The Journal of the
British APL Association

_ A Specialist Group of the British Computer Society

“Featuring J

- Hui and Iverson - J questions

answered

- Mcintyre on Hooks & Forks
+ Chapman on Cross-clocks

... plus

- Educational Supplement
« Statistics Library News

- Crossley on Panel Design

ISSN 0955-1433

94
101
124

17
33
74

Vol.8 No.3 January 1992 j'

Contributions

All contributions o VECTOR may be sent to the Journal Editor at the address on the inside back cover. Letters and
articles are weleome on any topic of inferest to the APL community. These do not need to be limited to APL themes,
nor must they be supportive of the language. Articles should be accompanied by as much visual material as possible.
Unless atherwise specified, each item will be considered for publication as a personal statement by the author. The
editur accepts no responsibility for the contents of sustatning members® news, or advertising.

Please supply as much material as possible in machine-readable form, ideally as a sitnple ASCII text file on an 1BM
PC compatible diskette (any format). APL code can be accepted as camera-teady copy, of in workspaces from I-APL,
APL*PLUS{PC, APL*PLUS II, IBM APL2/PC or Dyalog APLf386.

Except wheze indicated, items in VECTOR may be freely reprinted with appropriate acknowledgement. Please inform
the editor of yout intention 1o re-use matetial from VECTOR.

Membership Rates 1991-92

Calegory Fee Vectors Passes
UK Private £12 1 i
Overseas Private £20 1 1
(Supplement for Airmail) £8

UK Corpotate Membership £100 10 5
Overseas Corporate £155 10

Sustaining £430 50 5
Non-voting Student £6 1 1

The membership year runs from 1st May to 30th April. Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passes ate requited for entry to some assoctation
events, and for vating at the Annual General Meeting. Applications for student membership will be accepted on a
recominendation from the course supervisor. Overscas membership rates cover VECTOR surface mail, and may be
paid in sterling, or by Visa or Mastercard at the prevailing exchange rate.

Cotporate membership is offered 10 erganisations whete APL is in professional use. Corporate members reccive 10
copies of VECTOR, and are offered group attendance at associatien meetings. A contact persen must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is scen as 4 method of promoting the
growth of APL interest and activity., As well as receiving public acknowledgement for their sponsorship, sustaining
members reecive bulk copics of VECTOR, and arc offered news listings in cach issuc.

Advertising

Advertisements in VECTOR should be submitted in typesct cameta-ready AS pertrait format with a 20mm blank
border. [lustrations should be black-and-white photogtaphs or line drawings. Rates are £250 per full page, £125 far
half-page or less {there is 2 £75 surcharge per advertisement if spot colour is required).

Deadlines for bookings and copy arc given under the Quick-reference Diary. Advertisements should be booked with,
and sent to, Gill $mith, whose address is given on the inside back cover.

Corrections to Vector 8.3 January 1992
Quick Reference Diary 1992 [page 5]

There was a small failure of communication and it led to the omission
of the Tutorial in J meeting from the list.

The 27 March meeting will be A Tutorial in J by Donald McIntyre.

Utilities and coding standards for robust systems by Smith and
Jordan with an ISO update will be on 1 May. :

The 1992 International APL Conference will be in St Petersburg from
6-10 July. To get on the mailing list write to APL 92 Conference Office,
PO Box 43, SF-00331 Helsinki, Finland. If you are on email send to the
conference office in Russia at APL92 @sms.ccas.msk.su or to the
conference office in Finland at Juvonen@hekvm.vnet.ibm.com. We hope
Vector 8.4, to be distributed in April, will have abstracts of the papers
and details of the workshops and other attractions.

Earlier Dates for Future Issues of VECTOR

We have had to bring forward the dates because we are determined to
have Vector Vol 9 No 1 distributed at APL 92 on 6 July 1992 in St
Petersburg. All dates for 9.1 should be a fortnight earlier. Sustaining
members and advertisers please note that what we don't receive by the
end of May (earlier if possible please) will not be printed; there is no
slack in this schedule.

We consequently have to ask for 8.4 dates to be brought forward too.
Please send all copy by 15 February and advertisements by 28
February (but sooner if possible please).

British APL Association Meetings for 1992 [page 7]

Please note that the meeting listed as 27 March should be listed for 1
May. The meeting on 27 March will be A Tutorial in J. Donald
Meclntyre is coming from Scotland to give the tutorial which will last
the whole afternoon. Copies of J and the J publications will be on sale.
We hope to arrange for people to bring and use their portable and
notebock PC compatibles to try out for themselves what they learn.

Education Vector is Edited by Alan MAYER

Updating the contents list from 8.2 to 8.3 we omitted to change the
Editor of Education Vector; it should, of course already have been
changed. Alan Mayer succeeded Alan Sykes as Education Officer at the
AGM and has edited Education Vector ever since.

Apologies from the Vector team to all affected by these mistakes.
Anthony Camacho Secretary 20 January 1992

VECTOR

Vol.B No.3

CONTENTS

Editorial:] is for January

APL NEWS

Quick Reference Diary
British APL Association Meetings for 1992
APL9] Final Report
General Correspondence
British APL Association News:
News from Sustaining Members

The Education Vector

The Random Vector
REVIEWS SECTION

APL Product Guide

Book Review: Programming in J

APL and J: Some Benchmarks

RECENT MEETINGS
Panel Design: An APL Programmer’s Toolkit

SPECIAL FEATURE: J is for January

J Questionnaire

] Questions and Answers
Questions
Answers

Hooks and Forks and the Teaching
of Elementary Arithmetic

Cross—clocks in]

TECHNICAL SECTION

Hackers Corner: More about VGA Colours
Technical Correspondence
Arrays with Style

Index to Advertisers

Jonathan Barman

Charles Schultz

Alison Chatterton

Alan Sykes

David Eastwood

Alison Chatterton
Keith Smillie

Malcolm Rigg

David Crossley

Jonathan Barman

Jonathan Barman
Roger Hui and Ken Iverson

Donald B. McIntyre

Paul Chapman

Adrian Smith
De Kerf and Spunde
Adrian Smith

Page

= 00~ Ul

s

17
33

57
67
70

74

90

94

101

124

132
136
140

143

Some things are
worth the wait

APL.68000 is not the only APL available for IBM’s
RISC System/6000. But no other APL running on the
RISC System/6000 offers all these features:

. MicroAPL’s acclaimed windowing interface

. Seamless integration with X-Windows

. Adherence to OSF/Matif style guidelines

. Very close compatibility with APL2/370

. Binary workspace compatibility across -
platforms

. High performance through MicroAPL’s unique
"Portable Assembler” ™ technology

APL.68000 for the IBM
RISC System/6000

Fourth to announce.
First to get it right.

MicroAPL Ltd.

South Bank Technopark
90 London Road
LONDON, SE1 6LN
Telephone: 071 922 8866
Fax: 071 928 1006

ML I
A|P

O
o)
O

—

All Trademarks ok nowledgped

Corrections to Vector 8.3 January 1992
Quick Reference Diary 1992 [page 5]

There was a small failure of communication and it led to the omission
of the Tutorial in J meeting from the list.

The 27 March meeting will be A Tutorial in J by Donald MecIntyre.

Utilities and coding standards for robust systems by Smith and
Jordan with an ISO update will be on 1 May.

The 1992 International APL Conference will be in St Petersburg from
6-10 July. To get on the mailing list write to APL 92 Conference Office,
PO Box 43, SF-00331 Helsinki, Finland. If you are on email send to the
conference office in Russia at APL92 @ sms.ccas.msk.su or to the
conference office in Finland at Juvonen@hekvm.vnet.ibm.com. We hope
Vector 8.4, to be distributed in April, will have abstracts of the papers
and details of the workshops and other attractions.

Earlier Dates for Future Issues of VECTOR

We have had to bring forward the dates because we are determined to
have Vector Vol 9 No 1 distributed at APL 92 on 6 July 1992 in St
Petersburg. All dates for 9.1 should be a fortnight earlier. Sustaining
members and advertisers please note that what we don’t receive by the
end of May (earlier if possible please) will not be printed; there is no
slack in this schedule.

We consequently have to ask for 8.4 dates to be brought forward too.
Please send all copy by 15 February and advertisements by 28
February (but sooner if possible please).

British APL Association Meetings for 1992 [page 7]

Please note that the meeting listed as 27 March should be listed for 1
May. The meeting on 27 March will be A Tutorial in J. Donald
Meclntyre is coming from Scotland to give the tutorial which will last
the whole afternoon. Copies of J and the J publications will be on sale.
We hope to arrange for people to bring and use their portable and
notebook PC compatibles to try out for themselves what they learn.

Education Vector is Edited by Alan MAYER

Updating the contents list from 8.2 to 8.3 we omitted to change the
Editor of Education Vector; it should, of course already have been
changed. Alan Mayer succeeded Alan Sykes as Education Officer at the
AGM and has edited Education Vector ever since.

Apologies from the Vector team to all affected by these mistakes.
Anthony Camacho Secretary 20 January 1992

VECTOR Vol.8 No.3

Editorial:] is for January

by Jonathan Barman

Vector. The issue contains a wide range of material: a tutorial by Donald
cIntyre, a real problem solved in | by Paul Chapman, the future of } and hints
on programming style by Roger Hui and Ken Iverson, comments from people
who have already got], and comparative timings using the Smith bench marks.
All this should help you decide if you want to invest your time in exploring the
world of J.

!{' is Ken Iverson’s new dialect of APL, and is the theme for the January issue of

The very first steps learning] are easy, but the going rapidly gets more and more
difficult. Really learning the language is extremely hard work, but I think worth
the effort. T found it quite nostalgic studying] as I kept being reminded of when T
learnt APL from a quick reference card. It was fun discovering the powerful
features available and then speculating on how they might be used in some
arcane and quite unexpected way.

The definition of the language is the Dictionary of |. It is very precise and terse,
taking a mere 18 pages to describe every aspect of a large language containing
some 180 features. In places it is quite difficult to understand. One feels that each
word has to be studied with the greatest care to extract every possible nuance
and shade of meaning. However, after a while one begins to appreciate the way
in which it is laid out and to enjoy the concise descriptions.

The learning technique suggested in Programming in [is to discover for oneself
how things work by experimentation at a machine. In general this is good advice,
and given plenty of time it would be possible to discover exactly how every
aspect of the language works by this means. Unfortunately, time is limited and
experimentation can be very time consuming. It would be marvellous to have an
extended description, with examples, of each feature of J.

I recognised many features of | from papers which have been published in the
APL conference proceedings. In some cases ideas have changed since the original
papers, but they were most illuminating as they go into detail on how and why
the feature is designed, and give extended examples of their utility. It would
seem to be reasonably straightforward for someone to collect all the relevant
papers, bring them into line with the current version of], and to publish them as
an amplification of the Dictionary.

VECTOR Vol.8 No.3

The 151 catalogue states that] is particularly intended for use in education and
research. It is possible that] could become used general programming when it
has settled down and can be linked with other faciliies. Link] enables C
programs to call] and vice versa, so] could be a component of major systems, 1
could well see myself starting to use] sericusly when I can see how tolink it to a
user interface such as Windows 3 and to a reporting system. Until this has been
demonstrated, though,] is for me strictly for play.

] is still in the process of rapid development. New versions seem to come out
every few months, though Ken Iverson says that the future pace of development
will be slower. The articles in Vector cover versions 2.9 to 3.5x4, and by the time
you receive Vector versicn 4 should be available. It is good to know that users
are being listened to, and that when difficulties are experienced the language can
be changed quickly, but one wonders why such frequent changes are necessary.
Thank goodness that there is no need to worry about upward compatibility. 1
have seen so many cases in the 4GL world where features have been bolted on,
resulting in a mass of strange and inconsistent syntax.

Because | is shareware the cost of a trial copy is easily affordable, and T am sure
that many people will want a copy to see what it is like. Vector will continue to
cover | and its developments. At some time in the future this could become an
important language.

Forthcoming Change of Administrator

Alison has very nearly had enough! Look out for changes in advertisement
booking, Product Guide Updates, and the address for membership renewals. Full
details will be in Vector §.4, but current intentions are:

« all membership administration will be transferred to Rowena Simall, at 8
Cardigan Road, London E3 5SHU (Tel: 081-980 7870)

+ all Vector related activity will come to Gill Smith, at APL-385, Brook House,
Gilling East, York (Tel: 04393-385)

Watch this space {carefully?)

VECTOR Vol.8 No.3

Quick Reference Diary 1992

Date Venue Event
14 Feb 1892 |EE London BAA Meeting
27 March IEE London ISO Pragress Report +

Utilities and coding standards for
robust systems (Smith & Jordan)

1 May |IEE London BAA Meeting

12 June |EE London BAA AGM + 25 years of APL
25 September IEE London Vendor Forum

23 October IEE London Field trip to Morgan Stanley
27 November IEE London BAA Mesting

Starting from February 1991, all British APL Association meetings will be held in
the TEE, Savoy Place. Nearest tube outlets: Temple or Embankment.

Meetings are normally held on the 3rd Friday of the month throughout the
autumn and spring.

Dates for Future Issues of VECTOR

Vol.8 Vol.9 Vol.9

No.4 No.1 No.2
Copy date 1st March 92 1st June 92 1st Sept 92
Ad booking 1st March 82 1st June 92 12th Sept 92
Ad Copy 12th March 92 14th June 92 21st Sept 92
Distribution April 82 July 82 October 92

Cocking & Drury Ltd

Your sele UK supplier
of the entire APL*PLUS software range

including:

APLAPLUS PC
APL*PLUS II for the 386
APL*PLUSII for UNIX
APL*PLUS VAX/VMS
APL*PLUS Mainframe
as well as Run-Time and Run-Time Developer Kits

and all delivered ex-stock!

The only dealer autherised to provide maintenance and support for APL*PLUS

All software prices include 12 months free maintenance, with free upgrades (except
APL*PLUS PC).

We also offer a wide range of courses in APL and the most experienced APL
consultancy service in the country.

Whatever your APL needs - call the experts first.
Cocking & Drury Ltd 130 Tottenham Court Road, LONDON W1P 9LE

Phone 071-436 9481 Fax 071-436 0524

VECTOR Vol.8 No.3

British APL Association Meetings for 1992

14 February 1992
1. SEEK, an APL associative knowledge base. Graeme Robertson.
2. Uses and abuses of APL2 for documentation. Ron Wilkes of IBM.
3. Report on the progress developing the APL Statistics Library.
4. Mastering J. A video of Donald Mclntyre delivering his paper at APL91.

27 March 1992

1. Report on the progress of the ISO APL language standards, and how this
affects the future of APL.

2. Write a system with 10% of the code! Adrian Smith will tell us how a
properly constructed utility library can be used to maximum advantage, so
that only 10% of the system actually needs to be written from scratch.

3. APL ceding standards and methodologies for robust systems: Maurice Jordan.

12 June 1992
1. Annual General Meeting.

2. News from SigAPL and their idiom collection, by Dick Bowman. Remember
the FinnAPL idiom list? We are expecting great things from the SigAPL idiom
list, which should cover a much widet range, and include idioms for many of
the dialects of APL.

3. 25 Years of APL. Video of the panel discussion at APL91 where the founders
of APL reminisced about events over the last 25 years.

25 September 1992

Vendor Forum. Learn about the latest products and plans from the major vendors of
APL - Dyalog APL, IBM, MicroAPL, STSC/Cocking & Drury. Shareware will be
represented with LAPL,] and Sharp APL. In previous years the Vendor Forum was held
in May. Moving the date to September will enable vendors to report on the
announcements that they have made at the previous APL conference.

23 October 1992

Field trip to Morgan Stanley. John Searle has organised a visit to the new Docklands
offices of Morgan Stanley, where we can see how three versions of APL are used lo
creale efficient systems. The super fast language ‘A’ is unique to Morgan Stanley, and
they also use Dyalog APL and Sharp APL.

VECTOR Vol.8 No.3

APL91 Final Report

by Charles Schultz

We were glad that so many of you could travel to APL91 in this year of uncertain
international events and economic problems. We were gratified to hear many
compliments and to see the (mostly) positive reviews in the previous Vector. Of
course there were some problems. A couple of years ago, when some of us were
first thinking of hosting APL91, 1 thought “Hmm, I've been to a lot of these
conferences, 1 know what I've liked and not liked - sure, we could do this.” 1 can
now report that I, for one, have learned my lesson.

Attendance

The final full registration was about 370, representing 22 countries. We had an
additional 75 spouse and child registrations. About 40 attended the CASE
Sunday tutorial, and 30 attended the Sunday introduction to APL tutorial.

Outreach Publicity

We undertook several efforts to reach outside the APL community. We sent
press releases, calendar notices, and other materials to 700 magazines and
newspapers. In California, we sent materials to 200 scientific centers, such as
university and corporate research institutes. We sent introductory tutorial fliers
to 350 high schoecls in the Bay Area and 250 college computer science
departments.

We solicited vendor interest among producers of word processors to handle APL
features and gain access to an international community, of terminal emulators to
handle APL ecommunications, and of hardware that runs APL. We even invited a
list of Silicon Valley celebrities to the closing picnic. Steve Jobs did give his
personal regrets by telephone; John Sculley had his secretary do it for him.

Author Kit and Font Table

We were ambitious about contributing to momentum on author tools, since we
view the AFPL publishing problem as one of the reasons it is se difficult to
promote APL. We requested author tool proposals from several individuals. The
few tool proposals we received were interesting, but not in an “install and go”
form that we could pass on. All had dependencies on computer system, word
processing software, and APL system. The only tool we were able to publish was

VECTOR Vol.8 No.3

an TBM BookMaster style file for the paper format (BookMaster contains
standard APL features).

We requested informaticn from all authors on the word processing systems they
were using (very few provided this), We solicited WordPerfect and Microsoft as
the leading word processing vendors to take a vendor booth and to consider
providing an AFPL font to capture an international market of APL programmers.
We included references to some PostScript font work that has been done. Jan
Engel, the proceedings editor, is now corresponding with a contact at
WordPerfect. TBM is now working on a PostScript APL font for OS/2
Communications Manager.

The Font Table at the conference was conceived as a result of all the troubles we
had with publishing APL for the proceedings. We hope this effort will continue
in and outside future conferences towards some distinet and “pluggable”
solutions.

APL91 Museum (George L. Mendonsa)

The APL Museum at the APLY] conference was set up ad hoc toward the end of
the conference preparation period, as other more pressing items fell into place.
George Mendonsa, with the assistance of Jan Engel, put the Museum together.
(Because of its informal nature and set-up a more appropriate term might have
been “Scrapbook” instead of “Museum”.)

The museum was initiated to take advantage of the historic nature of the
conference, a desire to begin to identify APL material of potential interest, and to
find out the nature of the interest in such an endeavour. Calls for contributions to
the museum were made to likely sources in part suggested by the APL91
committee. These people in turn suggested other sources. Contributors were
asked to provide materials in one of 2 categories:

1. [tems of Historical interest in the evolution of the APL milieu.

2. Related items of APL interest which were not necessarily historical.

We had about 25 to 30 contributors who included APL92, Linda Alvord, Ev Alan,
Paul Berry, Larry Breed, Jim Brown, Carl Cheney, Ed Cherlin, Jan Engel, Adin
Falkoff, Garth Foster, Vern Griffith, Interprocess, Curtis Jones, Ken Iverson, Gene
McDonnell, Don Mattern, George Mendonsa, Don Peter, Marilyn Pritchard,
Lynn Shaw, Bob Stephan, 5TSC, Rex Swain, and Joey Tuttle. The Museum was
coordinated by George Mendonsa. Larry Breed had an extensive collection of
items and was available at the Museum for much of the time. Lew Robinson, Jan
Engel, Bob Stephan, Carl Cheney also acted as Docents at various times.

VECTOR Vol.8 No.3

Items on display included buttons, books, papers, documents, and items from
previous APL conferences such as The APL jig-saw puzzle, APL Tool-kit, Apple
Blossom Time record, 1130 keyboard, Proceedings, T-shirts, etc. Larry provided
the listing of the very first logon to APL. This was duplicated and handed out at
the conference. Linda Alvord had sent The APL Genealogy project report (begun
at APL88) which was displayed and added to at the conference by over 100
individuals. Don Mattern demonstrated his Ampere W5-1 APL laptop. Don
Peter set up an on geoing demo of the IBM 5110. We also had a book as a
memorial to Alan Perlis, Mike Montalbano, and Bill Bergquist which included
some of their works. Interprocess had a collection of 40 APL buttons.

The Museum was well attended with over one half of the conference attendees
stopping by. As indicated there does seem to be a interest such a facility at
conferences.

Let us be very clear: this was a one time experimental event. The museum ceased
to exist at the end of the conference. All items with a few exceptions were picked
up by the contributors when the Museum closed. There was an attempt at the
conference to determine who was interested in creating some such repository.
Although a few exptessed interest, no formal funded organization is in place. If
you are interested in such a function, perhaps you could volunteer to your
national APL organization.

It may be difficult to have an actual museum, but an on-going Ad Hoc portable
museum (or scrap-book) could be put together for future conferences (as was
demonstrated by this one). But even more important would be a repository. This
would be a listing of items of interest that people had that: 1. they would like to
contribute to a museum or 2. they would retain themselves but would like other
people to know about.

Further, a repository could be created for each country and perhaps maintained
and exchanged through the national APL organizations. Also, the genealogy
project could continue as an ongeing activity in each Museum.

10

VECTOR Vol.8 No.3

General Correspondence

From: Phil Last 2nd December 91

Everybody is welcome, whether they are a member or not
LENGTH ERROR
Everybody Is welcome, whether they are a member or not
s}

Scalar extension is not implemented in English. Grammatically correct would be:

Everyone is welcome, whether one is a member or not.
Everyone is welcome, whether he is a member or not.
All are welcome, whether they are members or not.

One could argue that the Regal usurpation of the pronoun ‘one’, albeit that its
proper use {c.f. Fr ‘on’, Ger ‘man’} is Not in place of ‘T', renders this usage
obsolete.

He could argue that the sexist connotations associated with the pronoun 'he’
render this usage controversial.

She could elide the pronoun and verb, giving:
Everyone is welcome, whether a member or not.

The qualification is tautological in any case. In fact, it hardly qualifies as a
qualification:

Afw v

In other words if we take ‘Everyone” as our universe of discourse, then it must
subsume:

‘whether a murderer ot the English Language or not’
‘whether the Editor of Vector or not’

... and the union of any other set with its complement.
This leaves us with a fairly concise {(as is usual in APL contexts):
Everyone is welcome

... OF to revert to the plural:

All are welcome

11

VECTOR Vol.B No.3

News from Sustaining Members
Compiled by Alison Chatterton

Cocking & Drury

There has been a small change in ownership at Cocking & Drury. Peter Day has
purchased a majority stake in the subsidiary Cocking & Drury (Software) Ltd. He
is now responsible for all aspects of the business to do with software sales (for
STSC - APL*PLUS and Statgraphics; and Digitalk - the Smalltalk/V range).

Romilly remains Managing Director of Cocking & Drury Ltd and responsible for
consultancy and training work - again both APL*PLUS and Smalltalk/V.

The two companies continue to operate from the same premises, with the same
telephone numbers etc. Romilly will be assisting Peter in his field, and vice-
versa. Cocking & Drury Ltd still holds a substantial minority stake in the
Software company.

This change has brought about a considerable injection of capital into Cocking, &
Drury, helping to keep the wolf well away from the door during the current
recession. Customers can, therefore, continue to rely on the high quality of
service and support they have been used to in the past, and we at Cocking &
Drury will be continuing to invest in our future in both APL*PLUS and
Smalltalk.

Free copies of the upgrade to APL*PLUS II for the 386 Version 3.5 were sent to all
customers on maintenance during November. This upgrade gives the ability to
run as a non Windows application under Windows. Version 4 is currently in Beta
test and will include an interface to the Paradox engine and other major
additions. Release is expected late February.

STSC are concentrating their development efforts on the APL*PLUS 1l systems
for 386/486 PC’s and for Unix, We expect to see full Windows support for the PC
product in the not too distant future and, with the inclusion of a Dynamic Link
Library, the ability to use APL*PLUS as the co-ordinator of a suite of software or
‘as a calculating engine with other products, like Smalltalk/V, as the front-end.

It is rewarding to see more and more customers moving their applications from
the APL*PLUS PC environment to the II system and reaping the rewards of the
greater speed and the large workspaces without significant recoding.

12

VECTOR Vol.8 No.3

STSC have also applied the 32-bit technology to their Statistical graphics package
Statgraphics. The launch of Statgraphics Plus removes the limits on data-set sizes
that existed in the original product and make an already popular package an
outright winner for data analysis.

The next issue of our magazine ‘Upgrade’ will be distributed in January, if you
don’t think you are on our distribution list - drop us a line. We are also holding a
Showcase event in our offices on Thursday February 13th. If you would like to
come along to see the latest developments in the APL*PLUS (and Smalltalk/V)
worlds - and demonstrations of applicaticns using both technologies; give us a
ring.

MicroAPL Ltd

MicroAPL is pleased to announce that we have been appointed by IBM (UK) as
the ‘Software Sales Representative’ for IBM's APL2 mainframe and PC software.
MicroAPL are one of the first of a new type of sales representative to be
appointed by IBM to help to promote specialist software products such as APL
and we will be acting in cooperation with IBM's regular sales force and as part of
that sales force.

Starting through eight pilot branches, we shall be visiting major APL accounts
and discussing the ways in which APL is used and to promote awareness of
IBM's range of APL software. IBM (in its recent APL2 Version 2 announcement)
has reaffirmed its support and enthusiasm for APL2 - ‘... Customers should
continue fo choose APL2 as a language when it is appropriate, and should not
plan to convert existing programs from APL2 to another language solely because
APL2 is not a designated SAA language...”. Here at MicroAPL we shall be
vigorously supporting this approach and at the same time seeking to find and
highlight new areas of suitability for APL in partnership with other software
tools. We shall also be making sure that APL2 users are given access to a full
range of support, training and consultancy services.

Our appointment coincides with the announcement of Version 2 of APL2
(mainframe) which brings important new features for users of APL2. These
include the ability to process files as variables without bringing the file into the
workspace (AP12); improved workspace storage management and page release
performance; the return of AP124%; major new additions to facilitate cooperative
processing including cross-system shared variables, support for TCP/TP (AP119)
and a remote session manager; and a range of enhancements and additions to
existing facilities. The full details are too numerous to include here, but if readers

13

VECTOR Vol.8 No.3

have not seen the APL2 Version 2 announcements, please contact us for full
details. APL2 Version 2 has a planned availability date of March 1992.

David FHastwood is currently managing MicroAPL’s relationship with TBM, but
other members of staff will be involved as the project picks up momentum.

Turning now to our own products, APL.68000/X is now nearing the end of its
beta test program and represents our most advanced version of APL.68000. We
have added a wide range of significant new features for the RISC System/6000,
many of which will move onto other versions of APL.68000 (such as the
Macintosh version). The bulk of our activities with APL.68000/X have been to
produce an application which is genuinely compliant with the user interface
standards prevalent on the RISC System/6000. At the APL level, we have
included on-line Help for the first time (by default this is the full APL.68000/X
manual but users can add their own Help files) and introduced new facilities to
allow users to edit, save and load their APL.68000/X session details. We have
also added a full set of high level tools to permit APL programmers to produce
sophisticated windowing applications using a range of APL facilities rather than
low level C routines. We have at last formalised our interface to native files by
implementing a series of native file system functions ([INREAD etc.) which are
compatible with other implementations of these system functions.

Impetus Limited

We are now reaching the end of an extensive development of Impetus which is a
Corporate Modelling and Reporting Product. This has taken nearly two years
and has involved the production of an additional 600,000 bytes of APL (Impetus
is now about 1.4 megabytes of code} and the writing and production of over 800
pages of documentation. We have also produced nearly half a megabyte of on-
line help screens.

The development has been in three main areas. Firstly, we have built extensive
business graphics which is tightly integrated into the rest of Impetus. Secondly
we have added menu facilities to enable the user to browse around the data in
the project and to browse around the facilities in Impetus. Thirdly, we have
removed any need for the user to understand APL.

This last change was especially important as a user sits in APL Command Mode
and invokes Impetus functjons, The user is not encapsulated in code which limits
the facilities. In a sense Impetus is an open architecture system and the user can
add new functions written in APL. In the past this was necessary for successful
operation but this is no longer the case. The Impetus language is now rich

14

VECTOR Vol.8 No.3

enough to make the use of APL unnecessary, but it does not preclude the APL
speaker from using APL if that is the user’s desire.

We have also changed our trading style and have dropped APL from our
company name and are just Impetus Limited.

APL People Limited

I'd like to take this opportunity to wish everybody a Happy (and prosperous)
New Year! 1991 wasn't an easy year for anybody, companies and individuals
alike, and the APL Community has not been immune to the effects of the
recession (APLers can be made redundant like anybody else). I was pleased that
I was able to help a number of people to find employment in difficult times.
Don't give up hope, those of you who are still looking, - things are bound to
improve this year. [am convinced that the worst is over and that demand for
people with APL skills will increase this year. Anyone wishing to discuss the
current state of the employment market and what his or her prospects might be
in 1992, is welcome to call me (see our advertisement for the telephone numbers).

& APL PEOPLE

Serving the International APL Community

Consultancy advice and assistance with all aspects of
APL systems development

Recruitment unique placement service for companies
and individuals

Software Competitive prices on all APL software
tools and interpreters

Contact: Jill Moss, APL People Ltd.,
The Old Malthouse, Clarence Street,
Bath BA1 5NS

Tek (225 462602 during office hours
0225 333618 evenings and weekends

15

VECTOR Vol.8 No.3

Dyadic Systems Limited

Dyadic 15 pleased to confirm a hitherto unproven feature of Dyalog APL; namely
its ability to access DB2 datebases held on an IBM mainframe using the Dyalog
APL interface to Oracle. This facility was proved in the course of installing
Dyalog APL for a large French bank during December. The configuration for the
test was in itself rather unmususl. Dyalog APL/X was installed on an IEM
RS/6000 in Paris together with a copy of Oracle. The R5/6000 was networked to
a DEC VAX located elsewhere in France. The French VAX was connected by
satellite to a second VAX in California, which was itself networked to an IBM
mainframe running DB2. Finaily, just to make things interesting, the Dyslog
APL user was sitting, not on the RS5/6000, but on a Sun workstation connected
to it by ethernet. As Dyaleg APL/X can be operated from anything that runs X,
this was not in itself a problem. Nevertheless, it was with some trepidation
that our user first typed :

SQL 'SELECT * FROM emp@ibml®

. but lo and behold the correct result appeared. Becoming bolder, the team
tried database "joins" between DB2 tables on ther remote mainframe, and local
Oracle tables on the RS/6000. Apain, everything worked just as the Oracle
salesman said it would. So if you want to access DB2 databases fxrom your Unix
workstation, all you need is Dyalog APL, a copy of COracle, and & bit of wiret

Progress with the development of Dyalog APL/W is goed, although somewhat
slower than planned. Dyadic is cne of the first compenies anywhere in the
world to develop a 32-bit Windows 3 application, and there have been many new
technical problems to resolve. The product is nearing cempletion and the
company now expects to ship a test release at the end of January. Dyadic is
espacially pleased with the interface to the Windows 3.0 GUI which hes been
designed not just for Windows, but also for 08F/Motif, Open Look, etc.
Dyadic’s intention is to provide the same APL-»GUI programmer interface on all
"windows" enviromments, thus ensuring true portability of Dyalocg APL
applications.

16

The Education Vector Vol.8 No.3

THE
EDUCATION
VECTOR

January 1992

Editor Alan Mayer

This Education Vector has been reprinted from VECTOR Vol.§ No.3. VECTOR is
the Quarterly Journal of the British APL Association. For more information about
the British APL Association, please contact: Anthony Camacho, 2 Blenheim Rd,
St Albans, Herts ALL 4NR Tel: 0727 §60130.

Contents
Editorial Alan Mayer 18
Letters 19
An Instruction Sheet for Introducing
APL to Lay Audiences {Teachers) Zdenek V. Jizba 19
Curve-fitting in APL David Appleton 23
How to produce APL print on some
Star printers with [[-APL Camacheo & Goedman 29
Dr Alan Mayer
European Business Management School Ysgo! Rheolaeth Busnes Ewropeaidd
University College of Swansea Parc Singleton,
Singleton Park Abertawe SA2 8PP

Swansea SA2 8PP Wales, UK

Tel. 0792 205678 Ext.4274 Fax: 0792 295626 JANET: MAYER@UK. ACSWAN.MS5

17

The Education Vector Vol.8 No.3

Editorial

Welcome to Education Vector, and Happy New Year! 1992 has long been heralded as
the year when we will discover the advantages of being European. As 1 write,
discussions are going on in Maastricht which may bring great changes (o the structure
of government in all the countries of Western Europe. Even mere profound changes are
taking place further afield. Like many APLers | believe that APL has a significant role to
play in bringing people of different languages and cultures together. It is a language
that crosses all barriers and frontiers. If 1991 is anything to judge by, the pace of change
will be bewildering. When we made tentative plans to hold APL92 in Leningrad, USSR,
we did not expecl to find the venue renamed St Petersburg - and recent reports suggest
that the USSR itself will no longer exist by the time the conference takes place. Be that as
it may, bringing together the world-wide APL community is an important aim, and our
own efforts to “spread the word” in Education Vector should be designed to contribute
to that aim.

While many readers do not yet have access to second generation interpreters, I feel that
one of our functions should be to explore the possibilities of the very powerful
extensions to the language that are now available. | am pleased to inctude an article by
David Appleton in which he makes elegant use of multiple assignments in the field of
curve-fitting. | for one would like to see more contribulions telling us how best to make
use of all these new toys!

Most of us have little funchons sitting in odd workspaces, written to meet a particular
need and then forgotten. | have several designed to introduce children to computers,
and perhaps to help them learn other things as well. If you are nodding your head in
agreement now, dig some of yours out and send them to me. My little contribution, to
start the ball rolling, is a litlle program to help with the problem of multiplication (I
carefully avoid the word “tables” - are they mandatory or illegal at the moment?)

ro] MULTIPLY :ANS; T;RY:T; TARGET

1] RV<? 10 2 pil12

2] ANS<1{

[3] I+1

Cu] T+« 0 60 &0 1 14 u4407s

[5] PARGET<x/RV

[6] loop:'What is ',{(¥RVII:1]},'=',(sRV[I;21),'?"
[7] ANS«ANS, 140

[8] +{102I+I+1)/lcop

[9] 'You scored ',{¥+/ANS=TARGET},' out of 10
[10] ‘in *,(*(0 60 B0 1”14+ 440TS5}-T).,' seconds'

Just type MULTIPLY and answer the questions as quickly as you can! | have tried to

use “universal” APL - if you have to modify it to make it work, please write to me about
it

18

The Education Vector Vol.8 No.3

Letters
From: Neil Sheldon, Head of Mathematics, Manchester Grammar School.

In the Education Vector for October, Professor Tony YHagan makes out a
heuristic case for a version of the trapezium rule rather than Simpson’s rule
when integrating over more than three points. His argument is appealing but,
unfortunately, wrong,

The rule which Professor (¥ Hagan advocates is equivalent to a pair of Simpson's
rule estimates across the body of the integral together with “a bit of trapezium
rule on the first and last intervals”. It is these bits of trapezium rule which cause
the problems. They have errors proportional to h3 , (where h is the strip width)
while the Simpson’s rules have errors proportional to hd. It follows that, for small
enough h, the errors in the bits of trapezium rule must dominate, and hence that
Professor O'Hagan’s rule must perform less well than Simpson's rule.

So Simpson's rule is saved - though I would hope that those doing numerical
integration would go further and use Romberg's method which can be
extrapolated to any required degree of accuracy.

[Tony O'Hagan acknowledges the error, and retracts his criticism - Ed.]

An Instruction Sheet for Introducing APL
to Lay Audiences (Teachers)
by Zdenek V. Jizba

Computers as a Tool for Thinking
The purpose of this DEMO is threefold:

3. Toshow a proposed sample session in class
2. To program in front of you EVERY step of the session

1. To ask you, the experts, to tell us how to improve this session

Because of the ease of programming, I hope that you will consider learning how
to use this instructional language. (To get very proficient at it does take more

19

The Education Vector Vol.8 No.3

time and effort.} At the high school level, 1 would even suggest some of the
students learn it.

The screen of this PC can be used in much the same way as you would a
blackbeard:

S+
9

‘TEXD!
TEXT

You write numeric expressions in the normal way, but must place text in quotes.
The computer “EVALUATES” your expression, and prints the RESULT on the
next line.

If you do not want to see the RESULT, you can divert it to a VARIABLE:

HIM«'GEQORGE BUSH!'

Now we are ready to start “programming”. Actually the process is called
DEFINING A FUNCTION.

We begin with PLUS, the simplest function of all

PLUS: aiw

The symbol o means “use the values to the left of” +, and the symbol w means
use everything to the right. Now let us try it!

L PLUS 3

2z PLUS 1 2 3
3 45

12 3 PLUS 5
6 7 8

What do we mean when we say: o means “use values to the left of"?

10%x1 2 3 PLUS 5
B0 70 8C

o STOFPS when it finds something other than a valid value.

20

The Education Vector Vol.8 No.3

Now we can define MINUS:

MINUS: o-w

u MINUS 3
1

W PLUS 2 MINUS 5
1

We could go on and define TIMES and DIVIDE, but let us now lock at text:

HIM

GEORGE BUSH
ME«'PAUL GARCIA!
ME

FPAUL GARCIA

We will define the function REVERSE:

REVERSE: ¢w
REVERSE ME
ATCRAG LUAP

Can we use REVERSE with numbers? We sure can!

REVERSE 3 4 5

5 4 3

NOS+1 2 3 4 5

KOS PLUS REVERSE NOS
B 6 6 6 6

But let us return to “text” processing:

VOWELS: (we 'AEIOUY ') /w
VOWELS ME
AUATA

You may want to use a DUMMY function like TN, to do nothing;
IN:w
VOWELS IN ME
AUVATA

Let us define some more FUNCTIONS:

TABLE: apw
FLIP: HQuw

21

The Education Vector Vol.8 No.3

Now let us see what we can do with these:

WORDS+3 3 TABLE 'GEMAREBAN'
WORDS
GEM ARE BAN
REVERSE WORDS
MEG ERA NAB
FLIP WORDS
GAB ERA MEN
REVERSE FLIP WORDS
BAG ARE NEM

You could try to have students find words that mean something backward and
forward. They can change any letter in table WORDS with the following
expression:

WORDS[3;3]+'T
(I-ATL unfortunately does not support an easier way to do that.)

Now let us go back to numbers:

COUNT: 1w
0DDS: (2xCOUNT w)-1
SUM: +/w

Note that in defining 0DDS, we used the previously defined COUNT. You can
even define a function that uses itself! But now, let us see what these functions
will do:

COUNT 10
123456748859 10
0DDS 10
135 7 9 11 13 15 17 19
SUM COUNT 10

55

SUM ODDS 9
81

SUM 0DDS 8
6L

As you can see we could go on studying the functions we already defined, or
define even more functions. You could write your own lessons, if you would be
willing to learn about those special symbols and how they work.

The Education Vector Vol.8 No.3

Curve-fitting in APL

by D R Appleton (University of Newcastle upon Tyne)

Abstract

Norn-linear curve-fitting of well behaved functions is easily performed in APL.
Because of APL’s notation it is also simple to fit functions which might otherwise
be trickier,

Introduction: fitting a simple curve
Example 1.

50

response [y)

1] T T T 1
0 5 10 15 20

time [x]

Suppose data are available, as shown above, for a process which can be
expressed in the form:

Y= Yo = (Yo = Yo) €

The response y might be a concentration, or the logarithm of a concentraticn, of
some substance in blood, air or water; and we shall take time x to be measured in
minutes. Tn APL this function and its derivatives with respect to its parameters
can be written as follows, using a, b and c to represent y.., y, and « respectively:

fn + 'a - (a-b) »x x —-cxx!
fa + '1 - * -cxx!

I o« 'x —cxx!

fe +« 'x x (a-b)} »x * -cxx!

23

The Education Vector Vol.8 No.3

From initial estimates the parameters may be estimated by successive repetition
of the line:

0+« (abc)~{abc)+ (y- 2fn) 8 (afa),(efb) AND {sfc)
assuming the data values arein x and y and that ¥ AND N Is, for example,
M,[2-0.5x1=ppN1I¥N

If the initial estimates are reasonable, the iterative process will converge quickly;
the fitted curve is also shown in Figure 1. As it is inefficient to evaluate the
exponential function so often, we could write:

fn + ‘'a-gxa-b'
fa + 'i-g*' £b + 'g!
fo « 'xxgxa-hb'

and repeat the two lines :

g — ok —COXX
O« (abec)«{(abdbec)+ (y - sfn) B (sra),(erb) AND (srcC)

A Trivial Extension

Now suppose that we have further information, namely that the process has
been operating at a constant value until time zero, and we have data not only at
that time but also at times from -10 minutes to -1 at 1-minute intervals. This, of
course, is easily incorporated into our curve-fitting by supposing all the readings
to have been made at time 0.

A Further Extension

Example 2. But what if our information about the history of the process is less
trivial? Suppose in fact that during the previous 10 minutes the process was
describable by the same equation, but with a replaced by o another rate
parameter B, and the data appear as shown in Figure 2.

24

The Educatlon Vector Vol.8 No.3

Figure 2

50

response (y)

0 T T T T T 1
=10 -5 D 5 10 15 20

time (x)

We do not wish to fit the two processes separately, and in some way combine
our estimates of the common parameters; we wish to fit the two equations as a
single curve, and here is where APL's notation makes life so easy. If we let d play
the part of p and write

g« * -x x (¢ x x>0} + (d = x<0}
then we can leave £n, fa and b as they are, and write:

a-b'
a-hb!

fo + *'x % {x>0)

Xg)(
fd + ' x {(x50) x g =

The iterative procedure is the same as before, except that there are 4 parameters.

Another Extension

Example 3. As well as being able to handle situations where the function to be
fitted changes (at a known value of x), the same methodology can cover
simultaneous fitting of two or moere curves with some parameters in common.
Suppose now that we have observations on two processes

Y% Yo o [Yo = Yo) @7®X (1=1,2

25

The Education Vector Vol.8 No.3

and that observations are made every minute, alternately on y, and y, , from
time 0 to 20 minutes, as shown in Figure 3.

Figure 3

50 4

=
o
w
c
)
[= 8
w
©
b
10
0 T T T 1
o} 5 10 15 20
time [x]

If we now take as the function g the expression

* -x x {cx2|x+1) + (dx2|x)

then the function to be fitted and its derivatives with respect to the parameters
are given by:

fn + 'a - g x a-b'

fa « 'i1-g' B+ ‘g’

fo « 'x x (2|x+1) x g » a-b'
fd + 'x » {2]|x) = g x a-b'

Once again the iterations proceed smoothly, and the fitted curves are plotted in
Figure 3 with the data.

Naturally, it is sometimes harder to express the function as succinctly, but if all
the observations of one process are arranged to precede those of the other in the
x and y vectors, it will not be difficult to come up with a suitable expression.

Precision of the Parameter Estimates

Unfortunately, while the use of the dyadic demino function greatly simplifies the
process of estimating the parameters, it also bypasses the calculation of the

26

The Educatlon Vector Vol.8 No.3

information matrix and therefore does not allow estimation of their standard
errors. Once the iterations have converged the following lines produce them (for
a 4 parameter curve):

regids <« y - s«In

derivs +~ (+fa),{+2b),{(2sfc) AND (srd)

varcov + (B({derivs) +.x derivs) = {+/ residsxresids) + “4+px
sterrs « (1 1 & varcov} = 0.5

If the line estimating the parameters iteratively is extended to include the
assignments to resids and derivs, only the last two lines are required.

Functions of the Parameter Estimates

It is often possible to derive adequate estimates of the precision of functions of
the parameters. Such functions might be just the sum or difference of 2
parameters, or the expression for the area under the curve, or perhaps its value
or derivative at some point. The standard errors of such derived functions
depend on the variance-covariance matrix of the parameter estimates (evaluated
above as varcov) and the derivatives of the functions with respect to the
parameters.

Suppose we wish to estimate the area between the two curves in example 3. This
is given by (y. - y.){ 1/a, - 1/a,) orin APL terms (a-b}x+/+d,c and
we could evaluate the derivatives algebraically if we wished. However, it may be
instructive to calculate them numerically. Using function ADERIVS:

vV Z+par ADERIVS fn

[1] spar, '+ par,'*x1.0001"

[23 Z+afn

[3] spar,'s!',par,'+1.0001"’

[u4] Z+1000C x {Z - sfn} + spar
v

we can construct function DERIVS:

V Z+pars DERIVS fn
[11 ({1ppars)cpars) aDERIVS “cfn
v

which will produce numerical approximations to the required values. The value
and standard error of the required area are given by:

tarea +~ '{a-b}x+/+d,c!

der « 'abcd' DERIVS area
(+/+/varcov x der «.,x der) » 0,5

27

The Education Vector Vol.8 No.3

Discussion

Curve-fitting is only a useful technique when there is a good reason for it. Too
often it is just a way of smoothing data without thereby gaining any useful
insight into the underlying process. However, if the fitting of a particular
equation can be justified theoretically, and its parameters or functions of them
can be interpreted, it may be valuable.

This article has shown that an AFL program which can fit simple equations may
also without difficulty be used for more interesting cases. A good program will,
of course, do much more than has been attempted in this short exposition. It will
certainly cope with any number of parameters up to a specified limit; some
indication of one way to handle this is given in DERIVS. It will also, most
importantly, check that the user has not made a mistake in his expressions for the
derivatives of the function; this need was another reason for including DERIVS.
Other checks and decisions, certainly on the iterative process itself to make sure
that the parameter estimates do not exhibit large changes, and to decide how
convergence is to be assessed, are required; reports on possible outliers are also
advisable, and the output must be clearly labelled and expressed to a number of
decimal places which reflects the convergence criterion. A library of standard
curves for which all the necessary expressions exist would be a useful adjunct.

Perhaps semeone will write such a program for the APL Statistical Library.

28

The Education Vector Vol.8 No.3

APL print on some Star printers with I-APL
by Anthony Camacho and Tom Goodman

This issue: how to print from -APL/PC using graphics or download characters
on a Star LC-10. In the next Education Vector: how to print from I-APL/BBC
using graphics on a Star Radix-10.

First the L.C-10

1. A complete solution is provided by the graphics output option.
Start [-APL with the /G option (among others maybe)
Switch on printing with JHC+«1
Demonstrate it by outputting a character table with
(32p0 1)\14 16p32+0AV
Here is the result:

13200 114 TarI2I0AN

I A1 [
512324887849 yofo= x ¥
= CLDEFGHITIJKLHHNED
F 2 ST R T 7 T
‘3 cde2fzn i ik lsao
easrstuvwxsz il 1
¥ T s owoCoIar4I % -8 E LY
- T - VR T B N A Y O -
[N A -
- ¥ F 08B0 s e L f
##8 2BEODEFEGH L JELNMHEED
PSRRI Y MM ALY I 2T :
= = R O
R A T T S

2. Only a limited selution is possible using downloads because the Star does not
allow characters coded from 128 to 159 (inclusive) or 127 or 255 to be
downloaded to.

The experiments | did with the Star LC-10 were done with all DIP switches
ON except for 2-1 which must be OFF to allow downloads to be used. The
printer must be in draft mode before downloading (see manual, page 82). Itis
possible that other DIP switch settings may work: [haven’t tried them and
they may cause complications (e.g. with the coding of the pound sign).

29

The Education Vector Vol.8 No.3

3. To use downloads gives the advantage thal mote than one size of print may
be used (but only in draft mode) and that printing is faster. For I-APL to use
the download set it must be started with the /E option.

4. I-APL provides a workspace EPSON with which to download characters.
When this is used the underlining of the last two alphabets is nol reproduced
{see the [-FAPL manual or the graphics prinlout above). The last two alphabets
are copled from the built-in character set using the command ‘Copy standard
characters from ROM into RAM’ which is explained on page 82 of the Star
manual.

5. The workspace EPSON conlains a vartable FONT which consists of the
numeric values of the characters required to be sent to the printer to
download characters for APL. In I-APL the command 2 (FX FONT sends
these values as characlers to the printer without ‘interpretation’.
(Interpretation means that when output is sent to the printer some characters
may be used to control the process and others may be converted from an
internal code to something different on output. For example on daisy-wheel
APL printers the lower case letters are printed as capital letters underlined
and so each is sent as “letter, backspace, underline’).

6. The FONT variable is very easy to analyse or amend. [t contains 839 codes.
Here is a rough analysis of it. [t is an APL vector {APL allows “strings’ of
numbers) and below | have inserled new lines and comments for clarity.

27 64 n Resets the printer
27 58 0 0 O A Copies ROM characters to RAM
27 38 0 128 150 a Says downliocad of chars 128-150 rollovs

a Each downloaded character is sent as 12 bytes; a mode byte is
followed by 11 dot image bytes as explained In the Star LC-10
manual on pages 82 and 91.

140 B0 136 20 13¢ 81 34 20 4D 80D 0 O

n The first downloaded character (%}

R After 23 sets of 12:
27 38 0 158 192 n Says downioad of chars 158-192 follows

r Later downloads are for chars 219-224% and 251-254

7. S0 2 [ITX FONT defines all the characters needed by I-APL. It seems to
define the characters permitted by the Star printer even though some of the
characters specified fall outside the permitied range. After 2 OTX FONT the
following APL command will print out a table replacing the control characters
with asterisks (they perform actions like form feed which waste paper).

(32p0 1}\16 16p{320'='},{96432+04AV),{32p"'*'},160+0AV

30

The Educatlon Vector Vol.8 No.3

You will notice that the delete character (at the end of the eighth row) and the
last character show as blanks. The characters on the two rows after the eighth
would have been defined as shown in the graphics output. The only
characters in this set that might be needed are the pound sign and the omega.
Only the omega is essential for APL.

8. The FONT tries to define the omega character in position 158 (hexadecimal
9E). This was done because difficulty was found in downloading to position
255 and so the internal code 255 is converted ‘interpreted’) on output to 158.
Unfortunately 158 is not definable on the Star. To provide an omega printable
on the Star LC-10 it is therefore necessary to choose another character code to
be defined as omega and to change the I-APL interpretation so that instead of
changing 255 to 158 it changes it instead to the code we choose. [suggest that
the lower case underlined alphabet is very rarely used and that we could
afford to put the omega where that alphabet has its w (code 247 or
hexadecimal F7).

9. Tocreate a STAR workspace with a download FONT which will do this
follow the steps below:

JLCAD EPSGN
JWSID STAR
FONT«FONT, 27 38 0 247 247 140 28 34 0 2 12 2 0 34 28 0 0

a It is good practice to amend {he comments so in the QLX
function delete 'EPSON FX' and insert 'STAR LC-10!

YSAVE
YOFF

Now the file IAFL, EXE must be amended by changing the character that 255
(FF hexadecimal) is converted to from 9E to F7. The instructions below assume
that you are working on IFAPL/PC version 1.1 (as shown at sign on).
Everyone gets a copy of DEBUG with DOS so [give the sequence to follow
using DEBUG below. As DEBUG refuses to write back to disk a file of type
EXE or HEX you must make a copy of the [APL.EXE file with a different
extension. Below | have not included disk drive letters or shown the DOS
prompt which depends on the configuration of your machine. To do all this on
a single drive machine you should make a disk with a copy of IAPL . EXE plus
debug.comand fe.comand put it in the A> drive.

copy iapl.exe fapl.tmp Now we can amend iapl.tmp with debug
debug iapl.tmp Load debug with IAPL.TMP. Debug prompts with '='
the minus sign

-3 ¢ FFFF B1 7E FE FF 00 75 Cu4 C7 w6 FE 9E

6FFA:DACD The § 9 FFFF command searches from 0 to FFFF for
the string of hexadecimal bytes that fecllow. The

31

The Education Vector

Vol.8 No.3

-D0ABO

-EQAD7

2AFQ:08D7 9E.F7
~-DCABD

-W

Writing 1AESA bytes
-4

fc iapl.exe iapl.tmp

000CG9D7: 9E F7

del iapl.exe

ren iapl.tmp iapl.exe
-5 O FFFF
&FFA:OACD
~DABO
L&FFA:0ABD FE 3D Z0
&FFATOATD 0D SO £8
&FFRA:OAAR 41 B8O ZE
GFFAICARDC 02 EB 3A
&FFAIOACO OC Bl 7E
&FFA: QADD FF 00D 73
GFFAI QARG 44 04 S0
LFFA; DAFD 5D CT 55
—-E0AD7 ORD7
AFFA:0AD7 SELF7
~DOABC
&FFA:0A80 FE 3D 20
&FFAIGARD O SO EB
AFFA:OAAT 41 BO 3R
&FFA:DARD O2 ER 3A
4HFFA:QACO OC 81 VE
4FFAGADD FF 00 73
AFFALQRED 46 04 S50
&FFA:QAFO SD C3 55
~W
Writing (AEFA bytes
-0

position found is 6FFA:0ACD. The first four
hexadecimal characters may vary depending on where
debug loads itsell in memery

D<lcc> displays the bleck beginning <loc>. Choose the
hex value ending 80 or 0¢ just less than the location
found; it will contain the 9E we want (end of search

string #1 YE FE FF 00 75 T4 ¢7 45 FE 9E).

This is the instruction to replace FF with 9E.

Enter E 0AD7 (the lccation of the 9E)<return>;

debug gives location and contents & waits for input
Enter the new value F7 after the dot and <return>
Check that the change is made in memory

At the minus W writes JTAPL.TMFP back to disk

and reports the number of bytes written

Quit debug

Use file compare {fc) to check the only difference is
the one we want

And it is. (Incidentally if I fc iapl.tmp iapl.exe
fe¢ found no difference; use something eise).

Delete the original program
Rename the amended file

{have you kept a copy?}

8t 7E FE FF 00 73 C4 C7 46 FE 9E

00 74 47 B8 O1-00 SO BB DY 04 30 B8 04 = tg...Fe..Pu.
SE 48 8% C4 04&-PBB 01 00 50 8D 46 FE ER SPLMHL L e PUF
E7 O3 47 75 0OB-FF 74 FE EBE &8 FE 83 C4 Y C{TTRNRT I . PR
BO 3E EV 03 49-75 21 81 7E FE 97 20 7C . FelBEulo™aaad
FE 9E 90 7F 0S5~C7 446 FE 9F ©C Bl 7E FE e e Foava™,
C4 C7 46 FE SE~00 ER BD BB 0! 00 SO BD PR TI
BQ 04 00 50 EB-09 48 87 L4 046 SE HBEH EI FoPowaPaaHaaa™an
8B EC 81 EC 0B-02 57 5& C7 44 FB 00D 0O b I WVL.F. L.
Q0 74 &7 BB 01-00 50 B8 D? 04 SO BB 04 = bgeaFaauFas
SE 4B 83 C4 0&-BB 01 00 50 80 46 FE EE PLSHL L F.Fuu
£7 O3 47 72 OB-FF 74 FE EB &B FE BT C8 23N C 1T PRV |
a0 3E E7 03 45-75 21 81 7E FE 97 oQ 7C HE I ST B
FE 9E 00 7F 0S5-C7 46 FE PF 00 81 7E FE ..™...... PR
C4 C7 44 FE F7-00 EE BD B8 01 OO0 50 8D aaleaFennenunns F.
BE 04 Q0 S50 EB-09 48 83 C4 04 SE BE ES FiPeePocHa e o ®as
8B EC 81 EC ©0B-02 57 54 C7 446 F8 00 00 J.UsaaeaWVLFL L.

Now you can run I-APL with the /E opticn,) LoAD STAR, 2 (OTX
FONT and then proceed to load and use other workspaces which will now
print everything correctly (except the pound sign).

Since writing this | have heard from W H Davies lo say that his printer stops
at the DEL character (ASCI1 127} so it won't print the complete 04V unless
you remove this character. He also points out that the download font works if
the printer is set to PICA butis imperfect if it is set to ELITE.

32

The Random Vector Vol.8 No.3

THE
RANDOM
VECTOR

The Newsletter of the APL Statistics Library

Editor David Eastwood

January 1992

Contents
Editorial David Eastwood 34
Gregynog 91 Anthony Camacho 35
ASL standards David Eastwood 46
Differences in second generation APLs Maurice Jordan 52

33

The Random Vector Vol.8 No.3

Editorial

Most of this issue of Random Vector is devoted to the third ASL conference held
at the University of Wales Conference Centre at Gregynog in October 1991,
Anthony Camacho was kind enough to produce detailed notes of the
proceedings and these follow this short introduction.

The Conference was useful in that we looked back at the first three years of the
project and drew some conclusions from our activities. We were also able to
consider some new areas where the ASL project might consider producing
software. One of the conclusions drawn at the conference was that the work of
the authors of the next ASL volumes would be made somewhat easier if they
were given guidelines for the design and production of APL code, and were also
given some warnings about the differences that exist between the various
dialects of APL likely to be used in the ASL project.

Finclude, in this issue of Random Vector, some thoughts on AFL style guidelines
that have emerged from the ASL project, and also a paper produced by Maurice
Jordan which covers language differences between the various second
generation AFPLs. The latter two documents are intended to be “working papers’
for the ASL project, and so we would welcome comments and additions.

Following the ASL conference, the ASL Management Committee is now:

Chairman: Jake Ansell, Business Studies, University of Edinburgh,
William Robertson Building, 50 George Square,
Edinburgh EH8 9]Y
031 650 3806

Deputy Chairman: Alan Sykes, European Business Management School,
University of Wales, Swansea, Singleton Park,
Swansea, SA2 8PP
0792 295296

BAA Representative: David Eastwood, MicroAPL Ltd, South Bank Technopark,
90 London Road, London SE1 6LN
071 922 8866

BAA Representative: John Searle, 4 Hawks Mews, Greenwich,
London, SE10 8RA
081 858 6811 (home)

34

The Random Vector Vol.8 No.3

The 3rd APL Statistics Library Conference
Held at Gregynog 30 September
to 2 October 1991

reported by Anthony Camacho

Twenty people assembled in the second seminar room on Monday 30 September.

Opening Session

Alan Sykes opened the conference by going through a frank “state of the project’ letter
from Tony O’Hagan (this was printed in full in the last issue of Vector). Alan Sykes then
led a discussion on the current status of ASL, and the plans for future distribution. The
statistics textbook to go with ASL is being worked on by Alan Mayer and he has done
three chapters and two half chapters so far.

In a discussion on how ASL oughl to be advertised and distributed, Alan Sykes wished
to see it given away free to APL Association Members. Norman Thomson's view was
that any income required should be obtained by publication of bocks rather than
delivery of software. Nobody disagreed with Alan Sykes when he urged that we must
release the work soon.

Testing ASL across Interpreters

In the first of the presentations, Maurice Jordan reviewed his work on the automatic
testing of APL software. (for details, see his paper ‘CATS: Computer Aided Testing of
APL Software” given at APLIL). Maurice said that his test bed had been improved by its
use on the bottom shelf. He showed us a page (of three) with results from a function
which conlained only one executed line, The function was specified to produce a scalar
result from two numeric non-negative veclors of matching shapes. As well as testing
the function with defined pre- and post-conditions, CATS explores mutations on the
test data to see if edge conditions will show errors or additional functionality.

Maurice also discussed areas of arithmetical difference between APL interpreters, for
example the 7 random number generator. One cause of such differences is, of course,
the variation between the C compilers for the target machines. Differences between
implementations are many; all use different methods for error trapping and,
surprisingly, all flip to exponential notation at slightly different points. Norman
Thomson felt that the ASL project ought to conserve effort and test and prove
algorithms rather than implementations.

35

The Random Vector Vol.B No.3

Utility Functions for ASL

David Eastwood said the utility software that would seem to be needed for ASL as it
now exists doesn’t match our original ideas; probably because our original ideas were
wrong. We had expected to have to organise ways to bring functions to do what we
wanted into the current workspace because the volume of ASL functions would be too
great to JCOPY complete workspaces into the current workspace, and also because
there would be several variants of most ASL functions.

At present the three volumes, Basic Slatistics, Basic Graphics and Regression have not
led to severe problems through the space they occupy [but Karen Hurrell later said she
had problems with both workspaces and symbol tables]. We need to think again about
distribution systems and to know more about the target user so that we can suit the
distribution system and other utilities to his needs. David thinks we diverged too early
onto several platforms. We ought to get each volume working and fully tested on one
platform and only then port and test the porting to other platforms.

There are proklems porting between platforms because the workspace interchange
standard specified by 150 is not fully implemented by any manufacturer. The IBM }IN
and YOUT are useful for transfer between various versions of APL2. APL*PLUS/PC
provides TBMINOUT and APL*PLUS 1l has SLT {Scurce Level Transfer). Dyalog can
import from APL2/PC and APL*PLUS/PC, Peter Lewis said he has software lo go from
APL*PLUS/PC to APL2/PC. Anthony Camacho said he had received some software
from Dick Helt for workspace transfer between various implementations including
Sharp APL/PC and I-APL, but had not yet investigated it.

David Eastwood suggested we collect WS transfer software but reiterated that there is
no point in converting before completion of the testing and he listed the steps in testing
and porting to emphasise that it is not a trivial task. Peter Visk said that some other
statistics programs had sets of data with the correct results for retesting.

David said that although we now saw fewer problems with selecting functions from
ASL for use, we still need library management utilities. Users will benefit from simple
ways to identify alternative versions of functions and when a non-default version is
selected then they will welcome a utility to amend all the calls so that they use the
selected version instead of the defaull. We also need development tools and David
recommended we look at public domain sources, such as the Toronto SigAPL Toolkit
which contains lister, cross-referencer, renamer, comment extractor and checker of
localisations - to name but a few. David pointed out that the benefit of using this sort of
code is that it is written in ISO APL and can be used in most dialects.

Bottom Shelf Specification

Norman Thomson distributed a revised specification of 63 pages all written using
mainframe APL2. Norman feels, although some see a theoretical advantage in staying
with 18O APL, that the advanlages of APL2 are overwhelming; that it is very well in
tune with the things that we want lo do in ASL; that we aren’t exploiting it properly. He
then went through some of the significant changes introduced in the new specification

36

The Random Vector Vol.8 No.3

document. Norman wants one version to be the master specification and to write it in
mainframe APL2. Norman discussed in some detail his suggestions for argument
naming conventions; these are fully documented in the draft ASL Standards, later in
this Randem Vector.

UEDIT

In his introduction, Alan Sykes remarked that we were very lucky to be able to welcome
Peter Lewis of the Department of OR in the Naval Postgraduate School at Monterey,
California. Peter put up a slide of the structure of UEDIT, which is a Universal Editor
and spreadsheet with many statistical functions built in.

UED file on disk APL2 nested array ASCII file
UDATA.UED called DATA DATA.AS
|
UEDIT

[works en copy
called MAT]

APL2 workspace Comma

DATA APL vector or delimited
character MAT file called
corresponding teo ADATA.CSU
a bloek of MAT

bulk mode I I Excel etc

original data

entry

Peter told us that UEDIT originated as 70 pages of APL code written by one of his
students and has been improved over the years. He then demonstrated it using a
spreadsheet of 177 rows and 11 columns. The codes for manufacturer name and
description of deliverable item were converted into descriptive character vectors.

The spreadsheet offers many menus and actions, including most of the standard
statistical analyses. At any time the user may enter any APL command. The spreadsheet
is held as a nested matrix MAT and also in its original form as DATA, so MAT can be
amended, used for calculations and printed without affecting the original data, which is
still available for use in APL expressions. Amendment is simply done by moving the
cursor to the field and typing over its previous contents. Entries are validated so
character entries in numeric fields are trapped and give rise to a warning. The
demonstration convinced us that UEDIT served all the needs of a spreadsheet and
general matrix editor with a very broad choice of statistical analyses and particularly
powerful methods for importing and exporting data from and to other systems. UEDIT
is written in APL232/PC. Asked about speed Peter said if it doesn't go fast enough or
hold a large enough spreadsheet “Buy a faster, larger computer.”; he had found a
16Mbyte 80486 more than adequate for anything he had tried.

37

The Random Vector Vol.B No.3

A Time Series Volume for ASL
Alan Hawkes listed

1. some malerial already available; NAG, Genstat, 5, IP Sharp workspaces,
StatGraphics, Best (a Norwegian package written in MIPS APL), BATS
{Bayesian Analysis of Time Series - copyright Neville Davis, Nottingham) and

2. some sources of help and further malerial; A G Hawkes, Clive Taylor,
FinnAPL, Andy Pole (now at Duke University), plus maybe the authors of the
above packages.

Peler Lewis said that 5 is unusable on large data sets: APL is much faster. Alan
suggesled (he following contents for the Time Series volume, not necessarily in this
order:

Univariate TS, containing
Non-parametric Estimation - ACF, PACF
Modelling - ARIMA: Autoregressive Integrated Moving Average,
Theoretical Functions, Fitting, Testing, Forecasting
Simulation
Seasonal Models - Folt Winters, X-11
Utilities - Fast Fourier Transforms, Filtering
Advanced - Bootstrapping, Cross-validation
Multivariate TS
State space models
Non-linear models
Non-stationary TS
Econometrics
SASE (point processes) [Statistical Analysis of Series of Events]

Peter Lewis has already written up SASE so perhaps it should be chapter 2. Alan
Hawkes then offered some thoughts on the best way to get the job done. He suggested
the syntax should be designed and prepared as functions containing nothing but
comments, and when agreed then coding could begin. Peter Lewis said that SASE
began as Fortran and was rewritten in APL., The graphics from StatGraphics has been
separated out and sold as APLOT, but his students dislike it and prefer GraphStat (the
ATL front end to GDDM). Norman Thomsen likes the principle of recording a graph as
two elements: the graph specification and the data.

Jake Ansell said that John Chambers emphasised linking to non-APL code, but that he
was not sure of its desirability. Norman Thomson said that NAG would always be
bigger than ASL and that if ASL could link to NAG then we could offer the advantages
of APL on data manipulation as an addition to those of NAG. Norman has obtained the
professional Fortran version of NAG and is krying to link AFL2/PC to it but has found
that it would have been easier and more valuable if he had obtained the newer Fortran
I version. There was a short discussion of sources of FFT algorithms and code. Peter
Fisk wondered whether NAG could be an agent for the distribution of ASL and

a8

The Random Vector Vol.8 No.3

Norman Thomson thought it could. Jake Ansell didn’t want to nake NAG necessary to
ASL users. Peter Lewis suggested that we collect utilities for linking and gave his
opinion that the best source for Time Series algorithms was a book called Time Series
Analysis published by Brooks Cole but the name of the author (who comes from Texas)
he was temporarily unable to recall.

Alan Sykes said that we need three or four people to work on sections of chapter one:
when the specification is agreed then perhaps some of the coding could be done as
student exercises. It was suggested that John Pemberton could be asked to help.

Postscript: A third year project is under way at Swansea, with supervision by A G
Hawkes and] Pemberton.

A Non-linear Regression Modelling Volume

Peter Hingley circulated five pages of functions and test results and showed an example
which could not be modelled as a polynomial (it plotted the response against the
concentration of a drug dose). Because each point plotted was part of the data for
plotting the next point the algorithms were inherently looping and this made them
slow. With TryAPL2 he had processed 500 data points in 45 minutes, but he wanted to
be able to handle 5000 or even 20,000 data points. He concluded by asking whether this
would be an appropriate item for the regression shelf; those present clearly thought so.

Non-Parametric Methods

Karen Hurrell discussed topics in non-parametric statistics including density estimation
and smoothing {non-parametric regression). Tony O’'Hagan later expressed interest in a
volume on this topic.

I-APL/Mac and ASL

lan Clark began by asking ‘Why on earth use FAPL as it is slow and of limited
capacity?” He answered the question by saying I-APL is free, runs on many machines
and offers a suitable basis for classwork, which, being I50-conforming, could become a
textbook. [an sees himself as a Human Factors consultant and gave us some insight into
how he had gone about analysing the tasks involved in producing workspaces on I-
APL/Mac and then designed the interface to make common tasks easier. Doing a task
analysis is often long-winded and tedious because, to spot the interesting places where
good human factors design could make a significant difference to ease of use, one had
to do a very detailed analysis where most of the steps almost seemed too trivial to merit
recording. Indeed his first examples led to some jocular comments such as that he had
omitted to include the task “fetch student’,

As an example of a task made easier he explained how a script could be typed on a
word processor with embedded APL expressions. The user could display this on the
screen and read it, double click on an APL expression to copy it into the entry line, edit

39

The Random Vector Vol.8 No.3

it there if required, and then enter it to see the effect. As the results would be displayed
at the end of the session, after the end of the script and hence force the session to scroll
to the end, it could easily have been tedious to get back fo one’s place to continue
reading, but at that point lan Clark arranged that the keypad uparrow would return
you to your place and the downarrow would then scroll to highlight the next executable
expression.

A Contingency Tables Volume

Alan Mayer showed us some of the work he had done in his workspace ASLTAB. He
suggested that a volume on contingency tables shouid begin by including a list of 2x2
measures, a list of RxC measures and a list of ordinal data. There is also a need to
extract data, perhaps from surveys. For example to obtain a count of the items (rows) in
which column 18 contains a 1, an APLer could enter +/KAWNDATA[;18]=1; he
provided the function HOWMANY so that non-APLlers could enter RANDATA
HOWMANY 18 1 to obtain the same result. Another function is TABULATE. If the
data is SURVEY and has two values in column 1, two values in column 2 and four
values in column 18 then the expression:

SURVEY TABULATE 1 2 18 n gives the result)
2404 27
15 5 2 6

16 2 1 &
10 8 2 2

This has two tables corresponding to the two values in column 1; each table has two
rows corresponding to the two values in column 2; each table has four columns
corresponding Lo the four values in column 18, Where the survey has four values and
we are interested in picking out one to distinguish from all others, Alan has the function
DICHOTOMISE whose arguments specily the value{s) to pick out. Another common
need is Lo classify entries into ranges: for example in a vector of student heights, where:

(L/HEIGHT) ,[/HEIGHT
148 191

... the heights could be classified into the ranges: up to 160, 160 to 170, 170 to 180
and over 180 by:

160 170 180 CATEGORIZE HEIGHT

The result would be the shape of HEIGHT and would have five values 0-4
according to the range each height fell into. Similarly the function ORDNAL [sic]
calculates concordancy values.

40

The Random Vector Vol.8 No.3

A Reliability Volume

Jake Ansell pointed out that reliability overlapped Quality Assurance, Multivariate
Analysis, Time Series, Medical Statistics and even Regression (through Fault Tree
Analysis). Reliability includes Stochastic Processes and Data Analysis. Jake's outline of
Data Analysis was like this:

1. Elementary Analysis - mostly bottom shelf items:
index of dispersion
hazard plots
TTT plots

2. Distributions
univariate
exponential
Weibull
extreme value, etc.
censoring [Norman objected that censoring was part of the data]
truncation

3. Covariate Analysis - much in common with the Regression volume
Weibull regression
PHM
ALT [Accelerated Life Testing]

4. Repairable Systems
trend tests
growth models
dependency analysis

Sample Surveys

Allan Prys-Williams made some ad hoc suggestions. He asked what we wanted in the
way of:

1. Simple auxiliary functions
construction labels
drawing samples whose size is proportional to their probability

2. Sample drawing
stratified unweighted or weighted according to sub-population size
clusters - either one size at each level; N each of M of K

3. Costs of interviews
can be an auxiliary variable X with or without a known population

An Application of ASL

Maurice Jordan reported that at the end of the football season the Qbserver tabulated all
combinations of home and away scores with the frequency of each, for the First
Division and the Second Division as two tables. Maurice discovered that the scores

41

The Random Vector Vol.8 No.3

were a Poisson distribution. For the First Division chi? is 0.5; for the Second Division
there were a few loo many no-score draws for a good maltch.

Maurice said “Given a computer and a good set of slatistical functions you begin o
think about problems differently” and proceeded to give some fascinating examples of
odd places where Poisson distributions appear and the ability to analyse them can be
valuable. To win money on the pools one must forecast unlikely results. When the
favourite wins, the odds are loo low to make much profit.

Documentation

David Eastwood chaired a discussion on documentation. Jake began by surveying what
we had so far. For the Basic Statistics each function has a corresponding FOW function -
a basic minimum. Alongside thal there is Norman's specification. For the Graphics there
is Tony "Hagan's user guide which explains how the language was drawn up and
gives implementation notes. For the Regression volume Alan Sykes has produced an
introduction to the statistics covered, the data tequired, how the functions work and
some guidance on adding your own functions. There is also a nice crib sheel to say
what the functions actually do. In Jake’s view this would be a good standard to aim for
all subsequent volumes,

Alan Hawkes suspects that the Basic Statistics, being a pot-pourri of bits and pieces,
might not get more than its current fragmentary documentation. Jake Ansell said that it
needs at least an introduction. Alan Prys-Williams suggested thal volumes might
shadow a dominant textbook and thus the textbook could become the explanalory part
of the documentation. Funcltion and variable names would have to match the usages in
the book. Sometimes it would be necessary to give a result a name other than Z.

Alan Sykes felt that the WAGS and Regression documents are almost publishable.
Norman Thomson suggested that we leok at the problem the way a publisher would
look at preparation of a series; he would employ a commissiening editor who would
write a specification which all authers would be asked to follow. At the lower level he
wanted to ensure that items capable of being calculated in varying ways should be
made consistent. Whenever a mean is used it should be exactly the same.

There was some discussion about the use of enhanced features. On the whole the
coding Iried o stick to ISO APL but we had accepted some second generation phrases.
The Regression volume was entirely written in 1SO APL, and the Basic Statistics in its
APL*PLUS version was also [SO, WAGS was only fully implemented in Dyalog and did
use some advanced {eatures.

Anthony Camacho recommended Gary Bergquist's book “Advanced Techniques and
Utilities” where the functions often had alternative commented out lines for other
interpreters so that to change from IBM to Sharp to STSC all one would have to do is
insert and delete the comments indicated. Peter Lewis remarked that Gary was also
author of the Zark APL Tutor which he recommended and which his students had
found useful, instructive and amusing. It was reviewed in Veclor 7.4. Maurice Jordan
had once begun work on a system which would search for all primitive usage which

42

The Random Vector Vol.8 No.3

could be ambiguous and replaced each use with a cover function. Then by simply
substituting the APL2 cover functions for the APL*PLUS cover functions, the whole
workspace could be painlessly adapted to run on APL2. He thought that he had never
finished the job but would try to find it to see whether it could be useful for ASL. David
Eastwood thought that the least we should do was to provide noles warning all
concerned about the known trouble areas when converting from one implementation to
ancther (see the ASL draft Standards).

Norman Thomson said that he had begun to question our decision to keep the bottom
shelf at a suitable level for a first year undergraduate course. Many simple and basic
things would not fall into this definition and he recommended that we extend it a bit.
For example weighted least squares would be a good addition. Jake disagreed; the
criterion we had chosen would be understood by more people than any other we had
been able to think of. He also thought that weighted least squares should be Regression.

Group Sessions

David Fastwood chaired a discussion which led to the conference breaking into two
streams for the two sessions before the final plenary. One stream, with the computer
and display equipment, would see a demenstration of WAGS in the first session and
Maurice Jordan demenstrating partition techniques in the second (this was included
because these techniques make it easy to do things in ISO APL which look as if they
would be easy only with nested arrays); the other would review standards and
documentation in the first session and discuss porting problems and techniques in the
second.

During the discussion Norman Thomson wanted to exclude data input and output on
the grounds that: (a) it isn’t statistics; (b) it is very system-dependent and (¢} it is
something that every vendor and software house claims to be expert on. Alan Mayer
felt that we shouldn’t turn our backs on the possibility of taking data from Lotus or
returning results to it.

Partitioning Techniques

Maurice Jordan said that Bob Smith, the implementer of 5TSC’s NARS had worked on
partitioned functions in the 1970s. These were probably the basis of partitioned enclose
and they certainly enable one to operate on simple arrays in 150 APL as if they were
nested. The breaks between nests are marked in a boolean variable which is otherwise
all zeros, by a 1 at the beginning of each partition - in Dyalog thus:

P11 ¢ 1 0 0 1 ¢ QO
Fec19

12 3 4546 789
+/7Pcr9

3 12 3¢

Using the partitioned technique the equivalent is:

43

The Random Vector Vol.8 No.3

P P_PLUSREDUCE 19
3 12 30

and the result from this is much faster than using nested arrays.

Anthony Camacho asked where these functions were available and when he was told
that they were the workspace PARTFNS in WSLIB 6 in Sharp APL he realised that -
APL has the PARTFNS workspace, improved and generalised by David Ziemann and
issued on every I-APL disk. This was established on Alan Mayer's portable computer
and Alan thought that it would be a good subject for an article in Education Vector.

Closing Decisions and Actions

David Eastwood said the regression volume is closest to a model set of documentation
that we have. Probably the Basic Statistics will be documented to a different standard
and he suggested that an iniroduction to precede Norman Thomson’s specification
would be a minimum.

It was now agreed that we would not bar the use of enhancements in implementations
on second generation interpreters, although we still preferred to avoid them. We do
need to warn people aboul problems moving from one interpreter to another and he
suggested that we collect these. Anthony Camachoe said that Adrian Smith had spoken
at APL 91 about writing in a common subsetl of the major interpreters; he would
probably be able to provide a set of rules to follow to write functions which would run
unchanged in all of them. Alan Sykes mentioned that it was necessary to take care that a
nested vector conlaining a singleton such asin '4lan 'M' 'Sykes' wasa vector
of vectors: if the singleton was a scalar the function would fail because the level of
nesting would become inconsistent. A simple doubly delimited character vector
provided a robust solution.

David Eastwood undertook lo circulate a first draft of a paper about avoidance of
problems when writing for multiple interpreters (see this issue of Random Veclor). The
following people agreed to be the collection points for various types of materialk:

Alan Mayer Regression

David Eastwood Utilities

Alan Hawkes Time Series

Alan Mayer Contingency Tables

Alan Sykes Multivariate Statistics

Jake Anszell Reliability

Allan Prys-Williams Sample Surveys

Karen Hurrell Smoothing and density estimation

Neorman asked for the quality of the quantile tails specification functions to be
reviewed. David Eastwood agreed to wrile an introduction to the specifications.

It was agreed that we had not yet solved the problem of maintaining consistency
between versions of functions which might appear in more than one volume; it was

The Random Vector Vol.8 No.3

agreed that this could happen - we were not going to try to ensure that each function
appeared in only a single place. It was thought a good idea to date each function and
also to provide a comment indicating where it came from in the library - this would
enable anyone to check that they were using the latest version.

Jake Ansell agreed to act both as Chairman of the team and Manager, with Alan Sykes
as his deputy who would probably take over when/if needed. The other members of
the team are Alan Mayer, David Eastwood and John Searle. Alan Sykes asked that we
call the three volumes by their correct names from now on. They are ASLBSTAT for
basic statistics, ASLGRAPH for the graphics (N.B. not WAGS) and ASLGREG for the
general regression volume,

It was agreed that an advertisement and order form for ASLGREG should go in the next
Random Vector. Alan Mayer will proof read the documentations and Alan Sykes will
make 60 copies and await orders. ASLGRAPH needs the documentation changing to
take out the references to Dyalog. Then the STSC version can be completed and it and
the Dyalog, version are almost ready. That leaves the ports to APL2 and APL.68000. 1t
was agreed that when we issue the basic statistics we will include with it an
advertisement for the other volumes on the bottom shelf. lan Clark said he would try to
put the basic statistics into I-APL/Mac.

The concept of patrons for sections of the project was discussed. It was felt that it would
be helpful to approach leading APL statisticians and to ask them if they would be
willing to become patrons of the ASL project; an honorary position primarily designed
to formalise their support for the project.

45

The Random Vector Vol.8 No.3

ASL Standards

by D.S. Eastwood

Preface

At the ASL conference in October, [agreed to attempt to codify the standards
that have been agreed for the ASL project. These standards are formulated as
fairly loose guidelines and have been drawn up as a result of discussions during
the course of the project and as a result of experiences in writing the APL code
for ASL. Indeed, much of the current ASL code will need considerable
reorganisation to bring it into line with these standards. We hope that the main
beneficiaries of this document will be those intending to submit code to the ASL
project, and, of course, others producing APL systems.

Contents

APL language usage
Functions and error trapping
Naming conventions

APL dialect differences

ASL documentation

Appendix:
Differences in second generation APL’s Maurice Jordan

References:
1. 150 8485: 1989 ‘Programming Languages - APL’ (also BS7301;1990)

2. Basic Statistics Velume - Norman Thomson

3. ASLGREG - Regression and generalised linear models volume
Version 1.1 - Alan Sykes

4. Error irapping tutorials - Ziemann, Eastwood, Brand
Vector 6.1 July 89

3. Error trapping in APL2/PC - Norman Thomson
Vector 6.4 April 90

46

The Random Vector Vol.8 No.3

APL Language Usage

Base dialect. It is recognised that a considerable divergence exists between the
different dialects of APL, and in particular between so-called ‘first generation’
and ‘second generation” APLs. In an attempt to minimise problems that might
arise in converting between APL dialects, it is recommended that contributors to
the ASL project attempt to write APL code which follows the ISO standard (Ref
1} unless some compelling reason exists to adopt a second generation feature.
Simple data arrays should be used where possible.

In practical terms, the current range of APL interpreters which are used by
contributors to the ASL project are:

APL2/370 Release 1

APL2/PC Release 1
APL*PLUS/PC Releases & onwards
APL*PLUSTI/PC Release 3
APL.68000 Release 7
APL.68000 Level i Version 2

Dyalog APL Version 6.1

A contributor to ASL should make it absolutely clear which version of APL is to
be regarded as the master version for the contributed code. Note that the release
number is also useful as some of the interpreters listed above are prone to add
new language features when they are upgraded.

Index origin. Index origin 1 is the standard and functions which use Index
Origin 0 should localise 0IC.

Global Variables. Global or semi-global variables are deprecated and should
only be used if they do a statistical job.

System functions. [functions should be avoided where possible as there is a
high probability of differences between APLs. Even functions as innocuous as
(N C can have different definitions.

Functions and Error Trapping

Specification Language. Tt is recognised that APL (or a nominated dialect of
APL) is likely to be used as the specification language for ASL code, and it is also
recognised that it is needlessly cumbersome to include, for example, full
comments and error lrapping in a specification document. The notes which
follow apply to implementations of ASL.

47

The Random Vector Vol.8 No.2

Error trapping. For bottom shelf functions, errors should result only from misuse
(using parameters beyond those specified), and thus error trapping should cut
back the stack by one and signal the appropriate error message. For an analysis
of the different schemes of error trapping used by APL interpreters, see Refs 4
and 5.

Direct definition. Is not used in ASL.

Naming Conventions (Function mames). There is currently no rule that ASL
functions should carry identifying prefixes. All names in ASL should be distinct
and should be registered at the specification stage. It should be borne in mind
that functions may have to be renamed (either to facilitate integration with user
code} or to resolve name clashes. Use of & to construct names should therefore be
avoided.

ASL function names should be meaningful without being too generic. Thus
names like PRINT are not useful!

In many volumes groups of functions will fulfil related purposes and equally
there will often be implementations of alternative algorithms. A suggested
naming convention (Ref 2) is that function names should follow a general
pattern:

<root> <inflection...>

where the dots indicate the possibility of multiple inflections. Implementations of
alternative algorithms are given serial numbers as a further inflection. When a
function calls a succession of auxiliary functions, the latter are named by
applying successive As to the root, or root+inflections. Thus full specification of a
function name is thus:

[A...]<root><inflection...><serial number:>

Examples, from the Basic Statistics Volume, are:

MEAN
MEANF mean of a frequency table

Naming Convention (Local names). A number of alternative schemes are
suggested, covering function arguments, local variables and labels. The ASL
contributor to should make a clear statement of the scheme used. These schemes
are listed below.

1. Results

Choose a standard name for a result (e.g. Z)

48

The Random Vector

Vol.8 No.3

2. Arguments

2.1 It is possible that an argument naming convention can be directly applied
from statistical theoty or from a suitably acknowledged reference. Whilst
attractive in terms of readability for statisticians, it is highly likely that
supplementary names will have to be introduced and thus recourse will have

to be made to some APL naming convention (see below).

2.2 Meaningful upper case names can be given to arguments (DF for ‘degrees of
freedom’ in example below). Note that this does not relieve the author of the
responsibility of describing the argument!

2.3 Arguments names can be constructed to indicate the nature of the expected
argument type (Ref 2). The word will be constructed in lower case letters. For
example, the following coding is used in Ref 2:

Prefix Algebraic Type Rank

ne
nd
r
5

where:

ne
nd
£
s
b
only

O ama w3

b 5

v
z m
a

non-empty

non~degenerate (non empty/scalar)
frequency

shape

boolean

non-negative lnteger

integer

real (default)

positive reals 0<g
probability O<p<1l

character

general (character or numeric)

Repeatability Suffix

R <n

v

L=

scalar
vector
matrix
array
repeat twice

Note that type ‘fm’ (frequency matrix) occurs frequently and describes a two
column numeric matrix - class values and number of items in a class.

2.4 Other local variables may similarly be given names which follow one of the

above rules, or should use the single character names

T, U, vV, W

Loop counters will use the sequence

I, 4, K. L

49

The Random Vector Vol.8 No.3

2.5 Labels should either follow the sequence
Li, L2, L3,

(using EL1,... as “end loop’ if required) or, preferably, use a meaningful name
where one can be constructed.

2.6 Compound arguments will often be employed. Each component is separaled
by an underscore and named independently {as above). Such arguments
should be explicitly decomposed:

{N A4 BY«N_A_B {in a second generaticn APL)
3. Comments should follow the standard scheme Hlustrated below:

VRES+DF CHIDEN X;Y,Z;AELX

(1] n FN: RETURNS VALUES OF THE CHISQUARED PROBABILITY DENSITY
[2] ~n 85: IS0/BS

[31 n RA: VECTOR OF CHI SQUARED VALUES WHERE PROB'S ARE REQD
41 m LA: SCALAR INTEGER - DEG OF FREEDOM OF CHI_SQUARED DIST'N
{5] ~n RE: VECTOR OF PROBABILITIES

[e] ~n

73 AELX+(JERX ERR
[83 RES+(X*Z)%{#%-0.5xX)}+{!Z+7140.5%xDF)+0.5+0.5xDF
(9] =0
[10] ERR:'ARGUMENT ERROR' [ERS 8
v 1991-1C-16 0.12.36

with recommended comments and identifiers from:

FN: describes the purpose

58: shows the source - e.g. BS Basic Stalistics
RA: right argument

LA: left argument

RE: result

AL: algorithm and attribution

VE: version / date

Dialect differences

Itis hoped that the attached notes covering dialect differences (see Appendix) will assist
an ASL author in cultivating an awareness of areas where APL dialect differences will
cause translation problems.

ASI. documentation

Certain minimum levels of documentation should be supplied with ASL workspaces.
This will cover the use of the workspace, interdependencies within the workspace and
examples of usage. Since ASL workspaces can range from collections of largely stand-

50

The Random Vector Vol.8 No.3

alone functions to complete systems, the quantily of documentation in each of the
categories may vary from volume to volume.

Specification document

Each ASL volume should begin with a Specification Document which outlines the scope
of the volume and indicates the names and syntaxes of the functions within the volume.
The specification document is used to indicate names used, naming conventions
applied and data structures. Reference 2 - the Bottom Shelf specification decument - is
a good example of this type of document. This may be the same as the:

General documentation

This covers the overall theory and operation of the volume, with reference, if
appropriale, to suitable published reference material. The ASL Regression volume
(Reference 3) provides a good example of this sort of document.

Function documentation

This document will include the internal comments found within ASL functions (see
above) together with:

Example uses of the function with test data and expected results.

Indication of the range of operation of the function (if not internally
documented).

If variants of a given function exist, a description of the variants and their
differences should be included.

Workspace documentation

Fach ASL workspace should be supplied with the following pieces of workspace
decumentation (or the means to produce them):

Workspace listing

Function cross reference

Global variable listing and description
List of functions for which an alias exisls

Porting notes

Fach ASE. document should have some notes on porting. In the case of most
workspaces this will be confined to comments regarding use of second generation APL
features, and, in particular, of uses of APL features known to vary from APL system to
APL system. It may also be appropriate to indicate means of testing parts of the
workspace or volume as they are recoded, especially if the recoding process is not
trivial.

51

The Random Vector Vol.8 No.3

Appendix: Differences in Second
Generation APLs

by Maurice Jordan

This paper covers differences that I am aware of between a number of second
generation APLs. It is not necessarily an exhaustive list, and my knowledge and
available sources are far from complete. All Sharp implementations are different again,
and in general are not coverad.

Note the differences between APLs from the same supplier - IBM and S5TSC are both
guilty of this. As you can see, the list is rather long, and I have not considered any
System Functions at all.

In the case of code written for a given second generation APL, the probability of a
function working without modification in a different implementation is only slightly
higher than the probability of it working under VS APL.

Valid object names

Underbar and overbar _ and ~ are allowed in APL2 and APL.68000 identifiers, but not
as initial character. APL*PLUS/MF allows neither, APL*PLUS/PC allows _ but not as
the first character. Dyalog only allows _, but this can be the initial character.

Dyalog allows uppercase, underscored, and lowercase alphas in identifiers.
APL*PLUS/MF does not permit lowercase. APL2 permits uppercase and underscored
with lowercase being an alternative for underscored. APL.68000 allows lowercase,
although some (dumb terminal) versions will still use underscored instead.

Function headers Z«A F0O B;C;D:E;F

Dyalog APL insists on elidable left arguments being enclosed in braces {} and allows
“shy” results {also denoted by being enclosed in braces). This is also true of DEC VAX
APL, 1 believe. (DEC also allow an axis specification.) Braces are not accepled by
APL*PLUS/MF, APL2, APL.68000, or any first generation APL.

APL2 allows either space or ; as separator in the locals list. This is not true of
APL.68000, Dyalog, APL*PLUS/MF, nor any first generation APL. Dyalog and
AFL*PLUS allow A<A FOO B and B<=A F0Q B, asdoes APL2 and APL.65000.

Defined operators

The programmer may define operalors with header syntax Z« A(F 0P G} B in
APLZ2, APL.68000 and Dyalog but not any flavour of APL*PLUS or any first generation
AFL. See also above remarks on braces in Dyalog,

32

The Random Vector Vol.8 No.3

Strand notation

Strand (or veclor) notation Z«4 B € (4 B C all variables) is allowed in APL2,
APL.68000, Dyalog, APL*PLUS/MF, but not in any Sharp or first generation
implementation. Strand notation involving quoted strings can differ in APL*PLUS/MF,
depending on the setting of the system variable ICLEVEL.

Strand notation assignment

is allowed in each of Dyalog, APL2, APL.68000 and APL*PLUS/MF. APL2 and
APL.68000 syntax seems to differ from the others in that the variables being assigned to
must be enclosed in parentheses,

A B+~AAB a Dyalog, APLxPLUS
(A BY«~A&AB a APL2/MF, APL.6B0OOO

The latter causes a SYNTAX ERROR in other APLs. APL2/PC differs from APL2/MF,
but reportedly in the curious way that it produces a different result rather than an error.

+ ¢ Z+EXPR

is illegal {rightly so in my opinion) in all but APL2 and APL.68000.

Diamond

Is supported in all APLs except APL2/MF and would be used in preference to
constructs such as +0 Z<+EXPR by any APLer to whom it was available.

Primitive Functions, Operators etc.

Enlist/Type €A. Monadic € means enlist in APL2, type in Dyalog and APL*PLUS/MF.
It generates a SYNTAX ERROR in APL*PLUSPC.

R+ENLIST R;0OTRAP

aV REDUCE ARBITRARY AFL VARIABLE R T SIMPLE VECTOR
a ENLIST (MONADIC €) IN APL2

OPRAP+~AFPASSBACKERRORS

+{0=#pR+,R}/S
Li+{1=|=R}/0 o R«0p=Rk ¢ ~+L
S:+{1=|=R)}/0 o +(C=pR)/L

Reo,/, R ¢ +3

a:a MHJ 31MAY90 FROM MAINFRAME

A<TYPE A

av ATTEMPT TO DEFINE DYALOG, APL+~PLUS ¢ IN APLZ/MF, APL.680040
A+t0pcd

53

The Random Vector Vol.8 No.3

Selective specification (F Z)<«EXPR. is allowed in APL2/MF, APL.68000 and
Dyalog, but not in APL*PLUS or APL2/PC. The domain with respect to function F may
differ.

Enclose cA. Same in all APL2-like second generation APLs; the basic difference is
between these and Sharp implementations.

Enclose with axis = [1]4. Specific to APL2, APL.68000. Dyalog and APL*PLUS use
split4dor+ [1]A.

Partitioned enclose or partition 4<B. In Dyalog and APL*PLUS/MF 4 must be
boolean. In APL2 and APL.68000 4 is integer. The Dyalog A<B is reproduced by
{(+\4) B} in AFL2 and APL.68000. APL2 and APL.68000 allows values from B to be
removed from the result, Dyalog and APL*PLUS do not, apart from the case where
there are leading zeros in A. In Dyalog and APL*PLUS, for vector B,

(pA<B)=+/4
{=./4=B}={v\4}/B

Pick A>B. is the same in Dyalog, APL*PLUS, APL2 and APL.68000.

Disclose 0B (APL2 APL.68000). Is mix +B in Dyalog and APL*PLUS. APL*PLUS Il
will give a LENGTH ERRORon+t'FRED' 'JOE'.

First +B (APL2, APL.68000). Is =B in Dyalog and APL*PLUS.

Depth =B. APL*PLUS/MF has two definitions, controlled by a system variable
OCLEVEL. The APL2 and APL.68000 definition can be represented by:

If B is a simple scalar, =B is 0. .
Otherwise =B is defined recursively as 1+ [/= "B

This is the same for APL*PLUS/MF with OCLEVEL#0. Dyalog |=B is defined
stmilarly, but x=B is " 1 if depth of nesting at any level is different. APL*PLUS/MF
with JCLEVEL=0 is similar to Dyalog, but has magnitude 0 [~ 1+ | =B.

Axis operalor. Axis operator with primikive scalar functions 4 F[I] B does not
exist in APL*PLUS or Dyalog. In Dyalog it can be simulated with a defined operator,
Ravel with axis (, [I]B), take wilh axis (4, [T]1B) and drop with axis (4+ [I]B) are
present in APL2 and APL.68000 but not Dyalog or APL*PLUS/MF.

Squid] (indexing function). Is in APL2 and APL-68000 but does not exist in Dyalog
or APL*PLUS.

Bracket indexing A[B]. Has been extended in Dyalog and APL*PLUS, but not APL2
or APL.68000, to allow nested B (scatter-poinl indexing). Dyalog and APL*PLUS/MF
differ on the range of nested arguments allowed for this.

54

The Random Vector Vol.8 Nd.s

Find €. Does not exist in Dyalog or APL*PLUS before Release 9. For text vector
arguments, it can be simulated easily in APL*PLUS using 15.5. The Dyalog AP S5 can
be used to simulate most instances.

Each operator F'. When applied to empty data F''E, APL*PLUS gives a NONCE
ERROR; Dyalog tries to return (pE)pcFe>E; APL2 and APL.68000 return the fill
function applied to the prototype of E.

Composition operator F = G. Exists in Dyalog but not APL2, APL.68000 or APL*PLUS.
Commute operator F=. Exists in Dyalog but not APL2, APL.68000 or APL*PLUS,

Catenate-first-axis A+ B. Exists in Dyalog, APL.68000 and APL*PLUS/PC but not
APL2 or APL*PLUS/MF.

Punction assignment F<++/. Exists in Dyalog but not APL*PLUS, APL2 or
APL.68000.

Assignment as a pseudo-operator 4 F+<B and A[I] F+B. Exists in Dyalog but
not APL*PLUS, APL2 or APL.68000.

Set functions AnB AuB A~B. Exist in Dyalog. ~ (without) is in APL*PLUS PC and
APL*PLUS 11 but not APL*PLUS m/f. Only A~B in APL2 and APL.68000.

Unique U 4. Exists in Dyalog, but not APL*PLUS, APL2 or APL.68000.

Index generator 1N. Has been extended in Dyalog to accept a non-singleton
argument, producing a nested array result. This extension does not apply to APL2,
APL.68000 or APL*PLUS.

Replicate and expand. Have been extended in Dyalog to take generalised left
arguments. This extension does not apply to APL2, APL.68000 or APL*PLUS. In Dyalog
and APL*PLUS/MF, they continue to be classed as functions rather than as operators.
Thus:

(0 1) (1 0)/ er2
will work. [t does not work on APL*PLUS Il, APL2 or APPL.68000.

N-wise reduce N F/B. Is in APL2 and APL.68000 but is not present in Dyalog or
APL*PLUS.

Reduction and inner-product. With non-scalar functions work differently between
(Dyalog and APL*PLUS/MEF) and (APL2, APL.68000 and APL*PLUS II). Non-scalar
reductions on empty arguments may be different where they does not produce an error.

High level formaiting. The implementations of OFMT (Dyalog, APL.68000 and
APL*PLUS) and A¥B (APL2 with text 4) all are different. APL*PLUS and APL*PLUS I
insert a column of blank spaces on the left of numbers - others donot (¥v9 1 p19).

55

The Random Vector Vol.8 No.3

Default display. Differs.
The atomic vector JAV. Is specific to each implementation.
Shared variables. Are specific to each implementation, and may not be present.

Error handling. The system function to signal an error is different in each
implementation. APL.68000 implements APL2's JEA [OEC [JET as well as its own
OERX. Facilities to take alternative action on errors exist in all second generation APLs.
Apart from APLZ2, it is possible lo design utilities which take the same action in other
implementations.

Complex numbers. Are available in APL2/MF but not APL2/PC, Dyalog, APL.68000
or APL*PLUS.

Roll ?4. For some arguments e.g. 7~ 1+2% 31, roll gives different results on different
systems for the same value of (JRL. 77 2+2* 31 seems to give the same result, at least
between Dyalog and APL*PLUS/MF. The domain of roll differs between Dyalog and
others. In Dyalog, it must be stored as a positive integer (up to ~1+2% 31); in others it
can be a “near integer” requiring floating point storage (up to L/10) As the roll
algorithm can generate at most ~ 2+2* 31 distinct values, it seems logical to use this
value,

Note: Alan Sykes has tested 77 2+2*31 on a number of interpreters,
and reports that they all gave the same results with the exception of
APL*PLUS/PC. It seemns that although APL*PLUS/PC uses the
{(implicit) standard ORL«<("1+2%31) | { 7% 5) x[JRL algorithm
for updating ORL, it switches to an algorithm which uses 8
successive values of (JRE to generate 1 random number when the
argument to ? exceeds ~ 1+2%15.

Placement of parentheses. Different interpreters allow parentheses to be included in
expressions at different points. This is true of APL*PLUS/MF versus APL*PLUS Il
Usually these parentheses are only needed to deal wilh some nastiness in a second
generation language feature,

Complex indexing. There are differences in such expressions as 4 B C[33.1
strongly recommend steering clear of these. Also, I recall problems with a benchmark
involving ALT] [4] [X].

Differences in arithmetic precision. Alan Sykes remarked on differences in A@B in
his APL87 paper. There may be others.

Internal Storage. The number of bytes needed to store an object can vary widely
between implementations. For example APL*PLUS/PC does not have boolean storage.
Dyalog does mot have arithmetic progression vectors. PC-based APLs have short
integers. These differences can mean the difference between a successful run and an
afternoon of WS FULLs.

56

VECTOR Vol.8 No.3

APL Product Guide

Compiled by Alison Chatterton

VECTOR's exclusive APL Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We do depend on the alacrity of suppliers to keep us informed about their
products so that we can update the Guide for each issue of VECTOR. Any
suppliers who are not included in the Guide should contact me to get their free
entry - see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage.

The listings are not restricted to UK companies and international suppliers are
welcome to take advantage of these pages. Where no UK distributor has yet been
appointed, the vendor should indicate whether this is imminent or whether
approaches for representation by existing companies are welcomed.

For convenience to readers, the product list has been divided into the following
groups:

* Complete APL Systems (Hardware & Software}
* APL Timesharing Services

* APL Interpreters

* APL Visual Display Units

* APL character set printers

* APL-based packages

* APL Consultancy

* APL Training Courses

* Other services

* Vendor addresses

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

Notle: ‘poa’” indicates “price on application’.

All contributions to the APL Product Guide should be sent to Alison Chatterton,
at the address on the inside back cover.

57

Vector Product Guide

Vol.8 No.3

COMPLETE APL SYSTEMS

COMPANY PRODUCT PRICES({£}

Active Workspace Ltd
AWLABE 4,450
AWL 386 3,085+

APL Paople IBM PCs & compatibles poa

Dyadic IBM RS/8000 MD320 11,738
1BM RS/6000 MD320 13,817
IBM RS/8000 MD320 22,656
IBM RS/5000 MD520 37,114
IBM RS/8000 MD530 72,054
IBM RS/5000 MD540 122,842

MicreAPL Aurora 20,000+
Spectrum 7,000+

APL TIMESHARING SERVICES

COMPANY PRODUCT PRICES(E)

Reutars Lid SHARP APL poa

Uniware APL*PLUS call

APL INTERPRETERS

COMPANY PRODUCT PRICES(E)

Active Workspacae Lid DYALOG APL DOS 386

APL Softwara APL*Plus/PC Release 9 535
Run-time poa
APL*Plus Il 1600
Run-time poa

DETAILS

486 baged 25MHz PC, 140MB Disk, 4MB RAM, VGA GCaiour,
{inc. 1 year on site maint.)

386 based 25 & 33MHz PC, 140MB Disk, 4MB RAM, VGA
Colour. (Inc. 1 year on site maint.)

includes PC. monojcalour monlter. APL interpreter, eperating
system scftware, plus optional printers. graphics boards,
additionai memory ete.

APL POWERStation {Greyscale) 27.5 MIPS, 7.4 Milops RISC
Processor 8Mb RAM, 120Mb Disk

197 1280x1024 Greyscale Graph Display AlX, OSF Maotif, Dyalog
APL (1-user)

APL PCWERstation (Colour) 27.5 MIPS, 7.4 Mflops RISC
Frocessor BMb RAM, 120Mb Disk

16* 1280x1024 Colour Graphics Display AIX, OSF Motlf, Dyatog
APL (1-user)

Advanced APL POWERstation 27.5 MIPS, 7.4 Mflops RISC
Processor 16ME RAM, 320Mb Disk, 150Mb Tape

18" 1280x 1024 Colour Graphics Display AlX, GSF Motif, Dyalog
APL (1-user}

APL POWERSsystem (B-users) 27.5 MIPS, 7.4 Mflops RISC
Processor 18Mb RAM, 320ME Disk. 150MbE Tape CO-ROM
Drive, 16 Ports

AlX, Dyalog APL (2-8 user |icanca)

APL POWERsystem (i6-users) 34.5 MIPS, 10.8 Mfleps RISC
Processor 32Mb RAM, 1.34Gb Disk, 2.3Gb Tape CD-ROM
Drlve, 16 Ports

AlX, Dyalog APL (8+ user licenca)

APL POWERsystem (32-users} 41 MIPS, 13 Mfleps RISC
Processor 64Mb RAM, 1.7Gb Disk, 2.3Gb Tape CD-RCM Drive,
32 Porls

AlX, Dyalog APL (8+ user licenca)

Multi-user APL computer using 68020 CPU. Std. configuration
2Mb RAM, 16 RS232 ports, 68 Mb hard disc, 720K disketie

Expandable multi-user APL computer using Motorola 68000. Std.
conguration 1 Mb RAM, 12/36 Mb dise, 12 ports.

DETAILS
International Network application systems and public databases.

STSC's mainframe service

DETAILS
Dyadics PC 3B6 AFL interpreter

STSC's APL for IBM PG, PCIAT and PS2.
Upgrades from earlier Releases also available.

Closed version of APL*Flus/PC which prevents user exposure to
APL.

Incorporatas matnframe features & performance In a version of
APL for the FC

58

Vector Product Guide

Vol.8 No.3

Cocking/Drury

Dyadic

I-APL Lid

IEM UK

MicroAPL

Dyalog APL 1000-10,000
APL2/PC 378
APL*PLUS PC Rel 10 40
APL*PLUS PC Aun-Time 175 for &

APL*PLUS PG Dsveloper System 950

APL*PLUS |) System 1200

APL*PLUS | Developer System 3200

APL*PLUS (I for UNIX poa
APL*PLUS VMS poa
APL*PLUS Mainframe poa
Dyalog APL for DOS/386 985
Dyalog APL far Unix 995-12,000
I-APL{PC or RML Nimbus 4.50
I-APYBBC 4.50
-APLArchimedes 4.50
IBM FC APL2 348
APL.E8000 Level | 2000
APL.68000 Level I 2600

APL.E8000 Level |
Mac, ST, Amlga, GL a7

Mac, Amiga 260

APL.G8000 Level ||

ST 170
Amiga 260
Mac 520

2nd generation APL for Unix systems
IBM's APL 2 for the PC.

STSC's full featurad APL for IBM's and compatlbles - Verslon 10
Includes the Quad-NA tacllity to Interface to non-APL software,
support far Microsoft Windows and mouse devices, The User-
command processar has been builtin to the interpreter.

Upgrades to version 10 are available from Version 9 and sarfier
releases,

Closed version of the interpreter for develapers, prevents user
axposura to APL.

Gives rights to distribute an unlimited number of coples of Run-
Tima application,

High powered APL interpreter for the 80386 chip.

Price includes ¢ne years maintenance and free upgrades -
voluma discounts

VERSION 3.5 NOW AVAILABLE,

Unlimited distribution of APL*PLUS Il Aun-Time applications!

STSC's 2nd generatlon AFL tor all major Sparc and Risc Unix
workstatons. Versian 4 for existing plaferms and for the |BM
RS/GC00 available from January.

2nd generatlen APL for DEC VAX computers running under
VMBS,

Enhances VS APL with many high performanca, high
productivity features. Far VM/CMS and MVS/TSC offers simple
upgrade from VS APL.

Second generation APL for DOS.Runs in 32-bit mode, suppons
very lerge workspaces. Unique "window-based" APL
Development Environment and 65M Screen Manager. Requires
386/486 based PC or PS/2, at least 2Mb RAM, EGA or VGA,
DGCS 3.3 or later.

Second ganeration APL for Unix systems. Available for Altos,
Apclio, Bull, Dec, HP, {BM 6150, 1BM R5/6000, Masscomp,
Pyramid, NCR, Sun and Unlsys machines, and for FCs and
PCf2s running Xenix ar AlX. Cracle interface avallable for IBM,
Sun and Xenix versions.

{SC conferming interpreter, Supplled only with manual. (see
‘Other Products’ for accompanying books}

As above
As above

APLZ for the IBM PC. Program 5799-PGG/1, PRPQ number RJ-
0411. Fromall |BM dealers,

First genaration APL with numerous enhancements. Multl-user
version (Unlx, Mirage, MCS).

Second generation APL. Nested arrays, user defined operators,
sglective spedification ele, Multi-user varsion (Unix, Mirage,
MGS)

First generatlon APL. Single user, full windowing interface,
sqftware floating polnt support.

First generatlon APL. Single user, full windowling interface,
hardwarae floating point

Second generation APL. Full windowing interface, seftware
floating peint suppart,

Second generation APL. Full windowIng interface Hardware and
software floating palnt support.

Second generation APL. Full windowlng interface. Hardware and
solftware floating point supporn.

59

Vector Product Guide

Vol.8 No.3

APL*PLUS Rel 10 450
APLPLUS IV 30 1395
Reutars Ltd SHARP APL poa
Uniware APL*PLUSIPC 495
Run-Time call
APL&PLUS/UNX call
APLPLUS Il call

APL VISUAL DISPLAY UNITS

COMPANY PROBUCT PRICES(E)
APL Pecple IBM & compatbles poa
Dyadle 1BM 3151 599
1BM 6154 1,228
Generel Software Mellordata poa
Shandell HDS3200{10 APL 985
HDS3200/25 APL 1065
HDS3200/35 APL 1265
HDS3200/5C APL 1385
APL PRINTERS
COMPANY PRODUCT PRICES(E}
APL People Epson series 200
Quen-data & Qume el 500
Dyadlc Varlous poa
MicreAPL Datasouth 05180+ 1,185
Phillps GP480 2157
Qume Letterpro20 549
APL PACKAGES
COMPANY PRODUCT PRICES(E)
Active Workspace Ltd
Syndicate Manager poa
APL-385 APL-085 50(PC),125(mf)
FSM-385
DRAW-385
0B-385
GEN-385

for IBM mainframas
STSC's full feature APL for IBM PC/XTIAT, Compagq, Clivetti.

Closed version of APL"PLUS/FC which prevenis user exposure
1o APL.

STSC*s full featura APL for UNIX based computers
STSC's full featura APL for 385 machines.

DETAILS
IBM and "budget” APL VDUs - mongochrome/eolaurigraphics,

Monochreme APLIASCI vdu with APL keyboard. Supports
downloaded Dyalog APL font.

Calour APL/ASCII vdu with APL keyboard, Supports downleaded
Dyalog APL font.

15" sereen, B page memory, windows. 80/132 calumns, full
ovarsirike, Multi-host multi-sesslon support. ANSI X3.64, DEC
VT100, V1220, Tekironlx 4010/4014 1024 x 330 resolution.

As above plus switchable 25 or 50 line screen, 75 Hz refresh,
Resolution 1024 x 780 in graphles mode,

As HDS3200/25 plus local pan & zoom.

14" colour monitar. 75 Hz refresh. 8 or 16 colours from palette o
256G, Display mamory 98 lines of 80 or 132 columns. APL
processing & keypoard with full overstrike. Windows, mult--host,
multl-session support. ANSI X3.64, DEGC VT220, VT100, vT52
emulation.

DETAILS

Inexpensive dot-mairix and NLG printers

Daisy-wheel printers

Range of APL printers avallable.

See Datatrade entry

Matrix printer with letter & draft quality and APL (480 ops),
APLJASC/) Dalsy-wheel printer

DETAILS

Uoyd'’s managing agent's syndicate { company accounting
system. Stamp & Personal accounts {Inc. Run offs}

including ...

Screen devalopment
Sersen dasign
Relational W.S.
Miscelianeous Uilltles

60

Vector Product Guide

Vol.8 No.3

APL Software Ltd
{malnframe)

(micracomputer}

Cocking/Drury
(for VEAPL)

(for APL2)

tfor PC's}

H.MW.

HRH Systems
mpetus Ltd
iINFOSTROY
interprocass

{malnframe)

ADs
1PLS
AEGGPAK

POWERTOCLS

REGGPAK
RADS

E'MENTS & SHAREFILE

COMPILER
FILEPRINT
FILECONVERT
FILEMANAGER
TOOLS + UTILITIES
DATAPQRT

SHAREFILEJAP

FMT
WwsDOC
FILEMANAGER

APL*PLUS PC Tools

IRMA Modula
FIN & STAT. LIBRARY
SPREADSHEET MGR

4XTHA
Arbltrage
Basket
Menu-Bar
APL Utilities

impetus

Russificator

IEDIT

AFM

Format
FSM124
PowerCode
CALLAP
UCF

poa
poa

poa

295

poa

275

90
250
150

poa
poa
poa
paa

paa

poa
pea

1800-3200

8200-9800

1680
1650
1300
3000
1800

Relation Data Base System
Project Management Systam

Regresslon Analysls Package

Assemitler written replacemant functlon for commonly used
CPU-consuming APL functiens, Includes a Forms Processor.

Regression Analysis Package

Relational Database System

GCompaonent files, quad- functions & nasted arrays for VSAPL
under VM/CMS & MVS[TSO

The First APL compller!

Print APL component files

Converts nen-APL fll2s o APL

Extends APL primitives 10 database management
APL Software development tools

Infarmation Centre spreadsheet incorporating data exchange
between APL, FOCUS, {FPS, SAS, APL/DI, ADRSI, Lotus123,
Visicale, Multiplan & DIF

STSC's shared access component flle system for APL2.
Comparable to all APL*PLUS file systems: multi-user storage of
APL2 arrays with efficient disk usage

Full featurad FMT for APL2
Woarkspace documentation utlities

Extends APL primitives lo database management

Utilities [ncluding: RAM disk, full screen data entry, menu input,
report generation, exception handling and games,

327 IRMA support.
Financial & Statistical routines

APL-based spreadshest for APL*"PLUS/PC. Cell arithmetic;
transfers 1 ASCI & Lotus

Front-end Foreign Exchange deallng | pos keeping
Arbltrage modslliing

Basket currency modelling

puil-down menu for ARL*PLUS{PC

PC Utilities including: APLMAC (windows); Unlock {unlocks
functicns in .AYYS); DTEX (text and spreadshaet impjexp).
Mostly avallable [n English or French.

Gorporate Modelling and Reporting System.

Drivers and documentation for use with APL*PLUS/PC system
and other STSC software with Cyrillic alphabet (PC).

Full seraen APLZ edltor with immediate APL execution, and a
fuli-screen debugger

High performance component and keyed file system (VS APL
and APL2}

A QuadFMT data formatter for VS APL and APL2

AP124 programming for APL applications without GDDM (APL2)
Extarnal functions for APL2

for ¢alling non-APL programs {VS APL and APL2)

Inter-user date transfer for VM users via IUVC

61

Vector Product Guide

Vol.8 No.3

(PC)

Mercla

MicroAPL

Rautars Ltd

Uniware
{malnframse)

AFM
STATGRAPHICS 4

Upgrade 310 4
Upgrade pre 3 to 4
MICROSPAN
LOGOL

TWIGS

MicroTASK
MicroFILE
MicroPLOT
MicroliNK
MicroEDIT
MicreFORM
MicroSPAN
MicroGRID
APLCALC
MicroPLOT{PG
MicroSPAN/PC

STATGRAPHICS Rel 4

GLOBAL UMITS
IPSAJCONNECT
MAILBOX
MAILBOX/PC V.2
upgrade to V.2
NEWSFLASH
VIEWPOINT

STSC's ENHANCEMENTS

STSC's SHAREFILE

PROGRAMMER TCOLS &

UTILTIES
FILEPRINT
FILESCRT

15
684

215
375
250

299
99
188
80
99

589
4999
250
260
250
250
250
250
250
poa
400
250
250
520

poa

Single user component and keyed flles for APLZ/PC

Integrated statistics/graphics system for the PC. Now with
macrps. Buik and educational discounts avallable.

Comprehensive APL tutor

Logistics management system for PC and 386. Sales
Forecasting, Inventory Caontrol, Master Scheduling, Distrlbution
Requirements, Planning etc

A modular library of tools to teach and explore state-cf-the-art
materials management concepts.

Time series forecasting
Warehouse replenishment
Inventory Management

Grouping requirements into ECQ's
Scheduling production/purchasing

All 5 modules above

All 5 medules site licence
Product development aids

File utilities and databasa
Graphics for HP plotiers etc
General devica communications
Full screen APL editor

Full screen forms design
Comprehensive APL tutor
Ethemat & other petworking
APL spreadshest system

For APL*PLUSIPC product
APL self Instruction for APL"PLUS{PC

Exposure managemant for banks
Malnframe to micro link
Electronlc Malf

Full screen front end to [PSA mailbox

Real ime message exchange
4GL - Info cantre product

Quad-funclicns & nested arrays for IEM VSAPL under VM/CMS
and MVSTSQ

component files for IBM VSAPL under VM/CMS and MVS/TSO
amnd for IBM AFL2

62

Vector Product Guide

Vol.8 No.3

FILECONVERT poa
FILEMANAGER(EMMA) poa
EXECUCALC poa
{microcomputer}
STATGRAPHICS poa
STATGRAPHICS UNISTAT poa
APL*PLUS TQOLS
-VOL?t poa
-vVoLz2 pea
SPREADSHEET MNGR
APL*PLUSIPC FIN & poa
STAT.LISRARY
POCKET AFL poa
UNIASM poa
LINITAB poa
Tha APL DEBUGGER poa
APL2C poa
Warwick University
BATS 250
FAB free
APL CONSULTANCY
{prices quated are per day unless otherwlse marked)
COMPANY PRODUCT PRICES({£E)
Active Workspace Lid
Censult’ poa
Adfee Consultancy poa
APL Peaple Consultancy poa
Buckland Management
Systems Consultancy poa
Camacha Consultancy poa
Chapman Consultancy 150-300
Cocking/Drury Caonsultancy 176-275
275-350
300-450
400-600

STSC's databasse package

Mainframa spreadsheet compatlble with VISICALC and part of
LOTUS 1-2-3 under VSAPL(VM or TSC)

Statistics and graphics for PCs
An add-on module 1o STATGRAPHICS: Data analyslz software.

Inct, 327 /€ {RMA support, RAM disk, full screen data entry,
manu [nput, report generation, games

Inc!. Flle documentor, screen editor, exception handling,

poaAPL spreadsheet with bullt-in ASCI), LOTUS and
SYMPHONY interfaces.

Callection of financial

and statistical utliitias.

Smaller version of APL*PLUS/PC.

Collection of assembler routines for APL*PLUS/PC usars,

APL=PLUS/PC spreadsheetlike data entry and valldation
system.

Flrst released APL*PLUSIPC debugger.
interface batween APL*PLUS/PC end DATALIGHT C language

Menu driven system for ime serles analysls and forecasting
using Bayesian Dynamic modelling. Price s reduced to £35 far
academic Institutions.

Trainlng program for the above.

DETAILS

PC Based APL system design, programming and
Implemeitation.

Development, malntenance, canversion, migration,
dscumentation, of APL products in all APL envirenments

Consuliants avalizble at all levels, with experience in; VS APL,
APL*PLUS, APL2, Sharp APL, Dyaleg APL, AFLES00, C{Unix,
TSQMVE, VMICMS, graphics, Operational Research etc,

Expertise In APL system design, preject management,
prototyping, financial applications, decislon support systems,
MIS, {inks 10 non-APL systems, decumentation, etc.

Business and Technicel systems In commeree and industry -
designing, pregramming and implementing applications.

Specialising in programming & manual writing.

24-haur programmer: APL, G, assembler, graphics; PC, mini,
mainframe, network,

Junier consultant
Consultant
Senior consultant

Principal Cansultant

63

Vector Product Guide Vol.8 No.3

Peter Cyriax

Delpht
Dyadlc

E&S

General Software
Michael Hughes

H.MW.

|an A, Clark

INFOSTROY

Inteligent
Programs Lig

Mercla
MicreAPL
M.T.LC,

Parailax
Systems Inc

QB Cn-Une
Heuters Lid

Rochester Group
Rax Swaln

Wickliffe
Computer Lic

450-750 Managing consultant
Consultancy 100150 Junlor Consultant

120-200 Consultant

160-3C0 Senior Consuitant

Consultancy poa APL system development on mainframes and micros.

Consultancy poa APL and Unix system design, consultancy, programming and
training.

Consuilancy poa System prototyping: all types of information system, englineering

software, graphics and declslen suppert systems APLPLUS/RC,
APL2, Dyalog APL

Consultancy from 120

Cansultancy poa Consultant with 10+ years expetlence with various AFL
interpreters and G.

Consultancy poa System design consultancy, programming. HMW speclalize In
banking anc protetyping work.

Consultancy poa Computer-based Information Systems Implementation where
acceplance Is critical. APL en PC and Magintesh. Human
Factors of HCI; novice ease of use; online assistance; tralning
courses; distance-learning materials.

Consultancy poa Localization af APL software for the Soviet Unlon software
market

Caonsuitancy 175-350 Systems development, enhancamenis, support,

Documantation 180-250 Preparaticn of new manuals, rewriting of existing materials.

Training 150-250 Tralning fer APL experts through to non-technical system users.

Consultancy poa APL*PLUS & VSAPL consultancy,

Consultancy pea Technical & applications consultancy.

Consultancy 240-500 Business analysis and APL consultancy

Consultancy $750 Introductory APL, AP for End-user & Advanced Topics in APL

Consultancy 280 Specialising in Banking, Financial & Plarning Syslams.

Consultancy poa Consuliancy & support service world-wide.

Cansultancy poa Speclalise In MIS using Sharp APL.

Consultancy pea Independent consuliant, 15 years experience, Custom sofiware
development & training, PG andfer mainirame.

Consultancy poa System design, consultancy, programming and documentation.

Especially project management and declsion support systems

OTHER PRODUCTS

COMPANY
Adlea
APL Pegpla

HMwW
-APL Ltd

PRODUCT PRICES(E) DETAILS
Employment poa Cantractors and permanent employees
Employment Agency poa Permanent employees placed at all levels, Contractors supplied

for shortflong-term contracts, supervised or unsupsrvised.
Executive Search servica avalilable.

Employment poa Confractors ang permanant employees placed.
An APL Tutorial 2.50 45pp by Alvord & Thomson

An Encyclopaedia of APL (2nd Edn)5.50 228pp by Helzer

AFL. in Social Studles 250 36pp by Traberman

I-APL Instruction Manual (2nd Edn)2.50 &5pp by Camacho & Zlemann

64

Vector Product Guide

Vol.8 No.3

APL Programs for the Mathematics Classroom (Springer-Vertag)
14.50 185pp by Thomson

** Please add ohe pound packing charge per order **

Reuters Lid Productivity Toois
Databases
1Sl Tanglble Math
J
SharpAPLPC
151 APL
Renalssance
Data Systems Booksellers

poa Utilltles for systems, operations, administration & analysts;
auxillary processaors, comms software, international network.

poa Finencial, aviation, energy and socioeconomic.

519 An APL Approach to Math - Shareware, includes basa Sharp
APL

524 Dietlonary APL simglified and enhariced - Shareware (Mac,PG)

574 Reglstered Sharewara and Relference Manual
$59 Impreved APL.PC - enhancements, performancs, large
workspaces

The widest range of APL books avallable anywhere, See Vecior
advertlsements.

OVERSEAS ASSOCIATIONS (Sample entries)

GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub, VisajMcd
APL Bay Area USA N. Californla APLBUG Menthly Meetings {2nd Monday} $15 N/N
Dutch APL U.G. Holland - Mini-congress, APL ShareWare Initiative

APL Club Austria Austrla - Quarterly Meslings 200AS per person,

Sydney APLUG

Sydney,Australla Epslion

VENDOR ADDRESSES

COMPANY
Active Workspace Ltd

Adfes

APL 385
APLBUG

APL Club Austria
APL Paopla

APL Software

Buckland Management
Systems

Anthany Camacho

Paul Chaprnan
Cosking & Drury Ltd.

Datatrade Lid.
Delphi Consultation

Dutch APL U.G.

CONTACT

Ress D Ranson
Bernard Smoor

Adrian Smith
Jorge Mezel
Erich Gall
Jil Moss
David Alis
JIil Moss

John Buckland

Romllly Gocking

Tony Checksfleld
David Grossley

Bernard Smoar {Sec)

1000AS per company NN
Maonthly Meelngs

ADDRESS & TELEFHONE No.

Maulsham Mill Centre, Parkway, Chelmsford, Essex, CM2 7PX, Tek (0245)
252414 axt.240

Dorpsstraat 50, 4128 BZ LEXMOND, Netherlands. Tel: 31.3474.2337, fax:
31.3474.2342

Brook House, Glling East, York. Tel: 04392-385

117 East Creak Dr., Menlo Park, CA 94025, USA

1BM Osterrelch, Cbere Donaustrasse 95, A-1020 Wien, Austrla

The Old Malthouse, Clarence St, BATH, BA1 BNS. Tel: 0225-462602
The Cld Malthouse, Clarence ST, BATH, BA1 5NS.Tel: 0225-462602

Westwood, 19 Granga Road, Camberley, Surrey, GU15 2DH
Tei: 0275 684327

2 Blanheim Road, &t. Albans, Herts AL1 4NR,
Tel: St. Albans (0727) 860130

18, Trevelyan Road, London, SW17 9LN Tel: 081-767 4254

180 Tottsnham Court Road, LONDON, W1F SLE
Tel: 071436 9481 Fax: 071-436 0524

38 Billing Road, Northampton, NN1 5DQ. Tel; 0604-22209

Church Green House, Stanfard-in-the-Vale, Oxon SN7 8LQ.
Tek 0367 710384

Postbus 1341, 34308BH Nisuwegein. Tel: 03474-2337

65

Vector Product Guide

Vol.8 No.3

Dyadic Systems Ltd.

E & S Associates
General Software Ltd
H.M.W. Trading Systems

HRH Systems
Michael Hughes
lan A. Clark

-APL Ltd

1BM UK Lid
Impetus Lid

INFOSTROY
Interprocess Systems
Intelligent Programs Lid

18t

Mercia Software Ltd,
MicroAPL Lid.

MT.LC.

Peter Cyriax Systems
Parallax Systems Ing.
QB On-Line Systems

Renalssance Data Systems

Reutars Lid
The Rochester Group
Shandell Systems Lid,

Sugar Mill Software Corp.
Rex Swain
Sydney APLUG

Uniwara

Wicklifte Computer Lid
Warwick Univ.

Zark Incorporated

Peter Donnelly

Frank Evans
M.E.Martn
Stan Wilkinsen

Dick Holt

Anthony Camacho

J C Business Services
Nat,Enq, Centre
Cedric Heddle

Alexel Miroshnikov
Stella Chamberlaln
Mike Bucknalt

Erle Iversen
Orders

Gareth Brentnall
David Eastwood

Ray Cannon

Peter Cyrlax
Kevin Weaver
Phillp Bulmer

Ed Shaw

Paul Jackson
Robert Pullman
Maurica Shanahan

Lawrence H. Nitz

Raob Hedgkinsen

Fric Lescasse

Nick Telfer

Prof.Jeft Harrison

Gary A. Bergquist

Riverside View, Basing Road, Old Basing, Basingstoke, Hants RG24 DAL.
Tel: 0266 811125 Fax: 0256 811130

18 Homesdale Road, Orplington, Kent BRS 145, Tel: 0589-24741
22 Russell Road, Northhalt, Middx, UB5 4QS. Tel:081-864-8837

Hamliton Housa, 1 Temple Avenue, Victoria Embankment,
LONDON EC4Y OHA Tel: 071-353 4212
Telex: 926504 HAMHSEG Fax: 071-353 3325

Box 4496, Sliver Spring, Maryland 20904

28 Rushton Road, Wilbarston, Market Harborough, Leics., LE16 8QL.
TehQb36 770998

9 HIll End, Frosterley, Bp. Auckland, Co. Durham DL13 25X
Tel: 038852-7120

2 Blenhelm Road, St. Albans, AL1 4NR. Phone 0727-850130 for queries,
order forms, bulk orders

56 The Crescent, Milton, Weston-super-Mare, Avon, BS22 80U
414 Chiswick High Rd, London W4 &7F Tel; 081-747 0747

Rusper, Sandy Lane, Ivy Hatch, SEVENOAKS, Kent TN16 OPD
Tel: 0732-885126

3 &. Tulenin Lane, Leningrad 191186 USSA.
Tel:812-238-6392 Fax:812-318-8700

9040 Raswell Road, Suite 690, Atlanta, Georgla 30350-1131
Tel: (404) 992-8400

Unlit 7, Hermitage Court, 6-10 Sampsan Street, Landon E1 9NA
Tel:071-481-4813

33 Major Street, Torento, Cntarip, Canada M5S 2K9 Tel:(416) 025-6006

3512 Cameron Mills Road, Afexandria, Virginla, USA 22305-1103
Tal:{703) 548-1799

Aston Sclence Park, Love Lane, Birmingham B7 4B.J. Tel: 021-359 5006

South Bank Technopark, 90 London Road, LONDON SE1 6LN
Tel: 071-922 8856

21 Woodbridge Rd, Blackwater, Gamberley, Surrey GU17 OBS Tel; 0252
874687

12 Gloucester Place, London W1H 3AW Tel: 071-935 2983
Avery Road, Box 319, Garrlson, NY 10524, U.S.A, Tel; 914-424-4265

5 Surrey House,Porismouth Rd Camberley, Surrey, GU1E 1LB,
Tel: 0276-20789

P.O. Box 20023, Park West Financa Station, New Yark, NY 10025-1510,
US.A. Tel: (212)364-3078

7th Floor B Block, Coventry Point, Market Way, Coventry CV1 1EA
Tel: 0203 266562

50 5.Union St., Rochester NY 14607, U.S.A. Tel:716-454-4360 or 716-
4544641

Chiltern House, High Street, Chalfont St. Giles, Bucks., HP8 4QH. Tel:
02407-2027. Fax:02407-3118

180 Klka Place, Kallua, Hewall 95734 Tel: (808) 261-7536
8 South Street, Washington, CT C6793, U.S.A, Tel:203-885-0131
GPO Box 1425,Sydney, NSW 2001, Australla

15 Rua Erlanger, 75016 Paris, France. Tel:[1) 45-27-20-61. Fax:(1)45-27-
20.61. Talax: B4B8348F UNIWARE

78 Victorla Rd., Whitehaven, Cumbria, CA28 6JD. Tol:0046-692588

Dept of Statistics, University of Warwick, Coventry, CV4 7AL
Tel0203-523369

53 Shenipsit St, Vernon CT 06066

66

VECTOR Vol.8 No.3

Book Review: Programming in]

reviewed by Keith Smillie

Iverson, Kenneth E., 1991. Programming in J.
[verson Software Inc., 33 Major Street, Toronto M35 2K9, Canada.
69 pp., $40.00 + 7% GST.

Programming in | begins as follows:

“This book is an introduction to programming in], a language available as
shareware on a wide variety of computers. Although the primary purpose of
study may be to learn to write programs and systems for use on a computer,
reading is an interesting and efficient aid to gaining fluency in writing. Much
emphasis is therefore given to exercises in reading.”

Further on the first page we read that:

“A prospective programmer may feel that learning to read a language is a costly
detour on the way to writing, but imagine the analogous case of a person
unwilling to learn to read English because he is impatient to learn to write.
Moreover, reading alone is a very useful skill; it allows one to read what others
have written, in order to quickly grasp otherwise complex procedures.”

‘This monograph, then, is intended to be used primarily as a reader to introduce
persons to J. It supplements the ISI Dictionary of], and the first chapter has been
designed “to encourage and reinforce reference” to the dictionary.

The first five of the six chapters are mainly about reading J. Chapter 1,
“Introduction”, gives an overview of the language. Each of the fifteen sections
introduces a topic in], e.g, nouns and pronouns, verbs and proverbs,
conjunctions, and most of the sections contain exercises to read and execute on
the computer. Chapter 5, “Experiments”, contains further examples for each of
the sections of Chapter 1. Chapters 2, 3 and 4, entitled “Adverbs”,
“Conjugations” and “Verbs”, respectively, continue the discussions of these
topics begun in Chapter 1. Only in Chapter 6, “Writing Programs”, does writing
take precedence over reading. This last chapter discusses the use of] in a variety
of topics including the preparation and presentation of tables of numerical data,
construction of graphs and barcharts, and polynomial manipulation.

Programming in | is attractively printed in a 5%2" by 8" format. The inside back
cover gives as Appendix A a table of the fifty-odd foreign conjunctions used for
communicating with the host facility, and the outside back cover gives the

67

VECTOR Vol.8 No.3

language summary as is apparently customary in all of the publications from 1SI
Software.

Persons familiar with APL will recognize Ken Iverson’s terse, even spartan, style.
The following are a few short quotes to illustrate his approach to learning J: “Do
not be stopped by the discussion of rank; it might be better 1o defer the matter
until rank is used in Section | of this chapter”; “Read Part T1.B (Verbs) and enter
all examples, but do not become paralyzed by difficulties; it may be best to
review them again later”; “Read all of Appendix A lightly and continue with the
following experiments”; and “Review Appendix A and experiment with any
facilities that look interesting.” We should not overlock his one-sentence
summary of structured programming given in the last chapter: “Use structured
design, constructing each program from a few sentences that themselves employ
compenent functions, which may in turn be constructed of generally-useful
components.”

Rather than attempt to review the contents of Programming in | let us consider a
paragraph or two which might be considered typical of the style and the
demands placed on the reader. The following is the discussion of the verb
permute given in Section G of Chapter 4:

Ifp=. © 2 4 3 1, thenp{b 'abcde' providesa permutation of the items
of b, and p is said to be a permutation vecfor. Read the first paragraph of the
definition [in the Dictionary] of the dyadic case of permute (C.), and enler p
C.b to verify thal the result is the same as that of p{b. Also verify that 3 1
C. i.#Byieldsp.

Read the next paragraph of the definition and reconcile it with the results
oblained above. Then examine the following dialogue and read the entire
definition of C, (including the monadic case}):

Je=.C.p
b m———— 4
1e13ju 1 2}
+-t—t—----+

¢ C. b
acedb

c C.i.#b
024 31

EXERCISES
5. Define f=. 1.8!A.1i. and experiment with n for various values of n.
6. Do the exercises on permutation from Chapter 6.

68

VECTOR Vol.8 No.3

Programming in | must be read slowly and thoughtfully. Most sections need to
be read repeatedly and the examples and exercises experimented with on a
computer. The reader who is encountering | for the first time could easily
become discouraged. The best advice in reading this monograph can probably be
stated in the author's own words quoted above: Do not become paralyzed by
difficulties. Progress will almost certainly be slow initially, but perseverence in
reading together with working on simple problems of one’s own with the
examples given in the text as models will eventually give a fluency in using J.

Today many conventional programming languages together with spreadsheets,
data bases and statistical packages in tmplementations which are increasingly
easier to use compete for our attention. Flowever, this reviewer experienced the
same excitement on being introduced to] as he did when he began working with
APL twenty-five years ago, and is obtaining the same satisfaction in “mastering
]”, to use a colleague’s phrase, as he did when he was working with AFPL. He
considers] to be an important step in the development of programming
languages.

In his opinion Programming in], together with the ISI Dictionary of |, are
indispensable in understanding] and investigating its place in the computing
world of the late twentieth century.

Keith Smillie

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2H1

69

VECTOR Vol.8 No.3

APL and J: Some Benchmarks
by Malcolm Rigg

I first learned APL via a self-teach set of lessons on APL/360 in the early 70s and
still have some faded notes from 1974 sellotaped into two A4 binders. [was at
the time fascinated by the notation and determined to master it. What started as
an experiment in my IBM days at Hursley Labs continued when 1 joined ICL
Dataskil at Reading in 1977 and shortly after went out to join the ICL EC project
in Luxembourg. There an ICL Mainframe was being introduced and work
transferred to it. As this included APL I was able, as part of my job, to use APL
{(some people will remember the 2900 APL I'm sure), write code on a variety of
machines, teach APL courses (in both English and French), and of course enjoy
being a good Furopean in the heart of the EEC. Teaching APL introduced me to a
large number of fonctionaires in both Luxembourg and Brussels, some of whom
have remained contacts and friends over many years. Regrettably after nearly six
years [and the family returned to the UK.

Since then APL has definitely been on the back burner {there being no easily
accessible APL at work) until 1 came across first I-APL and then]. 1 have been
able to experiment a little with both of these languages and offer my experiences
in performance comparisons using the Adrian Smith “benchmarks”. At home I
have an XT which has been extended with an 8087, V30 replacing 8086, 2Mb
expanded memory and two SCSI drives giving me a total of 200Mb filestore.
Although 1 have repeated some of the performance tests at work where] have a
386 and 486 machine, | have not included them all. My son’s Archimedes 410 has
4Mb mainstore, 100Mb HD and an ARM3 running at 30MHz and has been used
to test the 16 and 32 bit versions of I-APL. I wish Thad an APL able to exploit the
power of this machine.

Having coded the Adrian Smith “benchmarks” in APL*plus, Sharp APL, I-APL,
and], I looked around for a more meaty test and settled on an APL
implementation of the N Queens problem. Starting from a classical APL
approach 1 have been attempting to rewrite my first non-optimised APL solution
in] - quite an interesting task and a reasonable test of] (and me) as my AFL
original is heavily recursive. Since starting 1 have received a copy of the APL
algorithm written by Roger Hui; its so much faster than mine that 1 shall think
hard about a version in] when I have fully understood his APL code. However
my version does give a solution for 10 queens where his gives me wsfull!

70

VECTOR Vol.8 No.3

I am looking forward to the day when J settles down and it becomes possible to
write code in workspaces of a reasonably large size. What would also be useful
would be an easier way to develop functions; [still find that use of $. is difficult
to grasp. Perhaps a summary example explaining how to extend a multi-line
function into a conditional loop structure would help. For the moment I find that
to write] takes much more intellectual effort and there is definitely a higher
hurdle to jump before being able to use] than APL.

[received from Anthony Camacho the | 3.4 for the Archimedes with its rather
nice integration into the desktop environment. The performance figures using
the same benchmark are given below. I must also admit that the section Tutorials
in the new version of the “ISI Dictionary of |* goes a long way towards
explaining by example.

On balance I like uging], have a few dislikes like syntax with mandatory spaces
and workspace restrictions, and hope that my wishlist for improvements will
come true in 1992

The Benchmarks

Here is a summary of the Adrian Smith ‘benchmark’ run on several APLs. The
PC-based results are for an XT at 9.6MHz with 8087 maths co-processor (all times
in ms). For comparison the I-APL results on both the PC/XT and an Archimedes
are included as the last column. In some cases several runs have been averaged
as the clock resolution is not that good. A few tests failed for reasons indicated.

APLplus/PCSharpAPL J J J I-APL J-Arc J-ArcI-APL{32)
Test (6.1) vi7 V2o 2.8 3.3 PC/XT ARM2 ARM3 ARM3
1 165 493 494 675 675 5930 11890 360 450

30 110 110 55 55 aun 30 k1Y 749
3 140 1154 1153 10000 7600 6050 31690 2080 500
4 700 1400 1318 BZu 1900 6200 27590 880 520
5 165 355 330 110 110 5000 120 40 630
6 385 2087 2087 9500 7050 14950 2120 137¢ 2050
7 1300 4557 45591limit errtimit err 59430 2070 580 4580
8 30 2140 2142 360 38s 990 30 10 100
9 1829 2527 2826 16483 iu8c0 35150 270 50 2560
10 1810 355 329 2340 2400 111270 650 110 8430
11 60 163 140 21200 21620 19400 5180 2950 1240
12 icp 110 55 wsfull wsfull 27400 fail fail 2380
13 is0 2746 2417 2280 2200 2860 690 419 430
14 137¢ 25376 21751 21350 20300 25380 5240 3230 4010
15 14170 254207 217500 212100 201000 250470 51050 31320 39700
16 30 660 659 2270 2308 243290 650 320 2030
17 12750 12193 12160 58500 51Zp00limit err 11B40 5080 30580

71

VECTOR Vol.8 No.3

The essential difference between the]J2.8 and J3.3 script is the use of “.” instead of
“.7 in an inner product. A space must occur before this delimiter; an unfortunate
fact for a specification which is hopefully otherwise whitespace independent.

The function fn is defined with “:” or “:” in]J3.3, J2.8 respectively. The

Archimedes ran in mode 12 with no other multi-tasking applications.

The Original ‘Smith” Benchmarks (in APL and in J)

¥<1000p 4% 5 6 0

M«100 10 p 2.5 6.7 0 0 8
S+10000p'THE CAT SAT ...
S5[999+16]«"ADRIAN'
I+10071000

B+1000Cp¥=6

FF+800 5 p'TR HGHJ ...'
FFL601;]1«'EJD.."

5.7
MAT!

vV FN N, CT: X

v=,1000%4 5 6 0

m=.100 10%$2.5 6.7 0 0 _5.7
§=.10000%'the ... !

s=, 'adrian' (999+1.6) s
i=.10071000

b=.10000%v=6

ff=,4000%'tr ... !

ff=.800 5%'ejd..' (3000+1.5)}ff

[1] Cr«0
[2] LP:+{NeCT<CT+1}+EXIT
[3] X«t/ 2 3 pr8B
[u] +LP
[5]1 EXIT:'DONE'
v

APL Expression Type J EXpression
1. +/V+V INT +/V+v
2. +/V[I] A INT +/1i{v
3. V+.xV¥V s REAL v S kv
W, +/V=2 n REAL +/vAaz2
5. X++/M A REAL X=.+/m
6. V+.x,M A REAL v+/ %,
7. +/5=11" AR CHAR +f5="'1"
8. 'FAT'eS CHAR 'fat'e. s
9, X«5e¢'FAT’ n CHAR X=.5 @ ‘fat!
10, X+«BvBn—FH A BOOL X=.b +. b », -. b
11. ~/B A BOOL *./b
12, X+v\B A BOOL X=.+/.\b
13. FN 10 s FN fn 10
i4. FN 100 a FN fn 10¢
15. FN 1040 a FN fn 1000
16. X+«FFa.,='EJD.,® n IP X=. *./f{f='ejd.."’
17. X+FFa.=§20 5p'EJD..' n IP Xx=. ffx./ .= [:20 5%'e3d..'

VECTOR Vol.8 No.3

RECENT MEETINGS

This section of VECTOR is intended to document the seminars given at recent
meetings of the association; it is of particular value to members who live away
from London. It also covers other selected events which may be of general
interest to the APL community.

If you would like to speak at one of the regular British APL Association
seminars, please ring the Activities Officer (address on inside back cover) who
will respond enthusiastically to your offer.

73

VECTOR Vol.8 No.3

Panel Design:
An APL Programmer’s Toolkit

by David Crossley

The value of any aid in designing and generating panels for screen display is
readily appreciated by those involved in serious applications development.
Using the basic screen facilities of your version of APL may be fun at first, but
soon the sheer repetitive nature of screen interface handling becomes tiresome.
Most programmers will develop a few macros and this helps. Most suppliers also
provide utility workspaces to design panels, or forms as they are often called.
However, in my view a fully integrated design toolkit is the only real answer.

The subject of this article is such a package. It incorporates well tried and tested
ideas gleaned from many years working with a very good panel design facility in
a mainframe environment. The contribution that a good facility makes towards
programming productivity should not be underestimated. My experience
suggests 40-50% savings in screen-intensive applications, and most of them are.
There are also excellent spin-offs. It is easier to provide a consistent, corporate
look and feel across (and within) applications. It is more likely that proper help
facilities will be incorporated. Support for special features, such as sliders, pop-
ups and pull-downs can be included. Panel design packages provide immediate
potential for automatic documentation - never a strong point for any
programmer 1 have worked with. But importantly from the systems design
viewpoint, the supporting facilities can provide the complete basis for full
interface handling - the screen display, keyboard and mouse control.

The origins of this panel design package go back about two years, though the
concepts considerably pre-date that time. After many years using mainframe
APL, T started work in a relatively greenfield environment (for the company)
with PCs linked to a workstation under Unix. There were few support facilities.
Though some had been migrated from the mainframe, the important area of
panel design was unsupported, partly because the APL in use was Dyalog with
the recently introduced (ISM, an advanced screen management facility. My first
task was to write a panel design package along with support functions, with
Dyadic’s useful though limited JSM design workspace as a starting point. This
effort repaid itself many times over and soon migrated to other development
areas within the company.

74

VECTOR Vol.8 Ne.3

[have since developed various applications for 80386/80486-based personal
computers running under DOS. The lack of proper mouse and fuill colour
support common to most APLs within this environment has increasingly irked
me, especially with MS Windows on the same machine, unhappily incompatible
with APL. Inspired by recent Vector articles [Cannon 91;5mith 90, T researched
the use of DOS interrupts directly from APL. The results were sufficiently
impressive to warrant a complete re-write of the panel design package to
incorporate full support, and many additional features, within the software. [call
this package the Delphi Panel Design Toolkit after my trading name.

What is a Panel Design Toolkit?

The first component of a toolkit is a mini-application to describe a panel, or form,
and store it away somewhere for later use. This design tool allows different areas
of the panel to be identified as “fields” and ascribes various attributes to each
field, such as whether or not input is permitted, what sort of data it will contain,
colours and so forth. There is a great deal of scope here for associating properties
with fields that will simplify the programming task later; a function to validate
user input is one such idea. Special fields might also be recognised, such as a
menu bar now made so familiar by its acceptance in graphical user interfaces.

Many panel design packages effectively stop at this point without realising the
great potential in terms of application interface control. This is a mistake. The
second component should be the provision of a host of programming support
utilities. Firstly, a “setup” utility to retrieve a saved panel, usually from a file,
and display it with current application data. Secondly, a “read” utility to handle
all user communications, whether by means of keyboard or mouse. And finally,
a supporting cast of functions to allow the programmer to make changes on the
fly in a controlled manner. For example, items on a menu bar might be
temporarily disabled but remain visible; better done in cooperation with panel
software,

The “read” utility is perhaps the single most powerful tool. Tt can handle not
only pedestrian traffic, such as accepting input, refreshing the screen, scrolling
fields and so on, but also mere sophisticated tasks such as validating input,
insisting on corrections for inappropriate entries, intercepting specific events
such as help requests - the scope is tremendous. Each activity handled by the tool
is a task less for the programmer to worry about. If an event can be handled in a
standard way, let the tool do it. But allow other events to return control to the
program for suitable action.

These are the philosophies embodied in the Delphi Panel Design Toolkit.

75

VECTOR Vol.8 No.3

The APL Framework

Panel definitions are stored on an APL component file, normally associated with
a single application. The Panel Definition Tool {see below) has its own panel file,
and indeed the application code utilises its own services correctly. A file may be
created using the P_ CREATE ulility, or else the teol can do the work when the
first panel is saved. There is no naming convention imposed, but 1 find it useful
to have a name of the form "panxxxxx’ for ease of identification.

The file structure is very simple. It has a directory which records panel names,
short descriptions, creation timestamps and pointers to other components where
the full definition for a panel resides. A component is reserved optionally to store
red-green-blue colour scales that allows individual colours for an application to
be customised - more on this later.

A panel definition variable is a nested vector with 4 items:

- the associated filename;

- the panel identification name;

- a nested structure that describes function (or other) key actions;

- a matrix with one row per field, describing attributes for that field.

This panel variable is defined in the workspace when required and is an
argument to and returned in the result from almost all service functions. Its
contents may be altered in the process. Programmers who wish to meddle
directly with this variable, as they surely will, are provided with a set of
subscript variables for items and columns of the main matrix, such as PAVIDEOQ
for the column containing the video (colour) attribute. This is a good general
practice since it soothes some of the pains of future upgrades.

There are a few globals but not many. One holds the last-used panel file,
allowing the filename to be elided in various function calls, i.e. omitted or
represented as ' '. Other globals relate to the mouse, keyboard and output
translation, the latter being implementation specific.

Mouse Technology

For readers who are not familiar with the use of a mouse, and perhaps also for
some who are, here is a short digression on the subject. Physically, a mouse has
two or three buttons and plugs into a serial (or parallel) port to the computer. It
translates roller ball movements into relative screen movements of a small
pointer on the screen. To use a mouse, a driver program must be loaded into
DOS. This can be done at any time but is usually included in the boot
procedures, The load program specifies which protocol is to be used; in effect,

76

VECTOR Vol.8 No.3

how many buttons are active. The norm is two active buttons (left and right}), but
three can be made active.

All sorts of mouse attributes are configurable, such as the pointer shape and
colours, and the dynamic properties of its movement. Attributes, mouse button
presses and movements are accessed through specific APL facilities, such as
OMOUSE, or through a set of DOS interrupts (the method used in my software).
For full details refer to [Duncan 88].

Essentially, the programmer is interested in three parameters for controlled use
of the mouse:

- the screen coordinates of the mouse;
- the combination of buttons that are currently pressed (including none);
- the perceived state of the mouse.

With a two-button mouse, there are 4 button combinations, viz left, right, left and
right, and none. It is nice for left-handed people to have the oplion to swap left
and right buttons, since the index finger is generalty preferred for the main
clicking task. Unfortunately, this must be supported in software.

The useful mouse states are single click, double click, and drag (button held
down). Their detection requires constant monitoring using a short time interval
to distinguish between states, This interval should be user- configurable (as
should the mouse’s dynamic properties) since some people react faster than
others.

Thus a two-button mouse offers 10 different combinations of buttons and states
{including no buttons pressed) and also the positional information on which to
make program control decisions. In practice, only a small subset of events is
acceptable. Conventionally, just the left button is live and click is the main
activator. Double click is normally used to complete some activity.

The great virtue of the mouse is its enormous facility for rapid movement around
the screen, making keystroke navigation even more ponderous than it seemed.
From being a mouse-sceptic (before I used a mouse), I now applaud the “point-
and-click” approach as effective and time-saving; it has opened up new horizons
in the design of screen-based applications.

77

VECTOR " Vol.8 No.3

It's a Colourful World

Another digression. Most 80386/80486 machines these days have a Video
Graphics Adaptor (VGA), and most text-based APLs grossly under-utilise its
potential. Many of you will think that you are limited to the 8 or 16 rather lurid
standard colours that are initially presented when you switch on. This is not the
case.

The VGA is set up to mimic earlier graphics cards by default. Text modes still
impose a limit of 16 simultanecus colours (8 standard plus 8 enhanced colours
using the bright and blink bits for foreground and background respectively). But
each of those 16 colours can be mixed individually to your own taste.

In fact, the VGA is sophisticated circuitry, differing by manufacturer, with very
rapid switching facilities, especially if controlled directly. For text-based screens
{(as opposed to graphics), control at that level is unnecessary. The use of a few
DOS interrupts accessible from most APLs is all that is required.

The 256 colour registers are split into 4 “pages” of 64 registers for text modes,
only one page of which is used, and only a "palette” of 16 of those registers is
used. Each register (or DAC register for digital-te-analogue-convertor, to give it
its full name) points to a colour mix. A mix is a combination of red, blue and
green values on a scale from 0-63 that gives a specific colour. All 0's give black.
All 63's give white. There are over 260,000 possibilities in between.

It is not really necessary to have a deeper understanding of the VGA beyond that
described here to use the DOS interrupts. For the latter, and for a varied and
readable book on the PC in general, I recommend [Norton 88).

The panel design tool incorporates a facility to customise colour palettes and the
use of colours. This information is stored on the panel file for use over the whole
application. Programimer tools are provided to switch palettes and to restore
standard (or prior) palettes.

78

VECTOR Vol.8 No.3

What's in a Panel?

Before reviewing the mechanics of the panel design tool, it may be helpful to
look at an example of what it can achieve as the end-user would see it.

Figure 1 illustrates a very simple application which nevertheless incorporates
several built-in features.

fpoints
oracle
panbdgt Chateau Ausone

panch Clos de 1'Angelus

pandesgn Chateau Baleau

| panfp Chateau Balestard-La-Tonnelle
1 panfuel Chateau Beau-Mazerat

panmdsgn Chateau Belair

i pantest Chateau Bellevue

| panutil Chateau Hergat

| panvol Chatean Berliquet

Chateau Bragard

Chateau Cadet-Ban

Chatean Cadet-Peychez

Chatean Cadet-Plola

Chateau Canon

Fi:Help F2:Commit F12:Quit without saving

Figure 1: A panel with Flles pull-down

On the top line there is a title and a date/time field. Then there is a menu bar.
The uses for function keys are shown near the base of the screen. And two
blocked areas have slider scroll bars to their right. These are all special field types
supported without any further coding requirements from the programmer.

The title field takes its text from a specified variable and automatically centres it
within the field width.

The date/time field is continuously updated at minute intervals.

A menu bar itern may be activated by moving to the item and pressing Enter,
pressing Alt with the underbarred character in the item word, or clicking on the
itern with the mouse. Each case is functionally synonymous. The item changes its
video, normally white-on-black from black-on-white but the choice is left to the
designer. Some standard actions are handled directly, such as Help (to display
help for the current field or the entire panel) and Keys (to toggle the display of

79

VECTOR Vol.B No.3

function key box at the base of the screen on and off). Otherwise the event is
returned to the program for appropriate action. In this example, the Files option
has been requested and the action has been the display of a selection list of files.
This pull-down is of course simply another panel overlaid on top of the main
panel,

The function key box near the base of the screen is available as a prompt to the
user. An action is invoked by pressing the function key (or indeed any key on the
keyboard may be specified), or by clicking on the item with the mouse. Standard
actions may also be associated with keys to be handled directly as for the menu
bar. 1 always assign F1 to Help but keys can be arbitrarily assigned to suit house
conventions. But normally, the event is reported back to the program for action.
The display of the keys box can be toggled on and off. T generally assign F11 for
this purpose, with the Keys option on the menu bar as an alternative.

Slider bars are associated during field definition and are then handled entirely
by the toolkit software. Both vertical and horizontal sliders are supported.
Several related scroll fields may be controlled by one slider, illustrated by the
year and wine description fields in the example. These are strictly mouse
operated though the data fields controlled by the slider may also be scrolled
using movement keys,

Usage of slider bars is conventional. The ratio of the slider marker position to the
slider length is kept in step with the ratio of the top-left visible element of the
scroll data to its total length within rounding accuracy. Clicking within the slider
moves the scroll data accordingly. Clicking on the top or bottom (left or right)
box marked with a chevron moves the data by almost a screen window in that
direction. By placing the mouse on the marker with the button held down, the
marker may then be dragged with almost smooth scrolling of the data. A small
box also appears giving the data row (or column) visible in the top-left corner.
The slider marker is also updated when scrolled areas are moved by key actions.

The bottom line of the screen is used for error or informative messages if
required. Messages are not generated by the panel utilities, but by the user
program. If either of two variables (FERROR or MESSAGE) contains text, the
message (on a striking red or a less attention-grabbing white background) is
displayed on the bottom line by the “read” utility and cleared the next time
round.

The panel tools do not impose any particular convention or layout on the
designer. The entire screen may be used including the bottom lines. The special
fields are not restricted to a specific place on the screen, with the exception of the
keys box and message line. Both facilities can be switched off and remain unused

80

VECTOR Vol.8 No.3

though the latter is in any case transient. Thus the designer is free to develop a
personal style naturally taking account of house standards.

Let us now see how the main panel was defined.

The Panel Definition Tool
..Gelting Started

This is a mini-application in its own right, utilising many of the facilities
provided with the toolkit. It is initiated by monadic function P_DESIGH. Tts
argument can be:

(a) a properly-formed panel vartable,
(b) a text file name and panel name,
(c) an empty vector.

The result is a panel variable but it is “shy”. This means that a result is returned
if it is used, e.g. assigned to a variable name, but otherwise it is suppressed. Form
(b) is usual but even here the file name may be elided to the last-used panel file.
Normally panel definitions will be read from a panel file (for editing} and saved
on completion, but the flexibility is there to edit and return a panel variable from
the workspace, saving it en route if desired.

..Defining Fields

For a new panel, a blank screen is presented except for a list of function key uses
near the base of the screen. The keys can be toggled off and on using F11. This is
a completely empty panel with no fields.

A field is a rectangular box marked using the cursor movement keys after
selecting the Create option, or more swiftly by creating a spot and then dragging
a box anchored at one cormer with the mouse. The field acquires default
attributes of which more later.

Fields can overlay other fields, obscuring what lies beneath. This is actually
useful. Overlaid fields will normally contain text titles, headings and box
characters while input or display fields, possibly with scrollable data, will be
placed on top. In fact, two field types are supported called ‘<background>" and
‘<text>'. The former has extra properties and would normally fill the entire panel
area. Firstly it provides a background colour for the panel. But also it provides
vatious default attributes for other fields relating to the mouse, and also a
detailed level of help accessible from any field.

81

VECTOR Vol.8 No.3

Thus the first defined field should be the ‘<background>". Subsequent fields are
defined on top of what is already there, but a facility allows re-ordering in case a
background field is forgotten. If customised colours are required, this is the best
time to use the Colours option, though the facility can be used at any time.

..Back to the Example

Let us now suppose that the main panel of the example in Figure 1 is being
edited. The screen would appear as illustrated in Figure 2.

Chateau Ausone

Clos de 1'Angelus
Chateau Baleau
Chateau Balestard-La-Tonnelle
Chateau Beau-Mazerat
Chateau Belalr
Chateau Bellevue
Chateau Bergat
Chateau Berliguet
Chateau Bragard
Chateau Cadet-Bon
Chateau Cadet-Peychez
Chateau Cadet-Piola
Chatean Canon

Figure Z: Creating a mew fleld

The individual fields are filled with data if available and take defaults otherwise.
The figure indicates that data was available for the title and for the list of wines
(as variables in the workspace) but not for the year field. The date/ time is
generated by a utility function. Text on the menu bar is built into that field. Note
that the function key box relates to the panel design facility, not to the panel
being defined.

An alternative display option toggled by the Text/Boxes key shows fields
marked by boxes in place of the contents display. This is useful for seeing exactly
where each field lies. In the figure, the demarcation between the year, wine list
and background cannot be differentiated. By switching to Boxes mode, the
boundaries would be clear.

82

VECTOR Vol.8 No.3

The figure shows a new field being created to the left using the mouse. The blob
at the top-left is the initial creation point. The cross at the opposite corner is the
mouse, dragging the field to the required size. On release it will become the
current field, highlighted by a solid border. The current field is the topmost one
in which the cursor lies. Clicking with the mouse moves the cursor to that point,
making it the current field. An existing field may also be moved using the
Move/Resize option or by dragging with the mouse.

..Field Attributes

Pressing the Attributes key, or double clicking with the mouse on a field, pops
the attributes panel up. Figure 3 illustrates this panel shown after double-clicking
on the year field. It further shows the field data type, highlighted, in the process
of being defined through a second cascading series of pop-up panels.

Field name :
Top-left row/col
Hr of rows/cols
Type

Behaviour

Uidea

factive video :
Scroll vertshoriz:
Pisplay variable :
Bisplay Function
Input variable
Input function
Event function
Help

Mouse actiomns
Mouse buttons
House pointer

t-Peyche 9,999,999
t-Plola 9.999.939
TRY IT|n

XOR

Slider vert/hariz:

. Figure 3: Editing the type attribute

The left-hand column identifies field attributes. The cursor or mouse may be
moved to any data area on the right. Several inputs respond to the Enter key or
mouse click by displaying a pop-up (as in the example). Others allow direct
input.

83

VECTOR Vol.8 No.3

Taken in order, the attributes are as follows:

Field name. A user-defined name, or Enter/click presents a pop-up of special
names. <background> and <text> have already been mentioned. In addition,
there are:

<command> lo define a menu bar field;

<time> to define a date/time field;

<title> to define a title field;

<slider-#> defining system-generated slider bar fields.

Some of the remaining attributes may be protected when a special field is
chosen.

Row/column. Defines the top-left screen coordinates and the number of rows
and columns. These may be changed.

Type. Defines the type of data that will appear in the field. Options are
Character, Numeric or Date with finer details such as formats for each.
Default allows Character or Numeric, but would generally be chosen for non-
input fields. A Character field type with a comnprehensive set of edil facilities,
including word wrap, is included.

Behaviour. The options hete are partly implementation-dependent. [t allows
various behaviour attributes when the field is entered, such as input
protection and clearing on input; if control is to be returned such as on entry,
after modification, and on exit; and when the field is left, to retain active
video. The required options are selected through a pop-up panel.

Video. Specifies the foreground and background colours for the field in
normal state, and optionally when the cursor is in the field. A pop-up panel
provides a bar to choose the colours, illustrating what the selection looks like.
The example shows the different active video for the Type field.

Scroll. Relates this field to other fields with the same vertical or horizontal
scroll number. All fields with the same vertical serell number will scroll in
parallel when any of the fields is scrolled. Ditto for horizontal scroll groups.

Display variable, Normally the name of a variable that will supply the
contents of the field. For a protected field, it can be any APL expression
yielding an appropriate array.

Display function. An eptional function (or APL expression} to be applied to
the display variable whose result then supplies the field contents. This is
useful for special formatting of, say, numeric data.

Input variable. A variable to receive the result of the field when it is
modified by the user. It defaults to the display variable if not defined.

84

VECTOR Vol.8 No.3

Input function. A function (or APL expression) to alter or verify an item of
the field when meodified. It might, for instance, check that a numeric value is
within a given range, or it could change a response to a nicer format, or
remove superfluous blanks.

Event function. This is a function that allows an exit event to be checked to
see if it applies. For example, a left or right arrow movement key might be an
event to return control to the main program, but special action applies only to
certain fields, otherwise the normal movement action is to be taken. This
facility allows the latter case to be filtered out, thereby improving
performance.

Help. A pop-up edit panel allows help text to be composed for the field. This
is displayed when a help key is pressed (normally F1 or the Help menu bar
command) with the cursor in the field. If the help key is pressed a second
time, the generally more detailed help composed for the <background> field
is displayed.

Mouse details. Mouse actions and buttons are selected from pop-up menus.
The appearance of the mouse pointer is specified by two sets of character-
foreground colour-background colour triplets that are respectively “exclusive
ORed” and “ ANDed” with whatever is on the screen at the current pointer
position. These actions are of course handled by the mouse driver. A small
box labelled TRY IT allows you to see what the pointer will look like. Mouse
details can be set individually for a field or set globally for unspecified fields.

Sliders. Sliders can be specified both vertically and horizontally, On exiting,
sliders will be generated automatically around the field. A slider can also be
generated around a sel of fields sharing the same scroll group either vertically
or horizontally, but not both. If the result is not what is required, the fields
generated for the sliders can be edited.

An option is included to save the set of attributes as the defaults. These are
inherited by new fields as they are created, and also by unnamed fields.

85

VECTOR Vol.8 No.3

..Setting Function Keys

The panel to set function keys is actioned by the Keys option from the main
panel. Ttis illustrated in Figure 4.

Figure 4: Defining function keys

Key details are defined in four parallel columns. The first identifies all keys that
will cause control to be returned to the program. This may include any key, not
just function keys. The next column indicates the standard use for that key, if it
has one, from ‘help’, ‘keys” and ‘quit’, all of which invoke special action. The
third and fourth columns describe the key mnemonic and a brief description of
its purpose, used to compose the help block at the base of the screen. These items
are left blank for keys that are not to be included in the block, The numbers on
the left can be edited to change the presentation order.

The keys may be shown with or without a surrounding box, and in the former
case with a short title inserted within the lower box. The colours used and the
mouse details may also be chosen. Having compiled the list, the Show option
provides a preview of what it will look like. Key actions are not field specific.
However, an action can be filtered out using the Event Function attribute
described above.

86

VECTOR Vol.8 No.3

..Saving the Panel

Having compléted the panel definition process, the Commit option presents a
pop-up panel showing the panel file and panel name, if they have been defined,
and a short description. The names may be changed, and a new file or panel
name created if necessary. This provides a means of copying a panel between
files, and of using an existing panel as the starting point for a new panel. A
warning message gives the current status of file and panel.

Finally, software can generate a skeleton control function for the panel, localising
all referenced variables, identifying function references and providing a control
structure for events implied by the key actions and other events. Figure 5
provides a sample for your perusal.

v PAN-TEST1:0SM:ERROR:HESSAGE : KEYS P RGB: SMROWS ; SMUPD : Z: TEXT : TITLE ; YEAR
(1] ~v Demonstration panel
[21 7 Control for panel TEST1 gewerated by program
[31 n Referenced variables:
[1] Ll TEXT TITLE YEAR
[S]1 m Referenced functlons:
[6] m+ CLEANTEXT

[71

(g1 TITLE+"' '

19) TEXT+" °'

tiel YEAR+O

111 P«P_SETUPF'd:\WS\pantest'P_GET'TEST1' A Get panel and setup
[121 RGB«P_SETCOLOURS P a Set calours, return prlor
[133 SHROWS«F F_MAINFIELD'Commands YEAR TEXT' n Input field numbers
{111 SHUPD+ "w" a Ficlds to refresh (all)
{151 Z«(3SHMROWS) 1 A Initial cantext

[161 KEYS«'FZ2"' "F12' 'ER" "E' 'C' ‘X" ‘M1’ ‘Mz’

[171

[18] Read:E P+P P_HOUSEREAD SMROWS'#«'Z SMUPD ¢ SHUPD«O

i19])

(201 +Modifled Reyl(Z[S51P_BEHAVIGUR madifled) 1)

211 m Exit events

(221 Hodified:+Not¥Yet

1231

[24] Key:+KeyF2 KeyF1Z KeyER KeyP KeyC Key¥ KeyMl KeyMZ None[REYS 20411
[25]1 A Key events

[26]1 KeyFZ:+MotYet

[27]1 HKeyF12:+Not¥Yet .

[28] HeyER:+MotYet

[Z91 m Menu har events

(301 ReyF:+HotYet

[311 ReyC:+NatYet

[32] ReyX:+HotYet

[33] ~ Mouse events

{341 Xeyhl:+NotYet

[35] KeyM2:+Hot¥Yet

136]

[371 MNotYet:ERRQR«'Event ",(43Z)," not yet available' + Z[4Jec'* + <Read
[381 None:ERROB+'Unknown cvent ',4°Z « Z[4)«c"* + sRead
(391

[40] Exit:SETCOLOURS R&B

Figure 5: Sample generated control function

87

VECTOR Vol.8 No.3

Support Tools

Designing a panel is just the first part of the process. A suite of tools is provided
to be used by the programmer for all sorts of tasks. The basic tools deal with
setting up and reading from the keyboard and mouse actions. The latter tool is in
fact the engine that drives the application. Other tools allow control of the colour
palette, hiding of the key block, disabling or highlighting of menu bar items, pro
forma selection panels, and many other facilities.

...The Engine Room

The “read” tool warrants a closer look. Its arguments pass through the panel
definition variable; fields to visit and in which order when using movement keys
(tabbing and back-tabbing); keys to intercept and return control (or the standard
set); the current context, i.e. where the cursor and mouse are, and optionally the
next action to take; and fields to be refreshed as a result of any action taken by
the main program of which the panel software would be unaware.

The tool constantly monitors the keyboard and mouse, taking the appropriate
action when any events occur, such as updating the screen, scrolling, displaying
help information, toggling keys, validating modified fields, and returning
control to the main program. It is only the latter occurrence that requires the
main program to take over. The current context and the possibly updated panel
definition variable are returned. The current context identifies the cursor and
mouse positions, the last key and exit event, or mouse event and button, and
flags for updated fields. This context vector may be used, modified and returned
to the “read” tool to adjust the environment.

Footnote

1 should add that although this is a text-based package written in Dyalog APL,
based to some extent on their screen manager, the principles are much more
general, applicable to and able to be implemented on most other APL platforms
running under DOS.

References

[Cannon 91] Ray Cannon: ‘Mice do it on the Mat’, Vector 7.3 p.130
{Smith 90] Adrian Smith: ‘Lofs More VGA Colours’, Vector 7.1 p110
[Duncan 88] Ray Duncan: ‘MS-DOS Functions’, Microsoft Press

[Norton 88] Peter Norton/Richard Wilton: ‘Programmer’s Guide fo the IBM PC’,
Microsoft Press

88

VECTOR Vol.8 No.3

SPECIAL FEATURE

This section of VECTOR is given over to a set of three articles about J. The
Questionnaire surveys Vector readers’ opinions on Ken Iverson’s new APL
dialect; it is followed by some questions and answers which may help the
experienced APLer convert to J; then there is Donald MclIntyre's tutorial on the
application of the J constructs ‘hooks’ and ‘forks’, and finally a short piece by
Paul Chapman showing how] can be used to explore a simple problem in
mathematics.

J Questionnaire Jonathan Barman 90

] Questions and Answers

Questions Jonathan Barman 94
Answers Roger Hui and Ken lverson
Hooks and Forks and the Teaching
of Elementary Arithmetic Donald B. Melntyre 101
Cross-clocks in | Paul Chapman 124

In future issues of Vector, we will include further articles by Donald Mclntyre,
on boxed arrays, reading external data, and Jacobi’s method for eigenvalues. We
will welcome submitted articles about], and will give them the same
consideration as submitted material in traditional APL.

§9

VECTOR Vol.8 No.3

] Questionnaire

by Jonathan Barman

In mid November [sent out a questionnaire to everyone who had had a copy of
to find out what their reactions were to the language. Articles for Vector have to
be ready by 30 November, so this left very little time for replies. It was gratifying
that 15 people were able to respond by that date.

Several of the respondents have got] but have no knowledge of APL, and their
views are particularly interesting as their thinking has not been coloured by
APL.

(: Was Jeasy to install?

The majority found] so easy to install that they must have wondered why |
asked the question. Chas Yales was the only one to have problems. He found
that the tutorial files were written for] version 3.0 whereas he had been sent
version 2.9. The “spelling’ is different between the two versions, so he had lo
fiddle about changing such things as : to : : and [to } :. He also had to
replace the line ending characters. [think Chas was unlucky in this respect, as
my version 2.9 of] for the [BM PC had the correct tutorial files. Chas also had
to change the J.PRG file to].TOS to stop the Desktop (Presentation Manager)
fouling up the system.

(2: When you first fired up | did you find any difficulty with the editor? Was it
obutous how to exit from |7

The majority had no difficulty with the edilor or in exiling from J. Donald
Meclntyre pointed oul that the session manager has changed greatly and that
the present version in 3.5x4 is great, The APL users found no difficulty with
}off to exil. Now that exit has changed to 0! : 55 in version 3.5 it is suggesled
in STATUS.DGC that you assignoff =. ©0!:55 in your PROFILE.JS.

The Alari users did nol get an editor at all. Characters can be typed on the
command line and there is a destructive backspace, but nolhing else. Not
surprisingly, the Atari users were pretty rude aboult the ‘editor’. Chas Yales
hoped that the Atari was not going to be fobbed off as merely a games
machine. It provides a cheap solution for those who cannot afford a PCor a
Mac.

Q: Is Jeasy to learn? Dogs a knowledge of APL help the learning process?

20

VECTOR Vol.8 No.3

Most found | difficult to learn, and felt that knowledge of APL was essential
given the current state of the documentation. Simen Barker summed it up
with the comment that learning] withoul the aid of a wide range of material
means playing with the interpreter and relying on APL skills to aid
experimentation. Donald McIntyre said that] is nol easy to learn from the
Dictionary, and, like APL, is best learned from a teacher.

Those who had littte knowledge of APL had a slightly different view. Chas
Yates felt that | was no harder than Forth, and Mark Whippey said that it was
easy enough to get started. R Gillan said | was enjoyable to learn and useful in
some areas of mathematics, especially induction and recursion formulae.

Q: Do yout like the Dictionary of | as a definition of the language?

The Dictionary was generally liked. Simon Barker felt that it was a succinct
and clear description of the language and useful as a basic reference text.

(Q: Could you learn | from the Dictionary of |7 Was the tutorial in Appendix B
useful?

Deonald Mclntyre pointed out that it is not intended that you should learn J
from the Dictionary. Since the Dictionary was all that Konrad Hinsen had, it
had to be sufficient. Another commented that he felt that he was worrying
away like a dog with a rag when someone could explain it better. Others felt it
would be possible to learn | from the Dictionary, but it would take a lot of
effort.

Several respondents with early versions of] did not have Appendix B of the
Dictionary, but those who did have it found it useful.

(2: Which features of | are difficult to understand?

All of them, says Donald Mclntyre, if you de not have the information! Simon
Barker had difficulty using conjunctions and adverbs to derive verbs because
they require a very clear understanding of how these constructions work in J.
He also felt that] ‘spelling’ is more difficult than APL because of the use of
modifiers to produce related sy mbols. Chris Brunsdon and Malcolin Rigg
found function definition difficult, and the Suite variable an awkward method
of program control.

Q: Would you have found it easier to learn [if there were more extensive examples
and exercises?

A resounding YES to this one.
Q: Did you enjoy learning 7

Another resounding YES.

91

VECTOR Vol.8 No.3

Q:

Which features of | are not very useful and could be dropped from the
language?

Most dared not comment, mainly because lhey had limited experience with].
Chris Brunsdon suggested that either APL-like programs with line numbers
should be introduced, or insist entirely on tacit definition and operators for
everything.

: What additional features should be included in the language?

Dave Ziemann suggested a betier front end. Donald McIntyre and Chris
Brunsdon would love graphics support. The remainder felt that they did not
know enough about] to comment.

¢ Does | give you new insights into programming fechnigues? Can you see

improvements that should be carried over into APL?

Most felt that they had benefited from studying J. Simon Barker likes the way
that scan has been redefined to apply a verb monadically to increasing subsets
of data. Chris Brunsdon likes the ability lo assign verbs, adverbs and
conjunctions to names, and could see this feature being incorpeorated in a new
version of APL. Donald Mclntyre says] is APL!

: What should [be used for?

The majority felt that] was best for teaching, education, intellectual
stimulation, mathematicians and APL-type problems. Donald Mclntyre uses it
for everything now. Chris Brunsdon finds it useful for geographical data since
he can handle arrays of complex numbers, but finds the inability to link] to
graphics functions frustrating.

The only contrary note was from E Sargeant who thinks] will quickly become
shelfware.

: What sort of problems would be easier to solve in | than any other language?

Dave Ziemann summed it up by saying thatJ is best for data transformations
and array processing,

: Would you be able to use | commercially?

The majority of replies were a definite NO, Chris Brunsdon thought that there
might be a possibility if the 640K barrier was broken, and Konrad Hinsen felt
that an up-to-date user interface would be essential.

. Why did you get a copy of |7

92

VECTOR Vol.8 No.3

The main reason seemied to be due to an interest in new languages,
particularly one developed by Ken Iverson, Chas Yates and Konrad Hinsen
wanted the power of APL without the hassle of special characters.

Q: Do you like [7

Everyone said YES. Chris Brunsdon thinks that] is an excellent idea, both as a
‘tool of thought” and for rapid solutions of certain problems in practice. His
complaints are just minor irritations.

One question that I did not ask was about the character set, and it was interesting
to note that two users specifically got | because of APL character set problems.
Simon Barker had ambivalent feelings about the subject. He likes being able to
write and print] scripts in ASCII, but feels that] has lost something valuable
without APL's symbology. APL was primarily a powerful notation that was then
implemented as a programming language, but J is primarily a programming
language that can be used as a (reasonable) notation. Because of this he finds J
much harder to read than APL, J text is littered with the period and colon
modifiers necessary to provide its rich symbol set and subsequently sacrifices
some of the clarity and conciseness of APL.

Many thanks to the users who took the time and trouble to reply to the
questionnaire. It is marvellous to be able to share their experiences in the
language at this early stage of its development.

93

VECTOR Vol.8 No.3

] Questions and Answers

Questions by Jonathan Barman
Answers by Roger Hui and Ken Tverson

When preparing for this issue of Vector my first and most essential task was to
study]. Some questions occurred to me which T could not answer immediately
from the documentation supplied, so T wrote to Roger Hui for elucidation. Roger
Hui and Ken Tverson have kindly agreed that their answers may be published.
Their reply grouped all their answers under five main topics. | have inserted the
questions next to each of their answers.

STATUS.DOC, Version, and Editions

JB: The STATUS.DOC file marks many features as Not Yet Available. When do
you plan to make these features available?

RH & KI: The file STATUS . DOC records the history, current state, and machine-
dependent aspects of the implementation. [tems are marked NYA (not yet
available} if they are described in the diclionary but are not yet implemented,
and serve to explain nonce or other errors that would be signalled if these
items are invoked. Of the more than 180 nouns, verbs, derived verbs,
adverbs, conjunctions, and other language facilities described in
STATUS.DOC, only thirteen are marked NYA. These items are not available
in any other APL dialect either, and their current unavailability does nol
impair the use of the rest of the system. Thus we would not characterise the
situation as one where “many features” are not yet available.

Of the thirteen NYA items in version 3.4, four (infinity and indeterminate)
are now partially available and a fifth (polynomial roots) is under active
development. These will be released in due course.

JB: Do you expect that] will change in a way which might make it difficuli for
users to move {o a new version? At this early slage in development | suspect
that you would want to keep a free hand, and not be constrained by
programs writlen in previous releases of J.

RH & KI: In the 18 months since] was first released, there have been fifteen versions,
resulting from releasing new features as soon as they are implemented. We
plan to have less frequent bul more substantial releases in the future. As the
implementation history in STATUS . POC indicates, there are very few
changes which make older versions incompatible. Incompatibililies have
been mostly in the form of spelling changes, a form of incompalibility readily
dealt with by a text editor. Continuing to use older versions is not the

94

VECTOR

Vol.& No.3

JB:

RH & KI:

problem that it is on mainframes; in particular, the size of the] syslem
permils the co-existence of several or all versions in the average personal
compuler.

I noticed that STATUS.DOC describes features that are not in the Dictionary,
forexample 9! :10 and 9! :11. As the Dictionary of | [4] is dated 1991, |
assume that you will not issue a revision in the very near future. How often
to you expect to issue revised versions of the Dictionary?

New editions of the dictionary are generally produced when the language is
significantly extended; over the past 18 months, there have been four
editions. From time to time, STATUS . DOC (being more malleable) can be
slightly mere up-lo-dale than the printed dicticnary. This is the case with
2!:10 and 9! :11 (query and set system command names): at the time of
printing, the current edition of the dictionary anticipated that system
commands would be replaced by new verbs and hence there would be no
need for 91:10 and 9! : 11, Except for these two items, STATUS.DOC
describes no language (eatures not in the dictionary.

Working with]

IB:

RH & Kl

IB:

Editing and debugging] seems to be extremely difficult. What techniques do
you advise for editing defined verbs? 1 would expect to be able to write a
verb that does the necessary translation to and from the format suitable for
8! :9, but could not see how to do it in the short time | have been playing
with J.

One might organise the work as follows: Definitions relevant to a particular
problem are kept in a seript file. (Any explicit definitions are included.} The
interactions in a sessien depend on the machine: on systems supporting
windows {such as the Macintosh or UNIX X-windows), the script file would
be in a separate text editor window, and executing the script in a] window
occurs concurrently with editing the script in the editor window. On single-
screen systems, executing the script in J alternates with editing the script
{without terminating the] session}, using the 8! : 9 editor or PC-WRITE (PC)
or the vi editor (UNIX}, or whatever editor is available in the underlying
system. Here, using the standard ASCII character set is an advantage:
standard editors handle | scripts with ease.

Given this way of working with scripts, we seldom attempt to edil the
display representation (5! : 2} of objects, preferring instead to edit the source
script.

How should one implement Stop and Trace? Is it possible to define a verb or
adverb to do the job? Page 69 of Programming in [suggests adding a
leading [, but this did not seem to produce any output for my defined verbs.

95

VECTOR

Vol.8 No.3

RH & KI:

If pr=.1%:282, composing pr with tacil verbs or prefacing each line of an
explicit definition by pr provides an execution trace. The use of insertions in
programs to get the effect of trace and stop is admittedly awkward, and we
inlend to provide further facilities.

Formatting

JB:

RH & KI:

Formatting in] appears to be very limited. | was expecting scmething along
the lines of the APL2 type formatting, rather than the full JFMT. Negative
numbers are carefully avoided in the illustration of a report on page 53 of
Programming in]. I had hoped for a demonstration of the techniques for
adding decorations to numbers. Do you plan to introduce mere powerful
formatting, or do you feel that this is not appropriate for J?

It is unlikely that format (" :) will be extended to do “picture format” or to
insert parentheses, comimnas, currency symbols, and the like. The current " :
is adequate and has no problems with negative numbers. There was no
deliberate intent to avoid negative numbers on page 53 of Programming in |
- that example is a report on return on investment, and may return on
investment stay ever positivel More elaborate reports can be written by the
user, as the Programming in [example illustrates. Alternatively, one could
forward arrays to exiernal presentation packages for further processing. The
“host” (0! :), file (11 :), and Link] [3] interfaces make this possible and easy.

Line Labels

JB:

RH & Kl

The example loop shown on page 18 of Programming in [has line numbers
hard coded, and there is no illustration of the use of line labels. | assume that
you just ran out of room for a relatively uninteresting topic, rather than
having anything against line labels,

In explicit definition, the sequence control $. permits sequencing more
elaborate than in other dialects, and the use of line labels with $. permits
sequencing analogous lo the branch arrow. Programming in | was first
published in October 1990; line labels only became available on 1991 2 15,
Hence the absence of examples involving line labels.

Tacit and Explicit Definition

jB:

When one of my initial efforts at defining a verb crashed with an index
error | was not aware if the verb was still on the execution stack. What
happens when an error is encountered? Can cone look at local variables?
}si givesanonce error; will this feature be included soon?

96

VECTOR

Vol.8 No.3

RH & KI:

JB:

RH & KI:

Several of your questions concern the explicit definition of verbs (those
derived from the : conjunction). In our own work, we hardly ever use the
explicit form; instead, a typical application consists of a set of tacit
definitions [1]. For example:

mean =, +/ L #
var =. tmean @ »: @ (- mean)
stddev =. ¥%: @ var

The problem is decomposed inlo meaningful subunits that are solved by
separate, simpler verbs. These verbs can be tested and debugged
independently; intermediate results of the overall verb, being just results of
the intermediate verbs, are readily available. The decomposition serves as
excellent documentation. This style of programming {of course) does not
originate with |, and is practicable in other APL dialects. See for example
Programming Style in APL [2].

As an exercise [rewrote the looping example shown on page 18 of
Programming in] with line labels, setting a local variable 1ines=.L1;L2,
and then selecting the lines to be executed with $.=.>(1<.y.}{lines. In
an attempt to remove the parentheses in the latter statement [tried to create
the tacit form with "> {1<.x.){y."' : 11 toseeif that would give a clue
on how to glue the thing together. All 1 got was an index error. The {
seems to cause the problem, as substituling another verb (e.g. +) produces a
result. Is this a bug?

An explicit sentence on nouns x. and y. resulting in a noun, can be
translated into a tacit verb using : 11, For example:

nub =, "((i.#Y.)=y.1.¥.)#y.' 3 11
nub

e[|EEE

The translator works by executing the sentence and produces a tacit verbas a
by-produet. In this execution the system initialises x. and y. to 1 by default.
This iswhy '»(1<.x.){y. 11 failed: 1 {1 should signal index error. The
dictionary does provide sufficient information to derive a remedy: In
general, the left argument to : 11 is a boxed list consisting of the sentence to
be translated and non-default values of x. and y.. Thus:

97

VECTOR Vol.8 No.3

(1;'>(Ll<.Xx.}{¥.";3 &) :11

> 8

JB: [have nol worked through all the examples in Chapter 5 of Programming in
J. but having got the tacit form with a=. "> (1<.x.)+y.' : 11 and
converted it withb=.5!:2 <'a’, [found difficulty replacing the + with {.
Having made the replacement it was annoying to discover that 5! : 0 is not
yet available as an inverse for 5! : 2! What should [have done?

RH & KI: We are sorry that you were disappointed that fix (5! : 0) currently does not
define an object from its display representation. It is quite possible that 5! : 0
will never be so extended, because the display representation is not unique
{forexample, '+.'&, and +.&, have the same display). However, 5! : 0
does invert 5! : 1 (atomic representation) and 5! : 3 (string or WSIS
representation), and one could modify a verb by manipulating these
representations. We plan to define and implement linear representations
(5! : 5), which is more convenient for editing. (For example, for nub defined
as above, 5! :5<*'nub' would produce ' (1.@{#@]) = 11.1) # 1')
Linear representation makes a useful addition to the 5! : series:

5::0 fix

§! :1 atomic (gerundizal) representation
5! : 2 display representation

5. : 3 string (WSIS) representation

5! : 4 tree representation

5! 15 linear representation NYA

JB: [am not sure | understand exactly when a Hook or Fork is interpreted
instead of the normal application of verbs. If I put the verbs in parentheses,
or assign them to a proverb, then Hook or Fork is always used. How would |
prevent the application of Fork to a train of 3 verbs which is assigned to a
proverb? Forexample, a +*- b is not a Fork, bul assigning the verbs
f=.+x- meansthata f bisa Fork. [am nervous that a such a simple
rearrangement should change the way tn which the verbs are applied. s this
unreasonable?

98

VECTOR Vol.8 No.3

RH & Kl: As stated in the dictionary, a hook or fork is produced by an isolated
sequence of verbs; the iselation may be produced by punctuation
{parentheses) or be a sentence such as mean=. +/%#. Punctuation may
drastically change meaning in any language, as illustrated by the pair of APL
expressions (+/x)++/% and +/x++/X, and by the pair of English sentences
“The teacher said he was stupid” and “The teacher, said he, was stupid”.

ED: Obviously a silly question! Donald Mclntyre explains the topic in some detail
in his arficle “Hooks and Forks and the Teaching of Elemenfary Arithmetic”.

References

[1] Hui, RK.W.,, Iverson, K.E. and McDonnell, E.E, Tacit Definition, APL9%
Conference Proceedings, APL Quote-Ctuad, Volume 21, Number 4, 1991 8.

[21 Iverson, K.E., Programming Style in APL, Proceedings of the APL Users
Meeting, [.P. Sharp Associates, 1978 9. Reprinted in A Source Book in APL,
APL Press 1981.

[3] Link]j allows C to call] and] to call user-written C functions.

[4] lverson, K.E, ISI Dictionary of |, lverson Software Inc., 1991.

Typesetter’s Note

As with APL, | is developing a tradition of using a simple monospaced font (such as
Courier) for code and sample output. This has the advantage that things are easy to line
up, but a particular problem with Courier (apart from the fact that it is too light on the
page) is that the standard PostScript font lacks any of the PC line-drawing characters.
This makes a nonsense of most of the examples!

Accordingly, | have had a quick hack at my APL-2741 font, essentially to make it upright
(rather than oblique), and slightly heavier. Page 72 shows the two fonts side by side if you
want to see the general effect. As it is very likely that Vector will continue to print
articles about [, 1 would like to gef the new font as tidy a3 | can, so that it adds to (rather
than detracts from) the readability of the code. Please address any comment8s to Vector
Production, at APL-385.

The font will, of course, be put into the public domain as soon as the design has stabilised.

VECTOR Vol.8 No.3

where to find it ...

I-APL is UK agent for
Iverson Software Inc and
holds stocks of] for

PC and Macintosh

Tel: 0727-860130

100

VECTOR Vol.8 No.3

Hooks and Forks and the Teaching of
Elementary Arithmetic
by Donald B. Mcintyre

Introducton:

After teaching APL to colleagues and students for many vyears [1,2,3], in
retirement [am discovering the age-levels at which various mathematical
concepts can be usefully introduced to children with the aid of the executable
notation J. Teachers at Edradour School, Pitlochry, are helping me look at the
possible use of] [4-8] to help children learn arithmetic. Although lacking Zdenek
Jizba's experience in the elementary classroom [9], I hope the examples given
here will encourage teachers to investigate | with their pupils. The underlying
notation and syntax of the language are explained for the teacher, who must
decide how much to disclose to particular pupils.

Algebra passed through three stages: rhetorical, syncopated, and symbolic. At first
words were used, without other symbols. The words were then abbreviated, and
eventually the abbreviations became so contracted that the origin of the symbols
was forgotten. New symbols were devised for operations hitherto unknown or
not formalised [10-12]. J provides a large number of symbols, but the teacher (or
user) can name these, thus reverting to the rhetorical (or perhaps syncopated)
stage. This may at times be a convenience for any user; in particular a teacher
may find that children are at first more comfortable with words than symbols.

As we grow we seem destined to recapitulate the intellectual history of our race.
Pupils should nevertheless be encouraged to use symbols as early as possible.
Dantzig put it well: “Greek thought was essentially non-algebraic, because it was
so concrete, The abstract operations of algebra, which deal with objects that have
purposely been stripped of their physical content, could not occur to minds
which were so intensely interested in the objects themselves. The symbol is not a
nieve formalify; it is the very essence of algebra. Without the symbol the object is a
human perception and reflects all the phases under which the human senses
grasp it; replaced by a symbol the object becomes a complete abstraction, a mere
aperand subject to certain indicated operations. ... The symbol has a meaning
which transcends the object symbolised; that is why if is nof a mere formality. It is
the power of transformation that lifts algebra above the level of a convenient
shorthand.” [11, p.80, 87. ltalics in original].

101

VECTOR Vol.8 No.3

The J dialect:

Mathematics is a language [11-14]. Indeed Hogben, in a book of great popularity
and influence, included a chapter on the grammar of mathematical language
[13], distinguishing the verbs (functions) and nouns (data) of mathematical
sentences. Hui and Iverson et al have gone further, recognising and
implementing adverbs (monadic operators) and conjunctions {dyadic operators)
[15); Bernecky and Hui have shown the power of gerunds (function arrays) for
parallel processing [16]; and Iverson and McDonnell added phrasal forms and
pronouns [17]. } uses pro-verbs, and similar names assigned to adverbs and
conjunctions {4].

] is a powerful dialect of APL available as shareware implemented for a large
number of computers [18]. Its roots are in Iverson notation [19] and in APL’s
method of Direct Definition of functions [20, 21, 12]. The spelling adopted uses
ASCII characters, either alone or iinmediately followed by a period (.) or colon
(:). Thus + is plus, +. is or, and +: is double; % is divide, %. is matrix divide, and %:
is square root. As in all dialects of APL, both monadic and dyadic meanings are
recognised. Assignment is written =. and read “is”.

When an expression is executed the result is produced and can be assigned to a
variable. If ne assignment is made the result is displayed. In the examples below
expressions for execution are shown after three spaces at the beginning of the
line and the results are shown on the next line and beginning in the first column
of the line. If the expression is a verb or a pro-verb (the name of a verb), then the
definition of the verb is shown in boxes (see examples later in the article).

Names

Nouns, verbs, adverbs, conjunctions, and gerunds can all be assigned names. If
the name plus is easier to remember than the symbol +, simply assign and use the
name. Names used instead of nouns are pronouns; pro-verbs stand for verbs in a
similar way; and other parts of speech can be named also. Here 1 define some
names for use in the rest of this article. The rows of the table are the defining
expressions in] and can be entered like this on a computer running J. In | the
comment symbol is NB. and anything after that on a line is ignored. Definitions
given here are informal; see the Dictionary for details [4].

Pro-verbs (or verbs, for short):

add=. + KB. synonyms can be helpful. See plus
behead=. }. NB. drop first item

CoOpy=. # NB. X # v is X copies of ¥
divided_by=. % KB. 12%3 is &

102

VECTOR

Vol.8 No.3

double=. +:
floor=. <.
format=. ":
halve=, -:
head=. {.

increm=. »:
laminate=.
larger_of=.
left=. [

lesser_of=.

less_or_equal=.

magnitude=.
mateh=. -:
minus=s. =
not=. -.
orf=, QI:55
one_minus=,
plus=. +
power=. A
reciproecal

residue=. |
l.

reverse=.
right=. 1

<3

NB. +: 5 is 10

NB. <. x drop any fractional part of X
NB. width and precision of output

KB. -: 10 is 5

NB. take the first ifem

NB. increm is short rfor increment. Add 1
NB. join two lists to make a table

NB. x >. y choose the larger value

NB. return the left argument. Was }:
NB. x <. y choese the smaller value
NB. 1 2 3<: 2 is 1190

NB. |y is absolute value of ¥y

NB. arguments identical

NB. u-5 15 2

NB. converts 0 to 1 and 1 to 0

NB. return to DG5S with "off 0.

NB. 1 - y. extends the boolean not

NB. synonyms can be helprful. See add
NB. 3 A~ 2 1is 9

NB. recipraocal of 2 is 0.5

NB. x|y remainder on dividing x into y
NB. change a list abcde into edcha

NB. return the right argument. Was {:

scripts. 0!:20<:(<@[0!:2 <@1)

show=.]
shape=. $
signum=., *
tally=. #
times=. #*

times_pi=. 0.

transpose=.
tree=. 5l:4

vholes=., 1.

NB. read/write script files.

NB. ‘'output.fil’ script 'input.fil' or
NB. 'output.fil' script '' or

NB. script 'input.fil'

NB. return the right argument

NE. length of & list or number of rows
NB. and columns cof a table

NB, » _5 0 7 1is 10 1

NBE. number of items

NB. 3x4 1is 12

NB. Multiply by pi. o.1 1is pi

NB, turn a table {or flat) on its side
NB. display structure of a defined verb;
NB. tree 'mean’

NB. list integers, starting with 0.
NB. i. 10

Pro-adverbs (or adverbs, for short):

cross=., ~
fix=, f.

insert=. /
scan=. \

NB. switch arguments

NB. fix a verb: "compile” it into J

¥B. symbols

NB. insert verb between items

NB., apply to successively longer subsets

Pro-conjunctions (or conjunctions, for short):

atop=. after=.

"

rank=.
with=. &

NB. create a verb by bonding two verbs
NB. explained in context
NB. bond a noun to & verb

103

VECTOR Vol.8 No.3

This use of with for bonding a noun to a verb is sometimes called Currying, after
the mathematician Haskell B. Curry [15]. Note that (plus insert) is a derived
verb, just as run quickly is a new verb created from an old one modified by an
adverb. Also (plus insert scan)is yet another verb, derived from the first by
two adverbs, as in run very quickly. Conjunctions bond nouns or verbs together to
form new verbs as in divide by 4, or run and hide. Thus:

quarter=. % with 4

and
> @ 1.

is a new verb that generates wholes (integers) starting with 1.

Plus, Times, Power:
To add up a list of numbers, insert the verb plus between each item:

1 plus 1 plus 1 plus 1 plus 1
5

The operation is written concisely by defining the new verb total, and using
copy to repeat an item:
total=. plus insert

total 5 copy 1
5

Obtain partial totals by using scan:

total scan 10 copy 1
123456789 10

The sum of six twos is:

2 plus 2 plus 2 plus 2 plus 2 plus 2
12

total 6 copy 2
12

Multiplication was, of course, invented to do this conveniently:

6 times 2
1z
Similarly:
2 times 2 times 2 times 2 times 2 times 2
3
times insert & copy 2
64

104

VECTOR Vol.8 No.3

Exponentiation (raising a number to a power) was invented to make this easier:

2 power 6
64

The order of the arguments makes a difference (6 copies of 2 is not the same as 2
copies of 6); i.e. power is not commutative:

times insert 2 copy 6
36

& power 2
a6

The adverb cross interchanges the arguments:

2 copy ¢ross 6
222222

2 powver~ &
36

Sum of a lisk:

show i=, increm wholes 10
12345867849 10

total increm wholes 10
55

This total can be obtained {as young Gauss knew) by halving the product of the
last number and the last number plus 1 [9]:

i plus reverse 1
11 11 11 11 11 11 11 11 11 11
halve 10 times 11
55
total increm wholes 100
5050

Noting that:

12 3 + 100 99 38
1901 101 191

halve 100 times increm 100
5050

And

total increm wholes 1000
500500

halve 1000 times increm 1000
500500

105

VECTOR Vol.8 No.3

Hooks [4, 17}

The expressions i plus reverse iandy times increm y are examples of a
commenly enceuntered construction. Two verbs {call them g and h) are applied
to the data (call it y) in a special way; namely, the result of applying h to y
becomes the right argument of g, and y appears again as the left argument of g.
The syntax of] enables this to be written concisely as:

(g h) yinsteadofy g (h y)

This construction is called a hook. Note that g, with arguments both to the left and
right, is dyadic, whereas h, with an argument on the right only, is monadic. The
resulting hook is in this case monadic (the argument appears only once}. Thus,
instead of writing;

i plus reverse i
11 11 13 11 13 11 11 11 11 11

write:

(plus reverse) i
11 11 11 11 11 11 11 11 11 11

Similarly:
halve 100 times increm 3100
5050
halve (times increm) 1060
5050

The sum of the positive whole numbers from 1 to n is given by the defined verb
SP¥I:
sp¥n=. halve after {(times increm)

spvn 1000
500500

FParentheses are needed to get the correct hook, because a conjunction (after)
seizes the item immediately to its right as its right argument.

Dyadic hooks are also common. They occur when x is modified by some function
of y. The syntax is:

x (g h) yinsteadofx g (h y)

Here is an example. How many steps are there if starting at _2 we go to 57 [22]
Not counting the _2 we start at, there are 7 steps:

10123485

106

VECTOR Vol.8 No.3

This number is the magnitude of the difference between _2 and 5:

{magnitude atop (minus insert}} _2 5
7

Or using J symbols:

n=. | @ (/)
n_2 5

7

If we proceed in steps other than unit steps, we must divide by the step size. The
required verb is a hook combining the two verbs inte and n. Name it h:

into=. -
nsteps=. into n

Then for half steps, we have:

0.5 nsteps _2 5
i

Display nsteps to see that it consists of two adjacent verbs; i.e. a hook.

nsteps
el

Fix nsteps, so that subsequent changes to its components (inte and n), will not
affect it.

nsteps=. nsteps fiX
nsteps

)l

(4~ & (=/)}

This is a display of the definition of nsteps. It shows how the expression will be
parsed. There are two outer boxes, and hence this is a hook. Contiguous boxes
show that the symbols in them are to be grouped together. We can immediately
translate the display into the fully parenthesised form written immediately
below it. There is no harm in using the fully parenthesised form, but
experimentation will show whether parentheses can be omitted with impunity.
In this case the parentheses round -/ are needed to prevent the conjunction atop
{@) from taking the - instead of (-/) as its right argument. Adverbs are monadic,

107

VECTOR Vol.8 No,3

taking the item to the left as the argument. Thus cross (~) modifies the verb
divided_by (%) to its left and no parentheses are needed to ensure this. So
nsteps can be written with a single set of parentheses. No spaces are needed but
1 have used them to draw attention to the two groups of symbols that make the
hook. As we shall see, three groups make a fork. .

nsteps=, %~ [@{-/)

0.5 nsteps _2 5
14

Two hooks are used in the scaling (ot normalising) of a list of numbers to make
the range from 0 to 1. Such scaling is often needed when preparing graphical
display.

Let list be the name of the list of numbers nine, three, four, negative 2, ..., seven:

list=. 9 3 4 _2 12 1 _4 15 7

The smallest value will be 0 if we subtract the smallest value, This should be
quickly recognised as a monadic hook:

list - <./list
13 7 8 2 16 5 0 19 11
{- <./) list
13 7 8 2 16 5 0 19 11
g=. minus lesser_of insert
g=. - <./
q list
2

13 7 8 16 § & 19 11

Similarly:
The largest number will be 1 if we divide list by the largest value. This is another
monadic hook.
pe. A >/
scale is the composite verb in which p is applied to the result of g;
ie.pisatop q
scale=, p@g

0.3 format scale list
¢.684 0.368 0.421 0.205 ¢.8L2 0.263 0.000 1.000 0.579

Forks [4, 17]:
A fork is a succession, or train, of three verbs. The meaning assigned is this:
(f g h) ¥y is (f y) g (hy) Monadic
X (f g h) vy is {(x I} g (x hy) Dyadic

108

VECTOR Vol.8 No.3

The mean is an example of a monadic fork. Compute it by dividing the total [of
the list] by the tally [the number of items in the list]:
y=. 12 34

(total y) divided_by (tally y)
2.5

Display mean in various ways:

mean=. total divided_by tally
mean

Itatal |divided_by| tal ly|

The string of three boxes shows that mean is a fork. The same information is
given by another kind of display, called a parse tree.

tree 'mean’
total
— mean ——{E divided_by
tally
Fix the verb, “compiling” it into primitive] symbols.

mean=. mean [ix
mean

Bl

tree 'mean’
[/ — +
— mean %
#

¥

mean 1 2 3 &
2.%

mean is a monadic fork because it takes only a right argument. The syntax is:
(f g h) y isthesameas (f y) ¢ (h y)

The arithmetic progression vector (apv) given below is an example of a dyadic fork.
This is its syntax:

X {f g h) yisthesameas (x f y) g (x h Yy}

An example of a fork including a hook as one prong is the verb clean, which
sets to zero small values resulting from round-off errors. For data take:

shew y=. 1 10 100 1000 10000 into 1.234%
1.2345 0.12345 0.0123485 0.00123455 0.00012345

109

VECTCOR Vol.8 No.3

Let the right argument v be the data to be cleaned, and let tolerance be the left
argument x; then the result is y times the truth or falsity (1 or 0} of the
proposition that the tolerance is less-than-or-equal to the magnitude of y:

y + (X proposition y}
The proposition is a dyadic hook:
0.01 {less_or_equal magnitude) y
11100

0.01 <: (] y)
11100

times is, of course, the central term of the fork:

The verb clean is therefore:

clean=. right times (less_or_equal magnitude)
clean

right|times

lies 5_0r_equal | magnitude

tree 'clean'

right
times
— clean less_or_equal
magnitude

x=. 0.01
yY=. 1 1¢ 100 1000 10000 into 1.2345
X clean y

1.2345 0.12345 0.012345 0 0
X clean -y
_1.2345 _0.123u45 _0.012345 ¢ 0

If we left off the parentheses then less_or_equal would be the central term of a
fork, which along with right would make a hook.

f=. right times less_or_equal magnitude

right

ltimeslless_or_equal magnitude

[-]
[+]
=

110

VECTOR Vol.8 No.3

This would be quite wrong! Consider why this is so. A dyadic hook like this can be
expanded:

X (g h) vy expandsto x g (h ¥)

In our case:
g=. 1
h= w<y |
x (g h) vy
10000
x g (h y)
1000

Because g is the dyadic verb right it returns its right argument; so x can make
no centribution to the result, which must depend solely on the monadic function
h applied to y.

hoy
10000

Defining the following pro-verbs:

p:
g=. <!
r=. |

Expand the fork h:

(par}y
10000
(p Yl g i{ry)
10000
But
ry
1.2345 0.12345 0.012345 0.0012345 0,00012345
And
PY
11111
(= y) <: (Iy)
10000

The monadic times ()} is called the signum. The result is 1, 0 or _1 depending
upon whether the argument is positive, zero or negative. Hence with this
definition of £

f=. right times less_or_egual magnitude

111

VECTOR Vol.8 No.3

the left argument is ignored and the result is 1 if the signum of y is less than or
equal to the absolute value of y. This is true unless y is a positive number lying
between 0 and 1. This might be a useful function in another situation, but it is not
what we want for clean!

Iverson’s utility verbs by and over provide a convenient way to illustrate the
result. See the Appendix for an explanation.

X=. 9 0.
Y= _9 _
over=. {
by=. !
X by vy o

.5 _9

RN TITH

_9 1.5 _1 _0.5 0 0.001 0.3 0.4 0,999 1 2 10 100

9f 1 1 1 11 o] 0 0 011 1 1
0.5 1 1 1 11 o 0 0 011 1 1
¢ 1 11 11 0 o] 0 011 1 1
_0.5] 1 1 1 11 0 0 0 011 t 1
_9] 1 1 1 11 0 0 0 011 1 b

The rank conjunction (") here instructs £ to use rank-0 cells (atoms, units or
scalars) from the left argument with rank-1 cells (lists, longs or vectors) of the
right argument.

We can return to the definition of ¢lean with added understanding. It is helpful
to use spaces in order to draw attention to the three verbs of the fork, but spaces
are not required:

clean=.] % {=:}])
clean

Ji*
< 11]

The Number Line:

Negative numbers once seemed absurd or fictitious {23, p.252], but a number line
makes it easy for a child to grasp a concept that once taxed the greatest
mathematicians. In a few years of instruction we are each led through the stages
that took our ancestors generations to achieve, Experiments should help:
shov i=. vholes 10
01234567839

10 plus i
10 1% 12 13 14 15 16 17 18 19

112

VECTOR Vol.8 No.3

Number lines are produced by the following, fork:

nl=, wholes minus floor atop halve
nl

wheles|minus
o0 [o[patve

Or, more concisely in] symbols:

nl=., 1. - <.@-:

nl 11
5 4 _3_2_ 1012345

Various number lines can be produced simultaneously by using the rank
conjunction () to specify that rank-0 cells {atoms, units or scalars) on the left are

to be combined with rank-1 cells (lists, longs, or vectors) on the right:
110 10¢ 1060 times"0 1 nl 11

_5 _4 _3 2 10 1 2 3 4 5

_50 _s0 _30 _2o _10 0 10 20 30 40 54

500 _400 _300 _200 _100 0 100 200 300 400 500
_5000 _4000 _3000 _2Q00 _1000 0 1000 2000 3000 4000 5000

The argument for nl should be odd. To ensure that an even argument is made
odd, define odd as a monadic hook:

odd=. plus one_minus@(2&residue)
odd

one_minus @
2]t rosiaue

odd=. + -.@(281})
odd

~-. |8
2[e]] |

cdd 2 4 § 8 laminate 1 3 5 7

plus

57
3 5

3 9
i 7

113

VECTOR Vol.B No.3

This works by dividing the argument by 2 and subtracting the remainder
(residue) from 1. The result is then added to the argument. Because the
remainder on division by 2 is either 0 or 1 (depending on whether the number is
even or odd) subtracting it from 1 changes a0 to a1 and a 1 to a zero. A list
(vector) of Os and 1s is called logical (taking 1 as true and 0 as false) or boolean
{(after George Boole, who taught us how much can be done with an algebra
restricted to these two numbers). In logic the verb not converts true to false and
false to true. Boolean algebra is, however, part of algebra, and its 0 and 1 can be
combined with ordinary numbers by algebraic operations. Because there is no
difference between the verbs one_minus and not (other than their domain),]
uses the same symbol (-.) for both.

Define the verb nl ine, which applies n1 after using odd:

nline=. nl @ cdd
nline”0 right 12 13
6 _5 4 _3 _2 160 23456
2 345686

1
6 5 4 3 _2 101

Using the verb nsteps (defined above to determine the number of steps)
produce the required number of wholes (integers):

The arithmetic progression vector is a fork containing a fork that in turn contains a
hook. The outside fork is: the first item of the right argument ({ .@3) plus the fork
[*g, which in turn is the left argument t imes the dyadic application of g.

apv=. {.®] + [*g
apv

+
{.[®)3] Cl*]g

0.5 apv _2 5
2 1.5 1 _¢.5 ¢ 0.5 11,52 2,683 3.54 4,668

Using J primitives {or fixing apv with fix}:

apv=. {.@J + [» 1.8>.,@»:@(%~ [8-/)

114

VECTOR Vol.8 No.3

Place value:;

In learning arithmetic one of the first tasks is to understand place notation; i.e.
the values assigned to digits at each successive place in a number. With this in
mind we explore as follows:

times insert scan 10 1¢ 10 10 10 10
10 140 1000 10000 2100000 1000Q0Q

Because successive multiplications are produced by pover:

10 power 1 2 3 4 5 6
19 100 1000 100G0C 10G0CQ0 100Q000

Looking at this result a pupil might wonder what the result of 106 power o
would be:

10 power 0 1 2 3 4 5 6
1 10 100 1000 1QQQ0 100000 1000000

which leads in turn to the exploration of negative values:

10 power _4 _ 2 1012 345%6

3
0.0001 0,001 0.01 0.1 1 10 100 1000 10000 100000 1000CO0O0

The reciprocals are place values:

reciprocal 10 power _4 _3 _2 _1 ¢ %t 2 3 4 35 8§

10000 1000 100 1¢ 1 0.1 ©.01 0.001 0.0001 1e_5 le_&

The value assigned to a place is given by the verb place:
place=.10 with power

place 3
1000

Because we write numbers so that the larger place values are to the left {ancient
Egyptians usually did the opposite), the values of successive places are:

reverse place wholes 7
1000000 100000 10000 10CG0 1060 10 1

Continuing the series to the right:

1. 10a 1 apv _4 4

10000 1000 100 10 1 0,1 0.01 0.001 0.0001

Rounding:

Having grasped place notation, pupils are ready for rounding. This must be done
mentally, but at an appropriate stage the formal process should be introduced.

115

VECTOR Vol.8 No.3

Because] is an executable mathematical notation, its use has the advantage that
computing skills are taught at the same time.

100 *<.0.5+438%4100 NB. Round 438 to the nearest 100
4o 10 *<,0.5+26%10 NB. Round 2& tco the nearest 10
30 0.1 *<.0.5+12.345%0.1 NB. Round 12,345 to nearest 0.1
123 0.2 #<,0.5+12,345%0,2 NB, Round 12.345 Lo nearest 0.2
12.4

Rounding will, in general, be to an integer multiple of a given number. This is
defined formally as:

round=. ‘' : 'X. % <, 0.5+ y.%X."

where x. and y. are place-holders for the left and right arguments respectively.
The empty string preceding the conjunction (:} means that we are defining the
dyadic case only. Because the arguments are referred to explicitly, this is an
example of explicit definition, as opposed to the tacit definitions used exclusively
above. Tt can be translated to tacit form by the adverb : 11 [24]:

tx. * <, 0.5+ y.¥%x.' @ 11

2
Lo-=lel+]| | L]l

This is a fork with » as the central verb. Because the fork 1%[can be written %~
we have:

round=. [* <.@8{0.58+8{%~))
round

lo.5|x|+|

]

116

VECTOR Vol.8 No.3

10 100 1000 round 146464
146460 14650Q¢ 1460Q0

Y=. 2 4 6 8

show x=. y round 146463
14646l 146464 1UoUGE 146464

Verify that these results are indeed (integer) multiples of y

XY
73232 36616 24411 18308
y=.3 7 11 15 25 33 125
show x=. y round 146464
16063 146461 146465 146460 146475 146454 146500
xhy
4B821 20923 13315 9764 5BSY U438 1172

Rounding 438 to the nearest 100

{10A2) » «<.0,5+438%10A2
400

Round to given number of decimal places
rdp=. '' 1 '(10AX.) %~ <, 0.5 + y. w 10ax,!

012345 rdp ©.1
3 3.1 3.14 3.142 3.1416 3,1415%

Rewriting in tacit form:

rdp=. 10ZA@[%~ <.@(0.58+@(] ~ 10i~0[)})
This contains two forks, but the last one (1 » 108@[) can be written as a hook
((« 108a)~), though this necessitates additional parentheses.

rdp=. 108A@L %~ <.9(0.52+@((» 108A)~))

012345 rdpo.1

3 3.1 3.14 3.142 3.1416 3.14159
rdp

elr %1~ <, |®
moalNRIEs meaels
0.5]1%|+ ~
2of2]]

Rounding to a given number of decimal places is, of course, only a special case of
round:

117

VECTOR Vol.8 No.3

{10a-1.8) round o.1
3 3.1 .14 3.142 3.1416 3.14159

The heok is obvious in the following:

h=, (J*<.@(0.58+@%)) 10&A
rnd=, h~

¢ _1 _2 _3 _4 _5 rnd 0.1

3 3

3.1 1t 3.142 3.1416 2.14159
X=. 1.6
y=. 1uBu6L 1464E 14EL 146
tables. (10ax) round”0 1 y

Notice that we simultaneously round many numbers to several different places
and produce a table of rounded values. (Iverson’s utility verbs by and over are
explained in the appendix).

¥y by x over transpese table

0 1 2 3 0 S

1646l | 186464 106460 1U6500 146000 150000 100000
14646 | 14646 I1LESO 14600 15000 10000 o
1464 1464 1460 1500 1000 0 0
1u6 1u6 15¢ 100 o 0 0

table match x rnd "0 1 ¥y

Letting f be the fork and h the hook:

f=. 1 » <. @{0.58+@%)
h=. (I 108a)~
table -: x h"c 1 ¥y

Examples of rounding exercises from
a school workbook [25, p.14, 15, 22]:

A,: 1¢ round n=,12 26 165 14 38 43 56 65 97 145 235
12 26 165 14 38 43 56 65 97 145 235
10 3¢ 17¢ 10 LQ 40 60 70 100 150 240
n.: 190 round n=.179 438 &5Q 16Q 25Q uF3 729 &07 896 717 91
332 5u8
170 438 650 160 250 463 729 607 896 717 91 332 548
200 40% 700 200 300 500 700 600 900 700 100 300 500
10 100 1000 round Bu78
84380 8500 5000

Round the numbers n to the place values given by p:

118

VECTOR Vol.8 No.3

n=, 8217 44¢9¢ 7358 6105 B65L4 5583 7950 6008
p=. 10 100 1009

table=.j:; p round"® 1 n

n by p over table

10 100 1000

8217 (8220 8200 8OO0O
4096 (4100 4100 4O0OQ
7358|7360 70O 7000
6105|6110 6100 €0Q00
9654|8650 8700 9000
5583|5380 5600 600C
79507950 8000 BCGOO
60086010 5000 6000

Concluding Remarks:

This paper illustrates some aspects of the J dialect of APL using examples related
to the teaching of elementary arithmetic. It demonstrates that hooks and forks
are ubiquitous, and shows how to use them in reading and writing J. Examples
are given of displays that show how expressions are parsed. These are invaluable
aids in understanding the language.

Definitions are given in tacit form. They are functional as advocated by Backus
[26].

Because] is evolving, it is essential to note which version is used. Examples are
included of changes that were made between versions. The files status.doc and
xenos.doc, provided with the system, document changes from earlier versions.
All examples included in this paper have been executed with Version 3.5x4.

As from Version 3.5x1, 1991 8 26, the three remaining “system commands” have
been replaced by verbs created by the external conjunction (! :).

}seript replacedby0ni:2
}sscript replacedbyo!:3
yoffr replaced by 01:58

It is convenient to include the following verbs in the file profile.js, which is
loaded automatically at the start of a session.

script=. ol:2@< : (<@ 0l:2 <@])
off=. Q!:55

script is an ambi-valent verb that permits specification of output and input
script files; e.g. 'output,fil' script 'input.fil' Because off is a verb, it
must have an argument. To terminate a session and return to DOS, enter of 0.

119

VECTOR Vol.8 No.3

Remembering Klein's Elementary Mathematics from an Advanced Standpoint [27], in
this paper 1 have treated topics in elementary arithmetic from a relatively
advanced viewpoint. I hope teachers will find stimulation for themselves and be
able to select examples suitable for pupils at various levels. Even very young
children can use some of the examples, if only to check their answers. The
exercise could provide an excellent introduction to both computing and
mathematics. The literature of J is still limited. This paper may be useful as an
introduction for anyone wishing to try J.

Acknowledgements:

Kenneth Iverson, Roger Hui, and Eugene McDonnell (Iverson Software Inc.)
have provided generous support on numerous occasions. Mrs. Rosemary Roache
and Julian Romanes (Edradour School) gave insight into the teaching of
elementary mathematics. Anthony Camacho and Graham Woyka encouraged
me to write about learning; J.

Donald B. Mclntyre
Luachmbhor, Church Road, Kinfauns, Perth PH2 7LD
Scotland - U.K. Telephone: 0738-86-726

Appendix: Displaying a table with over and by:

over=, ({.,.@:}.)@":@,
by=. ' *8;@,.e[,.]

Neotice that over contains the fork {. ,.@; }. and by is built upon the fork °
'8;@,.@C) ,.]

While reference [8] was in press, the symbols for Ravel Items and Raze were
interchanged (Version 3.2, June 1991). Because the monadic form Ravel ltems
changed from “;” in J3 to the form “, .” (as in J3.5x4, 1991 10 22), the versions of
aver and by given in [8] must now be written as follows:

over=. ,. & ({. ; }.2 @& ": 98 ,
bys. (,~"_1 "' 'g; @ ,.)~
In these versions, aver contains the fork {. ; }. and by is built on the hook

(.=".1) (0 '&;@,.)

120

VECTOR Voi.8 No.3

J's displays are invaluable aids in learning to read and write verbs like these.
Compare two versions of by each in two types of display:

by=. ' '&;e,.e[,.]
by

(L

tree 'by’
g - .
o L .
o L°
S}
]
by= (,~"_+ ' '&; & ,.)~
by

tree 'by'

S
“”Y—"‘[@LRL;

121

VECTOR Vol.B No.3

References

(1]

2]

13]

]

(5]

161
7

8]

19

(10]

[11]

112]

(13]

[14]

Denald B. Mclntyre, Intreduction to the Study of Data Matrices, In: Models of
Geologic Processes: an Introduction to Mathemalical Geology. Short Course
Lecture Notes, Philadelphia, November 1969. Edited by Peter Fenner.
American Geological Institute, Washingten D.C. (1969) p.A1-A44, B1-B17, C1-
C4.

Donald B. MclIntyre, The Architectural Elegance of Crystals made clear by APL, In:
Conference Proceedings, APL Users Meeling, Toronto, Seplember 1975.
Sponsored by 1P, Sharp Associates, Toronto (1978) p.233-250.

Donald B. Mclntyre, APL in g Liberal Arts College, In: Conference Proceedings,
APL Users Meeting, Toronto, October 1980, Sponsored by 1.P. Sharp
Associates, Toronto (1980), p.544-574.

Kenneth E. lverson, {S] Dictionary of J, Version 3.3 with Tulorials, Iverson
Software inc., Toronto (1991) 32pp.

Kenneth E. lverson, Programmnting in |, lverson Software inc., Toronto (1951)
71pp.
Kenneth E. iverson, Tangible Math, lverson Software inc., Toronto (1951) 33pp.

Kenneth E. Iverson, A Personal View of APL, IBM Systems Journal, Vel. 30,
Number 4 (1991) In Press.

Donald B. Mclnlyre, Mastering], APL91 Cenference Proceedings, Stanford,
California, August 1991. AFL Quote Quad Vol. 21 Number 4 (August 1991),
p.264-273.

Zdenek V. Jizba, Science Education in Californin, Vector vol.8 number 2 (1991)
p-22-24.

Florian Cajori, A Histery of Mathieinatical Notations, The Open Court Publishing
Company, La Salle, lllincis. Volume 1 (1951) 451pp. First published 1928;
Volume 2 (1952} 367pp. First published 1929.

Tobias Dantzig, Numtber; the Langunage of Science, London, George Allen and
Unwin, Ltd. 2Znd edition {1942) 320pp. First Published 1936, 4th edition 1962.

Donald B. McIntyre, Language ns an Intellectual Tool: From hierogylphies to APL,
IBM Systems Journal, Vol. 30, Number 4 (1991) In Press.

Lancelot Hogben, Mathematics for the Million, London, George Allen and
Unwin, Lid (1936) 678pp.

Kenneth E. lverson, Notation as a Tool of Thought, 1979 Turing Award Paper,
Communications of the A.C.M., Vol.23, Number 8 (August, 1980} p.444-465

122

VECTOR Vol.8 No.3

[15] Roger K.W. Hui, Kenneth E. Iverson, E.E. McDonnell, and Arthur T, Whitney,
APL\?, APL90 Conference Proceedings, Copenhagen, Denmark, August 1990.
APL Quote Quad Vol. 20, Number 4 (July 1990} p.192-200.

[16] Robert Bernecky and Roger K.W. Hui, Gerunds and Representations, APL91
Conference Proceedings, Stanford, California, August 1991. APL Quote Quad
Vol. 21, Number 4 (August 1991) p.39-46.

[17] Kenneth E. lverson, and E.E. McDennell, Phrasal Forms, APL89 Conference
Proceedings, New York City, August 1989. QuoteQuad, Volume 19, Number
4, (1989) p.197- 199.

[18]] is available from [verson Software Inc., 33 Major Street, Torento, Ontario,
Canada M5S 2K9. Phone (416) 925-6096; Fax (416) 488-7559.

[19] Kenneth E. lverson, A Progrumming Language, John Wiley and Sons, Inc., New
York (1962) 286pp.

[20] Kenneth E. Iverson, Elementary Analysis, APL Press, Swarthmore,
Pennsylvanta (1976) 219pp.

[21] Donald B. Mclntyre, Experience with Direct Definition One-liners in Writing APL
Applications, Conference Proceedings, APL Users Meeting, Toronto, September
1978. Sponsored by LP. Sharp Associates, Toronto (1978) p.281-297.

[22] william K. Clifford, The Comion Sense of the Exact Sciences, Edited with a
preface by Karl Pearson. Newly edited and with an introduction by James R.
Newman. Preface by Bertrand Russell. With bibliography of W.K. Clifford.
Alfred A. Knopf, New York (1946), Sigma Books, Ltd., London (1947} 249pp..
Reprinted by Dover Publications, Inc,, New York (1955). Chapter 1, Number,
Section 11, Steps.

[23] Morris Kline, Mathenwatical Thought from Ancient fo Modern Times, Oxford
University Press, New York (1972) 1238pp-.

{24] Roger K.W. Hui, Kenneth E. Iverson, Eugene E. McDonnell, Tacit Definifion,
APL91 Conference Proceedings, Stanford, California, August 1991. APL Quote
Quad Vol. 21 Number 4 (August 1991), p.264-273.

{25] Roy Hollands, Ginn Muthematics Level 4, Teachers’ Resource Book, Ginn and
Company Ltd, Aylesbury, Bucks. (1983), Third impression 1985, 160pp.
Intended for 8 to 9 year old children.

[26] John Backus, Can programming be liberated from the Von Neutnann style? A
functional style and its algebra of programs. 1977 Turing Award Lecture.
Communications of the ACM, Vol. 21, number 8 {1978) p.613-641.

[27] Felix Klein, Elementary Mathematics from an Advanced Standpoint, Third Edition
first published 1924-1925. English translation published by Dover Publications
Inc., New York. 2 Volumes, (1939) 274pp. and 214pp.

123

VECTOR Vol.8 No.3

Cross-clocks in |
by Paul Chapman

This article was prepared using | version 3.4a running on an Archimedes 540.

Here is an interesting problem whose solution was required to be implemented
in C as part of Midland Montagu’s Windowed Technical Trading Environment
(WIiTTE). In the absence of a good theoretical understanding of modulo
arithmetic and diophantine equations, I chose to explore the problem using J.

A ‘clock” ticks with period p, a whole number of seconds, and first ticks a
seconds after some agreed original time to, where a is called the alignment. The
problem is this: given two clocks, cx=(px,ax} and cy=(py,ay), is there a cross-
clock cz=(pz,az), which ticks when and only when both ¢x and cy tick, and if
so what are pz and az?

Before we begin, let’s define two verbs and two adverbs, all very useful in tacit
definitions:

non % nu

GG M
L= R]
[]

Now let’s describe the data structure for a clock. It is simply a two-element
vector of the period and the alignment. In], we can describe structures by
defining functions which extract the members of those structures:

p=. 1.

a=. {:
€1 =, 5 3

p C1
5

a Cc1
3

In much of the work that follows, we are going to want to extract the period and
alignment of a clock in a dyadic function, so let’s define some dyadic functions
which extract these values.

Px =. p X:
Py =. p Y:
ax =. a X:

124

VECTOR Vol.8 No.3

ay =. a Y:
C2 =, 4 1
C1 px C2
5
Cl1 ay C2
1

The exploration begins: here is a function which shows the times of the first x
ticks of a clock:

expand =. ay + py = i. X:

] E1 =, 10 expand C1
3 8 13 18 23 28 33 38 43 us8

] E2 =. 10 expand C2
15 9 13 17 21 25 29 33 37

Let’s proceed empirically for now. Given the expansion of two clocks, what is the
expansion of the cross-clock? It is the intersection of the expansion vectors.

cap =. e. # X.
E1 cap E2
13 33

From this, we can see that the cross-clock’s alignment is 13, and its period is 33 -
13 = 20. Let's write a function which extracts these values, i.e, which does the

opposite of expand:

first =. (.
second =. 184
contract =. (second - first) , first

contract E1 cap E2
20 13

Putting all this together, we can build an empirical sclution with an adverb. its
argument is the number of ticks of each clock to be used:

Cross =. 'contract@(x.gexpand X: cap X.8expand Y:)' : 1
I: =. [.]
Cross =. (&expand) (I: (X: {('cap’'I:) Y:})} \ (contracte@)

5 3 (10 Cross) 4 1
20 13

125

VECTOR Vol.8 No.3

Now let’s look at some other examples, to see if there’s a pattern:
cross =. 100 Cross

9 0 cross 7 0

63 ¢
2 0 cross 2 0

2 0
4 2 cross 1 0

g 2
6 5 cross 9 2

18 11
10 expand 6 &

5 11 17 23 29 35 41 47 53 59
10 expand 9 2

2 11 2¢ 29 38 47 56 65 74 83
10 expand 18 12

i1 29 47 &5 83 10t 119 137 155 173
6 5 cross 9 3

index error

The following conclusions can be drawn:

if ax and ay are both 0, the cross-clock alignment is also 0;

the cross-clock of two identical clocks is also identical to them;

10 is an identity clock;

the cross—clock period is the lowest common multiple of px and py;

some pairs of clocks do not have a cross-clock (the index error above).

My mathematics is sadly no longer good enough to be able to provide proofs of
all of the above without quite a struggle, but this is after all an informal
exploration: you and 1 will both have to put some faith in the remnants of
mathematical intuition left to me after years of C programming.

Now provided we choose a large enough expansion size, we have a solution to
the problem. But it is impractical, since the size of the expansions is going to
increase roughly with the size of the periods, and my application required a fast
solution for arbitrarily large periods.

One part of the problem is already solved: the cross-clock period is the LCM of
px and py. So let’s at least rewrite our solution to take advantage of this
knowledge:

lem =. =+,
Crossalign
Crossalign

'first@(x.dexpand X: cap X.&expand Y:)* : 1
. {Zexpand) (I: (X: ('cap'I:}) Y:})) \ (firste)

126

VECTOR Vol.8 No.3

pz =. px lcm py
az =. 100 Crossalign
cross =. pz , az

6 5 cross 9 2
18 11

We can simplify the problem by temporarily moving the time origin to one of the
alignments, say ay, and then shifting it back once we've calculated the cross-
clock:

02 4 (65~ 0 2) cross (9 2 - 0 2)

18 11
translate =. (-80 2) :. (+80 2}
6 5 crossi.translate 9 2

18 11

So now we only have to address the problem where ay is 0. Another
simplification is to change the granularity of time to be the greatest common
divisor of px and py:

02+ 3 % ((65 -02) % 3) cross ({9 2 -0 2) % 3)
18 11

scale =, %&3
6 5 cross2.scaled.translate 9 2
18 11

This suggests that the cross-clock exists if and only if the difference between the
alignments is divisible by the greatest common divisor of the periods. T am
confident that this is true, but [am not equipped to attempt a proof.

Let's generalise these last two improvements:

gcd =. +.
I =. px gcd py
cross =, pz , ay+f » {({px , ax-ay} % f) az ((py , 0:} % f)
6 5 cross 9 2
i8 11

We can’t use 8. here because there is no way in | to use tacit definition to express
its right argument as a function of the derived function’s arguments. This is a
more complicated formula, but now two things can be guaranteed about the
arguments to az: ay is zero, and px and py are copritne (i.e. their GCD is 1).

127

VECTCR Vol.8 No.3

Let’s have a look at how az changes with ax for a couple of period pairs obeying
these rules:

50 az 3 0
5 1az 3 ¢
5 2 az 3 0

5 ,"0 i. 5

[B]
WO

clocksofperiod =. ,"0 i.
cleocksofperiod 5

non oo
EoIN N]

(clocksofperied 5} az"1/ 3 ©
06 12 3 9
try =. clocksofperiod ¥X: az"1/ y. ., 0:
5 try 3
06 12 3 9
15 | 6 « 1.5
0 6 12 3 9
7 try 9
0 36 9 45 18 54 27
63) 36 x 1. 7
¢ 36 9 45 18 54 27
7 4 az 9 ¢
i8
63 | 36 % 4
18

az seems to vary proportionally to ax, modulo pz. So we are nearly there: all we
have to do is calculate the constant of proportionality, k, for a pair of periods,
which is also (by definition) az where ax = 1anday = 0.

Once again, let’s first write down an empirical solution for k so that we can
experiment:

K=. (px , 1:} az f. {(py ., 0:)

az =. pz | kK » ax
5 try 3
06 12 3 9

128

VECTOR Vol.8 No.3

7 try 8
0 36 9 45 18 54 27

The cross-clock for a pair of clocks ticks when and only when both those clocks
tick. So at time k, all three clocks must tick. So k is determined as follows:

1:
0:

px | k
PY | k

So k is a multiple of py, say ¥ = py # r, which when divided by px leaves a
remainder of 1:

11 = px | py * [

r is therefore the reciprocal of py, medulo px, which we shall write as px mr py.
This always exists provided px and py are coprime, which we have already
guaranteed. x mr vy is defined suchthat1 = x | y » x mr y. We can write an
empirical definition of mr as follows:

AsScalar =. {.@
mr =. ((1: = %. } y. « i. X:) # 1. X:) AsScalar
7 mr 9
n
7 49 %« 7 mr 9
1
testmr =, X, | y. = X. mr Y.
2 34 5 6 (testmr"0} 5 7 9 11 13
111113

So now we have a solution for k in terms of mr:

K =. py » px mr py
5 try 3 0

6 12 3 9
7 try 8

0 36 9 45 18 54 27

Finally, the definition of mr is still unsuitable for implementation in C. A variant
‘of Euclid’s algorithm can be employed to implement mr recursively, as follows:

mr =. (x. | {(1: - X. = y. ®mC Y. [x.) % y.) ' 1: @, (x.=0:}

2 34 56 (testmr"0) 5 7 9 11 13
111132

It is at this point that | state, with some inevitability, that the proof is left as an
exercise for the reader.

129

VECTCR Vol.8 No.3

Since GCD is also omitted from most C libraries, we have Euclid’s algorithm for
that, too:

ged =. (<. ged <. | >.) t >, &, (<. = 0:) "0

Or rather more efficiently:

OrderArgs =, 'x.~ ' x. @. y.' : 2
OrderArgs =. (~ ') &.].
gede =. (y. gedo y. | x.) ' X. @. (y. = 0:)

gced =. gecd0 OrderaArgs > "0

And we can write LCM in terms of GCD:

lem
lem

(x. » y.)} % gcd
* % ged

n %

Checking against the] primitives:

all =. =, /@,

all (ged =: +.)/~ >:i.10
i

all (lem -: *,}/~ »>:1.10
1

Finally, let'’s build up our general solution, putting back the scaling and
translation:

PZ =. px lcm py

f =. px gcd py

k=, (py % f} » (px %)} mr {py % f)
az =, ay + f * pz | kK » (ax - ay) % f
az =. pz | ay + k *» ax - ay

cross =. (pz , az} "1

10 expand 10 3
3 13 23 33 43 53 63 73 83 93
10 expand 25 18
18 43 68 93 118 143 168 193 218 243
10 3 c¢ross 25 18
50 43
10 expand 50 43
03 93 143 193 243 293 343 393 443 493

Here are two more exercises for the reader: how is it that this still works when ax
< ay, and why does cross return a result even when f doesn’t divide ax - ay
{and what does the result mean)?

130

VECTOR Vol.8 No.3

TECHENICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of
fluency in APL.

Contents
Hackers” Corner Adrian Smith 132
Technical Correspondence De Kerf and Spunde 136
Arrays with Style Adrian Smith 140

131

VECTOR Vol.8 No.3

Hackers” Corner: More about VGA Colours

by Adrian Smith

As Dave Crossley rightly points out, the VGA is grossly under-exploited by the
vast majority of PC software. The irritating thing is that the required code is easy
to build, and will work under pretty well any APL you care {0 name. The only
snag, is having to spend the best part of £30 on Ray Duncan’s book! Accordingly,
I thought it might be helpful to compile a little workspace of helpful functions
(available from AFL-385 free if you send me a disk and enclose return postage,
but why not just type them in, and have fun writing a better palette editor?!).

50, with thanks to Dave Selby (for pointing out how easy this is), and Duncan
Pearson (for lending me Duncan for the weekend) ... here’s all you ever wanted
to know about JINT 16 ...

VGAARESET
VCAABLINK 01
VGAAQPALETTE reg
VGAAMQCOLOUR clr

Sets everything back teo default
Highlighted | blinking background
Checks current palette setting(s)
Checks current colour value(s)

D » DI

¥ VGAARESET;RG:VW:C
[1] ~ Reset V@A video to MODF 3 and restore active screen
[2] H<[JHGET 3 o C+{)JCURSOR
[3] = Afl = oOhex .. BIOS service 0
[s} m AL = 3hex ... standard VG4 text mode
[53 RG+3 0INT 16
[6] n Rese! background .,,
[7] KRG+~ uwo9s ¢ OIFT 16
(8] w» Put things back as they were ..,
[9] OWPUT ¥ o OCURSOR+C
¥

¥ YCAABLINK SK:RG
[1] na Flip Background from blinking to intensifled.

[2] = AH = 10hex +.. BIOS service 10 (EGA/VGA only}
[3] = AL = 3hpex -.. subservice 3
[4] & BL = 0/ ¢ = Intensify: 1 = hlink

[sl RG*(HOQQ,SU:OJDINT-iﬁ
v

¥ R+VGAAQFPALETTE VEC:;AX:RG;1lab;CT

[1] n Query VG4 palette register(s) VEC

[2] A AH = 10hex ... BIOS service 10 {EGA/VGA only)
[£3l a AL = 7hex ... Subservice 7

[4]] BE =0 -.. colour returned here

[5] a BL = 0-16 v« palette register to guery

[&] AX<(256%16}+7 ¢ Re10 ¢ VEO«,VEC

[7] Lp:+lab«i+{{a¥VEC)pLp),End, CT«1

[el RG+(AX,VECLCTI]1)UINT 16

[9] R+R, LRGE2]+256

{10] End:+lablCcI«CT+1]
v

132

VECTOR

Vol.8 No.3

[1]
[z)
£3]
[u]
[5]
[6)
L7
[a]
[3l

¥ R+YGAAQCOLOUR VYEC;AX;RG;CT;iab

n Query V@A colcur(s) VEC as RGB values

... BIOS service 10 (EGA/VGA only)
... Subservice 158 = 21{dec)
colour te guery

n Returns 4-col array of [colour,r,g,bl values
AX+(256%16)+21 o VEC+, VEC o Rej(u,pVEC}pVEC
Lp:+lab«1+((pVEC)aLp),End,CT+1

RG<(AX VECLCT])UINT 16
256 256 TRGEI 4] A returpned as G,R,B

A
L]
L}

AH = 16hex
AL = 15hex
BL = 0-%3

RLCT; 3 2 4)+3¢,

[10] End:+lab(CT+«CT+1]

¥

For example, to see the current VGA palette, and the standard RGB colours:

(X
~NoWU S a

VGALRESET o STD+VGAAQCOLOUR

S
0
]

o
0
a
52
452
0
]
21
4z

[.
42

0

4z

0

n2

Q

42 ...

856
57
58
59
690
61
62
63

21
21
21
21
63
63
63
63

VGAAQPALETTE 0,115

21
21
63
63
21
21
63
63

21
63
21
63
21
63
21
63

The next group of two functions allows you to change things! Obviously, there is
scope here to put together a simple palette editor ... mine uses RGB to crank up
the colour components and rgb to crank them down. It is also handy to provide
+ to increase all three colours together, and - to wind them all down.

VGAAPALETTE pal,clr
YGAACOLOUR cir,r.g.b a Set clr(s} (0..63) to red,green,biue

L1]
[2]
[31
(4]
(51
(6]
7]

[1]
[z]
[3)
[u]
5]
[61
[71
£sl
L9l
[10]
[113
[1z2]
[13]

¥ VGAAPALETTE VEC;RG;BX
a Set Vga palette register VEC[1] to YEC[2]

A
L
a
A

v

A Set Palette (0..15) to clr (0..63)

AH = i10hex ... BIOS service 10 (EGA/VGA only)
AL = ohiex ... Subservice 0

BR = 0-63 ... required colour

BL = 0-16 ... palette register to set

BX«(256=YECL2])+VECL1]
RG+(4096 ,BX)0DINT 16

v VGAACOLOUR MAT;RG;BX;CX;DX;lab;CT

A Set Vga colour register MAT[;1) to MATL;2 2 o} (RGB)
BIOS service 16 (EGA/VGA only)
subservice 16

colour register

green intensity

blue intensity

red intensity

MAT«("2¢ 1 1 ,pMAT)pMAT o MAT«((1tpMAT} &) tMAT
Lp:+iab+1+((14pMAT}pLp) ,End, LT+1

v

A

DD DDD

A = 1bhkex
AL = 10hex
BX = 0-63
CH = 0-63
CL = 0-63
DH = 0-63

BY+MATLCT; 1]
DX+256xMAT(CT;2]

CX+[256aMATLCT: 3]} +MATLCT 0]
RG«(u112 ,5X,CX,DXYOINT 16
[14] End:+labl[CT+Cl+1]

133

VECTOR Vol.8 No.3

¥ R«SETAPAL CRGB;W;IN;LD;SD;1ab;CT;0FF;FPOS;:CURR;FRM;BLE; L5T;BAR; INX KB;FP
[1] n Allow user to fix VGA colour registers for standard palette

[2] A RGB is a 16 u array of [Colour,R,G,B} values (0..63) for each clr
[3] A Result is the same array, with adjusted values

4] n <Esc> returns the original array unchanged, in rase of disaster!
5] A

[6] XB+1 OPCKE 118 ¢ LST<CURR+i ¢ R<«CRCGB ¢ YCAARESET ¢ VGAACOLOUR CRGB
[7] an The rirst bit is all direct screen update with OFPUT ... Yuk!
[8l Ep+t 4 L|-H{4rt o FRM+ 18 74 p' ' ¢ BAR<LD[10,(64p6},11]

[91 SD+(1+pFRM)pS5 o FRM<«LD[6],[1]JFRM,[1]LDLE]

[10] FRM«LD{1,5D,s] ,FRM,LD(2,5D, 3]

[11] OFF+« 3 4 o FP«(OFF- 1 2)},pFRM o #«I'P [JNGET

[12] FP OWFPUT FRM o FP OWPUT 143

[13] FP+'Arrovs select; rgbRGB+- keys move bars; ! reset; <Enter» exit’'
[1s] {(OFF+17,2},1,pFP}ONPUT FP

[15] BLK+ 3 5 a'l' ¢ FRM«' ' BLK,' !

[15] BLK+' '3BLK;' ' o BLK«{5 2 p' '},BLK, 5 2 p' !

[17] SD+{1tpFRM}p5 ¢ FRM<LD{&],[1]FRM,[1]1LD[6]

L[1B] FRM«LD[1,5D,4] ,FRM,LD[2,5D, 3]

[19] POS+(16 2 pOFF+ 0 4)+((8p1),8p5),(1.5)16p8%0 17

[20] Lpil:+lab+i1+({16pLpl} , Endl, CT+1

[21] FP+POSLCT;1, 3 5 o FP (OWPUT C¥-1 o FP OFPUT 'I'

[22] Endi:=l1ab[CT+«CT+1])

[23] ({OFF+ 9 3}, 1 6S}OWPUT FP+'Five boxing wizards jump quickly '
[2u] FP+FPOS-{oP0OS)p 1 2

[25] a Frame active colour, and mark It off on each colour indicator ...
[26] Mark:(FPLLST;],pBLK)OQNWNFUT BLX ¢ (FPLCURR;],oFRM)UWPUT FRM

[27] ((OFF+ S 3}, 1 32)0FPUT.% 2 16 p{16xCURR-1)+0,:15

[28] ((CFF+ 8 36), 1 3Z}OWNPUP,& 2 16 p(16%0,145)+CURR-1

[29] Rule:((CFF+ 11 1}, 1 &8}OWPUT ‘r*',BAR,'R'

[30] ((OFF+ 13 1}, 1 68)0OWPUT 'g',BAR,'G'

[31] ((OFF+ 15 1}, 1 EBa)UWPUT 'H' ,BAR,'B’

£3z2] ((OFF+11,3+CRGBLCURR:2]), 1 1)0WFUT LD[9])

[33] ((OFF+13,3+CRGBICVRR:3]), 1 1)0OWPUT LDL9]

[38) ((OFF+15,3+CRGBLCURR;4]), 1 1)OWFUT LD[9]

£35] ((CFF+11,70}, 1 2)QNPUT 2 0 vCRGBLCURR;2]

£36] ((CFF+13,70), 1 2)0OFPUT 2 0 ¥CRGB[CURR;3]

[37] ((CFF+15,70C}, 1 2)ONPUT 2 0 yCRGBLCUARR; 4]

£38] Hold:VYGAACOLOUR CRGBLCURR:] o IN+OINKEY o LST«CURR

£39] +{14 183 138 165 136 134 =0AV:eIN}/(Exit,Quit,0Up.Dn,Lf . Rt}

fy0] +{'QgRrGgBb+—!"=IN)/{Quit,Quit,(6pCset),{20FP1Mn) Reset) o +Ek
[u1] n Adjust rlglb component of selected colour and patch ruler ...
{421 Cset:INX+'rghRGB' 1IN o INX+1+ 3 3 7INX-1 ¢ S5D+9+2=INX[2]

fu3) {(OFF+5D,3+CRGB[CURR; 1+INKX(2]]), 1 1)ONVFUT LPLE)

{44] CRGBICURR:; t++IKX([2]13+0[63 LCRGBICURR; 1+INX[2]]+ ~1 1 [INX([1]]
fy5] ((OFF+5D, 3+CRGB(CURR; 1+IN¥X(2]]), 1 1)QWPUT LD[9]

[u6] {(OFF+8D,70}, 1 2)OWPUT 2 0 »CRGBLCUYRR;1+IKX[Z2]]

Lu7] +Held

Cus] n Gang the three sliders together on +)- keys ...

[48) PIMD:CRCGBICURR:; 2 3 4]+0[G3LCRCGB[CURR; 2 3 4]l+-/IN="+-' ¢ +Rule
£50] a | regets back to where wve came in.

[51) Reset:CRCGB+R o VGAAMCOLOUR CRGB ¢ +Rule

[52] En:QSOUND 2 2 p 400 20 600 20 ¢ ~+fold

[53) n The cursor arrows move us round the coleur selection ...

[54] Up:+(CURR<9)}tER o CURR+CURR-8 ¢ +Mark

[55] bDn:+{(CURR>B)+EA ¢ CURR«CURR+8 ¢ +Mark

[56] Lf:+{CURR=1}tER o CURR«CURR-1 ¢ +Mari

[57] Rt:+(CURR=16)+Eh ¢ CURR<CURR+1 ¢ ~Mark

[S8] Exit:R+CRGEH
[59]1 Quit:KB+KB OPOKE 118 ¢ VGAACOLCGUR R ¢ ({OFF- 1 2)},pW)ONPUT W
v

NEWPAL+~SETAPAL STD n Palette editor
VGAACOLOUR NEWPAL a Set new palette (16,4 array)

134

VECTOR Vol.8 No.3

As you can see, most of the heavyweight code is to do with making the screen
look pretty; if you just want the bare essentials, lines [38] to the end are all you
really need! Here are & couple of screen snaps to show the general effect:

Five boxing wizards jump quickly Five boxing wizards jump quickly

r<] »R 21
g4 lr¢ s3
b } »B 21
ArTows select; rgbRGB+- keys move sliders; ! resets; <Enter> exits

This is the standard VGA bright green ... note that it has a barely detectable
amount of red and blue added in. Incidentally, the Five Boxing Wizards is used to
show the effect of all the foreground colours on the selected background, and
vice versa. Tt is a slightly more convenient form of the Quick Brown Fox, being
only 32 letters long!

For comparison, here is a nice rich brown, which I think is a much better

background colour than the standard offering:

Five boxing vizards jump quickly Five boxing wizards jump quickly

r4 } »R 30
g4 { »G 21
b { +B 11

Arrows select; rgbRGB+- Kkeys move sliders; ! resets; <Enter> exits

That's all folks!

135

VECTOR Vol.8 No.3

TECHNICAL
CORRESPONDENCE

A Note on CPU Time Monitoring
From: Joseph L.F. De Kerf 25 November 1991

In a paper published in Vector {1], Ray Cannon convincingly demonstrates the
advantages of the availability of the CPU time monitoring function in APL.
Unfortunately, this paper gives the unintended impression CPU time monitoring
is a new facility only made available in STSC's APL*PLUS Systemn Function OMF.

In fact, the facility was aiready made available in the seventies, by Control Data
CDC with the system function OLTIME {2], and by Burroughs, with the system
functions (0S¥ - ORM - OQM, the results of the monitor being made available
through the system functions OMC and/or OMV {3]. Later on the facility was
made available in VAX APL and Dyalog APL through the system function
OMONITOR and in APL*FLUS and SHARP APL through the system functions
OFM and/or OMF. An overview is given in the accompanying table, the year
giving the approximate date of the implementation of the facility.

The most user-friendly implementation seems to me to be that based on the
system function OMONITOR. In VAX APL V-2/3/4, the dyadic form of
(MONITOR sets the monitor for the unlocked defined functions/operators
specified by the right argument vector or matrix, each row specifying one
operation name. The left argument specifies the lines of the operations on which
the monitor is to be set. If the left argument contains a zero, the monitor is set to
the entire operation. The monitor may be disabled by specifying an empty left
argument. The explicit result is a boolean vector, specifying whether the monitor
has been set. The monadic form of OMONITOR returns an n by 3 matrix, where n
is the number of monitored lines. The columns give the monitored line numbers,
the execution count, and the cumulative CPU time in milliseconds.

In Dyalog APL V-5 and DOS/UNIX, the DMONI TOR behaves about the same, the
right argument of the dyadic form however being restricted to the specification
of one operation and the explicit result being a vector specifying the line
numbers on which the monitor has been set. On the other hand, the monadic

136

VECTOR Vol.8 No.3

form returns an n by 5 matrix, the columns giving the monitored line numbers,
the execution count, the cumulative CPU time, and the elapsed time, both in
milliseconds. The fifth column is provisionally reserved and gives zeros.

An example of the use of the QMONITOR with VAX APL V-2/3/4 is given below.
The defined function FIB N returns as explicit result the X first terms of the
Fibonacci Series. Calculation is based on the recursive generator F(1) =1, F(2) =1,
and F(N} =F(N-2)+F(N-1}. N is set to 100.

Bull-Honeywell APL 64 19890 054 ORM OMV
Bull-Honeywell APL 7 1985 [Os# [ORM ORV
Burroughs/Unisys APL/700 1974 OSM ORM OqM OMC OMV
Control Data APL 2,0 CN 1976 OLTIME
Control Data NOS/VE APL 1984 OLTIME
Digital Equipment VAX APL V2 1985 OMONITOR
Digital Equipment VAX APL V3 1987 OMONITOR
Dyadic systems Dyalog APL 1986 [OMONITOR
Genperal Electric 054000 APL 1979 03M CRM DMC
Hewlett-Packard APLA\3000 1976 0sM ORM DQM OMV
IPSA (Reuter) Sharp APL 1987 OFM
IPSA (Reuter) Sharp S4X 1988 OmrF
SLIG0S/BARTS APL-NET 1978 054 ORrRM OQM
ST5C APL+«PLUS 1985 OMF

VR«FIB N

[1] +(Ns2)/0,R«(2|N)p1
[2] END:+{N>pR<«R,+/ 24R)/END
v

0 1 2 CMONITOR'FIB!

R«<FIEB 100
OMONITOR'FIR®
¢ 1 2050
11 20
2 98 1940

But once again - there is a proliferation of implementing new system commands
and system variables/functions. A list of about three hundred system commands
and a list of about eight hundred system variables/functions, supported by
current implementations, have been published recently [4][5]. Most of the
facilities made available, e.g. monitoring CPU time, prove to be wvaluable
enhancements. Unfortunately, the same facility is often implemented in most
divergent ways, leading to an inconvenient plethora of synonyms and
homonyms. And even if the same distinguished name is used for the same
facility, this does not mean that syntax and/or output are the same.

137

VECTOR Vol.8 No.3

The situation does not only confuse the declared user, but also doesn’t inspire
confidence on behalf of the potential newcomer, and is a serious obstacle for the
future of our language APL. 15O APL and the draft ISO APL Extended only
specify a small set of system variables/functions and do not resolve the
problems quoted. The main objective of a standard is to promote portability and
as such should support those facilities which are common practice. Everybody
knows all these things, but “something has to be done on it!”.

Joseph De Kerf
Agfa-Gevaert NV
AD Informatics
Seplestraat 27
B-2640 Morlsel

References
[1} R.Cannen; How STSC’s [JMF can help in festing APL workspaces; Vector, Vol. 8,
No. 2, October 1991, pp. 135-136.

2] R.Mayforth; APLUM-APL af the University of Massachusetts; APL Quote Quad,
Vol. 6, No. 1, Spring 1975, pp. 15-21.

[3] L. Ryan; Application Dingnostic Aids in APL/700; APL 76 Conference
Proceedings, Ottawa, Canada, 22-24 September 1976; Edited by G.T. Hunler;
Association for Computing Machinery, New York, 1976; pp. 343-345.

[4] J.L.F. De Kerf; System Commuands and APL - A Survey; APL-CAM Journal, Vol.
13, No. 2, 16 April 1991, pp. 449-455.

[5] J.L.F. De Kerf; APL System Variables and System Functions - A Survey; APL-CAM
Journal, Vol. 13, No. 3, 10 July 1991, pp 744-766.

Horner’s Method

From: Walter G Spunde 30 Sept 91

Norman Thomson’s neat recursive formulation for calculating Stirling numbers
(Vector Vol.8 No.1 p.95) has been gratefully added to my collection of teaching
examples. Here is another one which readers of Education Vector may find
useful:

Horner's method for calculating values of a polynomial with coefficients
C0,1,C2,C3,...,Cn in ascending order, at points V, is:

138

VECTOR Vol.8 No.3

o0 + V x C1 + V x C2 + V¥V =03 + ... + V »x CF

Texts on numerical methods present this as the most efficient and accurate way
of calculating the value of polynomials.

The exercise is to implement these operations, and one sclution is:

Z+«VS HORNER C8S
+0 IF 1 = pZ + C5
Z « £8[1] + V8 = VS HORNER 1iCS

which shows the nesting of linear functions that is involved here, and may be
compared with the encoding

Z « {8 ({pC3),pVS) p ¥VS5) 1 9CS

or other algorithms for calculating polynomial values

Walter G Spunde

School of Information Technology
University of South Queensland
AUSTRALIA

And Yalue

Improved

Performance

[Syle] combines

Price

£195.00

Contact David Crossley (see Vector Product Directory) on 0367 710384

139

VECTOR Vol.8 No.3

Arrays with Style

by Adrian Smith

Introduction

This is by way of a response to Richard Nabavi’'s thought provoking piece on
array formatting with real (i.e. proportional) typefaces. T don't pretend for a
moment that | can offer him a complete solution, but 1 think he should start by
buying two outstanding pieces of current software (Microsoft Word for DOS and
Microsoft Excel) and understanding the concept of style sheets.

Incidentally, this could lead to the implementation in AFL of the STYLE
ERROR, first proposed (not entirely seriously) by Robert Bittlestone somewhere
in Vector Vol.1.

What is a Style Sheet?

Let's start with M5 Word, mainly because I know it better than Excel, and
because 1 can illustrate what T mean as I type. Word attaches something called a
style sheet to every document; this defines the appearance of text for:

» each section of the document {of course there may be only one section, even
for a long document like VECTOR). This covers things like page-layout
(single/double column, margins}, running heads, page numbering and so on.

- each paragraph. A paragraph is defined simply as anything between two
carriage-returns. The paragraph siyle defines indents, line spacing, a default
character font and size, and various special attributes like “keep together’.

- each character. Characters normally inherit the style of their parent

paragraph, but can be changed individually if required. Oddly, Word has no
concept of a word as such; il is simply a collection of contiguous characters.

Let's have a look at a selection of paragraph styles by way of illustration:

6 T Paragraph Heading level 1 centred title - top of page
Palatine (roman k) 2u4/28. Centered, space after 1 !i (keep in cne
column, keep with following paragraph).

7 N TFaragraph 8 Author's name in headings
Palatino (roman k) 15718 Italic. Centered, space after 2 li.
8 § FParagraph Heading level 2 subkeading

Palatine {roman k) 15/18 Bold. Flush left, space before 1 1§, space
after 0.5 li (Xeep with following paragraph).

9 P Paragraph Standard std para
Palatino (roman k} 13/16é, Justified, space after 1 1i.

ADOBE-PL.STY

140

VECTOR Vol.8 No.3

The style code (T, P etc.) is shown in the left margin of the document, and you
‘apply’ a style simple by hitting alt+style, e.g. if T were to hit alt+5 now, | would
get this paragraph in ‘subheading’ style. If you scan down the first page of this
note, you will spot the “T" and ‘N’ styles at the top, and also the use of an [’
indented block in a slightly smaller type size on reduced spacing. Typical
character styles are used to set things like Bold, italic and (of course) APL:

1

45 B Character 2 boldface
Palatino (roman k) 13 Bold.

4% IT Character 3 Ttalic
Palatino (roman k) 13 Italic.

47 A Character & APL chars are Courier-0Obligq.
Courier {modern aj) 14 Italic.

48 J Character 7 J is Courier Bold
Courier {modern a) 13 Bold.

49 I Character 5 Dingbats
lapfDingbats (symbol e) 13,

50 E Character B Exponentials (superscripts)
Palatino {(roman k} 8 Bold Superscript.

ADCBE~PL..STY=

To set things like x2, I simply put the cursor over the ‘2" and hit alt+E. Of course,
you can format text ‘directly’ in any font you like, but one of the things you soon
learn is that this is a very bad idea! The whole point about formatting with styles
is that the appearance of a document is independent of the content. If T want to
switch Vector to New Century Schoolbook, all T have to do is define a new style-
sheet (obviously being totally consistent in my use of style names) and attach it
to the document. The same would apply to a switch from the current A5 format
to {say) double-column A4. As long as everything has been set with style-codes,
changes like this are trivial. If the formatting is all convolved with the text (see
any Bindweed plant for the meaning of the word convolved) as it typically is in
WordStar and WordPurrfect, life is much harder.

What has this to do with APL?

In many ways, the Excel model is closer to what we need in APL; here you apply
a style to a cell {or a group of cells), with a special style (called "Normal’) applied
by default to the whole spreadsheet. As well as the character font and size, the
cell style specifies things like formatting (£2.99 etc.), colours and borders.

How about this for an idea:

. let’s start with a Workspace Style, which specifies the default type style, and
includes basic formatting instructions currently scattered about in 1FF, [1PF
ete. Let’s call this style ‘Normal’ and have it apply to everything we display. It
should include a default ‘cell width’ (in inches, cm or points) for display of
numeric scalars or character vectors. Numbers get right aligned in the cell; text
is left aligned.

141

VECTOR Vol.8 No,3

- let’s allow the user lo edit a style sheet (similar to the examples above) to
define a consistenl sel of display attribules for text and numbers. Styles have
simple mnemonic names, and are maintained by APL as a file. Style sheets can
be lvaded and saved (just like workspaces), and can be attached to workspaces
with a command such as:

OSTYLE+'POSTSCRP.STY' m Pick up an existing style sheet

OSTYLE

POSTSCRE
OSTYLE<'JUNK.STY" n This does not exist
242

STYLE ERROR r Default output rfails

now, we need an extra slot in APL’s array descriptor: as well as attributes like
type, rank and shape, an array also has style (in reality simply a pointer to an
entry in the current style sheet). To set the style of our data, we need
something that looks and feels a lot like reshape, but instead of modifying the
shape elements of the descriptor, it modifies the style:

DATA«2 6pr12 A Here is an array
DATA«'BOXED'VDATA s Attach the 'boxed' style
DATA

1.0 4.0 5.0 6.0

2.0 3.0
7.0 B.0 9.0 10.0 11.0 12,0

‘currency' ¥ 15
£0.00 £1.00 £2.00 £3.00 £4.00 £5.00 n These are numbers!

- and so on, With nested arrays, you have all the lools you need, as long as
you are willing to enclose your data at as low a level as necessary to make
each piece of [ormatting specific to a single array:

TXT«<'The cat sat on ' (‘italic'¥'tre ') '‘mat’
pTXT
3

TXP

The cat sat on the mat
(Vrxrm) (p¥TXT)

normal italic normal 3

[don’t suppose for a moment that this would work as simply as my examples
suggest, but it would be fascinating to see some prototypes. Over to you Richard
{and John and Dave and Paul); perhaps it will turn up in] for the Archimedes??

142

VECTOR Vol.& No.3

Index to Advertisers

APL People (half} 15
Cocking and Drury 6
Delphi (half) 139
MicroAPL 2

All queries regarding advertising in VECTOR should be made to Alison
Chatterton, at the address on the inside back cover.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards. Please send the text of submitted articles (with diskette as appropriate)
to the Editor:

Jonathan Barman,

Hill Top House,

East Garston,

NEWBURY, Berks RG16 7HD

Tel: 045839-575 (not after 10.00pm pleasel)

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members news) should be sent to Vector Production, c/o Adrian
Smith, Brook House, Gilling East, YORK Tel: 04393-385 (6.00pm - midnight).

Product Guide updates should continue to go to Alison Chatterton, as should
requests for advertising space.

143

VECTCR Vol.8 No.3

BAA: Membership Application Form

Membership of the British APL Association is open to anyone interested in APL.
The membership year runs from 1st May to 30th April. -

Name:
Address Line 1:
Address Line 2:
Address Line 3:
Post or zip code:
Country:
Telephone Number:
Membership category (please tickbox): 91/92
UK private membership £12 a
Overseas private membership £20 -
Airmail supplement (not needed for Europe) £8 a
Corporatemembership £100 a
Corporate membership overseas . ,_....... £155 Q
Sustaining membership 30 Q4
Non-voting student membership (UKonly) £6 Q
I authorise you to debit my Visa/Mastercard account
Number: Expiry date: ___|___

for the membership category indicated above,

'} annually, at the prevailing rate, until further notice
one year's subscription only

(please tick the required opticn above)

Signature:

PAYMENT

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Association”, or you may quote your Access
or Visa number. Send the completed form (no stamp required from the UK) to:

British APL Association, FREEPOST (5G923), 9 Cak Grove, HERTFORD, SG13 8BR

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by a Committee
of officers who are ¢lected by a postal ballot of Asgociation membets priot to the Annual General Meeting. Working
groups are also established in arcas such as activity planning and journal production. Offers of assistance and
involvement with any Assoclation matters are welcomed and should be addressed in the first instance to the Sceretary.

1991/92 Committee
Chairman: David Eastwood MicroAPL Led,,
071-922 8866 Scuth Bank Technopark,
90 London Road, LONDON SEL 6LN
Scerctary: Anthony Camacho 2 Blenheim Rd,
0727-860130 ST ALBANS,
Hents AL14NR.
Treasurer: Nicholas Small 8 Cardigan Road,
081-980 7870 LONDON E3 5HU
Journal Editor: Jonathan Barman, Hill Top House,
048839-575 East Garston,
NEWBURY, Berks RG16 7HD
Activities: Dr Peter Branson Elcctronic Data Systemns, Stockley Park,
081-3438 8989 UXBRIDGE, Middx UBL11 1BQ
Education: Dt Alan Mayer European Business Management School,
0792-295296 Swansea University,
Singleton Park, SWANSEA SA2 8PP
T Technical: Peter Donnelly Dyadic Systems Ltd.,
! 0256-811125 Riverside View, Basing Road,
Old Basing, BASINGSTOKE,
| Hants RG24 0AL
Projects: John Scatle 4 Hawks Mows,
081-858 6811 Gteenwich, LONDON SEI0 8RA
v Publicity: Misha Jovanovic 99 Oxford Road,
0753-853141 WINDSOR, Berks SL4 5DDX
Recruitment: Jill Moss APL People Ltd, The Old Malthouse,
0225-462602 Clarence St., BATH, Avon BA1 5NS
Administration: Rowena Small 8 Cardigan Road,
| 081-980 7870 LONDON E3 5HU
Journal Working Group
Editor; Jonathan Battnan (Q48839-575
Sceretary: Asnthony Camacho 0727-860130
Production: Adrian & Gill Smith Brook House, Gilling East, YORK. {(04393-385)
Advertising: Gill Smith Brook House, Gilling East, YORK. (04393-385)
Support Team: John Scatle (081-858 6811), Ray Cannon (0252-874697),

Sylvia Camacho, Bridget Barman, Gill Smith

Typeset by APL-385 with MS Word 5.0 and GoSeript
Printed in England by Short-Run Press Etd, Exeter

VEGTOH 1@%Lﬁmﬁﬂiﬁfﬂﬁﬁﬁﬁﬁﬁhmﬁsmﬂ®tl Sbers

nine0dandloversbact ﬁ'@ﬁlﬁiﬁhﬂ?&i&ﬁﬁﬁﬂﬁm@ HGIGUP-OT @a{q;ﬂmm
£EL mwmmtgﬁammﬁm Sanfinteractivefcomputay anguag fﬁ:}ﬁ:a.

eONCISSTosSNd fastdeyslopment Spead] fmaﬁuaaﬂiﬁﬂm“u. i ‘_gm

mm@m@mm&m@m&@m gene

f.mlmng‘m@zaaru@ Inimanyloasestiaselorganisatio
admunstrativelassistance dodhe/AssoCata T AUINOIOW oS '

QuS, anzaian];mﬂ- portlofiine]
alsonrovidelmanpowsriands

foo .
Al i
eISTYEATH nlE}EIﬂEﬂ.@

L

fhearitishiComputenSaciety i 3]MansfieldiStreetYfondoniwa MIOBDY

