L Windows and IS1 APL

S APL*PLUS Il Version 5 reviewed 55
- Gfeller and Barman on APLIWIN 64
- Adams on Visual Basic 100
- Bowman en Internet 113
.. plus
« APL93 Invitation & Abstracts 8

+ 16-page Educational Supplement 27

The Journal of the
British APL Association

; ISSN 0955-1433
A Specialist Group of the British Computer Society Vol.9 No.4 April 1993

Contributions

Al contributions to VECTOR may be sent to the Journa] Editor at the address on the inside back cover, Lettets and
articles are welcome of any topic of interest to the APL community. These do not niced to be limited to APL themes,
not must they be supportive of the language. Atticles should be accompanied by as much visual material as possible
(bfw ot colour prints welcome). Unless otherwise spevified, cach item will be considered for publication as a personal
statement by the author. The Editor accepts 1o responsibility for the contents of sustaining members' news, of
advertising.

Please supply as much material as possible in machine-readable form, ideally as a simple ASCII text file on an IBM
PC compatible diskette {any format). APL code can be accepted ns camera-ready copy, in workspaces from I-APL.,
APL*PLUS/PC, APL*PLUS IL [BM APL2/PC or Dyalog APL/W, or in documents from Windows Write (usc the
Vector TrueType font, available frec from Vector Production).

Except where indicated, items in VECTOR may be frecly roprintcd with appropriate acknowledgement. Please inform
the Editor of your intention to re-use material from VECTOR

Membership Rates 1992-93

Category Fee Yectors Passes
UK Private £12 1 1
Overseas Private £20 1 1
(Supplement for Airmail, not needed for Europe} £8

UK Corpotate Membership £100 10 5
Overseas Cotpotaie £155 10

Sustaining £430 50 5
Non-voting Mcmber (Student, OQAP, unctoployed) £6 1 1

The mcmbership year runs from Ist May to 30th Aptil. Applications for membership should be made to the
Administrator using the form on the inside back page of VECTOR. Passcs atc tequircd for entry to some association
events, and for voting at the Annual General Meeting. Applications for student membership will be accepted on a
recommendation from the course supervisor, Overscas membership rates cover VECTOR surface mail, and may be
paid in sterling, or by Visa or Mastcrcard at the prevailing exchange rate.

Cotporate membership is offered to organisations where APL is in professional use. Corporate membets teceive 10
copics of VECTOR, and arc offered group attendance at association meetings, A contact person must be identified for
all communications.

Sustaining membership is offered to companies trading in APL products; this is seen as a method of promoting the
growth of APL interest and activity. As well as teceiving public acknowledgement for their sponsorship, sustaining
members receive bulk copics of VECTOR, and are offered news listings in each issue.

Advertising

Advertisements in VECTOR should be submitted in typeset camcra-ready format (A4 or AS) with a 20mm blank
border after reduction. Ilustrations should be photographs (bfw or colour prints) or line drawings. Rates arc £250 per
full page, £125 for half-page or less (thete is a £75 surcharge per advertisement if spot colout is required).

Deadlines for boakings atd copy are given under the Quick-reference Diary. Advertisements should be booked with,
and sent to: Gill Smith, Brook House, Gilling Fast, YORK YO6 4J). Tel: 04393-385.

VECTOR Vol.9 No.4

CONTENTS

Editorial: What you know is what you love Jonathan Barman
APL NEWS

Quick Reference Diary

APL Training Courses for 1993 Gill Smith

APL93 in Toronto

Conference Invitation
Abstracts of Accepted Papers

British APL Association News:
Chairman’s Report David Bastwood
“The APL Review” Alan Mayer
News from Sustaining Members Gill Smitl
The Education Vector Alan Mayer
REVIEWS SECTION
APL Product Guide Gilt Smith
APL*Plus 11/386 Version 5.0 Dave Piper
A First Look at the 1SI APL/Windows
{APLIWIN) Beta Release Martin Gfeller
181 APL: Programming for Windows Jonathan Barman
RECENT MEETINGS:
APL-landing to Kronstadt island
(an experience of APL operation) from Pavel & Oleg Luksha
Roger Hui on “An Implementation of J* notes by Anthony Camacho
GENERAL ARTICLES
APL Experiences and MicroSoft's
Visual Basic for Windows Martyn Adams
Hooking up to the Internet Dick Bowman
bowman®@apl.demon.co.uk
TECHNICAL SECTION
The Challenge of the New Duncan Pearson
Technical Correspondence
Sharing the Spoils or Circling the Square Mike Day
An Exchange on Primes Roger K.W. Hui
Span Representation:
Improving the Display of] Verbs Richard Qates
An APL Truetype Font Adrian Smith

Index to Advertisers

Page

co~I W

18
20

27

43
55

64

82
85

100
113

T al()g'l’ .JI/W

= 5 Control Panel
¥ un ()pllmm Help
i Hame \ Tempdie
J{EVENT 3 SELLET) U LEE 12¢:
= r,-;—:%:zﬁ " ‘='|‘ S ;Tl:mpcralurc Converter ...~ |
A L
o =i ' Iarenheit F->C
[E:pamlor] -] asenhi -
ip.” J Bush ™ } Centigrade [I[]II } TE3ES

Dyalog i2c

'zr iai |
{ Vooran - [Hucroll f2c HSG:F:CUAL i
S # Callback for EVENT 30 (SELECT) in Tewp.f2¢ if
- VAL FeDUFT “Tewp . "ONG TEXT' :
: ' (v AYALIZEREL . K :
B Ce (F-32)x543
“Temp ¢ 'INS"TEXT' (FC)

J Program M . Exlt:

APL for Windows.

Dyalog APL/W is a true 32-bit Windows application and it shows!
Click on the APL icon and up pops a powerful multi-window APL
development system, with a host of features designed to enhance
your productivity and enjoyment. But that's just the start. APL systemn
functions provide you with simple and elegant, yet powerful tools to
drive the Windows Graphical User Interface (GUI). In one statement
you can create a GUI object such as a PushButton, specify its
appearance and behaviour, and attach a "callback" function to be
run when the button is pressed. There's even a WDESIGN
workspace to help you, Windows programming has never been
easier - and your applications will run unchanged under QOS/2 and
on Unix workstations in future releases of Dyalog APL.

and it's friendly too

Dyalog APL/W supports Dynamic Data Exchange (DDE), using
standard APL Shared Variables, so it can talk to any other Windows
application that supports DDE. Can you imagine the power of APL

combined seamlessly with your favourite databases, spreadsheets
and other toois?

DYAD I C All trademarks acknowledged.

Lhyadic Systems Limited, Riverside View, Basing Road, Old Basing, Basingstoke, Hants RG24 0AL, United Kingdom. Tel: (0256) 811125 Fax: (0256) 811130 L

VECTCOR Yol.8 No.4

Editorial: What you know is what you love

by Jonathan Barman

The programming language that one learns really well seems to become etched
in the mind, and it changes the way of thinking about programming for ever
after. APL has unquestionably changed my way of thinking. Having changed
one’s way of thinking, however, one can get locked into that mode and become
unable to appreciate other ways of thinking. This could one of the main reasons
for the difficulty in getting more people to program in APL.

APL programmers seem to be able to move to other languages much more easily
than experts in other languages can move to APL. Changing from a scalar
language to an array language is undoubtedly difficult, Unless there are clear
advantages in programming in APL people are not going to be bothered to make
the effort to change.

Over the past year | have had to learn three new languages and have developed
substantial systems in each. The learning process is quite frustrating. Problems
which are incredibly simple in APL seem to be extraordinarily difficult in the
other languages. I am sure that the same remarks would be made by someone
who is expert in another language, for example C, on attempting to program in
APL. Tt is usually easier and faster to solve a problem in the language you know
well and therefore love.

Converting programmers to APL is getting progressively more difficult. In the
70s and 80s the APL environment was so cutstanding that it made an immediate
impact on anyone used to the traditional compiled languages. This is no longer
true. Most languages nowadays have excellent debugging facilities which match
or better those available in APL.

The effort to disseminate APL to students seems very important. Having got
someone to use and know APL it should enable them to program better in any
programming language. The British APL Association is making the effort with
Education Vector, which has a wider circulation than Vector. I-APL and] are
freely available. If we don’t manage to promote APL in this way, I fear that APL
will gradually die and become one of the many lost and forgotten languages.

I think that the APL community needs to be aware of what is going on in the
outside world, and what the competition looks like. In this issue there is an
article by Martyn Adams about Visual Basic. Martyn is an expert APL

VECTOR Vol.9 No.4

programmer and has moved to Visual Basic because of market pressure, so his
views are of interest. What comes across most clearly is the way in which Visual
Basic concentrates on allowing people to implement simple Windows systems
without having to do any serious programming.

Most APLers love programming, but the majority of people hate it. Visual Basic,
in company with 4GL languages, is aimed at the mass market with the
superficially attractive premise that programming is not really necessary, but
when it is necessary the programs are easy to write and understand. This is, of
course, hogwash. Any medium-sized system solving a real problem has to have
tens of thousands of lines of the ‘easy” code, and the sheer volume then makes it
difficult to understand,

Visual Basic is becoming quite popular. The environment appears to be better
than many APL interpreters. Even if you convince someone that APL is a much
better language than Basic, the ability to create quick simple Windows programs
is liable to be a significant factor in their decision to favour Visual Basic.

Fortunately, all is not gloom. David Piper reports that Manugistics have
produced a usable Windows interface with Version 5 of APL*PLUS IL. Dyalog
APL has an excellent Windows interface. MicroAPL have had extensive
experience for many years with their APL on the Macintosh. With these new
tools APL should become one of the top contenders again.

-

Vector Back Numbers

Back numbers of Vector are available from:

British APL Association
c/o Gill Smith

Brook House, Gilling East,
YORK YOG 4.JJ

Price in UK: £12 per complete volume (4 issues);
£14 (overseas), £20 (airmail) including Postage.

VECTCR

Vol.9 No.4

Quick Reference Diary 1993

Date Venue Event

23 April IEE London Neural Networks for Modelling
and Forecasting: Michael Bramsaon,

Forecasting and Planning: Maurice Jordan

11 June IEE London AGM
Presentation of
Outstanding Achievement Award

Educational Software for the

Macintash: lan Clark

APL in Education: Richard Weber.

August 15-19 1993 Toronto, Canada APL93

17 Sept |EE, London Vendor Forum

26 November TBA APL Professional Development Workshop:
This will be an all-day event (lunch is

included) - a small fee will be payable

British APL Association meetings are held in the IEE, Savoy Place. Nearest tube

outlets: Temple or Embankment.

Dates for Future Issues of VECTOR

Vol.10

Nol
Copy date 4th June 93
Ad booking 11th June 83
Ad Copy 18th June 93
Distribution July 93

Vol.10
No.2
3rd Sept 93
10th Sept 93
17th Sept 93
Qctober 93

Vol.10
No.3
3rd Dec 93
10th Dec 93
17th Dec 93
Januaty 94

APL Preferences

APL.68000

—— Platforms —— Versions
X RISC System/6000 O Levell
Bd Apple Macintosh @® Levelll
B Commodore Amiga
[Atari ST

APL for GUIs

MicroAPL Ltd., South Bank Technopark, 20 London Road,
LONDON SE1 8LN, UK

Tel: 071 922 8866 Fax: 071 928 1006
Applelink: microapl Intemmet: microapl@applelink.apple.com

VECTOR Vol.9 No.4

APL Training Courses for 1993

For confirmation of dates and/or further details please contact the vendor
directly.

Level Company Days Dates
Beginners MicroAPL 1 8 April, 27 May, 22 Juiy,

16 Sept, 11 Nov
APU'PLUS/PC MicroAPL 1 & May,

24 June, 19 Aug, 14 Oct, 8 Dec
Introduction MicroAPL 1 20 May,
o APL2 15 July, 9 Sept, 28 Cct
APL*PLUS II/JPC MicroAPL 1 13 May,
Conversion 8 July, 26 Aug, 21 Oct, 16 Dec
Intermediate MicroAPL 1 15 April, 10 June,

5 Aug, 23 Sept, 18 Nov

Advanced MicroAPL 1 22 April, 17 June,
12 Aug, 7 Oct, 25 Nov

Statgraphics Mercia 1 20 April

If you would like to have your courses or seminars listed in Vector, please
contact Gill Smith with the details.

VECTOR Vol.9 No.4

The International Conference on APL
August 15-19, 1993

University of Toronto, Ontario, Canada

Invitation and Preliminary Program

Welcome: Conference Chair

In the Spring of 1973, a conference called APL5 was held in Toronto at the Inn on
the Park, The banquet was held at the Ontario Science Centre, and the guest
speaker was Dr. Kenneth Iverson, the inventor of APL. Twenty years later,
Toronto will again host an international APL conference. This time it will be held
in the Medical Sciences Building of the University of Toronto, which is near the
centre of the city.

1 am delighted that Professor Leroy J. Dickey has volunteered to be the Program
Chairman for the conference; he has provided a rich and varied formal program.
Further, Bob Bernecky has volunteered to take responsibility for all the other
program events which de net involve the formal delivery of papers. These
include tutorials, workshops, panels, poster sessions, birds-of-a-feather sessions
and an APL Art Gallery, all to round out and enrich the program. There will also
be an exhibitor’s area which we expect will be well supported by vendors.

Toronto in August is a delightful place to be. It is a safe, walk-about city, with
literally hundreds of activities within a short walk of the conference site,
including sightseeing, shopping, dining and theater. Delegates are encouraged to
bring their families, and a variety of activities will be available for accompanying
persons. Toronto is easy to reach, having an international airport with direct
flights from many European, American and Canadian cities. It is also within a
day’s drive of Boston, New York, Washington, Pittsburgh, Cincinnati and
Chicago.

Tlook forward to greeting you at the APL93 Conference in Torento.

Larry Moore
Conference Chair

VECTOR Vol.9 No.4

Program Chair

Hello. I am pleased to report to you that the papers for this year’s conference are
among the best that I have seen for any APL meeting in the last ten years. I find
the range of topics particularly exciting, as I am sure you will too, when you
browse through the attached list. I am impressed at the wide variety of
applications to which APL has been put both in research and in production, in
science, industry, business and academia. Not only are the applications of APL
being developed, but the foundations of APL are being explored as well. There
are new areas of research, and new linguistic features. Are these things just a
flash in the pan, or are they elements that will join the mainstreamn of computing
and be taken for granted in years to come? We leave that question for time to
resolve, but we invite you to be a part of the fomentation and excitement now.

Come, attend the invited talks, attend the contributed papers, participate in a
tutorial, participate in a workshop, bring a poster, bring some shareware,
participate in a Birds of a Feather session, and have a good time. A friend of mine
says that the best part of a conference is the people that one meets in the halls,
outside of sessions. For me too, a high point of APL meetings, is the people that I
meet.

Come to APL93, and let us meet and share ideas about APL.

Leroy | Dickey
Program Chair

Tutorials Chair

Welcome to Toronto! APLY3 represents a dramatic improvement over previous
conferences — we have encouraged a varied and plentiful selection of tutorials,
fully integrated with the remainder of the technical program, to enhance your
educational opportunities while in Toronte. We have rethought a number of
other conference activities, including posters sessions, the APL art gallery, the
APL software exchange, Birds-of-a-Feather sessions, with an eye toward
enriching your experience here, by changing their focus to be of greater benefit to
attendees and to perforin outreach to the community beyond that of the APL
community.

Do you feel that tutorials at APL conferences are somehow peripheral to the
main program? Have you ever been frustrated by short presentations of research
papers, in which time constraints prevent The Really Interesting Questions from
being answered. Do you want to have the time to actually learn how some of
these new gadgets work?

VECTOR Vol.9 No.4

APL93 has turned that whole idea on its head, by making tutorials a well-
integrated part of the conference, open to all attendees. Yes, there is the ever-
present hazard of coming away from APL93 knowing more than you did when
you arrived, but I know you'll get accustomed to it and enjoy it!

The tutorial program for APL93 offers a wider selection of topics than any
previous APL conference, and registration for two half-day tutorials is included
with your pre-registration fee. We are making attendance at tutorials possible at
very low cost, because we want to make education an integral part of the
conference program.

Robert Bernecky
Tuforials Chair

Tutorials

Many tutorials this year will be hands-on, with each attendee sitting at her or his
own PC or SUN workstation, provided by the University of Toronto Department
of Computer Science. Subjects (and speakers) will be:

Teaching Calculus — Kenneth E. [verson

An Introduction to] — Donald Mclntyre

Image Processing in APL — Manuela Schifer, Dinu Scheppelmann
APL for Actuaries — Richard L. Vaughan
3D-Visualization of Medical Images in APL — Pitt Meinzer
AGSS: A Graphical Statistical System — Peter AW, Lewis
An Introduction to Parallel Compuling — Robert Bernecky
Mathematica for APLers — Richard J. Gaylord

An Introduction to APL — Ben Best

Windows GUI Programming in APL — Eric Iverson
Wicked Problems and APL — Chris Lee

Please be advised that registration at specific tutorials will be opened to non-
registrants on a space-available basis on the day of the tutorial. I believe that
such outreach is an important activity, particularly when APL has a vital role to
play in the emerging area of massively parallel computing.

Therefore, to avoid disappointment because of Standing Room Only crowds,
please be sure to register for your tutorials at the time of pre-registration.
Otherwise, you may be left out, due to lack of space. In particular, hands-on

10

VECTOR Vol.9 No.4

tutorial space is limited by machine availability. Pre-registration will let us find
appropriate venues for the tutorials so that you won't be left out or sitting on the
stairs.

The registration form allows you to specify alternate choices for each tutorial
timeslot, in case the tutorial you prefer is fully booked. Also, you'll save money,
because early pre-registration offers you two free tutorials, whereas you only get
one if you register late.

Most of the tutorials will be offered on Sunday, August 15th and again during
the conference, for the convenience of conference delegates. I am very grateful to
those presenters who have volunteered to take on this extra workload!

Robert Bernecky
Chair of Tutorials

Invited Speakers

Opening Plenary:

The Triumph of Symbols over Words
Professor Donald McIntyre

Professor Donald McIntyre illustrates highlights in 5,000 years of evolving
notation. Ideas, once expressed in rhetorical form, are increasingly represented
by symbols. Early forms of symbolism were often subsequently modified or
replaced. The new symbolism of Iverson and Hui's] language provides a reason
for reflecting on this history

Donald Melntyre is a retired Professor of Geology who has been using
computers and teaching computer programming for over 30 years. He has been
an invited speaker at many APL Conferences, and was a Distinguished Lecturer
for ACM from 1985-1990. He has given workshops on J in London and in many
cities in the United States and Canada. He contributed one of two papers on]
included in the TBM System Journal’s special issue marking the 25th Anniversary
of APL. His 70th birthday will coincide with his Sunday presentation of this
tutorial.

11

VECTOR Vol.9 No.4

Closing Plenary:

Modelling Petroleum Chemistry in the Era of Clean Fuels
Dr. Stephen B. Jaffe

Today’s environmental issues require the Oil Industry to make a product of
specific chemical composition and specific physical properties. To meet these
new targets, petroleum refiners and planners must turn to mathematical models
for guidance. The challenge for these models is to follow the chemistry of
thousands of molecular species through hundreds of thousands of chemical
reactions. A new approach called Structure Qriented Lumping (SOL} has been
developed which represents petroleum molecules as collections of structural
increments. Models using SOL are capable of predicting far more detail than ever
before,

APL plays a crucial role in every aspect of Structure Oriented Lumping.
Experimental data is organized, reduced, and analyzed with APL. Reaction
networks are generated using a rule-based approach for specifying the
appropriate chemistry with APL. Finally, FORTRAN code is automatically
generated by APL to integrate the pertinent differential equations. This novel
solution of a major problem is a direct consequence of our long-time familiarity
and use of APL.

Stephen B. Jaffe has been an active APLer for more than twenty years. He has
authored many papers on APL, served on the ACM SIGAPL Board, has
organized APL conferences, and taught APL. Dr. Jaffe is a Senior Research
Consultant at Mobil Research and Development in Paulsboro, New Jersey.

S

Taking a closer look

i2

VECTOR

Vol.9 No.4

Abstracts of Accepted Papers

APL Helps Deaf Person to Hear Again —

P. Deslauriers. This paper demenstrates how APL can
boe an effeclive todl in the world of research and
devslopment of electronic systems by describing the
use of APL in the research and development of a
cochiear implant device. The device described is a
biomedical electronic system which pernmits a
completely deaf person to regain partial hearing
capabilities, The paper begins with an overview of the
systern itsell, followed by a discussion ot how APL was
utilized.

APL Programming without Tears — P. Naeve,

B. Strohmeier, and P. Woll. The authors discuss some
of the drawbacks involved in producing APL code,
including the fack of general understanding about APL
primitives, the tack of Familiarity with APL glyphs, and
the awkwardness cf the traditiohal process for writing
APL code. This last aspect is discussed in detall, with
the proposal that Knuth's idea of fiterate programming
be adapted to APL to produce more readable code. An
example is provided 1o highlight the merits of this
application.

Approaching Classical Afgorithms in APL2 — F. Grimm
and Manspeter Bierl, Classical aigorithms and data
structures as made popular by Kauth’s The Art of
Computer Programming have been largely ignored so
far by APL2 programmers. This was understandable to
a certain degree in the era of APL, but has lost its
justification with the rise of APL2 and similar APL
sueocessors. First, he essence of classical algorithms
as well as the principal ways of data structuring and
accessing are re-examined. Then Itis shown how
pseudocodes or implementations of classical algorithms
can be transferred one-to-cne into APL2 almost
autornalically and often with an acceptable resulting
performance. But, in general, the better way consisis in
maintaining only the general design principle behind a
classicaf algorithm and combining it with the elegant
and efficient specific possibilities of APL2. Both
apptoaches are axplained and illustrated by means of a
typical classical algotithm from piclure processing.

APROGL: A Hybrid Language — Dennis Holmes and
John E. Howland. This paper describes the design of a
hybrid language that comhines the features of an array
processing language and Lisp dialect in a consistent
and useful manner. This language, APROCL (Array
PROCessing Lisp) is detived from the J dialect of APL
and the Scheme diafect of Lisp. The base syntactic
structure is taken from Scheme, while the array
proecessing fealures are based on the J programming
language. A prolotype implementation has been made
and some experiences with this implementatlon are
described. This impfementation uses J as an embedded
array procaessing engine In a Scheme interpreter /
compiler.

The language as spetilied provides a sef of data types
and manipulation tools that is more diverse than found
in either Scheme or J. APROCL allows the programmer
to apply array processing functions to lists of arrays in
the Scheme style and list processing functions to arrays
of lists in typical J style. The result is a language that
not only brings array processing capabiliies to Scheme,
but also significantly extends the functicnality of the
Scheme language.

ARDA: Expert System for Reliability Data Anafysis —
Jake Ansell and Julhim Al-Docri. This paper explores
the design and implementation of ARDA, an Expert
System to analyze reliability data. [nitially the
knowledge demain is explored for the viability of the
system. The philosophy of design of the systemn Is
discussed. Details of the implementation are described.
There is discussion of extension of the system to other
statistical analyses and of using alternative inferential
bases.

Array Morphology — Robert Bernecky. Array
motphology is the study of the form, structure, and
evolution of arrays. An array annotation for a program
written in an applicalive amray language is an abstract
syntax iree for the program, amended with information
about the arrays created by that program. Array
notalions are usehul in the production of efficient
compiled code for applicative array programs. Array
morphclogy is shown to be an effective compiler writer's
tool. Examples of an array annotator in action are
presented, showing its value in array morphology. Amay
marphology is shown to provide methods for static
detection of certain classes of programming errors,

Asserticns, a generalization of declarations, offer
significant benefits o application writers as well as
compiler writers. Assertions, and therefore declarations,
may be represented as canjunclions, and are,
therefore, conferming extensions to 150 Standard APL.
A domain conjunction is offered as an example of how
assertions might be defined.

Several other points are made relovant to the
implementation of array language compilers and
interpreters.

Bayesian Methods in APL — Alan Sykes, A, Mayer, and
T. Stroud. This paper explores the ideas of Bayesian
Statistical Inference from the point of view of statistical
computation. As such the paper is largely self-
contained, enabling those more tamiliar with APL than
statistics 1o understand the basic statistical
methodology and appreciate ils strengths. The paper
further reports on recent collaborative work in providing
a computational framework in APL for extending
Generalized Linear Models to their Bayesian
counterparts. This work relies heavily on methods for
numeric integraticn combined with the iteratively re-

VECTOR

Vol.9 No.4

weighted least squares procedure at the heart of the
Generalized Linear Models as incorporated into
ASLGREG, the first volume produced in ASL (the APL
Statistics Library).

Buliding the APL Atlas of Natural Shapes — Gérard A.
Langlet. It was previously shown that APL contained the
maost powerful idiom #\, that could be used, directly in
the language all computers know: binary algebra, lo
build models as well for physfcs as for biology and
computer science. Several papers on the subject were
published or submitted inside the APL world as well as
cutside. The purposa of this paper is (o show how a
classical modsl, built to generate fractal shapes in plane
geometry (2-D) can be revisited and considerably
extended, thanks to the properties of #\ and of array-
ortented binary algebra.

Compiling APL to SISAL — Robert Bernecky.
Complling APL Is problematic. The freedom APL grants
to programmers, to dynamically redsfine the type, rank,
and shape of an array, and to redefine functions on the
fiy, is antithetical to the strict requirements of traditional
compller deslgn_ That freedom alsc happens, perhaps
not coincidentally, to make iterative APL code run
hundreds of times slowsr than complled traditional
code, SISAL, an applicative aray language, has sofved
several of the problems of compiling array languages,
and Is beating Fortran on a number ol supsrcomputer
benchmarks, This paper presents the challenges of
compiling APL programs into SISAL and
recommendaticns for solving some of the problems
which occur in such a translation. Several benchmarks
are proposed for comparing interpreted and compiied
APL.

Confessions of Two APL Educators Leaming J —
Murray Eisenberg and Howard Peelle, The paper
reports how two universily teachers of APL began to
learn J. By presenting accounts of a sefies of small
experiments, it reveals our understandings and
misunderstandings along the way. It discusses things
we especially liked and disliked about J and the
resources available far leaming it, and indicates some
possible implications of cur experience for teaching J.

Co-operative Programming with Windows DDE —
Adrian Smith. In the pasl, there have been two kinds of
APL applications: one-off investigative developments,
and major vertically integrated applications. The first
kind are usually characterised by a small volume of
powerful APL cods, predisely targeted towards
exploting an interesting business idea. The second kind
are typically wrapped arcund with a great blanket of
usey code, which is all about the entry, validation, and
presentation of data.

With the advent of MS Windows (and the inevitable
move of the PC community toward Windows
applications) we can begin to exploit the inherent power
ot Word and Excel as native components of our APL
development. This paper begins the exploration, with
just two simple ideas: an APL button-bar for Excel (for
Excel freaks who have begun to want a real aray

language), and an Excel-based formatting tool (for APL
freaks who get bored with laying out neat reports).

Discriminarnt Analysis — Eero Korpelainen. Abstract not
available at time of printing.

Distributed Computing in the Workstalion Environment
— Johann Mitdhner. Exploiting unused processor fime
in workstation environments can result in large
performance gains in user applications. Techniques for
implementing client-server based distributed processing
are shown._ A time-consuming algorithm is sped up by
using idle workstations in a local area network as APL
servers.

Efficiant Maximum Likelihood Estimation of Linear
Modeis with APL — Frank G. Ripley. Maximum
tikelihood estimators used in stafistics and
econometrics have desirable properties; however, due
fo the complexity of their solution maximum likelihood
fechniques are not widely used. This paper examines
an APL implementation of ane of the most effident
algorithms used to estimate the parameters of the
univariate ARMA process. The siralghtiorward usa of
APL Is found to be unacceptable and so a systematic
search for optimization is made. This search resuits in
an approximate solution for the ML estimator, the use of
0X4 and FORTRAN, and special mafrix techniques to
increase the efficiency of the algorithin. The matrix
techniques used are implementations of sparse,
banded, and block diagonal data structures. Additional
matrix technigues Involve incremental updating of
matrices. The effect of these optimizations is to bring
the computational cost from an Q{N"3} problem to an
O(N"1) problern. This translates into a significant
reduction in computer requirements. For example, to
estimate a six-parameter ARMA model with 5000
observations, memary requiremants fall from
approximately 25 Mb to 300 kb. Computer time falls
from about 400 yoars to about 2 minites,

Extending APL2 to Include Program Control Structures
— David A. Selby. APL language designers have
always argued that implicit contrel flow beyond that of
the branch arrow and array operations is not required in
the APL2 language definition. Cn the other hand,
computer scientists abject to APL on account of the lack
of contrel flow within its basic language definition. The
first thing a reader looks for in trying to understand a
program in any language is its control flow, Given the
wide variation in conditional branch idioms in APL2, and
the lack of line blocking, it is often difficult for even a
skilled reader to get a clear understanding of a
previously unseen APL function.

This paper proposes the addition of various well-
established program coniral low struciures into the
APL2 language as reserved words,

Extending the APL Character Set — James A. Brown,
Brent Hawks, Ray Trimble. APL is ofien presenled as a
notation that is independent of national language
because of ils symbolic nature. Paradoxically its unique
character set has led to APL being treated as if it were
itsedl & national languagse. This has reant, n many

VECTOR

Vol.9 No.4

practical situations, that the APL character setis
incompatible with hational language character sets.

IBM's APL2 atternpted to avoid these problems by
defining a set of extended (31 bit) characters, and this
has indeed been helpful in handling Asian languages
such as Kanji. But the character mappings adopted
have not been adequate to support all European and
Middle Eastern language characters, nor have they
been consistent across platfarms.

With the advent of internaticnal standards for character
assignment, there is an opportunity to create APL
syslemns that handle the character sets of the world in
an efficient and elegant manner. While at first the
solution appears to require only a recitation of code
point assignment, an analysis of the problem leads to
interesting and disturbing questions about a number of
APL system funclions, system variables, commands,
and file facilities. This paper explares problems with
internal conversions, external representation, migration,
compatibility, and interplatform portability.

Extending the Two-Partner Shared Variable Protocol to
n Partners — Thomas Kolarik, APL as a language has
always provided a high levet of abstraction to its users.
Only in the field of communication APL channels —
called shared variables — have been restricted to at
most two partners. As most dislributed applications
demand more than two Interacting programs, APL users
had to use their own techniques, like client-server, to
develop applications that share information among
more than two partners. This paper presents a proposal
to move the administration of shared memery from
application to language level: an extension to the well-
known shared variable profocol to share memory
among moere than two partners. A programming
technique — replicated workers — and a sample
application for students that leam APL in a working
group are shown that take advantage of this feature.
These are both based on a prototype implementation of
the proposed protocol.

From Trees into Boxes — David H. Stelnbrook and
Eugene McDonnell. This paper Is a progress report on
work undertaken to include tree data siruciures by
means of the boxed data type available in J. Methods
for displaying these boxed arrays as trees are shown.
This work is part of a larger efiort to provide a
cofmprehensive set of fadilities in J for working with tree
shructures. The facilities described were at first
modelled in J and subsequently translated into C, in
order to provide a J interpreter which has trees as
native facilities. Thus this work also exemplifies the way
in which one can taifor the J interpreter to special
needs,

Identification of Paralfelism in Neural Networks by
Simulations in the Language J — Alexei N. Skurikhin
and Alvin J. Surkan. Neural networks with back-
propagafion training are designed and expressed in the
language J, an APL derivative with very powerful
function encapsulation features. Both the languages J
and APL help to identify and fsolate the parallelism that
is inherent in network training algorithms. Non-critical

details of data input and derived output processes are
de-emphasized by relegating those functions to callable
stand-alona modules. Such input and output medules
can be isclated and customized individually for
managing communication with arbitrary, external
storage systems. The central objedlive of this research
is the design and precise description of a neural
network training kemel. Such kernel designs are
valuable for preducing efficiant reusable computer
codes and fadilitating the transfer of neural network
technology from developers to users.

Introduction to Log-Linear Analysis and Implementing
Newton-Raphson Algorithms in APL2 — Duncan
McArthur. This paper infroduces the method of log-
linear analysis for performing hypothesis testing on
contingency tables. The reader will see a brief
develepment of this topic beginning with Pearson’s
classic chi-square test and using examples of analyses
on wo- and three-dimensional tables. The idea of
hierarchical models and backward elimination are
discussed. Finally, the APL2 implementation of the
Newton-Haphson algorithm is described. Newton-
Raphson is an iterative procedure for finding the roots
of a function, Itis used in log-linear analysis to find the
maximum likelihood estimation of expected frequrencies
which cannct be calculated from expressions in closed
form.

JYOX ~ David G. Smith and Jesy K. Tuttle, It is easy
to learn J; just talk to your computer. Voice recognition
technolegy is already on the desktop. You can use
voice input to bypass some common obstacles and
promate gratifying and enjoyable experimentation with
the fanguage. It is possible to avoid pawing through
references to find an elusive construct. Just talk, and
anything from simple primitives to complex idioms can
appear on your computer screen. Spelling and typing
errors are ali but eliminated, and talking constantly
reinforces the new notation’s meaning.

This paper presents results from some expetiments
with a JVOX prototype. The presentation includes a
demonstration.

Leaming Modem Algebra — Pavel Luksha, The study
of modern algebra, especially that of finite fields and
their application to eror codes is aided by the use of a
computer. This paper Is an account of how a high
school studen! put APL to good use in a self-study
colurse in this University level subject. There is a review
of finite akyebra, a shor discusslon of finite fields, a
discussion of polynomials aver those fields, and their
use to construct emror-detecting and error-correcting
codes.

Modem APL Windows — Richard R.N, Eller. Windows
3.1 represents the biggest revelution to APL technology
since the advent of full-screen techniques. This creates
a new challenge to APLers migrating their applications
from mainframe or PC-DOS environments Into
Windows 3.1. This paper describes an easy means lo
adapt existing and new applications to exploit Windows
Graphical User Interfaces (GUI). By using the
techniques described below one can utilize most GUI

15

VECTOR

Vol.9 No.4

fealures without needing to comprehend the massive
amount of detail typical o Windows programiming.
Additionally, any application will also be backwards
compatible to the DOS character-based screen
intertace.

A Farallel Topological Feature Map in APL — J. Frey,
D. Scheppelmann, G. Glombitza, H.P. Meinzar, One
can distinguish two different approaches to neural
networks, The supervised networks and the self-
organizing ot unsupervised neural networks. The first
type of neural nets is supplied with an ideal result
regarding the input. During the learning procedure the
neura! pet adjusts weighting factors of the links between
neurons so {kat the input teature vectors map to the
jdeal output. Those nets are used for example in
robotics, where the ideal result is well known: itis the
pasition the robot should be placed in. For the cases
where no ideal result is known, the second type of
neural nets, the so-called seti-learning Topological
Feature Map (TFM) is appropriate. This paper will
introduce such a neural net based on the idea of
Kohonens TFM. The ariginal algorithm was extremely
sequential and therefore not suitable for an APL
implementation. The parallelization of the algorithm Yed
to important impravernents regarding speed and
canvergence to the global optimum.

Point-wise Caloulus — Walter G. Spunde. The work of
Aichard Neidinger implernenting differentiaton in APL
as & vector arithmetic is reformulated and extended, for
functions of a single variable, to nested vectors whose
components hoid the values, at any number of given
sample points, of a function and its derivatives up fo
any specified order. It is argued that, for teaching
purposes, this sampling provides a more intuitive
introduction to mathematical functions and the rules of
calculus than do algebraic formulae, and that for certain
calculations (such as the computation of polynomial
approximations of high degree) the formulation provides
superior algorithms for computation. As such, it offers
an alternative approach to the teaching of elementary
college mathematics.

Roles of APL in Military Satellite Surveiliance — Jack
G. Rudd. APL has had a significant prototyping rele in
military satellite surveillance for more than two decades.
This paper begins by desciibing the success af the
Defense Support Program in alerting the Patriot
antimissile batteries of Incoming Scud misslles in the
Persian Gulf War, Subsequently it describes the
prototyping role of APL on the Detense Support
Program and other satellile surveillance programs.
Saveral observations are made along the way
confrasting project development methods involving APL
protatyping with other metheds of project development.
The paper concludes by describing two new efforts; one
which features rapid development and delivery of APL2
analysis programs on warksiations for direct use by
military customers; and one which uses APL2 to study
and prototype specific military applications for potential
implementation on a massively parallel processor.

Rofling Dice: Some Notes on J and Teaching
Probability — Keith Smillie. This paper shows how J
might be used in a course in elementary probabifity. All

examples are concerned with rolfling dice, but the dice
may have n sides, and be used to play musicl

SCAAFS: An Efficient Polynomial Zero-Finder System
in APL — Tien Chi Chen . This paper introduces
SCARFS {Symmetric Cluster-Adapted Aool-Finding
System), a new efficient APL workspace for general
polynomial iterative zero-finding, as a practical outcome
of our study of global iterative zero-finding. The 25
tunctions in this workspace are coordinated by the
SCARF function with iterations performed by the
function SCATTER (Symmetric Cluster AdapTed
ITERation).

Soiving Palynemials in Two or Three Variables — R.G.
Selfridge. An algorithm is described that allows two
polynemials In twe variables to be reduced to a single
polynomial in one variable, and then back-solved to get
all sets of solutions. The algorithm works faster than
mast other algorithms within its range of utility
(providing sets of solutions as large as 70), and can be
extended to cover some sets of three polynomdals in
three variables (those where ane of the polynomials has
only two of the variables), While subject to the known
stability problems of polynomial root-finding, this
algerithm can also be extended to provide for reducing
1o the single variable polynomial with symbaols, thus
permitting proof of results, and potentiat removal of
extraneous rools, Such manipulation can then
materially shorten the humerical process if the problem
is to be applied 1o a number of different cases.

Structurad APL: A Proposal for Block Structured Contro!
Fiow in APL — Robert Wilhoit. APL, although a very
powerlul language, has fafled to gain wide acceptance
in part due to its lack of control structures. A proposal is
made for introducing structure in APL objects by adding
to the itemns that can be located on the left side of the
colon (). These maskers show the beginning and end
biocks ol code and ajlow for selection, iteration, and
termination. The set of controf structures is shown to be
robust by showing their use in the creation of traditional
control structures. A method of conversicn to [SO APL
is also presented.

This paper briefly discusses proposals that have been
made in the past along with an evaluation of their merits
and shortcomings. The paper ends with a discussion of
related issues, Including elimination of branching,
introduction of definiticn blocks, and lexical scoping in
APL. Several areas for continuing work are given.

Structuring Functions with Operatars = David
Eastwood. This paper draws its inspiration from a
therna that has been popular at APL conferences over
the years. This is an aftempt to Introduce some or all of
the elements of stnictured programming into the APL
language either via extensions 1o the languagde of via
the adoption of spme set of prograrmming standards. In
view of the speed and frequency with which agreed
extensions 1o the APL language take placs, it must be a
reasonable assumption that there is no immediate
likelihood of APL acguiring new flow control primitives.
The programming standards approach relies heavily,
however, on the willingness of the programmer to follow

16

VECTOR

Vol.9 No.4

them and much good work can be undone by a few
minutes of hasty coding to fix a last-minute eror.

Tatking with APL via DDE: Teaching an Okl Dog New
Tricks — Steven J. Halasz and Andrei Kondrashey.
Shared variables and auxiliary processors are weli-
known techniques kor connecting alien applications and
facilities to APL. The use of APL in the PC windowing
multitasking envirenment of MS Windews, which
incorporates a messaging model for interprocess
communications, requires some new approaches to the
impiernentation of shared variables and auxiliary
processor suppart. Any such implementation sheuld
realize the maximum opportunities that the windowing
environment offers.

This paper presents a shared variable interface to MS
Windows graphics written in C and a simple charting
package called TinyPlot written in Dyalog APL. for
windows. The purpase ot this paper is lo demmonstrate
and investigate the Dyaleg APL shared variables and
auxiliary processor facilities, and to offer cbservations
and conclusions about the benefits, limitations, and
potential of DDE and DLL interfaces generally.

The Testing of an APL Compiler — Wal-Mee Ching and
Alex Katz. The testing of the APL-te-C compiler,
COMPG, deveioped at T.J. Watson Research Center
consists of wo components: a testing suite of 146 APL
programs collected from various sources covering a
variety of flelds, and a unit-testing procedure which
tests each primitive function on all possible subcases
arising from different combinations of slarage types and
shapes. Tha second compenent, unit-testing, is an
interesting example of the produclivity APL can provide
for saftware development. The unit-testing procedure is
based on a workspace written in APL and utilizes the
[OFX feature of APL to create a test function
dynamically from one of several templates. The testing
of both components is automated through the use of
conirol programs written in a command language under
the VM/CMS operating enviranment.

Transfinite Nesting in Array-Theoretic Figures,
Changes, Rigs, and Amms. Part I — Trenchard More.
Transfinite Nesting in Aray-Theorellc Figures,
Changes, Rigs, and Arms. Part If — Trenchard More.
Abstract not available at ime of printing.

Adaptive Leaming Networks in APLZ — Alaxandet O.
Skomorckhov. Adaplive Leaming Networks (ALN)
methed is a tool to solve the problems of medelling,
prediction, diagnosis and pattern recognition in complex
systerns. ALN is similar to neural network techniques,
with the main difference being self-organization of
network structure on the base of generation and
eslimation of various nodes, connections, and weights.
A set of funclions presented in the paper shows that
ALN are simply realized in APL2. User-defined
opetators are used as a very convenient tool for ALN
programmiming. The paper discusses application of
implemented software to the problem of Bumout Heat
Flux prediction in nuclear reactors. Itis shown that the

ALN technique allows prediction of Burnout Heat Flux
with approximately three times belter accuracy than
commonly used methods,

Understanding ANOVA the APL Way — Norman
Thomson. Statistics textbooks expound the collection of
techniques known as analysis of varlance by using
mathematical formulae. The terim analysis of variance is
something of a misnomer, sinca any analysis follows a
primary exercise of partitioning sums of squares, that is
entirely a matter of computation and data reorganization
of the sort at which APL2 is uniquely adepl. The crux of
the analysis stage then consists of making choices
between what is often a bewilderingly large range of
subtly different sums of squares partitions. The primitive
funclion enclose with axls maps naturally into the data
manipulations involved in sums of squares partiicns for
arrays. To the casual reader the iatter are cbscured
rather than clarified by the use of mathematical
formulae alone, This paper explores the reflationship
between APL2 functions and ANOVA, and goes on to
jllustrate how these can be used in the contextof a
designed experiment.

Using Defined Operators and Functlon Arrays to Solve
Non-linear Equations in APL2 — Stephen M. Mansour.
There are many mathematical algerithms such as
Newlon's method used to calculale sclutions to non-
linear equations. This paper will show how easy itis to
implement these algorithms in APL2 with a minimum of
code using the defined operator and careful design of
it= input functions. The emphasis in this paper is on the
method of developing an application using APL2 and
the concepts of defined operators and function arrays.
This requires that Input functions be robustly designed
to take arrays as arguments and to produce array
results much like primitive scalar functions. in this
mannet one can minimize the number of calls to the
input function and take advaniage of APLZ's array
handling capabilities. Since aperators are pemmitted at
most two operands, it Is eritical to rminimize the number
of input functions. This requires the input function
designer to think in terms of funclion arrays. Although
function arrays are not yet part of the language, they
can easily be defined in most any version of APL.

The Workspace Manager: a Change Control System for
APL — Rexford H. Swain and Danlef F. Jonusz. This
paper describes the Workspace Manager (WSM), a tool
that helps to support and add discipline to APL system
development and maintenance efforts. The WSM acts
as a repository of APL objects (variables, functions, and
gperators). Programmers use YWSM tools 1o find where
objects are used, edit objects, save changed cbjects,
and request that objects be installed Into {or erased
from) production workspaces. Periedically, the WSM
installs new releases of production workspaces by
merging new and changed objects into existing
workspaces. Audit trails are mainlained for all of these
achvities, making it possible to review the change
history of an cbjedt, compare different versions of an
object, compare different releases of a workspace,
revert to an old release of a workspace, and so on.

VECTOR Vol.9 No.4

British APL Association News

BAA Chairman’s report - Activities

It is with some regret that I must report Peter Donnelly’s resignation as Activities
Officer of the BAA. Peter has served on the committee of the BAA for a number
of years, notably as my predecessor as Chairman. As the current Chairman I can
fully appreciate the time and effort Peter devoted to the BAA Committee and [
would like to record our thanks for his many valuable contributions. Peter
unfortunately feels unable to continue as Activities Officer due to pressure of
work and has stepped down from the position with effect from February 1993,
Pending the election of a new activities officer, I will be holding the fort myself.,

In addition to finding a new Activities Officer,] am keen to enlarge the activities
working group which supports our Activities Officer. I shall take this
opportunity to describe the work that lies behind the activities programme of the
BAA in order to stimulate the flow of willing volurteers.

Experience has shown that in many respects the most difficult part of the
Activities Officer’s job is to come up with ideas for meetings — both for topics
and speakers. The danger of having one person do ail the work is that we are
thereby limited in the range of topics covered. The prime role of the activities
working group is to generate helpful suggestions about meetings and, if
appropriate, to approach potential speakers. The current activities working
group (comprising myself, Misha Jovanovic, Duncan Pearson and Anthony
Camacho) have each arranged one meeting this year by agreeing a theme and
finding the two or three speakers required.

At the time of writing, we have arranged the remainder of the 1993 programme
and are now considering the 1994 programme. You should note that the
committee of the BAA has no hard and fast views about the preferred format for
meetings and we are prepared to consider any views on revisions to the number,
location and duration of meetings. You will note, for example, that our
November meeting will be a full day meeting rather than the usual afternoon
meeting,.

Once a programme of events has been established, the Activities Officer assumes
respensibility for briefing the speaker on what is expected and ensuring that the
speaker remembers the engagement. We also need to ensure that the correct
audiovisual equipment is available on the day. The Activities Officer has to liaise
with the Secretary over room bookings and the Publicity Officer to ensure that
members are told about meetings.

1Q

VECTOR Vol.9 No.4

If any members would like to help out with the pre-planning of meetings, |
would be delighted to hear from them — the actual commitment in terms of time
is not high, and is often not much more than an informal get-together after a
regular BAA meeting and a few phone calls.

The 1993/4 BAA Committee

The elections for next year’s committee will take place in time for the AGM on 11
June 1993. As in previous years, a number of current committee members have
indicated that they are willing to continue in office. We are always keen to have
as many nominations as possible for committee membership and this year we
already have the prospect of at least one contested place.

| can confirm, therefore, that we will be having a postal ballot this year, so please
send in lots more nominations!

The election timetable is:

10 May final date for nominations

17 May ballot papers posted

07 June voting closes

11 June results announced at the AGM

At the time of writing the following individuals have indicated their desire to
stand for the Committee:

Chairman David Eastwood (*)

Secretary Duncan Pearson

Treasurer Nicholas Small (*)

Journal Editor Anthony Camacho

Activities —

Education Alan Mayer (*)

Technical Jonathan Barman

Projects George Macleod (*)

Publicity Misha Jovanovie (*)

Recruitment Richard Weber AND Mark Harris

(*) — Holds this position in 1992/3

We would positively welcome further nominations, which must be proposed
and seconded by current, paid-up members of the BAA. Candidates will be
asked to provide me with a short statement for circulation with the voting

papers.

19

VECTOR Vol.9 No.4

We currently have two candidates for the post of Recruitment Officer: Richard
Weber who teaches at Doncaster College of Further Education and currently
helps on the Vector Working Group. Mark Harris runs Kestrel Consulting in
partnership with Dick Bowman.

You will note that we are still locking for a nomination for activities officer and if
anyone is contemplating standing for that (or any) post, they are welcome to
contact me to discuss the work in more detail.

Announcing “The APL Review”

A new and unique Journal for the International APL Community will be
launched by the British APL Association in 1994, The APL Review will be fully
refereed to the high standards tequired by the academic and research world, and
edited by an international team of APL experts in a wide variety of fields.

Why a refereed journal? For many years now APL (and more recently Jj has been
employed by researchers who require more flexibility in their computing than is
offered by other languages. For the result of their work to be added effectively to
the accepted body of scientific knowledge two things are needed: (i) it must be
“audited” (refereed} by their peers and (if) it must be disseminated as widely as
possible among those who may wish to use or add to the work. People who use
APL professionally are well aware that they can learn a great deal from each
other, even when their fields of study or application are very different. While an
accountant is unlikely to read a software engineering journal, APLers in both
disciplines will read an APL journal.

Why not Vector? A good question — Vector itself is one of the most widely read
APL journals. But part of its appeal lies in its informal treatment of its subject
matter. The more formal language and presentation of scientific “papers” sits
awkwardly with the lighter tone of -Vector, although many of the articles
included in Vector over the years could have been presented as papers, and
researchers have difficulty gaining credibility with peer review bodies when
their articles are published in a journal alongside matter of a lighter nature.
Vector will continue in its réle, serving the whole of the APL community at all
levels.

What about the annual International Conference proceedings? The APL Quote
Quad volumes containing the papers presented at the annual conferences
certainly play a vital réle in disseminating the work of those who participate in
the conferences, and we hope that they will continue to do so. Not everyone who

20

VECTOR Vol.9 No.4

works with APL can attend the conferences, however, and not all work can be
presented in a paper of suitable length to be included in the proceedings. More
extensive topics often have to be presented as tutorial sessions, and for
academics in particular this does not satisfy the need to have their work fully
refereed and published. It is right that we should bring our work to the
conference and share our experiences in this invaluable way, but for many areas
of study a short paper for the purposes of conference presentation does not do
justice to the work.

What sort of subjects will be covered? Virtually any original, serious application
of APL or J. We will be looking for statistics, econometrics, engineering, actuarial
applications, simulation, operational research and so on — all the areas where
the language can be used to promote research and insight. At the same time, it
will provide a vehicle for discussion of theoretical aspects of the languages
themselves,

Who will read The APL Review? Everyone interested in APL. The wide subject
coverage should ensure that there is something for everyone. Although by its
nature it is a “serious” journal, this does not mean that the subject matter should
necessarily be dry or purely technical. Journals are about communication, and
The APL Review will publish papers that communicate at a level that is
accessible to a large readership.

21

VECTOR Vol.9 No.4

News from Sustaining Members
Compiled by Gill Smith

Kestrel Consulting

Kestrel Consulting combines the recruiting and entrepreneurial skills of Mark
Harris (known to many British APL Association members from Kestrel Executive
Selections) with the technical experience of Dick Bowman (former chairman of
the British APL Association and presently a member of the ACM SIGAPL
Executive Board).

Kestrel’s objectives are two-fold.

The recruitment side of the company will continue to concentrate on specialist
recruitment and placement of both permanent and contract staff, not only in APL
but also in other focussed markets. Our aim is for our recruitment and placement
services to operate globally. At the present time we have a very high demand for
APL contract staff for the USA, and an equal if not greater demand for
contractors with SAP experience. We intend to provide the very highest possible
levels of service both to the individuals and to the employers.

On the technical side we view the introduction of GUI systems as an excellent
opportunity for APL to re-establish itself as the high-productivity solution of
preference. Our technical consuitants have worked on hardware from the IBM
PC right through to the largest mainframes, with operating systems from
MSDOS to MVS/TSO, with software from Multimate to DB2, and on
applications from accounting to zymurgy.

One of the means by which we aim to increase the amount of effective use of
APL is widespread adoption of standardised tools and utilities; an initial step
along this path is the Kestrel Software Library which is currently collecting
software. If you have any software related to APL which you'd like to see widely
distributed please contact us. Our emphasis is on wide distribution of low cost
software; we are collecting now and plan to begin distribution in mid-1993.

Whether your needs are temporary hiring of maintenance programimers, custom
development using an entire project team, consultancy and training, or any
aspect of APL-related computing, Kestrel Consulting is only a telephone call, fax
or email message away.

VECTOR Vol.9 No.4

Manugistics Inc

Here at Manugistics we've just come back from the U.S. Software Developers
Conference, held every year just outside San Francisco. Bill Gates and Philippe
Kahn were there, showing off their latest labour-saving devices for Windows
programmers. We were there too, introducing a lot of ‘C++* and Visual Basic
fans to the concept of Array Programming. Now that AFPL*PLUS works in
Windows and talks to databases and other applications, we're turning a lot of
heads — some “1 haven’'t used APL for twenty years” folk, and quite a few
“What is this APL stuff anyway?” types. It seems that even with all the promises
("Now you can build applications without writing a line of code!”), nobody else
has a good solution to ad hoc problem-solving or complex data analysis. We are
greatly encouraged by this state of affairs and will be pushing hard this year to
open new doors and new minds to the power of APL.

Back in Rockville, we have just experienced a surge in sales as our year drew to a
close at the end of February. APL*PLUS II Version 5.0 was so successful that we
ran out of our (anticipated) six months of stock less than three months after we
started shipping. The release of APL*PLUS/PC Version 11 was also responsible
for a big boost as customers rushed to get their hands on the Runtime Binder so
they can start sharing and selling their applications.

As you may be aware, the only way we could get APL*PLUS Il Version 5.0 out to
the public was to lock the developers in a closet. The trouble with developing for
Windows is that every neat new thing you add makes you realize there are three
other things that would make it really, really neat. When you stay up all night to
sneak those three in, there are, you guessed it, nine more the next afternoon
when you get up. Well, as we expected, the developers broke out of the closet
fairly quickly and have been working hard to get Version 5.1 ready. The
development work is now nearly done and we are having a great time building
3-D forms with icons and bitmaps and graphic buttons and drawing pictures and
using the vastly improved Wed form design tool and... ...and you'll have to wait
for the rest. Actually, by the time you read this, we should be almost ready to
start shipping!

In and around the work on Version 5.1, the team is working hard on preparing
the next release of APL*PLUS II for UNIX. Version 5 will include the APL2
features we have put into the 386 product and the [User Command Processor as
well as a lot of improvements and speed-ups. Release is planned for the summer.

With 5.1 finished, our Windows team can concentrate its design and
development efforts on our “third generation” APL*PLUS system, code-named
INCA. This project is generating a great deal of discussion, white-board

23

VECTOR Vol.2 No.4

wizardry, project journal writing and feature prototyping, but is still a way away
from “Now Appearing on a Hard Disk Near You.” As many of you will have
heard or read, it will include Object-Oriented Extensions, Control Structures and
an Alternative to Funny Characters, Stay tuned to this space for more details.

As you can see, we're doing everything we can to keep APL alive and growing
well into the next century. Help us {and yourselves) by introducing (or re-
introducing) your friends and colleagues to the new generation of APL!

MicroAPL Ltd

On the APL front, much of our development work is aimed at the summer. We
have, however, now completed the Macintosh version of our MicroPLOT
business graphics software — PLOTMAC. Our MicroPLOT software is designed
to facilitate the quick and easy production of business graphics. In common with
all our GUI APLs, APL.68000 for the Macintosh includes an interface to the
native graphics facilities but up to now the user will have had to write his or her
own scaling routines to produce sensible, labelled, graphs.

The Quickdraw colour graphics available on the Macintosh offers the typical
primitive graphics routines that one expects as standard — line drawing; shape
drawing; pattern selection; fill routines; graphics text and so on. The MicroPLOT
routines allow an APL programmer to set up a labelled graph via cover functions
for the Mac Quickdraw routines. The PLOTMAC code is compatible with our
MicroPLOT software for other systems such as the RISC System/6000 or for
plotting devices such as Hewlett Packard plotters.

Registered Mac users will have received separate notification about the
PLOTMAC software, but further details are available from MicroAPL.

Much of our consultancy work in recent months has been involved with
producing Windows applications and we have scheduled another free seminar
for the end of April 1993 entitled ‘Developing Windows Applications’. This
seminar is being jointly hosted by MicroAPL and Maddox Ford and will cover
many of the practical problems encountered in designing and developing
commercial Windows software.

In preparation for this seminar, we issued a GUI development questionnaire to
our UK contacts. As you would imagine, the common factor that underlies our
database is an interest in APL linked with a higher than usual number of non-PC
owners (Mac, Atari, Amiga etc). Analysis of the results threw up some
interesting statistics which we will be discussing in more detail at the seminar,

24

VECTOR Vol.9 No.4

but as a preview, it is worth noting a few of the findings. Bear in mind that
multiple answers are quite possible, so numbers don't add up to 100%

We asked people about their choice of GUI environment and came up with
figures that seem to match the standard industry figures:

Windows 76%
Unix 21%
05/2 10%
Mac 6%

The most favoured database was Oracle with 21% followed by Informix (8%} and
Sybase (6%). The most popular database server was Novell (32%), followed by
Unix (28%) then OS/2 (15%).

We asked about GUI development tools in two categories — ‘low level” (such as
C) or "high level” (such as SQL Windows). For low level tools, C++ led with 26%,
followed by C with 19% (APL clocked up 6%). The most favoured ‘high level
tool was Visual Basic (19%). There was an even spread of names for other high
level tools and APL re-appeared here as a possible high-level tool. Only one
version of APL was mentioned.

Dyadic Systems Ltd

All registered Dyalog APL/W users should by now have received their (free)
upgrades to Version 6.3. The reception to 6.3 during the Beta Test was extremely
positive and judging from the efforts of some users commercial APL-based
products — that are indistinguishable in terms of look and feel from other
Windows applications — should soon begin to appear.

The new ONA facility to call Windows DLL routines is proving to be
exceptionally popular, not least because it is entirely dynamic and very fast. With
ONA, users have themselves been able to generate powerful and efficient
interfaces to various other products including Oracle and Microsoft SQL Server.
Insight Systems in Denmark is even using ON4 to provide a facility that will
connect Dyalog APL/W users to practically any commercial database running on
almost any host system — directly from a Windows workstation. Contact Morten
Kromberg on +45-4210-7022 for details.

The device-independent graphics in Version 6.3 has also been well-received, as
has the fact that you can at last produce APL listings on practically any printer
with no effort at all. For this, Dyadic is grateful to Adrian Smith for allowing the
distribution of his excellent TrueType APL font with Dyalog APL. The new

25

VECTOR Vol.9 No.4

version of ¥SDOC, which is included with 6.3, has a Windows front-end, and
makes the production of attractive looking APL listings a very simple matter
indeed.

To illustrate the powerful new bitmap-handling capabilities, Dyalog APL/W
includes a version of the “Arachnid” card game (a form of Patience) which is
coded entirely in APL. This game requires a certain amount of skill, and none of
the beta-testers discovered the APL coding error that crashed the workspace
when the game was successfully completed! On a reasonably fast PC, the APL
workspace is practically identical in look and feel to a standard Windows card
game, and it amply demonstrates that Dyalog APL/W can compete effectively
with other GUT development tools. The new version of the WDESIGN workspace
takes full advantage of the graphical facilities built in to the interpreter. New
objects are created by clicking on a “Visual Basic look-alike” toolbar (in place of
the buttons used in version 1), and the workspace now includes interactive
facilities to design icons, cursors, bitmaps, and your own custom “toolbars”.
WDESIGHN supports all the new object types provided in Version 6.3, so you can
also use graphics to add 3-D effects to your dialog boxes.

On the Unix front, Dyadic has produced new releases of Dyalog APL for the IBM
RS/6000 (AIX 3.2) and for Sun Workstations (Solaris 2.1). The RS/6000 version is
up to 10% faster than previous releases. Work on a Motif implementation, based
on Dyalog APL/W, has begun in earnest.

Dyadic is pleased to announce the recruitment of Graeme Robertson, ex TPSA,
who joins the team as an APL consultant. The company is also delighted to
report its most successful year of trading since it was established in 1979.

26

The Educatlon Vector Vol.9 No.4

THE
EDUCATION
VECTOR

April 1993

Editor Alan Mayer

This Education Vector has been reprinted from VECTOR Vol.9 No.4. VECTOR is
the Quarterly Journal of the British APL Association. For more information about
the British APL Association, please contact: Anthony Camacho, 11 Auburn Rd,
Redland, BRISTOL, BS6 6LS Tel: 0272-730036.

Contents
Editorial Alan Mayer 28
A Beginner's Guide to
Low-Cost ‘Real-Work” APLs Dick Holt 26
Workshop: Learning Mathematics with APL Howard Peelle 36
An APL Scrabble Bag Bill McLean, Ted Emms 41
Dr. Alan Mayer
European Business Management School Ysgol Rheolaeth Busnes Ewropeaidd
University College of Swansea Pare Singleton,
Singleton Park Abertawe SA2 8PP

Swansea SA2 8PP Wales, UK

Tel: 0792-205678 Ext 4274 Fax: 0792-205626 JANET: MAYER@UK.ACSWAN.MS

27

The Education Vector Vol.9 No.4

Editorial

Hello, and welcome to your “Spring” copy of Education Vector. This is written with a
certain amount of sarcasm, as | gaze out over a wind-swept and rain-soaked Swansea.
But! trust that by the time you read it Spring will indeed have come and the sun will be
shining (you see, [am an eternal optimist at heart}.

Last time, 1 promised you a detailed comparison of the low-cost (and in some cases free)
APL interpreters. The article by Dick Holt in this edition, which has been circulated in
various forms via various media, is an atlempt at a “beginner’s guide”. It originates
from the APLSIG of the Capital PC User Group, who invite everyone to
circulate/republish it as widely as possible. As always, | shall be pleased to send copies
of this edition and Future editions of Educalion Vector lo anyone who sends me their

address.

While I am grateful for the work that has been done to make this comparison between
interpreters, | feel that there is more that could be done, perhaps with contributions
from our own readers. The report as it stands is largely aimed at business applications,
which do not always share the requirements of educational establishments. For
example, FAPL may be slower and offer less memory than its rivals, but the fact that it
is available for a wide variety of machines, many of which are currently being used in
our sehools, makes it an altractive option for educational purposes.

For many, of course, the low-cost interpreters provide an easy path into the use of APL,
whether for business, educational or other purposes. It is clearly part of our job to
encourage this growth in the applications of APL. | should point out, however, that |
have yet to find a low-cost interpreter that is a serious rival to those produced for
professional purposes. For my own work | use Dyalog and APL*PLUS, and | have
colleagues using APL.68000 and APL2 — none of us is about to give up the professional
environment for a low-cost option. That having been said — I will be pleased to hear
from anyone with contributions to make to the discussion, especially those who have
used one or more of the packages in the educational environment.

The promised follow-up to Howard Peelle’s article on Workshop Design is a Sample
Topic on “Triangular Numbers”. 1 find the method of presentation very instructive, and
I hope it helps and encourages others to produce material of similar high standard.

Finally, all you APLers out there — drop me a line to tell me about your latest APL
project. | am always looking for material that may be of interest to our readers. And if
you are not already members, why not think about joining the British APL Association?
If you do not have an application form, write to Rowena Small, 8 Cardigan Read,
London, E3 5HU. UK subscription is currently £12 (students £6}.

28

The Education Vector Vol.9 No.4

A Beginner’s Guide to Low-Cost
“Real-Work” APLs

by Dick Holt

This article is a beginner’s guide to low-cost APL interpreters, compiled by the
APLSIG of the Capital PC User Group (CPCUG). Comparisons emphasize work
and business applications — because it's the workplace that generates demand
for technological innovation, and pays for it. I emphasize free or low cost APLs,
because these are likely entry points for exactly the kind of people who are most
badly needed by the APL community — namely newcomers.

It's an “apples and oranges” comparison because the various APLs are
themselves “apples and oranges”. It may contain errors of fact, as well as
opinions that are wrongly informed. Corrections are invited. [I will be pleased fo
receive, pass on and publish any comments/corrections — Ed.]

A central theme of this article is that APLs vary widely in size, speed,
performance, and price. An advantage of this heterogeneity is that APL offers
“something for everyone”. A disadvantage is that there is little compatibility
among versions. In any event, at least two free or low cost APLs — with big
workspaces, good speed, and many useful features — should now be
increasingly attractive to people who have never used APL before,

To begin, here are a few speed and size comparisons, referenced to the free demo
of APL*PLUS ¥10.1, a widely used commercial APL:

Table I: Size, and Relative Speed: For five simple benchmark tests (B1-B5).

[IKA =
Interpreter B1 B2 B3 By BS CLEAR W5
APL+PLUS demo >1.00 >»1.00 i.00 i.00 1.90 1}
APLI386 i.13 2,11 >0.2h ¢.97 >0.03 1044 K
APLIPC 1.11 2.36 .50 1.25 0,12 262k
APLISW 1.39 2.36 0.50 1.25 0,12 312k
TryAFL2 u.52 2.48 4,17 >0.36 »0.,03 233k
Sharp APL/PC 1.46 2.41 0.67 1.40 0.15 195k
I-APL 20.78 30.95 26.50 19.22 79.40 31k

All benchmarks times are normalized to APL*FPLUS demc = 1.00

29

The Education Vector Vol.9 No.4

Benchmark Bi: Q»9; where Q is (2.5+11800): 1800 exponentiations.
Benchmark B2z: (13000)+44,3: 3000 rloating point divisions.
Benchmark Ba: +/115000: 1500¢ integer additions.
Benchmark B4: 20'u0, looped 1000 times (re, looping doesn't

cost all that much time}.
Benchmark B5: length 10,000 boolean vectors, and-ed and or-ed

10 times (100,000 boolean operations).

* Defaults for my machine: OW4 for APLI386 is as large as RAM permits, and
may be increased further by a user-transparent virtual (on-disk) workspace.
OKA for APL*PLUS demo is zero, since the) CLEAR WS is, by design,
inaccessible. DWA for others is configuration dependent, except for I-APL,
which is limited to 31.6k on DOS machines (less if cover functions are used for
graphics, files, help, elc.).

Benchmarks are designed to avoid #§ FULL in 1-APL, and to run in a few
minutes or less on my machine. Times are normalized to APL*PLUS, and are
independent of disk speed.

Observations

Speed and size vary enormously. APLI386 has a JWA 30 times larger than I-ATL
{on my machine), and does integer addition 17 times faster than Try APL2. For
exponentiation, TryAPL2 is 3-4 times slower than all except IFAPL. All Tverson
software is 2-4 times faster than APL*PLUS for +/115000, APLI386 is more
than 100 times faster than I-APL for +/:15080.

For dyadic shriek (!), TryAPL2 is 3 times faster than both APL*PLUS and
APLI386, and 29 times faster than I-APL. Although not commeonly used, dyadic
! is purposely chosen to highlight speed variations. Non-integer arguments for !
weren't tested.

For boolean operations — a putative strong point of APL — APLI386 and
TryAPL2 are 30 times faster than APL*PLUS, and more than 2500 times faster
than I-APL. Both APLI386 and TryAPL do boolean operations so fast that I had
to run them 10E7 times to find out which was faster. TryAPL2 seems to be about
half of one percent faster than APLI386.

These speed tests aren’t directly comparable: Iverson APLI386 uses the 32-bit
instruction set of the 386 chip — none of the others do. Benchmarks can be
notoriously misleading, and your times may be different. Run your own tests.

Blitzing speed and big workspaces are important, but theyre not the only things
to consider. Fffective use of APL also depends on features like a full-screen

30

The Education Vector Vol.9 No.4

editor, vendor support, useful application development tools, good
documentation, and smooth upgrade paths.

Hardware is also a factor. Only APLI386 requires a 386 machine. All others work
on a 386 and on lesser machines. Among free or low-cost interpreters, only
Try APL2 requires a colour monitor {(EGA or better), but [verson’s APL characters
are inaccurate on a monochrome monitor.

Can [do “real work” in any of these low-cost APLs?

APL*PLUS demo: No — User-defined functions/system commands inaccessible
TryAPL2 :Yes — But with del editor, no DOS or APL files

APLI3&6 :Yes — 386 required, also does Windows

APLIPC :Yes — 386 not required

Sharp APL/PC :Yes — Limited: poor documentation, not easily available
APLISW 1 ? ~ Limited: no DOS files, no APs

I-APL 1 ? — 31k WS, slow, no error trapping

To be fair, the APL*PLUS demo and I-APL aren’t designed to do real work.
They're designed to showcase product features or to teach APL. Within varying
limits, real work is feasible with all other APLs.

Table 2 Upgrade Path and Prices ($US)

Disk Documentaticen $ Full $ 386
Interpreter Type Price Price #»* Product VYersion
APL*PLUS demo flat frees free/on screen $695 $1700
TryAPL2 nested freex free LI print $500 Included
APLI386 boxed 530 $30 2 books Is ful! product
APLIPC boxed 530 $30 2 DOOks APLI386 APLIZ86
APLISW boxed free 50mMe On sScreen APLIPC APLI386
Sharp APL/EC boxed free unavalilable? APLIPC APLI 386
I-APL flat free 25 Any of the above

* Free from original source (see “Sources” below), and dewnloadable free from
the BBS\ APL. Request to download may be needed. Some suppliers may
charge a nominal fee.

** Disks, but not documentation, may be downloaded free from the BBS\ APL,
and may also be available elsewhere.

*** Documentation for Sharp APL/PC may be hard to get and is hard to use.
Iverson documentation is an imperfect hybrid of Sharp APL/PC (orphaned
v17) material, mainframe material, and new on-screen lverson material.

Prices may be discounted: street price, volume, educational, dealers, etc. Ask. See
“Sources” below,

31

The Education Vector Vol.9 No.4

IBM (TryAPL2 and APL2/PC), lverson (and Sharp), and APL*PLUS 11 (386
version) all provide “nested” or “boxed” arrays — all in incompatible ways.
Also, many “flat” features aren’t compatible among various APLs, and
APL*PLUS isn’t fully compatible with APL*PLUS 1.

Because of numerous and deep incompatibilities, switching from one ATL to
another can be an obstacle to upgrading.

Keyboard and Other Incompatibilities

Keyboards for IBM and APL*PLUS are similar. They're the traditional APL
keyboards. Iverson keyboards are slightly different, but resemble the APL*PLUS
“unified” keyboard as used in the APL*PLUS demo. Many Iverson APL keys are
in the “traditional” place, differing mainly in the use of lower case, and in the
use of <ALT> rather than <SHIFT> to get special APL characters. Most Sharp
keys are in the same place as Iverson keys. Users of these APLs can probably
switch from one to another without too much difficulty, at least as far as the
keyboard is concerned. Non-keyboard incompatibilities — mainly in quad
functions and shared variables — are also difficult. Try APL2, APL*PLUS demo,
Iverson Software, and CPCUG APL lessons all have on-screen keyboard
diagrams and on-screen help.

Because -APL attempts to adhere to ASCI], its keyboard is almost completely
unrelated to any other APL keyboard. Does this mean that the I-APL keyboard is
“bad”? No. It's simply that switching from I-APL to any other more powerful
APL is harder than switching among these other APLs. From a beginner's
perspective, all APL keyboards are “bad”. In its 1991 APL classes, the CPCUG
found the APL keyboard to be the greatest single obstacle to learning APL.
Students who begin with I-APL must learn a new APL keyboard if they want to
upgrade to a more powerful APL.

Editors

A full-screen editor is essential for modermn programming, in APL or in any other
language. Among commercial products, APL*PLUS and APL*PLUS 1I have a
superior built-in assembly language editor. Iverson products have a full-screen
editor function that may be copied into your WS. IBM’s APL2/PC also has an
editor function that may be copied into your WS, or you may also use something
like IBM’s “Personal Editor” for APL2/PC. TryAPL2, Sharp APL/PC, APLISW,
and 1-APL have only the obsolete “del” editor. The del editor is a line editor like
D0S’s EDLIN, lacking only most of its convenience.

32

The Education Vector

Vol.9 No.4

Full-Screen Management

APL*PPLUS v10 — Yes, excellent, versatile, strong

APL*PLUS demo — No, screen management is user-inaccessible
TryAPL2 — Yes, uses shared variables

IBM APL2/TC — Yes, uses shared variables

APLI386 — Yes, uses shared variables

APLIPC — Yes, same as APLI386 above

Sharp APL/PC — Yes, difficult

I-APL — Yes, has FSCREEN.IWS with GET and PUT cover functions
APLISW — No

Files DOS Files APL Component files
APL*PLUSdemo No No, quad functions inaccessible
APL*PLUS Yes Yes

IBM APL2/PC Yes Yes

APLI386 Yes Yes

APLIPC Yes Yes

Sharp APL/PC Yes Yes

I-APL Yes (cover fns) No {cover fns available)
TryAPL2 No No

APLISW No No

Documentation

APL*PLUSdemo — On-screen keyboard tutorial/description of features.
TryAPL2 — On-screen doc. & lessons; L] printable user manual.
APLI386 — On-screen, plus two inexact books.

APLIPC — Identical to APLI386 above.

APLISW — Some, on-screen.

1-ATL - Good on paper, not much on-screen.

Sharp APL/PC — None on-screen, paper not easily available, difficult.

On-screen Help Supplied

APL*PLUS demo — Excellent, also excellent for full products.

TryAPL2 — Good, in WS TRYDOC.TRY.

IBM APL2/PC — I don't know,

APLLE386 — F1: Fairly complete, paper documentation essential.
APLITPC — F1: Identical to APLI386 above.

APLISW — F1: ldentical to APLI386 above.

Sharp APL/PC — No.

1-APL — No.

Function Keys: settable on all except APLISW and I-APL. Varying degrees of
pain on all others.

APL Lessons Availability: CPCUG APLSIG's generic, interactive, on-screen
lessons are available for all APLs discussed here, some also in French.

33

The Education Vector Vol.9 No.4

Non-English Language Keyboard/Character Support: This feature is important
only if you care about being competitive in today’s global marketplace (not
everybody does). Among APLs discussed here, only TryAPL2 includes
instructions for the keyboard and National Code Pages. On-screen non-English
characters and non-English keyboards can be made in other APLs, with varying
degrees of pain.

Calls to Machine Language/C/Fortran etc,

APL*PLUS — Yes

APL*PLUSdemo — Yes, example provided of calls to C

TryAPL2 — No, requires AP219, not included in demo

IBM APL2 — Yes, FORTRAN W5 included in product

APLI386 — [1NA type improvements planned

APLIPC — N4 type improvements planned

I-APL — Yes, machine language expertise needed

APLISW — No

Commercially Motivated Market
Vendor Support Kaizen Strategy? Responsive?
APL*PLUS — Hot-line + bbs Yes, to a fault Highly so
APL*PLUSdemo — Ask salesperson Apparently Very Likely
TryAPL2 — Hot-line, free Yes Apparently
IBM APL2 — Hot-line, free Yes, not to & fauit Unknown
APLI386 — Hot-line, toll Yes Apparently
APLIPC — Hot-line, toll Yes Apparently
APLISW — No No No

[-APL — No No No

* Kaizen is the Japanese lerm for a reliable corporate commitment to unceasing,
market-driven, improvement and innovation.

Run-Time Systems: Programming APL for run-time systems, whether for
commercial use or just for your work group, requires strong skills in error
trapping. All APLs here, with the exception of I-APL, have error trapping
features — and all are incompatibly different. TryAPL2's error trapping is
undocurmnented.

IBM APL2 includes a free run-time .EXE system. APL*PLUS and APL*PLUS Il
provide run-time systems at varying prices: APL*PLUS 5-pack is $250, unlimited
is $995; APL*PLUS 11 5-pack is $875, unlimited is $3000.

Pricing strategy for Iverson APLI386 and APLIPC make run-time systems
inexpensive for distribution in small numbers. If you develop an application that
will sell many copies, APL*PLUS may be cheaper. [-APL may be distributed free,
but commercial use is prohibited.

34

The Education Vector Vol.9 No.4

0Odds and Ends: Iverson Software products (and Sharp) have built-in complex
numbers. However, complex number cover functions are not hard to write, and
are available as shareware, or come with some other APLs. Only [-APL uses
“direct definition” functions. Only APL*PLUS II and Iverson AFPLI386 do
windows. Only 1-APL is available on a very wide range of machines, such as
ATAR], BBC, Archimedes, or Mac Il

Other Info Graphics Color Printer Support
APL*PLUS Yes Yes V. good

APL*PLUS demo Yes Yes not accessible

IBM TryAPL2 Yes Yes V. good for 1]

1BM APL2/PC Yes Yes V. goad, via AP80
APLI386 Yes Yes V. good (L], PS, DM)
APLIPC Yes Yes ldentical to APLI386
I-APL Possible Possible Limited

APLISW No No No

Sources

APLI386/ APLIPC: lverson Software Inc.
33 Major Street, Suite 466
Toronto, Ontario Canada M5S 2K9
Tel: 416-925-6096, Fax 416-488-7559

TryAPL2: IBM APL Development (specify disk size)
M46/1D12-278B Santa Teresa Lab
Box 49023, San Jose CA 95161-9023 USA

APL*PLUS demo: Manugisties Inc.
2115 East Jefferson St. Suite 729
Rockville MD 20852 USA 301-984-5412

I-APL:
USA UK inquiries UK Orders
6611 Linville Dr. 11 Auburn Rd. Depl. 278 59 The Crescent,
505 Suite 314 Redland Milton, Weston-super-mare
Weed CA 96094 Bristol BS6 61.5 Avon BS22 8DU
Call for Action

This comparison of APLs is a collaborative effort by the APLSIG of the CPCUG.
We've invited corrections and improvements from APL vendors. I'm not sure
that we've got everything right. Readers are invited to send corrections and
improvements to the editor of Education Vector, who will forward them to the
author.

35

The Education Vector Vol.9 No.4

Workshop: Learning Maths with APL,

by Howard Peelle, University of Massachusefts

Sample Topic: “Triangular Numbers”

First, the primitive function 1 is introduced by an example:

7
12 3456867

The example is intended to be strongly suggestive in provoking thinking, The
learner may well try other examples, such as 16 or 18 or even 11000 {which
would overflow the screen while instilling a certain sense of power) or better yet
experiment systematically (15, then 14, then 13, then 12, then 11) to see a
pattern clearly. Then one can infer how to define the function precisely: 1 is the
Integer function, which generates all consecutive indices starting with 1 up to
(and including) the integer given. The learner might also test special cases, such
as 1 0 (which produces an empty list, vet is consistent with the above definition)
and discover the limits of its domain — ruling out negative numbers and
decimal numbers (which yield DOMATN ERROR from the computer).

Further, the syntax is important to notice: 1 is a “monadic” function (i.e. it has
one input), in contrast to “dyadic” functions, such as + and » (which have two
inputs). This distinction may have been introduced already, perhaps along with
the new knowledge that all APL functions are either monadic or dyadic.
Nevertheless, this is an opportunity to reinforce this important APL concept
while menitoring disequilibrium with the learner’s previous understanding of
function syntax, which may need clarification due to inconsistencies inherent in
conventional mathematical notation (see [1]).

Careful inferpretation is also needed because the learner may well try using 1
with other functions, as in 0= 17, which gives 10 20 30 40 50 60 70;or
17x10, whichyields 1 2 3 ... 69 70. The contrast is important to note —
10 Times the result of 17 vs. 1 of the result of 7 Times 10 — because it raises the
issue of how APL evaluates expressions with more than one function. Through
experimentation, the learner can realize APL’s rule: every function uses the entire
expression on its right (unless indicated otherwise with parentheses). This rule
applies equally to all functions; that is, there is no hierarchy of functions in APL,
as there is in conventional mathematics (exponentiation before x and / before +
and -).

36

The Education Vector Vol.9 No.4

Although APL appears to accommodate many cases (e.g. (2x3)+4 is 10), it can
produce some unexpected results (e.g. 2x3+4 is 14 in AFL because 3+4 is done
first). While it may take more time for the learner to adjust to APL, at this stage it
is advisable to use redundant parentheses to clarify order of operation.
Eventually changing to this new rule can empower the learner by offering some 60
primitive functions on the keyboard (plus more which can be derived or defined
as programs) and the convenience of a single, completely general rule to handle
any expression with any number of functions, without having to memorize ot
look up which gets done before another.

The next expression shown on the handout is:

+/7 The sum of the integers from 1 to 7
28 is 28

The Sum function +/ has probably been introduced already (as in the topic on
Averaging). If not, for now suffice it to say that +/ inserts + between each
number (and evaluates the resulting expression). And defer interest in exploring
the operator / {which can be used with other functions) for another time.

The overall objective of this topic is to explore alfernative ways of finding the sum
of consecutive integers. Accordingly, the next four expressions illustrate a
different algorithm.

$27 Phe reversal of the integers 1 to 7
76 54321

The learner may explore the behaviour of the Reverse function ¢ on other lists
(including characters, for instance ¢'LIVE' is 'EVI L') or indeed on other
arrays such as matrices (which become reversed about the vertical axis, as
indicated mnemonically by the symbol ¢ itself). This leads naturally to another
topic: palindromes (not discussed here).

{(d17)¥+(27) Phe result above added to integers 1 to 7
8 8 68 88 8B B

APL petforms this addition in parallel, automatically. Learners may try similar
expressions with other appropriate functions. Since the concept of parallel
processing is likely to be new knowledge, it may need to be addressed again
later (as in a “spiral curriculum”), perhaps including the special case of a single
value (e.g. 10x17 mentioned above). For now, however, the learner should
concentrate on building an expression to represent this particular algorithm,
which involves adding a list to itself. Incidentally, another similar algorithm

37

The Education Vector Vol.2 No.4

folds the list about its centre point but raises the issue of odd vs. even length lists
(not discussed here).

+/(917}+(17) The sum of the list (of sevenm 8s5) above
56

Note that +/ applies to the result of everything to its right.
(+/{¢17)+(17))+2 Halfof thatis 28 28.The learner may notice that this is
the same result obtained earlier (by summing directly using +/). So, this is
apparently another way to find the sum of counting integers!

This algorithm can be embodied in a “glass box” program for further study, like
this:

GAUSS: (+/(drw)+{1w))=2

The name of the program (GAUSS) is chosen for historical reasons (see story
below).

Note use of w to represent the input, which can be any integer. If other mechanics
of defining a program have not been introduced yet, just say: “Type a name
followed by a colon, then the algorithm (expressed in terms of w for the input it
will get later)” and be prepared to help in subsequent editing,

Giving an algorithm a name provides a more convenient way to try it out. For
example:

GAUSS 7 Using program GAUSS with an input or 7
28

The learner may try it again for a different input {besides 7). Reflecting on the
algorithm can lead to insight: there are always ¥ copies of N+1 to be summed
and then halved.

Anecdotally, there is a story about the young German mathematics prodigy, Karl
Friedrich Gauss, who is said to have discovered a simple way of calculating the
sum of ¥ integers in the late 18th century. When asked by his schoolmaster to
take out his slate and add the integers from 1 to 1000 (or some such large
number) in order to keep Karl busy for a while (since he was probably bored and
disturbing other students and the teacher with difficult questions), Karl came up
with the answer startlingly fast. Here, having experienced the development of
the algorithm (above), the learner can join in speculation about how Karl might
have done it.

38

The Education Vector Vol.9 No.4

Finally, another expression is given. It also results in 28:

7TR(7+1}+2
28

This may be recognised as a particular case of what has come to be known as
“Gauss’s Formula”: n(n+1)/2 in conventional notation. The formula calculates
the sum of the integers from 1 to n. It may be compared with the algorithms
above and seen to be exceedingly more efficient. The learner can easily express
this in APL: Nx (N+1)+2 and try it for any value(s} of N or, better yet, constrict
another glass box program:

TRI: wx(w+i)+2 Program TRI (a suggestive name)

This program may be used with several input values at once, yielding patterns
worthy of further study. For example:

PRI 1¢ 4100 1000 10000 1000CG0

55 5050 500500 50005000 500000500000
PRY 14 2 3 456 7 8 9 10

1 3 6 10 15 21 28 36 45 55

Note: the 7th TRI result is 28.

These are “triangular numbers”, so named because they represent the number of
(lattice) points in a triangle, as shown below:

Note: The first triangular number is 1

- (one dot in the tirst row}; the second
is 3 (1+2 dots In the rirst twvo rows);
P third is 6 (4+42+3 dots in three rows);
e e = fourth is 10 (1+42+3+4 from fQur rows};
e s v e e tifth 1s 45; sixth is 21; and seventh
e e e v e {s 28 (1+2+3+4+5+6+47 from all seven rows).

Thinking of a triangular number as an area leads to a nice geometric
representation of Gauss’ formula as half the area of a N by N+1 rectangle formed
sy sliding two triangles together:

39

The Educatlon Vector Vol.9 No.4

Finally, the learner may now be informed that APL provides a primitive
function, called Sum-Scan, which produces a list of triangular numbers directly:

+y17
13 6 10 15 21 28

Exploring this function by itself may lead to more discoveries, for instance, that
Sum-Sean of odd integers produces squares:

+\1 3 57 9
14 9 16 25

And successive Sum-Scans are found in Pascal’s triangle (which is a likely next
topic for a workshop).

For now, in closing, the learner can put GAUSS and TRI in his/her conceptual
“tool box” (as well as save them on a computer disk) for later modification and
use, perhaps along with other tools, for learning mathematics.

Reference

1] Peelle, H.A. “Introduction fo APL for Learning Mathematics”, Journal of
Computers in Mathematics and Science Teaching, Vol.9(1) Fall 1959.

Sample Hand-out Worksheet: Teaching Mathematics with APL

Examine the following APL expressions and write annotations in the margins on
this page (and back, if needed) briefly describing what you think each expression
does,

17 +/17

$17 {@17)+(:27}
+/{pt7)+(17} (+/{917)+(217))22
Tr(7+1)%2

As you proceed, use the computer to explore unfamiliar symbols by trying
additional similar expressions. By observing patterns in the results, try to infer
how each symbol works in general.

Review the overall sequence of expressions given and identify the algorithm or
topic illustrated here. Embody the algorithm in a program, modify it for your
own purposes, explore related topics (if you have time), and mention possible
applications of the program(s).

40

The Educatlon Vector Vol.9 No.4

An APL Scrabble Bag

Contributed by Bill McLean and Ted Emms

This simple game is a nice little exercise in APL. 100 Scrabble tiles (with letters in
various proportions) are mixed up and drawn in groups of five. You take the five
tiles presented, plus two optional letters of your own choosing, and try to make
an anagram. If you succeed, you score the value of the tiles drawn. The computer
keeps the score.

{0l
£1]
(2]
[a]
[u]
[sl
L6]
71
=2}
[el
f101
£11]
[12]
[13]
[14]
[15]
[16]
[17]
i8]
{191
£20]
f21]
[22]
[23]
[2u]
[25]
[26]
[z71

BAG;ALPH;COUNT:LETTERS:ORDER;PLAYERB;SUM;ELDCX:I:NUHS;PLAYERA;SCDRE;DIO
LETPTERS+'ABCDEFGHIJELMNOPQRSTUVKXYZO!

SCORE+1 3 3 2 14 2 4185131131011 1144 84 1020
NUMS+«89 2 2 4 12 2 3 2 9114 268216 464221212
ALPH«NUMS/LETTERS

PLAYERA«0Q

PLAYERE+0

SUM+0

I«0

0Io+o

ORDER+1007100

BLOCK+20G Sp(ALPH[ORDER])
LINE:O+BLOCKLT;]

COUNT~LETTERStBLOCK[I;]

SUM«+ /SCORELCOUNT]

+(2| (I, I+1})/EVEN,0DD
0DD:'PLAYER A. DID YOU MAKE AN ANAGRAMZ (Y/N}!

> (VYN =14[1}/44,BB
AAd: PLATERA+FLAYERA+SUM
BR:I+I+1

+LINE
EVEN:'PLAYER B. DID YOU MAXE AN ANAGRAMZ (Y/N)!
+('YN'=1+{1)/CC, 00
CC:PLAYERB+PLAYERB+SUM
DD I+I+1

+{I<2G}/LINE

'PLAYER A: SCORE = ', vPLAYERA

'"PLAYER B: SCURE = ‘' ,vFLAYERB

The scores for the different letters are set up in line 2, the numbers of each letter
in line 3, and the random ordering is set up in line 10, and arranged in rows of
five in line 11. Inside the loop (lines 12-25) the score is calculated in lines 13 and
14. Line 15 determines whose turn it is. The scores are only added if an anagram
is claimed.

41

The Education Vector Vol.9 No.4

A typical "game” goes something like this:

BAG

IGEIQ

PLAYER A. DID YOU MAKE AN ANAGRAM? (Y/N)
N

EQFOV

PLAYER B. DID YOU MAKE AN ANAGRAM? (Y/N}
N

TIEPT

PLAYER A. DID YOU MAKE AN ANAGRAM? (XY/N)
Y

SRENS

FLAYER B. DID YOU MAKE AN ANAGRAM? [(Y/N)
¥

and so on, until you have had ten goes each...

ATHEM
PLAYER B, DID Y0U MAKE AN ANAGRAM? (Y/N)
¥

PLAYER A: SCORE 56
PLAYER B: SCORE = u2

.. and you can start all over again!

VECTOR Vol.9 No.4

APL Product Guide

Compiled by Gill Smith

VECTOR's exclusive APL Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements. '

We do depend on the alacrity of suppliers to keep us informed about their
products so that we can update the Guide for each issue of VECTOR. Any
suppliers who are not included in the Guide should contact me to get their free
entry — see address below.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups (‘poa’ indicates “price on application”):

- Complete APL Systems (Hardware & Software)
» APL Interpreters

- APL Visual Display Units and Printers

+ APL-based Packages

» APL Consultancy

« Other Products

« Overseas Associations

+ Vendor Addresses

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

All contributions and updates to the APL Product Guide should be sent to Gill
Smith, at Brook House, Gilling East, York, YOG 4]]. Tel: 04393-385

43

Vector Product Gulde

Vol.8 No.4

COMPLETE APL SYSTEMS

COMPANY PRODUCT
Active Workspace ~ AWLA486

APL Peopla LBM PCs & compatibles

Dyadlc 18 AS{6000 MD320

18M RSE000 MDIZ0

IBM RS{6000 MD32¢

1BM RS/6000 MDE20

15M RS{6000 MD5S3C

IBM RE/60C0 MO540

Interpracess
Syslams APL2 Dev't Workstation
MicreAPL IBM RS/8000
Aurora
Optima 1BM Compaible
APL INTERPRETERS

COMPANY PRODUCT

Aclive Workspace ~ DYALOG APL DOS 386
APL Scftware APL*Plus{PC Release 10

Run-time

APL*Plus Il

Run-tima
Dyalog APL

APL2/PC

PRICES(E)

1,950

poa

11,786

13817

22,656

37,114

72,054

122,842

poa

12,000+

20,000+

PRICES(E)

poa
450

poa

1,895

poa
1000-10,000

poa

DETAILS

486 based 33MHz PC, 140MB Disk, 4MB RAM, VGA Celour.
{inc. 1 year on site maintenance.)

includes PC, monefcolour monitor, APL interpreter, oparaling
system software, plus optienal printers, graphies boards,
additional memery atc.

APL POWERSstation (Greyscale) 27.5 MIRS, 7.4 Mllops RISC
Processor BMb RAM, 120Mb Disk

19" 12B80x1024 Greyscale Graph Display AlX, OSF Motif, Dyalog
APL (1-user)

APL POWERSstation (Colour) 27.5 MIPS, 7.4 Milops RISC
Processor 8Mb RAM, 120Mb Disk

167 1280x1024 Colour Graphics Display AIX, OSF Mo, Dyatog
APL (1-user)

Advanced APL POWERstation 27.5 MIPS, 7.4 Mllops RISC
Processor 16Mb RAM, 320Mb Disk, 150Mb Tepe

16 1280x1024 Colour Graphics Display AlX, GSF Malil, Dyalog
APL (1-user)

APL POWERsystem (8-users) 27.5 MIPS, 7.4 Mfops RISC
Processor 16Mb RAM, 320Mb Disk, 150Mb Tape CD-ROM
Drive, 18 Ports

AlX, Dyalog APL (2-8 user licenca)

APL POWERsystern {16.usars) 34.5 MIPS, 10.5 Milops RISC
Processor 32Mb RAM, 1.34Gb Disk, 2.3Gb Tape CD-ROM
Driva, 16 Ports

AlX, Oyalog APL (8+ user licence)

APL POWERsystem (32-usars) 41 MIPS, 13 Milops RISC
Processar 64Mb RAM, 1.7Gb Disk, 2.3Gb Tapes CD-ROM Drive,
32 Poris

AlX, Dyalog APL (8+ user licance)

Malnframe APL2 supported on a PS/2 via a co-processor card
with 16Mb of memary running VM/ESA (370 mode). A completa
system includes a PS{2, a PI370 co-processor card, and
soltware licenses for VMJESA, APL2, GDDM and the 1ull line of
Interprocess APLZ enhancemants.,

POWER range of RISC systems running AlX. Dumb terminal or
graphical Interface,

Mult-user APL computer using 68020 CPU. Std. conflguration
2Mb RAM, 16 RS232 ports, 68 Mb hard disc, 720K disketta

Complete PC-based station, APL interpreters & all support eq't

DETAILS
Dyadlc's PC 386 APL Interpreter.

STSG's APL for IBM PCs & compatitles.Upgrades from earlier
releases also avallable.

Closed verslon of APL*Plus/PCT which prevents user exposure to
APL.

All the features of mainframe APL*Flus for your 386PC!

2nd generation APL for Unix systems
|BM's APL 2 for the PC.

Vector Product Guide

Vol.9 No.4

Cocking/Crury APL*PLUS PC Rel 10 410
APL*PLUS PC Run-Time 175 for 5
APL*PLUS PC Developer System 950
APL*PLUS Il System 1200
APL*PLUS |l Developer System 3200
APLPLUS |) for UNIX poa
APL"PLUS VMS poa
APL*PLUS Mainframe poa

Dyadlc Dyalog APL for DOS/386 485
Dyalog APLWY for Windows 995
Dyalog APL for Unix 995-12,000

|AGIHumar: interfacesi-APLiMac 13

1-AFL Lid -APL/PG ar ciones -1
I-APL{BBC Master k|
F-APL{Archimedes 1A
I-APL{Macintosh 13
Iversen Softwara Products

IBM (APL Products) APL Version 2 Release 1 poa

iBM UK

APL2 Application Env't Ver2 Rell poa

APL2 for the AISC Systeny.6000 poa
APLZ far the IBM PG (LS version)$495

APLZ for IBM PC {European vers) poa

TryAPL2 frea

IBM PC APL2 348

STSC's full featured APL for IBM's and compatibles - Verslon 10
includes the Quad-NA fadility 1o interface to non-APL soltware,
suppert for Mlcrosalt Windows and mouse devices. The Usar-
command processer has been built in 1o the interpreter,

Upgrades to verslon 10 are avallabie trom Version & and earlier
releases,

Closed varsion of the interpreter for developers, prevernts user
exposure to APL

Gives rights t distribute an unlimited number of copfes of Run-
Time application.

Bigh powsred APL Interpreter for the 80386 chip.

Price Includes one year's malntenance and fres upgrades -
volume dlscounts

VERSION 4.0 NOW AVAILABLE - THE ONLY APL THAT LETS
YOU BUILD WINDOWS & DOS APPLICATIONS FHOM ONE
PACKAGE.

Unlimited distributlon of APL*PLUS Il Run-Time appllcations!

STSC’s 2nd generation APL for all majer Sparc and Rise Unlx
workstations.

2nd generation APL for DEC VAX computers running under
VMS.

Enhances VS APL with many high performance, high
productivity features. For VM/CMS and MVS/TSO offers simple
upgrade from VS APL.

Second generation APL for DOS.Runs in 32-bit mode, sUppors
very large workspacas. Unique "window-based" APL
Development Environmant and Screen Manager. Requires
386/485 based PC or PSf2, at least 2Mb RAM, EGA or VGA,
DOS 3.3 or later.

As above, plus object-based GUI development tools. Redulres
Windows 3.0 or latar.

Second generation APL for Unix systems. Avallable for Altos,
Apolls, Bull, Dag, HP, 1BM 6150, IBM RS{6000, Masscomp,
Pyramid, NCR, Sun and Unisys machines, and lor PGs and
PCf2s running Xenlx or AX. Oracle Interaca avaliable for IBM,
Suh and Xenlx verslons.

Macintosh varsion of I-APL

15O conforming interpreter. Supplied only with manual (ses
‘Other Products' for accompenylng books).

As above

As above

As above

[-APL is the UK agant for ALL Iverson Software products,
inciuding: Sharp APL + enhancements to the ISI-APL, standard
Versions of J (and the assoclated texts) for PC, Mag, Are, Atarl,
Plaase call for price list and order form, Flease note thets Is a
£3 packing charge on all orders,

Full APL2 System for IBM 370 and 390. Product No. 5688-228.
See your IBM Branch Offlca.

RAun-ima Environmant for APL2 Packages (IBM 370 and 380).
Product No, 6688-229, Sea your 1BM Branch Office

Product No. 5765-012. See your IBM Branch Cfilce.

Product No. 5798-PGG, Part No. 6242936, PRPCI No. RJB411
(in HONE, RJ0411). (from IBM Direct, order by Part Number;
from your iBM Branch Cflca, ordar by PRPG Number)

Product No. 5604-280, Part No, 38F1753

Frae APL2 for educationalfdemanstration use, Write to APL
Products, specilylng diskette size desired.

APLZ fer the IBM PG. From all IEM dealers, including MlcroAPL

45

Vector Product Guide

Vol.9 No.4

Iverson Software Inc. APLI38S

MicroAPL

Optima

Rauters Ltd

Uniwara

$30
APLIPC $30
APL.68000 Level | 2000
APL.GB0O0D Level Il 2500
APL.6800OMX 1500-6000
APL.68D0G Lavel |
Mac, ST, Amiga 87
Mac, Amiga 260
APL.BB0CO Leval Il
ST 170
Amiga 260
Mac 520
APL*PLUS Rei 1D 450
APL"PLUS I V 4.0 1395
APLPLUSIFC 359
APL'PLUS 1 950
APL*PLUS Il PC Developers KIt poa
Cyalog APL 99%
SHARP APL for MVS poa
SHARF APL for Unix poa
APL*FLUSIPC 495
Run-Time call
APL*PLUSIUNX call
APLTPLUS IL call

Sharp APL Release 20 for PC 386, 486 with graphics, and ability
to operata under Windows.

For PC

First genaration APL with numerous enhancements. Multi-user
varsion {Unlx, Mirage, MCS).

Second generation APL. Nested arrays, user defined operatars,
selective spacification etc. Muiti-user version (Unix, Mirage,
MCS)

Second-generation APL Nested arrays, user defined operators,
selective spacitication, ate. Multi-user AlX varsion with ful!
OSF{Maolit support,

First generation APL. Singla user, full windowing intertaca,
software floating point support.

First generation APL, Single user, tull windowing Interface,
hardware floating polnt.

Second generation APL. Full windowing Interface, software
floating peint support.

Second generation APL. Full windowing interface, Hardware and
softwara flcating peint support.

Second generatlon APL. Full windowing interfaca.Hardware and
software floating polnt support.

for (BM MVS mainframes
for IBM RS/600C and Sun SPARC
STSC's full feature APL for IBM PCIXT/AT, Compag, Oliven.

Closed version of APL"PLUS/PC which prevents user exposure
to APL.

STSC's tull featura APL for UNIX based computers
STSCs tull featurs APL for 386 machines.

APL VISUAL DISPLAY UNITS AND PRINTERS

COMPANY
APL People
APL People

Dyadic

Dyadic

Generel Sohtware
Shandell

PRODUCT

iBM & compatbles
Epsen series
Quen-data & Guma et
1BM 3151

IBM 6154

Printers (Varlous)
Mesllordata
HDS Monitors

X-Terminals

PRICES(E)
poa
200
200
599

1,228

poa

poa
G65-1395
1000-3500

DETAILS

|BM and *budget’ APL VDUs - menechremsfeelourfgraphics,
Inexpanslve dol-matrix and NLG printers

Daisy-whael printers

Menochrome APLJASCII vdu with APL keyboard. Supparts
downloaded Dyalog APL font.

Crlour APL/ASCI| vdu with APL keyboard. Supports downloaded
Oyalog APL font.

Rangs of APL printers avallable.

Arange of APL monitors, Please call for detalls.
View-stations for use with all X-Windows systems

46

Vector Product Guide

Vol.9 No.4

APL PACKAGES

COMPANY PRODUCT PRICES(E)

Active Workspace Lid

Syndicate Manager poa
APL-385 APL-385 50(PC),125(mf)
FSM-385
DRAW-3B5
CB-385
GEN-385
The APL Group Qualed $1500.4000
APL Software Lid
{rmainframe) RDS poa
IPLS poa
REGGPAK poa
(microcomputer)
POWERTOOLS 205
AEGGPAK poa
RDS 950
Gocking/Drury
{for VSAPL) E'MENTS & SHAREFILE poa
COMPILER poa
FILEPRINT poa
FILECONVERT poa
FILEMANAGER poa
TOOLS + UTILITIES poa
DATAPORT poa
(far APLZ) SHAREFILE/AF poa
FMT poa
WsDoC poa
FILEMANAGER poa
{for PC's)
APL*PLUS PG Tools 275
IRMA Medule 90
FIN & STAT. UBRARY 250
SPAEADSHEET MGR 150
CYBEX AB APL GralJPC 200
APL Gral IIjPC 390
Utility Functlons APL2 1800
Utility Functlions 1fPC 530
H.MW. 4XTRA poa
Arbitrage poa
Basket poa

DETAILS

Lisye's managing agent's syndicate { company accounting
systam. Stamp & Personal accounts (ine. Run offs)

including ...

Screen development
Screen dasign
Relational W.5.
Miscallaneous Uiilites

Electronic Data Interchange (EDI) translation sottware for the
PC, with strict compliance checking.

Relation Data Base System
Project Menagement System
Regrossicn Analysis Package

Assembler written replacement function for commenty used
CPU-consuming APL funcions, indudes a Forms Processor.

Regression Analysis Package
Fielational Database System

Compenent files, guad-lunctiens & nesied arrays for VSAPL
under VM/CMS & MYS[TSO

The First APL compiler!

Print APL component fles

Converts non-APL fles 1o APL

Extends APL primitives to database management
APL Software development tools

Informatian Centre spreadsheet incorporating dala exchange
batween APL, FOGUS, IFPS, SAS, APL{DI, ADRSII, Lotus123,
Visicals, Multiplan & DIF

STSC's shared access companent file system for APL2.
Compareble to all APL*PLUS flle systems: mulil-user sterage of
APLZ arrays with efflcient disk usage

Full teatured FMT for APL2
Workspace documeniation utiltiies
Extends APL primldves to dalebase managemant

Utlides Including: AAM dlsk, full screen data enlry, mentt Iaput,
report generation, exception handling and games.

327 IRMA support.
Finanelal & Statlstical routines

APL-based spreadsheat for APLPLUS/PC, Call arfthmatic;
transfers to ASCI} & Lotus

Presentation graphics for APL"PLUS/PC (CGI)
Presentation graphlics for APL*PLUS IIJPG (CGI).
For APL malntrame; Ind. & very fast search,

Sama package far APL"PLUS PG,

Frant-end Forelgn Exchanga deating / pos keeplng
Arblirage modelling

Basgket currency medelling

47

Vector Product Guide

Vol.9 No.4

Menu-Bar pos
HRH Systems APL Uilities poa
APL"PLUS Utllites
TAC/Humar: Interfaces |AC/Graf 15
AT Vox L]
I-APL Ltd Educational workspacas [
impetus Lid Impetus poa
INFOSTROY APL*PLUS{Xbase Interface
(I1/386 Varsion 2) $198
(PG Version 2) $08
(DLL Version 1) $108
Interprocess Systems IEDIT $3000-5000
AQG poa
{mainframe} AFM $6500-15300
(PC) AFM $175
Enhanced Format $2575
PewerGode $2000
CALLJAP $4700
WS0ORG poa
Mercla STATGRAPHICS 5 635
STATGRAPHICS PLUS 895
LOGOL g0 poa
TWIGS poa
MicroAPL MicroTASK - 250
MicroFILE 250
MicroPLOT 250
MicroLINK 250
MicroFORM 250
MicroSPAN 250
MicroPLGTPC 250
MicroSPANPC 250
STATGRAPHICS Rel 5 590
Reuters Lid GLCS poa
LOGOS poa
MAILBOX poa

pull-down menu for APL"PLUSIPC

Saftware o transfer workspaces between APL*PLU% aug Sharp,
and betwean APL"PLUS and [-APL. Softwaie to import |1BM ATF
files ta APL*PLUS,

Public demaln softwars, unlock locked fns, a user-friendly
ajtemative 1o locking, ins of mathematical physics, menus, and
others.

Graph plotting for I-APL{Mac
Spoken APL characters for I-APL/Mac

PC formal disks with the examples from: Thomson, Esplnasse
{Kits 1-4), Kromberg, Jizba & FinnAPL. All the examples to save
yaour fingersl

Comorale Modelling and Reporting Systermn.

Complete package written in C, Comparable with the data, index
& memo files of FoxPro, dBASE, & Cllpper. Multi-user support.
No DBMS llcensa required.

As abova for APL*PLUSIPC,

The same In a DLL form! Gives your Windows applications all
advantages of DLLs.

Full screen APL2 editor with Immediate APL execution, and tull-
screen debugger

AFL2 Optimizing Compiler, transiates APL2 functions to
FORTRAN programs.

High perfarmance component and heyed ffie system (VS APL
and APL2}

Single user component and keyed files for APL2/FPC,
A QuadFMT data fermatter for VS APL and APL2 |
External lunctions for APL2

For galling non-APL programs {VS APL and APLZ)
Full-screen Workspace Organlzer for APL2.

The old favourite.

Now running under APL*FLUS Il - so you can have as much
workspacae as you want!

Logistics management system for 386[486 & RISC computers.
Sales Forecasting, Inventory Management, Master Scheduling,
Distribution Requirements Planning, Sales & Operations
Flanning.

A modular library of iools to teach and explore state-of-the-art
materials management concepts. Daveloped by R.G. Brown.

Product development aids

File utilitfes and database

Graphics for HP plotiars etc

General device communications

Full sereen forms design
Comprehensive APL tutor

Far APL"PLUS/FC product

APL seff instructien for APL*PLUS/PC

Global risk management for banks
Application Development Environment
Electronlc Mail

Vector Product Guide

Vol.9 No.4

UNIWARE
(for mainframe)

ffor APL*PLUSIFG)

{for APL*PLUS 11}

Warwlck Unlversity

Zark

NEWSFLASH
VIEWPCINT

STSCG's ENHANGEMENTS
STSC’s SHAREFILE
TOOLS & UTILITIES
EXECUCALC

APL Debugger 2.1

Menus 3.0

ETATGEN 2.0

UNITAB 2.0

UNIASM 3.0 (site llcense)
UNISTAT 5.1
UNIWARE Toolxit Il 4.1

APL Debugger 1l 2.1
Menus Il 4.0
ETATGEN I12.0
UNITAB112.0
UNISTAT Plus 5.2
BATS

FAB

APL Tutor (PC)

APL Tutor {MF)
Zark ACE

AFL Advanced Techniques...

poa

pea

poa

FF1685Q
FF8750

FF2450
FF12250

FF195¢
FFe750

FF455¢
FF22750

FF4950G
FF2900
FF32000

FF2950
FF14750

FF3850
FF18750

FF2950
FF14750

FFE850
FF34750

FF4300
2560

free
$299

$5000
$o9

. $59.95

Communications $200 pe, $500 mf

APL CONSULTANCY

COMPANY
Activa Workspace

Adfes

PRODUCT PRICES(E)
Gonsultancy poa
Consultancy poa

Real-ime messege exchange
4GL with Interfacas to DB2, ADABAS, and MVS datasets

Quad-functions & nestad arrays for [BM VSAPL under VM/CMS
and MVS/TS0O

compenent files for IBM VSAPL under VM/CMS and MVS/TSO
and for IBM ARL2

Including FILEPRINT, FILESORT, FILECONVERT
FILEMANAGER(EMMA) STSC’s database package

Mainframe spreadshest compatible with VISICALC and part of
LOTUS 1-2-3 under VSAPL(VM or TSO)

A visual APL debugger 1o help develop applications
(slte llcense)

Gomplete set of hierarchical menu utiltles
(slte llcense)

Page layout report generator
(slte licensa)

An APL*PLUS spreadshest-like data entry and valdation system
{site license)

Assembler utilitles to speed up APL"PLUS/PC appllcations
Data analysls add-on module for Statgraphics

(slte llcense only). Relational database system and complete set
of utilities for APL™PLUS || development

A visual APL debugger to help develop applications

(slte llcense)

Complete set of higrarchical mouse-driven menu utilities
{she license)

Fage layout report generator
{slte license)

An APL*PLUS spreadsheet-like data entry and validation system
{site license)

Data analys(s add-on modula for Statgraphics

Manu driven system for time serles analysis and forecasting
uslng Bayesian Dynamic medeliing. Price s reduced 10 £35 for
academic [nstitutions.

Tralning program for the above.

APL computer-based training. Avaflable for APL"PLUS PC &
APL*PLUS li. Demo disk $10.

Malnframe verslon.

APL continulng education, APL tutor news and hetine phene
support,

488pp. book, (ISBN 0-9618067-07) including 2-disk set of utility
functiens (APL*PLUS PC format).

Move workspaces of files between APL environments,

DETAILS

PC Based APL, system deslgn, pregramming and
Implementation.

Davelopment, maintenance, conversien, migration,
documentation, of APL products In all APL envirenments

49

Vector Product Guide

Vol.9 No.4

APL Feople

Camacha

Ghapman

Cocking/Drury

Pater Cyrlax
David Crossley
Dyadlc

E&S

General Software
Michael Hughes

H.M.W.

Consultancy

Gonsultancy
Gonsultancy

Consultancy

Consultancy
Consultancy
Censultancy
Consultancy
Consuliancy
Consultancy

Censultancy

IAG/Human interfacesConsultancy

INFOSTROY

Intellgent Programs

Kestrel

Linge Allegro LSA

MicroAPL.

Ellis Margan

WMT.1.C.

Cplima

Parallax Systems Inc
GB On-Line
Aochester Group
Rex Swaln

Uniware

Documentation
Training
Consultancy

GConsultancy
Documentation
Training
Censultancy

Consuitancy

Consultancy
Consultancy
Consultancy
Caonsultancy
Consultancy
Caonsultancy
Gonsultancy
Consultancy

Consultancy (Senlor)
Cansultancy {Senior)

poa

pca
250-500
175-275
275-350
300-450

400-60G
450-750

100150
120-200
160-300

pea

poa

paa

from 120
poa

poa

350

10C-200

poa

poa

poa
250-500
240-500
poa
$750
350

poa

poa

FF{day 5000
FF{day 7500

Consultants avallable at all levels, with experlencs in: VS APL,
APL*PLUS, APL2, Sharp APL, Dyalog APL, APL6800, ClUnix,
TSOMVS, VM{CMS, graphics, Operational Research etc.
Expertise In APL system deslgn, project management,
prolotyplng, financial applications, decision support systems,
MIS, links to non-AFL systems, documantation, #ic.

Specialising In programming & manual writing.

s4-hour pregrammer: APL, G, assembler, graphics; PG, mini,
mainframe, network.

Junlot consultant
Caonsultant

Senlor consultant
Principal Consultant
Menaging censultant

Junior Consultant
Consultant
Senior Consultant

Broad experlence in many APL environments

APL and Unlix system design, consuiiancy, programming and
waining.

Sysiem prototyping: all types of Inforimation system, englnesring
soltware, graphics and declsion support systems APL*PLUS/PC,
APL2, Dyalog APL

Consultant with 10+ years experlence with various APL
interpraters and C.

System deslgn consultancy, programming. HMW speciallza In
banking and protatyping work.

APL on Macintosh & PC. HCi deslgn. VDU ergonomics:
EG/Health & Safety compllanca.

Cn-line assisiance, praduct demos & mack-ups, manual writihg,
foreign language software localization.

Using I-APL for courseware & distance leaming materlals; Mac
programmingin C, APL & HyperCard.

APL*PLUS & Windows consultancy. Porting of software written
in Cinto APL"PLUS.

Systems gevalopment, enhancaments, suppott.
Preparation of naw manuals, rewriting of exsting materials.
Training for APL experts through non-technical system users.

All APLs, all environments. Dasign, analysls, coding,
maintenance, documentation, training, Interfacing,

General APL consultancy speciallzing in Prototyping, Migration,
Mainframe to PG Downsizing, Performanca Analysls,
Troubleshooting, and Graphics.

Technical & applications consultancy.

Business Forecasting & APL Systems.

Business analysls and APL consuliancy

A rangs of consultants with 3-15 yrs APL PG and mf experience.
Introductory APL, APL for End-user & Advanced Topics In AFL
Specialising In Banking, Financial & Planning Systems.
Specialise In MIS using Sharp APL

Independent consultant, 15 years experience. Custom software
development & tralning, PG and/or malnframe.

Consultancy from people with at least 8 years APL experience.
Advice and training in Windews programming with APL*PLUS I}

50

Vector Product Gulde

Vol.9 No.4

Tralning FF10000
Wicklitte Computer Consultancy poa
CTHER PRODUCTS
COMPANY PRODUCT PRICES(E)
Adfee Employment poa
APL Peopla Employment Agency poa
HMW Employment poa
HRH Systams APL lessons

Tha BBSIAPL:
-APL Lid An APL Tutorial

3
An Encyclopaedia of APL (2d Ed) &
APL In Soclal Studfes 3
-APL Instruction Manual {2d Ed) 3

£-day class on Windows programming with PLUS |l version 4.0

System deslgn, consultancy, programming and documentation.
Especially project management and decislon support systems

DETAILS
Contractors and permanent empicyess

Permanent employess placed at all lavels. Contractors supplied
{or shortflong-term contracts, supervised or unsupervised,
Executive Search service avallabls.

Contractors and permenent employass placed,

On-screen Interactive APL lessons for APL*PLUS, TryAPL2,
Sharp and -APL —in English or French.

301-394-3672, 300/1200/2400/9600 b, N-B-1, 24 hours, APL
educational material is downloadable frea. An additional 30
megs of APL sottware for APL*FLUS, PLUS [, IBM, Sharp &
1-APL Is avallable to subscribers (cost Is $24fyr).

45pp by Alvord & Thomson
228pp by Helzer

86pp by Traberman

55pp by Camache & Zlemann

APL Programs for the Mathematics Classrocm (Springer-Veriag)
16

J Dictionary 16
Pregramming in & 16
Arithmeltic 12
An Introduction to J -]
Tanglbla math ;]

Sharp APL Reference Manual 18

185pp by Thomson

by Ken lverson

75pp by Ken Iverson

118pp by Ken lverson

47pp by Ken lverson

36pp by Ken Iverson

349pp by Bery

A comprehensive selection of early APL literature

Keycaps for the PC and FS{2 (USA and UK standard). Product
Nurret SX80-0270,

Preduct Number SG33-0604.

Dooumentation & sharewars tor many popular machines,
Including PG, MAC, SUN, & ARCHIMEDES.

Documented source code in G for porting to other machines
{Shareware),

76pp,
34pp.
123pp.

Permanent and centract, home and abroad. From individual
placement 1o supply of complete project teams.

¢ ow-cost scitware distribution service; call for detalls,

The widest range of APL bocks available anywhere. See Vector
advertisemants,

Auxlllary processor complex, providing SharpAFL (Unix & MVS)
with facllites to access MVS data, and invoke non-APL MVS
soflwara on remote MVS systems,

APL Prass Books poa
Please note there is a packing charge of £3 per order

IBM {APL Products) APL2 Keycaps poa
APL2 Keyboard Stickers poa

Iverson Software Inc. J $24
J Bource 500
Programming In J $15
Tanylble Math $12
Arthmetic $18

Kesirel Employment poa
Soltware Libtary poa

Renaissance

Data Systems Booksellers

Reuters Lid MVSLINK poa
SsQL poa

Auxtliary processor providing SharpAPL (Unix & MVS) with high-
perfarmance SQL interface to DB2,

51

Vector Product Gulde

Vol.9 No.4

OVERSEAS ASSOCIATIONS
GROUP LOCATION JOURNAL
ACM/SIGAPL USA Quote Quad
APL Bay Area USA N, California APLBUG

APL Club Germany Germany

Ass. Francophone pour

la promotion d'APL France

Active Workspace Ltd
Adies

APL-385
APLBUG

APL Club Austria
APL Club Germany

The APL Group Inc

APL People { Software

APLJournal

Las Nouvelles d'APL

BACUS Belglum APL-CAM
CPC UG APL SIG Washington, D.C. Capital PC
{Capital PCUG) Monitor
Dutch APL Assoc. Holland -
APL Club Austria Austria -
FinnAFL Finland Newsletter
SwedAPL Swaden SwedAPL Nyt
Sydney APLUG ~ Sydney, Austrafia Epsllon

- VENDOR ADDRESSES
COMPANY CONTACT
ACM/SIGAPL

Ross D Aanson

Bernard Smoor

Adrian Smith
Lewls H. Robinson

Erich Gall
Dieter Lattermann

Stuart Sawabini

Jil Moss

Assoclation Francophone pour

la. promotion d'APL

BACUS

Anthany Camacha
"Paul Chapman

Cocking & Drury Lid.

CPC UG
CYBEX AB
Datatrade Ltd.
Davld Crosslay

Dutch APL Assoclation
Dyadic Systems Lid.

E & S Associates
FinnAPL

Dr. Gérard Langlet
Joseph de Kerf

Fomilly Cocking
Lynne Startz
Lars Wentzel

lan Temiln

Bernard Smooer (Sec)
Feter Donnelly

Frank Evans
Jantunen Vell-Matti {Sec}

OTHER SERVICES Ann,Sub.
Monthly Meatings (2nd Monday) $15
Seml-annual meetings DMB0
Conferences & Seminars £18 ($30)
Monthly meetings,

occaslonal classes free

Minl-congress, APL ShareWara Inftiative

Quarterly Meetings 200AS(IindIv), 1000AS{carp)
Semi-annual meetings, seminars SEKTS
Menthly Meetings

ADDRESS & TELEFHONE No.
ACM, 1515 Broadway, New York, NY 10036 USA Tel: (212) 626-0611

Moulsham MIl Gentra, Parkway, Chelmsford, Essex, CM2 7PX.
Tel: (0245)-496647; Fax: D245-486645,

Dorpsstraat 50, 4128 BZ Lexmond, Netharlands.
Tel: 31-3474-2337, Fax: 31-3474-2342

Brook Houss, Gllling East, York. Tel: 04393-385

1100 Gough St, Apt 144, San Francises, CA 94109, USA
Tel: (415} 928-2058

1BM Gsterreich, Obere Donaustrasse 95, A-1020 Wien, Ausira

IBM Germany, Wilckensstrasse 1a, D-8900 Heldelberg, Germany.
Tel: (49} 6221-404-243

644 Danbury Road, WILTCN, CT 06897 USA.
Tel: (203) 762-3933 Fax. (203) 762-2108

The Ol¢ Malthouse, Clarence St, BATH, BA1 SNS. Tel: 0225-452602

SGM, G.E. Saclay, F-91194-Gif sur Yvelte, France, Fax: (33) 168 0878 63
Roginberg 72, B-2570 Duffel, Belglum.
11 Auburn Road, Redlang, Bristol BS6 6LS. Tal: 0272-730036,

- 41 Lambs Condult Strest, London WG1N 3NG. Tel; 074-831-3762. -

180 Tottenham Court Road, LONDON, W1P 9LE
Tel: 071436 8481 Fax: 071-436 0524

Capital PC User Graup, 51 Monrce Street, Sulte PE-2, Rockville,
Maryland 20850, USA. Tel: 301-762-9372.

Gruvgatan 358, S-421 30 V. Frélunda, Sweden.
Tel: (48) 31-45 37 40, Fax; (46) 31-45 24 23,

1 & 2 Sterling Business Park, Salthouse Road, Brackmills, Northampton,
NN4 OEX. Tel: 0604-780241

187 Le Tour du Pont, Guartier La Mourre, 84210 ST DIDIER, France
Tel: 90-66-08-87

Pastbus 1341, 3430BH Nieuwegeln. Tel: 03474-2337

Hiverside View, Basing Road, Cld Basing, Basingsioke, Hants RG24 DAL
Tel: 0256-811125 Fax; 0256-811130

19 Homesdale Road, Ompington, Kent BR5 1JS. Tel: 0689-824741
Myllytie 10 A 7, 04400 Jarvenpda, Finland Tel: 90-291847C (home)

52

Vector Product Guide

Vol.9 No.4

General Software
H.M.W. Trading Systems

HRH Systams

Michael Hughes
JAC{Human Interfaces

I-APL Ltd

IBM (APL Products)
Impetus Lid

INFOSTROY

Interprocess Systems Inc,

intelligent Programs Lid
verson Software Inc.

Kestrel Consulting
Lingo Allegre USA Inc.
Mercla Software Lid.
MicroAPL Ltd.

Ellis Morgan

M.T.IC.

Optima Systems Lid

Pater Cyriax Systems
QB On-Line Systams

M.E. Martin
Stan Wilkinson

Dick Holt

len A. Clark
Antheny Camacho

(for quarles, order forms}
J C Business Services

(for pre-paic orders enly)
Nancy Whesaler

Cadric Heddle

Alexel Miroshnikey

Stella Chamberiain

Mike Bucknall
Eric lvetson

Mark Harris
Steven J. Halasz
Garsth Brentnall

David Eastwood

Ray Cannon
Faul Grosvenar

Pater Cyriax
Philip Bulmer

Renaissance Data Systems Ed Shaw

Reuters Lid

The Rechester Group Inc.

Shandall Systems Lid.

Rex Swaln
SwedAPL
Sydnay APLUG
Uniware

Wicklifte Computer Ltd
Warwick Univarsity

Zark Incorporated

Laurle Howard
Robert Puliman

Maurice Shanahan

Glan Medrl
Rob Hodgkinson
Erle Lescasse

Nick Telfer
Prot. Jeft Harrison

Gary A. Bergguist

22 Russell Road, Northholt, Middx, UBS 4Q5. Tel: 081-864-9537

Hamiltors House, 1 Temple Avenue, Victoria Embankment,
London EC4Y OHA, Tel: 071-353-4212; Fax: 071-353-3325

3502 N Richmend &t, Arlington, VA 22207, USA. Tel: (703) 528 7624
BBS{APL Tel: (708) 528 7647 1200-14400b, N-8-1, v.32 24hr (v.32bis)
Internet: dick.holt @ acm.org

2§ Rushton Road, Wilbarston, Market Harborough, Lelcs., LE16 8QL.
Tel: 0535-770298

9 Hill End, Frostariey, Bishop Auckland, Co. Rurham DL13 25X
Tek 0388-527190, Emall: clark.|@applelink.appla.com

4% Aubum Roead, Redland, Bristol BSS 6LS. Tel: 0272-760036
56 The Crescent, Milton, Weston-super-Mare, Avon, BS22 8DU

APL Products (M46v/D12), IBM Santa Teresa, PO Box 49023, 555 Balley
Avenue, San Jose CA 95161-8023, USA. Tel: 1-408-483-AFL2

Rusper, Sandy Lens, vy Hatch, SEVENGAKS, Kent TH150PD
Tel: 0732-885126

3 S. Tulenin Lane, St. Petersburg 191186 Rusala.
Tel:+7 812-311164 t Fax:+7 812-3163321 Email:aim @ infostroy.spb.su

11660 Alpharetta Highway, Suits 455, Roswell, Georgia 30076, USA
Tel: (404) 410-1700. Fax: (404) 410-1773

9 Gun Wharf, 130 Wapping High St, London E1 §NH Tel: 071-265-1120

33 Major Street, Terento, Ontario, Canada MSS 2K9 Tel:{416) 926-5096
Fax: {418) 488-7559

Businass & Technology Centre, Besssmer Drive, Stevenage, Herts
£G1 2DX Tek0438-310155 Fax:0438-310131 Elkestrel@apl.demon.co,uk

203 North LaSalle St., Suite 2100, Chicago IL. 80601 USA
Tel {312) 558-1342 Fax: (312) 345-9603

Holt Court North, Heneage Streat West, Aston Sclence Park, Birmingham
B7 4AX. Tel: 021-359-5095. Fax: 021-359-0375

South Bank Technopark, 90 London Road, LONDON SE1 6LN
Tel: 074-822 8866 Fax; 071-228 1006

Myttle Fam, Winchestsr Read, Stroud, Patarstield, Hants.
Tel; 0730-263843

21 Woodbridge Rd, Blackwater, Camberley, Surrey GU17 085
Tel: 0252-874587

Alrport House, Purfey Way, Croydon, Surrey CRO 0XY Tel: 81 781-1812
Fax: 081 781-1999

22 Hersford Road, London W2 4AA. Tel: 071.229-5344

% Surrey House, Portsmoutn Rd., Cambetiey, Surrey, GU15 1L8.
Tel: 0276-20769. Fax: 0276-683427. Mobile: 0831-307548

P.0O. Box 20023, Park Wast Finance Station, New York, NY 10026-1510,
U.8.A, Tel: (212)-864-3078

Reuter Nederland BV, PO Box 8230, 10056 AE Amsterdam, Nethetiands
Tel: +31 20 570 8733 Fax: +31 20 570 B758

50 5.Union St., Rachester NY 14807-1828, U.S.A.
Tel: 71 6-4544%0 Fax:716-454-5430

Chiltern House, High Street, Chalfont St, Giles, Bucks., HP8 4QH.
Tel: 02407-2027. Fax: 02407-3118

8 South Street, Washington, CT 08793, U.S.A. Tel: 203-858-0131
Box 16181, 5-103 24 Stockholmn, Sweden Tel;+46 (B) 96 09 47
GPO Box 1425, Sydney, NSW 2001, Australia

15 Rue Enangar, 78016 Paris, France.
Tel: (1) 45-27-20-61. Fax: (1} 45-27-20-71. Telex: 648348F UNIWARE

76 Victorla Rd., Whitehaven, Cumbria, CAZB 6JD. Tel: 0946-662688

Drepl of Statistics, University of Warwick, Coventry, CV4 7AL
Tel 0203-523369

53 Shenipsit St, Vemen CT 06066, USA. Te!: (203) 872-7806

53

We just couldn't
leave well enough
alone!

| with 3-d Controls! |

APL*PLUS Il Version 5.1 ©

Announcing: APL*PLUS i
Version 5.1

|Il:nns!]EE Toolbarsgl

Graphies!

lgmm @ E

Plus:

[X: Windows Common Dialeg Boxes
¥} Instant Start-up Windows!

X} APL TrueType Font

ast Form Designi

APL*PLUS® II for DOS and
Windows™ just got better! Tt's now éven
easier (and a lot faster!) to build
applications using all of the features of
Windows 3.1, There's even a Software
Developer's Kit that shows you how to
easily add third-party custom controls!

And don't forget that APL*PLUSIT is
the only APL system that provides you
with a fully-integrated Debugger,
Paradox Interface, full DDE access, Lotus

and dBase Import/Export, optimized
Assembler functions, the User Command
Processor, a Numeric Data Editor and the
most powerful session manager available
anywhere!

Get GUlIng today! In the UK, phone
Cocking & Drury at 071-436-9481.
Elsewhere, call your local dealer or
contact Manugistics, Inc. in the U.S. at
(301) 984-5412, Fax (301) 984-5094 for
the name of a dealer near you.

APL*PLUS is a registered trademark of Manugistics, Inc., 2115 E. Jefferson Strest, Rockville MD 20852,
Other trademarks are the property of their respective owners.

VECTOR Vol.9 No.4

APL*Plus I1/386 Version 5.0

reviewed by Dave Piper

Introduction

Version 1 of APL*Plus I1/386 was the subject of two reviews in Vector 54
[Cyriax 5.4, Askoolum 5.4]. Version 3 was reviewed in Vector 8.1 [Pearson 8.1],
version 4 in 9.1 [Crossley 9.1]. All being well, this review will appear in 9.4; we
should be due for version 6 sometime around Vector 10.3 — next Christmas!
Rumours of version 5.1, due around March/April, already abound.

The evolution (no pun intended) of the product over these releases stands some
examination. Listed below are edited highlights of the new features in the most
recent versions:

Version 3 Session manager and interpreter unified
[ON4 enhancements
“lools” as part of the product
mouse support
user command processor

Version 3.5 Windows 3.0 lolerance

Version 4.0 Windows interface
Paradox interface
character based “sub-windows”
evolution towards APL2
bound documentation

Version 4.1 0S5/ 2 tolerance (donglel)

Version 5.0 Windows 3.1 windowed character set support
further evolution
enhanced windows interface
APLGUI
interactive debugger
automated installation
GRAFLIB

A slight disclaimer — this review is based on my experience of version 5.0 so far.
Having only had the product for a few weeks, a fully comprehensive
examination has not been possible. In particular, I have had no opportunity to
examine GRAFLIB or the related user commands.

55

VECTOR Vol.9 No.4

The Language

Not a lot has changed here. If you are coding at evolution level 2, then a few
steps toward the APL2 IBMard [Piper 9.1] have been taken. Specifically, enclose
and disclose now permit axis specification. One useful side effect of this is that
(at long last [sorry Jerry]), we have length tolerance when disclosing a nested
object into a higher rank array. One of the bug-bears of MIX {(and its successor
MIX) is that all items being mixed must have the same length.

Interestingly, OMIX still retains its original behaviour — it appears that disclose
and mix have now parted company within the interpreter. In version 4.0, OMIX
and DI SCLOSE were aliases of each other, providing the same functionality.

APL*Plus 11/386 does not follow either APL2 or APL2/PC when generating fill
items for mixed arrays. The following example illustrates the 3 different rules:

DISPLAY 3 342 2p1 'A' 'B' 2

APL«Pilus II/386 APL2/PC APL2
o | e— [
+t1 A 0 y1 A O +1 A0

B2¢ B 2 B 2
[+ I I ¥ LR Y 4] 0

APL*Plus T1/386 always uses the first item of the array to generate fill items;
APL2/PC uses the first item of a row if it already exists, otherwise the first item
of the array; APL2 uses the first item of a row if it already exists, or the first item
of the column. [C&D 1].

One unfortunate syntactic exception is still present at evolution level 2; pure
numeric strands can be indexed without parentheses:

1 2 3[2]
2

Any other type of strand must be parenthesized before indexing can occur.

Both language bugs that T have found in previous versions still exist. In evolution
level 1, indexing into strands can go wrong:

56

VECTOR Vol.9 No.4

Nrg«1

c+3

12c¢c=12123 s They match
1

1 2 3013 A Index first item
1

1 2 c[1] R Likewise 7
12

1 2 c[2] A Second ftem |
3

12 ¢l3] n Third item '#?
INDEX ERROR

1 2 c[3]

4} A

This cannot happen at evolution level 2 since non-numeric strands must be
parenthesized before being indexed.

The second problem involves the strand assignment of non-simple scalars:

{(a b c}+gpec!! n Each gets an empty
="a b c R Check the depth of each
11
p"pTa b ¢ n Check the rank of each
111
{a b c)ect! n Scalar extension we hope!
="a b ¢ A Chack the depth of each
22 2
p"p"a b ¢ A Check the rank of each
0 00

When we rely on scalar extension, each name assigned gets the scalar rather than
the content of the scalar.

Windows 3.1 Support

Version 5.0 offers full support for operation as a DOS application under
Windows 3.1. The support provided by Windows for DOS applications was
considerably enhanced in release 3.1, so this is a very desirable move forward.
When running in a window (rather than full screen mode), the mouse performs
the same functions as if the program were hosted in DOS or running in full
screen mode under Windows. This contrasts with the rather useless “mark/edit”
mode adopted in Windows 3.0. To make use of the new mouse functionality,
mouse driver 8.2a or later is required.

Version 5.0 introduces support for the APL character set when running in a
window under Windows 3.1. Character set support for Windows 3.0 was already

57

VECTOR Vol.9 No.4

available in version 4.0, these fonts were not compatible with Windows 3.1.
Windows 3.0 character set support s still available. Note, as a result of the way
Windows supports fonts in DOS applications, all DOS applications will use the
APL font if it is installed. This may result in some strange effects In the displays
generated by other DOS applications. Most of the characters are quite well
mapped, so really glaring changes should be kept to a minimum.

The 3.1 character set is available in several font sizes, ranging from a very thin
but still usable 8x8 pixels to a large and well formed 16x§ pixels. Othet, still
larger, sizes are available but the full DOS display is not visible and must be
scrolled using the scroll bars generated automatically by Windows.

The 8=8 font is quite difficult to read for long periods of time, but is good for
working in a window which is less than half of the full display size. Using this
font makes it possible to have other windows such as file manager opened to a
significant extent and visible at the same time as the APL session.

Printing

Direct printing using Windows facilities and a Windows printer font is still not
supported in version 5. With the advent of a competent Windows interface (see
below), the provision of a real Windows printer font would have been a great
advantage. Fortunately, thanks to the sterling work of Adrian Smith and lan
Clark, TrueType APL fonts are now available. This article was produced using
Word for Windows, using Adrian’s font for the APL bits.

Support for DOS-based printing has been enhanced somewhat. Rather than
down-loading the printer character set using the PRINTERS workspace (and
associated component file), specific .COM files are available for a range of
supported printers. Fach of these downloads the character set and initialises the
“port 10" printing facility. These programs can be re-executed at any time to
reinitialise the printer if it has been reset by another program or user on a
network.

Installation

A significant new feature of version 5 is the provision of an installation program.
This is a DOS program which allows the user to selectively install parts or all of
the system. Different directories can be nominated for the various “parts” of the
APL system. The structure of the directories is fixed — that is the files which
constitute a “part” of the system cannot be varied (though subsets such as
specific device drivers can be nominated). For those of us who have been users

58

VECTCR Vol.9 No.4

for some time and wish to retain our existing directory structures it's back to the
manual method.

Given that a file containing a list of all files in the system is provided it is a
shame that this is not used to drive the installation process. Customisation of the
file would allow any directory structure to be created. Better still, if the insta]l
program had been available from version 1...

Enhanced Windows Interface

The updated Windows interface has overcome many of the problems discussed
by Ray Cannon [Cannon 9.3]. In particular, a considerable amount of work has
been put in to improve the speed of the interface. This release implements the
agent using a virtual device driver (VAPLD.386) rather than relying on the
Windows “timer” facility. The rate of call processing has gone up by at least a
factor of 10; it is now possible to write programs with a Windows front end that
respond as quickly as those written in compiled code. Only if filters are set up to
process very frequent messages (mouse move or key depression) is any
sluggishness really noticeable.

Various other enhancements have been made such as the use of a compiled .INI
file containing all the Windows function, constant and message definitions (well
nearly all!). Essentially, though, this remains an interface for real programimers;
you must be prepared to get very intimate with the insides of Windows. Having
climbed this not inconsiderable mole-hill myself in the last 10 weeks or so, | can
attest to it being a frustrating and occasionally painful process. Of course, if you
already know Windows, this interface could present you with many benefits in
terms of flexibility and performance over the higher level interfaces provided by
Dyalog APL and the APLGUI facility,

APLGUI

APLGUL is new in Version 5. Tt provides a higher level, “object-oriented”
interface for Windows programming, The interface uses one high level function
to process all the methods and messages associated with a window object. Of
course, APL*Plus II has not suddenly turned into any object oriented system; all
the mechanics of message passing and processing are implemented using real
APL at alower level.

The number of global variables and functions needed to support this framework
is astonishing — when using the GUI demo workspace, the total number of
objects is in excess of 1,000! Managing such a large number of functions and

59

VECTOR Vol.9 No.4

variables is no mean feat of itself — certainly solving obscure problems lying on
the border between the supplied code and your own functions would be great
fun. Perhaps of greater concern is the quality of the code used to implement the
system. Tt seems to me, having studied significant volumes of code written by
Manugistics, that they simply do not know how to write easily understood,
maintainable code. Sorry chaps!

The basic object in the GUI system is the form — this corresponds to a dialog box
in Windows parlance, and the “methods” (i.e. functions) required to make it
work. A form contains controls of the normal types found in Windows —
buttons, list boxes, edit fields etc, Rather confusingly, the standard control names
are sometimes dropped in favour of GUI's own names, so that radio buttons
becormne “options”, static text becomes “label” and so on.

Messages (i.e. events [nearly]) can be sent to or received from either the main
form or the child controls within it. Methods can be defined to process any of the
supported messages. Supporied is the key word here — if the message you wish
to process, is not supported then you have to find some other way around the
problem, or start using low level Windows calls.

Having looked briefly at the GUI system, it is certain that low level Windows
calls would have to be used, at some stage, to achieve all the effects required in
any significant application, Certainly insufficient messages are supported for the
more complex controls such as edit boxes. For example, there is no (GUI) way for
a function to tell an edit field to cut the currently selected text.

Just to compound the effect of these difficulties, the interface is not overly robust.
During early experimentation many hangs were generated. Even when we had
gained expertise it was very easy to generate “ghost” windows which could not
easily be disposed of. If your application collapses with an APL error,) RESET is
not sufficient, the object oriented interface must also be reinitialised; this could
make error handling in applications extremely complex and difficult to manage.

Objects, properties (attributes of the objects), messages and methods are linked
together using a naming convention. A form (or a child control} has a caption
property. We can reference or set the caption using the following statements:

caption+«Hin 'FmMine:caption' A Reference
Win 'fmMine:caption' 'Nev Caption' A Set

60

VECTOR Vol.9 No.4

Similarly, for a child control:

chld_cap+¥Win 'fmMine.bnOK:caption!' A Reference
Hin 'fmMine.bnOK:caption' '~0K' n Set

Methods follow a similar naming convention. For example, the SHOW method
for a form would be:

rmMine_Show

The CLICKED method for a push button would be:
fmMine_bnoK_Clicked

The defined functions which implement methods do not take arguments, nor do
they return explicit results. Instead, arguments are passed in the global variable
vArg and the result set in the global wZ. This insistence on the use of global
variables seems unfortunate from a code quality point of view; perhaps it would
have been better to insist that all methods were implemented using monadic,
result-returning functions.

APLGUI provides an interface at a level similar to that provided by Dyalog APL
[Pearson 9.2], but currently rather less usable. The large number of objects in the
workspace and the resulting object management difficulties (and problems with
responsiveness) need to be solved before APLGUI can be regarded as a viable
alternative to the low-level interface. Perhaps it is best to regard the current
version of APLGUI as “beta-test”, hopefully with better to follow,

Interactive Debugger

Another new feature in Version 5. The debugger is integrated into the interpreter
and can be toggled on and off from the session manager menus. Halt points and
watch points are both supported; both remain set even when the debugger is
inactive, but only take effect when it is used.

Halt and Watch points offer several advantages to the traditional APL trace/stop
facility:

+ can be disabled without being removed

» conditional operation

+ halts apply to statements not function lines

+ waltch points can ignore execution context

61

VECTOR Vol.9 No.4

When a halt or watch takes effect, the character based sub-windows introduced
in Version 4 are used to display status information such as the:

+ execulion stack

. current halt/walch point

In addition, it is possible to display the values of the arguments at the current
position. Options are offered on the status line permitting step-wise execution,
execute to next statement, next line and so on.

How useful is it? Here I have to make a confession — [have only used it a
couple of times in anger. In general, the standard trace and stop facilities provide
me with sufficient control for solving any problems, especially since they are so
easy to set within the ring editor. The only problems I suffer with trace and stop
are the volume of output sometimes generated by trace and the number of
unwanted stops that may occur in a looping or recursive function. The debugger
provides exactly the right tools to avoid these problems. When I can get away
with trace and stop I do, because they are so easy to set up and remove.

One annoying result of the introduction of the debugger is that the stop toggle
has been moved on the keyboard. 1 think a quick dive into my config file to
remap the keyboard is required.

Bench Marks

The bench marks would have been copied from Adrian’s review of
APL*Plus/PC Version 9 in Vector 6.4 [Smith 6.4]. Benchmarks have always been
of questionable value, since the most valuable benchmark is often the perception
of speed. Running under Windows makes performance measurement even more
meaningless — some of the tests listed gave execution times varying by as much
as 50% between the slowest and fastest times.

How does it feel? The answer must be just as fast as ever. One thing is for
certain, the new primitives (especially ENLIST and DISCLOSE) offer significant
performance benefits. Comparing our “make vector-of-character-vectors into
matrix” with the primitive DISCLOSE indicates a potential ten-fold benefit —
even after the defined function was carefully optimised!

Conclusions

%o is it all worth it? The broad answer must be yes; we now have a usable
Windows interface that can create real Windows applications, and an integrated

62

VECTOR Vol.9 No.4

debugger that provides many powerful facilities which are useful at least some
of the time. There is a higher level interface to Windows with which we can
experiment, even if it does not yet provide a real application development tool. It
is possible to use the interpreter in a window, and see the APL characters, a
further improvement in productivity for Windows users.

The remaining new features represent increments in usability rather than a
productivity revolution. The debugger certainly does not provide a productivity
revolution, not because of any lack of functionality but simply because
debugging well written APL is usually quite easy. | suspect it will turn out to be
of most use to those who are relatively inexperienced and tend to create poor
quality code (perhaps Manugistics created it to support their own efforts?),

To sum up — it feels more like a minor release than a brand new version.

References
{Askeolum 5.4] APL*Plus I for 80386 PCs,
Vector 5.4, April 1989; Pp 61-66

[Cannon 9.3] APL*Plus I1/386 Interface to Windows.
Veclor 9.3, January 1993; pp 44-54

[C&D 1] APL2 Nested Arrays Course
Cocking & Drury Ltd 1990, 1951

[Crossley 9.1 APL*Plus I1/386 Release 4
Vector 9.1, July 1992; pp 53-60

[Cyriax 5.4] APL*Plus Il — STSC’s Second Generation APL System for 80386
Machines.
Vector 5.4, April 1989; pp 55-60

[Pearson 8.1] APL*Plus Il Release 3
Vector 8.1, July 1991; pp 73-76

[Pearson9.2] Dyalog APL/W
Veclor 9.2, October 1992; PP 55-64

[Piper 9.1] General Correspondence
Vector 9.1, July 1992; pp 9-12

[Smith6.4] APL*Plus/PC Release 9
Vector 6.4, April 1990; pp 54-57

63

VECTOR Vol.9 Ne.4

A First Look at the ISI APL/Windows
(APLIWIN) Beta Release

by Martin Gfeller
mgf@rmx.risk.reuter.de

SHARP APL under Windows

When LP. SHARP Associates ported their SHARP APL from the mainframe to
the PC, they chose the unusual route of emulating an TBM /370 mainframe on the
PC, and running the unchanged mainframe APL under it. This produced a solid,
but very slow, implementation of APL. It was definitely too slow to run the large
applications typical of the SHARP APL mainframe environment.

SHARP APL/PC never became commercially important in the APL arena, and
was subsequently reclassified as shareware. Iverson Systems Ine. (IST) acquired
the rights to the product from Reuters, and developed several new releases,
making it faster and better integrated into the PC architecture.

I1ST APL/Windows (APLIWIN) is a major step in that effort, for it seamlessly
integrates SHARP APL into Windows. At its core, it still emulates a /370
mainframe, but by using the 32-bit protected mode of the 386 architecture and
Windows enhanced mode, it does this much quicker than its predecessors, and
also provides large workspaces.

The following notes are based on the Beta release copy of October 1992, marked
as APL release 5.0. 15I's Eric Iverson told me that a new release is planned for
April, with significant improvements in the Windows interface and corrections
of some of the deficiences that are mentioned in this article.

Language and System Features

APLIWIN features the same language elements as SHARP APL Version 20. This
includes nested arrays, operators, packages, a component file system and
complex numbers. However, it suffers from the same implementation
restrictions as does the mainframe version: operators do not accept defined or
derived function arguments and defined operators do not exist. These and some
other restricions have been removed in SAX, the Unix implementation of
SHARP APL.

64

VECTOR Vol.9 No.4

An aside about language differences: The SHARP APL language is different from
the APL2 family in many respects. It emphasizes the uniform rectangular and
multidimensional nature of arrays over arbitrary nesting. A very important
concept of control is the rank of subarrays on which a function is applied
directly; in APL2 on the other hand, the depth is more important. The rank
concept assumes that a regular, rectangular structure is the normal case, whereas
APL2's nesting and depth concept assumes nonuniformity as normal (see
1.P. Benkard, Nested arrays and operators, APL'92 Conference Proceedings, St.
Petersburg, July 1992, p.7}.

Shared variables and a bundle of Auxiliary Processors were available in SHARP
APL/PC under DOS, implementing a somewhat crude multitasking scheme,
which was not easy to use from APL. This approach has been abandoned for
Windows, and has been replaced by a handful of quad-functions. One family of
thirteen system functions provides access to DOS files; some others translate
between APL characters and ASCI], and provide a Window editor and link to the
Window Driver (see below).

Windows Features

The Session Manager and Window Driver are the same as provided with the PC
version of J.

. Session Manager and Editor: A simple yet sufficient session manager
provides for an input area and an editable and scrollable session transcript in
a window. It allows cul and paste into the clipboard through DDE.

A self-contained cover function to invoke an editor is provided in a
workspace. The editor handles both functions and text variables.

- Window Driver: A quad-function and a cover function interface to the
Windows GUI through a little language of its own. The reference for this
language takes eight pages in the documentation, and a description is beyond
the scope of this First Look. Briefly, the approach taken resembles PostSeript, in
that a program is represented as human-readable ASCII text. It has some
object-oriented features, as is to be expected for controlling a hierarchical
windows environment. The language supports graphics, and a demo
workspace gives some nice illustrative examples of these features.

Although there is no comprehensive workbench for building a user interface,
the basic tools to build an application interface that takes full advantage of the
Windows GUI are available.

65

VECTOR Vol.9 No.4

+ TrueType APL font: The APL font supplied with the product can be used
from all Windows applications, and looks nice, Being a TrueType font, it
scales well to any size.

Printing: There is no built-in command te print. Text to be printed can be
copied through the clipboard lo an application such as Windows Write.
Alternatively, a functon supplied in a workspace writes an object to a file and
invokes Write through the Window Driver, With the supplied TrueType APL
font, good looking APL documents can be produced in a flexible way.
However, the facility cannot be used for printing reports without user
involvement.

« Debugger: Although SHARP APL includes the venerable trace and stop
vectors, APLTWIN provides a much more powerful debugging aid: a set of
function keys can be enabled with a toggle, and they can be used to execute a
stalement and stop al certain points. Stop points can be sel for each function,
or can be selected from the first or next line of any function, the current or
lower function, or the calling function. As the execution proceeds, the stack
and the currently executing function are shown in two separate windows.
However, the results of executing the function lines are not shown, unless
trace veclors are used.

Problems in the Beta Release

+ Itis difficult to import or export an APLIWIN workspace to or from another
APL system, including even SHARP APL on the mainframe. The ¥SI.5
workspace transfer mechanism should be available for this. | hacked a version
taken from SHARP APL mainframe, in order to test some applications, but a
proper job should be done here. Eric Iverson lold me that a transfer facility
will be included in the April release.

« The library name convention was taken from the original SHARP APL/TPC. It
associates PC drive letter with file account numbers. DOS path names are not
allowed. This convention is old-fashioned and impractical. APL should
instead adopt the convention of the underlying file system.

+ The DS file quad-functions signal domain error for a wide range of invalid
arguments. It is sometimes difficult to find the real problem. More specific
error reports would be useful.

+ The non-TrueType font required for Windows 3.0 was missing from the disk I
received. TrueType under Windows 3.1 provides a much better font support
anyway, so I can only recommend the upgrade. Eric Iverson told me that the
release version wiil be announced for Windows 3.1 enly.

[encountered a few Unrecoverable Application Errors under Windows 3.0,
but none under 3.1.

66

VECTOR Vol.9 No.4

- Besides the few differences from the mainframe language that are mentioned
in the documentation, dyadic 0fhold is missing. These differences are not
critical to single-user PC applications, but could be a problem if application
code is to be taken unchanged from the mainframe.

Comparison with the Mainframe Speed

I've tried to measure the speed of APLIWIN on my PC (66 MHz 486 DX2) and
compare it to the speed of SAPL on a mainframe (the Risk Management Software
RMX system). T used my ATDA workspace {(an APL-like interpreter in APL) as
the benchmark. It is very CPU intensive, and also uses files, but no screen I/0.

APLIWIN delivers about the equivalent of 3 mainframe CPU units per second (a
SAPL CPU unit is one second of CPU time on an IBM 370/158). The RMX
mainframe APL delivers about 75 CPU units per second under normal user load.
This enables one to decide which applications could be ported; many
applications typical of SHARP APL are clearly not candidates, since their
interactive transactions (which consume 200 CPU units) typically take 2-3
seconds on the mainframe, but would run for more than a minute on the PC.

It would be interesting to compare APLIWIN’s speed to other PC APLs, and to
Dyalog API/W with the SHARP APL-to-Dyalog translator from Insight Systems
ApS. However, such comparison are beyond the scope of this First Look.

Martin Gfeller

Reuters Risk Management Software
Kleinstrasse 6

CH-8008 Zurich

Switzerland

67

VECTOR Vol.9 No.4

APLIWin and JWin

reviewed by Jonathan Barman

Iverson Software Inc. have released APL and] as Windows products. The
Windows interface is identical in the two products, so if you have mastered it in
APL you can immediately switch to] and run the equivalent code. The J disk
comes with a DOS version as well.

Getting Started

Installation was easy. 1 copied the disks, one for APL and one for], into
appropriate directories and was up and running almost immediately. On
launching APL I got a message telling me that I had not installed the APL font.
The standard Windows font installation soon put that right. These are full
Windows programs, and you get the standard message if you try and run them
in DOS. The icons included in the .EXE files are plain and ordinary, which suits
me fine.

The APL font is very acceptable. The only difference between the ISIAPL font
and Adrian Smith’s APL2741 font is that the alphabetic characters are upright
rather than italic. Also, there are no line drawing characters. The following is an
example of a little function from the i siwin workspace in both fonts.

Vor+id wdg 1
{11 re,»1+,{r[;0lo)ecid)#r
v

v reid wdg r
(1] re,»14+,(rl;GI0]e<id){r
v

On the screen the ISIAPL font looks cleaner with a much sharper definition at 10
point size. On paper there is not a lot of difference.

The session manager in both APL and J is identical, and appears to be a straight
copy of the DOS session manager moved into a Windows environment. There is
an execution line at the bottom of the screen, and the top part displays the
results. The initial screen comes up filling up half the screen horizontally. T
usually find that I need to change this shape, but there are no .INI files, so the
programs do not remember the shape on exit. The following example of the APL

68

VECTOR Vol.9 No.4

session shows the workspaces available and the functions in the Isiwin
workspace which we will be exploring later.

o 4 -

“
Copyright (¢} 1992 Iverson Boftware Inc, +
33 Major Btreet, Toronto, Cnmtario, Canada M58 2K9]
Phone (416) 925-6096 Fax (416) 488-7559

Bession Manager - Versien 1.0
APL - Version 5.0

)1ib
Hipidemo dsigen isiwin toolkit utility
Yload isiwin
saved 1992-10-25 09:25:41
Yfns
debug debugs ed wa wig wdprint wdrescet wdvedit

Ready

+]

I am used to the IBM, APL*PLUS or Dyalog APL style of session managers,
where one can type all over the screen to edit and execute anything displayed. It
does not take long to get used to the ISI way of doing things, but having to cut
and paste text down to the execution line seems to take a fraction longer. You can
use the arrow keys to scroll up and down the actual commands that have been
typed, but you cannot see them all to select the one you want.

The size of the window does not alter the way in which variables are displayed,
which is purely controlled by Opw. I have not found an equivalent in J, and
expressions like 1.1000 wrap after some arbitrary number of characters.
Expressions resulting in a wide character matrix, for example
1":) (u#10)#:1.2000 (in APL1 O *(4p10)}T12000, except] requires |: or
%), causes the screen to flash multiple times and eventually you get eight lines of
output with a ragged right margin. The only way to see the right margin is to
place the cursor on a line, press the Home key and then the left arrow key. It is
most annoying not having a seroll bar along the bottom of the window so that
you can see where you are in the wide display.

There is no menu bar along the top of the window, so none of the standard
Windows features are included, such as changing the font size, or printing the
session log. The standard cut and paste keys work in the normal way. With] this
feature is most useful as it is easy to develop scripts in a Notepad window
displayed along with the] session. Help is available with F1, which is reasonably
full with APL. There is no list of all the APL primitive functions and operators;

69

VECTOR Vol.8 No.4

you need to buy the manual for that. The APL keyboard help is nicely done. The
overstruck characters are distributed in a way with which I was not familiar, but
otherwise it was easy to use. I only found by chance that O-U-T exit from (] was
in fact Ctrl-C. Obvious really, if 1 had stopped for a moment to think about it.

It is not possible to run multiple sessions of either program. Attempts to do so
result in a check box appearing telling you that APL (or J} is already started.

Windows Programming Example

Windows are created by running a systern function Jwd (11!:0 in J} on a text
vector right argument containing window programming statements. Each
statement is separated with a semicolon, and “whitespace” of spaces, returns,
tabs etc. are ignored, so you can edit a text vector with a normal editor. There are
neo symbals, and comments are allowed with the rem statement, so the result
looks like some terrible form of Basic.

The APL documentation suggests that you run g£x in the 15 idemo workspace
and become familiar with the application, so let us start with that.

& . GuphicsOane B

File Help
Color Style
| b
O Green O--- E
O Blue C..
OBlack || O-
]

[20 12180 » aane

I clicked on the Sine button, and then clicked on the OK button to get the sine
wave at the bottom of the window. The g fx function looks quite simple:

70

VECTOR Vol.9 No.4

¥ gfx;ap;aprunsapvitvp;apvwr;apid;Qio

[11 Qio+0 o aprun+l o ap<«'gfx' ¢ gifxinit
f21 lwiapvr+wd grxwiwp
[2] +(apRapid+ap,'«id' wdg apwr}/ln ¢ +(3=0nc apid)/1lb

[4] Ix:s2apid ¢ +raprunxlw
[5] 1n:+{3=[nc aplid+ap,3+'stype' wdg apvwr)/ix
(6l 1B5:+{~* 3 rkey'®'»type' wdg apwr)/lm ¢ +1lv-wd 'beep 3;'
71 Im:>lwv-awd 'mb ',ap,' "',apid,' runction not defined.”
mb_iconexclamaticon mb_ok;!

v

The gfxinit function which is called on line [1] contains a single statement
<wd gfxwp which runs the wd function on a global in the workspace. wd is a
cover function for Owd with a bit of error trapping. gfxwp is a text vector
containing the windows ‘program’, which defines all the push buttons, radio
buttons, input area and graphic area. -+ throws away the result from wd.

Line [2] runs gfx twp which sets the default input focus and waits for the user to
do something. This time the result from wd is saved in apwr. Results from wd
are a 2-column matrix of boxed character vectors. Jwd actually returns a simple
character vector, but the cover function converts this into the desired format. In]
the result of 11! :0 is in the correct format, 50 no cover function is needed. When
I clicked on the Sine button the following was returned:

*type s button

r»parent gd
*xid sine
red 1
solid 1
axp

The items in column 1 prefixed by a * are system results; the remaining are the
data from radio buttons and input boxes. *type is always the first row and
shows how the wait was ended. As 1 clicked a button 1 got the result 5 button.
The 5 can be used as a quick way of checking the type, as each of the possible
types are coded 1 to 9. xparent gives the id of the parent window. *Id is the
id of the child window which was active. The remaining lines show the data in
the other child windows. The exp child window contained nothing.

On line [3] the child window 1d is extracted from the result by the wdg function.
If the id is not 'gfx ' but is a name of a function in the workspace then it is
executed on line [4] and we go round the loop again. In my case the gfxsine
function was executed, which contains the single statement -wd 'csel
exp;ctext "lo.1x180 a sine";'. The first statement csel exp
selects the child window with the id of exp, and then ctext inserts the text into
that window.

71

VECTOR Vol.9 No.4

If the *id is not the name of a function in the workspace, then something else has
happened. Lines [6] and {7] sort this out. If you press the Esc key, or close the
window with Alt-F4, then the *id row of the result contains text telling you what
happened. If that fails, then line [5] executes a function based on one of the 9
return types.

The guts of the program is in the gfxok function, which can be called if you
click on the OK button, or if you press Enter in the child window where you
enter your expression (exp):

v gfxokiOtrap:c;p;d

[1] e+, (('red'stgreen's'bluer>tbhiack" eapwr[:0])fgfxcolors
[z] p+, (('solld'>'dash'>'dott s> dashdl'>'dashd2' yeapwr[; 0]} fgfxpens
£3)] Otrap«te0 c [Otrap+'''te+le! o dvyplot,rtexp! wdg apwr o [frap+!’

4] +Cawd 'csel gfx:;grghb *'.c,';gpen ',p,";glines ',d,';gshow;"
[51 le:+wd 'mb “"Graphics Demo Message" "Not numeric
vector," | jmb_Ilconexclamation mb_ok;'

v

Lines {1] and |2] get the colours and line specifications from the radio button
settings. Line [3] sets up error trapping and then executes the statement entered
in the exp child window. Line [4] selects the graphics child window, sets the
colours with grgb statement, the pen line with gpea, plots with gl ines, and
displays the result with gsfow. Line [5] displays a message box with the mb
statement, which has four parameters specifying the title, the text to be
displayed, an exclamation mark icon and OK pushbutton. mb does its own show
and wait, so you do not have to code these explicitly, Executing line {5] on its
own results in:

= Graphics Demo Message
® Not numeric vector.

and wd returns:

*type 2 powait
*mb ox

72

VECTOR Vol.9 No.4

GUI Programming

The gfx illustrates rather well the process that is necessary to program
Windows in IST APL or J. First you have to create the text vector that specifies the
window ‘program’, which details all the child windows, radio buttons etc. that
you need. Then you write a function which displays the window and waits for
the user to do something. On returning from the wait all information in the
window is returned to you, and you have to unpick the result to decide what to
do next. Obviously you do not have to follow the style of programming adopted
for g£x, which relies on ¢ to avoid the multiple tests and branches that would
otherwise be necessary.

ISl have provided a workspace Isigen which enables you to write an
application using exactly the same process as gfx. The describe variable in
the workspace gives the step by step process required:

gen is a generic application. Build your application by making a copy of the
gen application and adding graphical objects and the functions they invoke.

. gen arun gen and become familiar with it

. Ywsid nap — chose a name for your application

apcreate ‘'nap' arename gen functions, variables and references

nap A run new application

edit napwp to add a new button with an id of test

nap s run application and press new test button

define naptest function to do something when test is pressed

. apwvr variable is the result of the wait

R L

, add controls and functions, add initialization code to rapinit, and add
cleanup code to napclose

=
(=

. look at grx functions in 151demo as examples

The gen application has 4 functions and 2 variables:

gen - main function and the ‘message loop’

geninit - initialization and execution of genwp

gencancel - process ESC key — pclose window and call genclose
genclose - process close — cleanup and exit

genvp -wp runin geninit to display application window
genwtwp - wpz run at top of message loop — must end with wait

In spite of my almost illogical dislike of ¢, this is actually a good way to get a
little application up and running quickly.

73

VECTOR

Vol.9 No.4

Running gen displays the following window:

File

b1 ; b2

I

Pressing the Enter key in the edit box displays a message box which shows that
the edit window was called e 1. Line [7] of the gen function was executed, which
is identical to line [7] of the g£x function shown above.

The contents of genwp show how the window was constructed:

pe gen;

menupop “"&File";
meny cpenr "&0pen";
menu cancel E&xit;
MEenUpopz;

xywh 5 5 20 20;
cc b1 Button;

xywh 50 5 20 20
cc b2 button;

xywh 5 30 65 123

cc el edit ws_border;
crfocus;

pas 5 53

pshow;

74

VECTOR Vol.% No.4

The Windows program statement pc stands for Parent Create, and takes a
parameter of the name of the parent window. menupop defines a single popup
menu to go on the top of the window called File with the F as the accelerator key,
and is terminated by menupopz. A 2-itemn pull-down menu has been defined
under File. To define a button you have to first specify a rectangle with xyw#
and then specify a child window with the cc {Child Create) with parameters
giving the id and the class of window. In this case bl and b2 are buttons, and el
is an edit window with a border. cfocus makes the edit box the current
window. pas 5 5 adjusts the size of the parent window so that there is a border
of 5 units around the child windows. pshow displays the window.

The wdedit function allows editing of the positions of the child windows, once
you have created a text vector specifying the parent window and its controls. 1
ran a+wdvedit genwp and then pulled the edit window to be alongside the
buttons, resulting in the following:

As genwp contains a pas statement the parent window has been automatically
resized to accommodate the new layout. This is pretty crude stuff compared with
proper Windows development programs, but at Ieast it enables you to dispense
with typing in funny numbers for the positions.

Window Facilities

As you can see from the examples, you are completely dependent on the facilities
that ISI provide in their Windows programming language. There are 62
commands which seem to cover most of the relatively simple things that one
might want to do, but by no means cover all of the amazing possibilities thata C
programmer has at his disposal, nor the things that appear to be possible in
Visual Basic.

75

VECTOR Vol.9 No.4

The only classes of child windows that can be created are Button, Combobox,
Edit, Listbox, Static and Isigraph. Classes are defined in more detail with Styles,
for example a pushbutton can be defined as having the style of
bs_autocheckbox, or bs_groupbox. There are general purpose styles, such
as vs_border, which can be applied to any of the classes of child windows..

Whilst getting to grips with the facilities available, I found the winexec
command useful, mainly for dumping text and programs from the workspace
into Write. A function is supplied to do the job:

v wdprint d;b

[1] d«(1+b+d=CR}/d+.d,CR

[2] dl(:4/b}+b/1pb]l<LF

[3] -{0tcascii d} (hfwrite 'temp.wri'

[ul «wd twinexec "write.exe temp.wri'";'
v

The general technique could be used to provide a way of communicating with
other Windows programs, even though having to write a file and then starting
ancther copy of a program is slow and rather crude.

Comparison with Dyalog APL

Dyalog APL/W was reviewed by Duncan Pearson in Vector 9.2, October 1992.
Duncan created a number base converter to demonstrate the facilities available,
which seemed at first sight to be very similar to those in IS1 APL and J, so T will
follow Duncan’s steps. If you get out your copy of Vector 9.2, and turn to page
58, we will start at the top of the page.

To use the Isigen faciliies we have to load the workspace and set up the
application:
Yioad Isigen
saved 1992-10-25 19:19:57
lwsid bconv
vas Isigen
apcreate 'bconv!

I will modify the beconvinit and wdvedit functions to add pas, pcenter
and pshow commands to the end of the bconvwp variable, so that each stage of
the process can be seen. Normally these commands are added at the end of the
command variable.

¥ bconvinit

[1] -wd bronvwp,'pas 5 5; prcenter; pshow;‘®
v

76

VECTOR Vol.9 No.4

vV wpewdvedil wp;a

[1] wp+wd 'vediti',wp,a+'pas 5 5; pcenter; pshow;!
f2] tcancel' [Osignal(' 8 cancel'¥'stype' wdg wp}/8
[al wp+(-pa}t'«vedit' wdg wp

v

Now we can create the initial window with the initial edit box, and use
wdvedit to make it lock right:

beconvwp
pc beonv; pn "Number Base Converter':;

xywh 10 10 113 12 ; cc exp edit ws_border es_autohscroll;
boonv

18] Number Base Conventer Fi[R.

Using the same technique the statement xywh 10 36 37 12; cc bin
button bs_autoradiocbutton; was added for the Bin radio button,
giving:

{E Number Base Converter
I
b
o
i
i

O bin

After a bit of messing around with wdvedit I got the window looking more or
less like the picture at the bottom of page 59:

VECTOR Vol.9 No.4

1= Number Base Converter B[Number Base Converter BT
[1919 |

O Bin Qo

& Dec O Hex

This involved using the ed utility, which is a function using the built in Window
facilities to allow a simple Notepad type of editing:

o beconv; pnn “Number Bage Convertexr*;
mywh 10 10 113 12 ; cc exp edit ws_border es_autchscxoll;
beywh 17 35 37 12 i ©c Bin buttorn bs_autocradicbutton;
kywh 85 35 37 12 ; ecl Cct group;

pywh 17 54 37 12 ; cci Dec; ccheck 1;

kywh 85 54 37 12 ;j ced Hex;

The next step is to write the function bconvexp to actually carry out the
conversion. Here I met my first difficulty. I could not work out how to make a
click on a radio button satisfy the wait so that one of my functions could be run
to re-calculate the value in the edit box. It would seem to be necessary to add
buttons such as Recalculate and Close in order to make this happen. The code for
actually doing the conversion is much the same as Duncan’s. 1 added a global
variable to hold the old base, which is initialised in bconvinit.
V¥ bconvexp;base;text;num;convy

[1] n Convert to base
Lz2] n Get the new base required

3] base+{('bin'>'oct'a'dec's ' hex'eapwr[;03)/ 2 8 10 16
4] A Get the characters entered

[s] text+«'exp' wdg apwr

[6] a Conversion string

[7] conv+'0123456789ABCDEF!

(8] R Canvert rrom old base

[9] num+bconvoldiconvitext

78

VECTOR Vol.9 No.4

[10] =& Convert to new base
[11] text+conv[{{[baseeltnum}pbase)TnUR]
f12] n Display text
[12] -wd ‘'csel exp;ctext ',text,';!
[14] n Save base for next lime
[15] beconvold+base
v

Finally, we can display the same results as shown on page 62:

Number Base Converter i [l 1 Number Base Converter gl
[h1101117111 |
O Bin O oct @ Bin O out
O Dec @ Hex O Dec QO Hex

For each of the above results, | had to click on the radio button, then click on the
edit window, then press the Enter key to get the number to change. There are a
lot of functions available that I have not investigated, so perhaps there is a way
of getting this to work more like Duncan’s Dyalog code.

Conclusion

This is a simple interface to Windows which enables one to produce simple
applications quite quickly. T was a little surprised at the rather pedestrian way in
which the interface has been implemented. I had expected that there would be
considerable use made of boxed arrays to pass commands into (wd, rather than a
character vector. Developing applications with few of the sizes and positions of
child windows hard coded, and lots of little functions for every task, would
require a lot of work catenating bits to a character vector that would eventually
be executed by Owd.

The only documentation that I had was the Windows help text. I printed it all
out, so that I could have it by me whilst developing the above, and it has taken
me about 2 days to write this review. I think that this shows that the interface is
easy to use.

79

VECTOR Vol.9 No.4

APL — New Release

reviewed by Jon Sandles

This new release of APL comes in a plain white sleeve and although there is no
documentation available, I do not believe it will ever be commercially available.
Believe it or not T first heard of this on the television. Well how does it shape up
against its competitors? ... all the standard features are there. A full heady riff is
developed slowly and steadily with a nod and a wink to past masters of this
genre. The pulsating beat never lets up and by the end you are left drained of all
emotion. Of all APL releases this well could be the first to break the top 40.
Criticisms of the 12" disk format (I could not find any commercially available 12"
drives for PC's) will abound, and the black vinyl format is rumoured to be
obsolete. That aside Manugistics, Dyalog, MicroAPL et al could learn a lot by the
fulsome groove. I also wonder — where did they get that silly name.

The influences are worn proudly, from Joy Division to the KLF with snatches of
old — Floyd, Genesis and even Tangerine Dream. Will these people get better?
— 1 hope so because few records these days sound as fresh as this. (Note: as
usual with APL products the release date of this record has been put back — it is
on the Beyond label and the track is called “the calling’.)

Here are some extracts from a promotional leaflet which your editor recently
received ... readers are invited to offer suggestions as to just what “Vector” might
be. Anything sufficently silly will probably get printed in the next issue
+ Vector is clean quick and easy to apply
+ Vector is cost effective and labour saving
- Vector is ready to use and does not reduire difution
Vector does not stain the fleece
Vector is a non organophosphotus product
« Vector minimises motheting-up problems
+ Vector eliminates the risk of chilling lambs

Protection of Operators

WEAR PROTECTIVE CLOTHING, RUBBER GLOVES AND BOOTS when
applying the product. Use in a well ventilated area.

80

VECTOR Vol.9 No 4

RECENT MEETINGS

This section of VECTOR is intended to document the seminars given at recent
meetings of the association; it is of particular value to members who live away
from London. It also covers other selected events which may be of general
interest to the APL community.

If you would like to speak at one of the regular British APL Association
seminars, please ring the Activities Officer (address on inside back cover) who
will respond enthusiastically to your offer.

81

VECTOR Vol.9 No.4

APL-landing to Kronstadt Island
(an experience of APL operation)

from Pavel & Oleg Luksha

Key-words: . . . APL, Russia, Kronstadt, IBM PC XT/286 with no hard disk,
TryAPLZ, Per Gjerlov.

A Bit of History

We have got this precious experience you will read about in the cold and windy
November heart of Russian Navy locations.

Perhaps we can tell nothing if you have never heard about Kronstadt. Its tale
begins with Sweden warriors who have occupied this island once upon a XIV
century. Then there was a kind of ping-pong game: it was occupied by Russians,
then by Swedes again, then by Russians again. Finally it was reserved by Russian
czar, Peter The Great, who has built a fort there and said his famous words:
“From here we'll threaten Swedish labour, for fear to be our haughty
neighbour!”, As the translation is ours, to say it in ordinary language: “This
island belongs to me!” Then there were some wars, some revolutions, until we
had the year of 1992 coming. This historical (with no doubt) year APL'92 was
held in St.Petersburg. When it was held, some participants had clearly decided in
addition to their sightseeing of Kronstadt to visit the school of that beautiful sea-
town.

How has this story begun?

All persons who paid that noble visit were veterans of APL movement. They
found a Kronstadt school having several IBM PCs, but no APL at all! Everything
they could do was Erkki Juvonnen’s courses plus Per Gjerlov’s visit. They saved
up money enough to pay for whole of Erkki’s and half of Per’s. The only problem
was to interpret what Per would say (as they had only several persons speaking
English and none of them could understand APL terminology).

So he had invited us and we came in a moment. Nick Puntikov has taken us to
Kronstadt immediately.

Everybody was excited with Per’s visit, especially island teacher Mr. Spiegel. He
(i-e. Spiegel) made himself an engine of the course. Thanks to him Per and we

§2

VECTOR Vol.9 No.4

could find an accommeodation on the very island. So we found a place to stay at a
nice ancient hotel, which is known there as “Three Bananas”. A small apartment
contained a long and narrow room with furniture of style and age of 50ths. But
we were fond of our hotel (at least we hadn’t had to sleep under an open sky).
And all during the days we had splendid time and luxurious parties at Spiegel.

What is the Problem?

The school we taught in was not an ordinary one. Pupils were tested thoroughly
to get in there. They're now taught of different kinds of subjects with the newly-
designed courses,

The other important thing is that they are studying Junior Achievement course,
which is said to be “the oldest, largest and fastest growing” economics program
in the world, so more than 1.5M students participate in its different courses each
year. This subject (i.e. economics) is very new and actual for the former USSR
republics. Suddenly we were thrown into the cold water of wild business, so we
had to learn how to swim in there. Some study it by their own skin, others take
course like JA. It includes theory of marketing and management (with the basic
economics), business English and a computer program to practise the lessons for
better mastering.

This program was designed by Harvard Associates which develops different
educational software (including JA software also). The program simulates an
economic situation and lets a student decide what to do. Then it returns the
results of the decision and lets decide once more. It is really powerful for
educating, but there are the following features it does not have: graphical
representation of results exceeded, mathematical and statistical tools.

These last are those which APL is best for. So the idea was if APL could be used
for economics. We were able to prove it could!

Though economics seems to be social science, it has a great number of
mathematical tools to use (from tax and profit formulas to various analyzing
systens) to get the results.

APL is very similar to jazz; it gives you all the possibilities to improvise.
Actually, we had no strict plan to follow; but that what we were doing was
double brain-attack. First was in the evening when we were discussing an
economic (or any other} problem ourselves; next day we were bringing the
results into the class and discuss again in there. Using this method we could
work out an efficient way of graph drawing (even with those graphical
primitives of TryAPL2).

83

VECTOR Vol.9 No.4

So the most excited thing was that (though we had it taught for 2 days only)
pupils WERE interested in APL. They constantly asked if they would continue
their lessons.

The Rest

All the rest is covered with a thin mist. The mist is thin because recently the
author received a letter from Kronstadt. They say Per's visit was really enjoyable.

In another letter, received from Per himself, who successfully reached Denmark,
it is said that Kronstadt would be his best memory of the year. Same is for us.

The Results

Actually, the work is not finished yet. Per is going to visit Kronstadt for another
session. We're going to join him.

Now we could learn the difference between APL educational programs. It
should be noticed that I-APL proved that it was really the best for LEARNING
one. Tt has ready-made self-introducting WS, mathematical tools WSes, graph
plotting WS, music and memory operations WSes ete. This is what IBM can use
to show the possibilities and power of APL2.

But we enjoy both I-APL & TryAPL2 and hope they both will prove their great
use for education, even economics.

In addition, we were interested in JA course ourselves, and we are going to make
APL-accompaniment for this program, like APL-idioms & APL-exercises. We ask
anyone who knows of using APL for this or other economic courses and can help
us in this regard, please contact us at: iuksha@market.avecs.obninsk.su

84

VECTOR Vol.9 No.4

An Implementation of]

Roger Hui’s presentation to the British APL
Association on 12 February 1993

transcribed by Anthony Camacho

It is a pleasure to be in London again and an honour to be invited to speak to this
audience. I am going to talk about An Implementation of J. Please interrupt me
at any time if you have questions.

What is J?

] is a dialect of APL based on Ken Iverson’s work over the last forty years. It uses
the standard ASCIT symbols and therefore does not require the special
keyboards, special displays, special printers, special editors and so on that
previous AFLs did.

It has facilities which enable functional programming. Tt is freely available and
runs on many machines including;:

Sun 3

SPARC

Silicon Graphics
Mips

Next

RS 6000

Vax

PC

Macintosh
Archimedes

and others.

1t is written in C and is portable. The source code is available. It uses standard
facilities. For example it uses STDIN and STDOUT for dialogue. It uses the C
library functions malloe and free for memory management and it provides
access to host files or native files.

85

VECTOR

Vol.9 No.4

The following dialogues give a taste of the system. The lines that are indented
are those I typed; the lines that begin at the margin the system’s responses.

a=.123%45€86
sum =, +/
sum a

21
mean =. sum % #
mean a

3.5
report =. . 2 3 &
report

6 1 2 3

L 5 6 7

8 9 10 11

12 13 14 15
16 17 18 13
20 21 22 23

The first sentence says ‘a’ is a list of six numbers.

‘sum’ is a verb or function which computes the sum. The sum of ‘a’ is 21. We call
“sun’ a verb because it applies to a noun to produce another noun. The symbol
slash (/) is an adverb because it applies to a verb, in this case plus (+), to produce
another verb. ‘mean’ is the sum divided by the number of items. The mean of ‘a’

i53.5.

Verbs in] apply to elements, lists, tables and reports. For example suppose
‘report’ is the revenues for two departments over three countries over four
quarters. The mean over the departments is simply ‘mean report’.

mean
& 7 8 9
10 11 12 13
14 i5 16 17

mean "1

1.5 5.5

report

report

8.5

13.5 17.5 21.5

mean "2
4 5 6 7
16 17 18 19

report

g6

VECTOR Vol.9 No.4

mean "3 report
6 7 8 9
1¢ 1t 12 13
i% 15 16 17

‘mean’ over the four quarters is ‘mean’ applied to the list of rank one objects in
report and ‘mean’ over the three countries is ‘mean’ applied to the tables of rank
two objects in ‘report’. ‘mean’ applied to the rank three objects in ‘report’ is the
same as ‘mean report’ because report only has rank three.

The symbol double quote used here is the ‘rank’ conjunction. It is dyadic and
applies to a verb left argument and a noun right argument to produce a verb.

A2 3K

7.38906 20.0855 54.5982
12 3r2 3 4

18 81

square =. af2
square 1 2 3 4
1 4% 9 16

antilog =. 108a
antilog & 0.699 _1
104 5.00035 0.1

55 =. +/8(a82)
sg"l report
14 126 366
734 1230 1854

The symbol hat (+) denotes a verb and like other verbs it has a monadic and
dyadic meaning. The monadic meaning is exponential. The dyadic meaning is
exponentiation or power.

Now if you fix one of the arguments of a verb you get a different verb. For
example ‘square’ is power with a fixed right argument of two. Ant1log is power
with a fixed left argument of ten.

The symbol ampersand denotes a conjunction. If one argument is a noun it does
fixing or currying; if both arguments are verbs it does composition. For example
sum of squares is sum composed with square.

Like all verbs, these verbs that are derived from conjunctions apply to lists, tables
and reports and are in the domain of conjunctions.

87

VECTOR Vol.9 No.4

Nouns (arrays)

In the implementation the fundamental structure is the APL array, by which 1
mean the C structure capital a (4), which has the following parts:

The type

Reference count

Number of atoms or elements in the array

The rank

The shape or dimensions (the rank gives you the number

of elements in the shape)

The value — the elements of the array in ravelled or 'row major’ order

typedef long I;
typedef struct {I %,c,n,r,s[1l]:}* A;

t type

c reference count

n number of atoms

r rank

s ... shape

v ... aloms of the ravelled array

{row major order)

All objects, whether numeric, literal or boxed, whether noun, verb, adverb
conjunction or punctuation are represented by this structure. For example the
string ‘cogito ergo sum’ is represented like this:

'Cogito, ergo sum.'

IEHAR] l| 1'?] 1] ITlCogilto, lergol suml.l

t < n r s v v v v v

The type is character. There are seventeen elements. The rank is one and the
shape seventeen. The value is the seventeen characters in the string held in one
byte per element or four bytes per word.

88

VECTOR Vol.9 No.4

The number 1.61803 is represented as follows:

1.61803

T
|FL I 1| 1| 0! 1.?1803

The type is floating point. There is one element. The rank is zero so there is no
shape and there are two words per element in the value.

Questioner from the audience: What s the reference count?

The reference count is the number of times this object is used. T won’t go into
that. Tt has to do with the internal workings of the interpreter and is not very
interesting,.

The report we saw earlier is represented as follows:

i. 23 4
INTI

Type is integer. There are twenty four elements. The rank is three. The shapeis 2
3 4 and the value is the integers from 0 to 23 each stored in four bytes.

89

VECTOR Vol.9 No.4

I said before that not only nouns but also verbs, adverbs and so forth are
represented by this structure; so for verbs, adverbs and so on the type would be
verb adverb and so on, but the value would interpreted according to the
following template or structure denoted by the C structure ¥ having these parts:

typedef A(*AF) ();
typedef struct {AF f1,f2;A f,g, hs

I nr,lr,rr;C id;} V;

£1 monad

f£2 dyad

f 1st operator argument

g 2nd operator argument
h 3rd operator argument
mr monadic rank

1r left rank

rr right rank

id identification (byte)

If a verb has rank R that means it is defined on arrays of rank R or less and the
extension of that verb to arrays of higher rank is the same as for all other
verbs.

Questioner from the audience: What are the first lines on the slide?

Oh that is really for C hackers; it doesn’t really matter very much. The top line is
defining a type called ‘AF’ and that's a function that returns an array result. I put
it here because 1 use ‘AF’ in the second line. The second line says that ‘r1" and
‘t2’ are of the C type ‘function’ returning an array result and ‘', ‘g" and ‘" are
of the type "APL array’ and ‘mr’,‘1r" and ‘rr’ are the C type "integer’ and ‘id’
is a C type capital ¢ (C). I haven’t shown the definitions of I and C but they are

just integer and character.

90

VECTOR Vol.9 No.4

To give you a better idea of what all this means: the verb‘sum of squares’ we
saw earlier would be represented as follows.

f1 £2 fgmlor id
onl on2 N S S I B i
+/&("&2)
areduce |oprod |.|e|_|_{_|/
+/
conjug |plus ol0|_|0|0]|+

withr domerr|.|. &

expnl expnZ2 (0[O 0|10]|"

1 haven’t shown the rank, shape, reference count, number of elements and so
forth — I chopped it off because the interesting part is what is shown here.

For ‘sum of squares’ the root is composition whose symbol is ampersand (&)
and whose C function is ‘oni1’. The dyad is the C function ‘on2’ and all the ranks
are infinite. The operative arguments ‘t’ and ‘g’ are ‘sum’ and ‘square’,
themselves represented similarly.

‘sun’ the symbol is slash (/). The monad is the C function ‘areduce’. The dyad is
the C function ‘outerproduct’ and there is only one operative argument, plus

(+)-

For 'plus’ the symbol is plus (+). The monad is the C function ‘conjugate’. The
dyad is the C function ‘plus” and there are no operative arguments because plus
is primitive.

Back to ‘square’; the symbol is ampersand (). The monad is the C function
‘withr’. The dyad is the C function ‘domainerror’. The operative arguments are

91

VECTOR Vol.9 No.4

‘pover’ and ‘2’, themselves represented similarly. ‘2" is a noun whose
representation we've seen before. ‘pover” has the symbol hat (»). The monad is
the C function ‘exponential1’. The dyad is the C function ‘exponential2’ and
there are no operative arguments because power is primitive.

So I think you can see how this can grow on and on to make mere and more
complex functions.

Parsing

This parse table is the cornerstone of the interpreter.

typedef struct (I c[4):AF £;I b,e;} PT:

#define EDGE (MARK+ASGN+LPAR}
#define NOTCONJ (NOUN+VERB+ADV)
PT casesg[] = {
EDGE, VERB, NOUN, ANY, monad, 1,2,
EDGE+NOTCONJ, VERB, VERE, NOUN, monad, 2,3,
EDGE+NOTCONJ, NOUN, VERE, NOUN, dyadé, 1,3,
EDGE+NOTCONT , NOUN+VERB, ADV, ANY, adv, 1,2,
EDGE+NOTCONJ , NOUN+VERB, CONJ . NOUN+VERB, conj, 1,3,
EDGE+NOTCONJ, VERE, VERB, VERB, forkv, 1,3,
EDGE, VERB, VERB, ANY, hookv, 1,2,
EDGE, ADV+CONJ, RHS, ADV+CONT, forme, 1,3,
EDGE, ADV+CONJ, ADV+CONJ, ANY, formo, 1,2,
EDGE, CONJ, NOUN+VERB, ANY, curry., 1.2,
EDGE, NOUN+VERB, CONJ, ANY, curry, 1,2,
NAME+NOUN, ABGN, RHS, ANY, is, 0,2,
LPAR, RHS, RPAR, ANY, punc, 0,2,

HE

A sentence to be parsed is placed on a queue and as parsing proceeds, words are
moved from the queue onto a stack. After each move the first four words on top
of the stack are compared to these patterns. If they match a pattern then the
action in this column is triggered and that action will be applied to the words
indicated in the last two columns and the result of the application put on the
stack in place of the matching items.

The implementation makes extensive use of macros, defined constants and type
definitions. You have already seen some of them; for example the types A and V,
the defined constants noun, adverb, conjunction and so forth.

92

VECTOR Vol.9 No.4

The advantages of such usage is that it greatly augments the expressive power of -
C, il enforces uniformity and increases readability. For example, by ‘an APL
function’ I mean a function that applies to array arguments and returns an array
result. These macros encapsulate that convention. The macros ‘1" and ‘2’ are
for primitive APL functions and ‘df1’ and ‘df2’ for derived or non-primitive
functions. The argument ‘sel ' is an array whose monad or dyad is ‘t".

#define F1(f) Af(wia w;
#define F2(f) A fla.w}la a,w;
#define DF1(f) A f{ w,self)A w,s5elf;
#define DF2(f) A fla,w,self)a a,w,self;

Using such definitions and macros the functions and programs in the
implementation look like this. The monad itemised is defined in one sentence.
Likewise the C implementation is one line. Notice the use of the ‘1’ macro
which says that this is a monadic function which applies to one array argument
and returns an array result.

Dictionary:

. 1y adds a single unit axis to y, making
the shape 1, Sy.

C:
Fl(laminl){R reshape (over {one,

shape(w)),w);}

The dyad ‘laminate’ is also specified in one sentence and again its C
implementation is one line. The ‘2" macro indicates that this is a dyadic function
which applies to two array arguments and returns an array result.

93

VECTOR Vol.9 No.4

Dictionary:

An atomic argument in x, :y is first
reshaped to the shape of the other (or to a
list if the other argument is also atomic); the
results are then itemized and catenated, as in

{,:0x), (,:¥v).

C:

F2(lamin2) {RZ (a&&w) ;
R over {AR(a)?laminl (a}:a,
AR{w}?laminl {w):
AR{a)?w:tablel{w));}

The conjunction ‘ampersand’ that we saw earlier is implemented as follows. As
indicated previously if one argument is a noun and the other a verb then it does
‘fixing’ or “currying’. If both arguments are verbs then it does composition and if
both arguments are nouns then it signals domain error.

The functions ‘ont’, ‘on2’ and ‘withr’ that we saw earlier are defined thus.

static DFl{withl) (DECLFG; R g2(fs,w,gs);}
static DF1{withr) {DECLFG; R f2{w,gs,fs};}
static ¢Sl{onl, f1(gl{w,gs},fs})

static C52(on2, f2(glla,gs),gliw,gs),fs)}

F2 {amp) {
RZ (a&&w) ;
switch (CONJCASE (a,w) } {
case NN: ASSERT(0,EVDOMAIN);
case NV: R CDERIV{CAMP,withl,dL, RMAXL, RMAXL, RMAXL} ;
case VN: R CDERIV{CAMP,withr, 0L, BRMAXL,RMAXL,RMAXL};
”case VV: R CDERIV{CAMP,cnl, on2,mr{w),mr{w),mr{w}};

94

VECTOR Vol.9 No.4
Statistics

C Fns 793
Lines 4521
Average lines/fn 5.7
Min 1
Max 81
Median 1
One-liners 435
Lines 4521
4/ Line lengths 143481
Average chars/line 31.7
Min 1
Max 89
Median 28
One-character lines 293

440 ofthe 793 fnsare APL functions

These statistics are derived from the J source code for version 6. As you can see
the implementation consists of a large number of functions which are short,
having short lines and following a well defined uniform interface. These are
characteristics of an APL programming style.

This concludes the prepared part of my talk. Are there any questions?

[Reporter's note: The question and answer exchanges below are summaries of

what was said.]

o

Why should APLers use J?

A Because it has no special characters, enables functional programming and for
other reasons — why don’t you invite Ken Iverson lo come and talk to you

about it?

Q Can afl APL functions be translated into J?

A What I called an *APL function’ was defined as a function that processes
arrays and gives an array result. This is not necessarily the meaning of APL
function in APL\360. Translation from APL to] has to be done by hand.

95

VECTOR Vol.9 No.4

0

>

>0 o O

Does] have the concept of the workspace?

Yes. It is currently implemented in a workspace interchange form and future
versions may use different representations.

Can you tell us something about Js relationship with its operating
environment?

It provides an interface to host or native files and also can call functions that
follow the C calling convention. The details are to be found in appendix C of
An Implementation of J. L 1s called the link-] interface.

] has changed rapidly over the last few years: to what extenl was this
implementation style designed to make such change possible?

[had a slide of statistics at Copenhagen over two years ago. The figures were
very similar to these. This programming style has actually evolved out of
desperation because that was the only way 1 could keep up with Ken Iverson.
Were you an APL programmer before you did C?

Yes; | was an APL programmer for aboul thirteen years before I did this. |
knew APL from the outside before writing its inside.

Would you have written the C like this without that experience?

Probably not. These slatistics are one indication that this is an APL
programming style effected in C.

Are there any efficiency consequences; is this style of C slower than others?
No; no necessarily. Between Copenhagen statistics and these I did an
extensive speed up without affecting the style or the statistics.

Are there any limitations such as a maximum rank?

Yes, there is an artificial limit on rank of 127. There is also a limit on the
number of elements in an array — as it is stored in four bytes there is a limit of
two billion.

What is ‘EDGE’ in the parse table?
‘EDGE’ is‘marker’, left parenthesis or assignment arrow.

Please explain parsing again as 1 didn’t follow.

Words are moved from the queue to a stack and the top of the stack is
compared to the pattern in the parse table. Suppose we are parsinga =. L.
The queue will contain a marker “{’ followed by a, =. and 1. We move i o
the stack. There is no match so we move =. to the stack; still no match, We
move a to the stack. The stack now contains @ =. 1 and this matches line 12
of the parse table because RHS is any of noun, verb, adverb or conjunction, so
we invoke the C function * i 8° with the arguments indicated in the last two

96

VECTOR

Q0

O » 0 » 0

columns; the resull is a 1 which replaces thea =. 1 on the stack. We then
proceed from there.
So to change the way hook works you would change this parse table?

Yes. If you take out some lines from this table you get the APL\360 parsing
rules. That's why hook and fork and so on are proper extensions to the
APL\360 rules: we just took expressions which would have been errors and
assigned meanings to them.

What about currying?

Lets look at the pattern: if you have two adverbs in a row or two conjunctions
in a row or if you have an adverb and a conjunction then that fits the pattern.
An exampleis “+\’ which is ‘sum’. To define a scan like the APL scan all [need
is*/\’ == two adverbs in a raw and that would be handled by this rule.

Could the parse table really be used to parse APL?

It would have problems with anomalies such as semicolon bracket indexing
and it couldn’t do strands, but otherwise it would work.

What about 1 space 2 space 37

We consider that part of word formation rather than parsing. That is done
before putting sentences in the queue.

How is memory used?

Imalloc each little bit as I go, so how memory is used depends on how
malloc works.

What about saving a workspace?

What [mean by 2 saved workspace is slightly different from other APLs. I just
put each object in turn into a standard representation.

Why does loading a workspace use more memory than the size of the
workspace when on file?

The standard representation packs objects economieally. On loading they are
expanded to a form which is easy to handle — the form you have seen, Also
the process of doing the conversion uses space.

Between] and APL, which do you prefer?

I prefer] because I implemented it.

Is] APL?
Yes — it is obvious that] is enhanced APL thinking.

Which goes faster,] or APLIWIN?

97

Vol.9 No.4

VECTOR Vol.9 No.4

O - & >0 =0 o

o)

A

The windows code is the same for both and this takes most of the processing. |
believe] is competitive on the rest of the timing.
What are your hopes for J?

I have no ambitions in that regard.

Could someone with an APL background understand your C?

Yes definitely. The source assumes the reader knows both J and C but the
reader who knows C and not] or APL is under a much greater handicap than
an APLer who doesn’t know C.

How do conventional C programmers react to this?
With horror!

Can you describe the workspace environment?

It's perhaps a little misleading to describe the space where objects are held as a
workspace, because all it is is space obtained frommalloc and freed by
‘free’ when no longer used. Again see appendix C of the bock.

Do you have things like symbol tables as well?

Yes, the symbol table is just another type of object with the type
‘gymboltable’ and it relates the name to the value. Either name or value
could be used when the symbol table is referred to depending on what would
be most convenient.

Can you have multiple symbol tables to avoid ‘symbol table full’ messages?
Yes I do but not for that reason.] use multiple symbol tables to hold localised
variable names.

On the J disk of source code version 6 there is a directory J41 as well as a
directory J6. Why?

The book is fully compatible with] version 4.1 but J version 6 is the latest
version.

[Applause]

Announcement: The book An Implementation of | by R K W Hui, published by
Tverson Software Inc, is available from ISI in Canada for $20 plus $20 for air mail
and packing. These are US Dollars not Canadian, I-APL will get it for you for
sixty pounds plus three pounds packing if you order from the enquiry address. It
is not shown on the I-APL price list because sales do not justify the space it
would take.

98

VECTOR Vol.9 No.4

(GENERAL ARTICLES

This section of VECTOR is oriented towards readers who may neither know
APL, nor be interested in learning it. However we hope you are curious about
how, under the right conditions, such impressive results can emerge so quickly
from APL programmers

VECTOR Vol.9 No.4

APL Experiences and MicroSoft's
Visual Basic for Windows

by Martyn Adams

Tam a Visual Basic programmer. Please stop laughing! I am in disguise you see,
am really an APL programmer but there are reasons why I am not programming
in APL any more.

Seriously though — I will have to explain why the situation is as it is and hope
that someone, particularly an APL vendor, will take a lesson or two from this
article and address some of the problems I have encountered. I am/was a pretty
good APL programmer in my time but market forces have changed things and 1
have had to adapt to the market place. Now I like to see myself as a sort of fifth
columnist — examining the competition and feeding back the details for the
benefit of my colleagues in the APL world.

1 suspect you are like me, once you have got to grips with Iverson Notation other
languages are just a verbal abuse of your time and energy.

So then, 1 will start by giving you a brief history (not long enough to be boring)
that will put things into perspective and explain how I arrived where I am, and
then I will delve into Visual Basic (VB) by running through a sample VB session.
The session itself will create a simple Windows program and T will let you judge
how easy it would be to program in APL for Windows -— whichever APL that is.

Before I start though, a word of warning. During the last five or six years | have
come across some pretty fundamental changes in software design and build
methodologies. Two new buzz-phrases are Object Oriented Programming and
Graphical User Interfaces (GUIs) like Windows. If you hear someone say that
OORP is just like subroutines, and GUIs are more complicated than necessary —
they are dangerously WRONG! I should know — it cost me.

1 have seen experienced software developers ignore Windows and stick to DOS
for as long as they could and then try to implement their old style monolithic
programs under the Windows environment. 1t never works. The net result of my
tolerance to such follies has cost me and my company at least thirty thousand
pounds over the past year — and that is just through this simple lack of foresight
and understanding by a programmer. Take heed, programming style has
changed — and you must be aware of these changes and change with it!

100

VECTOR Vol.9 No.4

The mentalities I have come across seem to break down into two types:

Type 1 are the old established players who would not contemplate
developing products under Windows until it had become something everyone
was using. Now it is probably too late for them to make a credible jump and a
wonderful opportunity has been lost for ever.

Type 2 are the old established players who did make the jump but did not
understand what Windows is all aboul. They did not understand COP or
GUIs or what they were really trying to achieve and consequently made a
mess of the entire affair, Their attitude was one of blind indifference and even
cynicism when it came to Windows.

Notice that it is mainly the ‘old established players’ which form this resistance
movement. If you are one of those you could well find your future in
programming rather difficult. You have been warned. 1 hope you are not
amongst this crowd — if you believe you are, or might be, buy yourself a copy of
VB and develop a little program in it. VB is not OOP — but it does not have to be
as we will see. '

OK then, history. A few years ago I was employed by a consultancy and we
developed a pretty good system in APL. Tt ran, naturally, slower than a
comparable system developed in C or PASCAL — but our development costs
were extremely low and the speed at which we developed the system was
phenomenal. We stayed streets ahead of the competition by improving the
functionality of the system and our clients were quite prepared to buy top-end
machines to offset those performance issues. This system ran under good old
DOs.

The problems we encountered with this development culture were trivial at first,
but grew until they became quite considerable. Firstly, we had to ship a complete
copy of the APL interpreter with every copy of software, giving clients access to
our original source code. Later we had a Run Time System, however we then had
to negotiate discounts and distribution deals as a special case as we were not a
common phenomenon in the APL community. Then the APL vendor decided to
improve the usability of the interpreter at the expense of workspace and speed.
The features we wanted were not included.

To top it all, we had clients purchasing machines with (the then) new EGA and
later VGA screens and we had to wait six months before the upgrades could be
properly reflected into the design of our software. Networks seemed to come as a
complete surprise to APL language developers and we had to develop some
tricky APL code to enable multiple concurrent access to our large databases.

101

VECTOR Vol.9 No.4

It was also pretty apparent that the interpreter was not keeping up with the fast
moving PC market. Fortunately APL is such a powerful language that you can
code around most of the shortcomings in the language itself. But worse was the
endemic APL culture — never mind the professionals trying to build and ship a
professional product — let us help the learners. Of course there is nothing wrong
with that, on the contrary, we need more APL introductions which are easy to
use. But without the delivery of commercial systems how will APL ever become
a respectable name in the software market?

Then came OS5/2 closely followed by Windows. It took years before AFPL really
caught up, and T am not sure it has yet. Look at the VB demonstration later in
this article.

At the end of 1990 I left to develop my own "New Generation EIS" software
package using APL as a prototype. Although it generated a lot of interest and it
was technically competent, it was never a viable product. APL still was not on
Windows in a form in which I could develop and ship stand-alone produ.cts, and
everyone was asking me for Windows software. So 1 had to switch to another

language.

I chose a new ‘Fourth Generation Language’ from a new British supplier.
Eighteen months later substantial technical issues built up until 1 could no longer
sustain product development in this environment. Old fashioned concepts were
applied to development which gave me no end of trouble with the Windows
environment. Finally, the product was killed off with an over ambitious pricing
structure.

So 1 had to switch again, but to what? My options, based on my own
programming experience, were:

MicroSoft C

MicroSoft Visual Basic

Borland C++

Borland Turbo Pascal for Windows (TPW)

An APL for Windows
Weli, T had tried Borland’s C++ and TPW — and T was very impressed with
TPW. It compiled like lightning and had a really well integrated development
environment which enabled stepping through the code, examination of

variables, error trapping, breakpoints, watches, stacks, back tracking, full access
to the windows AP, ability to build custom DLLs, etc. Even better debugging

102

VECTOR Vol.9 No.4

than most APLs! No Run Time Systems to worry about, ne licensing problems.
Even when using the editor the source code is highlighted in colour according to
the syntax. It is Object Oriented too.

MicroSoft’s C at that time was like any other C product but worse. HUGE!!! The
index for the documentation alone is over 500 pages long! I remembered back to
the good old days when our development costs were low and the development
times far better than the competition. “Not for me!” T thought.

APL? Well, there are one ot two good APLs on the market which might have
filled the bill. But T chose not to go that route for many reasons. I shall list some
of them:

1. The additiona] cost of APL interpreters or Run Time Systems.

. Interaction with some of the APL systems was not truly Windows like.

. Insufficient flexibility with access to Windows APls, DLLs etc.

Less APL expertise around than say, PASCAL, C or BASIC.

Cannot expect users to purchase and adapt the source code based on AFL.

Past experiences.

N W e W

Smaller user community.

So I took the pragmatic decision and from the list of languages I picked two. For
product development we use Borland’s PASCAL 7.0 (an enhanced version of
Turbo Pascal for Windows), and for client customisation and other bespoke work
we use MicroSoft’s Visual Basic. They are both cheap, well integrated into the
Windows environment, nearly as productive as APL, faster to run (well the
PASCAL is anyway), future proof to a greater extent than APL and easier to
market,

1 hope that explains my position clearly and gives some real-life feedback to the
APLers of this world.

Now to the Visual Basic Example

1 use VB2 Pro — its full title is Visual Basic Professional release 2.0. It only came
out in January 1993 and costs about £350. Release 1 came out the year before.
Installation is straightforward, a little time-consuming and a little space-
consuming, mine is currently up to 15 Megabytes but I do not believe you need
all of that.

103

VECTOR Vol.9 No.4

It comes with all the stuff you would expect:

- a simple tutorial (noddy really)

- a professional’s tutorial (simple really)

- example icons

- a context sensitive language help system

- a development environment

- examples of applications — including an icon editor.

and some useful extra goodies:

- a help file on general experiences and how to do things in VB

- a help file on the Windows API

- a help file on the Microsoft official Windows look and feel

- a help file on how to extend the VB windows controls (buttons, lists ete.)

- the seurce code for a product installation tool kit written in VB

- a help text compiler, together with a hol-spot editor for hypertext type stuff

Not bad?

5o, for our example Iet us assume that we have installed VB2 and we are going to
write a simple application which enables us to edit simple ASCII text files with
full Windows look and feel — like the NotePad program that comes free but
better. First, we open the Program Manager Visual Basic 2.0 program group and
goggle at the icons.

[+isuial Bacic

imodiong Readme ViaiBese CustomConial Professonl Knowedge Holspoa Edtor
hd Vicual Basic Hekn Help Dema Bose

9 @ 9 2 7 @&
Heln DataAccess Datakecess WinSOK Help Win 27 AP Visual Decion
" Releisnce Selup Help . T Hek Giide

L&

 Panitrush « 00s
[T

104

VECTOR Vol.9 No.4

Second, we double click on the Visual Basic 2.0 program icon to reveal four new
windows. In the screen image I have minimised Program Manager, otherwise
the screen gets a little cluttered.

Microsoft Visual Basic [design]
B EINEERENETIE

23 oz 3T wromupes

B4l

-—I Project I'
1 Formt_bm Ford
57 AMIBUTON.VEX
5 CHDLALDG VB

¢ BAUGE VEX

1| GRAPH.VEX

£ GRID.VBX

A KEYSTAT VEX

% HSCOMM.VBX

4 MSMASKED VA%

H | | OLECLIER VEX

¢ PICCUIP.VEX,

42 SPIN VX

|| THREED VEX

Rl

Fa]|

At the top of the screen is the main VB menu window. With the screen you
actually control the VB development session by adding new source files, forms (I
will explain these in a moment), compile into an executable program, switch
between projects, start/stop/trace program execution and set the default colours
and such like.

To the right is a window with a list of the program libraries and form files.
Double click on these to start editing the code but as we have only just begun
there is only one form called Forml. The VBX files are extensions to VB which
enable 3D controls, multimedia, simple spreadsheet emulation, graphs, OLE,
email, communications etc.

To the left is the tool box: you click on this to select the bits and pieces that go
onto a form. Each one of these bits and pieces is called a ‘control’. A control is
something like a scrollable list, a data entry box, a place to put text, an icon, a
button etc.

Finally, in the middle is the blank form called Forml. A form is a really a
‘windew’ into which we put the controls and the dots are the snap-grid so that
we can align the controls and resize them to match up perfectly. The granularity
of the snap-grid is adjustable too, The form is the fundamental building block of

105

VECTOR Vol.9 No.4

a VB program (although not compulsory) and one builds a VB program around a
form and its embedded controls.

So to put the first control into the from we simply doubleclick on the button in
the tool box that almost looks like a miniature disk drive. This puts a drop down
list box into the form.

Mictossft Visual Basic [design e

- AZTxHT

=] Projectl =
‘

5 Funltm | Fomi ’

[ANIBUTON.VEX

| | ovp1aLDG vBX

4 GAUGE VEX

4 BIAPH.VEX

& GRID.VEX

¢ KEYSTAT VEX

5 KSCOMM.VEX

S MEMASKED VEX :
% OLECLIEN VAX 3
P4 PiccLP.vEX
| L4 SPIN VEX
% THREED.VEX

i

ERS R
Y vmanms
|
- = ’
H= : =~ { =] Projeatl i=
Yiew Foim Viem Coda
Y Formd fom Foml ;
47 ANIDUTON VB ;
3¢ CMDLALOE VBX
49 BAUGE. VX
=D o oy
= AAPH
f: & GRID.VEX
. [—c: [PA...] ¢ KEYSTAT.VER
: bl [&E_l ¢ MSCOMM.VBX.
) E::Lilr:__'.f F¢ NSMASKED, VAX
i I} | oLECUEN.vaX
"_ L T i &P"IL‘P,WX
L £0 SPIN.VEX
T ¢ THREED . VB
. 4
Pantbuush - Gisphacs pos | Fogan U
PIIBMP Servor s Managm s

106

VECTOR Vol.9 No.4

Voila! Form]1 is now running and even now is a Windows compatible program.
The picture shows the screen image after T have clicked on the drop down list to
show my disk drives, so this program could become a little utility as it stands,
and would be especially useful for networked PCs to show what disks are
currently connected,

Now perhaps you are starting to see why I like Visual Basic — [have developed
a little application with a resizable and movable window without writing a
single line of Basic!

Let us move on. After stopping the program by double clicking on the little
control box at the top left of the window, I added two more contrels to Form1, a
file list, and a directory list and T have moved and resized all of the controls into
a pretty group. I have also made the window larger to cope with them ail.

[IHE] i
|
Ol

ﬂ/_U’EEl@

e

Pt - Brabics
L RLME . Lo

107

VECTOR Vol.9 No.4

I press F5 to run this program and...

Microssft Visual Baslc [run]

F
5P SPIN.VEX
& THREED.VEX

T

... the file list lists files, the directory list lists directories and the drop-down list
lists disk drives. It all works with one proviso, namely that they are not
connected. Changing a disk drive does not change the drive that the directory list
is looking at, and changing the directory does not change the file list. So we stop
the program and now we write some Basic.

On the design screen T double-click on the drop down list of disk drives and get...

(Sub Drive1_Change () - .

End Sub

108

VECTOR Vol.¢ No.4

..a template for the Basic source code. When designing a form you can always
jump to the Basic source code underneath a control by simply clicking on the
control that activates it. I type in an assignment statement...

Microsoft Visual Blslc[deslgn vl
B.# ‘Sm Ij:] I ” I I";a i tl 770120 - ﬂ-ﬂrs:mj"
EA |I-“ Farm1 =1 .~5| ?sw
[ECloh= .
lﬂ @ % |Sub Drived_Change ()
EglFR B [|I” oirt.Path - srivet.orive
e = E:] Eng Stb
|~
[N
HE]
s
I
EEE] o
Farml
T
Fatee
Thae
0-Dead
Frami (o

.. which basically (forgive the pun) says "‘Whenever Drivel (the drop down list)
changes, set Dirl (the list of directories) to be at the new disk drive’. Then I save
that and double click on the directory control (called Dirl) and type in some

more code which says “Whenever Dirl (the directory list) changes, set Filel (the
list of files} to be at the new directory’.

Microsaft Visual Baslc [de:

.{1—1 Fanm hL‘JI VECTORMAK g I+ '.
ai(] ’- [# Proe: [hange EE -‘-:J;: «

Sub bir1_change {) 3
File1.Fath = piri.Path 25
End Sub

D = =
= ©E Objwet, [DT_

£]

[im]

Y

<[

109

VECTOR Vol.9 No.4

Now I have a fully working navigation structure which allows me to navigate all
around my disk and select files at will — just like other real Windows programs
which have File Open and Save As... options. I have only written two lines of
Basic and all the rest is completely automatic. So now to build the, full and final
screen design...

Microsuft Visual Basic [design] he il

a
¢
2
i

= B [¥] " Mowiyns Supnr Duper Ediing
- A Thing -

]
]
*
5

=P ECECE

&

..notice that 1 have managed to put in some 3D text, a couple of check boxes,
some buttons etc. In order to change any of the attributes of, let's say, a button 1
can simply select it, press F4 and fill in the form.

CIE!

s s ot —]

s e e

(3
|
H]

g

110

YECTOR Vol.9 No.4

All of the attributes on all of the controls can be filled in this way, and Visual
Basic even allows you to change them when the program is running. This last
feature means you could design a button which moves around the screen always
running away from the mouse - never to be caught and depressed!

However, full Windows look and feel is properly supported. You can make
forms and controls invisible, inactive, change states and anything else under
program control simply by assignment statements. You can even assign to
controls that are located on other forms. You can directly call the Windows API
{(which is documented) and call any available DLL routines if you have the
appropriate documentation.

To round off this example | added a few extra lines of code to the buttons — two
lines for the Cancel button, a few to the OK button, one to the print button, one
line to each of the check boxes.

Windows has something called ‘Accelerators” which means that if you press an
Alt-key combination some action takes place. VB2 builds these in automatically,
if you specify a button or menu option with a name like Eé&xit the & symbol
underlines the x character which automatically becomes the AI-X key
accelerator. No coding necessary, but you can override this if you want.

To make the editor actually edit something, T added a few lines of code to the file
list box which, when a file was selected, loaded a file and assigned it to the big
text box (Textl). This is the edit area and it automatically creates a scroll bar
when the contents become larger than height of the screen. Here is the loading
code:-

Sub Filei_Cliek ()
' comment: Icad a file for editing
Dim Path$, record$
" comment: Get the file name
Path% = Diri.Path
It Rights(Paths, 1) = “\" Then
Path$ = Path$ 2 Filei,FileName

Else
Path$ = Path$ & "\" & Filei.FileName
End If
' comment: now load the flle
contentss = "

Open Paths For Input As #1
Do While Not EOF{1}
Line Input #1, record$
contents$ = contentst & records & Chr${i13) 2 Chri(io}
Loop
Closa #1
! comment: This one line updates the screen
Text1.Text = contents$
End Sub

111

VECTOR Vol.9 No.4

Some muore Basic code is needed, but it is quite straightforward so I will not bore
you with the detail. Adding a Windows style drop down menu bar across the
top of the window is simply a matter of form filling again and then attaching
code to each of the menu options. Even drag and drop is supported.

To improve this application 1 could make the edit area resizable when the
window is resized (two or three lines of code), add Save File, Rename, Delete
and Copy buttons to turn it into a little session manager.

Colour and Help

There are a couple of other things I have not mentioned. The editor colour codes
the source code by syntax, meaning that comments, keywords and variables are
displayed in different colours. This greatly eases the understanding of the code.
Finally, there is a built in context sensitive help. Double click on any keyword,
press F1 and the help text describes it in detail. Do the same on any control and
the help text describes the control in detail too. This means that if you want to
learn Visual Basic you can simply buy the product, load it and press F1 for help
— although some of the help text assumes you already know Basic.

Summary

There is a lot more to VB2, I have only scratched the surface, but 1 hope that by
now you can see that it is extremely simple to develop applications with it. If
there could be a Visual APL I would be skipping on the desktops. Developers of
this Visual APL would have to realise that screen presentation is very important,
and the underlying language has almost become secondary to the screen image.

112

VECTOR Vol.9 No.4

Hooking up to the Internet

by Dick Bowman
email:bowman@apl.demon.co.uk

As we all know, the population density of APLers is not as high as we might
wish; this makes us need to reach around the world to find the number of people
we want to discuss APL topics with. Which is a problem, because long-distance
phone calls cost meney and the propagation delays of paper communications
cost us immediacy.

But there is an answer, and T'd like to share with you what little I know so far.

F've addressed this to Vector, because the technology is only just becoming
readily available to the individual in Britain now; the US has had better access
for some time, and many companies already use similar facilities for their
national and global communications.

The technology I'm talking about is Internet, and you can recognise someone
who has access to it by their habit of sticking an email address with an ‘@ sign
on it to everything they write. I'd been frustrated for some time because I found
that people expected me to be on the Internet, but those who were on were
exceptionally vague about how it all worked. So I found out, and this is what I
want to share with you. None of the services, publications, etc. that I mention
here should be construed as being recommended, praised or condemned; they
just happen to be sources that I've used to achieve successful connection. By the
nature of my geographical location my specifies will be specific to a person based
in London, but the sources will point you to possibilities everywhere in the
world.

The Internet and Other Nets

The Internet is the world’s largest computer network; but that said it's both
anarchic and amorphous. It does not run as a commercial enterprise, so the first
avenue for entry (look under ‘T’ in the phone book) doesn’t work. The thousands
of computers that comprise the net are mostly in educational and research
establishments, and have hooked themselves together on a more-or-less
voluntary basis. What you have to be able to do is to reach one of these
machines.

113

VECTCR Vol.2 No.4

Other networks such as CompuServe are not the Internet, although you can
exchange email between these networks. Indeed 1 used CompuServe for this
purpose for over a year. It's not perfect, but it works (within the documented
limitations).

Information Sources

Try asking around locally; you stand a good chance of success if you have
connections into a local college or university. You might also write to RIPE NCC,
Kruislaan 409, NL-1098 S] Amsterdam, Netherlands (phone +31 20 592 5065);
naturally they prefer email (ncc@ripe.net). There’s also a book packed with
useful information (remember, this anarchy does not provide a user manual)
called ‘The Whole Internet Users Guide and Catalog’, written by Ed Krol,
published by O'Reilly and Associates Inc. (ISBN 1-56592-025-2).

Types of Connection

From now onward I'm going to assume that you've decided to pursue this with
the aim of getting your PC connected, because this is all 1 have personal
experience of. The Internet is, to some degree, oriented towards UNIX but it truly
is an agglomeration of all sorts of hardware and software. Suitable software for
PCs, Amigas, Macs, UNIX and so forth is all quite readily available (and a lot
easier to get once you're connected — this is infuriating unless you feel well
motivated at times).

There are two choices to make; either be a user at an established site, or become a
site of your own. So if you call up your local college and they say OK you end up
as mrapl@uhull.edu.uk (you choose the bit that goes before the @ in your email
address). I did it the other way (which lets you choose some of the bit that comes
after the @).

Who Pays for All of This?

1 just knew you’'d ask sooner or later; the glib answer is ‘the US Government, of
course’. Yes indeed, ole Mom and Pop in their Kansas grocery store are paying to
let you and me exchange email with our pals in the Obninsk nuclear research
facility. It's not quite as ideal as that, but every site covers its own cost as an
overhead — you don’t pay Internet Inc. (how could you, they don’t exist).

The corollary to this is that there is a policy of ‘acceptable use’; what you do on
the Internet ought to be connected in some sense with education or research. The
policy isn’t rigidly monitored, but it would be bad form to take advantage of

114

YECTOR Vol.9 No.4

Internet connections to operate a company email network between your London
and New York offices.

What you’ll have to pay is the hardware and software cost of setup, whatever
your service provider charges, and telephone costs (to reach the service provider,
not the same thing as the services you use).

The Financial Good and Bad News

I connect to a service provider called Demon Internet Services, who are based in
London; their charges are £12.50 for initial enrolment and a monthly charge of
£10. No usage charges. This is possibly a little more than 1 used to pay for
CompuServe — but all T did there was to send and receive Internet mail.

The financial down side is that your service provider will probably encourage
you to use at least a V32 modem (9600 bps); this is not unreasonable from their
perspective because they've got a finite number of ports and if all of you folks
with your ‘by appointment to Queen Mary’” mahogany-cased 300 baud acoustic
couplers hog the lines all day then the service provider is going to have to buy
some more lines and modems (and pass the cost on). You'll probably find that it's
good news for you as well, because the modern-day email user has lost the knack
for economical mail that always made the T P Sharp system such a pleasure to
use.

The financial up side is that you will not need to splash out on a PC comms
package, because you'll get a special one from your service provider. This is
because your machine is becoming a full-fledged (if leaf-only dialup) node on the
Internet, and this runs on TCP/IP — you're going to have a whole lot more going
on than type a few keys, press Enter, wait for response.

The Software

Once again the hardened Internet nutter is going to tell you to download the
software. Great, you don't have it yet and you're not paying for that fast modem
until you know the service is worth having. Never mind, they’ll probably sober
up long enough to send it to you on diskette.

Now, about this software...
It's awe-inspiring stuff.

Take a backup. Take two, they might come in handy.

115

VECTOR Vol.9 No.4

What I have is three things called KA9Q, SNEWS and PCELM; they all conspire
to work together in one directory — but there are a few loose ends lying around
and we've ended up with a few new environment variables. Along the way [
encountered a lotally trashed hard drive, DOS software that insisted on directory
names being separated by forward slashes, DOS commands that produced
gibberish, a CMOS clock that totally lost track of time and a PC that decided
Bastern Standard Time was the timezone to be in.

But it all (sort of) works now, and on a scale of 1 to 10 I rate this stuff as harder
than APL, but simpler than Visual Basic. The user interface is rudimentary and
I'm not convinced that the file structures are robust enough to survive any sort of
software failure. Nevertheless I can do the three major things that] want Internet
access for — and who knows, there may be better stuff for me to download (or I
might write myself some tools to do some of the manipulations I need).

Email

My principal motivation was to be able to send and receive email. Easy to do —
just fire up PCELM and write the messages (handy tip — the PCELM
configuration file has a parameter called ‘edit’ that lets you call up a simple text
file editor, like DOS's ‘edit’, a configuration line that says “edit edit’ is not the best
idea you'll have all year). Next time you start up KA9Q all your outgoing mail
gets sent and yoy receive all that’s coming your way. This may include mail you
sent earlier being bounced back because of bad addresses — although if this
happens it often happens while you're logged on to the network, surprising. Go
back to PCELM to read and reply to the mail.

I'd better warn you of two types of characters you'll encounter sooner or later.
There’s the Email Vacuum Pump, who thinks that reading email is an adequate
activity and never replies to anything,. Then there’s The Phantom, who sends you
mail that you can’t reply to because the address they gave you is bad according -
to the system. Both of these characters are more numerous on the Internet than
they are on other systems.

News

News is a sort of mutated mail, that gathers together messages on related topics
and sends you the whole lot. You can elect to join news groups, receiving all the
traffic and making some of your own if you like. For example, if you have an
interest in zymurgy, then there’s a news group. If you have less common
interests, then you can join a newsgroup called ‘complang.apl’.

116

VECTOR Vol.9 No.4

News also makes you realise why that fast modem is important; my first news
download got me more than 600 messages — all from my local service providers
newsgroups. By the time a mail message has been through the mill a few times
with bits appended, and with the Internet routeing stuff glued to the front it can
be quite hefty (none of the IPSA To:BOW From: BOW ‘No’ succinctness here).

You elect to join {and leave) mailgroups through all of the software you got as a
starter set — mostly it's SNEWS, but there’s other stuff scattered around as well.
Incidentally, you may not get a backlog of news as soon as you join a newsgroup;
it took a day or so before comp.lang.apl started to trickle in.

Once your machine has grabbed the news (happens automatically when you dial
in) you have to run a local program called UNBATCH to distribute it in a sort of
orderly way into the newsgroups you set yourself up with before reading it with
SNEWS. As 1 write this most of mine goes into place called ‘junk’ because I'm
being fed more than I've organised myself to deal with — but I can still read it
there. T get around about 50 news items per day and anticipate this figure
remaining fairly constant as 1 disconnect from the irrelevant and hook myself
into the more personally interesting. Thus proving that fast modems do not save
money on phone bills — they just let you grab more stuff. A program called
EXPIRE lets you clear off the old stuff, but T haven’t found a way yet to build an
archive of the interesting ones only, maybe I have to do that myself.

There are literally hundreds of news groups; 1 downloaded a 500k byte file
giving details — it almost certainly is not all that are available.

FTP

File transfer is a real gem; if someone on the Internet with a machine that allows
logins wants to make a file available to other users then they can doit. You don’t
even need an account on the machine you're grabbing the file from. The facility is
called “anonymous ftp’, so if you know what you're looking for and the name of
the machine all you have to do is start up ftp and log on as ‘anonymous’. Even if
you don’t know precisely what you're looking for but you know a place to look
you can still log on and move around the directories.

Naturally, there are limits to all of this, and the information providers choose
what to put in the accessible places. But if the file's there, and you're allowed to
reach it, all you have to do is to get it and it's on your own machine. Remember,
this is education and research, no money changes hands; you're dealing mostly
with a country that has open access laws for things paid for out of the public
purse.

117

VECTOR Vol.9 No.4

Other Resources

Krol's book talks at length about Archie, Gopher, WAIS and the World-wide
Web; all ways of helping you find information you need on computers connected
to the Internet. Not all of these are available on all hosts, and I really haven’t had
time to explore any of it. You may be interested to know that even though
Internet really isn’t about APL at all one of the resources singled out by Krol is
WAIS. Much of the development for WAIS was done at Thinking Machines —
remember them?

Telnet may or may not prove useful; it lets you log on to other computers,
wherever they may be, for your local phone call. Not everyone will let you have
an account, but some will. Your activity may not be regarded as benign if you
use a computer in Japan just for the hell of it. This may rebound on the other
people who are benefitting from the appropriate use of a very significant
resource,

Summary

This is being written while most of this is very new to me; I would hope that by
the time you read it I'll know much more. I've used email as a way of keeping in
contact with APLers around the world for several years; it works very well. I
thought it was important to write this at an early stage in my direct connection to
Internet because if I left it any longer I'd join the ranks of ‘oh sure, just sign up’.

Other networks exist, and their specific natures may suit your purposes very
well. Nothing except money makes this an either-or situation. If you're on
another network (like CompuServe) we can still exchange email; we can share
more if you're on Internet directly (and to be fair, you can share things with other
CompuServe accounts that you can't let out to us).

Give it a try, you have only your hard disk to lose. The more of us there are
reading comp.langapl the more of us there are going to be writing to
comp.lang.apl, and the higher the chances of finding really useful stuff every
day.

Can't get the software going? Send me an email.

118

VECTOR

Vol.9 No.4

TECHNICAL SECTION

This section of VECTOR is aimed principally at those of our readers who already
know APL. It will contain items to interest people with differing degrees of

fluency in APL.
Contents
The Challenge of the New Duncan Pearson
Technical Correspondence
Sharing the Spoils or Circling the Square Mike Day
An Exchange on Primes Roger KW. Hui
Span Representation:
Improving the Display of] Verbs Richard Oates
An APL Truetype Font for Vector Adrian Smith

120
122
123
130

135

138

119

VECTOR Vol.9 No.4

The Challenge of the New
Object Programming and the Windows GUI

by Duncan Pearson

Until about two years ago there was fairly common agreement on what was
good practice in the coding of APL systems. What would come out was generally
a system navigated by a simple menu function which would call at each stage a
number of small black-box functions that would do fairly simple specific things
to their arguments and return the results. What you were doing (and what you
were doing it to) would be fairly well defined by your position within a
hierarchy of functions at the bottom of which would be G0 or ALX.

The interaction with the user was very well controlled. He could choose an
option from a menu or edit some data {(usually a small subsection of the whole).
Even with this small choice we would quite often end up with a few large
functions in which we would interrogate the user then branch to one of say ten
labels depending on his choice. Having done what he asked we might return him
to the menu and ask him what he wanted to do next. This would continue until
he chose to leave that part of the application. At each stage the option that he
chose would probably act on data local to that part of the system. So far so good.

Now imagine a situation in which the user can choose one of two hundred
different actions. As I sit in Word for Windows I have at least that many from
which to choose. What is more I spend over 90% of my time in the base state —
editing the document. How do you manage it? Do you have great wadges of
global data which is all manipulated by two hundred different little functions,
and have a two-hundred-and-three-line function which loops round deciding
which of these little functions to call? No, what you do is to associate with
everything the user can do a ‘callback’ funclion which will automatically be
called whenever that action (such as pressing a button or selecting an item on a
Menu) occurs.

This is the standard Windows approach to the problem and it gets rid of your
203-line function. However, as you never know which of these functions will be
called next, or what condition the system wiil be in when it is called, you must
do something to ensure that any data it needs is readily available, The easy but
dangerous approach to this (adopted by Manugistics for their APLGUI — see the
review in this issue) is to leave everything lying around globally in the
workspace, This leaves you with a new problem. How do you, as a developer

120

VECTOR Vol.9 No.4

starting to maintain someone else’s broken system, know what the hell does
what, with what, when?

One well trumpeted approach to this problem is to use data objects and pass
messages to them to update them. T can well believe that if a system is designed
from the bottom up using this approach then the problems of maintenance
would be dealt with. One of the difficulties of the use of object methods within
the Windows GUT offered by the current APL systems is that the object paradigm
extends only as far as the management of the GUIL The main area where benefits
are to be reaped is in being able to define a new data object class and then to
generate instances of that object class as and when they are required. Not only is
the object paradigm restricted to the GUI but only the standard supplied
graphics objects are true object classes. In Dyalog APL the “button’ is a standard
class of graphics object of which it is simple to define instances, but if for
example I want a class of specialised buttons that change the cursor when it
crosses them, then I need to define a special function with which to generate
instances of that class.

The basic GUI is the obvious place for object programuning to start, but it leaves
the programmer a nasty choice of either generating a number of hybrid systems
using only the GUI object classes defined in the interpreter, or of implementing a
complete object definition and management system in APL. Why, one might ask,
not just program in Smalltalk and be done with it. Roger Hui made a telling
comment in his talk to the BAA in February: when asked if he found all those
funny letter combinations in J to be a hindrance to programming he said that it
wasn’t the language that you used but the way that you thought — one in the
eye for the ‘symbols are everything’ brigade. If we cannot program for the new
user environment effectively without having to create an artificial “programming
environment’ layer then perhaps we are in the wrong language.

Which would take more work and give a more durable and flexible result,
putting the programming environment of Smalltalk into APL or putting the
array capabilities of APL into Smalltalk?

121

VECTOR Vol.9 No.4

TECHNICAL
CORRESPONDENCE

More on APL Packages

From: A.J. Brown 1 February 1993

1 read with interest the article from Nicholas Small in Vector 9.3 (page 100).

The same problem had occurred to me some time age, using APL*PLUS II. My
solution was to write the attached utility, The reasons for the name are now Jost
in the mists of time, but this function is now an integral part of all my
workspaces.

[1]1
[z]
Lal
[u]

£s]

6]
L7]
L&l
9]
[19]
[11]
[12]

¥V AexpAaad; 2z
A 921124
CNINDORN+ 0 & 25 B0 ¢ OTCFF
a Delete any programs not needed
OEX 'ApA Aunpost Afind K PROG DISPLAY PACKVR UNPACKVR CRDLOC
RELABEL STORACE'
A AddeX - matrix contalping list of variables NOT to be deleted
{must contain Asex)
Z+[JEX(~+/AAMAA =RAACK) FAAAA+{ (1+pAadAA), " 1tpAkex) tAAAA<NL 2
OFUNTIE DOFNUMS
¢ OINBUF ')SIC!
~1 OINBUF 13
~1 OINBUF ')SAVE!
~1 QINBUF 13
T1 OINBHF *START!

AlJ. Brown

Cygnus Enterprises Limited
15 Gardenfields

Stebbing

Dunmow

Essex CM33RG

122

VECTOR Vol.9 No.4

Sharing the Spoils or Circling the Square

by Mike Day

Just before Christmasg last year, [was having lunch with my friend Mike in his
Government department’s canteen. We studied Maths together many years ago
and are still “Scientific” civil servants. He wondered if I could help him solve his
rounding problem. His unit determines the amount of grant payable to a number
(say 50) of “clients” under a few (around 4) different accounting headings.
However most clients bid for less than all 4. His ministry has formulae to allocate
the available funds resulting in integral amounts of pounds (let us say) to each
bidder for each heading. However, they only pay out half of the approved funds.

Mike had the task of making the tables of Ministry expenditure look right in
whole numbers even though halved from the original approved levels; the sum
of the rounded halves must be as near as possible the same as the rounded half
of the sum for any client or for any heading or indeed overall.

By the way, Mike has Excel for Windows but not APL. He has always taken a
guarded and rather bemused view of my interest in it.

We can restate his problem only slightly more formally as:

Problem 1

Seek a way of arbitrarily rounding each half-integral number in a matrix up or
down so that the absolute cumulative error in each row, each column, and over
the whole array shall be nowhere greater than one half unit.

As a smaller example than the real thing, consider 5 clients and 3 headings with
these agreed (100%) spends:

Figure 1

1 2 3
1 33 0 55
2 ¢ 120 a0
3] 67 Y
4 23 29 43
]] [37

We only need worry about the odd cells as the even ones stay integral correctly.
Mark the odd cells in a Boolean matrix:

123

VECTOR Vol.9 No.4
Figure 2
b 2 3
1 b 0 1
2 4] D 4]
3 Q 1 4]
4 1 1 1
5] 0 1

Mike's problem is effectively to replace each one in figure 2 by a plus or minus
one so that all the marginal sums are 0 or +1 or-1. One solution is easily seen to

be:

Figure 3
1

1 1

2 o

3 H

y 1

5 o
o

I've appended the totals. So the complete result for the rounded halved matrix is:

Figure 4

[IR~ S TN I]
Q

28 1

Compare the unrounded version:

Figure §

1
1 16.5
2
3
y 11,5
5

28

2
0
60
33
15
0

o8

60

3z,
14.

3
27
15

o]
22
18

82

an

uy
75
33
48
18

218

3
27.5
15

21.5
18.5
82.5

uy
75

33.
uy.,
18.
218.

5
5
5
5

124

VECTOR Vol.9 No.4

Mike has solved his real problem by inspection but he thought there must be an
algorithm to do the trick. [agreed but at first I couldn’t see how. Then [saw the
light. Look at Figure 3 again — but change the signs of all the margins except the
total:

Figure 6
1 2 3
1 1 0 -1 0
2 0 0 0 0
3 0 -1 o 1
4 -1 1 1 -1
5 o 0 -1 1
0 0 1 -1

The marginal totals of the 6 x 4 table are all zero! We have an extended problem
which is simpler than the original:

Problem 2

Given a Boolean matrix with even numbers of ones in each row and column,
replace each one by plus or minus one so that all the marginal sums are zero. The
(- 1 1) DROP of the solution is a solution to PROBLEM 1 and the negation of
each marginal total except the overall cell is the sum for the corresponding
reduced row or column.

How do we set up the extended Problem? Tt is easy enough in APL to adapt our
matrix: append a new column which is the 2's modulus of the sum of each row.
Do the same with the columns and append a new row. So, if ¥ is the original
matrix,

ME « 2 | x,[43 +# x+ (ME,+/ME)

It's neater to defer the parity check. We still need to solve the extended table, #E!
Consider this problem:

M<11p1 Figure 7
which is extended to

ME Figure 8

BN
[

125

VECTOR Vol.9 No.4

trivially solved by

+ - Figure 9
-+

The solution can be traced in a eycle from 1 to 4 (to 1) with alternating signs:

12 Figure 10
u 2

The next most trivial problem is the 2 x 2 matrix:

+M+22p1001
10 Figure 11
01

extending to

ME
1 a 1 Figure 12
0 1 0
i 0 1
We see that there is still an easy solution:
+ - Figure 13

This again equates to the assignation of alternating signs to a cycle of cells in the
order 1 to 6:

1 2 Figure 1t

.43

B 5
Why does it work? In establishing an even parity of ones in rows and columns in
the matrix, we allow the existence of complete rectangles of 4 points: any
candidate (e.g. 2) must have 2 mates, (1 and 3). There is evidently a missing point
opposite 2. However it closes the rectangle whose other corners are 4 5 and 6. We
can therefore regard it as doubleton of plus and minus ones cancelling out to
zero.

Of course sometimes, as in figure 8, the rectangle is complete and does not need
completing with a virtual point.

126

VECTOR Vol.8 No.4

And that's it! Start with a plus at an arbitrary 1 in the extended Boolean matrix,
and move in a city grid path, i.e. allernately across (left/right) with a plus and
up/down with a minus stepping through remaining target cells in the array. [
actually set all the ones to value two to start with so that T can use the same array
throughout rather than have one for Booleans and one for the new values. As
real problems tend to have more than one closed path, we need to be able to
choose a new arbitrary starting point from time to time.

Here's a bigger example:

(4 5p' '),SHOWN BIGM

4ttt 4 + 4+ttt +E ot
B O & A 2 S L o e A A S e 0
+ R s AR S R LR T S L L I I © S & S
I R T e At kAt + +

(4 Sp' ')},SHOW SOLVE BIGM

+-+ —— + =4+ -+ -+ - -+ + -+ -+ =
o= = F o+ = —— 4=t — +— + t-t—+ —F- =+ —F—FE— -+
- R T i = B 2 T B L NS S
—4 dmmptmt —F—F =+ —t—F— F — = b + -

I've set SHOW's ¢ characters to blank for readability on the printed page.

It is all fairly simple and I hardly need bother you with the simple code. It's in
the appendix. T used my own version of Direct Definition under APL*PLUS/PC
8 to set up utility functions with somewhat meaningful names. I hoped in this
way to keep the main function SOLVE quite undaunting for my non-APLer
colleague, looking deliberately quite FORTRAN-ish! This did indeed allow Mike
to learn enough Excel macro/programming language to mimic the APL
functions in around 100 lines.

It would of course have been a good opportunity to use Dynamic Data Exchange
with a Windows-based APL as described by Adrian Smith in Vector 9.2, 1992
Adrian has drawn my attention to a Philip Benkhard’s paper “A Dance of Rounds”
(APL Quote Quad 1991). He deals with the more general problem of distributed
rounding of arrays of fractional numbers rather than strictly half integral ones,
and considers relative errors as well as absolute ones. As [do not have a fully
implemented second generation APL yet, [am not sure whether his approach
would solve Mike's poser. I suspect it would!

I haven't yet succeeded in generalising my algorithm to 3 or more dimensions.
“Why?” said Mike. “What about more than one year?” said L. In investigating the
higher dimensional question I did derive a rather neater set of functions than
those you see: there’s only one INDEXNEXT function which handles each

127

VECTOR Vol.9 No.4

dimension in turn. In three dimensions you go across, down, back. Everything is
done on the ravel of the Boolean with a tricky one-liner to return the indices of
the required one-space which is then checked for the next candidate.
Unfortunately it only works in one and two dimensions. So 1 hope Mike's users
don’t add up across years!

I suspect that one way to generalise to n-dimensions is to develop my
explanation of why the 2-d method works: each candidate point must have n
neighbours in the extended array. That leaves (2*n) - {n+1) possibly
virtual points to complete the corners of the n-rectangle. In order to catch
Vector's deadline [leave it as an exercise!

Appendix: Function Listings

a N.B. [QI0+L throughout

AAL AL
AACOMMENT: w a.. COYER/UTILITY FNS FOR MAIN FN 'SOLVE!
coL: wl:a(?2]] n rind columnr al2] of matrix w
ROW: wlaf1]:] n find row al2] of matrix w
FIRST:14 w A return rirst element of a list
LAST: 1+ w r return last element orf a list

INDEXNEXT: w MINDEX WHERE w
a find the indices of the next untreated cell

INDEXNEXTINCOL:x:NONE x+«{WHERE o COL w),LAST a :INDEXNEXT w
A next in w[;[al2]]

INDEXNEXTINROW: (FIRST o) ,WHERE o ROW w
p find next cell in wlal1]:]

MINDEX: ,2+{p o }7T 1+ w
A index pair for a-dim matrix given ravelled index w

WHERE:10t2e¢ w +, w !, & 12
n find the npext untreated cell in a vector

NONE:2>p w R check If at least two elements in list

SHOW:'-o+'[2+ w]
display a matrix of +1 -1 or 0 as + - or ¢

SOLVER:SROW y,[11+44y+x,+/x«S0LYE O<2>7 w p ©
A do a problem size w, sparsity +a

oDD:2| w n mark all eodd elements

128

VECTOR Vol.9 No.4

EXTEND:2x0D00 w ,[1]+4 w = & ,+/ w
a append rows + cols, check parity, double

TRIM: 1 "1 + w n remove appended row and column

¥ SeLvRIO)Y
[0] z+50LVE m;i;0IC
[1] n &Solves half Integer matrix rounding problem
[2] =n by rollovwing city-grid route in an extended even parlty matrix.
[3]
[4] @ The style is deliberately FORTRAN with most 'APL' consigned to
[5] n direct definition one—line utility runctions
({:3]
[7] & Doclean matrix m
(8] A <z has +/- ones 1In place of m's ones.

[9] =~ Magnitude cof all row + col + total sums s 1

£10]

[11] [Io+1

{12] m«EXTEND m n append row+cel, adjust parity. double
£13] Jf+«pm & arbitrary seed

{i4] loop:

[15] =+[(NONE 1+i INDEYNEXTINCOL m}/end m next cell, same col if poss,
[16] a finish 1f nope anywhere

[147] mLOiC3l;102]]«1 - set cell

[18] i«f INDEXINEXTINROFN m a next cell In rov, MUST bLe onel
[19] mLiC1l;1[2]]1+71 set it

[20] -~locp a repezt until done

[21]

[22] end:

[23] 2z+«IFRIM m A clean up the answver

v

129

VECTOR Vol.9 No.4

An Exchange on Primes
by Roger KW. Hui

USENET is a world-wide network connecting approximately 37,000 machines in
academia, government, business, and other organizations (see reference [1]). It
has a “news” subsystem of discussion groups, including the APL group
“comp.lang.apl”. Over the last 20 months, the group averaged about 2.3
messages per day. The following exchange took place recently:

From: mitloehn@exaib.wu-wien.ac.at {Johann Mitleehner)
Subject: explicit <-» tacit, space/time usage on prime numbers
Date: Fri, 30 Oct 1992 10:55:15 GMT

organization: Wirtschaftsuniversitaet Wien

Here are some experiments (by T. Kolarik and myself) with the well-known
primes-idiom on several machines, comparing tacit and explicit definition of the
verb;

On an HP 9000/720 (HP-UX):

eprimes =. "({i.y.}#~2=+/0=}/~1.y.":'* NB, explicit defr
tprimes =, (=22 @ (+/ @ (=20 @ }/~ @ i.))) # i. NB, tacit der
time =, 6!:2
space =. 7!:2
ts =, (tLlme, space)
ts 'tprimes 100?
2.71 2528
ts 'eprimes 100!
0.15 4Gy

[Similar timings on a Mac Quadra and Mac IIx.]
Result: explicit definition is much faster.

1 have done a similar thing on a Mac Classic with] 5.1a; interestingly, tacit was
slightly faster (the difference being very small; T did no space measure).

But tacitly defined verbs are supposed to be (much?) faster, aren’t they? Or is this
just a bad example? (Or is our tacit version so bad):

130

VECTOR Vol.9 No.4

From: sam@csi.jpl.nasa.gov (Sam Sirlin)
Subject: Re: explicit ' tacit, space/time usage on prime numbers
Organization: Jet Propulsion Laboratory, Pasadena, CA
Date: Wed, 4 Nov 1992 13:33:52 GMT
{Quotes from Mitloehner's message deleted.]

Using J6 on a sun sparcstation 1:
ts 'tprimes 100"
4.53315 24
ts Teprimes 1007
0,099996 24
ts Teprimes 1007
¢.116662 24
teprimes=, '{i.y.}#~2=+/0=|/~{.y.?' : 11 NB. tacitlze eprimes
ts 'teprimes 100!
¢.116662 24
S0 not all tacit definitions are equal.

From: eem@ipsaint.ipsa.reuter.COM (McDonnell, Eugene E.}
Date: Sat, 7 Nov 92 22:00:03 UT
s=."{il.y.)#~2=4/0=|/~1.¥.!
eprimes =, 5 :'!' NB, explicit def
tprimes =, (=22 @ (+/ @ (=80 @ |/~ @ {.})) # 1. NB., tacit der
cprimes=. s : 20 NB. :20 replaces obsolescent :11
1r=.51:5 [linear representation]
1r <tcprimes!
1.@] 4~ 2&8=@(+/@(0&=@(|/~@(1.@)})}))
time =. 6!:2
time 'eprimes 100?

0.116667

time ftprimes 100!
3.53333

time 'cprimes 100!
0.1

Herr Mitlohner is correct: tprimes is not equivalent to epr imes,

Using the :20 compiler on s gives a tacit form cprimes whose logic is that of
eprimes, and which is more efficient than the explicit form, by a small amount.

These measurements were made on a Mac Quadra 700.

From: hui@yrloc.ipsa.reuter.COM {Roger Hul)
Subject: Re: explicit T tacit, space/time usage on prime numbers
Organization: Iverson Software Inc.
Date: Sat, 7 Nov 92 23:38:13 GMT
[Quotes from Mitloehner's message deleted.]

In July 1990, at the APL9I0 Conference in Copenhagen, Eugene McDonnell
presented timings indicating that a tacitly defined nub was faster than an
explicitly defined nub, and was as fast as the primitive ~ ..

131

VECTOR Vol.9 No.4

I was in the audience and was surprised by this result. Tacit defns arise from the
use of adverbs and conjunctions, function assignment, and forks; that they
happen to be faster is an unexpected benefit.

The slower times for tprimes obtained above can be accounted for by the
difference between =80@}/ vs. =20@(|/).] applied the tacit translator to the
explicit defn, and obtained the following time/space results (J6 on a PC486/33):

ts 'tprimes 100"

2.86 20692
ts 'Teprimes 100
b.05 53420
(0 =. '(i.y.}#~2=+/0={/~L.y.": 11
ts 'O 1007
0.05F 59312
Ir =, 5!:5
Ir <'fo?

i.@) #~ 28=@(+/@(02=-Q(|/~@{1.@1)}})

This shows that tacit defn is at least no slower than explicit defn. The following
table shows that it is in fact faster. All times are obtained using 100 time ‘f n" on
J6 PC486,/33.

200 100 10 E i
tprimes 11.0334 2.B456 0.0341 0.0109 0.0033
eprimes 0.223¢ 0.0582 ¢.0049 0.004u 0.0044
0 0,2213 0.0565 ¢.0032 0.0027 0.0027
f1 0.2208 0.0566 0.0033 0.0027 0.0026
2 0.2208 0.0366 2.0033 0.0027 0.0027
13 0.0193 0.0138 0.0038 0.0033 0.0038
fy 0.0143 0.0088 g.0017 0.0016 0.0016

£o is faster than eprime by a fixed amount, 0.0017. This is consistent with the
explanation of why tacit is faster than explicit: a tacit defn is not reparsed on
execution, and 0.0017 is the time it takes to parse eprimes. The relative
advantage of tacit over explicit is thus greatest for small vectors, when parsing
time dominates, and diminishes as vector size increases. This fact is of interest to
compiler writers.

1 is an attempt to see how much better or worse a “hand-written” tacit defn
may be, fo=.1.@1 #~ 28-@(+/@(08=@(|/~@(1.@1)}}}), the defn produced by
the translator, is periphrastic (from the Greek "periphrasis": a round about expression.
Ed). Tt is easy to see that the two uses of @] are unnecessary, and the use of
passive can be eliminated by rearranging the tines of the fork. As well, I tend to
shy away from deeply right-nested compositions. Putting it all together:

f1 =, 28=@(+/)@{0&=)@({}/~)@1. ¥# 1.

132

VECTOR Vol.9 No.4

The timings in the table indicate that f1 is slightly faster than fo. Not too
surprising, as £1 is only slightly different from ro.

As indicated at the start, speed is not the main point of tacit defn. Some of the
advantages of tacit defn were outlined in a msg two weeks ago:

0) The tacit form encourages the use of components, primitive and user-defined.
Use of components is one of the few effective ways of dealing with
complexity.

1) The tacit form focuses on how components are combined, i.e. it focuses on the
interface between components, where errors tend to occur.

2) Tacit expressions are algebraic, i.e. they are amenable to proof and other
formal manipulations.

3) Tacit expressions are consiructed using operators {(adverbs and conjunctions),
ideas debugged in mathematics over hundreds of years.

Even for something as small as this primes problem, it is possible to see how
these benefits may be applicable. f1 can be redefined to use a sub-function, of
interest in its own right:

sieve =. 23=@(+/)@{0k=)@(|/~)@i.
f2 =, sieve # 1.

r2 is slightly clearer than the others, in bringing into sharper relief the structure
of the computation. It is about as fast as the others (see table).

I'd previously written a recursive version of primes which avoids generating the
na2 table:

t=.1. 0 0

L=.t, 8. =.1+30<y. "'

te=,t,'ya(>: # 132 3 5 7 11 13 17 19 23 29°

t=.t,'p, (#./0~:p|/s)#s= kti.>1y.~k=, {:p=.T8 <.%:1y.!
fa =, t 1

A hand-translated tacit version of same:

hasis =, (>: # 1322 3 5 7 11 13 17 19 23 29
sleve =, *./@(02~:}8(]/)

suffix =. {:@[([+ i.@-.@-}]

extend =, [, [(sieve # 1) suffix

Tu =, ($:@<.@%: extend 1)'basis @. (30&>)

The time and space complexity of £3 and £4 are of a lesser order than the others,
so that the advantage shown in the table increases with argument size:

133

VECTOR Vol.9 No.4

100 time 'fo 500! 100 time 1o 1000’
1.3583 weg full

100 time 'f3 500 100 time 'f3 10007
0.038 0.09

100 time 'fu 500! 100 time "Iy 10007
0.0335 0.082%9

Finally, 2) speaks of tacit expressions as being more amenable to proof and other
formal manipulations. Optimization is a class of formal manipulation, and in the
future the implementation may expleit formal properties of tacit defns to effect
faster execution. 1 described some possible approaches at the Minnowbrook 92
conference in mid September.

Tacit definition is discussed in an APL91 paper [2]. Briefly, an explicit definition
is one which explicitly mentions its argument, as in sum=.'+/y.":'"%; a tacit
definition is one which does not, as in sum=.+/ . The tacit translator mentioned
in the messages is also discussed in [2].

The “well-known primes idiom” in the original message computes the n by n
residue table of the integers from ¢ to n~1, sums a mask marking the divisors,
and selects the integers with exactly two divisors. In contrast, the recursive
algorithm in £3 and f4 computes a vector p of the primes up to the square root of
n, then computes the (#p) by n-k residue table of p against the integers from k
to n, where k is the last element of p, and returns p suffixed by integers from k to
n having no divisers in p. The following dialog illustrates the internal workings

of the algorithm:

<.%: 40 14 & basis &
] 235 2365
{fy &) sutfix 40
56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 3% 40
(fu 6) sieve (fu B) suffix uyg
g 0100010210001 ¢1000100¢000C1010C000Q0
1000
(rfs 6) {sieve #]) (f4 6) suffix 40
7 11 13 17 19 23 29 31 37
{fuy 6) extend 4o
2 35 7 11 13 17 19 23 29 31 37
T4 40
2 235 7 11 13 17 19 23 29 31 37

References

[1] Cerf, V.G. Networks, Scientific American — Special Issue on Communications,
Computers, and Networks, 1951 9.

2] Hui, RK.W., K.E. Iverson, and E.E. McDonnell, Tacit Definition, APL91
Conference Proceedings, 1991 8.

134

VECTOR Vol.9 No.4

Span Representation: Improving the J
Display of Verbs

by Richard Oates

Abstract

Verbs appear in a figure which is conceived for nouns. It can describe any rank
but the representation of a verb is a list. Verbs absorb more thought than nouns
and the population is bigger. Can the spacious noun figure be deflated for the
verb?

An Initial Simplification
Omit the inner bottoms and sides, and also the tops that do not unify (span)

some part of the sentence. Swap the outer bottom, sides, and top for a cup to
conceal the inner structure.

—& ®
+/ al—m——— |+ / al&|
item"1 2 {tem n
—@ @
+/ 4 |+|/ &
—¢| item"1 2 ! ab|c item "|1 2|
ab
—{ @
+/ & l+|/ &
item"1 2 ! alb itemi"|1 2I

-

135

VECTOR Vol.2 No.4

Removal of Excess Ink

Retain and make blank the side of a box which appears between two spans, or
adjacent to a Minus primitive, or between two names.

;E:??] :’—cd ef I; : EI b!@lj ;] l—* ; cdjef

Substitute a span and a cup for the anomalous three-box configuration of an
explicit verb.

<@ <
H :|foot=. -@#@[{. 1.@48,Q@]
foot=. -@#@[{. 1.@#@.,@] on=, -&2@foot
on=, -&2&foot tag=. [on} ":@<@]
tag=. [an} ":@<@] x. tag y.
x. tag v.

Spanned display representation may be more ambiguous than unspanned
display representation, If display representation is spanned and atomic
representation is not, the latter could serve to clarify the former. This would not
inconvenience the user since the atomic representations in a failing gerund, for
example, are debugged with display representation.

Typesetter’s note: Word for DOS has long had an annoying habit (probably a
carry-over from FX-80 days) of substituting ordinary dashes for the horizontal
line-drawing character at print-time. This is not (as far as I can see) part of any of
the printer drivers, it is embedded deep in the code! Richard had awful trouble
getting this to print nicely ... 1am not sure what the best way out is. My fix is to
replace all long horizontals with the em-dash character ‘—" and make sure the
appropriate character in my PostScript font is set to draw something identical to
a continuous line. Maybe Word 6.0 will fix it, but very likely it won't, in which
case I can't offer any sensible suggestions for those of you with Laserjets. Sorry,
Adrian.

136

VECTOR Vol.9 No.4

ofitem

Spans are neutral on noun lists.

—C
ab

Verbs are the issue. Verbs need optimum display. A tool can easily throw a tight
row of spanned display representations on the screen.

—_— —_—F@ oot

on} —a@]||-22 —-@[—-—-—-—@j
"i@< ~-@# —a,

i.a¢

137

VECTOR Vol.9 No.4

Building a TrueType APL Font for Vector

by Adrian Smith

Motivation

First, let me state a prejudice — 1 think the world would have been a better place
had TrueType never been invented. PostScript already provides an excellent
standard for rendering text onto paper, and with the advent of Adobe Type
Manager (ATM) under Windows 3.0, it ensured that what you saw on the screen
was exactly what you got on the paper. ATM also does a marginally better job at
rendering awkward fonts (such as APL) on screen at small sizes.

PostScript also has a long tradition of naming fonts, for example Vector is typeset
in Palatino-Roman 13/16 (before reduction). I object violently to having to select
something called “Book Antfigua” in Winword to get an apparently identical font,
but one which is sure to have at least one subtle difference to get around
copyright problems! For example, compare the “R” in Helvetica and Arial ... !

Unfortunately, Microsoft are bigger than I am, so (like 7 million other Windows
users) | have to go along with them. It is obvious that an increasing proportion of
Vector material will be prepared in either Windows Write or Winword; Vector
production remains in Word 5.0 under DOS ... so [need a solid and simple way
of getting Windows material across into DOS.

The Options

I could simply move over to Winword. At the moment, a sufficient volume of
material is still in DOS format (typically APL*PLUS/PC workspaces) that T
would have similar problems moving material across. Also, 1 find Word 5.0 at
least 30% faster for basic mechanical typing and formatting, Vector is quite a big
document, and DOS word (in text mode) can scoot around it much faster. Also,
Windows has stolen a lot of the most useful keys — for example to make a
subheading 1 simply hit <Alt+s> in Word 5.0; in Winword it would be
<Ctrl+Shift+s> which takes that little bit longer.

1 could write lots more little translation routines. Jonathan's review of IS] APL
was (not unreasonably) created using the ISI TrueType font, and hence the ISI
OAV. It was about half an hour's work to make a AISIAV vector, read the whole
review into APL, and spit it back out translated. The problem with this approach
is that you rapidly start getting confused and applying the wrong translations ...
which makes the APL bits look very funny indeed.

138

VECTOR Vol.9 No.4

[could try to guide the APL world towards submitting material in the format
that is easiest for me. There is only one way to do this — [have to make it easier
to use my AV than anyone else’s. That means [need to provide both a TrueType
APL font encoded how I want it, and some kind of simple APL typewriter so
that you can enter code without the hassle of <AIt+0251> to geta p.

The Joys of Font Design

The APL stuff in Vector is printed with an Adobe Type-3 font, which is designed
to be human-readable as well as computer readable, For example # is simply
defined as:
/sf { 3 1 roll moveto ¢ rlineto} def % Serifs
/NE { 125 400 400 st
125 200 400 sf

175 80 moveto 475 520 lineto
stroke } der

.. the crucial thing is that PostScript allows you to stroke the font with a pen of
given width. You also get nice rounded line ends [1] simply by setting the
linecaps property:

-

Converting this to TrueType is not easy! This time, you are only allowed filled
outlines, so you have to draw around the character boundary (crossing lines are
strictly verboten) and do those nice round ends yourself. It also turns out to be
very important to work on a grid such that when the TrueType engine draws
your character on the screen, things like = don't fall through the cracks in the
pixel rounding and vanish from sight.

[did this by asking GoScript to render a complete sample font at 72-point, and
output the result to a .PCX file {rather than to paper). I then loaded the resulting
file into CorelTRACE and asked it to convert the bitmaps to vector outlines by
edge-tracing them. This guve me a reasonable starting point, but obviously it
introduced a certain amount of spurious fluff. The tedious bit was to take these
outlines, snap them to a standard grid, remove the fluff, and output each
character to TrueType. Corel DRAW helped a lot with this process, for example
you can draw your own shapes on the ‘guidelines’ layer and get other characters
to snap to them. I worked throughout with an underlying 0 to ensure correct
geometry and centering, and an underlying I to check the obliqueness of the
alphabetics.

139

VECTOR Vol.9 No.4

Once you have a TrueType font, you are on the downhill slope. The next package
1 can recommend is FontMonger (Ares Software: USA+415 578 9090, cost $145;
available in the UK from Camelot mail order: 0800-565656, cost £79+VAT) which
is not to be confused with AllType (which has four legs and barks and is not
recommended at all). FontMonger will read and write fonts in almost any known
format, and it does a pretty good job of adding ‘hints’ to TrueType to improve
the rendering on screen. It makes remapping a font a breeze — you simply start
a new font and cut-and-paste from an existing layout. Here is the Vector font as
shown on Fontmonget’'s edit screen:

VECTOELFRF -

Font: YectoraPL Normal

9 A& B C D £ F_[al
121 JA k] Imyngo;

_— o P T Pl
G105 | 0105 [oT07 o108 0108} 0310 omnm
i g . -~ o I i
E H E r T H
BEERERERINER
ot 0160117 0118]C119] 0120 o202zl ot23fmza{ 0125
E

['i5¥ [iEE] CALS

gl idcodzi+f=]0] 3 sl v1 4l 4979 gL
| . . . o PR) W - ;
Diga)0128[oTa0f 013t (0132 0133] G134 0135 G136 | 0137 [0139|0133 01400141 [0142 G143

F Y 3 B .

LY ok B2 T)T S I T Ak

01291 0150] 0151 [0152 0153{ 0154] 0155] 0166} 0157 0158] 0159

r : B I B TE: N R I

G I L S et K3 DREJU *TmA oy
¥ P Rt Pl _ - - . PR

060 GIm 62| 0163|0154 | 165f0TEE | 0167 D168 0163] G170| Gi71 [0i72| 0173 0174] 0175

rHE R 4] u;_'gJEHE'ﬁfk‘f

E Ik

mie
q . - .
C LB 'LE E g
P
T 6192 G183[0194]{ 0195
oled afado]o b Y
G0y 0f Oy qe
0208)0208] 0210§ 0211 |0 210213] 0214 czigfo216|c217
BHt 4

A
1 nd f] w4 i Y il
| &l g ogoevﬁL.Tg@aeg
o T a PRI PR P B i =
0224 | 0225 [0226 | 0227 | 0228 [02253] 0230] 0231 | 6232 } 0233

i

"-—‘Eﬁ"
0240[0241 | U242

This is almost the APL*PLUS {14V — except that anything below chr(32) has
been kicked upstairs above chr(127). It works well on paper (even I can’t easily
spot the difference between it and the APL2741 original) and is quite usable on
the screen.

140

VECTOR Vol.9 No.4

A Prototype APL Typewriter

The requirement seems to me to be quite simple: a little edit box which will sit on
top of Word and let you type APL snippets with a sensible unified keyboard
mapping. The box should be capable of importing APL code from ASCII files
(translating from all known {J4V orderings) and should allow you to copy the
contents to the Windows clipboard, so that you just click back to the underlying
word processor and hit paste. In fact for Winword it can go one better — you can
use DDE to stuff text directly into a document at the current cursor position.
Something a bit like this, in fact:

=], : - Microsoft Word - STYLES.DOC -+

Elle Edlt ‘-flcw Insert Farmat Tools Table Wmduw jjelp 7 5

e LR 4

= !, TheVéctpr APL Typemitef -
f{h&adlng 2 — ! DyalogAPL Here is some AF‘L :
T |: PR PE . AL Jto steff into Word] Z
I pasiad
at ¢ Read ;. ’ T EI I Copy . 'I % Btuff ii - 1 W Exit

ILam N ... the author's nameT

Here is some ALPL+¥
to stuff into WordTy

Note that this prototype has an &« button — so you can type 112, press
<Execute>andgetl 2 3 4 5 & 7 8 9 1¢ 11 12 on the following line
automatically. [need to check this with Dyadic, as it may be a bit close to the
edge of what you are allowed to ship with a runtime interpreter! It also requires
Dyalog 6.3, as an essential part of the design is to have the APL typebox visible at
all times, even when Winword (or Write) is running full-screen. This limits
availability to “RSN”, in other words, some short while after Dyalog release a
pukka copy of version 6.3.

Subject to the above, to get your copy of the font and APL typebox, please send a blank formatted
disk (at least 1.2Mb) to Vector Production. Don’t forget to include your name and address!

Reference

{1] Joey K. Tuttle, “APL pi — Designing an APL Type font’, APL81 Conference
Proceedings, pp298 — 302

141

RENAISSANCE DATA SYSTEMS
Enlightenment Thru Information Processing

Specializing in Books and Seftware on APL, J
and other Curiosities of merit.

HAVE YOU GIVEN A COPY OF IAPL OR) TO A TEACHER OR STUDENT?

/’

For a copy of our most recent catalog,
please send a self-addressed, legal-
sized envelope (stamped if from U.S5.)
Strest: or mail this form to:

Name: Date:

Renaissance Data Systems
County Teiephare, Park West Finance Station

: P. Q. Box 20023
New York, NewYork 10025-1510

\ _/

CHy:. State; Postal Code

[Learn APL I [APL Shareware/Demos and Related Publications

[APL and Mathematics J 1 APL AS A TOOL OF THOUGHT Proceedings I

[Other Important Sources of APL Information. J

| APL History 1 | APL References and Technigues |

[Special Subjects in APL] [APL interpreters and Software]
r J=: A Powerful Dialect of APL I r Other Software for Use with APL I
r To Russia with Love and for APLS2 I [Other Curiosities of Merit]

1-APL: An international voluntary project of individuals and
companies seeking to share their love of APL.

VECTOR Vol.9 No.4

Index to Advertisers

Dyadic Systems Lid 2
Manugistics 54
MicroAPL 6
APL Booklist (Renaissance Data Systems) 142

All queries regarding advertising in VECTOR should be made to Gill Smith, at
04393-385.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+l and discuss themes for issues n+2
onwards. Please send the text of submitted articles (with diskette as appropriate)
to the Editor:

Jonathan Barman,

Hill Top House,

East Garston,

NEWBURY, Berks RG16 7HD

Tel: 048839-575 (not after 10.00pm please!)

Authors wishing to use Windows Write should contact Vector Production for a
copy of the Vector APL TrueType font. This is available encoded to the Dyalog
APL, APL2/PC or (modified) STSC standards: STSC is currently the preferred
layout, but either of the alternative layouts are acceptable.

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members news) should be sent to Vector Production, ¢/o Adrian
Smith, Brook House, Gilling East, YORK Tel: (4393-385 (6.00pm - midnight).

143

VECTOR Vol.9 No.4

BAA: Membership Application Form

Membership of the British APL Association is open to anyone interested in APL.
The membership year runs from 1st May to 30th April.

Name:

Address Line 1.

Address Line 2:

Address Line 3:

Post or zip code:

Country:

Telephone Number:

Membership category (please tickbox): 92/93

(these rates also apply to renewals)

UK private membership £12 ;|

Overseas private membership £20 9
Airmail supplement (not needed for Europe) £8 |

Corporate membership £100 a

Corporate membershipoverseas , £155 M)

Sustaining membership o £430 g

Non-voting UK member (student/OAP/unemployed only) £6 a

PAYMENT - in Sterling only

Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APl Association”, or you may quote ‘your
Mastercard or Visa number.

I authorise you to debit my Visa/Mastercard account

Number: Expiry date: ___|___

for the membership category indicated above,

Dala Prolection Act:

a annually, at the prevailing rate, until further notice The information supplied may be

. . stored on computer and! processed
one year’s subscription only in aceordance with the registration
of the British Computer Socisty.
(please tick the required option above)
Signature: Send the completed form to:

British APL. Association, ¢/ o Rowena Small, 8 Cardigan Road, LONDON, E3 5HU

144

The British APL Association

The British APL Association is a Specialist Group of the British Computer Society. It is administered by 2 Committee
of officers who are elected by a postal ballot of Association members prior to the Annual General Meeting. Wortking
groups are also established in areas such as activity planning and journal production. Offers of assistance and
involvcment with any Association matters are welcomed and should be addressed in the first instance to the Secretary.

Secretary:

Treasurer:

Joumal Editor:

Activitics:

Education:

Technical:
Projects:
Publicity:
Recruitment:

Administration:

Editor:
Seccretary:
Production:
Advertising:
Support Team:

1992/93 Committee
David Eastwood MictoAPL Ltd.,
071-922 8866 South Bank Technopark,

Anthony Camacho
0272-730036

Nichotas Small
081-980 7870
Jonathan Barman

0488-648575

Vacant Post

Dr Alan Mayer
0792-295256

Duncan Pearson
0904-603510

Geotge MacLeod
0442-878065

Misha Jovanovic
0753-853141

Dir Peter Branson
081-848 8980

Rowena Small
081-930 7870

%0 London Road, LONDON SE1 6LN

11 Auburn Road, Redland,
BRISTOL.,
BS6 6LE

8§ Cardipan Road,
LONDON E3 5HU

Hill Top House,
East Garston,
NEWBURY, Betks RG16 THD

Eurcpean Business Management School,
Swansea University,
Singlcton Park, SWANSEA SA2 BPP

cfo Operational Reseatch,
Nestlé-Rowntree, YORK YO1 1XY

Greymantle Associates Ltd., Bartrutn House,
Ravens Lane, BERKHAMSTED, Herts HP4 2DY

99 Oxford Road,
WINDSOR, Betks SLA 5SDX

Electronic Data Systems, Stockley Park,
UXBRIDGE, Middx UB11 1BQ

8 Cardigan Road,
LONDON E3 5HU

Jonrnal Working Group
Jonathan Batman 0488648575
Anthony Camacho 0272-730036
Adrian & Gill Smith Brook House, Gilling East, YORK (04393-385)

Gill Smith

Brook House, Gilling East, YORK (04393-385)

Ray Cannon (0252-874697), Richard Weber, Sylvia Camacho, Duncan Pearson,
John Scarle, David Zicmann (071-267 8032)

Typesct by APL-385 with MS Word 5.0 and GoScript
Printed in England by Short-Run Press Ltd, Exeter

VECTOR

VECTOR Is the quarterly Journal of the British APL Association and is distributed to Association
members in the UK and overseas. The British APL Association Is a Specialist Group of the British
Computer Society. APL stands for "A Programming Language® — an interactive computer
language noted for its elegance, conciseness and fast development speed. It is supportad on
most mainframes, workstations and personal computers,

SUSTAINING MEMBERS

The Committee of the British APL Association wish to acknowledge the generous financal
support of the following Association Sustaining Members. In many cases these organisations also
provide manpower and administrative assistance to the Association at their own cost.

Compass R&D Lid
15 Fraderick Sanger Road
Surrey Research Park

GUILDFORD, Surrey GU2 5YD

Tel:0483-302249
Fax:0483-302279

HMW Trading Systems Ltd
Hamilton House,

1 Templa Avanue,
LONDON EC4Y OHA
Tel:071-353 4212
Fax:071-3563 3325

MicroAPL Lid

South Bank Technopark
90 London Road
LONDON S8E1 6LN
Tel:071-922 8866
Fax:071-928 1006

APL People

The Old Malthouse

Clarence St. BATH, BA1 BNS
Tel0225-462602
Fax:0225-444552

Dutch APL Association
Postbus 1341

3430BH Nisuwegein
Netherlands
Tel:03474-2337

Kestral Consulting

Business & Technology Centre
Bessemer Drive

STEVENAGE, Herts SG1 2DX
Tel:0438-310155
Fax:0438-310131

Email: kestrel@ apl.demon co.uk

Dyadic Systems Ltd
Riverside View, Basing Road,
QOld Basing, BASINGSTOKE,
Hants, RG24 0AL
Tel0256-811125
Fax:0256-811130

Cocking & Drury Ltd

180 Tottenham Court Road

LONDON, W1P 8LE
Tel:071-436 9481
Fax;071-436 0524

|

Reuters Lid
Reuters Nederland BY

PO Box 8230, 1005 AE Amsterdam
Netherlands

Teli+31 20 570 8733

Fax:+31 20 570 8758

Peter Cyriax Systems
22 Hereford Road
LONDON W2 4AA
Tek071-229 5344

Manugistics

2115 East Jefferson St
Rockville

MARYLAND 20852 USA
Tel, (301) 984-5412

Fax: (301) 984.5094

