those who work with more than one
version of APL have a duty to the APL community to give their views on the
relative merits of the various features. Let us see if we can make Vector the
foram for discussion on this topic.

VECTOR Vol.7 No.4

Quick Reference Diary 1991
Date Venue Event
26 April IEE London BAA Meeting
7 June IEE London AGMand BAA Meeting

Ath - 8th August 1991 Stanford APL91: The Next 25 Years

20 September IEE London BAA Meeting
25 October IEE London BAAMeeting
22 November IEE London BAA Meeting

Starting from February 1991,all British APL Association meetings will be held in
the IEE, Savoy place. Nearest tube outlets: Temple or Embankment.
Meetings are normally held on the 3rd Friday of the month throughout the
autumn andspring.

Overseas APL User Groups
The Vector working group are anxious to maintain contact with as many
overseas associations as possible. If you are running an APL group and would
like to receive Vector in exchange for your own newsletter or journal, please
contact Alison Chatterton at the address on the inside back cover. We will
endeavour to compile and maintain an. accurate list of contacts of overseas
groups, and publish this regularly with our APL Product Guide.

Dates for Future Issues of VECTOR
Vol.8 Vols Vol.8
No.1 No.2 No.3

Copy date Ist June 94 5th Sept 91 1st Dec 91
Adbooking 8th June 91 12th Sept 91 1st Dec 94
Ad Copy 15th June 91 21st Sept 91 12th Dec 91
Distribution July 914 October 91 January 92

Tea iy th’ gunaLie GP: eat ote) octee: wpa tient towwerleg Denice AML. Hevernl APL tuskgine renninSomer itty, cowl Ath Ad cmyy (EM eae,
Cheeniting im option from the CASWBOARD aesw stwet:ane AP,
Note. the tengo of my AIL Seemlow Minton:4m aur wndesneer wnpl teatttem, only Ae ibe

A Lees] ever! ARAN SSMS} awe

tiene One|] 8 NRTAaps } tmeccle

This photographillustrates the sort of modern windowsapplications you can
develop using Dyalog APL/X.At the heart of the user-interface is a system
variable [|SM which represents the layout, content and behaviourofa set of
fields within an X windowonthe display. Users interact with [JSM using the
keyboard and/or mouse througha system function (JSR. Together these tools
provide an extremely powerful yet natural and easy-to-program user-interface
for your APLapplications.

Dyalog APL/X is just one ofa fully compatible family of APL products for UNIX
workstations, multi-user UNIX systems and DOS/386PCs.
All Trademarks, Servicemarks and Trade Namesare the acknowledged property of the Companies concerned.=For further details contact Dyadic Systems Limited DY. ADICRiversideView, Basing Road, Old Basing, LJ Il tN

 Basingstoke, Hampshire RG24 OAL.
Tel: (0256) 811125 Fax: (0256) 811130

VECTOR Vol.7 No.4

British APL Association News
Recruitment Officer’s Report by Jill Moss
Therole of Recruitment Office for the British APL Association is to endeavourto
increase the membership by encouraging people to join and by persuading
lapsed members to renew. The Recruitment Officer also tends to be the focal
pointfor enquiries about the Association. I alwaystry to send a personalletter in
response to each individual enquiry, accompanied by one of the Association's
leaflets, a membership form and information about Vector. Invariably, this has
the desired result, with the enquirer deciding to take the plunge and join!
During the two years in which I have held the post of Recruitment Officer for the
Association, various other initiatives have been tried. These have met with
varying rates of success, and have included mail shots extolling the benefits of
membership:

- to lapsed members, both in the UK and abroad
- to individuals on APL People’s own mailinglist
- to attendees of the ASL Conference in Swansea (drawingtheir attention to the

support provided by the BAPLA)
- to delegates of APL 90

Mail shots have provedto be quite an effective meansof pulling in new members
and convincing former membersto rejoin. We havealsotried:

- Advertising in the ComputerBulletin (Journalof the British Computer
Society)

- running a competition to encourage existing members to persuade other
people to join (by offering them the chance to win a trip to APL 90 in
Copenhagen)

- getting all the major APL vendorsto promise to enclose oneof the
Association’s publicity leaflets with every APLinterpreter sold

Thelatter of these is quite effective (provided vendors rememberto enclose the
leaflets of course!). Unfortunately, the previous twoinitiatives failed to produce
muchin the way ofresults and therefore will not be repeated.
As far as future efforts go, we plan to target specific groups of people, such as
teachers, and also to produce a range ofleaflets to promote certain benefits of
membership, such as the Software Library. Anyone who wouldlike to help with
writing or distributing leaflets, or who has any bright ideas for other ways of
promoting membership,please let me know- alloffers gratefully received!

VECTOR Vol.7 No.4

Newsfrom Sustaining Members
Compiled by Alison Chatterton

APL People Limited
The New Year got off to a promising start with several people taking new jobs
and more contract work being secured for the Company. However,signs that the
economy has slowed downconsiderably are now becoming evident as more
companies are reluctant to commit themselves to taking on extra staff. We now
find ourselves in the unusual position of having more people seeking jobs than
we have vacancies! So any companies out there who are thinking of taking on
skilled ‘APLers’ this year, why not get in touch with us now, while we have a
good selection of candidates for you!
APL Manufacturing’s production control software continues to sell well,
particularly to companies in the defence industry (so some good will have come
out of the Gulf warafterall!) The latest version of PEFAC, whichis designed to
run much faster on the hard disk, is currently on trial with the Ministry of
Defence, who are looking for software to control the pricing of all their sub-
contract work.

HMW ComputingLimited
HMW Computing Limited continue to support, develop and market “4XTRA”
ourfront end Foreign Exchange Dealing and Position Keeping System.
Each time] write news for Vector it seems that we havejust released another
upgradeof software. To keep the tradition going, we release another upgrade on
1st of March (tomorrow) which includes enhanced user monitoring software.
This allows us simultaneously to monitor all machines running 4XTRA on a
network from any point on the network. The monitoring software (4ARMS)
picks up any stations APLerrors instantly, and can then “take over” the users
machine, investigate and fix it up, and return control to the user. With over 100
users, this gives us the facility to offer instant support, without physically having
to visit the station on the network,
Wehave recently moved to larger offices within Hamilton House which has
given us much more room for our consultancy teamsandfor visiting clients.

VECTOR Vol.7 No.4

If you wouldlike to see the latest 4XTRA system, we are exhibiting at a number
of exhibitions and would be please to offer invitations or if you prefer a
demonstration can be arrange at ouroffices or on your own premises.a

Dyadic Systems Ltd
Dyadic is now shipping Dyalog APL Version 6.1 for DOS/386, and certain UNIX,
and X Windows implementations. The new version contains the following
enhancements:
Browsing/Editing Variables
You can now opena display/edit window for a variable. The window is opened
in the same way as for functions and operators, ie. by using)ED or by
positioning the cursor over the name and pressing the <EDIT> key. In Dyalog
APL/X you can also “point-and-click” with the mouse. The appearance of the
variable in the windowis exactly as if it were displayed using standard output
ignoring DPW.
Data in an Edit window can be scrolled vertically and horizontally so that you
can easily browse through a large array. ANY variable can be displayed,
althoughnotall types of array can be edited. Additional colour parameters may
be specified to distinguish between variables and functions and between
“editable” and “non-editable” arrays.
If you assign new values to a variable for which there is an open Edit window,
the window is immediately updated. This is particularly useful for debugging
whenusing the TRACEfacility, because you can watch the value of one or more
variables change as you step through a program.
OzD
A new system function, O£D, has been introduced to permit the browsing
and/or editing of variables and functions/ operators under program control.
Screen Manager Improvements
The Dyalog APL Screen Manager (OSM/QSR) has been enhanced. In all
implementations, the handling of TIMEOUT events has been improved.In the
UNIX and X Windowversions, JSR can now beinterrupted by another process
(e.g. another APLtask or an Auxiliary Processor) andthe interrupt trapped. This
allows several independent APL tasks to signal events to one another and
broadensthe scope for processing “real-time” data feeds.

VECTOR Vol.7 No.4

MicroAPL Ltd
Sales of our new second-generation APL - APL.68000 LevelI - are continuing to
be very strong and we are now shipping significant volumes to the USA. We
have madea couple of minoralterations to the interpreter since its release last
year and we are now shipping release 1.17. Users who have not received
upgrade notes should contact MicroAPL(or their local distributor) for details of
the changes.
Weare pleased to announce the appointment of Uniware as a distributor for
APL.68000. Uniware are probably the leading French APL specialists and their
appointmentfills a major gap in our overseas representation. France has a large
and enthusiastic APL community and we feel that a local supplier for APL.68000
will enable us to offer a better service to our current and prospective French
clients.
In addition to Uniware distributing our APL software in France, MicroAPL has
been appointed as a dealer for Uniware’s range of software products for the PC.
The Uniware software range includes an APL debugger, report formatter, menu
generator and spreadsheet-like data entry utility. The software is available for
APL*PLUS and APL*PLUS II. Wefeel that the APL Debuggeris an especially
powerful utility, enabling APL programmers to view the code being executed
and the result generated at the same time, with a facility to coexist with APL
software whichitself makes windowcalls.
The entire range of products is very reasonably priced and offers a significant
boost to programmer productivity for APL*PLUS users. Site licences for the
software arealso available.
As well as adding the Uniware range of software to our productlist, MicroAPL
has released an upgrade to our MicroPLOT software for the IBM PC -
MicroPLOT/GSS. MicroPLOT provides a number of simple but powerful
graphics commandsto facilitate the production of two dimensional business
graphics. MicroPLOT/PC, the implementation for APL*PLUS PC, has been
available for some time now, incorporating drivers for the various types of PC
display and also for HP-family graphplotters.
MicroPLOT/GSS is an implementation of MicroPLOT which uses the APL*PLUS
PC interface to the GSS subsystem. APL programmers can use the GSS
subsystem via the high level MicroPLOT functions and produce device
independent graphs without having to invest a large amountoftime and effort
in understanding the ramifications of the many GSS interfacecalls.

10

VECTOR VolL7 No.4

MicroAPL is now shipping release 10 of APL*PLUS PC, The upgradeincludes a
numberof useful new features including OA for access to non-APLroutines and
a new system function JMOUSE (whatelse!) to allow access to the mouse under
program control.

REUTER:FILE
Reuter:file are unable to attend the Vendors’ Forum meeting on 26th. April. We
will continue to support the BAA as a sustaining memberandtake aninterest in its work.

APL91 Paper Abstracts at 13 March 1991
from Charles Schulz

AO System - APL in Construction Planning. Alexei |.Miroshnikev, Central Research EconamicInstitute,
USSR.This paper describes an automation system,
named AQ,for construction planning. AO was developed
for use by big building companiesat various stagesof
preparing and executing construction works,it supports
different tasks starting with calculation of project
estimates,bills of materials, and schedules of works,
and ending in providing the company executives with
complete information for tha supervision of the building
processin their company. AQ also includes a DBMS or
the all-Union data base on construction. The amountof
data in the data base is about 45MB forthe Leningrad
region alone. At present, the system is used by the
Leningrad Building Corporation. AG is written in
APL*PLUS/PC.The system will be distributed with thetun-time version of APL*PLUSfor Soviet customers
after performance tests. AO was developed in market
competition with six simitar projects based on different
programming systems: FoxBase, Clipper, Turbo-
Pascal, and MS C compiler. The advantages of the
system under consideration were in many ways
ensured by choosing APL. Some advantages anddisadvantagesof using APLforthis kind of application
are discussed as well.
An Oracle SQL - APL2/PC Auxillary Processor.
Stephen Deerhake, Westport Systems, inc, USA. An
APL2/PC auxiliary processorfarinterfacing ORACLE
SQL with APL2/PC modelled after APL2/370’s AP 127
auxiliary processor, is described. While providing direct
compatibility with AP 127 service requests, the AP
described herealso offers several enhancements to AP
127 service requests. Although written for ORACLESQLand 16-bit APL2/PC,the programming style

employed providesa great dealof isolation between the
DBMSandtargetinterpreter, thus providing a high
degree of portability to other DBMS implementations
(e.g., Database Manager under OS/2) andtarget
interpreters. Besides providing SQL servicesfor a
desktop APL environment, the AP demonstratesthatit
is possible to write large auxillary processorsin a high-
level languagetor APL2/PC which canbe installed in
extended memory and run in protected 80x86 CPU
execution made,
APLas an Embedded Language: The Uttimate
Application? Jean JacquesGirardot, Ecole des Mines,
France.This paper describes a new approach to the
development of customized applications. it first
discusses two problems with APL programming: writing
efficient programs and building user interfacas.it then
describes the proposed solution, cansisting of writing
the skeleton of the application in an efficient compiled
language, using some predefined building blocks, anddeveloping theotherparts in APL This approach is
closerto Integrated systems, such as spreadsheets or
data-base managers, thanto traditional APL
applications executed under the control of an
interpreter. It differs from these integrated systemsin
the fact that the developmentcostIs keptlow, so that
new applications, highly customized for specific end
users, may be built from scratch or, more exactly, from
predefined building blocks.

APL Composition, inversion and Evaluation of
Programs Synthesized with Manadic Functions. Alvin J.
Surkan, University of Nebraska, USA. APLis used to
facilitate the automatic inversion and execution of
programs which are synthesized bystrict functional

lu

VECTOR Vol.7 No.4

composition. Programsfor performing high level
functions andtheir inverses can be logically
synthesized andthentested in arbitrary instances, APL
is used to composehigherlevel functions by repeated
left application of functions and operators designed
expresslyso thattheir syntaxis limited to be monadic.
Asmat! system of auxiliary functionsis sufficient to do
the synthesisof inverse programs.This systemoperates on sequencesof applicative functlons which
must beprovided originally with their forward form
coded in functional style APL. The system inverts
higherlevel user-defined functions and generates
correctly sequenced function calls which are used in
testing the synthesized inverses. Using this system, the
mechanistic reformulation ofthe forward functions and
their exact, or even their approximate, inverses can beproduced and then checkedfor consistency.
APLITDS: An APL Development System. Carla Alberto
Spinicci, APLItalianasrl, Italy. APL ITaliana
Development System (APLITDS)Is the internalapplication developmentsystem for APLItaliana, whichalmsto reduce developmentefforts, simplity
maintenance, and standardize programming styles.It
wasoriginally produced by one programmerin hissparetime. Details of the system and development
methods are discussed.

An APL Rule-Based System Architecture for image
interpretation Strategies. P. Bottoni, P. Musslo, M.
Protti, Universita di Milano,Italy. APL is both a prefered
languagefor image processing and description tasks,
and a languageforartificial intelligence applications,
typically expert systems. This paper presents the
architecture of an APLrule-based system to realize
description synthesis strategies,i.e. sequencesof
actions evaluating the properties of structures detected
in an imageandto be related with objects in the real
scene from which the image was drawn. Descriptions of
Imagesare stored in a data structure which is formally
presented in termsof the APL2 syntax. The system
processesrules whose formatis: search for instancesof an antecedent, evaluate a condition on theattributes
of the found instance, perform an actionif the condition
is satisfied. Describing an imageoften requires thatreflective actions be taken,fe. actions in which the
system examinesthe state of the computation andits
internal state to select the next action to be executed.It
is shown how APLprovidesall the features by which a
reflective mechanism canbe realized through the use of
metarules of the same format and to be interpreted by
the same program asniles,

APL Technology of Computer Simulation. A.Yu. Boozin,LG. Pospelov, Academyof Sciences, USSR.Advantages and disadvantages of APL language usage
for computer simulation are considered. The language
has been actively used in the Computing Center during
the [ast ten years for simulation of socio-economic
systems. Theoriginal software package was developed
with the aid of APL*PLUS/PC, This package makesthe
simulation researches easy and helps to getthe results
in graphical form.

Application of Nested Arrays to Databases for
Engineering Design. Yehonathan Hazony, Boston

12

University, USA. Conventional computer-aided design
(CAD) systemsare described. The addition of new
mathematical tools to an existing design system is
generally difficult since it has to be accomplished
througha software interface to an extemal system.
These difficulties are compounded bythe structural
complexity of the data representing an engineering
design. The software interface should includea rich set
of tools to extract appropriate data for external analysis,
Furthermore,its expected that results of analyticat
Processesbe inserted back into the design databasefor
further use in the design process. An APL2-based
engineering design system, which includes both the
requisite data managementcapabilities and a rich setof
mathematicaltools suitable for engineering design and
analysis, ls described. AssemblerUtility Functions for APL2/PC, Tauno Ylinen
Finland.Efficiency obsessions of APLists may date
from years wheninterpretive overhead wasa financial
penalty on mainframes and a prohibitive handicap on
micros. Now, when the general tendency is towardsgraphicalinterfaces and other complexities, which
usually also lead to prohibitive costs, such still-
managable systems as APL suddenly appear
competitive with regard to speed, space, and cost.
However, compiled functions still have benefit for
bottlenecks. There fs also a pleasure in writing
lightning-fast and very small routines in assembler :
which is not very different from finding more and more
concise idioms in APL. Several approacheste compifed
sub-programsin APLare discussed: compiling APL
itself, building interfaces between APL and compited
language programs, and building assembly language
modulescalled from APL.
Automated SQL Documentation Using APL2. Rexford
H. Swain, Independent Consultant, USA. An application
programmerworking with APL2 and SQL/DSwill often
wantto investigate and/or documentthe definitions of
SQLtables and views, particularly when working with
tables created by others. Unlike conventional APLfile
systems, SQL. "knows" quite a bit about the objects itis
storing, but this information is scattered throughout
several system catalogs. An APL2 toal which combines
and neatly formats available information about a table Is
presented.Interpretation of this information may point
‘out conditions which are causing SQLto perform fess
thanoptimally. Some issues which Influence SQL
performance are considered, and somegeneral
guidelines for improving performance are suggested.

The Boston University Manufacturing Expert System
(BUMES): An APL- based CASEapplication. T.
Shojaia, S. Sadri, L. Zeidner, Y. Hazony, Reuters
Information Services and Boston University, USA.
Manufacturing engineering involves the processes and
equipmentrequired to design, analyze, fabricate, and
test products. Thetransition from an engineer'sfirst
sketch to a finished machined part is traditionally a long,
expensive,difficult path. This path includes a variety of
separate software solutions to individual subproblems.
These solutions raise confusing issues of capability,
compatibility, and dasign integrity. This paper presents
the design and implementationofa fully integrated
solution to this problem. This system enables a

VECTOR Vol.7 No.4

designerto sketch a part graphically, and immediately
have it machined. Because this rapid-prototyping
system was designed as an integrated solution,it
allows the process rules to be availablein the part
design stage, so that unmanufacturable design features
are identified immediately when the designer attempts
to add them to the part. Design changes and
subsequent machining are rapid because of
relationships between the part's geometric elements, so
thatif some are changed,all can be adjusted
automatically. The prototype Boston University
Manufacturing Expert System (BUMES) wasdesigned
and implemented using the Expert System Generator
(ESG) CASEtoo!in APL2.

Building an APL2 X-Window interface for VM andAIX
with a General APL2-to-C interface. Jahn R. Jensen,
Kirk A. Beaty, 48M Corp., USA, This paper describes
APL2/X,aninterface between X-Windows and APL2,
designed and built at the IBM Cambridge Scientific
Center.It currently runs under VM/CMSand AIX. The
AIX verslon of APL2 is an experimentat prototype of
APL2 inthat environment; It was demonstrated atthe
APL90 conference held in Copenhagen. The APL2/X
VM version ofthe interface uses the APL2 associated
processor 11 to communicate with X. The APL2/X AIX
version uses a new auxiliary processor to achieve the
samefunctionality.

Calling APL2 from COBOL. DonErickson, The
Travelers Insurance Company, USA.This paperwill
discuss the reasons why a need came up for COBOLto
call APL2 functions as executable modules, the
methods used to complete the interface, and the
benefits and concemsthat arose during implementation
and maintenance,
CATS - Computer Aided Testing of Software. Maurice
Jordan,British Airways, England. This paper describes:
the implementation of an automated test system for
APLfunctions.It extends assertive comments in APL ta
derive a notation for formal specification using pre and
postconditions. Thase conditions are APL statements
and so can be built into test functions. Data supplied to
provide examplesis subjected to mutations so that
edge conditions can be tested tar, jt makes extensive
use of modern APLideas such as defined operators,
phrasalforms, and functlon assignment.

Comparisonof the Functional Power of FORTRAN &x
and APL2. Robert G, Willhoft, IBM Corp., USA. APL2
and FORTRAN,although very different, share the
challengeof remaining "competitive" in thelight of an
onslaught of "moder" computerlanguages. To meet
this challenge, both have attempted to enhance their
position by adding significant new featuresto their
language. APL2 Is a specific example of an extension of
APL. FORTRANhasalso attempted to meet the
challenges of modern programming by developing a
new FORTRANdraft standard called FORTRAN 8x.Tha standard revises many areas of FORTRAN,but
this paperwill concentrate on thosethataffect thecomputational power of FORTRAN. Manyofthese
changes were motivated by the increased use of vector
and array “supercomputers”. Therefore array features,
the ability to act on entire arrays instead ofindividual

elements, are an importantpart of this new standard. Indoingthis work, the FORTRAN community looked to
APLas an exampleof a powerful array language. This
paper will answer saveral questions regarding this new
standard.First, from a computationalor functional point
of view, what are the major features of FORTRAN8x?
Next, how do these features compare with APL2? And
finally, what can APL2 learn from the FORTRAN 8xwork?
Compiling APLfor Parallel and Vector Execution.
Timothy A. Budd, Rajeev K. Pandey, Oregon State
University, USA. The inherent parallelism of applicative
languages such as APL and functional languages such
as FP present a little-exploited somewhat unorthodox
meansof parallel programming. Here we summarize
ourinvestigation of a new approach to compiling such
programsfor executian on varioustypesofparallelhardware. Our methad centers around an intermediate
form thatis an extensionofthe lambdacalculus. Wa
presentevidence that APL programsare easily
translated into this intermediate form, and thatthis
intermediate representation lendsitself readily to code
generation for a variety of parallel hardware.

A Danceof Rounds. J. Philip Benkatd, IBM Corp., USA.
Two different methodsof getting sums of rounded
numbers to add upto the rounded sum are discussed.
Thecase of cascaded rounding,in which the individual
numbers are replaced by sets of numbers to be
rounded, is covered. Geometric properties of grade ara
reviewed.
Dependence of Leaming Rate and Generalization on
Numberof Processing Elementsin a Sparse Distributed
Memory. Richard M. Evans, Alvin J. Surkan, Defense
Training and Performance Data Center and Universityof Nebraska, USA.A simulated neural network was
developed with APL on an 80386 microcomputer. The
network was configured to associate task descriptions
with ten categories of military occupational specialty.
The numberof processing elements in the problem was
varied, increasing the numberof processorsincreased
the speed of learning in the simulation. Generalization
wasnotsignificantly ditterent for various numbers of
processing élaments, exceptfor oneintermediate
numberat which generafization occurred about 15
percenthigher. Analysls of the performance ofthe
present network suggests thatlow level, natural
language understandingIs a form of text processing
which promises to become an important application
area for neural model-based computing.
Designing a Kanban Manufacturing System Using theServer Network Generator (SNG) CASE Tool. A.Bouchentout-ldriss, L. Zeidner, Reuters InformationServices and Boston University, USA, Developing
concurrentreal-world soltware systemsrequires a
different sort of CASEtoolthan those designed for
standard sequential von Neumannsoftware.
development. Issues of concurrency, data flow,
distribution, bottlenecks,load levelling, and distributed
versions must be addressed. For cooperative
distributed computing to be widely applicable, suitable
CASEtools must be developed. This paper presents a
manufacturing engineering application, a concurrent

13

VECTOR Vol.7 No.4

cooperative processing modelof this application and
the CASEtoolthat was used to design and imptementit
asa distributed software system. Theapplication is a
Japanese manufacturing control strategy called the"Kanban System’. The application CASEtoolused for
implementation ts the Server Network Generator (SNG).

DSS Structure and Algorithmic Transparency in APL.
W.E. Cundlff, Griffith University, Australia, Earllerdiscussion focused on APL as an executable notation
for understanding the inner workings of dialogue
generation and datajmodel base managementin
decision support systems (DSS). The present work
applies the notion of algorithmic transparencyto the
broader properties of systern structure that connect thetechnology components of DSS. Using a concise setofidioms, embodyingonly the control construct of
sequence, APL’sdirect definition form is employed inrevealing patternsin the specificationof a functionat
prototype, Group DSS.

The Dual Structure of Ordered Trees. Gerard A.
Langlet, Commissariatl'Energie Atomique, France.
Although they were described by K. iverson in his 1962
book, ardered trees have never been implemented as
APLobjects. However, APL2, as well as ISO-APL,
provide manyfacilities to handle them. This paper
illustrates with simple examplesthe duality between the
tree structure and whatwill be presented as an "object-oriented definition structure". APL. functions are
proposed to facilitate the conversion of the one form
Into the other one. Theutility of trees is great in DB
processing, in science as well as in business
applications.Interfaces with the "outer world” - e.g.
word processorsorLISP and PROLOG can becomeeasy to build with the help ofthis simple concaptofduality,
Extending Structure, Type, and Expression in APL2. J.Philip Benkard, IBM Corp., USA. The two principal
directions of APL are compared. Suggestions are madefor the future enhancementof APL2.
Forecasting System of Employment Pension Scheme.
Timo Korpela, Bo Lundqvist, Central Pension Security
Institute, Finland. This paper describes the long-term
forecasting system of the Finnish employment pension
scheme.All employees andself-employed persons are
included in the scheme. Theforecasting system has.
three main models: demographic, pension expenditure,
and financing. All models are programmed in APL2,
with useof other products in the same environment,e.g, APE, SQL, ICU, AFP. The models are composed ofmodules, which makeit possible to change the modal at
all Jevels, This structure also gives self-documentary
programming code. Flexibility and documentary
reasons have guided the programming so that compact
and efficient code havenot been primary objectives.
The system givesall end users - also those who have
no knowledgeof APL- the ability to make tables and
ICU graphics ofthe data.

Genetic Algorithms. Manuel Alfonseca, IBM Corp.,
Spain. Genetic algorithms, emutating biological
evolution, ara easy to program in APL. This paper

14

showsa simple wayin which they can be tested and
analyzed,

Gerunds and Representations. Robert Bernecky, SnakeIstand Research,Inc., Canada. Gerunds, verbal forms
that can be used as nouns,are recognized as having
uillity in the reatm of programming languages. We show
that gerundscan be viewed as arrays of atomicrepresentationsof verbs (functions) in a way which is
consistent with the syntax and semantics of APL. We.
define derivations of verbs from gerundsfor the J
dialect of APL, show how thesederivations perform
sequencing, selection (in the sense of generalized
forms of CASEand IF/THEN/ELSE), Iteration (DO
WHILE), recursion, and paraltel (MiMD) computation.
Weconctudewith alternative representations of verbs
which are usefulin other contexts.
How to Manage Large APL Projects - a Userinterface
Management System Approach.Richard R.N.Eller,
TMT-Team Oy, Finland. Many new graphical user
interface (GUI) needs can be handled by userinterfacetoclkits orlibraries. However, use of these will not solve
all the complexities of a good user interface. Another
approach is to choose,or design, a userInterface
managementsystem (UIMS)that is responsiblefor all
user interface actions and, only when necessary,will
call actual application codeto perform specific
application tasks. What Is APL bestfor? Calculations,
experimentation, and data handling? So why should
‘one includeall the userinterface complexitias in the
compact APL. application code? This paper describes
the architecture of a UIMS-based large APLapplication
project. Since a UIMS approach differs from traditional
hierarchical programming, manyof thesedifferences
are described in detail. Particular emphasis has been
givento the effectof this approach on project
management andthevarioustasks of a software
project. The paper ends by presenting some thoughts
aboutfuture APL apptication developmentsystems.

AnInteractive Data Analysis System Developed Under
APLPeter|. Day, Unocal, USA, Unocal has used
STSC APL*PLUSto build a software system for
analyzing data from olt wells. Such datais routinely
gathered from variety of electrical, mechanical, and
nuclear sensors lowered into the well- bore and, for our
purposes, can be regarded as colncldentdepth-serles
vectors. The system was designed to allow the data
analystto perform two key tasks: rapid "visualizing" of
the data; and selecting algorithms and parameters for
interpreting the data. We have used APLtofulfil two
different needs. At a fundamentalJevel, there is one set
of algorithms that actually performsthe data analysis.
Ata higherlevel is a second set of functions that
providesaninteractive interface betweentheuser, the
data, andtheinterpretation algorithms. This interface is
provided through menusthatoperatein both text andgraphics mode,throughtext-entry panets, and through
an extensive series of graphical routines. In text mode
operation, we have made considerable useof[|WIN
andrelated functions under keyboard control, whereas
in graphics mode we have used []G-style graphics
under mouse control provided through [JINT 51. A
demonstration of the system, concentrating on the
higher-levelinterface, will be given.

VECTOR Vol.7 No.4

L1...L3; Considered Harmful, F.H.D. van Batenburg,
Leiden University, The Netherlands.It is said by non-
APL-programmersthat APL code Is hard to read and
that it is unstructured. Here we argue that APL
programmers mayrefute this by pointing out some
misunderstandings,butthata final analysis will show a
deepertruth in thesecriticisms. We will show that APL
gives ample opportunity for unstructured code. Two
proposals are presented to address this problem. The
first one rejects the established standardfor labelling
and suggests the adoption of a properstyle of
programming, enforced by a new standardoflabelling.
This standard will abolish unstructured code. Some
negative aspects as well as the positive aspect ofthis
Proposal are discussed, The second proposalrevives
anold idea to introduce one single proper control
structure in the language. This would makethe current
branch superfluous and enforce structured code.

Mastering J. Donald B. McIntyre, Scotland.It is exciting
to recognize a major advance after three decades of
APL experience with the introductionofthe dialect
called J, This paperintroducesthe readerto J by
showing whatproblemsthe author had to overcomein
learning it and what techniques he developed to aid him
in writing programsin J.
An N-dimensional Data Structure in Support of
Electronic Data Interchange (EDI) Translation. Georges
Brigham, Edward Shaw, The APL Group,inc., USA. A
methad is described by which data in a database
system are named using sets. The sets exist in an n-
dimensional data space in which each axis represents a
homogeneoussetandall axes (sets) are orthogonal.
Data are named using an ordered combination ofthe
namesof the sets. Elements of data are identified by
referring to the coordinates along the sets (axes of the
database). An executable notation is used to describe
relationships betweenthe sets for purposes of
discusslon or execution on the computer. This.methodology lends itself quite conveniently to APL, and
currently forms the foundation for a robust commercial
application performing electronic data interchange (EDI!)
translation.
Notes on C Programming for APL Programmers.Stephen Deerhake, Westport Systems,Inc., USA. As
the domain of "callable" tanguages from APLincreases,itis quite likely that APL programmerswill find an
increasing need for the ability to program in other
languagesas partof their support activities for APL
programming. This is already becomingprevalentin
mainframe APL2 (APL2/370), whereit is not uncommon
to find hybrid systems consisting of APL2, REXX and/orFORTRAN.Since most"external language’activity in
APL-based systems centers on manipulating APL.
arrays,it is appropriate to examinethe programming
techniquesin callable languagesfram the standpointoffacilitating APL array manipulation. Specifically, C
language programmingtechniquesfor handling
APL2/PC arrays are reviewed. The techniques
discussed emphasizeisolation of the application code
from the underiying array structure, thus maximizing
application codeportability. While immediately
applicable to the managementof APL2/PC arrays, the

15

programmingtechniquesandtips offered are applicable
to other APLarray implementationsas welt.

Nuclear Power Plant Diagnostics in APL. Alexander O.
Skomorokhovy,Institute of Physics and PowerEngineering, USSR. This paperdiscusses the
application of APL to the development of diagnostic
technologyfor the operation of nuclear powerplants.
The application is illustrated by an exampleof detecting
andlocatingfailed fuel elements through the use ofDelayed Neutron Detectors (DNDs). This Is
accomplished by APL algorithms examining DND
signals as the powerdistribution in various regionsof
the reactorcoreis altered.
On Performance and Space Usage improvementsfor
Paralielized CompifedAPL Code. Dz-ching Ju, Wai-
Mee Ching, Chuan-iin Wu, University of Texas at Austin
and IBM Corp., USA. Loap combination has been a
traditional optimization technique employed in APL
compilers, but may intoduce dependencies into the
combined loop. We proposean analysis method by
which the compiler can keeptrack of the change ofthe
paratlelism when combining highlevelprimitives. The
analysis is necessary when the compiler needs to
decide a trade-off between moreparallelism and a
further combination. We also show how the spaceusage,as well as the performance, improvesby using
systemscalls with the aid of garbage collection to
implement a dynamic memory allocation. A modification
of the mamory management schemecanalsoincrease
available paraltelism. Our experimental results indicate
that the performances and the space usage improve
appreciably with the above enhancements.

Programming tor Events. D.S. Eastwood, MicroAPL.Ltd., England. Moder windowinguserinterfacesoffer
both a challenge and an opportunity for the APL
programmer. This paper discusses some of the factors
that needto be taken into account when designing APL
applications in a windowing environment. Someof the
typical techniquesrequired to produce a robust
windowing application are discussed, and applications
examplesare quoted using APL.68000 on the Apple
Mac.
Psycho-biographical Analysis with APL. Andrew V.
Kondrashev, AlexanderA. Kronik, Academy of
Sciences, USSR. This paper deals with computermethodsof psychological age measuring, psycho-
biographical express-diagnostics of personality, and
data analysis with APL.

Pure Functions in APL and J. Edward M. Cherlin, APL
News, USA. Any expression in combinatory togic made
up of combinators and variables can be abstracted into
a pure combinator expression applied to a sequence of
variables. Because there are greatsimilarities between
combinators and certain APL operators, a similar resultobtains in many APLdialects. However, rewriting
arbitrary APL expressions as pure functions requires
new operators, not provided asprimitives by any
dialect. This paper defines functional completeness,
gives a construction for achievingIt, proves a
conjecture of Kenneth Iverson thatJ is functionally

VECTOR Vol.7 No.4

complete, and showshowclosely the major APL
dialects approach those conditions,

The Server Network Generator (SNG): A CASEToolfor
Distributed Cooperative Processing. L.E. Zeidner,
Boston University, USA. The Server Network Generator{SNG)is a CASEtoolthat employsa problem salver’s
ability to representan application as an ordinary blockdiagram,a graphical specificationof its macroscopic
structure, This functional decomposition provides anatural mechanism for subdividing the application into
processing tasks that can be distributed across a
computing network, Each “server" is a software process
that assumestherole of one block in the diagram,
performing one processing task, employing interprocess
communication as indicated graphicaily. A distributed
network of IBM 7437 VM/SP Technical Workstations
are shown as a powerfulplatform for problem solving
using the SNG.Distributed computing models based
upon networks of microprocessors have long been
proposed as analternative to centralized mainframe
computing. The 7437 provides a genuine VM/370
computing environment, and so can use mainframe
systems as powerful nodes in the network,rather than
attempting to replace them. An auxiliary processoris
presented that was required to support interprocesscommunication via the shared-variabte interface
betweenvirtual machines on different hosts.
Supply-Chain Management at Rowntree: CriticalSuecess Factors for APL. Adrian Smith, Rowntree
MackintoshLtd., England APL has beenin use at
Rowntree Mackintosh since late 1978; duringthis timeit
has developed from aninitial applicationto‘little local
systems’to playa vital rofe in the supply-chain
managementof the company. APL systems are nowdeeply embedded inall stages of company operations,
from recipe modelling to the scheduling of raw
materials, from five-year planning to detailed shift-by-
shift production scheduling. This paper sets out to
explain the critical success factors which encouraged
the directors of Rowntree Mackintoshto entrust such a
vital part of their business operations to an obscureGreek language which executes backwards.

Tacit Definition. Roger K.W. Hui, Kenneth E. Iverson,
Eugene E. McDonnell, Iverson Software,Inc., Canada
and USA. J permits a form offunctional programming
we cail tacit definition, in which no variable or
assignment appears. We show how many conventional
programscan be transformed into tacit definitions.
Many usesof these forms are given.

The User Command Processor. Jim Weigang, APL
Consultant, USA. The User Command Processoris a
new feature of several APL*PLUS systems which
allows users to define commands, analogous to system
commands, that can be executed from within any
workspace. This enhancementis effected by meansof
twosimple changesto the APLinterpreter. Coupled
with 4 suite of two-dozenpredefined commands,the
result is a file-based program storage and execution
environmentthatintegrates many important features
not provided in standard APL systems.Using the
commandprocessor, applications of untimited size can
be developed,run, and maintained without manyofthe
headachesthatare characteristic of workspace-basedsystems. This paper describes the basic methods
whereby the command processor operates, provides an
overview ofthe predefined commands, shows how a
new command can be defined, andillustrates how a
large application can be built using the commandprocessor.
Using Boolean Arraysto Build and Completely Analyze
Function Networks. Kenneth Fordyce, Jan Jantzen,
Gerald Sullivan, Gerald (Jay) Sullivan,Jr., IBM Corp.,
Technical University of Denmark and Rensalear
Polytechnic Institute, USA and Denmark.A critical
computational requirementfor many of the decisiontechnologiesin thefields of MS/OR, AI/KBS, and DSS
is the development and manipulationof a function
networkdescribing the relationship between “actors”
involved in the application of the decision technologyto
@ specific problem. This paper describes how we can
fully bulld and manipulate a function network with
booleanarrays including focusing networks,finding
circular conditions, and grouping functions based on
relative independence to identify paralle! computational
opportunities and substantially reduce the non-
procedurat aspect of the problem.

16

VECTOR Vol.7 No.4

‘THE
EDUCATION
VECTOR
April 1991

Editor Alan Sykes
This Education Vector has been reprinted from VECTOR Vol.7 No.4. VECTORis
the Quarterly Journal of the British APL Association. For more information about
the British APL Association, contact: Anthony Camacho, 2 Blenheim Rd, St
Albans, Herts ALi 4NRTel: 0727 860130.

Contents
Editorial Alan Sykes 18
Shape, Ravel and Roll Walter G. Spunde 19

Execution Time Alan Sykes 25
APL Booklist Ed Shaw 32

Dr Alan Sykes,
c/o European Business ManagementSchool
Swansea University
Singleton Park, Swansea SA2 8PP
Wales, UK

17

VECTOR Vol.7 No.4

Editorial
by Alan Sykes

‘Hello and Welcome’ as they say. The compilation of this Education Vector
comesat quite a busy time. The APLStatistics Library Project (ASL!) is preparing
for its launch, and not surprisingly I have been very much involved in such
activities. I hope that in a future edition the ASL project and particularly its
library of functions for basic statistics (up to A-level standard) will be reported.
Hence J am particularly grateful to Walter Spunde for his timelyarticle entitled
‘Shape, Raveland Roll’.
Tt is now nearly three years since I took up the editorship of Education Vector.I
have enjoyed my involvement with membersof the British APL Association and
particularly the opportunity to contribute to the columns of Education Vector.
Readers of it have been very kind in expressing appreciation of the efforts that
have been madeto build up material thatis intended to be helpfulin introducing
newcomersto the delights of using APL.
Nevertheless] am well aware that there is so much more that could be done.If
only there were more than 24 hours in a day!
So I end this editorial with yet more words of encouragement to users of APL
throughout the world to submit to Education Vector material that is appropriate
to the aims andaspirations ofit, together with any news and notes that readers
may beinterested in.

18

VECTOR Vol.7 No.4

Shape, Ravel and Roll
by Walter G. Spunde

For over a decade keen mathematics instructors have been searching for ways to
incorporate computing power into their teaching of maths. Language
requirements have tended to deflect attention away from mathematical
principles and the maths class has been in danger of becoming a lesson in the
syntax of some computer language or package. An obvious answer was to use
APL,butit was expensive, and difficult to justify to un-informed superiors.
I-APL opened new doors. Free, and nearly as convenient as a calculator, it
should be the answer to a maths master’s dream. One of the most appealing
features of APL for the newcomeris the ability, after only a few minutes’
exposureto the interpreter, to produce results, and, with a little additionaleffort,
to make improvements and enhancements. There is an immediate reward for
every effort made, and immediate feedback on mistakes.It is a superlative tool
for education; but, since the power of using APLis as seductive as the drudgery
of other languagesis confining, it has even more potential for itself becoming, the
focus of attention. This note is intended to show howlittle APL notationis really
necessary to make working with an I-APL disk productive in a maths class, with
the focus clearly on mathematical concepts, at tertiary, or upper secondary level.
Atthe sametime too, it may sounda little warning to APL enthusiasts.

A Mathematical Perspective
Linearity is a central concept in much of mathematical theory, and the study of
linear algebraic equations is one of thefirst non-trivial examplesillustrating the
properties of linear operators that students encounter.
The small square systems of equations usually presented, since they ‘are
manageable with hand calculators, provide only poor examples of these
properties, as they are apparent only in the non-typical cases andare difficult to
discern. Solving a square system of equations is, in any event, such a common
operationthat, like taking the squareroot of a number, (Le. solving the quadratic
equation x? = n) there shouldbe(as there is in APL)a primitive to dothe job.
By a “primitive” we should understand a mathematical operation that is so
commonand well understood, that the details of the algorithm producing the
result need not be a concern (even when they are not, or have never been, known
to the user.)

19

VECTOR Vol.7 No.4

Thetypical problem leading to a system of equations is an arbitrary number of
equations in any number of unknowns. Setting up a system of four equations in
ten unknowns, from data in Figure 1, is conceptually no more difficult than
setting up two equations in two unknowns. It may actually be easier, since the
pattern in adding up certain fractions of various quantities is more apparent
whenthereare several of them.

NUTRITIVE CONTENT OF FEEDS
(POUNDS OF ELEMENT PER 100 POUNDS OF FEED)

1
! '
| FEED DIGESTIBLE DIGESTIBLE CALCIUM PHOSPHORUS: ‘t NUTRIENTS PROTEIN 1' t
| CORN 78.60 4.50 0.02 0.27 E1 gaTs 70.10 9.40 0.09 0.34 k| MILO MAIZE 80.10 a.80 0.03 0.30 '
1 BRAN 67.20 13.790 0.14% 1.29 \{ FLOUR MIDDLINGS 78.90 16.10 9.09 0.71 I1 LINSEED MEAL 77.00 30.40 0.42 0.88 t{ COTTONSEED MEAL 70.40 32.80 0.20 1.22 1| SQYBEAN MEAL 78.50 37.10 0.26 0.59 3| GLUTEN FEED 78.30 21.30 0.48 0.82 t| HOMINY FEED 84.50 5.00 0.22 O71 ‘
1 t| DESIRABLE INTAKES 74.20 19.90 0.21 0.87 ‘| «POUNDS DAILY? I!uw 1

Figure 1
The computing poweravailable from APL implies that the size of the equations
we workwithin class is limited only by what can be conveniently displayed on
the screen, and that we need no longer be concerned with the errors that students
might generate (and thus destroying a discussion of the patterns apparentin the
working).

Fundamental concepts
The procedure for “solving” equations involves subtracting multiples of one
equation from the others until an equivalent reduced system is found. This
conceptualstructure can be maintained if we can assign a name such as EQNto
the string of coefficients in any equation together with the demands, Working
with equations as in Figure 2 requires a knowledgeof only the assignment arrow
beside the elementary operations and the ease of doing it would in itself be
sufficient justification for using I-APL in teaching elimination techniques.
However, if we concentrate on the idea of linear combination - the sum of
multiples - which underlies the very formation of the equations, we soon depart
from this approach to the problem.

20

VECTOR VolL7 No.4

EQNL + 78.6 O.1 80.1 67.2 78.9 77 70.6 78.5 76.3 84.5 74.2
EOQN2 ¢ 4.5 9.4 B-B 13.7 14.1 30.4 32.4 37.1 21.5 g 19.9
EONS « 0,02 0.07 0.05 0.14 0.07 0.41 o.2 0.26 0.48 0.22 0.21
EONS + 0.27 0.34 0.5 1.29 O.71 0.66 1.22 0.59 0.82 0.71 0,67

a + EQNI ¢ EGNI # 78.6
1 0.8919 1.0194 0.855 1,003 0.9796 0.9982 0.9987 0.9707 1.0751 0.944

 ¢ G0N2 + EQN2 - &.SxEDNt
O 3.6029 2.176 8.1427 9.5752 24.0323 26,7614 3O.608S 14.9902 1.0121 13.7639

O ¢ EQNS + EQNS = 0.02xEQNI
© 0.0722 9.6E7S 0.12297 0.06997 0.3904 0.162 0.24 0.4606 0.19785 0.1911

0 + EQN4 + ERN4 ~ 0,.27xEGN1
0 0.0992 0.0248 1.0592 0.4397 0.5955 0.9775 0.3203 0.5579 0.41497 0.4151

Figure 2

A linear combination is the essential construct in discussing linearity. An
operatoris linear if the transformation of any linear combination of elements is
the same linear combination of the transformations of each of the elements. In
the notation of APL2:

FN Coefficients +.x Elements = Coefficients +.x FN” Elements

Linear combinations occur widely in mathematics: polynomials are linear
combinations of powers, Fourierseries are linear combinationsof trigonometrics,
the familiar dot ‘product is a linear combination of scalars, pre-multiplying a
matrix by a vector forms a linear combination of the rows of the matrix, pre-
multiplying a matrix by another matrix forms severallinear combinations of the
rowsof the multiplied matrix, and, of course, solving equations by subtracting
multiples of one equation from another is forming linear combinations of the
equations. When werepresent a set of equations by a matrix containing in its
rows the vectors (#QN1,..) for the various equations, it is easy to see that the
elimination procedureis equivalent to a matrix pre-multiplication.
This observation is one of the basic goals of an elementary linear algebra course,
and once it is appreciated, we can deduce the possible existence of an inverse
matrix for a square system, and more generally, of LU factorisations. In APL,
though not by hand,it is also a very practical observation, since we can write a
function (Figure 3) which produces the required multiplier for a particular
reduction, anduseit to actually do that reduction.

21

VECTOR Vol.7 No.4

 SREDUCERCOI9Col Z + Piv REDUCER mat ;D;E;NC1]N © (p Matycid£21 Z * {N,N) p 1,Ne0C31 D+ Mat Pivtly 3 Pivez2 13

Piv ie pivot location in matrix Hatseasures the nusber of rows in Matcreates an NxN identity satrixgives the value of the pivot elesent£41 ZCsPAvCiI] + - mMate;Pivez zlters appropriate colusn of Z,except(S19 ZCPAvCiIsPiveld] + 4D for the diagonal entry, which is 14DC4] a The result is the pre-multiplier for a Gauss~Jordan reduction of Mat.

35

REDUCE 1 (Piv REDUCER Mat) +.x Mat @ Perfores @-J reduction

Figure 3
This considerably simplifies the reduction process (Figure 4), and facilitates
changes from one set of leading variables in a “solution” to another, thus
openingthe doorto easy discussions of Linear Programming.

Eons
78.4 70.1 BO.t 47.2 75.7 77 JO.& 78.5 76.3 4.5 74.2
4.5 a4 8.8 13.7 14.1 30.4 32.8 37.10 21.3 8 19.9
0.02 0.09 0.03 0.14 0.09 0.41 0.2 0.26 0.48 0.22 0.21
0.27 0.34 O.3 1.27 0.71 0.86 1.22 0.59 0.82 0.71 0.67

% 1 REDUCE EONS

1 1
l ‘
' 1
t '
1 !
1 I
L b
ot 0.89 1.02 0.85 1 0.98 O49 1 0.97 1.08 0.94 8
10 eb 2.18 G.14 9.58 24.03 26.94 30.61 14.97 1.01 13.76 \
10 0.07 0.01 0.12 6.07 0.39 0.18 0.24 0.44 0.2 0.19
190 Out 0.02 1.06 0.44 O.6 0.98 0.32 0.84 0.42 0.42 f
I 1
1 QO + ECHELON + 4 4 REDUCE 3 3 REDUCE 2 Z REDUCE 1 { REDUCE EQNS |
to. ° o ° "2.5 “be2 “9.65 “12.13 “0.51 3.74 “3.42 1
1 0 1 ° o 70.04 3 0.03 2.1 7.05 3.08 2.1 I
1 0 ° 1 a 3.18 2.64 9.72 11,17 74.69 “5-53 2.52 |
10 Qo Qo 1 0.54 0.03 0.47 “0.14 "0.02 0.24 0.14 I
1 !
I 0 + MAT + 2 @ REDUCE ECHELON 1
ot 3.76 0 a "2.73 22.64 “9.35 ° 40,.f 21.32 8.48 |
i190 0.48 0 o “0.202 2.38 0.02 4 3.35 1047 1 i
io "S.31 1 ° 3.37 “23.92 7.45 ° "42.1 721.89 “8.82 |
190 0.07 9 1 0.34 O.4 0.49 o 0.5 0.47 0.3 |l A

Figure 4
Interpreting the “solutions” shows that the leading variables are given as the
sum ofthe basic solution and an arbitrary linear combination of the columns of
the coefficient matrix associated with the parameters (Figure 5). The basic
solution is the particular solution obtained when the parametersare set to zero.
The general solution is seen to be the sum of a particular solution and an
arbitrary linear combination of vectors each of which mustsatisfy the associated
homogeneous equation. This is the structure characteristic of all linear equations,
be they algebraic or differential.

VECTOR Vol.7 No.4

t' 1 MAT i)road 3.76 0 O (2.73 22.64 79.35 9 4001 21,52 8.48 |
1 1° 0.48 0 0 “0.02 2.38 0.02 1 3.55 1.47 1 of
1 o1 0 “S.3t 4 ° 3.39 "23.92 7.45 0 "42.1 "21.897 “8.82 |
1 to 0.07 0 1 0-34 0.4 0.67 0 |i oe1 iow. writing the equations out in standard form| Xt 5 B68 - 5.76 XZ + 2.75 XS - 22.64 XK + 9,55 X7 — 40.1 49 ~ 21.52 X10
Lb xB a1 = 0.48 12 + 0,02 XS = 2.58 XA - 0.02 X7 - 3.55 X9 - 1,47 X10
' etc.l UNKNOWNS + 410(LEADING +1348 Identifying the leadingH PARAMETERS+ UNKNOWNS ~ LEADING and parameter variablest RHS © 11
'1 D * BASIC + (MATT) LEADING]+, LEADING) C151 MATCZRHSIto4 @.678975116i 8 0,9974347095 Displaying a dasic salution
(3 “B.B14686383714 0. 2970915451
‘It 1 + NULL + & MATL; PARAMETERS1 5.76221445 0.4752073928

9

“5.SO7S16511 0. 074435774415t (2779615 “O.01F107H723 ——_3.594720007 0. 340591978
! 1 22. 63534639 R.37H120786 “23.71783676 0. 4041149768| 79,349943815 0.02447145783 —-9,450Z154 0. 49378453558tf 40,.09878806 3.349135537

|

742.09817498 0. 5013921457
1 2,5243152 1465355154

9

"21.B759S91F 0,4667109407

=

space
l, 1 + PARS © PARAMETERS,C1.53 PVALUES + 7 6610129| tos 31 65 Attaching arbitrary values ta the parameters:
17 4195: 1 10 3i Q + SOLUTION((BASICE; 12) ,C1.SIMATT ; RHSI-PVALUES*. XMULL) yPARSI 1 "3ST. 14462141 a *36. 401274851 3 347. BSTSO7AI s “11, 48500957 Presenting
1 2 9 aI 5 3 completel 4 5 solution1 7 4\ 9 51 10 3' 0 + SOLUTION © SOLUTIONC4SOLUTIONJ1 1 "3ST. 1416214t 2 9 Ordering
1 3 347. 8355076 the4 “11, 40500957 vartables! s 3t 4 5 (Note the new primitive' 7 6 introduced for this1 a 3h, 40127485 purpose.)t 9 3I 10 3
i)1 EONSC;RHS] - EGNSC;UNKNOWNS] +x SOLUTIONCs27poooe0

Figure 5
The shift of emphasis to linear combinations of columns that occurs in the
process of writing the general solution opens further avenues of theoretical
investigation, but no further computational tools are required to discuss the
ideas of linear dependence, spanning sets and bases for n-dimensional vector

23

VECTOR Vol.7 No.4

spaces, or of column, row andnull spaces, and the rank of a matrix. The concept
of orthogonality can be seen as an algebraic convenience in the discussion of bases,
whichcan be given aninsightful geometric interpretation later.

Essential APL
To getto this stage, which may be second yeartertiary linear algebra, we have
not needed (beyond the usual mathematical symbols and the assignment arrow)
anything more than shape, ravel, (roll is convenient for generating arbitrary
examples -- andit’s fun), the index brackets, transpose, the inner product and some
knowledge of how to define and edit functions. The latter should not be
regarded as a purely technical matter, since a concentration on the nature of a
function is not only an essential pre-requisite to calculus but indeed a central
mathematical concept.
One ofthe very pleasing side benefits from introducing APL notation to students
is the opportunity to revise and to re-examine elementary concepts in
mathematics - concepts that are not always as well understood by students as
they should be, but that cannot be broachedattertiary level withoutinviting the
scorn of students who suspectthey're being insulted. This applies to the concept
of a logical proposition (as embodied in an equation or an inequality) and the
function concept, for which APL notation is superbly suited.
The history of APL’s origins makes it no surprise that the notation provides so
manyinsights to mathematical concepts.It really is a joy to work with (if only I-
APL had a full screen editor!), and one can only wish that every student had a
laptop with APLin frontof him in every class. For many students,it is the lack of
easy access to a micro that prevents their use of the notation, and it is with
continual use thatthe best results come.
In providing material for teachers, recalling the history of the spreadsheet may
be instructive. A great deal can be done with just the assignment arrow and the
four arithmetic operations. Every element of APL notation represents a
significant operation and should not be introduced any more quickly than
normal mathematical notation. It should also be remembered that one’s own
discoveries are the most satisfying. Students who are stimulated to solve
problems using APL will ask the questions they need answered. There is no
virtue in giving them one iota of information more than they need, andit is a
wonderfulfeeling for a teacher when the students clamourfor more.

24

VECTOR Vol.7 No.4

Execution Time
by Alan Sykes

The aim of this short note is to discuss the ‘execute’ function # and to present
some important ways it can be used with greateffect.

Whatis ¢?
Newcomers to programming sometimes have difficulty distinguishing between
‘string variables’ and ‘numeric variables’. For example in APL, the definitions

At'4 2 3!
Bet 23

are quite distinct. To see this note that pB yields the answer 3 and pA 5. This is
because A has allocated to it five characters-'4', ' ', t2', 't ', '3t;
in fact the APL expression A+'i1',' ','2',!' ','3' is equivalent. Further
differences arise if we try to execute the commands

1+B
234

At+A
DOMAIN ERROR
A+AéA

The statement with A canberectified by ‘executing’A first.

A+2A
234

showing that the string contents of A have been converted into their numeric
equivalent.
The use of ¢ however is more far reaching thanthis. Let's take a slightly different
example.

25

VECTOR Vol.7 No.4

Aw'Be1 2 39 4!

The string contents of A now contain an executable APL statement. So not
surprisingly whenA is executed, the statement in quotes is processed by the APL
interpreter.

1234

Atthe very least this provides one with a mechanism for repeatedly executing a
complicated APL statement without having to write an APL program - possibly
an attractive proposition for teachers who would like their students to use
programs as soon as possible but cannot afford the time to show them how to
write programs in APL. (Of course direct definition is a much better approach in
this situation.)
Howeverthere are a number of ways in which execute can be exploited with
great effect, particularly in the area of making choices within a program. The-
following sections demonstrate someideas on this topic.
Incidentally, if we wish to allocate a string variable to B in the above example,
then we must use a repeated quote:

AC'Be''1 2 a qere4Bea 2.3 48

Choices
Suppose in a program, you have a variable C which can take the values 1, 2.
Also suppose that if C=1, you wish to perform PASK1, whilst if C=2, you wish
to perform TASK2. If TASK1 and TASK2 both require a right argumentX say,
then instead of branching on condition C, # may be usedin the form:

a'TASK',(¥C},' X'

26

VECTOR Vol.7 No.4

This works becauseif C=4, then +¢ (format C) becomesthe character ‘1’ and so
the argumentof « is the string 'TASK1 X'. (Note the spaceto theleft of ‘xX’ is
crucial.)
Asecondpossibility for choice in programming makesuseof the fact that

1/'THIS IS A STRING!
‘THIS IS A SIRING'

whereas

O/'THIS IS A STRING

Whatis happeninghereis that the Boolean reduction (9 1 1/'CAT" giving the
string ‘AT’) is being used with a scalar argument (1 or 0) which is then
effectively replicated to the samesize as the string - hence 1/.... gives the whole
string, whilst 0 /.... gives the null string.
Hencean alternative version of the previous choice of TASK1 and TASK2 can be
written

2(C=1)/'TASKI X!
£(C=2)/'TASK2 X'

This use of « is particularly useful in programming, conditionally to execute a
statementor pass throughto the nextline, without the need to branch.

IE ... THEN ... ELSE
This is a familiar construct in many programming languages, but not in APL. But
if you wantit, because youfeel it helps you to read your programs, then you can
haveit, at the expense of writing three small programs. The idea is to construct
IF, THEN, ELSE so that we could write an APL statement such as

IF ‘Csi! THEN 'TASK1 X' ELSE ‘TASK2 X'

First the program ELSE which is designed to combine the two executable
statements into a two-row character matrix.

27

VECTOR Vol.7 No.4

9 R+LA ELSE RA;M
[1] a RA is string vector or scalar APL command
(2) «® LA is string vector or scalar APL command
C3] a Ris a two row matrix containing both commands
C4] M«(pLA+,LA)[pRA+,RA
C5) R+(2,M)p(M+tLA) ,Mt+RA

v

Re'X+1 2 3' THEN 'X+1 2 3 4!
R

xX+1 23
X14 234

eR
29

Now THENusesasits right argument the two-row matrix constructed by ELSE,
and together withits left argument which when executedtells it which row to
select, returns the commandto be executed.

VR+CONDITION THEN ACTIONMAT
C1] R+ACTIONMAT[1+~s*CONDITION;]

v

Andfinally, a ‘syntactic sweetener’ IF which merely executesits right argument

VIF STRING
[a3 sSPRING

v

Hencepiecing these together we can write, for example:

C+t
IF 'C=1' THEN 'X+1 2 3' ELSE 'X+1 2 3 &!
x

123
c+2
IF '@=1' THEN 'X*1 2 3' ELSE 'X+1 2 3 u!
x

1234

28

VECTOR Vol.7 No.4

A MENU Program
Finally in this article, we use # to construct a MENU program whichactivates a
set of different functions by the careful selection of an appropriate key.
First we define the keys to be used; for example assumethat there are four tasks
denoted by the keys A,B,C,D.

KEYS+' ABCD!

Secondly, we wishto explain on the screen whatthe options are that are selected
by these keys. So we might use the BOX program of a previousissue to construct
a matrix called EXPLAIN.

EXPLAIN*BOX ‘Option 1/Option 2/Option 3/Option 4/'
EXPLAIN

Option 1
Option 2Option 4
Option 4

Thirdly welist in matrix form the action programs that require execution. (Each
line of ACTION could be a complicated APL expression which requires execution
whenselected.)

ACTION+BOX 'ACTION1/ACTION2/ACTION3/ACTIONG/MENU/'

Then a MENU program might look somethinglike the following.

VMENU
[13 ‘Choose one of the following using only the keys ',KEYS
[23 KEYS,‘-',' ',EXPLAIN
[33 *, ACTIONCKEYS11403]

v

Some readers may not be familiar with the use of the 1 symbol in this way
(usually referred to as the ‘dyadic iota’ construct). It is basically a vector look-up
table function. For example

342 Gel

29

VECTOR VoL7 No.4

as the first occurrence of 4 in the left-hand side is in position 2. Similarly

'BACD'1'A'

However, note what happens whenthere is no occurrence.

"BACD'1'X!

Whatis returnedis 1 more than the length of the look-uptable.
Hencein our application, KEYS: 1+] returns the value 1 2 3 4 according to
the first key pressed equalling A,B,C,D and if the first key pressed is not in
KEYS. Tocater for this case we have appended MEWUto the end of the actionlist
so thatif an incorrectkey is pressed, the menuis repeated.
(Note also the reason for the commaafter the execute symbol. This is because the
argument of # must be a string scalar or vector. As the code is written, 1+1]
returns a vector of length 1 and hence the indexing of ACTION uses a vector,
hence a one line matrix is created.)
As you can see, this basic MENU program is very concise, and a good
demonstration of the usefulness of the execute function.

30

VECTOR Vol.7 No.4

British APL Association Monthly Meetings
From February 1991, we have decided to change the venue of our monthly
meetings in London. Meetings are now be held at the Institute of Electrical
Engineers, Savoy Place, London (nearest tube outlets: Temple or Embankment).
The committee believe that this move will greatly enhance the quality of our
monthly meetings - but theyarestill free, and of course non-membersarestill
most welcome. Comealong andsee if we’ve madetherightdecision.
Date Venue Event

26 April IEE London BAA Meeting: Vendor Forum

7 June IEE London AGMand BAA Mesting:
Modern Productivity Aids for APL

20 September IEE London BAA Meeting

25 October iEE London BAA Meeting

22 November IEE London BAA Meeting

 , 42Der “iSlogSNE
an c

XY

 WATERLOG

a Renaissance Data Systems

Enlightenment Thru Information Processing
ALL APL BOOKSIN PRINT

Catalog excerpts as of September 1, 1990

ACCOUNTING STRUCTUREDIN APL. ljiri, 1984, 491p. $10.00The basic principles of accounting with numerous APL
COMPUTINGIN STATISTICAL SCIENCE THRU APL, Anscombe. 1981, 426p.Lots ofstatistics and APL. His workspacesare available from Yale University. ci
MATHEMATICAL EXPERIMENTS ON THE COMPUTER,Grenander. 1982, 525p.Case studies using APLin a numberoffields, includingstatistics,linear algebra, geometnetworks,invariant curves. Detailed description and analysis of APL. functionsin all topics discussed.
PROBABILITY IN APL, Alvord. 1984, 142p.‘A delighttul,yet seflous development of 3 ;mutations, geometric distributions, and the World Series. Friendly examples. Noprevious APLrequired.DISKETTE FOR ABOVE containing functions covered in book. ..
APL WITH A MATHEMATICAL ACCENT,Jones,Reiter. 1990, 200p. $41.95‘Specialty written for use in advanced high schoolof college math course:
APL - THE LANGUAGE ANDITS ACTUARIAL APPLICATIONS,de Kerf, Goovaerts,Stiers. 1987, 223p.Introductionto APL. Loss teserves, credibility, probability, numerical analysis, forecasting, with APLfunctions.
COMPUTATION FOR THE ANALYSIS OF DESIGNED EXPERIMENTS, Meiberger, 1989, 683pAnalysis of the construction of ANOVAprogramsusing least squares techniques,including the parsinighich a language specification is intexpreted, Emphasizes the neoraty as well asthe algebra of the methodology.All programsin the book are included on 5 1/4" diskettes in APL, BASIC, C, and FORTRAN.
APL2 AT A GLANCE,Brown, Pakin,Polivka. 1988, 444p.Solid, unintimidating,introduction to APL2. Clear lilustrations,
LEARNING APL: AN ARRAY PROCESSING LANGUAGE,Mason, 1985, 259p.Emphasis onarrays, naturally. A readable, detailed introduction with thorough exal
APL- ADVANCED TECHNIQUES ANDUTILITIES,Bergquist. 1986, 450p.Good discussion of altemative approaches to a wide rangeof programming8 documentation, fila design, booleantechniques. Assumes knowledgeofthe basics. Many idiomsworka|DISKETTE FOR ABOVE.Containsall func ext. Formatted tor APL*PLUS/PC,uploadable to Sharp APL, VS/APL, APL2.
APL AS A TOOL OF THOUGHT, PROFESSIONAL DEVELOPMENTSEMINARS,NY/SIGAPL;Thefirst 5 years.‘A.wide range of topics in education and business, Logic, insurance, statistics, A.I, accounting,fractals,teachers toclbox, computerscience, biology, graphics, engineering, data bases, and much more, 1989 - 1987, approximately 6000. $55,

342.00

317.50

$89.00

$59.95

$35.00

$21.50

$44.95

». $15.00

 APL&9 - STATISTICS TUTORIAL, Alvord, Traberman,etal, 72p.A.unique collection of papers onstatistics andits expositionin API $10.00

peemeeeEE"
| Name: Date: Paymentin check or moneyorder payable| in $U, S. must accompanyorder. Send to:

reat: enaissance Data lems:Street: Renal: Data SystP.O, Box 20023Park West Finance Station| New York, New York 10025-1510

| Oty: State: Postal Coda: (212)864-3078
| Country Telephone Day: Evening:
| Weregret that we cannotacceptpurchase orders orcredit cards,
| Title Price Quantity ___ Total
| Title Priea Quantity ___ Total
| Tite Price Quantity Total
i Subtotal:Postage and handling - US, and Canada ($2.50 minimum: $2.50 eachitem over$25.00}:+ International {surface mail add 15%, airmail add 40%): |

Total:
Thank YouFor Your Order!

Please send complete CATALOGofAPL books and software a|Nae eeeeae~~a

VECTOR Vol.7 No.4

THE
RANDOM
VECTOR

The Newsletter of the APL Statistics Library
Editor David Eastwood

April 1991

Contents
Editorial David Eastwood 34
The Third ASL Conference 35
The Genesis of ASL (2) Tony O’Hagan 36
The Regression Shelf Alan Sykes 41
Sterling’s Function: a Case Study in APL David Appleton 47

33

VECTOR Vol.7 No.4

Editorial
In this second issue of ‘Random Vector’ Tony O'Hagan continues to explore the
genesis of the ASL project, seeking to prove that if no one present at a meeting
can remember what was said, he who writes something downcreates the
history! During the period in question (late 1988 to date) I have been a member
of both the BAA Committee and the ASL Management Committee and so J can
add some comments regarding the feelings of the BAA Committee when we
werefirst officially approached for funding.I think it is fair to say that there was
an immediate and enthusiastic acceptance of the ASL project within the BAA -
we felt that ASL combined a numberof themesdear to ourhearts:

+ ASL represents a means of demonstrating the appeal of APL in a keyarea of
current usage.

+ Within that area, ASL offers a route to enhance APL’slevel of acceptance by
supplying the basic, tested, algorithms that new users havea right to expect.

+ The proposal seemed unlikely to receive any commercial funding.
+ The project proposals seemedto berealistic and not over ambitious

The initial queries raised by the BAA were largely concerned with points of
detail within the various proposals put forward by the ASL team.
In the first issue of Random Vector we gavea brief overview of the contents of
the ‘Bottom Shelf’ ASL functions. By the timethis issue is delivered the official
launch of ASL will have taken place at the March 1991 meeting of the BAA. In
the run-up to this launch, a meeting was held on February 12 1991 at University
College Swansea. Maurice Jordan and Jake Ansell braved the uncertainties of
British Rail andits attitude to snow. Norman Thomson was unable to be present
but communicated by telephone. Also present were Alan Hawkes, Alan Mayer
and Alan Sykes from University College.
A profitable day was spent reviewing the mountain of paper produced by
Maurice’s “APL test bed’ as applied to the functions on the bottom shelf. This
largely automatic approach to APL code testing was discussed by Maurice at the
second ASL conference at Swansea in September 1990. Also discussed were the
comments that had been received from testers who had attended that September
meeting. Alan Mayer presented his work on producing accuratetail probabilities
and quantiles for Normal, t, F and Chi-Square, which have subsequently been
tested by Maurice.

VECTOR Vol.7 No.4

Norman Thomson has been maintaining the specification document for the
Bottom Shelf and has been incorporating the results of discussions suchas this in
the document. I shall publish as much of Norman’s documentas space permits in
a future issue of Random Vector.
This issue, however, takes a look at the Regression Shelf in some detail. We
reproduce some notes written by Alan Sykes which were issued with the first
test versions of the Regression Shelf. Although, as Alansaysin his article, these
notes are now being revised, they do offer an insight into the scope of the
Regression Shelf.
Thelast article included is not so directly related to the ASL theme, but David
Appleton does offer an interesting view into the way in which the APL
representation of a particular mathematical formula can be progressively refined.
As with any article which dares to introduce the theme of coding techniques and
style, I expecta lively reaction from readers, so, havinglit the blue touch paper,I
shall retire and await the postbag with interest.

The 3rd ASL Conference
I would like to conclude this introduction by making a preliminary
announcementaboutthe third ASL conference. This will be held at:

The University of Wales Conference Centre at Gregynog
from Monday 30 September 1991
till Wednesday 2 October 1991

As with previous ASL conferences,this is an invitational conference and the only
costs for delegatesare their travel costs. We are hoping to review the status of
ASLandto chart out the next phase of developmentfor the project. In particular
we are hopingto attract more volunteers to work on the project!! The ASL team
will be delighted to hear from anyone who would like to attend - we are trying
to continue the mix of Statisticians from Higher Education and the state or
private sector as well as theoretically professional APL programmers.If you
would like to find out more about the next conference, why not contact one of
the ASL Management Committee whoare:

Chairman: Tony O'Hagan, Departmentof Mathematics,
University of Nottingham, University Park,
Nottingham NG7 2RD.Telephone: 0602-484848 x2800

35

VECTOR VolL7 No.4

Deputy Chairman: Alan Sykes, Department of ManagementScience and
Statistics, University College of Swansea,
Singleton Park, Swansea SA2 8PP.
Telephone: 0792-295296
Manager:Jake Ansell, Business Studies, University of
Edinburgh, William Robertson Building, 50 George
Square, Edinburgh EH89JY. Telephone:031-667-1011
BAA Representative & Newsletter Editor: David Eastwood, MicroAPL Ltd,
South Bank Technopark, 90 London Road, London SE1 6LN.
Telephone:071-922-8866
BAA Representative: John Searle,
13A MountArarat Road, Richmond,
Surrey TW10 6PQ. Telephone:081-948-6737 (home)

The Genesis of ASL (2): October 1988
by Tony O’Hagan

First Approaches to the BAA
Thevery earliest beginnings of the ASL idea were chronicled in thefirst article in *
this series. The next key event was a meeting on 5th October 1988 at IBM South
Bank, London. Present were Jake Ansell, David Eastwood, Norman Thomson
and myself. This meeting drew up the following list of goals as part of
“establishing an APLservice to statistics users”.

1. Define standard functions for basic statistical operations. Identify good
implementations, possibly by soliciting code from the statistics/APL
community.

2. Identify standardsfor delivering functions/workspacesto different APL
systems.

3. Draft standards for more complex functions, their syntax and means of
verification.

4. Create a library for statistical functions, comprising the standard basic
functions and others submitted by users.

36

VECTOR Vol.7 No.4

5. Prepare housekeeping procedures/functions to administerthis library. These
should coverreceipt, verification and storage of new functions/workspaces,
plusselection, packaging and delivery of requested functions/workspaces.

6. Documentfunctions in book form, possibly loose-leaf.
Several ways of achieving these goals were discussed, but the favourite wasfor a
student to do it as a one-year MSc project. I agreed to look into the possibility.
Finally, the meeting considered waysof funding the project. The idea of an MSc
student wasattractive because it would be cheap, butstill substantial money
would be involved. It was here that involvementof the British APL Association
wasfirst suggested. Anotherpossibility was funding by IBM.
Myinvestigations concerning the MSc idea were not very successful, for similar
reasons as caused us to drop the thought of a PhD project in our earlier
discussions. But David Eastwood made contact with the BAA on our behalf at a
BAA committee meeting in November. They expressed aninterest in principle in
providing support for our project. In particular, they suggested that the ball
could be set rolling by having a conference on ‘APL andStatistics’, to establish
demandand collect ideas. This very positive responseto our tentative enquiries
was extremely encouraging. For thefirst time,it lookedlike the ‘statistics library’
might be in business!
T have no record of what happenedin the next couple of months.I believe that
we were asked to clarify our thinking, but no written proposal seems to have
been madethen, nor any meeting held. The BAA committee met again in January
1989, Alan Sykes, who was the BAA Education Officer at the time, wrote me a
letter dated 18th January reporting the committee’s conclusions. A substantial
part of Alan’s Education budget for the year wasto be given to the proposed
conference. He had already made a booking for it at the University of Wales
Conference Centre at Gregynog for that September. Furthermore, a firm proposal
for fundingof the projectitself would be welcomed.
Another meeting took place on 24th February, again at IBM South Bank. This
was publicised by Jake Ansell through the APL Statistics Users” Group, and
attracted severalinterested people from industry.In all, the attendance was Dick
Bowman, Mike Day, David Eastwood, Peter Lane, A MacGillivray, Robin
Morphet, Alan Sykes, Norman Thomson and myself. A great deal was discussed.
Dick Bowmansuggested that Sig APL mightalso contribute to the ASL project.
Dicklater followed this up withoutsuccess.It seems that the American groupare
very wary of supporting aninitiative which might later compete (unfairly’ is
implied) with commercial products.

37

VECTOR Vol.7 No.4

The main achievementof this meeting wasto establish two interim committees.
A Conference Committee, chaired by Alan Sykes, would meet to plan the
conference in September. A Proposal Committee, with me in the chair, was
charged with drawing up detailed proposals for funding of the project proper,
for submission to Sig APL and the BAA.
Anotherinteresting suggestion madeat this meeting was that in due course the
Royal Statistical Society might be prevailed upon to put somekind ofseal of
approval on the functions produced. Although this has not been pursued any
further, we still hope to do so when sufficiently battle-hardened software is
teady. The meeting ended with a discussion of a nameforthe library, and for the
project. S-APL wastentatively agreed.
My records are hazy again here.It is clear that] prepared a first draft proposal
and sent it to members of the Proposal Committee only four dayslater, on 28th
February. It seems likely that when the meeting on the 24th ended it
metamorphosed into a Proposal Committee meeting, which went on to discuss
detailed proposals at somelength. The text of that original draft is no longer with
me,either. It went through a series of modifications, including further feedback
from the BAA in April, and emerged on 5th June 1989 as a substantial five-page
document. The name had changed to ASL = APLStatistics Library (because S-
APL was already used by 1 P Sharp), and that name has stuck. Since this
documentdefines ASLin basically the form which BAA agreedformally to fund,
itis worth setting downheretheessential features.

1. The objectives were set out as “to establish:
(a) a set of standards whichwill give coherenceto the assembly of functions,

make them easy to use singly and in combination,facilitate porting to a
range ofinterpreters and hardware, andhelp with verifying their
correctness;

(b) a ‘bottom shelf’ of functions comprising the most fundamentalstatistical
routines (descriptivestatistics, calculations on standard distributions,
etc.), plusutility functions (data handling and I/O, graphics, numerical
procedures,etc.);

(c) various other‘shelves’ of functions for specific statistical applications,
such as regression (linear models), categorical data analysis, multivariate
statistics, reliability, analysis of variance, sample survey analysis, time
series and forecasting, all taking functions from the bottom shelf, and
possibly other shelves(e.g. a shelf for generalised linear models may take
functions from the regression shelf).”

38

VECTOR Vol.7 No.4

2. The benefits were described as follows. “One ofthe best-selling categories of
softwareis statistics packages... We want ASL to be a flagship for APLin this
important market.” But it was stressed that ASL wouldnotbe just another
statistics package.“... it will not be a closed package, allowingthe user to do
only whatthe programmers have thoughtto include. The full power of APL
will always be available, ASL merely providinga sophisticated set of
functions, which the user will then combine with each other, the APL
primitives and his/her own functions.Forthe lay user, the documentation
will provide idioms for operations suchas selection of variables and cases,
data transformations and passing data between functions. To such a user ASL
will appear as a complete package, as general and user-friendly as
conventional packages. To the APL userit will be much more.”

3. It was also boldly claimed that “APLis the best languagefor doingstatistics.
Data analysisis essentially exploratory.It is not a simple matter of applying a
single standard analysis to the data, butof trying different kinds of analysis,
looking at the data in different ways, and drawing together a range of
conclusions. The APL environmentis idealfor this activity. The APL language
also uniquely supports the processing ofarrays of data neatly and simply.”

4, Managementof ASL was to be by a Management Committee, to be elected at
the September conference.In addition to a Chairman, Manager(responsible
for day-to-day running of the ASL effort), Treasurer and Secretary, it was
hopedto have BAA involvementthroughits Projects, Technical and
EducationOfficers.

5. A programmeof work wasdescribed, culminating with a general release of
the first ‘shelves’ in September 1990, These were to comprise a bottom shelf as
in 1(b) above and a regression shelf. Although bothfirst and second
generation APLs wereto be supported, ‘APL2’ implementation was not the
first priority.

6. Funding was requested for a programmer, working for about 2 days per week
for a year, for a PC for the programmer, and a smail amountfor expenses and
consumables, The BAA wasasked to commit moneyon a phasedbasis,
paymentat the second phase being subjectto satisfactory progressin thefirst
phase(to March 1990).

Since then, there have been minor changes in the formal objectives, the
managementand the timescale, which will be described in later episodes of this
series ... (watch this space!), but the ideals of (2) and (3) have kept ASL going
ever since.

39

VECTOR VolL7 No.4

The ASL Regression Shelf
by Alan Sykes

Introduction
The ASL project outlined initial ‘shelves’ to be produced in the first year. One of
these was a Regression Shelf. An exploratory workspace was produced and
discussed by the ASL committee. That workspace built on the work of Jake
Ansell and Alan Sykes over recent years in using APL routines that behaved
similarly to those implemented in the Royal Statistical Society's Software
Package ‘GLIM’.It was decided that the Regression Shelf should contain a set of
functions that performed GLIM-typecalculations in a way that allowed them to
be incorporated into user functions.

Introduction to Regression
Mostusers of Statistics, or for that matter users of APL, understand the basic
principle of ‘Simple Linear Regression’ where a response variable’s average
value dependson a predictor variable in a linear way. The equation ofthatline is
estimated from bi-variate data by the method of least-squares, which in APL
means the use of the dyadic version of ‘domino’.
In this introduction, some basic terminology is explained and the simple linear
regression modelis extendedinto the conceptof a statistical linear model.
There are three majorattributes of statistical linear model. First we have the
RESPONSEvariable, often referred to as the ‘y-variable’. This is usually random,
with distribution assumed to be NORMAL or GAUSSIAN. Secondly, we have
one or more PREDICTOR variables, usually regarded as non-random, which
predict the average value of the response variable in a linear way.If E(Y) denotes
the ‘expected’ value or mean value of the response variable Y, and U,V,..W are
predictor variables then we assumethat

E(X) = a+bUscv+....aw ,

where a,b,...d are unknown constants.
So muchfor the mean of Y; what aboutits variance? The simplest assumption to
make is that the variance is constant, given by k say. Hence y has a Normal
Distribution with mean at+bU+cU+...tdW and variance k. Regression Analysis

40

VECTOR Vol.7 No.4

concerns itself with the statistical procedures appropriate to estimating the
unknownlinear regression parameters a,b,...d, together with the nuisance/scale
parameter k. As such it is merely one example of the basic paradigm

Observation = Signal + Noise

Givena collection of values of the response variable, and the associated values of
the predictor variables, the machinery of statistical linear models concerns itself
with:

(a) Choosing appropriate models;
(b) Validating a chosen model;

{c) Estimating the parameters;
(d) Using the modelfor prediction.

Hence, functions are required to enable the userto:
(a) Specify a model;
(b) Estimate the parameters of the model;
() Test hypotheses concerning that model;
(A) Perform diagnostictests and graphicalplots to investigate the validity and

appropriatenessof the model.

Generalized Linear Models
Over the last twenty years the success of statistical linear models has been
strengthened by relaxing twoof their basic assumptions. First the assumption
that the response variable has a Normal distribution is relaxed. Alternatives
(from the ‘Exponential family’) such as Poisson, Binomial, and Gamma
distributions are allowed extending the scope considerably. For exampleif Y is a
count of radioactive particles emitted from a source in a time period ofsize x,
then, rather than assuming that y had a Normaldistribution with mean atbx,it
is likely to be more appropriate (since the y values are counts) to assume that Y
has a Poisson distribution with mean atbx - hence the idea of ‘Poisson
Regression’.
The second assumptionthatis relaxedis the idea that the ‘linear predictor’, i.e.
the function atbutcv+..dw, need not specify the expected response E(Y). Rather,
the linear predictor specifies a function of the expected response. For example in
Poisson regression we may assume that atbUteV+.dW = log(E(Y)). This

41

VECTOR Vol.7 No.4

concept of a ‘Link Function’ extends the scope even further. Generalized Linear
Modelling is now an accepted part of an appliedstatistician’s armoury oftools. It
is not surprising that the success of the package GLIM has resulted in the
inclusion of such tools in many other statistical packages, such as SAS,
GENSTATand now ASL!

TheFacilities Within the Regression Shelf
The first, draft, version of the Regression Shelf was distributed to interested
parties during and after the second ASL conference in October 1990. Feedback
gained as a result of that exercise has resulted in some modifications to the shelf
which IJ shall detail below.
In the remainder of this article, I shall introduce the facilities offered in theRegression Shelf and in a future article I shall discuss the operation of the
functions supplied within the shelf in more detail.

A Database of Examples
In order that the Regression Shelf maybetried and tested, a number of databaseshave been provided in a separate workspace. Each database is stored under a
variable name, which specifies a character matrix with a simple but specificformat:

1 Introductory Lines, specifying appropriate references
2 Blank Line
3 Variable Names; oneperline with at least one space between the name andthe (tabulated) start of the explanationofthe variable names
4 Blankline
5 Lines of Data

As an example consider the data set HOUSEPRICES

HOUSEPRICES
HOUSE PRICE DATA, SOURCE: Genstat 5 An Introduction, by Lane,
Galwey and Alvey, Page 55. 20 similar houses for sale in
Harpenden in 1977

VECTOR Vol.7 No.4

PRICE House price in pounds sterling
SPACE Total floor space of the house in square-metres
GARDEN Area of the garden in square-metres
AGE Age of the house in years
11500 131 140 88
15500 154 245 70
12950 137 150 66
14000 121 180 43
16500 135 260 17
17600 172 400 23
12450 112 90 52
18500 124 120 10
14900 141 180 43
16250 149 350 36
18400 170 320 7
11950 93 450 19
10400 111 280 62
17250 162 380 12
13450 148 190 23
10950 128 160 75
13950 152 95 92
11500 401 450 42
17500 145 275 0

Functions are suppliedto allow you access to the explanation, the names and the
data. A function is also provided to extract the data into numerical form attached
to the names provided.

EXTRACT HOUSEPRICES
PRICE +SPACE +GARDEN +AGE

(N.B. the explicit result of using EXTRACTis a string variable containing the
variable names, separated by plus signs - this is useful for feeding into the
regression routines. But in addition of course, the variables PRICE, SPACE,
GARDEN and AGEare now in the workspace.)

An Introductory Example
A simple example of the basic regression directives using the database on
HOUSEPRICESasdescribed above givesa flavourof the Regression Shelf.

EXTRAC? HOUSEPRICES
PRICE +SPACE +GARDEN +AGE

43

VECTOR Vol.7 No.4

The aim of the use of regression here is to attempt to explain the variation in
house prices in terms of the information about the houses contained in the
variables SPACE, GARDEN and AGE. Intuitively, a large house with a large
garden will commanda higher price than a smaller house. As for age, perhapsits
influence on houseprice is debatable.
Since the object is to predict house prices, the variable PRICE, or some
transformation of it must be declared to be the ‘y- variable’. This is done using
the directive YVAR.

YVAR 'PRICE/1000"'
Y variable is PRICE/1000
units set to 19

To predict this variable, we have the choice of usingall or some of the variables
SPACE, GARDEN, AGE, together with any variables that can be constructed
using them, such as for example SPACExSPACE, SPACEXxGARDEN, +AGE,
etcetera. In addition, we usually require a constant term, which is denoted by
‘Gt’. Let's try usingjust the variable SPACE, and of course a constant. Predicting
PRICE using ‘GM+SPACE’ is then equivalent to finding the regression line of
PRICE on SPACE.
Thelinear predictor is specified by using the directive LP.

LP 'GM+SPACE!'

To fit, follow this with the directive FIT.

FIT

Response Variable is PRICE/1000
Fitted Model is GM+SPACE

source SS af ms
Due to model 66.223 1 66,223
Residual 46.089 17 2.711

Total Corrected 112.306 18 6.239

Percentage Variation Accounted for = 58.97
F-statistic = 24.43
p~value= +00

VECTOR

This table presents a summary ofthe ability of the chosen linear predictor to
predict PRICE+1000. It takes the form of an ‘ANOVA’table which breaks
downthevariationin the ‘y-variable’ (in this case 112.306), into that explained by
the model (66.223) and the residual variation of the data about the fitted
regression line (46.083). Hence we can see that using SPACE as a predictor
variable explains 100x66.223+112.306 or 58.97% ofthe variation.
This summary does not however give the estimated coefficients of the predictor
variables (GM and SPACE). The directive DISPLAY does.

DISPLAY

Var Est st
GM 2.576
SPACE 086

Now it should be clear from this simple one-variable model how to fit more
complicated models. Let’s useall the supplied variables, for example.

LP 'GM+SPACE+GARDEN+A
FIT

Response Variable is PRICE
Fitted Model is GM+SPACE+G.

source ss
Dueto model 96.986
Residual 45.321
PotalCorrected112.306
Percentage Variation Accou
F-statistic *
p-value

DISPLAY
Var Est
GM 6.079
SPACE 077
GARDEN -.001
AGE ~.048

d Err t-stat p-val
2.410 4.4 300

017 4.9 «G00

GE!

41000
ARDEN+AGE

df

3
15

18

nted for * 86,36
31.65

+00

Std Err t-stat
1.769 3.4
2011 7.0
2003 -.3
010 ~4.9

45

VECTOR Vol.7 No.4

From these results, we can see that with the additional variables, the total
prediction capability is 86.36%. Note from the estimates, that the coefficient of
AGE is negative (older houses tend to be sold for less than younger houses, other
things being equal), and that the coefficient of GARDENis less than its standard
error, indicating that its predictive capabilities in the presence of the other
variables is very small.
Fitting a model such as the aboveis fraught with problems. There are so many
assumptions involved which should be checked. There is a vast array of
suggested techniques for doing this and the regression shelf includes a number
of the most popular regression diagnostics as well as a repertoire of functions to
run and test more complex models. In the next article on the Regression Shelf I
shall illustrate the full scope of the code supplied in the Regression Shelf.
Since January 1991,] have been working on a complete revision of the RegressionShelf. The basic weighted least-squares routine has been changed from one basedon Householder’s method to a version of Beaton’s method.
Thecriticism raised by early testers that the Shelf was ‘too packaged’ has beenconsidered seriously. Howeverit does seem thatit is difficult to provide usefulfunctions including output without a good deal of packaging.So,in the revision,we have tried to reach a compromise - the package is there, but it is more
modular, with core functions, such as the weighted-least-squares routine
available to the user directly. With the aid of good documentation, a user has achoice of using the Regression package or choosing core routines for his ownuse.
The numerical computations have now been checked by reference to published
examples in the GLIM manual and in Aitken’s book on Generalised Linear
Modelling. Additional functions have been added including Summary Statistics,correlation matrices (both for estimates and regression variables), and Box-Cox
loglikelihood for power transformation.

46

VECTOR Vol.7 No.4

Sterling’s Function: a Case Study
by D R Appleton

Theme
Several different APL functions, for the evaluation of Stirling numbers of the
second kind, are presented. Their advantages and disadvantages are discussed.

Exposition
A colleague doing some theoretical statistical work on the analysis of an
experiment which hadresulted in counts from the truncated Poissondistribution
being observed, recently asked me if I had an APL function to evaluate the
Stirling numbersof the second kind. I did not have sucha function, but he told
methey were defined for positive integers n and t by

a formula obtainable from Abramowitz and Stegun (1964). With APLit is easy to
turn this expression into executable form,for example:

< STIRI1 >

However this function can be improved:it ignores the fact that the first term is
identically zero, it does not makeit clear that the result is always positive, and
APL has a more concise way of summing alternating series. A better function is
therefore given by

< STIR2 >

It may or may notbe numerically preferable to factorise out the n! and use
< STIR3 >

Of course APL’s power comesfromits ability to handle several different values
simultaneously. We could easily have a vector for T.

< STIRG >

47

VECTOR Vol.7 No.4

However,it is likely that the values of 7 we would require, at least to form a
table of the Stirling numbers (which might be useful in the long run to save
calculation) would beall the positive integers up to T. This leads to

< STIRS >

and we could have, had we wished, developed STIR2 to this form instead of
STIR3.
If we wish to produceand save a table of the numbers we may build STIRS5 into
a loop:

<

STIRG

>

It is now time to look at the table of numbers this function produces; this is
shownin Table 1 for W=6 and T=6. It becomes very clear that a function which
wastes its time calculating values for N>f is unsatisfactory. This, of course,
should have become evident if a little more algebra had been done before
turning to programming, or if STIR2, say, had been properly tested, but the
functionsare so simple it hardly seemed necessaryto test them all individually!

Table 1 t
1 2 3 4 5 6

1 1 2 1 1 1 1
2 oO 1 3 7 as 31

n 3 oO oO 1 6 25 30
4 o 5 oO 1 10 61
5 Q °o oO o 1 1s
6 Oo o o oO ° 1

Development
It is important to define more coherently the problem weare tackling. We now
wantto producea table of Stirling numbers in which the element at row n and
column p contains Op, and to solve the practical problem underlying the
computing problem we wouldlike n to take values up to at least 100 and p to
reach at least 2n for as many values of n as possible. This means rewriting
STIRS as

< STIR7T >

48

VECTOR Vol.7 No.4

Runningthis in a loop produces Table 2 for N=8 and P=6. The magnitude of the
values appearing in the table gives rise to concern for the function: when willit
overflow? This is certainly a matter which will haveto be investigated, but there
are other interesting aspects to the table.

Table 2seeeeee P
1 2 3 4 5 6

1 2 1 1 1L 1 1
2 3 7 415 31 63 227
3 6 25 90 301 966 3025

nia 10 65 350 1701 7770 34105
5 15 140 1050 6951 42525 246738
6 21 266 2646 22827 179487 1323652
7 28 462 5880 63987 627396 5715424
a 36 750 11990 159027 1999612 20912320

From row

2

it is clear that 024, = 2 03,, + 1, and from row3 it is nottoo difficult
to deduce that 03,43 = 3 0342 + 0242, and hence to discover the recurrencerelation

o,=n oF oF),

This enables us to write a function withoutcalculating the factorials or binomial
coefficients in ouroriginal definition.

<

STIRG

>

But what is this? An APL function with a double loop? Surely that is
unnecessary. Instead of working a row at a time we mustevaluate the table by
columns.

<

STIR

>

Now we have a much faster function (taking about a quarter of the time STIR8
does for N=80 and P=80), which is approachingits final stage, but let us look
moreclosely at the table and the function we have written. Column 1 is just
+\iN and column 2 is therefore +\(1N)*+\1¥. Indeed column P is
214+(7xP)p'tx+\(1N)" an expression so conciseit is hardly worth writing a
function for. Notice that #14 (9xP)p'x+\(1N)"' prints out the entire table
given by STIR9,although it transposes it and prints each line to a different

49

VECTOR Vol.7 No.4

format. This is avoidable, for small values of WN and P, by
4224+((12xP)p'xsQ+«10 0¥F+\K'),'+iN' but we wish to storethe table, not
printit, a task which is doneby our final version

< STIR >

whichis slightly faster even than STIR9.

Recapitulation
We have seen howit is worthwhile to look at the problem from a theoretical
point of view so that we may obtain different algorithms for calculation. Evenwith an apparently obvious formula, simply translated into APL,it may be more
appropriate to use a recurrence relation. This is not only for reasons of time,which are not of vital importance if the values obtained are to be stored in anycase, but for reasons of numerical accuracy. In passing we suggested that STIR2,
which involves the calculation of a factorial and a set of binomial coefficients,
might have different numerical properties from STIR3 which involves twosetsof factorials.
To investigate this suppose N=50 and 7=60, the sort of numbers which might
indeedarise as the result of a small experiment. STIR1 and STIR2 give 0% =2.02x10% while STIR3 and STIR4 give 5.06x10%. The sensitivity of each
function to the order of summingthe series can be looked at by changing ~/ in
STIR2 and STIR3 to -/%; the results change to 1.711026 and 7.09x102
respectively. With STIR4 we can evenalter the calculated value of $ depending
on which values other than 60 we includein vector 7. STIR (and STIR9 which
uses the same arithmetic) gives 9.55x1024 for 6%, which I believe to be correct.Not only is the algorithm contained in #14(7*P)p'x+\ (iN)! remarkably
succinct, it is numerically preferable to the others. STIR works whenever
350>N+2*P and occasionally outside that range. When the function fails it is
sometimes because the workspace becomes full, and sometimes because adomain error occurs. The figure’ shows an isometric plot of the common
logarithm of the Sterling numbers of the second kind, for values of n and t-n up
to 80. The values given above, except for that of 9.55x10% , are system-
dependent; the ones quoted were obtained from IBM APL on a Personal
Computer, the same phenomenon occurs with different values using TRYAPL2.
Other systems give a domain error instead of inaccurate results.

50

VECTOR Vol.7 No.4

Coda
The style of programmingillustrated in STIR can be utilised in many instances
of recursion, though the Stirling numbers of the second kind may be the most
elegant. Readers mightlike to deduce what the following expressions evaluate.

< TXTG >
< TXT9 >
< TXT10 >

Reference
[1] Abramowitz, M. & Stegun, IA (eds). Handbook ofmathematical functions with

formulas, graphs, and mathematical tables. Washington: US Govt. Print. Off.
1964.

51

VECTOR Vol.7 No.4

APL Product Guide
Compiled by Alison Chatterton

VECTOR’s exclusive APL Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.
We do depend on the alacrity of suppliers to keep us informed about their
products so that we can update the Guide for each issue of VECTOR. Any
suppliers whoare notincluded in the Guide should contact me to get their free
entry - see address below.
Wereservethe right to edit material supplied for reasons of space or to ensure a
fair market coverage.
Thelistings are notrestricted to UK companies and international suppliers are
welcometo take advantage of these pages. Where no UKdistributor has yet been
appointed, the vendor should indicate whether this is imminent or whether
approachesfor representation by existing companies are welcomed.
For convenience to readers, the productlist has been divided into the following
groups:

* Complete APL Systems (Hardware & Software)
* APL Timesharing Services
* APLInterpreters
* APL Visual Display Units
* APL characterset printers
* APL-based packages
* APL Consultancy
* APL Training Courses
* Otherservices
* Vendor addresses

Every effort has been madeto avoid errorsin theselistings but no responsibility
can be taken by the working group for mistakes or omissions.

Note:‘poa’ indicates‘price on application’.
All contributions to the APL Product Guide should be sent to Alison Chatterton,
at the addressonthe inside back cover.

52

VECTOR Vol.7 No.4

COMPLETE APL SYSTEMS
COMPANY PRODUCT PRICES(£)
Active Workspace Lid AWLA86 4,450

AWL 386 3,095+
APLPeople IBM PCs & compatibles poa

Dyadic IBM R§/6000 MDS20 11,736

[8M RS/6000 MD320 13,817

IBM RS/6000 MD320 22,656

IBM RS/6000 MD520 37,118

1BM RS/6000 MDS30 72,054

(eM RSy6000 MDS40 122,842

MicroAPL Aurora 20,000+
Spectrum 7,000+

MTC. 386sx AT 2600+

APL TIMESHARING SERVICES
COMPANY PRODUCT PRICES(£)
REUTER:FILE SHARP APL poa
Uniware APL*PLUS call

APL INTERPRETERS
COMPANY PRODUCT PRICES(£)
Active Workspace Ltd DYALOG APL DOS 986
APLSoftware APL*Plus/PC Release 9 535

Run-time poa

DETAILS
485 based 25MHz PC, 140MB Disk, 4MB RAM, VGAColour.(Ine. 1 year on site maint.)
386 based 25 & 33MHz PC, 140MB Disk, 4MB RAM, VGACofour. (inc. 4 yaar onsite maint)
Includes PC, meno/cotour monitor, APLinterpreter, operatingsystem software, plus optionalprintars, graphics boards,addltional memory etc.
APL POWERstation (Grayscale) 27.5 MIPS, 7.4 Milops RISCProcessor 8Mb RAM, 120MbDisk19" 1280x1024 Grayscale Graph Display AIX, OSF Motif, DyalogAPL(1-user)
APL POWERSstation (Colour) 27.5 MIPS, 7.4 Mtlops RISCProcessor 8Mb RAM, 120MbDisk16" 1280x1024 Colour Graphics Display AIX, OSF Motif, DyalogAPL(1-user)
Advanced APL POWERstation 27.5 MIPS,7.4 Mflops RISC
Processor 16Mb RAM, 320Mb Disk, 150Mb Tape.
16" 1280x1024 Colour Graphics Display AIX, OSF Motif, Dyalog
APL (1-user)
APL POWERsystem (8-users) 27.5 MIPS,7.4 Milops RISCProcessor 16Mb RAM, 320MbDisk, 150Mb Tape CD-ROM
Drive, 16 PortsAIX, Dyalog APL(2-9 userlicence}
APL POWERsystem (16-usars) 34.5 MIPS, 10.9 Mflops RISCProcessor 32Mb RAM, 1.24Gb Disk, 2.3&b Tape CD-ROMDrive, 18 PortsAIX, Dyalog APL(8+ userlicence)
APL POWERsystam(82-users) 41 MIPS,19 Mflops RISCProcessor 64Mb RAM,1,7Gb Disk, 2.9Gb Tape CD-ROMDrive,92 PortsAIX, Dyalog APL(8+ userlicanca)
Mult-user APL computer using 68020 CPU.Std. configuration2Mb RAM, 16 AS232 ports, 68 Mbhard disc, 720K diskette
Expandable mult-user APL computerusing Motorola 68000.Std.conguration 1 Mb RAM,12/36 Mb disc, 12 ports.
Entry fevel 92-bit compact AT with DYALOG APL. 2MBram,VGA, 40MBhard disk, 1.44MB floppydisk, 102kay keyboard,monitor, mouse,MS-DOS 4.01, WORKS and WINDOWS-388.Manyexpansion options availabla,

DETAILS
Intemational Network application systemsandpublic databases.
STSC's malntrameservice

DETAILS
Dyadles PC 988 APLinterpreter
STSC's APLfor IBM PC, PC/AT and PS2.Upgradesfrom earlier Releasesalso avaliable.
Closed version of APL*Plus/PC which prevents user exposure to
APL.

53

VECTOR Vol.7 No.4

APL*PtusIk 1600 Incorporates mainframe features & performance In a version ofAPLfor the PC
Run-time poa
Dyalog APL 1000-10,000 2nd generation APLfor UnIx systems
APL2IPC 376 IBM's APL 2 farthe PC.

Cocking/Drury APL*PLUS PC Rel 10 477 STSC’s fullfeatured API for IBM's and compatibles - Version 10includesthe quad-NAfacility to Interface to non-APL software,support for MS Windows and mouse devices. The User-commandprocessorhas been built In to the interpreter.Upgrades to version 10 are avaltable from Version 9 and earlierreleases,
APL*PLUS PG Run-Time pea Closed version oftheInterpreter for developers, prevents user

exposure to APL,
APL*PLUSI! System 1600 High powered APLinterpreterfor the 80386 chip.Price includes one yeas malntenance andfree upgrades -volumediscountsVERSION 8 NOW AVAILABLE,
APL*PLUSII Developer System poa _—Alll the features of the APL*PLUSII System plus unlimited freerun-times to enable developers to distribute thelr applications.
APL*PLUS UNX poa —-STSC’s 2nd generatton APLfor all major Unix computers andworkstations. Version 4 for existing platforms andfor the IBMRS/6000 available from January.
APL*PLUS VMS poa 2nd generation APLfor DEC VAX computers running underMS.
APL*PLUS Malntrame poa Enhances VS APL with many high performance, highproductivity features. For VM/CMS and MVS/TSO offers simpleupgradefram VS APL.

Dyadic Oyalog APL. tor DOS}386 995 Second generation APLfor DOS.RunsIn 32-bit mode, supportsvery targe workspaces. Unique “window-based” APL,Development Environment and 6SM Screen Manager. Requires386/486 based PC or PS/2, at least 2Mb RAM, EGAor VGA,DOS3.9 of later.
Oyalog APLfor Unix Systems995-12,000 Second generation APLfor Unix systems. Avallable tor Altos,Apollo, Bull, Dec, HP, IBM 6150,18M FIS/6000, Masscomp,Pyramid, NCR,Sun and Unisys machines, and for PCs andPOj2s running Xenix or AIX, Oracie interface avallable for IBM,Sun and Xenix versions.

FAPL Lid JAPL/PC or RML Nimbus 4.50 1SO conforminginterpreter. Supplied onty with manual, (see‘Other Products’ for accompanying books}
I-APUBBC 4.50 Asabove
FAPUArchimedes 4.50 As above

IBM UK IBM PC APL2 948 APL for the IBM PC, Program §799-PGG/1, PRPQ number RJ-041. From alll IBM dealers,
MicroAPL, APL.68000 Leve! | 2000 ‘First generation APLwith numerous enhancements, Multl-userversion (Unix, Mirage, MCS),

‘APL.68000 Level It 2500 Secondgeneration APL. Nested arrays,user defined operators,selective specification etc. Multl-user version (Unix, Mirage,MCs)
APL.68000 Level |
Mac, ST, Amiga, QL 87 First generation APL, Single user,full windowinginterface,software floating point support,
Mac, Amiga 260 First generation APL, Single user, full windowing Interface,hardware floating point,
APL.68000 Leveltl
st 170 Second generation APL. Full windowing Interface,softwarefloating point support.
Amiga 260 Second generation APL. Full windowing interface,Hardware and

software Noating polnt support.

54

VECTOR Vol.7 No.4

Mac 820
APL"PLUSRel10 450
APL*PLUSII V3.0 1398

REUTER:FILE SHARP APL poa
Uniware APL*PLUS/PG 495

Run-Time call

APL&PLUS/UNX call
APLPLUS1} call

APL VISUAL DISPLAY UNITS
COMPANY PRODUCT PRICES(£)
APLPeople IBM & compatibles poa
Dyadic |BM 3181 599

IBM 6184 1,228
General Software Mellordata poa
Shangell HDS3200/10 APL 965

HDS3200/25 APL. 1065

HOS3200/95 APL 1268
HDS3200/5C APL 1395

APL PRINTERS
COMPANY PRODUCT PRICES(2)
APLPeople Epson series 200

Quen-data & Qume etc 500
Dyadic Various poa
MicroAPL Datasoutn DS180+ 4,195

Philips GP480 2497
Qume Latterproz0 49

APL PACKAGES
COMPANY PRODUCT PRICES(£)
Active Workspace Lid Syndicate Manager poa
APL-385, APL-385

FSM-385,
DRAW-385

50(PC),125(mf)

Secondgeneration APL. Full windowing interface. Hardware andsoftware floating point support.

for IBM mainframes
STSC's full feature APLfor IBM PC/XT/AT, Compag,Ollverti.
Closed version of APL*PLUS/PC which prevents User exposure
to APL.
STSC’s full feature APLfor UNIX based computers
STSC's full feature APL for 386 machines.

DETAILS
IBM and‘budget’ APL VDUs - monochrome/colour/graphics.
Monochrome APL/ASCIIvdu with APL keyboard. Supportsdownloadad Dyalog APLfont.
Colour APL/ASCIl vdu with APLkeyboard. Supports downloadedDyalog APL. font.
18" screen, 8 page memory, windows, 80/132 columns,full
overstrika. Multi-host multi-session support, ANSI X3.64, DEC
VT100, VT220, Tektronix 4010/4014 1024 x 390 resolution.
As above plus switchable 26 or 50 Ilne screen. 75 Hz refresh.
Resolution 1024 x 780in graphics mode.
As HDS3200/26 plus local pan & zoom.
14” colour monitor, 75 Hz refresh. 8 or 16 colours fram palette o
256. Display memory 96lines of 80 or 132 columns. APLprocessing & keyboard with full overstrike. Windows, muiti-host,multi-sesslon support, ANSI X3.64, DEC VT220, VT100, VT52.
emulation.

DETAILS
Inexpensive dot-matrix and NLQ printers
Daisy-wheelprinters
Rangeof APLprinters avallabie.
SeeDatatrade entry
Matrix printerwith letter & draft quallty and APL(480 cps).
APUASCIl Daisy-wheeiprinter

DETAILS
Lloyd's managing agent's syndicate / company accountingsystem. Stamp & Personal accounts (inc, Flun offs)
including ...
Screen development
Screen design

55

VECTOR Vol.7 No.4

APLSoftware Ltd(mainframe)

(microcomputer)

APLIMPETUS
Cocking/Drury(for VSAPL)

(for APL2)

(for PC's)

H.M.W.

HRH Systems

{NFOSTROY
Iinterprocess
(mainframe)

DB-385
GEN-385

RDS
iPLS
REGGPAK

POWERTOOLS:

REGGPAK
RDS
Impetus
E’MENTS & SHAREFILE

COMPILER
FILEPRINT
FILECONVERT
FILEMANAGER
TOOLS + UTILITIES
DATAPORT

SHAREFILE/AP

FMT
WSDOC
FILEMANAGER

APL*PLUS PC Tools:

IRMA Module
FIN & STAT. LIBRARY
SPREADSHEET MGR

XTRA
Arbitrage
Basket
Menu-Bar
APL Utiltles

Russtficator

|EDIT

AFM

Format
FSM124

poa
poa
Poa
295

990
poa
poa
poa

poa
poa
poa
poa

poa

poa
poa
poa
276

250
150

poa
poa
poa
poa
poa
poa

1900-3200

8200-9800

1660
1650

Relational W.S.
Miscellaneous Utilities

Relation Data Base System
Project Management System
Regression Analysis Package
Assemblerwritten replacement function far cammonty usedCPU-consuming APLfunctions,includes a Forms Processor.
Regrassion Analysis Package
Relational Database System
Hierarchical Planning System
Componentfiles, quad- functions & nested arrays for VSAPL.
under VM/CMS & MYS/TSO
TheFirst APL compllert
Print APL. componentfiles
Converts non-APLfiles to APL
Extends APLprimitives to database management
APLSoftware developmenttools
Information Centra spreadsheetincorporating data exchangebetween APL, FOCUS,IFPS, SAS, APL/DI. ADRSII, Lotus?23,Visicale, Multiplan & DIF
STSC’s shared access componentfile system for APL2.Comparableto all APL*PLUSfile systems: multi-user storage ofAPL2 arrayswith efficient disk usage
Full featured FMT for APL2
Workspace documentationutilities
Extends APL. primitives to database management
Uttlitias including: RAM disk,full screen data entry, menuInput,report generation, exception handling and games.
827x IRMA support.
Financial & Statistical routines
APL-based spreadsheetfor APL*PLUS/PC.Celt arithmatic;transfers to ASCII & Lotus
Front-end Foreign Exchange dealing / pos keeping
Arbitrage modelling
Basket currency modelling
pul-dewn menu for APL*PLUS/PG
PC Utitles including: APLMAC (windows); Untock (unlocksfunctions in AWS); DTEX (text and spreadsheetimp/exp).Mostly available In English or Franch.
Drivers and documentationfor use with APL*PLUS/PC systemand other STSC software with Cyrillic alphabet (PC).
Full screen APL2 editor with Immediata APLexecution, andafull-screan debugger
High parformance component and kayad file system (VS APLand APL2)
A QuadFMTdata formatter for VS APL and APL2Z,
AP124 programmingfer APLapplications without GDDM (APL2)

56

VECTOR Vol.7 No.4

(Pc)
Marcia

MicroAPL.

REUTER-FILE

Uniware{malntrame)

PowerCoda
CALYAP.
ucr
AFM
STATGRAPHICS 4
Upgrade 3 to 4
Upgradepra 3 to 4
MICROSPAN
LOGOL

TWIGS

MicroTASK
MicroFILé
MieroPLOT
MicroLink
MicroEDIT
MicroFORM
MicroSPAN
MicroGRID
APLCALC
MicroPLOT/PC
MicroSPAN/PC
STATGRAPHICSRel4

GLOBAL LIMITS
tPSACONNECT
MAILBOX
MAILBOX/PC V.2
upgrade to V.2
NEWSFLASH
VIEWPOINT

STSC's ENHANCEMENTS:

STSC's SHAREFILE

1300

1800
115,
684

215
375
250
poa

199
99

599

260
250
250
250
260
260
250
poa

250
250
690

poa
poa
75
16

poa
poa

poa
poa

External functions for APL2
for calling non-APL programs (VS APL and APL2)
Inter-user data transfer tor VM users via UVC
Single user componentand Keyed files for APL2/PC
Integrated statistics/graphics system for the PC, Now withmacros, Bulk and educational discounts available.

Comprehensive APLtutor
Logistics management systemfor PC and 986. SalasForecasting, Inventory Control, Master Scheduling, DistributionRequirements, Planning etc
A modularlibrary of tools to teach and explore state-of-the-artmaterials management concepts.
Time serias forecasting
Warehousereplenishment
inventory Management
Grouping requirementsinto EOQ's
Schadullng production/purchasing

AILS modules above
AIL5 modulessite licence
Product development alds
Fite utlities and database
Graphics for HP plotters etc
General device communications
Full screen APL editor
Full screenformsdesign
Comprehensive APLtutor
Ethemet & other networking
APLspreadsheet system
For APL'PLUS/PC product
APLsaif Instruction for APL"PLUS/PC

Exposure managementfor banks
Maintrame to micro link
Electronic Mall
Full screen front end to ,PSA mallbox
Real time message exchange
4G- Info centre product

‘Quad-tunctions & nested arrays for 18M VSAPLunderVM/CMSand MVS/TSO
componentfiles for IBM VSAPL under VM/CMS and MVS/TSO-
amndfor IBM APL2

57

VECTOR Vol.7 No.4

PROGRAMMER TOOLS & POA
UTILITIES
FILEPRINT poa
FILESORT poa
FILECONVERT poa
FILEMANAGER(EMMA) poa —-STSO’s database package
EXECUCALC poa —-Mainframe spreadsheet compatible with VISICALC andpart ofLOTUS1-2-3 under VSAPL{VMorTSO)

(microcomputer) STATGRAPHICS poa Statistics and graphics for PCa
STATGRAPHIGS UNISTAT poa An add-on module to STATGRAPHICS:Data analysis software,
APL*PLUS TOOLS
-VOLI poa _Incl. 327 IRMA support, RAMdisk, full screen data entry,menu input. report generation, games
VOL2 poa _Incl. File documantor, screen editor, exception handling.
SPREADSHEET MNGR poa APL spreadsheetwith built-in ASCH, LOTUS and

SYMPHONYinterfaces,
APL*PLUS/PCFIN & poa Collection of financial
STAT.LUBRARY and statisticalutllltes.
POCKET APL poa Smaller version of APL‘PLUS/PC,
UNIASM poa Collection of assembler routines for APL*PLUSJPCusers,
UNITAB poa —_APL"PLUSYPC spreadsheet-ke data entry and validationsystem.
Tha APL DEBUGGER poa First released APL*PLUS/PC debugger.
APL2C poa _Interface between APL*PLUS/PC and DATALIGHTC language

Warwick University BATS 250 Menu drivensystem fortime serias analysis and forecastinguslng Bayasian Dynamic modalling.Price Is reduced to £36 toracademic Institutions.
FAB free Training program for the above.

APL CONSULTANCY
(prices quoted are per day unlessotherwise marked)
COMPANY PRODUCT PRICES(£)
Active Workspace Lid Consultancy poa
Adfea Consultancy poa
APL Peeple Consultancy poa

Buckland ManagementSystems Consultancy poa
Camacho Consultancy poa
Chapman Consultancy 160-300

DETAILS
PC Based APLsystem design, programming andImplementation.
Development, maintenance, conversion, migration,documentation,.of APL products In all APL environments
Consultants available atalt levels, with experiance in: VS APL.APL*PLUS, APL2, Sharp APL, Dyalog APL, APLS8B00, C/UnIx,
TSO/MVS, VM/CMS,graphics, Operational Research ete.
Expertise In APLsystem design, project management,prototyping, financial applications, decision support systems,MIS,links to non-APLsystems, documentation, etc.
Business and Technical systems in commerce and industry ~designing, programming and implementing applications,
Speclalising In programming & manual writing.
24-hourprogrammer: APL, C, assembler, graphics; PC, mini,mainftame, network.

58

VECTOR Vol.7 No.4

Cocking/Drury Consultancy 175-275
275-360
300-450
400-600
450-750

Peter Cyriax Consultancy 100-150
420-200
160-300

Delphi Consultancy poa
Dyadic Consultancy poa
E&s Consultancy poa

General Software Consultancy from 120
HIM. Consultancy poa
Jan A. Clark Consultancy poa

iNFOSTROY Consultancy poa

InteligentPrograms Ltd Consultancy 175-350
Documentation 150-250
Training 150-250

Mercia Consultancy poa
MicroAPL. Consultancy poa
MTC. Consultancy 240-500
ParallaxSystems Inc Consultancy $750
QB On-Une Consultancy 250
REUTER-FILE Consultancy poa
Rochester Group Consultancy poa
Rex Swaln Consultancy poa
WickliffeComputer Lid Consultancy poa

OTHER PRODUCTS
COMPANY PRODUCT PRICES(£)
Adfee Employment poa
APLPeople Employment Agency poa
HMW Employment poa
FAPLLid An APLTutorlal 2.80

Juntor consultant
Consultant
Senior consultant
Principal Consultant
Managing consultant
Junior Consultant
Consultant
Senior Consultant
APLsystem developmenton mainframes and micros.
APLand Unix system design, consultancy, programming andtraining.
System prototyping:alf types of Information system,engineeringsoftware, graphics and decision support systams APL*PLUS/PC,APL2, Dyslog APL
System design consultancy, programming. HMW specialize Inbanking andprototyping work.
Computer-basedInformation Systems implementation whereacceptance Is critical, APL on PC and Macintosh. HumanFactors of HCI; novice ease of use; online assistance; trainingcoursas;distance-leaming materials.
Localization of APL software for the Soviet Union software
market

Systems development, enhancements,support.
Preparation of naw manuals, rewriting of existing materials.
Training for APL experts through to non-technical system users.
APL*PLUS & VSAPLconsultancy.
Technical & applications consultancy.
Business analysis and APLconsultancy
Introductory APL, APL tor End-user & Advanced Topics In APL
Specialising in Banking, Finaneiaf & Planning Systems.
Consultancy & support sarvice world-wide.
Specialise in MIS using Sharp APL
independent consultant,15 years experience. Custom softwaredevelopment & training, PC andjor mainframe.
‘System design, consultancy, programming and documentation.Especially project management and decision support systems

DETAILS
Contractors and permanent employees
Permanent employeesplacedatall lavels. Contractors suppliedfor shorylong-term contracts, supervised or unsupervised,Executive Search service available.
Contractors and permanentemployees placed.
45ppbyAlvord & Thomson

59

VECTOR Vol.7 No.4

‘An Encyclopaedia of APL(2nd Edn)§.50 228ppby Helzer
APLin SocialStudies 250 S6ppby Traberman
APL Instruction Manual (2nd Edn)2.60 SSpp by Camacho & Ziemann
APL Programsforthe Mathematics Classroom (Springer-Verlag)

14,50 185pp by Thomson
** Please add ons pound packing charge per order

REUTER:FILE Productivity Tools poa _—_Utiltles for systems, operations, administration & analysts;auxiliary processors, commssoftware, Internationalnetwork.
Databases poa Financial, aviation, energy and socloeconomic.

Isl Tangible Math $19 An APL Approach to Math - Shareware, includes base SharpAPL
J $24 Dictionary APLsimplified and enhanced - Shareware (Mac,PC}
‘SharpAPLPC $74 Registered Shareware and Referenca Manual
ISt APL, $99 Improved APLPC- enhancements,performance,largeworkspacesRenaissanceData Systems Booksellers ‘The widest range of APL booksavailable anywhere, See Vectoradvertisements,

OVERSEAS ASSOCIATIONS
GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub. —_Visa/Mcd
APL Bay Area USAN.Califomla APLBUG Monthly Meetings (2nd Monday) $15 NIN
Dutch APLU.G, Holland - Mini-congress, APL ShereWare Initiative
APL Club Austra Austria - ‘Quarterly Meetings 200ASiperson, 1000AS percompany NIN

VENDOR ADDRESSES
COMPANY CONTACT ADDRESS & TELEPHONENo.
Active Workspace Ltd Ross D Ranson MoulshamMill Centre, Parkway, Chelmsford, Essex, CM2 7PX,Tal: (0245)262414 ext.240
Adtes Bemard Smoor Corpsstraat 50, 4128 BZ LEXMOND,Netherlands.Tel: 91.3474,2937, fax:31.3474.2342
APL 385 Adrian Smith Brook House,Gilling East, York, Tel: 04399-385
APLBUG Jorge Maze} 117 East Creek Dr., Menlo Park, CA 94025, USA
APL Glub Austria Erich Gall IBM Osterreich, Obere Donaustrasse 95, A-1020 Wien,Austria
APL tmpotusLtd Cedric Heddte Rusper, SandyLane,Ivy Hatch, SEVENOAKS,Kent TN15 OPDTel: 0732-885126
APL People Jill Moss TheCid Malthouse, Clarence St, BATH, BA1 5NS,Tel: 0225-462602
APL, Software David Alis The Old Malthouse, Clarsnes ST, BATH, BA1 5NS,Tel: 0225-482602

Jil Moss
Buckland ManagementSystems
Anthony Camacho
Paul Chapman
Cocking & Drury Ltd.

John Buckland

Romilly Cocking

Westwood, 19 Grange Road, Camberley, Surrey, GU15 2DK
Tek: 0276 684327
2 Blenheim Road,St. Albans, Herts AL1 4NA.
Tel: St. Albans (0727) 860130
18, Trevelyan Road, London, SW17 9LN Tel: 081-767 4264
180 Tottenham Court Road, LONDON, W1P 9LETel: 071436 9481 Fax; 071-436 0524

60

VECTOR Vol.7 No.4

Datatrade Lid,
Delphi Consultation

Dutch APLULG,
Dyadle Systems Ltd.
E&S Associates
General Software Ltd
H.M.W, Computing Ltd.

HRH Systems
an A. Clark
APL Ltd
JC Business Serves
{BM UKLtd
INFOSTROY

tinterpracess Systems
Intelligent Programs Ltd
Isl

Mercia Software Ltd.
MicroAPLLtd.
MTC,
Peter Cyriax Systems
Parallax SystemsInc,
QB On-Line Systems

Tony Checkseld
David Crossiey
Berard Smoor (Sec)
Peter Donnelly
Frank Evans
M.E.Martin
Stan Wiikinson

Dick Holt

Anthony Camacho
June Guns
NatEng, Cente
Alexel Miroshnikov
Stella Chambertain

Mike Bucknall

Eric Iverson,Orders:

Gareth Brentnall
David Eastwood

Ray Cannon
Peter Cyrlax
Kevin Weaver
Philip Bulmer

Renalssance Data Systems Ed Shaw
AEUTERSFILE
The Rochester Group
Shandell Systems Ltd.

Sugar Mill Software Corp.
Rex Swain

Uniware.

Wickliffe Computer Lid
Warwick Unlv.

Paul Jackson

Robert Pullman

Maurica Shanahan

Lawrence H.Nitz

Eric Lescasse

Nick Tetfer
Prot.Jeff Harrisan

38 Billing Road, Northampton, NN1 5DQ.Tel: 0604-22289
Chureh Green House, Stanford-tn-the-Vale, Oxon SN7 8LQ_
Tel: 03677-384
Postbus 1941, 3430BH Nieuwegein.Tel: 03474-2337
Riverside View, Basing Road, Old Basing, Basingstoke, Hants RG24 OAL.
Tel: 0256 811125 Fax: 0256 811130
19 Homesdais Read, Orpington, Kent BRS 1/8.Tel: 0689-24741
22 Russell Road, Narthholt, Middx, UBS 4Q5,Tal:081-864-9537
Hamilton House, 1 Temple Avenue,Victorla Embankment,LONDON EC4YOHATel: 071-353 4212
Telex: 926604 HAMHSEG Fax: 071-353 3325
Box 4496,Silver Spring, Maryland 20904
9 Hill End, Frosteriay, Bp. Auckland, Co. Durham DL13 2SX
Tel: 038852-7190
2 Blenhaim Road,St. Albans, AL1 4NR. Phone 0727-860130 for queries,
order forms, bulk ordars
58 The Crescent, Milton, Weston-super-Mare, Avon, 8522 8DU N.|
ORDERS ONLY
414 Chiswick High Ra, London W4 STFTel: 081-747 0747
3S, Tulenin Lana, Leningrad 191186 USSR.Tel:812-238-6992 Fax:612-
319-9700
9040 Roswall Road, Sulte 690, Atianta, Georgia 30950-1131Tel: (404) 992-8400
Unit 7, Harmltage Court, 6-10 Sampscn Street, London E1 9NA Tel:071-
481-4819
33 Major Strest, Toronto, Ontarlo, Canada MSS 2KS Tel:(416} 925-60963612 CameronMills Road, Alexandria, Virginia, USA 22305-1103 Tal:(703)
848-1799
Aston Science Park, Love Lane, Birmingham 87 4BY,Tet: 021-359 5098
‘South Bank Technopark, 90 London Road, LONDON SE1 6LN
Teal071-922 8866
7 Pine Wood, Sunbury-on-Thamas, Middx. TW16 65HTal:Sunbury(09927) 80848
213 Goldhurst Terrace, London NW63ER Tel: 071-624 7013
(Answerphone) 0860-377963 (Mobile)
Avery Road, Box 319, Garrison, NY 10524, U.S.A, Tel: 914-424-4265
5 Surrey House, Portsmouth Rd Camberley, Surrey, GU15 1LB.
Tal; 0276-20789
P.O. Box 20023, Park West Finance Station, New York, NY 10025-1510,
U.S.A. Tet (212)864-3078
7th Floor 8 Block, Coventry Point, Market Way, Coventry CV1 1EA
Tel: 0203 256562
50 S.Union St., Rochester NY 14507, ULS.A. Tel:716-454-4360or 716-454-4641
Chiltam House, High Street, Chaifont St. Giles, Bucks., HPS 4QH,Tel:
02407-2027. Fax:02407-3118
1180 Kika Place, Kailua, Hawai! 96734 Tel: (608) 261-7538
8 South Steet, Washington, CT 06799,U.S.A. Tel:203-868-0131 or 212-
242-5816
18 Rue Erlanger, 75016 Paris, France. Tel:(1) 45-27-20-61, Fax:(1)45-27-
20.61. Telex: 648348F UNIWARE
76 Victoria Rd., Whitehaven, Cumbria, CA28 BJD, Tel:0946-692588
Deptof Statistics, University of Warwick, Coventry, CV4 7AL
Tel:0203-523369

PAID

61

VECTOR Vol.7 No.4

ZARK: an APL Tutor for APL*PLUS/PC
reviewed by Emily Timson

ZARK is a software package which aims to teach APL to novices whilst
providing a valuable reference aid to experienced APLers. My parents both work
with computers and seem to be infatuated with the things: I have beenfairly
successful in avoiding anything to do with them. Then my husband bought one
and alsotried to get me interested and that’s how I was persuaded to try ZARK
and relate my experiences for Vector, a magazine] have never read. When I
began I knew almost nothing about APL.

The ZARK APL Tutor Kit
The Software was on4 floppy disks and a couple of pages of information about
getting ZARK up and running on your PC all in a small disk container. The
instructions were brief and straight forward for my husband. They workedfirst
time. Within a couple of minutes he had started ZARK for me and I wassitting
comfortably and ready to begin.
Zark is written in American, which sometimes makes it hard to follow, and is
frequently amusing. I laughed out loud on many occasions. Here is a sample of
the style from theStarting instructions:
The Zark APL Tutor won't do you any good if your computer won’t talk APL. These
instructions may help to get you going. Follow them carefully.

1, Find someone who'sinstalled APL on his or her computer. Get down on your
knees and askforhelp.

2. Failing that, read the installation instructions that come with the APL product.
Do what they say.

3. Failing that, follow the steps below. We'vedistilled themfrom the manuals
Ifyou have trouble, return to step 1 or 2 above.

4, Failing that, learn COBOL.

The Introduction
I thought it would be wise to give this section a visit. (You see the Zarkstyle is
catching). Getting here was simple, I just pressed the SPACE BAR.Instantly,full
colour easy to read text screens (we have VGA, but they work on Hercules too

62

VECTOR Vol.7 No.4

because we used to havethat). Six pages followed in which I was told about the
structure of the lessons and more importantly which THREE keys I hadto press.
SPACEBAR to proceed with the lesson, Fl for HELP andbestof all ESC to get
meoutofall difficulties and back to the main menu.
Feeling in control and not yet confronted with anything confusing ordifficult I
movedstraight onto the first lesson (SPACE BAR).

The LESSONS
ZARK seemsto be meticulous in the way it has covered aspects of the language
with a lesson for each one. If you know what subject you wantto be taught you
can quickly select a topic from the index screen and move straight into the
required lesson. Howeveryougetthere you are faced with a three partlesson:

Part 1. Tutorial
This section is like an extract from a text book. This is where ZARK teaches you
about whatevertopic you haveselected. The text is very easy to follow and quite
humorous. The lessons never seem to get too deep and yet at the end of each
tutorial I felt I had covered everything well. Knotty points are sometimes
covered by a discussion betweenthree ‘APL creators’ which are represented by
faces which pop up on the screen under the words expressing their point of
view. Sometimes they argue with each other, but they always seem to agree on
the best way of solving each problem.

Part 2. Reading
This is the shortest part of the lesson. ZARKillustrates the usage of the function
being taught and invites youto predict the result of the expressions shown.This
truly tests your understanding. Every usageisillustrated:
Predict the result of the following APL expressions:

3 + 7 (Press Enter)
10

3 - 7 (Press Enter)
4

Note the (~) sign,it signifies that the result is negative. The (-) sign is a function
which subtracts the right argument from theleft argument.

63

VECTOR VoL7 No.4

7 + (Press Enter)
SYNTAX ERROR

7+A

... addition needs both left and right arguments.
It is easy to work through each example (Press Enter) and if you experience any
trouble you can easily go back to the tutorial section to recap (Press ESC). You
can also interrupt the lesson at any time by pressing SCROLL LOCK to enter
immediate execution mode to experiment as you choose. Pressing SCROLL
LOCKagain returns youto the lesson at the place where youleft it.

Part 3. Writing
This is the best part of the lesson. In this section you find yourself working in
immediate execution mode. ZARK presents you with a simple problem suchas:

“Whatlength offence is required to enclose a garden oftength 7 metres and width 5.5 metres, Assign the
answer to the variable LENGTH.”

You are required to type the APL expression to satisfy the question and then
press ENTER. You can then check it by entering other APL expressions or submit
it to ZARK by pressing SCROLL LOCK. ZARK replies with “Correct” if you are
correct and gives you some alternative (equally valid) expressions. If you are
wrong then ZARK offers you the chance to try again (twice).] enjoyed this
hands-on practice. The problems posed by the tutor were worded to test your
knowledge of APL, not your knowledgeof solving puzzles. The questions areall
very interesting and kept my attention all the way throughthelessons.

LENGTH + 7+ 7+ 5.5 + 5.5
LENGTH

25
CSCROLL LOCK}

Correct, the answeris 25. Other possible expressions are:

2x(7 + 5.5) €2*5.5)4+2%7 (74+5.5)*2

64

VECTOR Vol.7 No.4

Topics Covered
ZARK contains26 chapters labelled A to Z. As a tutor ZARK should befollowed
in sequenceas the ‘writing’ section assumesthat you have coveredall preceding
topics. The APL functions and the unique APL concepts such as Vectors,
Matrices and Rank haveseparate sections of tutorial. The index seems thorough.
The quantity of informationin the index is immense. By searching I found a few
topics which brought up a messagethatthe topic wasnotcoveredin this course;
encode and decode produced this message.
ZARKallows you to search through the index by function. This means you can
scan the index for’+’ and ZARKwill take you directly to the appropriate pointin
the series of lessons and commenceatthe ‘reading’ stage. This is a very effective
wayof providing speedy and efficient reference after you have been through the
course,

If, on the other hand, you know what you want to do but you do not know
which APL function is appropriate then you can search the topics by subject
index. This means you can search the index for ‘Magnitude’ or ‘Modulus’ and
ZARK will swiftly transport you into the lesson which deals with the relevant
APLfunction. If you know another programming language and you want to
learn APL thenthis index would help you makethetranslation.

General Comments
ZARK impressed me because I did not expect it to be so muchfun or such a
variety of tricks to be used in the presentations. My husband says the
instructions to install ZARK are terrific. The ZARK environmentis clear and
simple to negotiate.
The depth and variety of information offered by ZARK is staggering. I did not
know there was so much in APL.I think that if I were going to write programsin
APLthis would be a very good wayto learn. Thetruthis that found APLrather
difficult and haven't yet finished all the sections of the Tutor, but I think that
anyone could pick up this package and be able to make goodeffective use of the
language after workingall throughit.
WhatI found was that too often I was waylaid by the Tutor into making notes
about the APL I was learning andforgetting entirely to make notes about the
package I was supposedto be reviewing.

65

VECTOR Vol.7 No.4

Little details such astelling you where a symbol is on the keyboard are never
overlooked, It may seem trivial but how would you deduce or guess where the
symbol for transposeis.
The tutor is positively enthusiastic aboutthe versatility, flexibility and power of
this language. This enthusiasm comesacross in the lessons. A little has rubbed
off on me!

Conclusions
T think this is a very good tutor for APL. Of courseit is only for use with STSC’s
APL*PLUS/PC.I waslent version 8.0 for the review.
I am impressed with almost everything about Zark. I recommendit to anyone
whowishes to learn APL or would like a handy encyclopedia of APL for quick
reference.

&s APL PEOPLE
Serving the International APL Community

Consultancy advice and assistance with all aspects ofAPL systems development
Recruitment unique placement service for companies

andindividuals
Software Competitive prices on all APL software

tools and interpreters
Contact: Jill Moss, APL People Ltd.,

The Old Malthouse, Clarence Street,
Bath BA1 5NS

Tel: 0225 462602 during office hours
0225 333618 evenings and weekends

66

VECTOR Vol.7 No.4

APL.68000 LevelIE
reviewed by Iain Hayward

Introduction
APLis almost unheard of on home computers, even thougha full specification
interpreter has been available for years. When MicroAPL ported APL.68000 onto
popular machineslike the Macintosh, Amiga and Atari, it was pioneering the use
of WIMPinterfaces in APL, and it made APL available to almost everyone.
MicroAPLrecently announcedthe release of APL.68000 LevelIT, and renamedits
original product as Level I. As an existing user of Level I for two years now on
my Amiga, my only complaints have been the rather Hmited printer support,
which I rectified using an auxiliary processor (Vector Vol.6 No.1, page 127), and
the lack of nested arrays. Now it seems that MicroAPL has more than
compensated forthe latter problem by providing an upgrade whichit claims is a
superset of APL2. Although this review is based on the Amiga version, it
concentrates on the machine-independent enhancementsto the interpreter.

First Impressions
Any doubts aboutit being worth the price begin to fade as soon as you remove
the wrapping; the manuals and disk come in a respectable looking box file as
befits a serious software product. An initial glance at the contents gives further
reassurance that MicroAPL hasnot tried to skimp on production costs. Even the
disk containing the softwareis of an unusually high quality.
Twosets of APL key stickers are provided, one for the standard APL keyboard
layout and oneforthe alternative Unified layout. The stickers should be attached
to the front of each key rather than ontop; an arrangementthat works very well
in practice but is surprisingly awkward to install (this shouldn’t affect real
APLers, of course, who already know whereall the symbolsare!).
For those who don’t know quite whereto start but are impatient to see their new
purchase do something, MicroAPL has provided an automatic demonstration
workspace whichis quite impressive andinspiring.

67

VECTOR Vol.7 No.4

Documentation
The package includes two conveniently sized A5 format manuals which stack
well alongside copies of Vector and MicroAPL News. Thefirst, thinner manual is
concerned with system-specific information such as the user interface and access
to featuresof the native operating system: graphics, windows, multi-tasking, etc.
It is rather brief however, and doesn’t really do justice to the software it
describes.It also Jacks an index.
The second manual however, the APL.68000 Level II Language Reference
Manual, is superb. It is about two centimetres thick and ring bound sothatit
opensflat without one having to stand a coffee cup and a paper weight on it. It
was obviously written by someone who knowsand loves APL, andif youve got
this manual then you may not need to buy a copy of Gilman and Rose. More
than a third of the manual is devoted to teaching APL, and MicroAPL’s
experience in giving courses is clearly in evidence. There are convenient entry
points for the complete beginner, for programmers who don’t know APL, and for
programmers who know APL but are unfamiliar with this implementation.
There is also advice for users who are upgrading from Level I. The reference
section of the manual should serve as an example to other suppliers. It is very
readable, and gives carefully selected examples of how a function or operator
might be used, rather than just a dry, technical definition. It is worth mentioning
that the manual was completely re-written for Level II, instead of just having a
new section added.

New Features
All of the enhancements to be found in Level II seem to have been added to
provide compatibility with the APL2 standard. They include nested arrays,
mixed arrays, multiple and selective specification, vector notation, four new
primitives, defined operators and extensions to existing ones, and APL2-style
error handling. Readers who are familiar with APL2 may wish to skip the next
few sections and continuereading from the section on compatibility.

Nested Arrays
All of the functions that [had expected to see were there, together with a few
that were new to me, All appear to conform to the APL2 standard.
1 found the Partition function particularly useful. It divides its right argument
into an array of nested vectors according to the specification given in its left
argument, whichis a scalar or vector of zerosorpositive integers. A new element

68

VECTOR Vol.7 No.4

is created in the result wheneverthe corresponding elementin the left argument
is greater than its predecessor, whilst a zero causes the corresponding elementto
be discarded. This can be used to good effect in text processing, where you might
want to separate words into a nested vector. First identify all the non-space
characters as a boolean, then use this as the left argument to Partition. As a
bonus,all single as well as multiple spaces are removed in the process.
Enclose increases the depth of its argument by one, producing a scalar. It has no
effect on a simple scalar. It can be used with an axis specification to split and
rearrangean array. Disclose used on scalar reverses the effect of Enclose. If the
argumentis a nested vector then the result will be a matrix, with rows padded as
necessary with their elements’ prototype. Disclose can be used with an axis
specification on higher dimensional arrays to rearrange the data. The shape of
the result of Disclose is derived from a combination of the shape of its argument
and the shapeofthe items within the argument.
The Pick function lets you pick out an item from a specified position and depth
within a nested array. First returnsthe first elementof an array, or its prototype
if it is empty, andis a little more flexible than 1 Take. Enlist has the effect of
ravelling and catenating every item in its argument (removing nesting in the
process) to produce a simple vector out of anything. Depth returns the depth
(amountofnesting) of the deepest part of an array. Although a simplescalar has
a depth of zero, for some reason a simple array is considered to have a depth of
1. Thereafter the depth increases by oneforeachlevelof nesting.
The powerful Each operator has been provided of course, which lets you
perform an operation on each elementof an array without the need for a loop.
The system functions OCR, OFX, OSS and ODR haveall been extended to support
nested arrays, and utility function DISPLAY has been provided which displays
the structure and contents of a nested array.

Mixed Arrays
It is now possible to mix character and numeric data in a single array. I don’t
think I would ever use this feature with simple arrays, butit is very useful with
nested arrays where you might want to keep related data together, some
elements containing numeric data andothers character data.

Multiple and Selective Specification
Multiple specification or assignment is permitted, allowing you to assign a
vector to a list of variable names in brackets, each element of the vector being |

69

VECTOR Vol.7 No.4

assigned to a separate variable. It doesn’t seem to work on system variables
though, and I find that the diamond separator makes this feature largely
unnecessary, butit’s there for those who wantit. Much more useful is selective
specification, which makes it possible to assign to items deep within a nested
array. The idea seemsto be that if you can select it, then you can assign to it.
There are some restrictions on the complexity of the expression used for
selection, but I don’t think APL.68000is alonein this.

Vector Notation
Just as it has always been possible to create a numeric vector by enteringa list of
its elements, now it is possible to construct much more complex data structures
in the same way. Each element can now bean array in itself, with parentheses
and quotes being used where necessary to delimit the elements. This facility is
particularly useful for constructing nested and mixed arrays.

Other New Primitive Functions
The Index function (squad character) is also implemented, providing a more
powerful and neater way to do indexing than using brackets and semicolons. It
can be used with an axis specification. Match will test if its arguments are
absolutely identical in every way. This function is a welcome addition becauseit
is quite tedious to have to write such a test in APL. Findis a generalized search
function. It behaves like the string search system function but its arguments can
be of any rank and type.I like the Without function, and feel it should have been
included in APL from the very start. It returns its right argument with all the
items occurring in its left argument removed.It only works on vectors though,
but they can be nested.

Extensions to Operators and Defined Operators
Some of the mostexciting enhancements to be foundin the new productarestill
to come; operators can now be used with any primitive functions and with user-
defined functions, so expressions such as ,/DATPA and MYFN/DATA are now
valid. Furthermore, it is now possible to write your own operators, just like
writing functions. Thepossibilities are enormous.

Error Handling
Ina nutshell, APL.68000’s error handling functionsarestill there, and IBM’serror
handling functions have been added.

70

VECTOR Vol.7 No.4

The new system functions are:
OFA Execute Alternate
OFS Error Simulate
OFC Execute Controlled
O£Y Error Type
OFM Error Message

This apparent duplication of functionality actually turns out to be a good thing.
Apart from the obviousbenefits of compatibility, the two sets of error handling
functions are in fact complementary, since the existing functions provide error
handling at the function level, while the new functions provide it at the
statementlevel.

Other Enhancements
The Overbar and Underbarcharacters can be used in object names, although not
for the first character. Comments are allowed in function header lines, and
spaces before comments are preserved (something I had wanted for a long
time!). Ravel can now be used with an axis specification to create a new axis of
length 1, or to combinea range of axes into one. Take and Drop can also be used
with an axis specification to achieve Take and Drop along specified axes only.

Compatibility
LevelII is upwards-compatible with Level I with just three slight exceptions. The
first and most important one concerns the indexing of numeric constants. The
following expression:

42434 5f3]

would give a RANK ERROR underLevelII because the index bindsto the scalar
immediately to its left. The second exception concerns object class codes as
defined for the system functions QNL and (WC. Code 4 in Level I meantinvalid
name; now invalid name is -1 and 4 means user-defined operator. The third
exception is simply that numeric arrays are now displayed with each column
formatted separately. These differences won't cause any of your existing
applications suddenly to start behaving differently, though. A system variable
cs (compatibility setting) has been provided to cause the interpreter to behave
like Level I for all or any combination of the above three cases, and it is
automatically set to give full compatibility when you load a Level I workspace.

71

VECTOR Vol.7 No.4

I was particularly pleased to find that my assembler-coded auxiliary processor
routines continued to function correctly. The original auxiliary processor
interface (AP1) has remained the same, and just gives a DOMAIN ERROR when
passed a nested or mixed array. A new AP interface (AP2) has been provided
which will accept the new data structures.
MicroAPL has expressly stated that Level II is designed for close conformance
with IBM’s APL2 standard, and while there are some divergences, it is
MicroAPL’s intention to remove most of these in future releases. Even where
LevelIl is different from APL2/370,it is usually compatible with APL2/PC, and
in some cases it is more compatible. Among the features still to come are
complex numbers, N-wise reduction, format-by-example, axis on scalar functions
and matrix arguments to the sort primitives.

Portability
It has always been the case that a workspace saved on one machine can be
loaded on any other machine running APL.68000, since the workspace formatis
identical. MicroAPL also claims that any workspace saved under Level I can be
loaded under Level I, provided that the state indicator was clear when it was
saved. You are warned however, that since the new interpreter is about 50K
bigger, you may have less workspaceavailable on single-user systems. Sofar, 1
have had no problems.
Dueto the high degree of compatibility with APL2, it is now possible to move
applications to and from APL2/370 and APL2/PC.This is achieved quite easily
by using the system commands)0Uf and) IN which create and read transfer
files. How you movethefiles between machines is up to you, but you must
ensure that no character translation takes place. There is also a system function
called O7F which returnsthe transfer form of an object, or alternatively, decodes
an object from its transfer form. Thetransfer form is a text representation thatis
suitable for transmission between dissimilar machines or implementations ofAPL.

System Limits
Mostof the limits seem absurdly generous, for example the maximum depth of
an array is 100, and the largest number allowed is about 1.8E308. The only limits
which might conceivably be a problem are the maximum rank ofan array(8), the
maximum length of a name(30 characters) and the maximum symboltable size
(6,021 symbols).

72

VECTOR Vol.7 No.4

Performance
I am not keen on benchmarks, preferring to judge for myself whether the
performance of a system is acceptable, but I did once run some standard
benchmarks on APL.68000 Level I on my Amigaand foundit to be slightly faster
than an IBM PC/AT running APL*PLUS/PC.I found the overall performance of
Level I to be a bit slower than C code, but it saved me so much development time
that I would never go back to programming in C. MicroAPL hascertainly
optimized the displaying of text; results are flashed up on the screen like
lightning. So far, I have not noticed any degradation of performance when
running my existing applications under LevelII. { can see one reason whythisis
so: the internal structure of simple variables has not changed, only the new data
structures are more complicated, and they have been given a newtype code. On
the occasions where I have beenable to replace existing code with a nested array
solution I have in fact achieved a considerable improvementin performance, not
to mention simplified code.

Conclusion
I have to conclude that Level II does everything thatis claimed of it and, in the
case of personal computer implementations, much more. The standard libraries
provided with APL.68000 make it unbelievably easy to use the features of the
native operating system; a single function call replaces many lines of quite
difficult code and hours spent studying the reference manuals. There is even a
terminal emulator included so that you can log on to remote APL systems. Now
MicroAPLhasenhancedits productto the standard of APL2 on a mainframe and
madeit portable as well. Alll this, together with a WIMPuser interface that has to
be experienced to be appreciated, would seem to make APL.68000 the obvious
choice for anyone who wishesto do serious programmingin APL.

73

VECTOR Vol.7 No.4

APL*PLUS/PCPostScript Support
notes by Adrian Smith

On page 70 of Vector 7.3, Jonathan Barman regretted his lack of a PostScript
printer, and hencehis inability to test out the PostScript APL font shipped with
APL*PLUS/PCrelease 10, Accordingly, 1 borrowed the review copy, and had a
quick lookat the font:

SJGKHZ~x WY . ETOQDMF [UN<I
57] 9B+PRVCAO/XL, ~o?L I -
1238464\270;20VT>?L* 9una““<#<52=>)victaot:ef ovla
LVVAbRoeral ;\AeGANOAE=
abcdefghi jkl{}_HaiounN
mnoporstuvwxyzZif$Z&#"@
a-@ ¢ 6 Z«>cdoRf

Aesthetically, I’m afraid J don’t particularly like it; the whole font looksa bit big
and heavy, and there is no variation in the character height (e.g. I think that
symbols like [| should show above and below the caps). It also bothers me that
there is no attempt to be consistent about the overstruck symbols ... V jumpsallover the place depending on what has been combined with it! None of the PCline-drawing characters are included, which I would find an annoying omission.
Speed ofprintingis a little slow (the font is encrypted which mustslow it down),a typical function listing took 156 sec to print on GoScript, as against 32 sec using
my APL-2741 font.
The good newsis that if you want to use the Portl0 driver, you can easily
substitute any other PostScript font which uses the same encoding, and the
encoding is in plain text in the font definition (it looks like standard
APL*PLUS/PC AY). For mypart, I shall continue to work with my own font,
trivially recoded to work with the APL*PLUScharacter encoding.

74

VECTOR Vol.7 No.4

RECENT MEETINGS
This section of VECTORis intended to document the seminars given at recent
meetings of the association; it is of particular value to members wholive away
from London. It also covers other selected events which may be of general
interest to the APL community.
If you would like to speak at one of the regular British APL Association
seminars, please ring the Activities Officer (address on inside back cover) who
will respond enthusiastically to youroffer.

7

VECTOR Vol.7 No.4

The Trials and Tribulations of using GSS
Graphics with APL*PLUS/PC

talk by George MacLeod November 1990, notes by Jonathan Barman
George MacLeod gave us a heartfelt commentary on the problemsin getting
decent graphs outof GSS graphics with APL*PLUS/PC.
First George explained why high quality charts are needed. APL Impetus Ltd
develop and marketa financial planning package Impetus which is a descendant
of the Boeing’s TABAPL. Impetus is often used high up in companies andas a
result the quality of the output is important, and high quality output must
include high quality graphics.
The initial prototypes for Impetus used the 0G graphics available with the
APL*PLUS/PCinterpreter. The functions mirror those available in ROM BASIC,
and the facilities provided are quite simple, for example only one font is
provided which is increased in size by pixel replication. Sizes increase by
squaring the numberofpixels, so big characters look very crude. 0G graphics can
be used witha relatively limited range of graphics boards and printers, but there
are now a hugearray of graphics devices. It has become impossible for STSC to
supportall the devices on the market.
GSS*CGI was introduced by STSC to solve these problems. GSS is a American
company, Graphics Software Systems Inc, who concentrate on providing
graphics drivers for every device on the market. CGI stands for Common
Graphics Interface which is set of standardised graphics calls for programming
languages such as C and FORTRAN.STSC have provided a set of functions in a
workspace which reproduce each of thecalls provided by GSS*CGI. Usingthese
functions forces the use of extensive looping, as the GSS functions are really
designed for compiled languages which can only manipulatescalars.
Thefirst essential before using GSS*CGI is to buy the GSS Programmers Guide
costing £50. The APL*PLUS/PC manual gives a simple list of functions and their
titles, but not the details of the arguments and values required. For example, the
function V_OPEN_WKSTtakes an eleven element numeric right argument which
specifies default values for the device namedin the left argument. The exact
numbers to be used are only given in the GSS Guide.
George showed a sample chart using GSS*CGI as supplied. The fonts are only
marginally better than the [1G fonts, and the quality is quite low. To get better

76

VECTOR Vol.7 No.4

fonts you need the GSS Completer Kit at £70, which contains lots of device
drivers, FONTDRIV.SYS, but nofonts! Bitstream supply fonts at £140. What you
actually get is sets of bezier curves defining the characters, together with a font
maker. To actually use the Bitstream fonts you have to buy the GSS Font Maker
whichis part of the GSS Developers Toolkit costing £400. An apparently simple
addition turns out to be quite expensive!
Nowyouhave everything the problemsreally start. Whilst screen display works
well the major problem is printing in high resolution. George showed sample
charts which took many hours each to produce, and someof them wereplainly
wrong with headings missing! The problemsare almostcertainly to do with the
way GSS manages memory, and GSS ownupto having a problem with bitmaps.
Whatever memory is given to GSS it always seems to need more. The memory
has to be below the 640K boundary, and any memory allocated to GSS cannot be
used by APL.
At this point George & Co. gave up andtried to use the Metafile Interpreter
supplied by GSSat £225. The Metafile Interpreter consists offive diskettes full of
subroutines, and you have to write a program in C or FORTRAN to produce
what you want,So they had to buy a MicroSoft C compilerat £250.
Basically this is as far as George has got with high resolution graphics using
APL*PLUS/PC and GSS*CGI. Other alternatives are being looked at such as
APL*PLUS II and DYALOG APL. Both these versions of APL can run above 1
Megandcan let GSS run below 640K. APL*PLUSII and APL*PLUS/PC have
essentially the sameinterface with about 120 APL functions matching each of the
GSS commands. Dyadic have done rather better in that you can pass many GSS
commands to the Auxiliary Processor in one nested array. Also, Dyadic have
made somefunctions ambivalent so that settings can be passed as an optional
left argument.
George summarised thesituation as follows:

The GSS Graphics system is unsatisfactory when used with APL*PLUSPC.
Very limited experience suggests GSS will worksatisfactorily with APL*PLUS
ILand DYALOG APL.
Other PC products thatoffer graphics use GSS and they seem to work well.
Perhaps mostof the problemsare dueto poor cohabitation of APL*PLUS/PC
and GSS.
GSS is probably the best PC Graphics System available.

VECTOR Vol.7 No.4

The Ideal Screen Editor
a talk given to the BAA on 23 November 1990 by Anthony Camacho

Five overhead projector foils were shown asan introduction to the screens which
madedefining a screen easy. Foil 1 was an introduction.

WHY A NEWSCREEN SYSTEM? [foil 2]
Mostapplications need one
Vendors’ systems incompatible
Takes too long to write
Wish to make APL widely used
Wishto restore APL’s advantages
Wishfor screen to respondfast
Cannot spare much workspace

The motivesfor writing a screen system were to provide something independentof vendors that required aslittle beyond ISO APLas possible, written in APL so
that anyone could amendit and straightforward enough to be used without a
great deal of effort. Once, APL gave its users the best interface for interaction
between the keyboard operator and the system; it would be nice to restore the
advantage. Also a system would haveto be fast enough anduse little enough
workspace so that it would be practical even in I-APL.

BD
RD

D
ORIGINS AND THE IDEA {foil 3]
Paul Chapman’s port from Viz::APL
Use only window get/put cursor
All screen input/output is character
Pre-calculate variables for speed
Hold itemsonfile to reduce space
To use:
R«SNAME AFS CHARVEC

SNAME «<+screen name on file
CHARVEC ++chars for fields

R «> chars from fields
78

VECTOR Vol.7 No.4

The idea wasthat a perfectly adequate screen system can be written using only
four special functions, which are available in most versions of APL on micro-
computers. The originator of the idea was Paul Chapman, who had to port a
system from Viz::APL to APL*PLUS/PC in a hurry. He never completed or
documented what he wrote, but it was in daily use for several years and the
response was adequate even on an 8088 at 4.77MHz. Most data was held in
vectors and as much aspossible was pre-calculated. I learned about it by having
to enhance the system that used it and the Ideal Screen Editor (ISE) was born
when I considered how Paul's screen system could be adapted to meet the
objectives mentioned.
The main limitation of ISE is that all input and output of the screen display
functions is in characters. The file referred to on the foil is tied to ASTIE. A
secondary limitation is that the main function 4FS has to call subsidiary
functions for any field which has more than oneline.

FEATURES OF THE DESIGN [foil 4]
Three functions for simplicity
AFS Full screen (many fields}
AMA Matrix amend (one fld only)
ABB Bounce bar (one field only)

AMA & ABB handle multi-linefields
For each AF‘Sthefile has 9 components

The subsidiary functions are AMA which displays any matrix for amendmentin a
window (which may be a pop-up window) and ABB which handles the bounce-
bar method of choosing an option; the choices may be scrolled past the window
and selected with the highlight bar or,if the lines are numbered, by entering the
option number.
The pre-calculated variables are held on a component file (or a pseudo-
componentfile) in nine components, containing:

The design so thatit can be re-entered with variations
The window for the screen
Theinitial contents of the screen
Theindices of the characters that may be varied
The attributesof theinitial contentsae
Y
h

79

VECTOR Vol.7 No.4

table giving details of each field
Asmail matrix of executable lines (mainly standard validations)
A vectorof the codes from keys that cause special actions
A corresponding character vector oflabels (the action for the key)eo

O
N
S

Thefield table contains the window for eachfield, the navigation from field to
field, three attributes ofthe field:

on display,
whenhighlighted with the cursorin it
and whenvalidation hasfailed and it must be re-entered.

It also contains a pointer to the validation required, a pointer to any special
action required on moving the cursor into the field, and, for multi-line fields,
details of whatis required.
To get the system into use, onceit was established that it was feasible, the author
hadto do three things:

1. Produce an example to show howto use the screen functions
2, Demonstrate that the system was robust with a demandingtest
3. Provide the potential users with an easy way of entering screens

These three needs could all be metif the screen system could prove its worth by
using it to write the screen entry system. The screen entry system is the most
important part of the design.If it is really easy to use then people may useit
evenif other featuresare less than perfect. On the other handif the entry method
is difficult to use then it probably will get ignored.
The author’s purpose this afternoon therefore was to describe the entry
procedures and to ask the BAA members present whether they could think of a
simpler way of doing any of the tasks that are an essential part of entering a
screen design.

WHATISTHE EASIEST WAY? [foil 5]
Enter by amending a similar screen
Defaults (sensible) for everything
Never a need to count(characters)
Specify position by cursor
Choosefrom lists where possible
Showeffects as soon as possible
Allow easycorrections

80

VECTOR Vol.7 No.4

The simplest way to enter a new screen design would be to amend one which
wassimilar. It is easier to alter a heading and an instruction or two thanto key in
a complete design. The simplest way to enter colours, validations, field
sequences and the action to be taken on each kind of key depression is to have
them all default to standard settings. The standards to which everything defaults
should themselves be settable so that all the screens in an application can be
given a distinctive house style. At every stage the delay between specifying
something and showing the result should be as short as possible and the
sequenceto respecify it if needed should also be short and quick.
A series of draft screen designs were then shownand the proposed method of
use for each described.In every case the aim wasto find the entry method which
would give the least trouble to the keyboard operator entering the design.
Fields are specified by putting special characters at the endsofthefield (outside
it so that default contents could be entered within the field). Ruled lines are
specified by their ends, boxes by their corners and multi-line fields by marking
the first and lastlines after the fashion ofsingle fields but with special characters.
The screen maybe framed with single or doublelines by entering ‘+’ or ‘#’ in the
top left corner.
Pop-up fields are specified by moving the cursor to the top left, marking the
spot, and then to bottom right and fixing that. The same procedure is used to
specify colour for the areas of the screen outside the fields. Fields themselves
have three colours; all may beleft to default values, the defaults may be changed
and anyfield may have special colours set by moving the cursor into thefield
and specifying the colour.
Validations are specified by entering a character corresponding to one of the six
standard validations orto a special validation in thefield.If a special characteris
used then the validation required is entered as a line of APL (best to give a
function name) which returns the validity as a boolean.
The fields may be navigated in two sequences andthere is a third sequence for
inserting the variable data into fields. The sequences have defaults. The default
for any sequence may be amended by entering a decimal numberin a field to
give its new position in the sequence(like inserting a line underthe del editor).
On moving the cursor from the field the new sequence is calculated and
displayed.
The allocation of actions to keys is done by displaying two bounce-bars. In one
the key and a twoletter codefor its current action is shown;in the other a list of

81

VECTOR Vol.7 No.4

possible actions is shown.Toallocate a different action to a key,first highlightit,
then highlight or enter the new action, then press an F-key.
During the discussion afterwards only one improvement to ease of entry was
proposed, by Peter Branson. Peter suggested that the method usedfor specifying
a pop-upfield should be usedto specify multi-line fields. The author was glad to
accept it and hoped that, as nobody could think of any further improvements,
the design was now as goodasit could be.

APL.68000
Level Il

APL.68000 LevelIl is a fullspecification APL2 for the
68000 family of processors.Itincorporates all the user-oriented enhancements of
APL.68000 Level | as well asMicroAPL’s acclaimedwindowing interface. APL.68000LevelIl is available for
computers such as the NCRTower, Sun, HP, Bull, Nixdorf,Wicat, Mac, Amiga and ST.Features include:

Nested and mixedarrays
User-defined operatorsSelective specificationUpwards compatibility withAPL.68000Level|

For more details contact:MicroAPLLtd.,South Bank Technopark,90 London Road, London, SE1 6LN.071-922-8866

82

VECTOR Vol.7 No.4

APL Graphics- First Principles
by Graham Parkhouse (Dept. ofMechanical Engineering,

University of Surrey)

a Phis is a demonstration of APL and computer graphics, written
dateractively with my computer. Text following a six space
indentation is mine: all other text is my computer's response to my
instructions, Some of my text 1s prefaced by the lamp symbol, a, This
is to indicate that the text following it is commentary and is to be
ignored by my computer.

a The function PRINT displays a boolean matrix as a small-scale
bitmap. Ail the functions used are listed at the end of the article.

BACKGROUND+10=?120 160p10
PRINT BACKGROUND

@ BACKGROUND is a 120 by 160 boolean matrix with @ sparsity of
10: of the 19200 numbers, 1920 are likely to be 1s, the rest zeros.

+/, BACKGROUND a Count the 1s
1888

a Only 32 short: normai for a random process! Had I printed
BACKGROUND as Os and ig I would have filled ten pages, This
iilustrates the efficiency of displaying information as a bitmap.
Next I am going to explore the bottom right hand corner in more
detail.

BRACORNER+~ 24 ~32+BACKGROUND
PRINT 10 MAGNIFY BRHCORNER

7 o"F

"hak orl,
oe amam "a

a These big dots, each of 100 black pixels, are still much
smaller than the space occupied by the character 1. Phe wedge of

83

VECTOR Vol.7 No.4

white space pointing up from the bottom of this pattern is visible i
the bottom right hand corner of BACKGROUND.

a If I think of BRHCORNER as my picture, then I can use
BACKGROUND as its background by combining both matrices suitably
magnified using v,

PRINT BACKGROUNDVS MAGNIFY BRHCORNER

a I am going to choose PICTURE as the array I shall draw on,
and with the help of the function BLOCK I can write on it as well. 8
assigning values to appropriate blocks of ‘pixels! I can draw a set
of axes onto PICTURE with the following instructions:

PICTURE*+120 160p0 a Take a clean sheet

PICTURE(60 64;]+1 a Draw the x-axis
PICTUREL; 80 sij+i a Draw the y-axis
PICTURE(56+28;,4 202,420K0, 17) +1 a Draw ticks on the x-axis
PICTURE(,1 205,+20*0,15;76+181+4 a Draw ticks on the y-axis
eTEN+BLOCK '410' a Block of pixels showing 1

16 16
pMINUSTEN+BLOCK '-10! a Block of pixels showing -

i6 24
BIGTEN+i0 MAGNIFY TEN a Magnify TEN
BIGPEN[10x%116;1}+1 0 BIGTEN(:10%116}+4
PRINT BIGTEN a 16 x 16 pixel array

ZAREEE EEE Tt
PICTURE (U0+116; 2841 24)+MINUSTEN a Numbering x-axis
PICTURE(U0+116;112+146]+7EN
PICTURE(92+116;85+124]+MINUSTEN a Numbering y-axis
PICTURE (12+116;85+116]+TENPRINT 2 MAGNIFY PICTURE a Labeled axes

10
~10 1o

-10

VECTOR Vol.7 No.4

AXES*PICTURE a Copy PICTURE for future use
PICTURE+120 16090 a Take a clean sheet
a Indexing pixels is low level APL graphics: very useful

sometimes, but rather fiddly. I now wish to draw some lines and
circles onto my PICTURE, which I wish to describe with reference to
my new axis system. I have written some functions that will enable me
to do this quite simply. They need information about my axis system,
and I have chosen the variable WINDOW to hold it. WINDOW is a 2x2
matcix holding:

3 43p' XMIN | XMAX ------teeccnn YMIN | YMAX
XMIN | XMAX
aaneae feerene
YMIN | YMAX

a fhe axes I have drawn correspond to:
WINDOW~2 20720 20 “15 15
a fo register this information I call the function SETTINGS

which echoes the values in WINDOW and the size of PICTURE.
SETTINGS

WINDOW = ~20 20 pPICTURE = 120 160
“15 15

a I am going to draw a solid circle centred on the origin (the
point 0 0) which has diameter 28 and is black (intensity 1).

ADDCIRCLE 0 0 28 1
PRINT 2 MAGNIFY AXES*#PICTURE

ADDCIRCLE ~5 “§ 8 O a White circle, intensity 0
PRINT 2 MAGNIFY AXES#PICTURE

a ADDLINE 1s a companion to ADDCIRCLE, having six components in

its argument: x1 y1 x2 y2 thickness and intensity.
ADDLINE “15 10 15 “10 2 0.5
ADDLINE 0 20 0 ~20 3 0.25

85

VECTOR Vol.7 No.4
PRINT 2 MAGNIFY AXES#PICTURE a 2 circles overwritten by 2 lines i

a fhe last line was clipped by the window, Both ADDCIRCLE andADDLINE clip automatically.
a I am now going to look at the middle of PICTURE magnified so

I can see the pixels clearly.
PRIN® 10 MAGNIFY PICTURE(US+130;60+140]

a Phe intensities of the two lines are 0.5 and 0.25,corresponding to a half and a quarter of the pixels being black, I
have 65 intensities available to me. The pattern for each tsdescribed by the way the numbers 1 to 64 are distributed in the 8x8array MASK:

MASK
1339 9 44 3 35 44 43

49 17 87 25 51 19 59 27
13°45 5 37 15 47 7 39
61 29 53 24 63 31 55 293
4 36 42 4H 2 3h 40 42

52 20 60 28 50 18 58 26
16 48 6 40 145 46 6 38
64 32 56 28 62 30 54 22

a I am going to see what I can achieve by draving a stripacross the page increasing uniformly in intensity from 0 to i. First
I shall create a string of 901 intensities.

INTENSITIES+(0,1900)+900
(S*tINTENSITIES) ,~5+INTENSITIES

0 0.001111 0.002222 0.003333 0.008444 0.9956 0.9967 0.9978 0.9989 1
a Convert them to integers ranging from 0 to 6h,
INTENSITIES+|0.5+64xINTENSITIES

86

VECTOR Vol.7 No.4

(LOFINTENSTTIES) , 10+ INTENSITIES
9000000011 63 63 64 64 G4 64 64 G4 64 64

a My strip is going to be made up of 72x901 pixels. BIGMASK is
going to be this size as well, got by repeating MASK both across and
down,

BIGMASK+72 90194901 8pQMASK
PRINT 1,BIGMASKs72 S019 INTENSITIES

a Notice the loss of contrast at the dark end. Two problems are
being demonstrated: isolated white pixels on a black ground are less
extensive than isolated black pixels on a white ground, @ weakness of
the printing process, but even if this were not so there remains the
problem, or rather the fact, that eyes judge contrast to a different
scale. The printer problem disappears with magnification, The penalty
of magnification is sparsity of information: the same information
takes up more space, Alternatively, intensities can be kept below 0.5
or 0,25 so that black pixels never run into each other.

INTENSITIES*O.25%(0,1900}+900
(S#INTENSITIES) , StINTENSITIES

0 0,0002778 0.0005556 0.0008933 0.001111 0.2489 0.2492 0.2494 0.2497 0,25
INTENSITIES+|O.5+64xINTENSITIES
(AO* INTENSITIES) ,~ 10+ INTENSITIES

000000000 0 16 16 16 16 16 16 16 16 16 16
PRINT 1,BIGMASKs72 901p INTENSITIES

a The pattern within MASK is rather beautiful and leads to a
family of pixel patterns that blend into each other very
harmoniously. A random array of integers between 1 and 64 in BIGMASK
provides a less orderly but equally versatile pattern.

BIGHMASK+?72 901p64
PRINT 1,BIGMASKs72 901pINTENSITIES

a Now I shall move to a higher level, a level above ADDCIRCLE
and ADDLINE, to consider graphical objects described not as
arrangements of pixels but by their geometrical and material
structures, I have chosen to describe each object by 3 items: an
identifier, a co-ordinate array and a component array. HEXAGON Is an
example of a graphical object.

87

VECTOR Vol.7 No.4

HEXAGON
HEXAGON 10.83 10.83 o “10.83 “10.83 0 1 L 1 i a

6.25 “6.25 “12.5 6.25 6.25 12.5 0 0 0 oO 0
9 o 0 o o 0 2 2 2 2 2
1 1 1 a 1 1 0.5 0.5 0.5 6.5 O.
1 1 1 4 a 1 4 2 3 a 5

2 3 4 5 6
a I shall unpack HEXAGON and explain what it contains,
ID COOR COMP+HEXAGON
p "ID COOR COMP

56 6 6
a ID is a scalar enclosing the string 'HEXAGON'. COOR and COMP

are numeric arrays of size 5x6 and 6x6. I shall label their rows and
columns:

(1) 'x-coor! 'y-coor’ 'zZ~coor' 'h-coor (should be 1)' ''),(16)
1 2 3 4 S 6

X-coor 40,83 10.83 o “40.83 710.83 ©
y-coor 6.25 “6,25 512.5 “6.25 6.25 12.5
zZ-coor 9 0 9 ° 0 9
fA-coor (should be 1} 1 4 4 a 41 1

1 1 4 4 1 1
(\type' '' 'thickness/dia.' ‘intensity’ ‘end 1! ‘end 2'),COMPtype 2 4 4 4 4 14

o 0 9 a oO
thickness/dia. 2 2 2 2 2 2
intensity 0.5 0.5 0.5 0.5 0.5 0.5
end 4 4 2 3 4 5 6
end 2 2 3 4 5 6 1

a Iwo rows are redundant and the h-coor row must always be
filled out with 1s. Pype is 0 for circles and 1 for lines. The
numbers in the rows marked ends 1 and 2 refer to the columns of COOR
HEXAGON appears to be a hexagon having each of its sides 2.0 thick
and dark grey (intensity = 0.5). The hexagon should nearly fill the
current window, so I do not need to change WINDOW. I can draw HEXAGO
using my function DRAW.

PICTURE+120 16090
DRAW HEXAGON
PRINT 2 MAGNIFY AXESVPICTURE

a I have a set of functions that take graphical objects as

their arguments and return transformed graphical objects as their
results. An important one is AND, which collects the components in
each of the objects of its arguments and presents them as a single

88

VECTOR Vol.7 No.4

object. First I shall create another object, NODES, which will be 4.0
dia, circles centred on each of the vertices of the hexagon.

IDece ‘NODES '
COMP[1;]+0
COMP[3;] +4
COMPC4;)+0.25
NODES*«ID COOR COMP
OBJECT+HEXAGON AND NODES

Set type to circles
Set diameters
Set intensities

a
Aa
a
a COOR is not changed

OBJECT(4) a Identifier
HEXAGON AND NODES

OBJECT(2] a Co-ordinates
10.43 10.83 0 710.83 “10.83 0 10.83 10.83 0 “10.83 “10.83 0
6.25 “6.25 “12.5 ~6.25 6.25 12.5 6,25 “6.25 “12.5 “6.25 6.25 12.&
0 0 0 0 0 0 0 0 ° 0 0 0
1 a a 4 1 1 1 1 1 a 1 1
1 a a 1 1 1 1 1 1 1 1 a

OBJECT(3} a Components
a o4 a4 4 4 1 0 0 0 0 0 0
0 0 0 Oo o 0 9 0 0 0 0 oO
2 2 2 2 2 2 % % & & % 4
0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25
1 2 38 4 5 6 7 8 9 10 ce 12
2 3 4 § 6 1 a g 10 at 412 7

PICTURE+120 160p0
DRAW OBJECT
PRINT 2 MAGNIFY PICTURE

4 TRANSLATE and ROTATE operate on graphical objects,
RINGS*+OBJECT AND 5.41 0 “4 PRANSLATE OBJECT
PICTURE+120 16090
DRAW RINGS
PRIN? 2 MAGNIFY AXESvVPICTURE

 89

VECTOR Vol.7 No.4

a Note that it is the object that has been translated, not the
axis system nor the window. The z translation of “4 has affected the
Zz co-ordinates of RINGS but has no effect on what DRAW does. DRAW
uses only the x and y co-ordinates: it draws an orthogonal projection
of the object onto the x-y plane.

a Perspective projection can be performed using the function
PROJECT which projects the co-ordinates of its right hand argument
through the point STN onto the x-y plane at the origin. PROJECT
returns a graphical object possessing not just the correct x,y
co-ordinates but also the z co-ordinate of the middle of each
component in the redundant row 2 of its component array. DRAW uses '
this row to order the elements before drawing them so that, provided
STN has positive z, elements are drawn from the back of the scene
towards the front. This permits hidden line removal,

a Before advancing into 3-D, I want to add realism to my linesand circles to make them look like cylindrical rods and spheres.Function HIGHLIT will do this by providing a white reflection roughlyin the middle and slightly in front of each component.
DRAW PROJECT RINGS AND HIGHLIT RINGS
PRINT 2 MAGNIFY PICTURE

a I also have a function HALO that puts a thicker whitecomponent just behind each component to blot out some background tohelp components stand out.
PRINT PLAN

Object

Station Font 4

zZ

90

VECTOR Vol.7 No.4

a PLAN Is a projection onto the 2-x plane and shows a typical
arrangement for a perspective drawing of an object, in this case a
box. The picture plane is always the x-y plane through the origin:
the system cannot entertain any other arrangement. The station point
STN can be located anywhere, but in this instance ig on the z-axis,
The corners of the box are projected onto the picture plane by the
four faint lines,

PRINT PERSPECTIVE
Y

a PERSPECTIVE is a perspective of the perspective projection
fayed out in PLAN, viewed from the isolated point in the bottom right
hand corner of PLAN, There are now eight faint construction lines,
and the window is shown surrounding the drawing.

a Much of what I illustrate either includes mathematical
curiosity or demands engineering precision, My APL graphics functions
are my sophisticated tools, while my simple tools are raw APL, which
can help me both at a lower and at a higher level. PERSPECTIVE was
drawn with the help of a little lower level manipulation, and now I
shall draw a latticed deck using the power of raw APL for high level
data definition.

WINDOW+2 29°75 20 “7.5 7.5
PICTURE+300 500p0
SPN+7.5 15 50
DRAW PROJECT XYZ AND BOX AND CELL AND HIGHLI? CELL
PRINT PICTURE

 91

VECTOR Vol.7 No.4

a CELL, which contains 8 lattice members and two nodes, is a
convenient unit cell for a latticed deck. BOX marks the boundary of
the unit cell and XYZ shows the axes. The components of CELL can be
distinguished rrom the rest by the highlighting.

8 Before I replicate CELL I shall practise the replication on
BOX. BOX has a top and bottom which is 10 units square. To replicate
it I need to TRANSLATE it by multiples of 10 units in the x and 2
directions. In Dyalog APL \ is vell suited to helping me do this:

123 4
tit t£f12 443 i486
221i i122 423 424
234492 433 134

2414 242 2143 244
224 222 223 224
232 232 233 234

pi2 3 4
234

a So ,(10x"i+16 16) will give me 36 translations appropriate
to a 6*6 deck. Applying these to BOX:

STIN+STNXE a Stand back 6 times further
WINDOW+2 29°15 80 ~30 10
PICTURE+400 950p0
DRAW PROJECT XYZ AND >AND/,(10x71+16 1 6)PRANSLATEcBOX

& Repeating this replication on CELL and calling the result OB:
OB+2AND/,(10x714+16 1 6) PRANSLATEcCELL
a Translate the deck towards the origin, rotate it 0.25 radians

about the y axis, and translate it back again:
OB+35 0 35 TRANSLATE 0 0.25 0 ROTATE ~30 0 ~35 TRANSLATE OB
STN+32 2 100
WINDOW+2 2p10 50 “7 18
PICTURE+300 480p0
DRAW PROJECT (HIGHLIT OB) AND OB
PRINT PICTURE

92

VECTOR Vol.7 No.4

a Phis is a close-up of the latticed deck. Much of the
structure has been clipped by WINDOW.

a Phe last facility I want to demonstrate is HAZE. HAZE 18 2
two row matrix containing z-values in its top row and intensity
factors in its bottom row. Currently HAZE has just one column:

HAZE
~100

1
a All intensities of components having z~values greater than

“100 had their intensities multiplied by 1. If I now define HAZE as:
HAZE+2 20p(720+4%120) ,0.8%$0,119
2 “7tHAZE

36 4O ak 48 $2 5é 60
0.2622 0.3277 0.4096 06.512 0.64 0.8 4

PICTURE+300 480p0
DRAW PROJECT (HIGHLIT OB) AND OB
PRINT PICTURE

a Now components further back, with smailer z-values, have had
their intensities reduced more, giving an attractive haziness to the
picture.

a All the funtions that have been used in this demonstration
are listed below. They have been run under Dyalog APL Version 6.0 on
@ 33 MHz 386 PC with & Mb of memory, The original was printed on A
paper by a Kyocera P-2000 PostScript laser printer, with graphics
mode set £o 150 dots per inch.

)OFF

93

VECTOR Vol.7 No.4

ADDCIRCLE CIRCLE; CENTRE; RADIUS; INTENSITY ; PANE; BLACK; SIGN; QCT
a ADDS A CIRCLE TO THE PICTURE
CENTRE+CIRCLE{L1 2] © RADIUS INTENSITY+0.5 1xCIRCLE(3 4)

aCALCULATE THE PANE FRAMING THE CIRCLE
PANE+(CENTRE-~RADIUS) , [4.5] CENTRE+RADIUS
SINTERSECT IT WITH APERTURE
UcT+1812 © PANE+((APERTURE[PANE) ,APERTURE|PANE)(C:1 4)
+(741 Tigx-/PANE)/0 aNO INTERSECTION
PANE*SIGNX((SIGN+2 201 “1 “1 1)*PFX+.xi;PANE aAPIXEL LIMITS
(v/O>2 ~1-/PANE) /0 aNO INTERSECTION

a EIST OF PIXEL INDICES
PANE*, (PANE(1;21+0,1-/PANE(1;]}°., PANE(2;1]+0,1--/PANEL2;]

a LISP OF PIXELS WHOSE CENTRES ARE INSIDE THE CIRCLE
PAWNE+(RADIUS2 (+4 ((XFP+. 178+PANE) ~&((pPANE) ,2)pCENTRE)*2)*0.5}/PANE
>(O=pPANE)/0 a IF NONE, EXI?

a IS INTENSITY 0 OR 1?
+(~v/0 1=INTENSITY)/GREY © PICTURE(PANE]+INTENSITY © +0

GREY: a WHICH PIXELS ARE BLACK?
BLACK+MASK[1+(cpMASK) | PANE] sl0.5+INTENSITY xx /QMASK
PICTURE[BLACK/PANE]+1 9 PICTURE((~BLACK}/PANE] +0

ADDLINE LINE; OTRAP;A;AB;AP;AT;APTR;B;BLK;C;D;D1;EDGHES;I;IND;INTEN,.. |
OPRAP+c3 'E' '+TRAP' M,N; PFT;S

a ADDS A LINE [0 THE PICTURE
AB+R2 2p4tLINE o D INTEN+”2+LINE © D++XFP(1;3] a D IN PIXEL UNITS

a PRANSFORM TO P,Q HOMOGENEOUS COORDINATES
AB+(PFX+.*1;AB)>1 6 APPR+(PFX+.*15APERTURE) +1

& CALCULATE TRANSFORMATION MATRICES PFT AND TFP
AP+AB,(AB[1 2;1]+41 ~1x6-/ABL41 233),4 @P,Q@ COORDS OF A,B,C
ATQ3 390 O41 6 ATC(L 2)(2 B)]+E+(+/(-/AB(1 2:3)*2)*0.5 a,N COORDS
TFP+QPFI+AP+.xBAT

a CALCULATE P COORDS OF I/SECN OF EACH LINE EDGE WITH EACH SIDE OF APTR
APIR+APTR,GAPTR 9 APPR(2;]+APTR(2;1 1 2 2] © APTR+vRTFP+, xAPTR
EDGES++&3 UpO O,E,L,(72 1 4 “ixDe2),1 244
P+(EDGES CROSS“1¢EDGES)(2 4J]°.CROSS APTR CROSS”1¢APTR
PHC+P)Css4 3] © T03;23+02 TL;;2] AOPPSET ZEROS IN 2ND COL.
P+y 2ps/P 9 T+TsCS To AB+(E£/0, L/P), L/L, 047
>(0s-/AB)/0 a NO INTERSECTION

a SEP UP SATURATION BOMBING GRID
SC+l2pPFT o Att4/SC 0 Di«(+A)-Axx/SC o N+1[1+[(D-D1)+A
Be(D-Di}t1[W-1 © Le|+/AB 0 Meit[LtA 0 A+LeMn4
IND+(M,N,3)p1 © IND[;;1)+8(4,M)pAx0,1M-4 © INDO; ;2]+(M,¥)pBx0, W-4
INDC;;4]++1+AB © IND(;;2)-+0.5xBxN-41 0 IND+§((MXN) ,3)oIND
>(N>4)/GOON © IND+((D+D1)>0.001*MORND+MORND) /IND

GOON: I++(4) 74 OFIND<L0.5+PFT+.xIND © +CONT
FRAP: aREMOVE PHOSE OUTSIDE THE WINDOW
C+(INDC1;]>0)A(IND[1;]s4+pPICPURE) A(IND(2;J>0)sIND(2:}s71+p PICTURE
T+#¥01]74 O+G/IND

CONT:>+(O=pI)/0 a NO PIXELS, EXIT
a IS INTENSITY 0 OR 1?
+(~v/0 1=INTEN)/GREY © PICTURE[I]*INTEN 0 +0

94

VECTOR Vol.7 No.4

GREY: a WHICH PIXELS ARE BLACK?
BLK+MASK(1+(cpMASK) |I]sL0.5+INTENx*/pMASK
PICTURE(BLK/I]+1 9 PICTURE((~BLX)/I]+0
R+A AND B; COMP
aR IS AN OBJECT WHICH CONTAINS THE COMPONENTS OF BOTH A AND BACi}]<c(+! ',424[2]),ctAND! © BEi]*cy! ', +2804)
COMP+2BE3] © COMP[5 6;]+*itp>4[2] © BL3]+cCOMP
R+A,"B
ReA AND B; COMP
aR IS AN OBJECT WHICH CONTAINS THE COMPONENTS OF BOTH A AND B
ACij+c(+? ',t2AC1]),¢'AND' © Bli}tet? ',+2BC1)
COMP+>B[3] © COMP[S 6;]++1tp>A[2] 0 BL3]+cCOMP
Rea, "B
R+BLOCK TEXT
Re(1i6,8*%p,FEXT)p2 1 38IMAGECCHAR\, TEXT; 3]

R+A CROSS B
a CALCULATES THE CROSS PRODUCT OF A AND B
Re((1bA)*7 1B) - (716A) x18

Rees B
a RETURNS R AS B EXCEPT FOR V, LARGE NOS, WHOSE SIGNS ARE REVERSED
B+,R«B o B((1B12<|B)/ipB]x«<"1 © R+(pR)pB

DRAW OBJECT; ID; COOR; COMP; C;I:N;ORDER;P:Qa DRAWS AN X-Y PLANE PROJECTION ONTO THE BOOLEAN PICTURE MATRIX
a If IS A COVER FUNCTION FOR ADDCIRCLE AND ADDLINESETTINGSID COOR COMP+OBJECT 6 [I+((pID),1)pIDORDER+ACOMP(2;] o I«4
LOOP: a PROCESS NEX? COMPONENT
N+ORDER(I] 9 C+COMPE;N] 9 P++4COOR(2 2p1 2 4 4;CL5]]+CLLI$CIRCLE, LINECIRCLE: ADDCIRCLE P,Cla 4%] © +CONT

LIWE:Q++/COOR[2 291 2 4 4;¢[6]]ADDLINE P,@,¢[3 4]
CONT: M+1tC[1]$'CL' 9 +((pORDER)2I+I+1)/LOOP
a+:

R+HIGHLIT OBJECT; ID; COOR; COMP; F,1I;CCOOR; CCOMP; LCOOR; LCOMP
a PRODUCES THE HIGHLIGHTS FOR OBJECT
Fe3 a FACTOR DIA OF OBJECT + DIA OF HIGHLIGHT
ID COOR COMP+OBJECT
ID+ID,c'HIGHLIGHTED'

a CIRCLES
I+(0=COMP{[1;])/1~1+pCOMP
CCOMP+COMP(;I] © CCOMP(3;]++F © CCOMP[4;]+0 © CCOMPE5;]+1ipl
CCOOR+COOR[T; COMP(5; I)
CCOORT13;J++(3,pF)p(+4x3*0.5)xCCOORL4; JxCOMP(3; I]

95

VECTOR Vol.7 No.4

a LINES
I+(1=COMP[1:])/1.7 1+ COMP
ECOMP+COMP(;I] © LCOMP[3;]++F 9 LCOMP[4;]+0
ECOMP(S 6;]+8((pT), 2)p(~1tpCCOOR)+12xpI
ECOOR+COORL; ,8COMP[S 6;I]]
ECOORTA3;]+"(3,2™oT)p(+4%3«0.5)xLCOOR(4;]*, RCOMPLA 3;I)

a PACKAGE THE RESULT
RID(CCOOR,LCOOR) (CCOMP, LCOMP)
R+F MAGNIFY A

a MAGNIFIES THE BOOLEAN MATRIX A BY AN INTEGER FACTOR F
R+(FxpA)p2 4 1 38(F,F,pA)pA
R+MOD A
Re (+ /Ax2)#0.5

ROZ B
a RETURNS R AS B EXCEPT FOR ITS ZEROS, WHICH GO BACK VERY SMALLB+, RB o BC(1E™12>|B)/ipB]+ik12 0 R+(pR)pB

R«PROJECT OBJECT; ID; COOR; COMP; C;E:M;I
a PROJECTS THROUGH A STATION POINT, STN,ONTO THE X-Y PLANEID COOR COMP+OBJECT © ID+ID,c'PROJECTED THROUGH ',¥STNCOORTS;]++#4COORLS 4;) a CALC, DISTANCES
A CALCULATE TRANSFORMATION MATRIX
M1290 o MCi 3.6 7 14 123+(S7NV,1)(3 13 2 u 3}
Me3 GoM © M[;3]x+74
COORTL 2 4;]+M+.*COOR[14;] © PRANSFORM COOR

a CALCULATE COMPONENT DISTANCES
C+(0=COMP(1;])/I+1~14+pCOMP 0 L+(1=COMP[i:1)/I
COMP(2;C]+COOR[S ; COMP[5;C]] a CIRCLES
COMP(2;L]+0.5x+#COOR(S;COMP[S 6;L}]] a LINES

a MODIFY PHICKNESSES
COMP(3;]*+SFN(3]+S7N(3]-COMP[2;]

a MODIFY INTENSITIES
COMP(U;]x+(4,HAZE)(2;1+4+/COMP[2;]°.>HAZE(1;]]

a PACKAGE THE RESULT
R+ID COOR COMP

R«THETA ROTATE OBJECT; ID;COOR; COMP; S;T;MODTa ROTATES AN OBJECT THROUGH THE PSEUDOVEGTOR THETA
S+3 3997 6 23974547
S+(PHETA, (-THETA),0)(S] a AUXILIARY MATRIXMODI*MOD THETA
f+(3 3p41 0 0 0)+((10MODT)+MOD?) xs
T++0.5*(((100, 5xMODP)+0.5xMODT)*2)*S+.xS a PRANSFN MATRIXID COOR COMP<+OBJECT
ID+ID,c'ROPATED BY ',¥THETA
COORT13;]++COOR[3p4;)
COOR(. 3; J++. xCOOR[13;4
R+ID GOOR COMP

96

VECTOR Vol.7 No.4

ReSETTINGS ;M;N;X1;X2;Y1;¥2
a CHECK WINDOW: X2>X1 AND Y2>Y¥1
WINDOW+(L/WINDOW), (1.5) [/WINDOW

a SHOW SETTINGS
RetHINDOW ='(¥WINDOW)
Rit! OPICTURE ='(¥pPICTURE)

A CALCULATE TRANSFORMATION MATRICES XFP AND PFX
X1 X2 Y1 ¥2+,WINDOW © M N+pPICTURE
XFP+2 390
XPP(1;4 3)+70.5 1*(X2-X1)4N
XFP(2;1 230.5 “1*(Y2-Y1)+M
XFPC;1]++X1,¥2
PFX+"2 3tH1 0 0;XFP

@ CALCULATE APERTURE
APERTURE+HINDOW+(2 2p1 ~1)x&2 2p0.5%((X2-X1)+N), (Y2-Y1)4M

R+D TRANSLATE OBJECT; ID; COOR; COMP
@ TRANSLATES THE OBJECT BY THE 3 COMPONENTS OF DID COOR COMP+OBJECTID+ID,c' TRANSLATED BY ',¥D
COORE1 3; 1++GOORL3p4; J x&((“1+pCOOR),3)pDR+ID COOR COMP

Phe PRINT function files its output which may be flushed to the
Printer by KYOFLUSH.

{F}PRIN? A;CMD;SIZE;X;¥;050
a FUNCTION TO PRINT TO KYOCERA P-2000 PRINTER
a IF A IS A MATRIX, IT IS TREATED AS BOOLEAN, AND PRINTED AT 300+F DPIa 0 AND 1 REPRESENT WHITE AND BLACK O©FO IS LOCAL AND SET TO ZEROQro+o
2(0=DNC'prt!)/'KYOINITt a INITIALISE PRINTER
2(Ae!')/'pre OFME'' PF! osEXIT! 8 FORM FEED IF A IS EMPTY+(2=ppA)/BOOM o A*+POST_esc"¢DFMT2A a ESCAPE SPECIAL CHARACTERSA(ctNL ('),"A,"c!') show! a WL FOLLOWED BY EACH LINE IN PARENTHESES
pree“OFMT"A o +EXI?

BOOM: #(0=QNC'F')}/'Fe2' a SEP DEFAULT VALUE OF F AS 2
AtI2H A A PRANSFORM BOOLEAN TO HEX GCHAR MATRIX
prt(1,pCMD)pCMD+'/bitmap <',(,4),'> def! a DEFINE bitmap
X Yeh 1xdpA a DIMS OF bitmap
CMD+c'gsave! a BEGIN SCRIPT
CMD,+c'/DEPTH ',(¥FxY),' 900 div INCH PITCH add def'
CMD,+c'VPOS DEPTH sub BM it { FF } if?
CMD,+<'/VPOS VPOS DEPTH sub def?
CMD,+c'LM VPOS transiate'
CMD, +c(¥X F),' mul 300 div INCH!
CMD,«c(¥Y F),' mul 300 div INCH scale’
CHD,«c(*X Y),' 4 [',(¥X,0 0 “4 0 1xY),'] {bitmap} image’
CMD,+c'grestore'
CMD, +c'NL'
SIZE+pCMD++CMD © CMD+,CMD
CMD((CMD='~')/1pCMD]+'-'

97

VECTOR VolL7 No.4

pre SIZESCMD
EXIT: +0

XYOINIT; X; 7M;LM; BM; PGHEIGH? ; PITCH; FONTSIZE8 INITIALISES KYOCERA P-2000 PRINTER'pre‘Qsé'prt!
prtacgs'postscript' '' ‘'APLPOST. PRN:TM+1.4 a fop margin (in.)DM+L a Left margin (in.)BM+1i A Bottom margin Cin.)PGHEIGHT+11.65 a Page height (in)PIPCH+13 a Pitch in points (41/72 in.}PONTSIZE+14
Xec'/INCH {72 mul} der!
X,+a'/TM +, (47M),' INCH det!X,+c'/EM ',(vLM),' INCH def!X,+c'/BM ',(¥BM),' INCH dertX,+e'/PGHEIGHT ',(¥PGHEIGHT),' INCH der!X,+e'/PITCH ',(vPITCA),' dertX,+e'/TOF { /VPOS PGHEIGH? TM sub der IM VPOS moveto} defX,+c' /PF { showpage TOF } deftX,+c'/NL { /VPOS VPOS PITCH sub def A 2 LINE DEFNX,+c'VPOS BM gt {LM VPOS moveto} { FF } ifelse } def!X,+c'/APL-2741 findfont ' (¥PONTSIZE),' scalefont setfonttX,+c' OP!
prerx

KYOFLUSE
8 Flush information to printer
prt i 2p'FF
prtofft
0 OsDSH' copy o:\dyalog\fonts\ap12741.fnt+aplpost .pra ipta
ReIi2H B; SHH; SHR

A Return boolean as hex array, 1 bit per sample.8 NB, <FF> is white in PostScript!!B+O=((1teB),8xfO.225%714pB)4B 0 SHR+(pB)+4 42(0=QNC'hex')/'**xutdist? OSH tris A Invoke xutils ap if no hexSHH+((1+pR+36+hex B)+9),9 © ReSHRp(SHH-0 1)+SHHOR
R+POST_esc R & Set each row of text for Printing(CREMCV\')/R) FSerye A Escape all of '(', ")t, "\t) witn "\Rea, /R 4 Return simple vector

Lower-case functions such as pre and hex come with Dyalog APL,ADDLINE requires a global variable RND. Execute RND+?100p1000 beforefirst calling ADDLINE,
Por the past five years I have been sponsored by the Venture ResearchUnit of BP International Ltd, to whom I am most grateful. I also wishto thank the authors of Dyalog APL and many friends within the APLcommunity for their support and encouragement.

98

VECTOR Vol.7 No.4

(GENERAL ARTICLES
This section of VECTORis oriented towards readers who may neither know
APL, norbeinterested in learning it. However we hope you are curious about
how, underthe right conditions, such impressive results can emerge so quickly
from APL programmers

VECTOR Vol.7 No.4

Writing Assembly Language
Functions for DNA

by Allan Gay
Look. I know the Reverend. I’ve read his sermons on GNA in Vector and
trembled. 1 mean, don’t get me wrong - I'm a religious man myself - but I prefer
to do my crusading in carpet slippers and with a good book in hand. Well - not
that Good Book exactly. Not APL2 Programming: System Services Reference for
heaven's sake!
Sigh.
Tm not making muchsense, am I? I supposeI’d better start at the beginning.

It is an ancient Programmerand he stoppeth one...
Evening was drawing in and I was sprawled in a chair with my heels up on the
mantelpiece, toasting the old buns, when the ‘phone rang. With one convulsive
leap, I switched off the budgie, catapulted myself to the desk and snatched up
the handset before the second ring. “Hi”, I said, as nonchalantly as I could
manage.
“My son,” said a voice, “how dost thou fancy writing some [NA Assembler
functions for APL2?” It was the Reverend.
Well, it sounded like work and you know me and work(I could watchit for
hours, etc.) But the old annual fitness rating was imminent and I knew the
Reverend was big in the Synod, so I gave his challenging (read gruesome)
proposalthe big hello. “Your Grace,” I said, “you know me and work”,
I thought he sniffed, but it may have been line noise. “Thy mission - shouldst
thou choose to accept it - is to produce three partitioned functions, namely Or
Reduce, Or Scan and LessThan Scan. They will be dyadic, handle only Boolean
vectors and will produce Boolean vector results. And,” he said, “one assumes
thou wilt also supply a FirstGrouproutineif time permits.”
Next morning, I tried some deep thinking butit was no good.Id already taken
compassionate leave to bury every elderly aunt which IT possessed - some of
them three times - and there had been barbed comments in the office of late

100

VECTOR Vol.7 No.4

about the marked and ongoing reduction in the population of northern England.
It had to be faced: I was cornered.
So I dug out a pile of old hymnals, fired up the Shareware 370/Assembler
simulator on the old PS/2 and did some heavy coding. The Reverend seemed to
be looking for somepretty startling reductions in CPU time and I for one wasn’t
going to disappoint him.

Piece of cake...
Well, you know,after reading an old sermon or two, dashedif things seemedall
that bad.I'd a fair idea of what the inputs and outputs would haveto looklike in
CDRformat, the interface details between APL2 and me seemed a pretty
straightforward piece of groined cross-vaulting apart from the odd ECVorso,
the actual logic to do the bit manipulations would all be done in the cathedral
organ’sregisters for reasonsof speed and tone quality and - most importantofall
- [had faith.
So, whenI presented myself at the tradesman’s entrance a couple of dayslater I
wasfeeling pretty holy. I had the relevant tracts with me, the Assembler prayers
were ondiskette andall in all I thought it was going to be a pieceof cake.
While [used a magnetic card at the holy water vending machine in the south
transept, an acolyte asperged and fumigated my diskette and checked it for
impure thoughts. Then the prayers were copied into the bowels of the cathedral
organ and battle commenced.
NowI don’t knowif you've ever groped blindly downa drain in an attempt to
pick up a lead weight with a piece of limp string and a sweaty sock. Take it from
me, the TSO TEST facility isn’t like that at all. Heavens no! When you are
running APL2 under TEST,it’s morelike using a B-52 to strangle a chicken. What
I meanis there’s a strong chancethat you'll overshootthetarget area and have to
go round again. And that’s nojoke after a 7,000 mileflight from the initial! LOAD
command,believe me.
I had someinitial troubles. 1 admit that. But I knew that once Id decoded the
cryptic words of my guide, the aforementioned System Servi es Reference, I'd
crack the interface and it would beall plain sailing. Afterall, the algorithms were
implemented entirely within the registers. I mean, whatcould possibly go wrong
with that?
The troubles mounted until, after two days, I came to doubt that my guide was -
howshall putit? - strictly au fait with all the nuances. I based this suspicion on

101

VECTOR Vol.7 No.4

the fact that whenever I followed its advice my prayers, instead of winging
heavenwards, tumbled on the mat with their paws in the air. Consequently, it
came as something ofa relief to learn from the Reverend that my guide had been
excommunicated in 1987. Yes, the true faith was being expounded nowadays by
APL2 Programming: Processor Interface Reference and, with its help, I got my
prayers to implement FUNCTIONlinkage (the fanciest, detailedest and most
sanctified type) to the point where they were returning explicit APL results at
last.

Therealstuff...
Nowatthis point, some of you fellow pilgrims out there will want to know the
magic formula. Frankly, it seems pretty unfair that you chaps should be purified
by mysuffering but, heck, I’m going totell you. In a word:it’s services, and I
don’t mean Matins. The services I’m talking about are the interpreter’s VP, VQ,
XC and XGservices. Look, will someone at the back push the kids and those
crazy BASIC fansout of the room? This is grownups’talk. Thanks.
Okay, here’s the real stuff. First off, every time the APLer runs the name-
associated function, weget called with a perfectly normal MVS parmlist hanging
off register 1. Dangling off the parmlist, there are pointers to the System Services
routine, the ECV, and a gash, zero-filled, persistent doubleword which can be
used to rememberthings between successive runsof our function.
It’s goodstyle to be re-entrant so that we can serve multiple communicants from
the one chalice. Of course, cutting down on the crockery means we've got to
watch the hygiene aspect. We aren’‘t allowed to modify ourselves, so we can’t
embed work < in our routine but must instead acquire storage for them
dynamically. We use ... *’P service for this and APL2 makes it easy for us by
bolting a VP parameterlist into the initial parameterlist. Just pop in the byteage
required, call System Services and bingo! After VP has delivered the goods by
giving us a slice of the area reserved by APL2's FREESIZE parameter, we store
the slice’s address into the gash doubleword. Every time we're called, we check
the current instance of that doubleword.If it’s zero, we do a VP;if it’s not, we use
it to reach the area we acquired in a previouslife. We may notbe able to take it
with us, but we certainly can getit back afterwards; our camel slinks around the
eyeof the needle.
Wheneverwegetcalled, there’s a request code in the ECV totell us what's going
on.If it’s a delete-linkage request and we previously got an area from VP, we use
the VQ service to free it and then we grab a couple of hotel towels, use ourcredit
cards and check out. The holiday is over. This is either because the APLer has

102

VECTOR Vol.7 No.4

just)OFFed himself or because he has severed our nameassociation. Otherwise,
it’s a function-linkage request, meaning the APLer is on the blower and there’s
workto be done.
Although I’ve just given you the goods on getting and managing work area, I
wouldn’t like you to think I knew it all along. Golly, no! I’d read and
misunderstood a remark to the effect that storage acquired via VP is
automatically reclaimed when the process terminates. Believing, erroneously as
it turned out, that my prayers were processes within the meaning of the act and
that termination meantreturning control to APL2, initially refrained from any
use of the VQservice, nor did I use the gash doubleword to remember where my
area was. Instead, assuming that each previous execution’s storage had been
released, I blithely requested storage afresh at each invocation of my prayers.
The eventualeffect was to consumeall the freespace and wreck the application.

You at the back ...
Right, I'll pause here and take a few questions. You, sir. Whassa what? Whassa
ECV? Thassabig control block which containsall sorts of information about the
function arguments, together with a parameterlist for the XG service and various
items of session info. Using its contents in conjunction with the XC and XG
services, we can access the input arguments, get room in the workspace for the
result and, when we've constructed it, return it to APL by connecting it to this
ECV.
Whassa CDR,did I hear you say? That stands for CommonData Representation
andit’s just the descriptive information for an APLvariable. You know,its rho,
rank, type, and so forth. By examining a variable’s CDR, wecanfind our way to
its data and also know howtointerpret that data when wegetthere.It can get
ptetty complex but there are waysof forcing inputvariablesintoa straitjacket so
that we don’t have to program every conceivable possibility. My prayers handled
Boolean vectors exclusively. We also have to construct a CDR for ourresult
variable.
Yes, madam? How doyoufind out about the ECV’s format? There are diagrams
in the ProcessorInterface Reference and there’s an AP2ECV macro which mapsit
and gives mountains of documentation. Speaking of macros, you should all note
that there’s an AP2CDR macro, too. You'll probably find those macros in an
APL2.AP2MACSlibrary on one of the DLIBs; check with the sysprogs. Oh,andif
I suddenly start to speak in tongues, the first three letters of each word will be
CDRor ECV and you'll know I’m talking aboutfields defined by the macros.

103

VECTOR Vol.7 No.4

It’s good to see you writing all this down, because there’s going to be a short
catechism afterwards.

The movingtarget...
That covers the working storage aspect, so let's now take a look at creating
variables. There are various ways of playing it but I’m just going to tell you the
wayI did it. You see, there are lots of choices because the APL2 environment
isn’t static. As APL objects are created, modified and deleted, things get moved
around by the interpreter to reclaim released areas and generally defrag the
workspace. This means youcan start creating a variable, go back later to wrapit
up, and find it has moved elsewhere. Obviously, while your [WA routine is
actually running, this doesn’t happen. But, when you makecertain calls to the
interpreter, any workspace addresses you are currently working with will
probably be invalidated. ECVXRLOCcontains a relocation count whichwill have
changedif a garbage-collect has occurred.
This mutability aspect is a pest but APL2 gets round it by using tokens. Now
when APLers talk of tokens they are usually discussing APL statement parsing,
but that’s not what we mean here. Just get the idea that every separately
addressable object in the workspace has a unique badge. That means each
variable’s descriptor (CDR) and eachrelated string of data has a unique token
which is unaffected by workspace defrag activities. APL2’s XC service exists to
supply the current virtual storage address for any valid token wecare to supply.
APL2’s XG service, which allocates space in the workspace (as opposed to VP,
whichallocates it in the freespace) returns not only the addressofthe allocated
space butalso its token. APL2 can distinguish between addresses and tokens, so
you can pass either to APL2 interchangeably. What APL2 will pass to you varies
according to circumstances and I preferred to inspect such pointers and find out
for myself.
The rule for pointers is: if the high-order bit is on, we have a virtual storage
address which we can useas it stands.If the bit is off, we have a token and we
need to use XC to get the equivalent virtual storage address. This finds
application when we process the input variables. Their respective CDRs’ tokens
reside in ECVXCDRL(left-argument) and ECVXCDRR(right-argument). Within
each of those CDRsis a pointer to the argumentdata.
If you are just creating a simpleresult, the strategy is straightforward. First, you
inspect the input arguments, determine the maximum possible size yourresult
could be, use XG to get a suitably-sized piece of the workspace in which to build
the result data, and note its token. Second, you manufacture the data in that area,

104

VECTOR Vol.7 No.4

usingthevirtual storage address from XGto accessit. Third, you use XG again to
get more workspace in which to manufacturethe result’s CDR. Fourth, you build
the CDR and you putthe retained token of the data area into CDRPTR,in effect
hooking the data to the descriptor. Finally, you put the CDR area’s token into
ECVXCDRZ to maketheresult available to APL2 when youcedecontrol.
Nowif you look at that carefully, you'll see that we always complete using one
area before wecall XG to get another. That means the virtual storage addresses
supplied by XG are never invalidated until we've finished using them. And
because we retain the tokens supplied by XG, we're able to connect everything
together without needing to use XC atall. In fact we don’t even need to look at
ECVXRLOCto see whether things have moved,either.

Getting it wrong...
A while back, I observed that the algorithms were all implemented in the
cathedral organ’s registers and I - rather unwisely as it turned out - used the
expression “piece of cake”. I also asked, rhetorically, “what could possibly go
wrongwith that?” Readon,brothers andsisters! Read on!
When[atlast got the prayers to produce explicit results, [thought mytroubles
were over. So when I heard from the Reverend that those results were
occasionally wrong I wasnotatall gruntled.If they had been wrongall the time,
I could have handled that, but subtle intermittent errors are bad news.I tried
putting the prayers in the fridge for a few hours in case the problems were
temperature-related but it was the Reverend who spotted the cause: early
bunkout.
Okay, I have a letter here from a listener who asks “What the heck is early
bunkoutfor goodness sake?” I won't read therest of the letter because the style
deteriorates and he gets abusive, (cheeseit, pal!) but I'd better explain. To do so, I
need to describe the way in which the algorithms were implemented and I also
need to explain where we get our performance improvements. Bear with me a
moment.

Whyandhow...
The whole idea of writing these routines was to get things to go faster. If you
look at the Reverend’s partitioned functions they are extremely terse but,
inevitably, they use several APL2 primitive functions. Those primitive functions
don’t know thatthe Reverendintendsto deal only with simple Boolean vectors,
so they have to be prepared to field anything that comes along, which means

105

VECTOR Vol.7 No.4

they are overqualified for the job. Also, they produce intermediate results along
the way which have to be allocated and deallocated, with the potential for a
workspace defrag at any stage. Finally, APL2 is not aware that they are being
usedto do, say, a Partitioned OR Scan.
Conversely, our Assembler prayers are highly-specific to the expected data, are
atomic, and have inside knowledge about the task. Consequently, they are
smaller, they have less overhead and they can cheat. (Early bunkoutis a form of
cheating.) Even better, we can do almost everything in registers and avoid much
of the overheadof accessingvirtual storage.
The organists among you will know that the top-end IBM cathedral organs have
sixteen 32-bit general purpose registers which, unlike those in the 80x86 series
harmonium,lack almost all flavour and colour. By this,] mean that you can use
any of them for almost anything, so there’s a freedom that you just don’t find on
smaller instruments. In some of the prayers, I even preloaded constant
comparands into spare registers for use within loops. As you can imagine, by
eliminating repeated storage fetches of comparands, this expedited comparisons
no end.
The basic processing technique, once the input arguments and the outputresult
area had been connected up,wasto lopealong the inputs 32-bits (a fullword) at a
time. Each pass of the loop entailed loading a fullword ofleft-argument data into
one register, a fullword of right-argument data into another, and using a third
register in which to generate result data. Apart from the Partitioned OR Reduce
prayer, which could generally be expected to produce a result which contained
fewerbits than the input, all prayers producedresults of exactly the same length
as their inputs. Consequently, at the end of each pass of the loop, another
fullwordof result bits would bestored in the output variable’s data area.

Mybig mistake...
Let's take a look atone of the algorithms - Partitioned LessThan Scan - in detail.
A LessThan Scan produces a result which is a copy of the input argument in
which all onbits except the first have been turnedoff. Partitioned LessThan Scan
does this for each partition in the right-argument input data; the partitions are
defined by onbits in the left-argument mask data.Forinstance:

106010606 041 0 PARTITIONEDLETSCANOi100141411411
o1L10 0010120

106

VECTOR Vol.7 No.4

In this example, the left-argument mask data specifies three partitions of lengths
3, 4 and 2 bits respectively. In real life, however, we're talking about thousands
of partitions each of which could be anything from oneto thousandsofbits long.
Becausethe cathedral organ’s registers go like greased lightning, we can happily
loop along, shifting register contents to isolate eachbit in turn, inspecting it and
deciding what to do with it. We havenoalternative. Or do we? The cathedral
organ’s repertoire includes manyfacilities which act on a whole fullword at once.
Imagine what would happen if, having already output the first onbit in the
current partition, we loaded the next fullword ofleft-argument mask data and
foundit to be all zeroes. It would mean that the current partition continuedforat
least another 32 bits and, since we'd already outputthe single onbit permitted for
it, we'd have to output 32 offbits. The nature of the corresponding fullword of
right-argument data would be completely immaterial. Instead of looping
through the 32 bits one at a time, we could store a zeroed fullword with a single
instruction. This trick of segment-skipping can pay performance dividends when
long partitions occur frequently in the input.
What's more,at any time during the processing of a nonzero maskword ona bit-
by-bit basis, if a test reveals that all remaining bits are off, we can ignore the
remaining datawordbits and store offbits for them in the result. This trick of
loop-truncation can pay performance dividends when data onbits are infrequent.
Thissortoftrickery is the early bunkout to which I previously alluded.
There’s another loop-truncation trick wecanplay, and this one is whereI tripped
myself up. Let’s suppose that we've looked at the maskword and wefind that
there are some onbits in it. This means we've got a new partition starting within
the next 32 bits so we can’t do a segment skip. But supposeall the databits were
off? We can’t produce onbits in the result if the corresponding databits are off, so
couldn’t we store zeroes and bunkoutearly in that case?
The answeris that we could, but with one important proviso: first we mustreset
the partition metabit, that status flag which records whether we have yet found
an onbit in the current partition’s data. If we were to go into the next partition
with theflag still on, we'd produceanall-zero output partition evenif the input
partition data contained some onbits. Guess who forgot to reset the partition
metabit.

107

VECTOR Vol.7 No.4

Connecting thingsup...
Okay, we're on the homewardsstretch now.All that remains is to recount how to
make the prayers available to the APLer in his pew and to put some numbers on
the resulting CPU-time savings.
The first thing we have to do is to package our prayers as one or more
loadmodules. How many we putin a loadmodule is immaterial because the
packaging process entails coding and assembling a frontend table whichlists all
the entrypoints in the individual routines. With this table in place, the usuallimit
(imposed by the Linkage Editor) of 16 entrypoints within a single loadmoduleis
eliminated. Instead, the loadmodule ends up with a single entrypoint via which
APL2 enters to look at the table when it wants to name-associate a given
function. The number of routines which may be declared in the table is
potentially huge.
In the project under discussion, there were only four routines and the application
usedall four, so they were packaged as a single loadmodule.
To announceeach routine to APL2, we create a memberin a partitioned dataset
termed the Namesfile. Each member namesits corresponding routine and gives
a DDname and membername to enable the package loadmodule to be found.
Each memberalso uses a simple shorthand to declare the format of the input
arguments andthe result. Argument data supplied by the APLerto our functions
will be coerced to suit if at all possible; otherwise, a DOMAIN ERRORoccurs
and wearen't called. This saves us from the chore of writing complex input-
validations.
Before starting the application, we preallocate the Names file and the
loadmodulelibrary (the latter using the predetermined DDname coded in the
Namesfile members). Then we hook each routine up as an APL function by
entering,

'(NamesfileDDname)' 11 ONA ‘function’

After this, the function runs exactly asif it were written in APL. Buta lotfaster.

Thescore ...
So how did they do? Partitioned OR Reduce was the worst. Overall,it averaged a
CPU-time saving of 44%. This means that, on average, for every 100 CPU

108

VECTOR Vol.7 No.4

seconds taken by the all-APL function, the Assembler version took 56 CPU
seconds on the samedata.
The other three functions did much better. They each saved 92%. Altogether,
replacing these four much-loved utility routines knocked nearly 10% off the
overall CPU-time cost for the entire application. Since it was a very large and
heavily used application, this represented a very substantial reduction in
machine costs.
All four functions were pretty much the same size. The average was 870 bytes
and the total size of the package loadmodule was 3,592 bytes. The source code
per function came to about 320 lines, excluding comments and macro
expansions.
Development time averaged about 35 man hoursperfunction. This reflects the
learning curve andinitial blind man’s buffery. The last function (Partitioned
FirstGroup) was taken from inception to completion in only four hours by taking
a copy of the Partitioned LessThan Scan function and writing a new logic core,
the argument handling and environmental processing being the same. If it’s got
Booleanvectors, I’m your man.

Theaftermath...
Hosannas ringing in myears, I totter across the cathedral close. Back home,
curtains drawn, I slump in the gloom with an icepack on my head. The ‘phone
rings. Wincing,I lift the handset. “Hi”, I croak feebly.
“My son,” says a brightly enthusiastic voice, “how dost thou fancy doing a
Partitioned Plus Reduce?”

109

VECTOR Vol.7 No.4

Mandelbrot Sets
by Ray Cannon

Let me sayfirst of all, that this article has very little to do with APL. I did write
some Mandelbrot code in APL for an IBM PC compatible, butit took too long to
calculate even the simplestareas.
Thereasonit takes so long is that a single image 480 x 480 pixels in size, requires
1,200,000,000 oddfloating points instructions.
Question: Whatis the Mandelbrot set? Answer: It is the set of all the connected
Juliansets. (Ask a silly question and...)
OK,think of a number, square it, add the number you originally thought of
(2,4,6), square it, add first number again (36,38), square it , add the first number
(1444,1446)... Nothing much strange there, the result rapidly rises. Try -1 (-
1,1,0,0,-1,1,0...), or zero (0,0,0,0...). All numbers seem tofall into these 2 groups.
Hither the number shoots off towards infinity, or the result stabilises in a cycle
(which mayonly have one element).
Nowtry it with complex numbers, plotting each starting point on the complex
plane (x/y graph)as either black (cycles) or white (shoots off). The result is a
Mandelbrot diagram. (To speed things up, please note that ALL points outside
the circle of radius 2 starting at the origin 0,0 are white, so only points INSIDE
this circle need be considered.)
Thus the Mandelbrot set can be described via the transformation of z goes to z
squaredplus c, where ¢ is a complex number.
To producea picture of part of the Mandelbrotset, follow the following steps:

1) Decide on the numberof(pixels) points in your picture (say 480x480) and map
these onto a part of the “complex plane” within the region -2.0 to +0.5 on the
real(x) axis, and -1.25 to +1.25 on the imaginary (y) axis.

2) Each pixel represents a point within a small section on the complexplane.
Loopforeach pointin turn, taking its co-ordinates as the value for “c”, witha
starting valuefor z of zero.

3) Por each “ce”, calculate the value of z1 by squaring z and adding c.
4) Reset z to the value of z1 andrepeatstep 3).

110

VECTOR Vol.7 No.4

5) Continue doing steps 3) and 4)until either the absolute valueofz is greater
than 2, or the loop countis greater than an arbitrary value (say 256).

6) Set the colourof the pixel dependenton the loop count. Plot the pointin black
if it repeated, or reached the maximum value chosen.

7) Go on to the nextpoint.
See the function called MANDOTfora specification in APL ofsteps 3, 4 and5. (I
have written MANDO? in a very simple manner which may become apparent
later.)
One methodof speeding things upis to utilise the fact that large areas in any one
picture contain the same value, and as the MANDELBROTset is “connected”
there are no “local maxima or minima”. (Please don’t ask me to prove that
statement.)
From this it became apparent to me,thatif all the points on the boundary of an
area have the same value, then all the points within the boundary have the
SAMEvalue asthe boundary. This can be usedin a kind of “binary search” type
algorithm.
So, define a square within the area to be mapped, (say 128 x 128 pixels). Calculate
the “values” on the boundary, andif they are all the same,fill the complete area
with that value.
If boundary has notthe same value, divide the square into 4 smaller squares (64
x 64) andrepeat the process on each of the smaller squares. Although the process
can be repeated until the square is 2x2, due to the overheads involved with this
process, squares of about 8 x 8 may not be worth sub-dividing.
This method reduces the numberof calculations required in the BLACK area
from an X squared to an X times 2 (plus) where X is the size of the square
“filled”. (I know the square has4 sides, not 2, but boundaries between adjacent
squares are commonand only need to be calculated once.)
As [have said, APL is to slow to do this work in a reasonable length of time. So I
wrote my MANDELBROTcalculator in C with the MANDOTfunction written in
PC assemblerusingthe floating point maths co-processor.
I did find it useful however, to model the 80387 floating point co-processor
assembler code in APL. This let me write and test the basic assembler code
within an APL environment. Thetop level function MAN can be compared with
the resulting assemblerlisting.

111

VECTOR Vol.7 No.4

(NOTEon 80387 maths chip. The 80387 chip works ontheprinciple of a floating
stack, and has8 internal stack registers. Most instructions act between the top of
the stack and other stack registers. Programming it is a bit like programming a
pocket calculator in “reverse polish notation”.)
The APLlisting and the resulting assembler code are shown below.

Notes on Functions
CommentFunctions

MANDOT Noxmal (but very simple) APL
MAN Produces same result as MANDOT, calls FP fns
FADD Floating point FADD machine code instruction simulator
FLD Floating point FLD (load from stack)
FLDM Floating point FLD (load from memory) etc.

assembler to do the MANDELBROT calculation. called from ¢
#C calling syntax “man(x,y)"}xeturn mandot value for given U and V values
@CODE SEGMENT BYTE PUBLIC ‘CODE’
MAN PROC nearpush bpnov bp, spEninit jelear stack

Kor ax,ax solear AXyatack constant 4

fld q{val4] #Push 4 into stack 4iget x,y u and v from parameter string
fld q{bp+oc] : atack ye
fld q[bp+04] : stack xyda
fld it : stack vxyd
fld 1 ? stack uvxy4XOX Cx,cx :Clear registers
xor dx,dx
mov dl,off Initialise loop control
mov bx,1

Main loop stack uyayd
tpush y stack yuvay4
¥2 ptack {y2) uvxy4
scale x2spush x stack x(y2) uvxy4
1x2 atack (x2) (y2) uvay4
vexchange stack xlyZ)uv(x2)y4

new ¥ value calculations

wnew X value calculations
spush x2 stack
feale x2-y2sealc x2-y2+u stack

check answer and loop or exit

fnstew ax

112

calc 2x stack (2x) (y2) av (xady4teale 2xy stack (2xy) (y2)uv(x2)y4
scale axy+v stack ¥(y2)uv (x2) y4
jetore new Y atack (y2) uv (x2) ¥4

(x2) (y2)uv (xa) ¥4stack (x2-y2) (y2)uv(x2)¥4Xty2)uv(x2)¥4store new K stack (x2) (y2) uvxyafeompare x2+y2 > 4.0reale y2+x2 stack (y2+x2) uvxY4jcomp vs 4,0 stack uvxYa

VECTOR Vol.7 No.4

and ax,041¢0
jz FOUND :Found to be 4 or more
inc bx nerement loop control
cmp bx,dx est against loop maxext loop

jot found go return 0

j7Found so return count

;eleax return value
ignore top byte

APL Functions
Vv FADD ARGS Vv FADDP ARGS;RES(1] #30387 FADD [1] 930387 FADDP[2] ARGS+~2+S5P[01,STLARGS] [2] RES++/STCARGS](3] SPACK[0]++/ARGS [3] STACKCARGS[0]]+RES(4] SP+s+STACK C4] STACK+14SPACKv (5) ST+8+STACKv

v FLD MEM V FLDM VAL[1] 8 30387 PLD {1] 930387 LOAD FROM MEMORY[2] STACK+ST(MEM] , STACK (2] SPACK+VAL, STACK[3] SP+atSPACK [3] ST+B4STACKv v

Vv FLDZ v FMUL ARGS[1] 30387 FLDZ [1] 930387 FMUL[2] STACK+0, STACK [2} ARGS+2+ST[01, STLARGS][3] SP+e+STACK [3] SPACKLO]+*/ARGSv [4] ST+B+STACKv

v FNINIT v FSTP ARG[1] 030387 FINIT [4] 030387 FSPP[2] aINIT FLOATING POINT (2] SPACKCARG]<STACK[0][3] SPACK+.0 [3] SPACK+1+STACK[4] ST+8t+STACK [4] SP«B+STACKv v

113

VECTOR Vol.7 No.4

Cal
C2]
C3]
C4)

[1]
[2]
[3]
C4]

vy FSTPM NAME
n30397 FSTP STR TO MEMORY
4&NAME,'«ST[O]'
STACK+1+STACK
ST+84+STACK

v FXCH ARGS
a30387 FXCH

{11
C2]
£3]
C4]

STACK (ARGS[0]3+SP[ARGS(1]]
STACK LARGS(1]}+ST[ARGS(O]}
ST+8+STACK

v

V R<U MAN V;MAT; COUNT; ST; STACK
C13
[2]
C3]
C4]
cs]
6]
{7J
C8]
C9]
[10]
(14)
(12)
(13)
[14]
C15]
(16)
[17]
£18]
(19)
£20]
(21)£22]
{23]
£24]
C25]
(26)
[27]
[28]
[29]
[30]
[34]

ASIMULATE ASS MANDELBROT
Reo
MAT+*O
COUNT+O
FNINIT
PIDM 4
FLIDZ
FLD 0
FLDM U
FLEDM ¥

LP:
FLD 3
FMUL 0 0
FLD 3
FMUL
PXCH
FADD
FMUL
FADD
FSTP
FLD 3
FSUB 0 1
FADD 2
FXCH O 4
FADDP 1 0
FSUB 5
FSTPM' MAT!
+ (MAT20) /FOUND
COUNT+COUNT+1
+(COUNT<256)/LP
FOUND: R+COUNT
v

ua
dv
eo
so

n
o
r
e

v FSUB ARGS
A30387 FSUB
ARGS+” 24+ST[0],ST[LARGS]
STACK(OJ+-/ARGS
SI+84+ STACK

v

Y RY MANDO? U;X;¥;X2;Y2;AL
C17
(2)
[3]
£4]£5]
c6]
C7]
CsJ
[9]
C10)
C11)
(12)[13]
C14]
[15]
[16]
£17]
18]
C19]
(20)
[24]
[22]
[23]
[249

144

ARETURN MBP VALUE FOR U V
ALONG WINDED LISTING -
RCOMPARE AGAINST MAN
AL+t
XeX24U
Y¥Y2+V

EP:X2*+X2X
Y2+Y2xy
Y+yxX
X+Y
Y«¥+X
YeY+V
X+X2
X+X-Y¥2
X+X+0
X2*X2+Y2
X2+X2-4
+(X220)/END
AL*AL+1
>+(AL>255)/END
X2+X
Y2ey
+LP

END: R+AL
v

VECTOR Vol.7 No.4

TECHNICAL SECTION
This section of VECTORis aimedprincipally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of
fluency in APL.

Contents
NED:A nesting editor for APL*PLUS/PC Olle Evero
Thoughts ond+f g A Maurice Jordan
Full Screen Methods with APL2 Peter Branson
A Note on the Match Function in APL Joseph L.F. De Kerf
The Steam-Hammerand the Fly Gerard A Langlet

116
119
126
133
138

115

VECTOR Vol.7 No.4

A Nesting Editor for
STSC’s APL*PLUS/PC

by Olle Evero (Evestic AB)

Though nested variables were first introduced in 2nd generation APL, nested
functions had beenthere all the time. The conceptof nesting is actually central to
control flow in APL. Typical APL code contains functions calling functions,
calling yet other functions - all the activity that is monitored by the State
Indicator.
This boxes-within-boxes approachis of course absolutely trivial, almost a natural
law of computing. Maybe thetriviality accounts for its lack of support in the
average APL developmentplatform.
However, do notfear, rescue is at hand... I give you (drumroll, please): VED, the
Nesting Editor! NED is a simple cover to the STSC OFDIT command,that will
help you explore and maintain an application in a natural, ‘nested’ way.
Picture yourself using OZDIT? to browse through the main function of a system,
called MAINMENU. Suddenly(in the middleof line 13, say), you stop dead in
yourtracks. Before you is a reference to another function FOO44. Of course, you
need to know whatit contains.
Normally, you would haveto exit the editor and start another editing session on
FOO4u4 to find out. But since you are using NED, you just place the cursor over
Foou4and pressctrl-E (or ctrl-Q). This takes you immediately into DEDIT with
Foouu, After finishing browsing FOO44, simply place the cursor on an empty
space in the function andpressctrl-E once more. This returns you to MAINMENU,
at the exact spot where youleft (line 13, remember?).
Well, there you have the whole idea: navigating the code structure of an
application in a fashion similarto the application itself. Here follows the APL:

116

VECTOR Vol.7 No.4

VA NED 8;C;D;8;F;G;H;X;N;DELX ;DWINDOW

C1]
[2] a WNesting Editor for APL objects. Example cal NED 'MAINMENU'
Ca] a A = ambivalent argument, unassigned at invocation
Ca] a B = valid APL object name
cs a O70 assumed to be i Olle Evero, Evestic AB[6] ee
[7] GELX«'OS0UND 140 2000+LX' a beep and exit at error
ce OWINDOW+ 0 0 24 80 A set window
C9] >(2=DNVC 'A'}/L0 a skip init status string if A exists
C10] ACB oO sbi a init status string, skip append
£11] LO:AeB,' ',A A append status string if A assigned
C12) Li: 24 0 1 a0 UOWPUT a0tdA A put status string onto status line
£13) +(O40NC B)/L1i5 o QINEUF 262 70 ,~1+0AViB a new object changed to fn
(414] LAS:DEDIT Bo +(0 2 3 =DNC B)/EX,L2,L3 a edit and branch acc to type
C15] L2:C+eB 0 C#(~24+ 11 ,pC)pC o +L4u a if variable,make matrix
£16] bar:cecR Ba if function, canonize
(17) Lu:D+1+(GPEEK 191 192), 25610PEEX 194 193 a last cursor pos in DEDIT
C18] DBC11+D(1)-6xQPEEK 179 A subtract 6 if line numbers
[13] Ne" it+4+/D[2 3] a calculate row in object
[20] +(N>1tp@)/L¥ a if out of bounds, exit
[21] E+! A_ABCDEFGHIJKLMNOPQRSTUVHXYZ0%23456789' a char candidates
[22] EE, 'abcdefghijkimnopgrstuvwxyza' a for APL name
(23) Fec{W;] ¢ G+FeE a produce row, and bit vector of char candidates
[24} K+(9=0NG B)a~(F(iJ]=!'a')vi:te1t(~G)/F a nonlabel,noncomment rows in fn
[25] G+(Xp0),G a allow for indentation of nonlabel,noncomment fun rows
[26] H+Kt (Oa\GD(LI 4G), Lea\("14+DE1] 4G a find name string
(27) AcH/F 0 +(QcpH)/EX a if no name, exit
[28] A NED Ha else recursive edit session
[29] OINBUF{~1+D[3 2 1])/ 421 420 389 @ buffer cursor moves
[30] ahi a return to ‘'old' edit session
C31] EX: a exit

Some Usage Notes:
+ NED is recursive; you can follow a whole chain of functioncalls from top to

bottom, then return to the top again.
+ In the absence of programmable function keys in DEDI, NED operation is

controlled by wherethe user puts the cursor.If there is a character underthe
cursorat exit, this character and the adjacent characters will be interpreted as
a valid APL name, and a new (EDITsession on this namewill be invoked.If
there is no character underthe cursorat exit, you will returnto the calling
environment. This protocol may take some getting used to.

+ You can use NEDto build a system from scratch.Afterfilling your main
function with references to subfunctions, just place the cursor on any one of
them,press ctrl-E andstart codingit. No need to memorize a plethora of
names- andit saves typing too!

117

VECTOR Vol.7 No.4

+ Screenline 25 is used to line up the namesthat are passed to NED. Think of
this as OST raveled,if you will.

+ The inputbuffer (used by JINBUF) does not normally hold more than 256
characters. This could be a problem if you tend to write functions exceeding
200 lines or so. On the other hand,if you write such huge functions, this may
well be the least of your problems...

- NED operates on functions and text matrices alike.
+ Peeks and pokes are used as indicated in documentation pertaining to the
somewhatobsolete version 7.1 of APL*PLUS/PC. You might want to check
their applicability to the version you have got.

At Evestic, we have compiled a library of utilities related to the STSC
APL*PLUS/PC product. The focus is on novel ideas and items otherwise hard to
come by. There is guaranteed to be no assembler or locked code, just short stand-
alone APL functions. Please drop a line to the following address, if you want
more information on this.

Evestic AB, Attn: Olle Evero
Frejgatan 6/B-133
114 79 Stockholm
SWEDEN

Ed: This is a super idea, and in most cases it works very well, however there is one
interesting snag:ifany lines in the edit stack are wrapped by QEDIT,itfails to return to
the right place! This is a particular problem if you write functions with lots of local
variables, and hence long headerlines.
Resolution of thislittle dilemmais left as an exercisefor Vector readers ... answers on the
back of a postcard please in time for 8.1, and we will print the best in the conference
special. Thanks.

118

VECTOR Vol.7 No.4

Thoughts on +r g A
by Maurice Jordan

Introduction
These notesarise from ideas first stimulated by Iverson's presentation at APL88
on yoke (which allows amongotherthings infinite sets to be handled simply in
APL), and function assignmente.g.

sumet/

Yoke has been superseded by the phrasal forms hook and fork (APL89) andthese
are now implemented in J (APL90). These phrasal forms assign meaning to
phrases such as

Ief gh
where f g and are functions. Powerful though the concepts are, are they the
bestuse of this phrasal form?.

Experiments using Dyalog APL
Function assignment has been available in Dyalog APL since their introduction
of defined operators in 1986. When used with operators it becomes possible to
build quite complex functionsin a simple sequenceofassigned functions.
As soon as I got my hands on a Beta-release version of Dyalog/386, I began
experimenting with fork and hook. Hookis simply expressed as an operator:

VY Z+{A}(£ hook g)B a Elidable left args must be enclosed in {}
av Iverson/McDonnell's hook phrasal form.
na 2++A £ g B (dyadic); Bf g B (monadic}
+(O#0QNC 'A')4E1 0 A+B

Li:a*A £ g B
v

Butthe trouble with fork is that it needs a mechanism for deriving an operatoror
a way of passing more than two functions to an operator. I quickly foundthatI

119

VECTOR Vol.7 No.4

could use Bob Smith’s NARS composition operator as implemented in Dyalog
(analogousto & inJ) to bind 3 functionsso that they lookedlike one

fegeoh

and thus fool the interpreter. Once inside the operator, the intemal
representation can be examined:

fght+/erep
ADISP OCR 'fgh' a ADISP is a utility to display nested

EEE
and in simple cases (where f g and h are primitive) the original f g and h can be
reconstructed easily:

VY Z2+{A} (fins fork)B;f;9;A;FNS
a Iverson/McDonnell's phrasal forms idea.
A fnse+fogeh; Z*({A} £B) g ({A} fh B)
a8 £g h are primitives here,
FNS<«QCR'fns'
f+s2>FNS © g+2322FNS © A+ 3aFNS a Monadic > is + in APL2
+(OSQNC'A')}+Monad o 2+{A £ B)g AA Bo +0

Monad:Z+(f B)g h B
v

This allows

mean++/erep fork
mean i234 5

I was able to experiment enough with these operators to realise that their
combination with function assignmentleads to a powerful tool.

120

VECTOR Vol.7 No.4

A Better Way
This representation of fork depends on a fudge. The fudgeis clumsy anddifficult
to generalise so that it deals with defined, derived-from-defined, and assigned
functions. Instead of the composition primitive, relying on undocumented
internals (therefore liable to change), why not regain control and use a defined
operator?

v Z+(f J_ g)B
aV A Join operator to stack functions together for operator
a calis and unstack them within the operator.
+(B=0)4hi 9 Z+f o +0
L1:a+g

v

This enables two (or more) functions to be joined together for syntactic binding
in operator calls, and provides an easy means of unscrambling them again within
the operator. This is used in the next generation of the fork operator:

Vv Z+{A)(fgh J_)B;fgsfigih
av Performs J's fork construct when fgh is of form f£j_g jl
2(0=0NC 'A')/'Atright!
fg+fgh 0 a fgh must be of form Lj_g fA
ferg 0
grfg 1
hefgh 1
Z+(A f£ B)g(A h BY}

az:a MHJ 075ep90
v

meanet+/ j_ + Joe IL
mean i234 5

3

rightis simply the right identity from Dictionary APL:

VY B+(A}right B
aV Right identity (+ in Dictionary APL)

v

as this is not a primitive in Dyalog APL. The idea of assigning an identity
function for elided left arguments in ambivalent functions and operators comes
from Phil Last. What a pity we can’t write

121

VECTOR Vol.7 No.4

¥ Ze{Ae+}(fgh J_) B

to supply a default for an elided left argument and avoid clumsy conditionalexecutes or computed gotos.

Even Simpler
A simpler construction, requiring only onecall of j_ results from

V Ze{A} (fg Fork h)B;f3g
av A simpler form of fork depending on the ‘stack’ operator Je2(O=0NC 'A')/'Atright!
f+fg 0 a fg must be of form f j_ g
g+ig 1Z(A £ BYg AB

az:a MHS 07Sep90
v

mean++/ j_ + Fork p
mean it234 5

a

Other Formsof Fork
Otherformsof fork can be derived from

¥ 2+{A}(f£ strand g)B
£(OS0NC'A')/'Aeright!
Z+(A £ B)(A g B)

v

meantae(+/)e(+/ strand p) a rather unlovely

or

meantze(+/)e(+/ j_ p fnarray)

where fnarrayis an operator to simulate Benkard’s function array ideas but lacksthe elegance to be shown here.

122

VECTOR Vol.7 No.4

Back to the Yoke
Although forks may be simulated in these waystheir usage lacks the elegance
achieved by simply, but tediously, building a series of defined operators to cover
the g functions inthe £ g A fork (as in the original yoke idea) e.g.

VY Z«{A}(L and g)B
avY AND operator for proposition functions f and g
#(O=QNCtA')/'Acright'!
Z+(A £ B)sAA Gg B

v

Vv 2+{A}(f£ or g)B
av OR operator for proposition functions f and g
2(O=DNC'A')/'Atright |Z+(A £ BVA Gg B

v

50 2.8.

integer_matrix+integer and matrix

This approach has the advantage that with very little added complication an
early exit and/or error handling may be provided, allowing DOMAIN ERROR to
be avoided in functions such as

probability+(se1) and (2°0) and numeric

Alternative Meaning for f g 2
The experimentation with fork, hook and function assignment thus made
possible confirm the expressive powerof these constructs. However, muchis due
to the composition operator, this operator very soonstarts to get in the way with
simple functions such as matrix:

matrix*>e2e=ep9p

which canbe applied to any array:

any_array+ieleft

123

VECTOR Vol.7 No.4

APLallows meto assign from theright in a simple expression:

Zelgha
fer Yeg Xen A

Whenassigning functions, whycan’t I write expressions such as

Z+(fgh+L (gheg h))A
In other words, why shouldn’t APL allow meto write matrix+>2=pp

any_array+¢i1a

In this context dyadic functions with left arguments ‘are regarded as derivingmonadic functions. Commute can be used for the rarer cases where we want amonadic function derived from a dyadic function andright argumente.g.

spete= a 'spe'+$'eps'

For example, rewriting some J assignments from Vector 7.1 p 72 with APLequivalents:

cos=. 20, A cos+20
Gr. #8180 A g+t5180 A or g+180+~
rld=. 0.9 a rideog
cosd=. cos rfd A cosd+cos rfdSind=, 10.0.(%8180) 9 sind+100180+=

This last expression was originally

Sind=. 180,.8(0.8(48180))} a sind+1ceo0(oe{+0180)) J

I have found that insertion of composition (and parentheses) into phrases for
function assignmentis often non-trivial. Yet, with the exception of cases like thedefinition of g above whereanalternative is available through the commute
operator, the expressions can be read simply if composition and parentheses are
ignored. Why not provide the facility to write them without composition?
Unfortunately this is in conflict with fork and hook. My experience so far is that

124

VECTOR Vol.7 No.4

fork and hook are a (notinsignificant) minority of useful function assignments.
For my purpose, it is more useful to use the yoke concept for fork, even if it
meanswriting a family of operators which could have been derived from yoke.

Conclusion
Although composition (¢ in Dyalog and NARS,or & and other operators in J) is
the basis for a lot of useful assigned functions and other constructions, it quickly
ends upin the way.It should be possible to reduceit to an elided operator with a
suitable definition of APL syntax. My impression is that there is a language of
exceptional beauty simplicity and powerstruggling to emerge. Which constraint
on our current thinking must be brokento releaseit?

References and Further Reading
[1] Iverson A Commentary on APL developmentPresentation at APL88 published

in QuoteQuad 19.1
[2] Iverson, McDonnell Phrasal Forms APL89 Proceedings

[3] Hui,tverson,McDonnell,Whitney APL\? APL90 Proceedings

[4] Iverson] Vector 7.1
[5] Cherlin APL Trivia APL90 Proceedings
[6] Benkard Nonce Functions APL90 Proceedings
[7] Benkard Structural Experiments with Arrays ofFunctions APL85 Proceedings

Maurice Jordan
91 Coldershaw Road,
WestEaling,
London W13 9DU

125

VECTOR Vol.7 No.4

Full Screen Methods with APL2
by Peter Branson

Introduction
This is mostly concerned with APL2 on the mainframe and,although there is awidespread tendency to move APL applications down to PC’s or the RS 6000,
ete., there is still plenty of mainframe code out there. In most cases, APLmainframe systemsare likely to have been around a while, and the full screen
techniques well established, possibly with a set house-style. Nevertheless,mainframe APL developmentdoesstill go on, and a review of someofthe fullscreen methodsavailable maybeofinterest to relative newcomers.
Myprimary interest is alphamerics for menus, reports, tables, etc. but graphicswill get some mention. I will cover four approaches: (1) Character Matrix, (2)GDDM (AP126),(3) ISPF and (4) AP124 (yes, AP124!). As always, everythingis inorigin-1.] use TSO, but most of whatI haveto say also applies to VM.

Character Matrix
For simple menu systems,this is the oldest, the easiest and the cheapest method.Obviously, all you need to do is clear the screen (AP100 and TSO CLEAR),construct and display the matrix, havea little prompt/response function and useOPc(2]. By the way, APL2 provides a rather neat wayfor that promptfunction:

vVIPX(Oiv
Col Z+IPX MSG;0PR
C1] a APL2 prompt/response fnC2] OPR+'[3] f+mse(4) 0Zege")

Z+QWGET 1
(This won't work on APL2/PC since DPR is not yet implemented)
I can anticipate screams of horror at the thought that a ‘professional’ APL-ermightstill do full screens this way, butit does actually work! Of course, a primeobjection is thatit is too easy to interrupt back to raw APL, so there are many
systems where you should NEVERuseit. In some of our systems, though, for

126

VECTOR Vol.7 No.4

historical reasons we still have menus created this way, and with several
hundred users over many years J am not aware of many complaints. I think the
essential pointis that our usersarerelatively sophisticated and would not be put
off by accidentally hitting a wrong key. Of course, you shouldn’t nest these
simple menustoo deeply since this makes backingoutfrustrating.

Graphical Data Display Manager
I suppose that GDDM(assessed via AP126) is regarded as the main IBM tool for
full screen work, both text and graphics. However, it is expensive, and buffering
of the GDDMcalls where possible should be used to minimise CPU time. There
is a good paper by Dick Bowman on howtoset aboutthis (Bo89).
As Dickpoints out, the APL2-supplied GDMX function (in workspace 2 GDMx)
has very complex internal logic and seems to be designed on the basis thatit will
still work and access any new GDDMcalls that IBM mightinventin the future.
However, I live in the here and now, and Dick’s simpler type of code is far
preferable. For seriousfull screen work a design tool is essential. Manysites will
still have [BM’s 2 FSDESIGN which doesthis, but this is obsolescent; in any case
it does not support buffered GDDMcalls. Dick Bowman’s paper, though, does
give the bonesofan alternative design tool which works quite well. Be warned
however! If you start copying his code, by the time you have nearly finished you
comeacross that most helpful of all APLlines:

FIELDPOS(26] etc, etc, etc.

Yes, you need about another 60 lines here, so you will have to understand the
code afterall - which is always a good idea anyway!
FIELDFOS doesall the work to add, delete, move, resize, etc. screen fields and
uses a couple of unexplained functions (VOTOVER and PMAP) which are not
listed. Their purpose, though,is pretty clear if you remember that you cannot
overlap screen fields in GDDM. The way FIELDPOS works is to generate the
new format row and columndetails each time a change is made and put these
with PFMT which holds the parameters for the fields already set. PMAP starts
with a screen-size ‘map’ of 0’s and goes round PFMT adding a 1in each ‘position’
of eachfield. If we end up with only 0’s and 1’s it’s O.K., otherwise an overlap so
throw it away andstart again. This is a much simpler method than trying to
detect entry errors and putting up messages, ete. and the user soon learns to be
careful with cursor positioning.

127

VECTOR Vol.7 No.4

For whatit’s worth, my origin-1 code for those functions (combined together) is
given at the end. (I wonder if anyone will complain about that loop?), Finally,
before leaving FIELDPOS, thereis a nicelittle idiom there for turning a vector
into a 1-column matrix, which I don’t remember seeing before:-

» CxO] VECTOR ++ ({(p VECTOR) ,1)pVECTOR

Interactive System Productivity Facility
Or ISPF for short. Many people routinely use this withoutrealising thatit is a full
screen design system and that you can use it with APL2. Useful documentation
is, however, scattered about.
The APL2 manual(IBM1 pp 72, 73) is not very helpful, although it does tell you
how to use the ISPF editor to edit APL2 functions. For long functions (and, yes,
they are sometimes necessary, viz. FIELDPOS) this is much better than
JEDITOR 2 becauseof its powerful insert, move, copy, delete etc. facilities for
both single lines and blocksoflines. Worth looking at even if you don’t use ISPF
for panels. Minorrestrictions: (1) You can’t ring-edit - a pity! (2) You cannot have
function lines longer than around 230 characters - but who wants to, anyway?
Where next then? You will need up-to-date ISPF manuals (IBM2), (IBM3) and
there is a reasonable amount of APL2 there, including some example code (more
on whichlater). You can learn how to write ISPF panels from these sources (and
it is not difficult) butit is still not easy to see howtoset up a reliable APL2-ISPF
bond.
The best starting reference that I have come across is the paper by Loren
Mayhew (Ma86) which givesa very clear and detailed account (with code) of one
method of proceeding, including the sort of logic needed to incorporate ISPF
split-screen mode. (You mustnotallow APL2 to be called twice! It has, as they
say, ‘unpredictable results’!) The key to the success of this methodis the use of
an AP101 stack to do a)RESET and then re-call the original (QLX) calling
function.
One small point; the full-stops (periods) don’t always showclearly in the code as
printed and there are nameslike ‘,HELP’, whichis not the same as ‘HELP’. Look
for suspicious indentations if in doubt. All in all, I recommendthis paper as a
goodplaceto start.
One thing the above paper doesn’t touch on is ISPF tables, but (IBM3) is quite
good here and has a worked telephone book example with two APL2 functions

128

VECTOR Vol.7 No.4

TELEBK and TELESY. This code can be tidied up somewhat butit is worth
coding up to learn about ISPFtables. One thing to be awareofis thatit is not
fully robust.If, for example, you try from the panelto delete a report before you
have created it, you will have a nasty ABEND.There are a few like this, all
sequence dependent, but they are easily covered byinitialising some flags in
TELEBK and trapping/switching them in TELESV to enforce correct
sequencing.
Thetelephone book and (Ma86) between them cover almost everything you need
to know about APL2 with ISPF. One exception is perhaps dynamic table
building, a useful techniquefor large tables. (IBM2) has a selection on this with a
worked PL/1 example. Even if you don’t know PL/1 this is easy to translate into
APL and gives a good insight, including how to use the excellent supplied
scrollingfacilities e.g. PF7, PF8. Also things like DOWN 500 or M for MAX on the
commandline, then PF8 to jumpstraightto the bottom ofthe scrolled data, etc.

With a properly set up ISPF system,there is no need to back out of menus; you
can jump from almost anywhere to almost anywhereelse. For example, ‘=3.4’
will go straight to option 3.4, and ‘=X’ will get you home wherever you are. Tf
you wantto do this sort of thing yourself, perhaps using GDDM,the logic is not
exactly trivial and with ISPFit is already donefor your.
Amongst the things I like about ISPFis the excellent help tutorial; you may need
to write some application-specific help panels, but all the stuff about scroll
commands,etc. is already there. Another thing is toggling the PF key display. A
beginner can type PFSHOW ON onthe commandline to get them displayed
and, whenthey are familiar, the PFSHOW OFFwill get rid of them. Apart from
the default PF key settings, application-specific ones can readily be set
dynamically.
One piece of advice is to never waste time typing in a complete ISPF panel;
instead, copy one of your own, or someoneelse’s, and changeit. For example, for
yourfirst ‘primary’ panel, pick the ISPF primary panel itself and modify a copy
of that. If you see a panel you like somewhere just type PANELID on the
command line to get its member name, then go look in the SYS...ISPPLIB
libraries, or wherever, to grab a copy.

Someone mentioned to me a while back that a possible problem with ISPF-APL2
was competition for attention interrupts. Our relations with our end users are
such that we can simplytell them notthe use the attention key and they meekly
obey. However,if this matters to you, I think it can be handled with an ‘attention
exit routine’ in the calling CLIST; this is discussed in (IBM2) but I have not tried
it yet.

129

VECTOR Vol.7 No.4

I like ISPF panels. The APL code is a little messy because everything (even
numbers) has to be passed as a characterstring, but the panels are easy to set up
(almost WYSIWYG)and a wholeraft of excellent data validation routines comes
ready-supplied.
ISPF is also available on the PC, I gather, but I have not tried it because you
cannotlink it to APL2/PC. IBM tell me that I am the first person to requestthis
option, and T hopethat they can find timeto buildit in.

AP124
This was IBM’s precursor to AP126 and allowed full-screen panels withoutthe
GDDM overhead. Well, IBM don’t supply this any more, so why bother to
mentionit? Firstly, old VSAPL systems converting to APL2(if there are anyleft
who haven't done so already) either have to rewrite the full screen work or
simulate this, perhaps even using GDDM (Yuk!). Fortunately I don’t havethis
problem. What I am moreinterested in are commercial packages like FSM124
from Interprocess Systems which simulates AP124 without using GDDM,andis
reportedly cheaper to use. I am hoping to test run this in the not too distant
future.
Coming down from the mainframe for a moment, I am also interested in
APL2/PC which doesn’t have AP126 but does have AP124 so I am also getting
involved there. The supplied workspace for AP124 (called AP124) does have a
modestfull-screen design function, FSDEF, but this requires all the individual
field parameters to be hard-codedinside application functions, which is not very
satisfactory for serious design work. Also, the code has been brought down from
VSAPLandis distinctly APL1, with a plethora of globalvariables, etc.
If you want an AP124 full-screen design kit, which itself exploits the full-screen
capabilities, then it’s (almost) all there in Adrian Smith’s book (Sm82), if you can
beg,steal or borrow a copy. You will need some modifications for the PC (see the
IBM PC manual) and, interestingly, you can now use overlapping fields for
things like adding a uniform backgroundcolour. Finally, you will need to get rid
of the embedded [JA¥ code, and(I'm sure Adrian would agree now that APL2 is
available) might nowadays prefer using a nested array to avoid those global
names.
Alternatively, if you prefer Dick Bowman’s GDDM approach, it is not too
difficult to modify this for AP124.

130

VECTOR Vol.7 No.4

Graphics
Of the above four methods, only GDDM will do graphics on the mainframe, but
as one keeps repeating, it is expensive. If you need mixed text and graphics
GDDMcan do this but, if your work is mostly text with a small graphics content,
consider using ISPF and calling GDDM from there, which is possible with the
latest release of ISPF.
I think, though, that these days many people would recommend downloading
the data to a PC and using one of the excellent PC graphics packages like
Harvard Business Graphics or Lotus Freelance, etc. This is the approach that we
now use.
Is GDDM obsolescent?

References
[Bo89]_ Bowman,R. ‘APL and GDDM -A High Performance Toolkit’ APL89

Conference Proceedings pp 43-53
[Ma86] Mayhew,L.‘Increasing Productivity with ISPF/APL2’ APL86

Conference Proceedings pp 243-251
[IBM1] ‘APL2 Programming: System Services Reference’ IBM PublicationSH20-9218-2 (Nov87)
[IBM2] ‘ISPF: Dialog Management Guide: MVS"IBM Publication SC34-4112-

00 Jun 87)
[IBM3] ‘ISPF: Dialog ManagementServices and Examples: MVS’ IBM

Publication SC34-4113-00 (Jun 87)
[Sm82] Smith, A. ‘APL - A Design Handbookfor Commercial Systems’ (1982) -

Outof print

131

VECTOR Vol.7 No.4

Appendix
VOVER(OIV
fo]
C4]
C2]
cad
Ca]
Cs]
[6]
C7]
[8]
C9]
[10]
[11]
C12]
£13]
C44]
C18]

R+TL_NM OVER PFMT;FF3M;I;F;R8;CS
a Check for overlapping fields
Benonnoononnnnenereeenee a
aM - 'Bitmap' matrix of screen. M[J;K] is :-
a 0 if unused, 1 if OK fld posn, >1 if overla,q--------------------------~--------------+
FF+(G+£2}1402]PFM?),C1]7L_NM a Add new fld
M+(SS- 0 1)90 a SS is global screen size
I+0
BLP:>((AtpFP)<I+*I+1)/OLAP
F*FF(I;](RS CS)+(~14+F01]+1F 03]) (W1+P C21 +1 F 64])
MURS; CS]+1+MERS;CS] a Note addition
+LPA~- -
OLAP:R+lei<,M a R - 4 if overlap, 0 if OK

132

VECTOR Vol.7 No.4

A Note on the Match Function in APL
by Joseph L.F. De Kerf

Abstract
In SHARP APL, empty arrays of the same structure always match. In APL2-like
implementations, empty arrays only matchif they are of the same structure and
prototype. As a compromise, the APL Working Group - designing the new
standard ISO APL Extended - defines the match function such that when the
arguments are empty arrays of the same structure a domain error is reported.It
is suggestedin this note that the definition of the match function for arrays with
the same structure should be consistent with the definition of the primitive scalar
function equal.

Introduction
In ISO APL 8485 (1), the dyadic scalar function equal Z+A=B is defined such
that, if the arguments 4 andB are arrays of the samestructure, the explicit result
Z is a booleanarray of the same structure as the arguments, containing a 1 where
the corresponding elements of A and B are equal, and 0 otherwise. If one
argumentis a scalar or one-item array, or if both arguments are one-item arrays,
so-called scalar extension is applied. If the arguments A and B do not conform,
an appropriate error message is reported. Comparison Tolerance [ICT is an
implicit argument.
Apparently there is no problem with this definition. With the introduction of
arrays of arrays however, a controversy has arisen about the new dyadic
function match Z«A=B. In some implementations, empty arrays of the same
structure always match. In some other implementations, empty arrays oftle
same structure only match if they are of the same prototype. Confronted with
this controversy, the APL Working group ISO-IEC/JTC1/SC22/WG3- designing
the new standard ISO APL Extended - defines as a compromise the match
function such that when the arguments are empty arrays of the samestructure a
domain error is reported.

The SHARP APL Approach
In SHARP APL(2), based on the groundedarray concept, the dyadic function
Z<A=B,if the arguments A and B are of the same structure and data, returns as

133

VECTOR Vol.7 No.4

explicit result Z a boolean scalar 1, and 0 otherwise. Two empty arrays of the
samestructure such as the empty character vector '' and the empty numeric
vector 10 match, as they have no elements; ''=10 «+ 1. The definition
conformsto Ken Iverson’s APL Dictionary (3).

The NARS Approach
In APL*PLUS NARS(4) and IBM APL2-like implementations (6), based on the
floating array concept, two arguments A and B match if they are of the same
structure and data, and if empty, they are of the same structure and prototype.
Two empty arrays of the same structure but different prototype, such as the
empty character vector '' and the empty numeric vector 10, do not match:
Tre1d <> 0.
Thebasic idea seemsto be that two arrays matchif and only if they behavein the
same way. For example, the first function +B applied to the empty character
vector '' gives a blank, while applied to the empty numeric vector 10 gives a
zero, and as such they do not match. However, match doesn’t guarantee the
same behaviour. For instance (the example is from a private communication by
Eugene McDonnell):

Ocr+1z°13
Ati
B+0,999999999999999
A=B

1
(1-A)21-B

9

The reason is of course that, such as for the dyadic scalar function equal,
comparison tolerance (CTis an implicit argument. If comparison toleranceis set
to zero, or the match function is defined as independent of comparison tolerance,
two non-empty arrays of the same structure which match, always behave in the
same way. Andin the example given above, A and 2 no longer match:

o¢r<o
Atl
B+0.999999999999999
A=B

0
(1-A)s1-B8

0

134

VECTOR Vol.7 No.4

Defining the dyadic function match as independent of comparison tolerance
however would produce situations which do not conform with the definition of
the dyadic scalar function equal and are unacceptable. For instance, the product
of an integer with its inverse could give a result which never matches the value
one:

A+100p1
B«Bx+B+1100
Ocr<1E-13
A=B

ocr+oA=B0
the discrepancies being dependentfrom the particular implementation used. For
the implementation used in preparing this note (VAX APLVersion 3 - DEC):

Ae100p1
B<100
Ocr<o
(A#Bx+B)/B

23°27 46 54 89 92

which means that for this implementation the identity Bx+B«+>1 does not hold
for the integers listed (23-27-46-54-89-92). Consistency of the concept match with
the basic idea of assuring the same behaviour seemsnotto befeasible.

The ISO APL Approach
In the meantime, the APL Working Group ISO-IEC/JTC1/SC22/WG3 is
preparing a new APLstandard, provisionally called ISO APL Extended. Atits
Copenhagen Meeting in August 1990, the APL Working Group decided that
"APL Extended must include the generalized array facility by defining the
functions enclose ¢ and disclose > (as defined by APL2)”. As far as the inclusion
of the dyadic function match is concerned however, it was clear that it would
be very difficult to come to a concensus aboutthe controversy described.
Finally, based on an earlier proposition from Eugene McDonnell (6), it was
decided to define the dyadic function match in such a way that, when the
arguments are empty arrays of the samestructure, a domain error is reported.
This gives the implementor the opportunity to choose - as a consistent extension
- whetherin this case the explicit is 1 or 0. This has no sense. In addition, as Jean-

135

VECTOR Vol.7 No.4

Jacques Girardot stated at the APL 90 Conference (7), "it means that what the
standard defines as a conforming program should not use A=B without first
checking the case of empty operandsof the same dimensions” - an unacceptable
situation.

Suggestions
There is however a plausible solution. APL, as every higher level programming
language, even assembler, contains a lot of redundancy. Redundancy increases
the power of a language, but redundancy mustbe consistent. For the dyadic
function match A=B for instance, this meansthat its definition must be consistent
with the definition of the dyadic scalar A=B as given above;if two arrays A and B
havethe samestructure, they should matchif and onlyif the conjunction 4 of the -
enlist of A=B is 1 or A=B ++ A/ENLIST A=B (ENLIST? R being a monadic
function that returns as explicit result a simple vector whose elements are all the
single scalars in the right argument R taken in eventually nested row major
order, as for instance the primitive function IR in some APL2-like
implementations and the monadic system function QENLIS? R in VAX APL
Version 3 of DEC). This gives for two empty arrays with the samestructure as for
instance the empty character vector '' and the empty numeric vector 10:

A/DENLIST ''=10

which means that those empty arrays match. Maybe the APL Working Group
ISO-IEC/JTC1/SC22/WG3_ could reconsider its decision taken at the
Copenhagen Meeting of August 1990. and discuss this proposal of consistency
which,as far as the authorof this note is concerned,is a must.

136

VECTOR Vol.7 No.4

References
(1]

22]
BI

i4]

B]

[6]

ISO 8485; 1989 (E); Programming Language - APL;First Edition ~ 1989 11-
01; Edited by A. Morrow;International Organization for Standardization-
ISO, Geneva, Switzerland, 1989. See also : ISO 8485 (F).
K.E. Iverson; Composition and Enclosure; SHARP APL Technical Note
SATN-41; LP.Sharp Associates Limited, Toronto, Ontario, 20 June 1981.
K.E.Iverson; A Dictionary ofAPL; Publication No. 0402 8703 E3, LP.Sharp
Associates Limited, Toronto, Ontario, March 1987. See also: APL Quote Quad,
Vol. 18, No. 1, September 1987, pp.5-40.
C.M. Cheney; APL*PLUS Nested Arrays System ~ Reference Manual;
Publication No. P046-0381; STSC, Bethesda, Maryland, March 1981.

D. Rabenhorst; APL2 Language Manual- Installed User Program 5798-D]B;
Publication No. SB21-3015-0 ~ First edition; [BM Corporation, APL
Development Department, San Jose, California, June 1982.
E.E.McDonnell; Rationale for the Match Function - Proposed textfor ISO
Document; APL Working Group ISO-IEC/JTC1/SC22/WG3-N200; Dated 19
May 1988.
JJ. Girardot; Arrays and References; APL 90 Conference Proceedings,
Copenhagen, Denmark, 13-17 August 1990; Edited by P Gjerlov; APL Quote
Quad, Vol. 20, No.4, July 1990, pp.161-172

137

VECTOR Vol.7 No.4

The Steam-Hammerand the Fly
by Gerard A Langlet

A French proverb says: “Never use a steam-hammerto smash fly”. It (orits
English counterpart) should be repeated on every page of any book ortutorial
devoted to APL.
Vigorously attacked in Vector 7.1 [1], I shall answerin a way that may notfulfilBob Bykerk’scriticisms completely, but as much as J can in a few pages; indeed a
whole book wouldbebetter - that may comein the future.
First, I have been programmingin APLfor almost 20 years, writing sophisticatedapplications for research and industry, i.e. some important subset of the “realworld”. Quite often, I also have to translate my algorithmsinto other compiledlanguages for various reasons; execution speed, compatibility with other existingprogramsor systems, absence of APL implementations, hatred or incompetenceof colleagues about APL, or simplythestill high cost of good APLinterpreters onsome hardware.
The real world has many manyconstraintsofall kinds, so, when programmingin APL, whichstill is the best language ever designed to test a new idea andbuild a prototype, it does not seem to me superfluous to think of what will comenext. The “RISC” programmingstyleis the fruit of hard experiments.It may notcorrespond to whatis taught in manuals about data structures and/or the usage
of APL notation. But I am nothing of a masochist, and I would gently conform toany other so-called “healthy coding style” if I were convinced of its realsuperiority. APL should not remainlike an ivory tower, the real world is indeeda multilanguage environment, full of traps e.g. ambiguous and fuzzy
(sometimes erroneous) data.
Many people often believe that the beauty and the expressive power of the APLnotation on paper, especially in extended implementations, will lead them towrite easily nice and efficient code. Just try R+e1”¥ with, for example,V«10000p3 4 5 0 2 3 onsome APL2 compatible interpreter and compare
the CPU time with R«V/V-+/V 0 R*«R+ipR.
Let us now talk about data structures; one is taught to represent sales data in 3
dimensions - salesman x month x year. Why not, if you just want to use thepower of +/ on any of the major axes? Butthis is in fact a simplistic case; one
might wantto extract much more sophisticated information from this array ~ see

138

VECTOR Vol.7 No.4

below. The ideal data structure has not been discoveredyet. It is certainly not an
array. It may be a “fuzzy fractal’. But some APL implementations (e.g.
APL.68000, APL90, and to a certain extent, Dyalog-APL and APL*PLUS), offer
fast reversible matrix to vector conversion tools such as 0B0X.
In general, a text page is shorter when kept as a vector. This is also true for
numeric data with heterogeneous length, but 0BOX accepts them only in thefirst
two implementations. Most of my data are keptin vectors, andif and onlyif it is
necessary to handle them in matrices, or in vectors of vectors, or in vectors of
matrices, they are TEMPORARILY, rapidly and internally reshaped with
automatic mechanisms which accept ANY of the possible data structures as
input.
Another item of my short letter to Vector [2] has been misunderstood. I never
wrote not to use locals; I think that locals should be avoided when they are
unnecessary, except e.g. for voluntary didactic purposes. I would appreciate an
extended APL implementation in which all one character names would be
automatically localised; this would savetyping time and space. Since I deprecate
the use of parentheses, APL expressions are shorter and do not lead so
frequently to the WS FULL message; then,I do collect the intermediate results
within the minimum oflocals. With “RISC” programmingstyle, I don’t burn my
bridges. My programs are easier to debug than before. Nobodyis obliged to
believe me;justtry, if you wish, andcriticise only in six months from now.
Try to write ex nihilo with branches, the PERM functionlisted in [3]. It is not an
easy way of doing it. Then, try to write a screen manager using some
combinations of the 3 buttons of a mouse as well as the key-pad, in order to
handle several recursive pop-up menu-windows withlifts, travelators, automatic
clipping, shadowsandhelpfiles. I did that once, in APL*PLUS PC, and I doubt
that I could have succeeded with branches andlabels [4].
Theresult is a short general-purpose RISC-APLfunction which respects several
other rules of my anathematised programminghabits; the display of a function
should not exceed the screensize, so that you never haveto scroll up or down to
see whatit does; every procedure (simply a characterstring or vector) is defined
before the one which usesit; the resulting code executes quickly in APL and can
betranslated easily i.e. by hand or with another small APL program into any of
the important programming languages in the real world outside APL (yes! it
doesexist).

139

VECTOR VoL7 No.4

Are Salesmen Fly-smashers?
Suppose we have 20 salesmen who have worked for 10 years from 1981 to 1990.
Y is the vector of the numberof daysin eachyear, andN its sum:

1 20xN++/O0+Y+1093 1/365 366
365 365 365 366 365 365 365 366 365 365
3652 73040

Let us introduce the following two functions. PSUM which produces the partial
sumsofB according to A, and EXECR which EXECutes A with Rank A

VR+A PSUM B;D;¥;0I0
Ca] OFO+4 9 De" AtpBe+\B o N+[Ds1[+/A © ReiN+|H¥xp,A 0 A*DL+\ipA 0 Nepps
(2] WM EXECR '8+0,-BCAJOR+H(R]~BCR+AJ'

v

VA EXECR A A APL,68000 Level It
[1] AttC',1the's' o e055 AULD! A a OSS accepts strand notation: ABC

v

VA EXECR A a APL.68000 Level I
C1) sOSS(As'C'sA+' Et, idea's") a OSS has 3 arguments (A;8;C)

v

Note: (15.5 substitutes every occurrence of B by C in character vector A.
Function PSUM is programmed“thinking of vectors”, but it also works, reducing
any rank array along the last dimension, due to EXECR which is a general
purpose tool (UST LOCK IT IF YOU DISLIKEIT), or adaptit to your own APL
implementation if you have no 95S.Rubit if you never use arrays.
Now,let us suppose that you want the results per week, per month, and per
semester. What will you do if you have organised your data in an array and ifyou cannotuse nested arrays? With vectors, heterogeneous groupings are easy.
The numberof full weeks in these 10 years is W+WLN+7, i.e. 521 and the number
of extra days in the sameperiod is #+7 |W i.e. 5. You may try: RW+7 PSUM 20
3652p if you just want to start “as the data are” and love reshaping, but whathappens if you wantfull weeks starting on Sundays- in the English way - or on
Mondays- in the French one? Incidentally, January 1st, 1981 was Thursday, so
that thefirst group of days is 3, and the last one is E- 3 when the week starts on
Sunday.

140

VECTOR Vol.7 No.4

K<20xpV+1 521 1/3 7,8-3
G<Kov
RSW+G PSUM T a for “Sunday weeks"

Nowlet D be the day/month-vector in a normalyear, reshaped for 10 years:

D+120934 28 34 30 31 30 31 31 30 34 30 31 9 F*120p12+0 1
M+2400pD+IA12/¥=366 9 S+G PSUM M 0 RM«M PSUM T o RS*S PSUM T

RMis the result per Month, and RS the result per Semester.
Note: “Replicate” is frequently used here. Although absent from The ISO-
Standard APL it will be in the next standard andis available in most present
implementations. Tf you have APL2, all this will also work; then, try to measure
CPUtimeusing enclosed arraysinstead... Will the fly survive?

References
{1] Bykerk, B. The Dangers ofAPL RISC programming, Vector, 7.1, 112.

[2] Langlet,G.A. APL RISC Programming Style, Vector, 6.2, 23-24,

[3] Langlet, G.A. The Travelling Salesman Problem revisited with APL, APL90
Conference, Copenhagen. APL Quote Quad,20.4, 228-232 July 1990).

[4] Langlet, G.A. Presentation of GLOS,all-purposesoftware integrator on PC,in
“Modelling of Molecular Structures and Properties”, Elsevier Science
Publishers, ISBN 0-444-88714-8, 767 (1990).

Ed: The above is a shortened version of Gerard’s original article, which was too long for
the space available in Vector.

141

VECTOR Vol.7 No.4

Submitting Material to Vector
The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+1 and discuss themes for issues n+2onwards. Please send the text of submitted articles (with diskette as appropriate)to the Editor:

Jonathan Barman,
Hill Top-House,
East Garston,
NEWBURY,Berks RG16 7HD
Tel: 048839-575 (not after 10,00pm please!)

Camera-ready artwork(e.g. advertisements) and diskettes of ‘standard’ material(e.g. sustaining members news) should be sent to Vector Production, c/o AdrianSmith, Brook House, Gilling East, YORK Tel: 04393-385 (6.00pm - midnight).
Product Guide updates should continue to go to Alison Chatterton, as shouldrequests for advertising space.

MicroAPLfor...
Consultancy and Training
MicroAPLhas10 years’ experience with small-computer APL systems-stand alone, networked or multi-user - and usingall the major versions of APL.Weprovidea full range of consultancy services including feasibility studies,
project management, programming, documentation and support services.Ourprogrammingskills coverall areas of APL and systems programming.MicroAPL also offer a comprehensive range of APL training courses.
For more details, contact David Eastwoodat:

COCLCCI]CC[I] SouthBankTechnopark
Lm|DI(cIR}folL 90 London RoadDar NNSEOOOOH

142

VECTOR Vol.7 No.4

Index to Advertisers

APL People (half)
Dyadic Systems Ltd
MicroAPL
APLBooklist (Renaissance Data Systems)

66
2,6

82,142
32

All queries regarding advertising in VECTOR should be made to Alison
Chatterton, at the address on the inside back cover.

143

VECTOR Vol.7 No.4

BAA: Membership Application Form
Membership of the British APL Association is open to anyoneinterested in APL.
The membershipyear runs from 1st May to 30th April.
Name:
Address Line 1:
 Address Line 2:

Address Line 3:
 Postor zip code:

Country:
Telephone Number:

Membershipcategory (please tick box): 91/92
UKprivate membership0...000. £12 QOverseas private membership £20 QAirmail supplement(not needed for Europe) .,........ £8 QCorporate membership00 00.0008 £100 QCorporate membership overseas£155 QSustaining membership0.0.0... 0.000000 £430 QNon-voting student membership (UK only)£6 Q
I authorise you to debit my Visa/Mastercard account
Number:

COT

TITTa Expiry date: [LL]
for the membership category indicated above,

QO annually, at the prevailing rate, until further notice
one year’s subscription only

(please tick the required option above)
Signature:
 PAYMENT

Paymentshould be enclosed with membership applications in the form of a UKSterling cheque to "The British APL Association", or you may quote your Accessor Visa number. Please send the completed form to:
BAA Administration, Alison Chatterton, 9 Oak Grove, HERTFORD $G13. 8AT, England

144

Chairman:

Secretary:

Treasurer:

Journal Editor:

Activities:

Education: Publicity:

| Technical:

Recruitment:

Projects:
Administration:

Editor:
Secretary:
Production:
Support Team:

TheBritish APL Association

‘The British APL Associationis a Specialist Groupofthe British Computer Society. It is administered by a Committee
of officers whoare elected by a postalballot of Association members prior to the Annual Genctal Meeting. Working
groups are also established in areas such as activity planning and journal production. Offers of assistance and
involvementwith any Association matters are weloomed and should be addressed in thefirst instance to the Secretary.

1990/91 Committee
Peter Donnelly Dyadic Systems Ltd.,0256-81125 Riverside View, Basing Road,

Old Basing, BASINGSTOKE,
Hants RG24 OAL

Anthony Camacho 2 Blenheim Rd,
0727-860130 ST ALBANS,/ Herts ALI 4NR.
Nicholas Small 8 Cardigan Road,
081-980 7870 LONDON E3 5HU
Jonathan Barman, Hill Top House,048839-575 East Garston, :

NEWBURY,Berks RG16 7HD
Dr Peter Branson Electronic Data Systems, Stockley Park,
081-848-8989 UXBRIDGE, Middx UB11 1BQ
Dr Alan Sykes European Business Management School
0792-295296. Swansea Univetsity,

Singleton Park, SWANSEA SA2 8PP
Jonathan Martin (S499) British Airways,
081-562 5697 PO Box 10, Heathrow Airport,

HOUNSLOW,Middlesex TW6 2JA
David Eastwood MicroAPL Ltd
071-922 8866 South Bank Technopatk,

90 London Road, LONDON SE1 6LN
Jill Moss APL People Ltd, The Old Malthouse.
0225-462602 Clarence St., BATH, Avon BAI SNS
John Searle 13A Mount Ararat Road,
081-948 6737 RICHMOND,Sutrey TW10 6PQ
Alison Chatterton 9, Oak Grove,
0992-552489 HERTFORD,

S8G13 8AT

Journal Working Group
Jonathan Barman 048839-575
Anthony Camacho 0727-860130
Adrian & Gill Smith Brook House, Gilling East, YORK (04393-385)
John Searle (08 1-948 6737), Ray Cannon (0252-874697),
Sylvia Camacho, Bridget Batman, Gill Smith

Typeset by APL-385 with MS Word 5.0 and GoScript
Printed in England by Short-Run Press Ltd, Exeter

Mitetela]

p
C
O
)

ERUC
C
C
T
M
e
m
e
RURi

i
a
l
Meeee

e
U
M
M

gleCremeeriee
m
e
r
eS

intheUKandoverseas,TheBritishAPLAssociationtsaSpecialistGroupof
theBritishComputerSociety.

APL
standsfor"A

Programming
Language”

-an
interactivecomputer

languagenotedfor
itselegance,

concisenessand
fastdevelopmentspeed.

Itissupportedon
many

timesharing
bureaux

and
on

most
CreC

M
U
M
u
l
a
n

ltciedSUSTAININGMEMBERS

TheCommitteeoftheBritishAPLAssociationwishtoacknowledgethegenerousfinancialsupportofthe
followingAssociationSustainingMembers.Inmanycasestheseorganisationsalsoprovidemanpowerand
CTTSCNc

S
t

iem
M

Wacetelei
M
a
c

lmelteta

APLPeople
The Old Malthouse
Clarence St,BATH, BA1

SNS
mi)evrav.10)

CoreenateeMC
15FrederickSangerRd
SurreyResearchPark
UILDFORD,Surrey

GU25YD
C
R
O

ieeee
fechassmsliraes)
L
A
R
C
i
e

ed
L
a
L
a

RRe
S

ute
peee
e

eraay
C
y

ARE
a
r
)

Fax:071-3533325
lorcetR

e
aC)

DEMCUTneeema
ee)ee)

A
l
e
a

Tel:071-4369481

O
i
a
a

ees m
o

LONDON EC2A 480
Tel:071-867 1166
ieHerhelar

IntelligentProgramsLtd
T
A
M
A
(mexAy

6-10SampsonSt
eeere=

a
S
C
R
A

tieLe)
DyadicSystemsLtd
G
e
m

ACMEECII
Malten

OldBasing,BASINGSTOKE,
Hants,

RG24OAL
Tel0256811125
L
e
e
R
S
)

APL
ImpetusLtd

ahLeerCemed
IvyHatch,SEVENOAKS
Kent

TN15OPD
Tel:0732-885126

MicroAPLLtd
R
S
e
t
Laeeared

SON
m
a
r
c

LONDONSE1
6LN

Tel:071-9228866
PeterCyriaxSystems
raerea

eo)
eee
e
k

aal
Tel:071-624-7013
UT

nelerdelsie)

TheBritishComputerSociety,13MansfieldStreet,LondonW1M
OBD.

