
Editorial 2
Dyalog 4Optima 8APL2000 9
BAA:	Chairman’s	Report	2013 14BAA:	AGM	Minutes 15Reflections	on	a	long	life 182^64 25
A	question	of	character 34My	favourite	APL	symbol 36Using	email	services	from	APL 38Semantic	arrays 46Compiling	APL	to	JavaScript 54Boolean	reductions 62APLUnit	-	An	APL	unit	test	library 67NFL	passer	rating 75Dyalog’s	parser	-	a	new	parser	in	town 79ELI:	a	simple	system	for	array	programming 94
J-ottings	56,	Trig	Time 104L-systems	in	J 109Backgammon	tools	in	J,	4:	Ace-point	Bearoffs 115Fibonacci	and	golden	spirals 118

Contents
	

News 			
General Paul	GrosvenorJames	GreeleySam	SextonRoger	K.W.	Hui
APL Brian	BeckerRoger	K.W.	HuiChris	HoganStephen	TaylorNick	NickolovPhil	LastGianfranco	AlongiBrian	BeckerDan	BaronetHanfeng	Chen,	Wai-Mee	Ching
J Norman	ThomsonR.E.	BossHoward	A.	PeelleCliff	Reiter

VECTOR Vol.26 No.1

1

	
Vector:	As	a	sustaining	member	

for	a	sustaining	member.

Editorial
Well	 its	 taken	 a	while	 longer	 than	 I	would	 have	 likedbut	the	latest	issue	of	Vector	has	arrived.	A	glance	to	theright	shows	the	journal	providing	much	needed	supportin	someone's	daily	toil.This	issue	brings	a	few	changes.	Colour	for	one.	Wehave	negotiated	a	new	printing	agreement,	a	little	extracost,	that	will	allow	us	to	include	a	limited	number	ofcolour	images	and	we	will	use	this	resource	forphotographs,	graphs,	screen	images	and	diagrams	inthat	priority	order	should	we	use	up	our	allotment.Also	we	 have	 automated	 the	 process	 of	 producing	 the	 PDF	 document	 for	 the	 printshop	directly	from	the	on	line	material	which	removes	the	need	for	a	tedious	manualtask	hitherto	performed	with	great	 fortitude	by	Kai	 Jaeger.	A	consequence	of	 this	 isthat	there	is	no	need	for	a	second	proof	reading	of	the	collated	PDF	document.We	 have	 experimented	 with	 using	 MathML	 in	 the	 sub-editing	 submitted	 papers	 toproduce	mathematical	equations.	This	has	always	been	a	problem	in	the	past	wherewe	 have	 had	 to	 rely	 on	 using	 graphic	 image	 Ailes.	 These	 in	 turn	 need	 moreintervention	as	we	moved	from	an	on	line	to	a	printed	medium.The	 next	 improvement	 in	 the	 production	 process	 will	 be	 to	 try	 and	 make	 articlesbeing	 prepared	 available	 for	 to	 authors	 and	 reviewers	 in	 an	 on	 line	 edit	 facility	 tohelp	them	collaborate	in	the	exercise.Going	forward	we	are	looking	to	make	some	changes	to	our	Vector	web	site.	One	suchchange	 will	 be	 to	 post	 the	 latest	 edition	 of	Vector	 as	 a	 PDF	 for	 members.	 This	 beavailable	 for	 download	 once	 it	 is	 ready	 for	 use	 in	 a	 variety	 of	 eReaders	 or	 similardevices.	Six	to	twelve	months	on	we	would	make	it	available	to	anyone	else.	Anotherpossibility	 will	 be	 to	 make	 downloadable	 PDFs	 of	 the	 individual	 articles	 available.And	 beyond	 that	 perhaps	 collections	 of	 articles	 could	 be	 collated	with	 a	 view	 to	 aprint	 on	 demand	 facility.	We	would	 however	 be	 very	 interested	 to	 know	what	 ourmembers	 think	about	 the	whole	 issue	of	on-line	publishing.	Please	note	 that	we	arenot	thinking	about	stopping	the	printed	version	of	Vector.John	Jacob

VECTOR Vol.26 No.1

2

News
VECTOR Vol.26 No.1

3

Industry	News
Dyalog	LtdIn	accordance	with	tradition,	the	preparations	for	the	annual	Dyalog	User	Conference(Dyalog	 ’13,	 to	 be	held	 at	DeerAield	Beach	on	October	20th-24th)	 coincide	with	 theAinal	stages	of	planning	of	the	next	release	of	Dyalog	APL	(version	14.0,	due	out	in	Q2of	 2014).	 With	 about	 15	 developers	 beavering	 away	 on	 the	 APL	 interpreter	 andsurrounding	 interfaces	 (including	 a	 full-time	 Technical	 Writer	 and	 DocumentationManager,	Fiona	Smith,	who	joined	us	 in	April),	2014	is	going	to	be	a	very	busy	yearfor	 any	users	 of	Dyalog	APL	wishing	 to	 take	 advantage	 of	 all	 the	 new	 functionalityand	read	all	the	new	documentation	that	we	are	planning	to	roll	out!
Going	Cross-PlatformMost	computer	users	will	have	noticed	that	a	major	shake-up	of	computing	hardwareand	 software	 platforms	 is	 in	 progress.	 At	 the	 server	 end,	 Linux	 is	 growing	 inimportance	 as	 a	 platform	 for	 virtualised	 server	 and	 cloud	 computing	 due	 to	 itsrelatively	 small	 footprint.	 At	 the	 client	 end,	 Android	 and	 other	 tablet	 and	 phoneoperating	 systems	 are	 also	 growing	 rapidly.	 Multi-core	 hardware	 is	 appearing	 onclients	 and	 servers.	 While	 Windows	 Desktop	 will	 probably	 remain	 the	bread	 and
butter	 platform	 for	 most	 of	 our	 customers	 for	 many	 years	 yet,	 we	 want	 to	 allowpeople	to	take	advantage	of	new	platforms	when	they	are	ready	to	do	so.To	 simultaneously	 make	 APL	 more	 portable	 and	 improve	 the	 user	 experience	 forthose	wanting	 to	 develop	 on	multiple	 platforms,	we	 are	 separating	 the	APL	Enginefrom	the	development	environment.	2014	will	see	the	introduction	of	a	new	RemoteIDE,	 which	 will	 be	 able	 to	 run	 as	 a	 native	 application	 on	 most	 popular	 clientplatforms,	 providing	 rich	 user	 interfaces	 with	 the	 same	 functionality	 across	 on	 allplatforms.	 The	RIDE	will	be	able	to	connect	from	any	client	platform	to	APL	enginesrunning	on	any	platform,	locally	or	across	a	network.	We	expect	to	announce	ofAicialsupport	for	at	least	two	additional	engine	platforms	at	the	conference,	in	addition	tothe	 four	 that	 are	 currently	 supported:	Microsoft	Windows	 (Intel),	 IBM	AIX	 (Power)and	Linux	(Intel	and	ARM).Having	 APL	 on	 many	 platforms	 is	 only	 truly	 valuable	 if	 users	 can	 also	 developapplications	that	are	easy	to	relocate.	To	facilitate	this,	there	will	be	new	releases	oftools	 for	 cross-platform	 application	 development,	 such	 as	 our	 StandAlone	 WebService	 framework	 (SAWS),	 the	 MiServer	 web	 server	 toolkit	 and	 the	 Dyalog	 File

VECTOR Vol.26 No.1

4

Server.
Going	ParallelMaking	 it	possible	 for	APL	users	 to	harness	parallel	hardware	 is	another	extremelyimportant	goal.	We	are	working	on	three	different	approaches	to	this	problem:
Futures	and	Isolates:Version	14.0	will	provide	new	language	constructs	to	make	it	easy	to	usemultiple	processors	without	the	use	of	locks	or	semaphores	for	synchronisation:Isolates	are	namespaces	that	are	managed	by	separate	processes.Futures	are	array	items	that	can	pass	through	structural	functions	and	calls	todefined	functions	without	blocking	but	block	automatically	when	passed	to	aprimitive	function	that	requires	an	actual	value	until	the	value	is	produced.Expressions	that	are	executed	within	isolates	immediately	return	futures.
A	new	parser	to	reduce	interpreter	overhead:Also	scheduled	for	delivery	as	part	of	version	14.0	is	a	new	parser	whichperforms	static	analysis	and	optimisation,	significantly	reducing	interpreteroverhead.	Initially,	the	parser	will	only	target	functions	that	have	no	side-effects,but	work	on	the	parser	will	continue	for	the	next	several	releases.	For	functionswith	small	arguments,	speed	increases	of	a	factor	of	2	have	already	beenobserved.
An	experimental	APL	compiler:Dyalog	is	funding	research	at	the	University	of	Indiana	into	a	highly-parallelcompiler	for	“functional”	APL	code	(initially	only	targeting	dfns).	Futures	andisolates	provide	the	ability	to	parallelise	algorithms	with	coarse-grained	parallelcomponents	-	if	the	user	indicates	where	the	parallel	sections	are	by	explicitlyusing	isolates.	The	compiler	aims	to	automatically	parallelise	APL	expressions.The	goal	is	to	seamlessly	integrate	the	compiler	into	the	interpreter,	offeringusers	the	option	of	compiling	code	that	is	identified	as	suitable,	but	this	is	stillvery	experimental,	it	is	unknown	when	this	technology	might	make	it	into	ourproduct	line-up.
Going	FunctionalFunctional	 programming	 focuses	 on	writing	 expressions	without	 loops	 and	withoutmutation	 of	 global	 state	 (or	 other	 side-effects).	 APL	 has	 always	 supportedprogramming	 in	 a	 functional	 style,	 and	 in	Dyalog	APL	 the	 addition	 of	 the	 lexically-

VECTOR Vol.26 No.1

5

scoped	dfn	style	of	programming	has	made	it	easier	to	write	more	strictly	functionalapplication	 components.	 Apart	 from	 having	 advantages	 in	 terms	 of	maintainability,the	lack	of	side-effects	means	that	it	 is	easy	to	compile	and	automatically	paralleliseprograms	 that	 are	written	 in	 a	 functional	 style.	 The	work	 that	we	 are	 doing	 in	 thedirection	of	compiling	and	parallelising	the	execution	of	user-deAined	functions	is	allsigniAicantly	easier	when	the	code	is	already	functional:	if	you	have	not	yet	looked	atusing	dfns	for	the	computational	components	of	your	application,	then	this	would	be	agood	time	to	do	so.In	addition	to	continuing	to	enhance	the	tooling	for	dfns,	we	are	also	adding	a	numberof	language	features	to	version	14.0	that	promote	a	more	functional	and	parallel	styleof	programming:
Function	Trains:Version	14.0	recognises	trains	of	three	functions	as	forks	(as	in	the	Jprogramming	language)	and	trains	of	two	functions	as	atop.	For	example:

 (+/ ÷ ⍴) 1 2 3 4 ⍝ Average is sum divided by count
 2.5
 'abcdef' (~∊) 'aeiou' ⍝ ⍺ (~∊) ⍵ ←→ ~⍺∊⍵
 0 1 1 1 0 1
 Function	 trains	 allow	 the	 construction	 of	 functional	 units	 of	 code	 that	 areobvious	 optimisation	 targets.	 For	 example,	 version	 14.0	 will	 optimise	 uses	 of
atop	such	as	(⍳∘0 >),	making	an	early	exit	 from	the	execution	of	 the	relationalfunction	on	the	right	when	it	knows	it	will	be	searching	for	a	0	or	1	in	the	result.

Rank	operator	(⍤):provides	a	more	general	mechanism	than	the	existing	axis	modifier,	for	therepeated	application	of	primitive	or	user-defined	functions	to	sub-arrays	ofspecific	ranks.
Key	operator	(⌸):similar	to	an	SQL	“group	by”	statement,	the	key	operator	repeatedly	appliesfunctions	to	subsets	of	one	array,	corresponding	to	the	distinct	values	in	an	arrayof	keys.	For	example:

 ('red' 'green' 'blue' 'green') {⍺,+/⍵}⌸ 10 20 30 40
 red 10
 green 60
 blue 30

VECTOR Vol.26 No.1

6

Many	common	cases	of	key	and	rank,	such	as	({+/⍵}⌸)	which	computes	the	sum	ofvalues	corresponding	 to	each	key,	are	highly	optimised	and	signiAicantly	 faster	 thanthe	best	APL	expression	than	can	be	written	to	compute	the	same	values	before	v14.0.Also	note	that,	in	order	to	pave	the	way	for	parallel	implementations,	the	order	of	theinvocations	 of	 the	 operand	 function	 is	 undeAined	 for	 rank	 and	 key,	 unlike	 existingoperators	 such	 as	 each	 or	 outer	 product,	 which	 always	 process	 elements	 in	 “ravelorder”.
Other	Version	14.0	FeaturesVersion	14.0	will	also	include	a	number	of	speed-ups	and	an	extension	to	dyadic	iotato	directly	support	rowfind	operations	in	the	primitive.	We	are	looking	at	embeddingcompression	 algorithms	 into	 the	 interpreter	 to	 support	 compression	 of	 componentfiles	and	the	source	of	namespaces	and	classes,	and	many	other	improvements.We	are	making	a	number	of	Technical	Preview	releases	available	–	TP3	of	v14.0	wasreleased	at	the	end	of	September.	Contact	sales@dyalog.com	if	you	would	like	to	helpus	evaluate	the	new	language	features.If	 you	 can’t	 make	 it	 to	 Dyalog’13,	 check	 our	 web	 page	 around	 Christmas	 forrecordings	of	conference	sessions.

VECTOR Vol.26 No.1

7

Optima	Systems	Ltd	–	Industry	NewsOk	so	we	are	75%	through	2013	and	 I	 am	not	 sure	where	most	of	 it	has	gone.	Theyear	has	certainly	been	busy	for	us	and	the	future	is	looking	very	buoyant	right	now.Over	the	past	12	months	we	have	taken	on	5	new	staff;Since	August	2012	we	have	been	training	our	three	apprentices	in	the	delights	ofAPL.	Some	of	you	may	have	been	following	their	blog	but	if	not	please	take	alook	at	http://thethreeblindmiceapl.wordpress.com.	They	have	had	a	great	yearvisiting	the	Dyalog	offices,	taking	the	APL	course,	attending	their	first	APLconference	in	Denmark	and	of	course	building	their	APL	controlled	robots.	Ourapprentices	are	now	full	time	members	of	staff	and	employed	as	Trainee	APLProgrammers.	Their	next	challenge	will	be	the	Dyalog	conference	in	Miamiwhere	they	will	show	us	all	their	robots	and	tell	us	how	they	made	them.	Watchthis	space	(or	follow	the	blog)	and	see	how	they	get	on.Kevin	Wallis	has	joined	us	as	our	new	Business	Analyst.	Apart	from	his	analysisskills	he	brings	considerable	Pensions	knowledge	with	him	which	we	plan	tomake	good	use	of	over	the	coming	months.	Kevin	has	also	attended	the	beginnersAPL	course	at	Dyalog	so	now	not	only	do	we	know	what	he	is	doing,	he	knowswhat	we	are	doing.And	last	but	not	least,	Kim	Kennington,	who	is	our	most	recent	member	of	staffand	takes	on	the	Q&A	role.	She	is	going	to	make	sure	that	what	we	say	shouldhappen	with	our	code	actually	does!	We	can	run	but	no	longer	hide.Our	 COSMOS	 data	 visualisation	 product	moves	 on	 from	 strength	 to	 strength	with	 anumber	of	small	contracts	now	being	signed	and	right	now	a	signiAicantly	larger	oneis	 about	 to	 start.	Most	 of	 the	 product	 activity	 has	 been	 in	 America	 thus	 far	 but	wehope	to	start	a	sales	pipeline	in	Europe	and	UK	very	shortly.	To	assist	in	the	sales	andmarketing	 of	 this	 product	 we	 now	 own	 roughly	 half	 of	 Galileo	 Analytics	 based	 inWashington	DC	and	who	market	COSMOS	in	the	United	States.Although	not	fully	conAirmed	at	this	time	we	are	about	to	set	up	another	company	inSweden	(Optima	Systems	Sweden	AB)	which	will	perform	much	of	our	R&D	work.As	a	result	of	our	growth	and	internal	structure	we	now	offer	a	large	multi-disciplinedAPL	 team	 plus	 all	 the	 back-up	 and	 ancillary	 services	 to	 be	 expected	 of	 a	 largersoftware	development	company.We	are	looking	forward	to	the	next	twelve	months	being	as	exciting	as	the	last.

VECTOR Vol.26 No.1

8

APL2000APL2000’s	 leads	 the	 way	 with	 signiAicant	 new	 enhancements	 while	 maintainingcomplete	compatibility	with	existing	APL+Win-based	application	systems:Significant	performance	gains	in	core	APL	functionsAccess	the	Microsoft.Net	Framework	directlyEnable	Multi-thread	ProcessingExpose	APL+Win	applications	to	web-based	users
APL+Win	Versions	10	-	12SigniAicant	 overall	 performance	 improvements	 in	 the	 APL+Win	 interpreter	 weremade	available	 to	 APL2000	 customers.	 Many	 customers	 experienced	 doubling	 ofoverall	interpreter	 performance	 while	 maintaining	 complete	 compatibility	 withexisting	application	system	source	code.
APL+Win	Version	13.1APL+Win	 v13.1	 includes	 optimized	 catenation	 for	 signiAicant	 performance	 gains,	 an e w	primitive	 function,	 and	 a	 new	 operator	 along	 with	 other	 improvements.Enhancements	in	this	release	include:Significant	Performance	Gains	with	Optimized	CatenationA	New	Mismatch	Primitive	FunctionNew	Commute	OperatorNew	Euro	Glyph	Shortcut	KeyNew	Log	File	Options
Optimized	Catenation	Yields	Breakthrough	SpeedAPL+Win	expert	Brent	Hildebrand	says	it	best:“I	want	to	say	just	one	word	about	the	new	catenation	-	WOW.	three	orders	ofmagnitude	faster.	1825	times	faster	+/-	in	one	test.”Optimized	 Catenation	 in	 APL+Win	 13.1	 provides	 signiAicant	 performance	 gains,particularly	 in	 cases	 that	 involve	 repetitive	 catenations	 with	 large	 arrays	 such	 asinside	an	iterative	control	structure.Traditional	 catenation	 runs	 exponentially	 slower	 as	 the	 number	 of	 iterations

VECTOR Vol.26 No.1

9

increases,	 making	 it	 impractical	 to	 use	 in	 some	 real-world	 applications.	 TheOptimized	 Catenation	 function	 has	 nearly	 linear	 performance	 characteristics	 as	 afunction	of	the	number	of	iterations	and	volume	of	data	making	it	an	elegant	solutionthat	is	blindingly	fast.

This	graph	represents	APL2000	testing	results.

Note	the	brevity	of	the	new	optimized	syntax:
 A←A,B (Traditional syntax)
 A,←B (Optimized syntax)Extraordinary	speed	increases	are	possible	if	your	application	uses	catenation	for:Building	Long	ListsBuilding	Documents	such	as	Web	PagesAccumulating	Results	from	Stochastic	Models
APL+Win	Version	13.2APL+Win	 v13.2	 includes	 the	 APL+Win	 C#	 Script	 Engine	 (CSE).	 With	 the	 CSEenhancement	 an	 APL+Win	 programmer	 can	 merge	 the	 beneAits	 of	 .Net	 technologywith	 the	power	of	APL+Win.	Direct	access	 to	 the	 .Net	Framework	 from	APL+Win	 isnow	 available	 while	 maintaining	 complete	 compatibility	 with	 existing	 APL+Win-based	application	systems.
The	C#	Script	Engine	for	APL+WinA	few	examples	of	the	power	the	C#	Script	Engine	in	APL+Win:Create	utilities	using	.Net	features	for	use	in	APL+Win	application	systems.

VECTOR Vol.26 No.1

10

Create	and	present	Windows	Forms	or	Windows	Presentation	Foundation	GUI’s.Use	the	.Net	web	tools	to	access	and	capture	web-based	information.Access	Microsoft	Office	using	.Net	tools.Use	third	Party	.Net	tools	in	native	C#	format	from	APL+Win.Use	ADO.Net	to	access	databases	such	as	Microsoft	(SQL	Server,	Office),	Oracle,IBM	(DB2,	Informix,	U2),	SAP	(Sybase),	MySQL	and	SQLite.APL2000	developed	the	□cse	system	function	as	an	interface	to	the	APLNext	C#	ScriptEngine	for	APL+Win.	APL+Win	application	system	programmers	can	now	access	thefeatures	of	the	Microsoft.Net	Framework	directly	from	APL+Win.The	CSE	enables	an	APL	programmer	to	create	multiple	instances	of	the	CSE	object	inmemory	space	 separate	 from	 that	of	 the	 initiating	APL+Win	 instance.	With	 the	CSE,APL+Win	data	can	be	passed	 to	a	C#	object,	where	 it	 can	be	manipulated	using	 theextensive	Microsoft	.Net	Framework	and	the	result	can	be	returned	as	APL+Win	data.
The	APLNext	Supervisor	for	Multi-threaded	Processing	in	APL+Win
ApplicationsIf	 an	APL+Win	application	performs	repeated	 in-memory	processing	of	 similar	dataelements,	multi-core	processing	can	provide	signiAicant	performance	 improvements.Typical	applications	which	benefit	include:Time	series	analysisPopulation	modelsStochastic	process	modelsSimulationsThe	APLNext	Supervisor	exploits	available	multiple	processors	on	a	workstation	byautomatically	scheduling	and	controlling	multiple	 instances	of	 the	APL+Win	ActiveXcalculation	engine	to	signiAicantly	improve	APL+Win	application	system	performance.The	 APLNext	 Supervisor	 causes	 application	 programmer	 designated	 APL+Winfunctions	to	be	executed	in	a	concurrent,	multi-threaded	manner.	The	object	model	ofthe	 APLNext	 Supervisor	 provides	 for	 extensive	 control	 and	monitoring	 of	 multiplethreads	directly	from	APL+Win.The	APLNext	Supervisor	is	available	to	all	current	APL+Win	Subscription	licensees	atno	additional	cost.	APL2000	consultants	can	assist	APL2000	customers	to	determinei f	the	 APLNext	 Supervisor	 technology	 will	 produce	 signiAicant	 beneAits	 in	 anAPL+Winbased	application	system.

VECTOR Vol.26 No.1

11

Expose	Your	APL+Win	Applications	to	Web	Clients	with	the	APLNext
Application	ServerAPL+Win	 algorithms,	 business	 rules,	 data	 stores	 and	 application	 output	 can	 beaccessed	 by	web-based	 clients	 using	 public	 or	 private	 Internet	 communications	 forreal	 time	 or	 scheduled	 batch	 processing.	 With	 the	 APLNext	 Application	 Server	 anAPL+Win	application	can	satisfy	requests	from:Browser-based	clientsServer	clients	under	program	controlLocal	workstation,	tablet	or	smart	phone	clients	under	program	controlUsing	 the	 APLNext	 Application	 Server	 an	 APL+Win	 application	 can	 provide	 web-based	clients	with	processing	capabilities	that	are:Responsive	-	The	APLNext	Application	Server	establishes	a	programmer-controlled	pool	of	APL+Win	instances	with	workspaces	already	loaded	containingAPL+Win	functions	ready	to	calculateEasily	Scalable	-	The	APLNext	Application	Server	can	be	scaled	to	multiple	serversso	that	client	requests	are	always	satisfied	promptly.Capable	of	handling	client	request	which	are	independent	and	stateless	ordependent	and	stateful.Easily	tracked	and,	if	desired,	monetized	on	a	transaction	request	level.Deploy	the	APLNext	Application	Server	using	Microsoft	Internet	InformationServer	(IIS)	or	as	an	independent	web	server.
APL2000	Conference	March	23-25,	2014	in	Ft.	Lauderdale	FloridaPlease	save	the	dates	and	mark	your	calendar	now!The	conference	will	be	held	at	 the	GALLERYone	DoubletreeSuites	 by	 Hilton,	 conveniently	 located	 on	the	 IntracoastalWaterway,	 8	 miles	 from	 the	 Fort	 Lauderdale/HollywoodInternational	 Airport	 (FLL)	and	 3	 short	 blocks	 from	 theAtlantic	Ocean	beaches.We	look	forward	to	seeing	you.For	more	information	on	APL2000	products	and	services	contact	sales@apl2000.com.

VECTOR Vol.26 No.1

12

General
VECTOR Vol.26 No.1

13

BAA:	Chairman’s	Report	2013
Paul	Grosvenor	(paul@optima-systems.co.uk)

Hello	 to	 you	 all	 and	 welcome	 back	 to	 Vector.	 Ourproduction	team	has	been	working	hard	to	produce	thisedition	which	 now	 comes	with	 a	 few	 pages	 in	 colour	 !We	 would	 very	 much	 like	 your	 input	 and	 views	 as	 towhether	or	not	 this	adds	or	 subtracts	 from	our	 journal.There	 is	 a	 small	 increase	 in	 costs	 as	 a	 result	 butsigniAicantly	 less	 than	 if	 we	 printed	 the	 whole	 thing	 incolour.	I	think	it	adds	but	what	about	you?Our	AGM	was	held	in	May,	as	last	year,	during	the	BAA	Moot	at	the	Lee	Valley	youthhostel	 [http://moot.aplwiki.com/].	 Thank	 you	 to	 Phil	 Last	 for	 arranging	 andgenerally	 running	 around	after	us.	The	AGM	&	Moot	 saw	about	20	keen	APLers	dowhat	APLers	seem	to	do	best	–	cut	code,	talk	code	and	drink	beer	but	not	necessarilyin	 that	order.	 If	anyone	 is	 interested,	 the	BAA	meets	 in	London	monthly	 to	continuethese	activities	so	contact	Phil	to	find	out	more	[phil.last@ntlworld.com].Coming	up	over	the	next	few	months	we	have	the	Minnowbrook	seminar	and	Dyalog2013	conference	in	Miami	and	we	look	forward	to	including	a	write	up	of	these	in	ournext	edition.	If	there	are	any	other	meetings	/	gatherings	/	seminars	/	that	we	havenot	mentioned	please	let	us	know	so	we	can	include	them.	Of	course	if	you	would	liketo	send	us	a	few	words	or	even	photographs	of	your	event	we	would	love	to	include	itinto	future	editions.I	 hope	 you	 enjoy	 our	 journal	 and	 look	 forward	 to	 seeing	 some	 of	 you	 at	 theforthcoming	conferences	and	just	to	finish	off,	a	quote	from	Eugene;Some	of	my	children	and	nephews	started	APL	on	a	5100.	Some	started	onthe	two-huge-suitcases	version	of	“portable”	APL.	Some	started	on	the	2741time-sharing	terminal.	Luckily,	none	of	them	had	to	start	on	a	1050.I	started	on	the	blackboard	version.—	Eugene	McDonnellWell	we	all	have	to	start	somewhere	…

VECTOR Vol.26 No.1

14

BAA	AGM	Minutes
Start	2.47pmChairman	-	Paul	GrosvenorSecretaries	-	James	Greeley,	Shaquil	Sidiki,	Sam	Gutsell	(The	Three	Blind	Mice)Been	a	relatively	quiet	year.	Most	activity	in	and	around	Vector,	Phil	Last	hosted	BAALondon,	a	speech	was	given	about	using	K	to	control	a	GPU.There	will	be	a	meeting	in	two	weeks’	time	-	no	agenda	as	of	yet.	Andy	Shiers	askedPhil	Last	if	they	were	having	a	meeting	as	Brian	Becker	will	be	over	at	some	stage	oranother.	Open	agenda	in	two	weeks’	time.After	the	AGM	John	Scholes	will	be	doing	a	talk.
Vector	is	running	behind	but	John	Jacob	has	a	plan.
2.55pm	Paul	Grosvenor	hands	over	to	the	treasurer	Nicholas
SmallThere	was	an	anonymous	donation	of	£200There	was	one	edition	of	Vector	 this	year	and	costs	were	£250	higher	than	the	yearbefore	due	to	postal	costs	going	up	by	a	third.Membership	numbers	have	 fallen	 ‘quite	a	 lot’	 about	half	 the	decline	 in	membershipfrom	volume	24-25	he	will	chase	them	up	shortly	to	encourage	them	to	join.	He	asks	ifanyone	 knows	 about	 the	 Japan	 APL	 association	 as	 the	 editions	 of	Vector	 werereturned.	Stephen	Taylor	said	that	the	Japanese	association	was	essentially	defunct.
3.00	pm	John	JacobThe	next	 edition	of	Vector	 is	about	half	way	done.	Optima	have	provided	additionalsupport	 from	 their	 new	 personal	 assistant	 Donna	 Scozzafava.	Vector’s	 hosting	 hasbeen	changed	and	they	now	have	control	of	the	domain	name.John	Jacob	went	on	to	talk	about	automating	the	process	of	converting	the	articles	topdf ’s	to	be	ready	for	print	as	well	as	making	the	markup	easier.	This	should	cut	downon	the	amount	of	time	it	takes	to	put	Vector	together.

VECTOR Vol.26 No.1

15

The	meeting	involved	a	discussion	about	having	Vector	produced	in	colour.It	surprised	 John	 Jacob	how	long	 it	actually	 took	to	produce	Vector	 (this	came	up	atChristmas	where	a	problem	with	the	printers	delayed	the	whole	process	by	3	weeks)On	the	technical	front	John	Jacob	aims	to	iron	out	the	whole	process	with	automationto	speed	up	the	whole	process	so	they	will	be	able	to	produce	Vector	more	regularlywhich	will	hopefully	stimulate	demand.Paul	 Grosvenor	 -	we've	 spoke	 about	 producing	 a	 electronic	 version	 of	Vector	 for	 along	time.	However	many	members	prefer	a	physical	copy.Currently	 there	 are	 no	 restrictions	 to	 download	 from	 the	 archive	 however	 onemember	of	the	audience	preferred	it	be	for	subscribers	only.
3.07pm	Back	to	Paul	GrosvenorNicholas	Small	-	votes	that	we	keep	the	committee	the	sameKai	Jaeger	-	objectioned	that	Peter	has	not	been	here	for	2	years!Ray	Cannon	-	Peter	sent	his	apologiesPaul	-	will	ask	peter	if	he	wants	to	carry	onRay	Cannon	-	He	is	happy	to	carry	on	but	is	happy	to	stand	down	if	anyone	else	wantsto	start.Paul	 Grosvenor	 -	 does	 anyone	 have	 any	 objections	 to	 the	 editor	 being	 part	 ofcommitteeJohn	Jacob	was	voted	as	part	of	the	committeeKai	Jaeger	-	suggests	the	secretary	should	be	removed	entirelyPaul	 Grosvenor	 -	 It’s	 been	 agreed	 that	 the	 committee	 will	 stay	 the	 same	 (with	 theaddition	of	Editor	John	Jacob)

VECTOR Vol.26 No.1

16

AOBMemberships	are	declining	as	a	whole	-	This	is	a	general	trend	where	people	arereaching	out	to	the	internet	and	grabbing	it	from	there,	people	are	retiring	butthere	is	young	blood	(Three	Blind	Mice/Stephen	Taylors	apprentice)Morten	-	maybe	we	should	put	more	pressure	on	some	of	Dyalog’s	majorcustomers	-	this	could	increase	membershipThere	are	currently	3	corporate	members	of	Vector;	Sim	Corp	being	one	of	them,subscribes	to	10	copies,	Paul	remarked	that	it	maybe	worth	asking	as	that	is	notmany	for	such	a	large	company.
Paul-	calls	the	meeting	to	an	end	3.20PM	much	applause.

VECTOR Vol.26 No.1

17

Reflections	on	a	long	life
Sam	Sexton

Authors	Note	[This	article	will	appear	in	various	places,	so	apologies	to	thoseof	you	who	don’t	know	many	of	the	names,	but	I	wanted	to	put	on	record	thehistory	 of	what	 is	 regarded	by	many	 as	 two	 ground-breaking	applications.I’ve	 included	 the	NewsAlash	crew,	but	 there	were	 too	many	(all	around	theworld)	involved	in	FX	Order	Management	to	list	you	all,	but	you	know	whoyou	 are!	 If	 I’ve	 omitted	 any	 of	 the	 early	developers,	 the	 fault	 is	 mine,	 soplease	accept	my	apologies.]
A	long	time	ago	in	a	galaxy	far,	far	away…	well,	perhaps	it’s	not	quite	that	distant	intime	and	space,	but	the	life	of	the	products	I’m	about	to	tell	you	about	may	be	amongthe	longest	in	the	commercial	world.To	start	at	the	end,	on	October	15th	2012,	Israel	Discount	Bank	(IDB)	informed	us	thatthey	 had	 gone	 live	 on	 RET-LOM.	Coincidentally	 on	 that	 day	 an	 article	 appeared	 onThe	Hub	commemorating	the	end	of	System	77,	an	editorial	system	which	dated	fromthe	mid	1980s	and	had	shut	down	in	September.	Whilst	this	is	impressive	longevity,	itdidn’t	 go	back	 as	 far	 as	 the	 technology	 used	 in	 FX	Orderwatch	 (FXOW	 -	the	 Airst	 ofvarious	names	of	the	product	over	the	years),	which	is	what	IDB	had	migrated	from	toRET-LOM.This	represented	the	end	of	several	years	of	migrating	FXOW	customers	to	the	Sybaseand	Oracle-based	successors	and	 the	end	of	an	era	that	possibly	started	in	the	70s.	Isay	possibly,	as	it’s	been	difficult	finding	anyone	who	can	remember	that	far	back!However,	 with	 that	 caveat,	 back	 to	 the	 beginning…	 it	 all	 started	with	 a	 Canadiansoftware	company	called	I	P	Sharp	Associates	(IPSA).	Back	in	the	1970s	they	provideda	 timesharing	service	with	email	and	several	databases	with	software	to	manipulatethem	on	their	Toronto	mainframe,	which	ran	a	modiAied	version	of	IBM’s	DOS,	knownas	 Sharp	 DOS.	 This	 was	accessed	 from	 around	 the	 world	 using	 their	 proprietarypacketswitched	network,	IPSANET,	with	nodes	in	around	60	locations.Around	the	end	of	the	decade,	BP’s	Oil	Trading	International	division	(OTI)	wanted	tobe	able	to	communicate	between	their	traders	more	efAiciently	than	using	phones	andlater	 PCs	 and	spreadsheets.	 They	 came	 to	 IPSA	 and	 the	 product	 NewsAlash	wascreated	 for	 them,	by	Paul	Odho,	who	sadly	died	of	a	brain	tumour	 in	1987.	BP	used

VECTOR Vol.26 No.1

18

the	system	to	ensure	that	they	had	the	correct	stocks	of	fuel	at	airports	and	docks	andit	provided	them	with	a	signiAicant	commercial	advantage.	This	system	was	written	inthe	 wonderful	 (some	 may	 say	 ‘esoteric’)	 APL,	with	 the	 database	 implemented	 inIPSA’s	component	file	system.

Left	to	right:	Sam	Sexton,	Kuldeep	Karnan,	Hayden	Bird,	Shaun	Doyle	(at	the	back,	spoiling	the
photo!),	Gary	Smock,	Ed	Nelson	and	Andy	Bunce.

NewsAlash	 was	 effectively	 smart	 email	 with	 bulletin	 boards,	 but	it	 was	 extremelyuseful	 to	 BP	 for	 communicating	 between	 six	 of	their	 traders	 in	 New	 York	 and	 asimilar	number	in	London	and	it	became	known	as	the	Sharps	system.	The	number	ofusers	grew	and	eventually	exceeded	the	capacity	of	NewsAlash	to	cope	with	the	load,so	Paul,	along	with	Peter	Airs,	addressed	this	with	NewsAlash	2	in	1986.	This	used	themagical	capabilities	 of	 Shared	 Variables,	 which	 allowed	 a	 user	 to	 be	notifiedimmediately	when	they	had	an	incoming	message.	This	capability	is	part	and	parcel	ofeveryday	life	now,	but	back	then	it	really	was	cutting	edge	technology!News	 of	 the	 effectiveness	 of	 this	 system	 spread	within	 BP	 and	another	 system	wascreated	for	the	Marine	division.	Karl	Mabert	and	Bob	Davison	moved	from	developingthe	 OTI	system	and	worked	with	Greg	Prowse,	Mike	Elbourne	 and	Hazel	O’Hare	 onthis	new	system.

VECTOR Vol.26 No.1

19

In	 time,	 the	 Sharp	 DOS	 host	 in	 Toronto	 migrated	 to	 IBM’s	 MVS	and	 BP	 decided	 tomove	 the	 service	 inhouse	 and	 onto	 their	own	 network.	 Iain	 Hunneybell	 and	 PaulOdho	worked	on	the	application	code	issues	and	I	had	the	pleasure	of	transferring	theservice	to	BP’s	ofAices	in	Finsbury	Square.	It	 later	moved	to	Hemel	Hempstead	and	afew	 years	 later	 I	worked	with	Steve	Moles	of	BP	 to	migrate	 it	 to	 Solaris,	 using	SAX(Sharp	APL	 for	uniX)	 rather	 than	SAM	(…MVS).	This	worked	very	well	and	only	 thecode	that	interfaced	with	the	operating	system	needed	adjustment.Shell	also	came	looking	for	this	technology	and	Peter	Airs,	along	with	Mike	Elbourneand	 Peter	 Biddlecombe	 came	 up	with	 another	NewsAlash	 system	 called	BEANO,	 formarine	bunkering	 –	 communicating	 between	 different	 companies	within	 the	 Shellgroup	to	supply	marine	fuel.	Such	was	the	effectiveness	of	this	that	in	due	course,	twomore	systems	-	LEANO	(for	lubricants)	and	ACE	(for	Aviation	fuel)	followed.Eventually,	 Shell	 dropped	 their	 use	 of	 the	 system,	 but	 BP	continued,	 although	 theMarine	division	migrated	away	later	on,	leaving	OTI	as	the	last	NewsAlash	user	–	but	abig	 one.	In	March	2008,	 they	had	moved	 from	 the	original	handful	of	users	 to	3000around	the	world.In	 1987,	Reuters	 had	bought	 IPSA	 and	 in	 1993,	 after	 having	absorbed	 the	 databasepart	 of	 the	 company,	 sold	 the	 APL	development	 and	 support	 groups	 back	 to	 theemployees,	causing	 the	 formation	 of	 Soliton	 Associates.	 At	 this	 point,	many	 of	 theNewsAlash	team	soon	left	Reuters,	but	others	who	had	just	joined	IPSA	at	the	time	ofthe	takeover	took	their	place.Over	 the	years,	 attempts	were	made	 to	make	 the	NewsAlash	interface	more	 sexy	bygiving	 it	 a	 GUI,	 but	 despite	 the	 best	efforts	 of	 Andy	 Bunce,	 Bob	 Davison,	 MikeElbourne	 and	 Peter	Biddlecombe,	 most	 traders	 were	 happy	 with	 the	 original	 linemode	interface,	as	it	was	quick	and	efAicient.	Meanwhile	Dave	Ziemann	joined	us	as	acontractor	and	reworked	the	database	access	functions	(a	function	is	an	APL	programor	building	block)	to	provide	greater	efficiency.

VECTOR Vol.26 No.1

20

As	Reuters	was	 down	 to	 one	 customer	 for	 the	NewsAlash	technology,	we	 started	 tolook	 around	 for	 other	 areas	 where	it	 could	 be	 applied.	We	were	 lucky	 in	 that	 theremaining	 ex-	IPSA	 staff	 were	 assigned	 to	 City	 West	 (later	 International)	division,headed	 up	 by	 Claude	 Green,	 with	 his	 deputy	 Ed	Nelson,	 who	 unlike	many	 of	 theirpeers	 and	 seniors,	 had	 the	nerve	 to	 take	 on	 what	 Ed	 recently	 referred	 to	 as	 "aneccentric	 but	 very	 talented	 team"	 (there’s	 no	 argument	about	 the	 Airst	 part	 of	 thatdescription!).	 Claude	 soon	 came	to	 realise	 that	 he’d	made	 the	 right	 choice	 and	 saidthat	 he	"liked	dealing	with	the	ex-IPSA	staff	as	you	could	ask	them	to	do	something,then	 go	 away	 and	 forget	 about	 it	 and	they’d	 come	 back	 on	 time	 with	 the	 goods".Claude	and	Ed	were	invaluable	in	keeping	the	team	together	-	despite	encouragementto	 do	 otherwise	 -	 and	 spurred	 us	 on	 to	 Aind	alternative	 uses	 for	 the	 NewsAlashtechnology,	given	that	we	only	had	BP	as	our	customer.Some	 weird	 and	 wonderful	 suggestions	 arose	 such	 as	management	 of	 racingbloodstock,	 radio	 advertising	 and	agency	 nursing	 and	 I	 seem	 to	 recall	 suggesting	 abed	management	 system	 for	 the	 NHS.	 Radio	 advertising	 was	considered,	 but	 whenReuters	 bought	 LBC,	we	were	 no	longer	 considered	 a	 neutral	 player.	 Considerationwas	 given	to	 using	 NewsAlash	 to	 enhance	 the	 Shipping	 service,	 but	there	 was	 anopinion	that	Reuters	Mail	was	better	–	but	that	was	shut	down	shortly	afterwards!	Itwasn’t	 until	 Paul	Jackson,	 who’d	 managed	 the	 BP	 NewsAlash	 account,	overheard	 aconversation	in	a	pub	(a	rare	visit	to	such	an	establishment	for	him!)	that	the	idea	ofmanaging	 FX	 orders	came	 up.	 This	 was	 pursued	 with	 Sumitomo	 and	 a	 prototypesystem	produced,	but	 in	the	end,	Sumitomo	decided	not	to	proceed.	Luckily,	as	AlanClarke	(known	as	‘Shoulders’),	then	at	HSBC,	recalls:‘I	 remember	 we	 had	 persuaded	 IT	 and	management	 to	 buy	a	 competitor’sproduct	 as	we	 didn’t	 know	 you	 had	 one	 at	 the	time,	 and	 then	 our	 accountmanager	 sent	 in	 Super	 Jacko	who	 suddenly	 turned	 up	with	 one.	We	 didn’tlike	 that	 and	the	 following	 week	 Super	 J	 had	 found	 another	 that	 wassomething	to	do	with	an	oil	platform	that	Reuters	had	acquired.	We	liked	himand	 his	 entrepreneurial	 approach	 a	lot	 and	decided	 to	 eat	 humble	pie	withthe	management	 and	IT	and	do	a	U-turn	and	switch	to	the	Reuters	product.Jon	[Healey]	and	I	then	spent	a	 long	long	time	working	with	Jacko	to	turn	itinto	an	FX	product.”‘The	other	interesting	thing	was	that	at	the	launch	party	where	Reuters	wereshowing	 it	 off	 to	 the	 community,	rumours	 circulated	 that	 management	 atReuters	 were	 going	to	kill	 off	 the	product,	 virtually	at	 its	birth.	Fortunatelywe	made	 it	 clear	 that	 HSBC	 would	 not	 be	 amused	 and	 the	decision	 nevercame	to	kill	it…	the	rest	as	they	say,	is	history.”

VECTOR Vol.26 No.1

21

Indeed,	 there	 was	 much	 debate	 at	 senior	 management	 level	as	 to	 whether	 it	 wasappropriate	 for	 such	 a	 complex	 product	developed	 by	 such	 a	 small	 group,	 to	 belaunched	 on	 a	 global	basis.	 As	 Shoulders	 states,	 it	was	 the	pressure	 from	HSBC	andother	clients	that	resulted	in	a	positive	decision	being	made.The	competitor’s	product	referred	to	was	Telerate	Passbook.	FXOW	proved	to	be	thebetter	 product	 and	 gained	 a	signiAicantly	 higher	market	 share.	When	 Telerate	 wasacquired	by	Reuters,	all	the	Passbook	clients	migrated	to	FXOW.At	HSBC,	 FXOW	replaced	whiteboards,	 spreadsheets	 and	faxes	with	 the	new	systemand	it	used	a	variant	of	the	Visual	Basic	GUI	which	Andy	Bunce	had	provided	to	BP.Shoulders’	 colleague	 at	 HSBC,	 Jon	 Healey,	 also	 commented	recently,	 “To	 this	 day,	 Ihave	not	yet	found	another	orders	system	that	fulAilled	the	single	main	criteria	of	anorders	system	as	well;	it	stayed	up”.On	a	personal	note,	we	all	enjoyed	working	with	HSBC	and	both	sides	considered	it	asgood	a	relationship	as	you	could	expect	between	supplier	and	customer	–	there	weremany	happy	memories,	not	all	of	which	were	associated	with	licensed	premises!Other	banks	soon	followed	suit	and	with	the	help	of	our	agent	TMT	in	Helsinki	(Timo,Tuija,	Tapsa	and	others	whose	names	didn’t	start	with	T!),	we	had	about	30	customersaround	the	world.	I	was	the	lucky	one	who	Alew	around	the	globe,	installed	many	ofthose	 systems	 and	 trained	 internal	and	customer	 technical	 staff	 to	 look	after	 it	–	anonerous	task,	but	someone	had	to	do	it!	Once	it	was	installed,	it	didn’t	really	need	thatmuch	 looking	 after.	As	 an	 example	of	 this,	 I’d	 installed	a	demonstration	system	at	abank	 in	London	on	my	way	 to	Heathrow	 in	 January	2002.	A	couple	of	months	 later,we	attempted	to	retrieve	our	hardware,	but	the	customer	was	loath	to	let	it	go,	as	thedealers	loved	the	system	and	we	suspected	were	using	it	for	more	than	just	evaluationpurposes.	 In	 the	 end,	 the	 bank	 got	 their	 own	hardware	 and	 we	 got	 the	 box	 backeighteen	months	after	 it	had	been	installed,	during	which	time	no	backups	had	beentaken	 and	 no	 (required)	 regular	 housekeeping	 performed,	but	 the	 system	 just	 keptpurring	along.
no. 439949 from stew 23:01 26 may 2011 to all
subj Last message from Paul Reed

This may be the last message sent on the
'Sharps' system - and it marks something of a
milestone. I have had the 'pjr' sharp code
since I first traded Rotterdam barges in our
Dutch office in 1985. Originally it was a
groundbreaking Instant Messaging system used by
BP traders to connect 6 traders in New York
with 6 in London. By the time I joined the
Crude bench two years later it had evolved into

VECTOR Vol.26 No.1

22

also keeping records of all crude bids and
offers known from the market and was accessible
to all our refinery buyers, it was used as our
deal entry system and even did real time
exposure for our OTC Brent and Dubai at one
stage. Within a few years it had grown to over
600 users in 40 countries and for many years
was a great competitive advantage when most
other firms were still using Telex to
communicate and were just implementing Fax
technologies and then subsequently mobile
phones and later personal computers.

Clearly today everyone has instant messaging
and we are not only the
first users on the planet to use the system
widely but also now the last.

Today's milestone passes whilst recognising
that for over two
and a half decades this system was at the heart
of our collaborative and
joined up culture.

PJR (aka Paul J Reed, Chief Executive,
Integrated Supply and Trading)
Regards,
 Despite	 this	 success,	 time	 was	 catching	 up	 with	 the	 product	and	 it	 wasn’t	 a	 viableproposition	to	commission	a	Solaris	10	version	of	SAX	for	Solaris	10	from	Soliton	andso	 FXOW	customers	 were	 encouraged	 to	migrate	 to	 an	 Automated	Dealing	 system,based	on	TIBCO	technology	with	Sybase.	This	attracted	some	customers,	but	wasn’t	aroaring	success.	However,	in	December	2002,	Reuters	acquired	AVT	Microsystems	inNottingham	as	they	were	looking	for	a	company	to	help	them	spread	the	use	of	theirtrading	software	 called	 GenIdeal.	 This	 was	 much	 better	 and	 the	FXOW	 customerswere	 encouraged	 to	 migrate	 to	 RET-OM,	based	 on	 GenIdeal	 with	 the	 database	 inOracle	and	(eventually)	a	Java	GUI.	Kevin	Clarke	had	the	honour	of	being	the	last	APLand	VB	programmer	to	work	on	the	code,	after	having	left	Reuters	for	Soliton	whenthe	Global	Limits	Control	System	(that’s	another	story!)	that	he	worked	on	was	closeddown,	but	he	returned	to	look	after	FXOW.The	 system	 didn’t	 need	 too	 much	 support,	 but	 a	 couple	 of	occasions	 when	 it	 wasneeded	stand	out.	One	year	Kevin	and	I	were	called	on	Christmas	Day	and	then	againon	New	Year’s	Day	–	but	our	marriages	managed	to	survive	the	experience!	At	Easter2003	I	was	attending	my	niece’s	21st	birthday	party	and	when	I	returned	to	the	car,	Ifound	I’d	left	my	mobile	there	and	had	missed	about	18	calls.	Our	favourite	customerhad	had	a	hardware	crash	and	needed	some	help,	so	as	soon	as	I	arrived	home,	I	wasoff	again	on	the	train	to	London.	It	was	a	long	and	stressful	night	and	the	three	of	us(myself,	 Teech	 and	 a	 Sun	 engineer)	eventually	 got	 the	 system	 up	 and	 running,	 butafter	ten	years	of	therapy,	we	can	look	back	fondly	on	the	experience!

VECTOR Vol.26 No.1

23

The	BP	story	ended	at	close	of	business	in	New	York	on	27	May	2011,	as	recorded	byPaul	Reed	in	his	message	(see	left),	which	is	reproduced	with	permission.Between	them,	these	two	products,	which	were	seen	as	too	risky	in	various	quarters(without	 justiAication,	 as	 time	 was	to	 prove)	 and	 only	 kept	 going	 by	 tenacious	 andcommitted	managers	 together	with	 responsive	 support	 and	development	 staff,	 haveprovided	 a	 service	 to	 BP	 and	 many	banks	 for	 around	 30	 years	 and	 they	 outlastedmany	 of	 those	who	were	not	 convinced	of	 the	potential	 of	 both	 the	technology	 andthe	team	that	developed	it.	They	also	provided	a	significant	revenue	stream.I	 am	 sure	 that	 I	 speak	 on	 behalf	 of	 all	 involved	 in	 saying	 that	we	 are	 proud	 andhonoured	 to	 have	 played	 our	 roles	 in	 this	small	 episode	 of	 history	 and	 that	 werecognise	 the	 debt	we	owe	 to	 the	 late	 Paul	Odho	 and	 also	Paul	 Jackson,	who	 sadlyalso	 died	 -	 in	 June	 2003	 -	 without	 whom	 our	 working	 lives	would	 have	 been	 verydifferent	and	much	less	fun!

VECTOR Vol.26 No.1

24

2^64
Roger	K.W.	Hui

How	big	is	2^64?
Basics

 2^64
1.84467e19

 2^64x
18446744073709551616

 'c0.0' 8!:2]2^64
18,446,744,073,709,551,616And,	using	the	verb	us	from	[1],
 us 2^64x
eighteen quintillion, four hundred forty-six quadrillion,
 seven hundred forty-four trillion,
 seventy-three billion, seven hundred nine million,
 five hundred fifty-one thousand, six hundred sixteen

Grains	on	a	ChessboardOne	grain	of	rice	is	placed	on	the	Airst	square	of	an	8	by	8	chessboard,	two	grains	onthe	next	square,	four	grains	on	the	next,	and	so	on,	doubling	on	each	square.	The	totalis	of	course	(2^64)-1	grains.	How	deep	would	that	amount	of	rice	cover	the	earth?Answer	in	[2].
Particles	in	the	UniverseIs	2^64	larger	than	the	number	of	particles	in	the	universe?	Not	even	close	[3,	4].
Avogadro	ConstantThe	Avogadro	constant[5]	has	value	6.022141e23	.
 6.022141e23 % 2^64
32646.1That	 the	 Avogardo	 constant	 is	 the	 number	 of	 atoms	 in	 twelve	 grams	 of	 carbon-12makes	evident	the	enormity	of	the	error	of	estimation	in	the	previous	section.

VECTOR Vol.26 No.1

25

Age	of	the	UniverseThe	 age	 of	 the	 universe[6]	 is	 estimated	 to	 be	 about	 14	 billion	 years;	 its	 age	 inmilliseconds	is:
 */ 14e9 365.2425 24 60 60 1000
4.41797e20

CPU	CyclesAssume	the	average	modern	PC	is	rated	at	2	GHz.	The	number	of	CPU	cycles	in	a	yearis	therefore:
 */ 2e9 365.2425 24 60 60
6.31139e16The	 total	 of	 CPU	 cycles	 in	 a	 year	 for	 the	 computers	 found	 in	 a	 residentialneighborhood	 would	exceed	2^64	 .	(The	 required	 number	 of	 computers	 is
292.277 = (2^64) % 6.31e16).
Supertanker	BytesThe	largest	tanker	ever	built,	the	Knock	Nevis[7],	has	a	deadweight	of	564,763	tonnes(tonne	=	1000	kg)	and	measures	1504	feet	by	226	feet	with	a	draft	of	81	feet.	A	run-of-the-mill	 disk	 drive	 has	 a	capacity	 of	 200	 GB,	 and	9e7	 drives	would	 have	 a	 totalcapacity	 of	2^64	bytes.	Unless	each	drive	exceeds	6	kg	 the	 tanker	would	be	able	 tocarry	them.Might	 the	 tanker	 be	 constrained	 by	 volume?	 Its	 volume	 exceeds
27532224 = */ 1504 226 81 cubic	 feet	which	would	 readily	 accommodate	9e7disk	drives	(0.3	cubic	foot	per	drive).We	used	to	play	a	parlour	game	of	wondering,	 “What’s	 the	 fastest	way	to	send	dataacross	 the	Atlantic?”	Adapted	 for	 the	 current	paper	 and	 for	 current	 technology,	 thequestion	 we	 may	 ask	is,	 “What	 is	 the	 fastest	 time	 to	 send	2^64	 bytes	 across	 theAtlantic?”	 (A	 supertanker	 full	 of	disks/Alash	 drives/DRAMs?	 An	 A380	 full	 of	 same?Transmission	by	a	100	Gbps	submarine	cable?)	A	rule	of	this	game	is	that	you	must	dothe	calculations	in	your	head.
Leaves	on	TreesYou	stand	on	a	mountain	top	 in	 the	North	American	PaciAic	Northwest	with	trees	 inevery	 direction.	Are	 there	2^64	 leaves	 on	 the	 trees	 within	 your	 sight?	 Estimate	 asfollows:

VECTOR Vol.26 No.1

26

you	can	see	100	miles[8]in	every	directionthere	is	a	tree	every	5	feetTherefore,	the	number	of	trees	within	your	sight	is:
 NB. square feet within your sight
 o. *: 100 * 5280
8.75826e11

 NB. # trees within your sight
 (*:5) %~ o. *: 100 * 5280
3.5033e10

 NB. required # leaves on a tree
 (2^64) % (*:5) %~ o. *: 100 * 5280
5.26553e8Is	 it	 plausible	 for	 there	 to	 be	5.27e8	 leaves	 on	 a	 tree?	 There	 probably	 aren’t	thatmany	 leaves	on	an	average	deciduous	 tree.	However,	 trees	 in	 the	PaciAic	Northwesta r e	evergreen.	5.27e8	 needles	 on	 an	 evergreen	 tree	 seem	 possible(22956.5 = %: 5.27e8	;	23	thousand	branches	each	having	23	thousand	needles).
Compound	InterestHow	many	years	does	it	take	to	reach	2^64	dollars	for	$1	invested	at	interest	rate	r	?The	equation	for	semi-annual	compounding	is:
(2^64) = (1+r%2)^2*yTaking	logarithms	on	both	sides,	we	get		y = -: (1+r%2) ^. 2^64
] r=: 0.01 * 1+i.10
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

 -: (1+r%2) ^. 2^64
4447.22 2229.14 1489.78 1120.09 898.273 750.393
 644.761 565.536 503.914 454.614

 r ,. >. -: (1+r%2) ^. 2^64
0.01 4448
0.02 2230
0.03 1490
0.04 1121
0.05 899
0.06 751
0.07 645
0.08 566
0.09 504
 0.1 455

VECTOR Vol.26 No.1

27

Fibonacci’s	RabbitsFibonacci	studied	the	population	growth	of	(idealized)	rabbits	where:in	the	first	month	there	is	1	newborn	pair	of	rabbitsa	new-born	pair	becomes	fertile	from	the	2nd	month	oneach	month	every	fertile	pair	begets	a	new	pairrabbits	never	dieHow	many	months	are	required	for	the	number	of	rabbits	to	reach	2^64	?Let	F n	be	the	number	of	pairs	of	rabbits	after	n	months.	Only	the	F n-2	rabbits	thatare	alive	at	n-2	months	produce	a	pair,	and	these	are	added	to	the	existing	population
F n-1	.	Thus	(F n) = (F n-1) + (F n-2)	.		F	is	of	course	the	Fibonacci	sequence[9].It	can	be	shown	that	(F n) = <. 0.5 + (%:5) %~ phi^n	where	phi	is	the	goldenratio	-:1+%:5	.	The	equation	to	be	solved	is:
 (2^64) = 2 * (%:5) %~ phi^n and	the	solution	is:
 phi=: -:1+%:5
 phi ^. -: (%:5) * 2^64
92.4187Less	than	8	years.
FactorialThe	number	of	ways	of	arranging	n	distinct	objects	 is	!n	 .	What	 is	 the	smallest	n	 forwhich	this	exceeds	2^64	?
 !^:_1]2^64
20.6671

PartitionsA	partition	of	n	is	a	sorted	list	x	of	positive	integers	such	that	n=+/x	.	For	example,	thefollowing	is	the	sorted	list	of	all	the	partitions	of	5:
┌─┬───┬───┬─────┬─────┬───────┬─────────┐
│5│4 1│3 2│3 1 1│2 2 1│2 1 1 1│1 1 1 1 1│
└─┴───┴───┴─────┴─────┴───────┴─────────┘

VECTOR Vol.26 No.1

28

What	is	the	smallest	n	for	which	the	number	of	partitions	of	n	exceeds	2^64	?The	verb	pnv	is	from	[10]	where	pnv n	are	the	number	of	partitions	for	i.1+n	.
 p=: pnv 500
 $ p
501
 5 10 $ p
 1 1 2 3 5 7 11 15 22 30
 42 56 77 101 135 176 231 297 385 490
 627 792 1002 1255 1575 1958 2436 3010 3718 4565
 5604 6842 8349 10143 12310 14883 17977 21637 26015 31185
37338 44583 53174 63261 75175 89134 105558 124754 147273 173525

 p (>i.1:) 2^64
417
 ,. 416 417{p
17873792969689876004
18987964267331664557
 2^64x
18446744073709551616

KatanaTo	create	a	katana[11]	(samurai	sword)	a	billet	of	steel	is	heated	and	hammered,	splitand	folded	back	upon	itself	many	times.	 If	 the	number	of	 foldings	 is	greater	than	64then	the	number	of	layers	exceeds	2^64	.
E=m*c^2With	 total	 conversion,	 how	 many	 kilograms	 of	 mass	 are	 required	 to	 obtain	 2^64joules	of	energy?
 (2^64) % *:3e8
204.964

Square	InchesWhat	is	the	radius	in	miles	of	a	sphere	whose	surface	area	is	2^64	square	inches?	Thesurface	area	of	a	sphere	with	radius	r	is	o.4**:r	.	Thus:
 (*/ 12 5280) %~ %: (2^64) % o.4
19122.3Such	a	sphere	is	a	little	larger	than	Uranus.

VECTOR Vol.26 No.1

29

Cubic	InchesWhat	 is	 the	 radius	 in	 miles	 of	 a	 sphere	 whose	 volume	 is	2^64	 cubic	 inches?	 Thevolume	of	a	sphere	with	radius	r	is	o.(4%3)*r^3	.	Thus:
 (*/ 12 5280) %~ 3 %: (2^64) % o.4%3
25.8699

Hilbert	MatrixThe	 Hilbert	 matrix	[12]	 is	 a	 square	 matrix	 whose	 (i,j)-th	 entry	 is	%1+i+j	 .	It	 isfamously	ill-conditioned	with	a	very	small	magnitude	determinant.
 H=: % @: >: @: (+/~) @: i.

 H 5x
 1 1r2 1r3 1r4 1r5
1r2 1r3 1r4 1r5 1r6
1r3 1r4 1r5 1r6 1r7
1r4 1r5 1r6 1r7 1r8
1r5 1r6 1r7 1r8 1r9

 det=: -/ .*

 det H 5x
1r266716800000

 %. H 5x
 25 _300 1050 _1400 630
 _300 4800 _18900 26880 _12600
 1050 _18900 79380 _117600 56700
_1400 26880 _117600 179200 _88200
 630 _12600 56700 _88200 44100The	inverse	Hilbert	matrix	has	all	integer	entries,	whose	(integer)	determinant	is	verylarge.
 >./ | , %. H 15x
114708987924290760000
 >./ | , %. H 14x
3521767173114190000

 % det H 7x
2067909047925770649600000
 % det H 6x
186313420339200000

 perm=: +/ .*

 perm %. H 5x
4855173934730716800000
 perm %. H 4x
5314794912000

VECTOR Vol.26 No.1

30

The	smallest	inverse	Hilbert	matrix	with	an	entry	that	exceeds	2^64	in	absolute	valueis	 the	 one	 of	 order	 15	 ;	 with	 a	 determinant	 that	 exceeds	2^64	 ,	order	 7	 ;	 with	 apermanent	that	exceeds	2^64	,	order	5	.
Making	$$$In	U.S.	dollars	the	units	in	common	circulation	are:bills:	100	50	20	10	5	1coins:	0.25	0.10	0.05	0.01A	dollar	can	be	“made”	in	a	number	of	ways:
 1.00 0.25 0.10 0.05 0.01

 0 0 0 0 100
 0 0 0 1 95
 0 0 0 2 90
 …
 0 3 2 1 0
 0 4 0 0 0
 1 0 0 0 0In	fact,	a	dollar	can	be	made	in	243	ways.	What	is	the	smallest	multiple	of	$100	thatcan	be	made	in	greater	than	2^64	ways?
h=: 4 : 0
 m=. # s=. +/\ y
 if. 2.5=x do. (m$5{.1)#m($,)+/_2]\s else. (m$x{.1)#s end.
)

chm=: 3 : '+/ 2 h 2.5 h 2 h 5 h 4 h 2.5 h (*y)$~1+20*y' " 0If	n	is	a	multiple	of	100	then	chm	n	is	the	number	of	ways	of	making	n	dollars.
 chm 100*>:i.3 5
4.88209e10 4.35246e12 7.62895e13 6.46316e14 3.58401e15
1.50147e16 5.149e16 1.51912e17 3.98556e17 9.51655e17
2.10326e18 4.35756e18 8.54636e18 1.59902e19 2.87178e19
 chm 1400 1500
1.59902e19 2.87178e19$1500	can	be	made	in	2.87e19	ways.	The	exact	number	is:
 chm 1500x
28717791430084742056

VECTOR Vol.26 No.1

31

Suppose	the	more	rarely	circulated	$2	bill	and	50	cent	coin	are	included.	Then:
chn=: 3 : '+/ 2 h 2.5 h 2 h 2.5 h 2 h 2 h 2.5 h
 (*y)$~1+20*y' " 0

 chn 100*>:i.3 5
9.82355e12 2.78e15 9.69549e16 1.34924e18 1.10638e19
6.40915e19 2.90001e20 1.09038e21 3.54917e21 1.02915e22
2.71434e22 6.61402e22 1.50698e23 3.24114e23 6.63033e23

 chn 500 600
1.10638e19 6.40915e19

 chn 600x
64091464225604008941$600	can	be	made	in	6.41e19	ways,	and	is	the	smallest	multiple	of	$100	than	can	bemade	in	greater	than	2^64	ways.
References1.	 Hui,	Roger	K.W.,	Number	in	Words,	Jwiki	Essay,	2007-07-12.2.	 Hui,	Roger	K.W.,	Ken	Iverson	Quotations	and	Anecdotes,	2005-09-30.

http://keiapl.org/anec/#rice3.	 Bernecky,	Robert,	comp.lang.apl	post,	1996-03-31.	https://groups.google.comsearch	for	groups	or	messages:	“fewer	than	2	power	60	particles	in	the	universe”4.	 Hui,	Roger	K.W.,	comp.lang.apl	post,	1996-04-01.	(as	above)5.	 Avogadro	constant	http://en.wikipedia.org/wiki/Avogadro_constant6.	 Age	of	the	universe	http://en.wikipedia.org/wiki/Age_of_universe7.	 Knock	Nevis	http://en.wikipedia.org/wiki/Knock_Nevis8.	 You	can	see	100	miles	http://en.wikipedia.org/wiki/Horizon9.	 Hui,	Roger	K.W.,	Fibonacci	Sequence,	Jwiki	Essay,	2005-09-26.10.	 Hui,	Roger	K.W.,	Partitions,	Jwiki	Essay,	2005-11-18.11.	 Katana	http://en.wikipedia.org/wiki/Katana12.	 Hui,	Roger	K.W.,	Hilbert	Matrix,	Jwiki	Essay,	2005-09-29.An	earlier	version	of	this	paper	appeared	as	a	an	essay	in	the	Jwiki(www.jsoftware.com/jwiki/Essays/2^64)	on	2007-12-06.

VECTOR Vol.26 No.1

32

http://keiapl.org/anec/#rice
https://groups.google.com/forum/?hl=en&fromgroups=#!search/fewer$20than$202$20power$2060$20particles$20in$20the$20universe%22$2Fcomp.lang.apl$2FOExihuC0O8k$2F-XnWggPRDIcJ/comp.lang.apl/FQqn7-Vz7vc/58wHGpyMy-YJ
http://en.wikipedia.org/wiki/Avogadro_constant
http://en.wikipedia.org/wiki/Age_of_universe
http://en.wikipedia.org/wiki/Knock_Nevis
http://en.wikipedia.org/wiki/Horizon
http://en.wikipedia.org/wiki/Katana
http://www.jsoftware.com/jwiki/Essays/2^64

APL
VECTOR Vol.26 No.1

33

A	Question	of	character
Brian	Becker

I've	used	APL	for	over	35	years	and	one	of	the	recurring	criticisms	of	APL	is	its	non-standard	 character	 set	 –	 its	 use	 of	 “funny”	 symbols.	This	 got	me	 to	 thinking	 aboutsymbols	 in	 general.	We	 use	 symbols	 every	 day.	 They're	used	 to	 convey	meaning,	 toshare	information,	to	establish	a	common	format	for	communication.	The	letters	thatform	the	words	on	this	page	are	nothing	more	than	symbols.Symbologies	are	tailored	to	optimize	communication	within	a	domain.A	musician	will	see	the	symbols	below	and	see	a	“C-major”	chord.
Whereas	a	guitarist	may	understand	C-major	as	this...

A	mathematician	sees	the	expression	below	and	understands	it	as	the	sum	of	the	Airst100	integers.
And	an	APLer	sees	it	this	way	+/⍳100Symbols,	until	you	learn	their	meaning,	are	incomprehensible.	The	argument	“I	can'tread	APL”	can	be	applied	 to	any	domain	 that	uses	a	 speciAic	 symbology	–	 language,music,	mathematics,	electrical	engineering,	even	cooking	–	if	you	don't	know	that	tspmeans	 teaspoon	 and	 tbsp	 means	 tablespoon,	 you're	 in	 for	 some	 potentiallyunpleasant	culinary	surprises.We	 learn	 new	 symbols	 all	 the	 time.	Before	 the	 EU,	 the	 €	 symbol	 was	 unknown.Emoticons	 :-)	 are	 a	 new	breed	 of	 symbols	 that	we've	 created	 to	 compactly	 express

VECTOR Vol.26 No.1

34

emotion	through	typed	media.If	we	can	accept	that	symbols	are	a	good	thing	and	that	we	are	continually	learn	newsymbols,	perhaps	we	can	get	past	 the	bias	against	APL	because	 it	uses	 those	 “funnycharacters”.Downloadable	 APL	 fonts	 and	 keyboard	 drivers,	 on-screen	 keyboards	 and	 languagebars	have	made	APL	easier	to	 learn	than	ever.	Yes,	 it	does	take	some	effort	to	 learnthe	 symbols	 and	 how	 to	 enter	 them	 –	 but	 that's	 no	 different	 than	 learning	 a	 newlanguage,	how	to	read	music,	or	any	domain	where	the	symbology	is	unfamiliar	to	us.With	 APL,	 the	 payback	 in	 productivity	 far	 exceeds	 the	 investment	 to	 learn	 thesymbols.

VECTOR Vol.26 No.1

35

My	favourite	APL	symbol
⍟ ○*

by	Roger	K.W.	Hui

One	of	the	distinguishing	characteristics	of	APL	is	its	unique	character	set,	containing150-200	 symbols.	 My	 favorite	 is	⍟,	 the	 symbol	 for	 logarithm.	 Originally,	 the	 logsymbol	 was	 formed	 by	 ‘overstriking’	○	 (circle)	 and	*	 (exponential	 or	 power).	 Atpresent,	⍟	is	Unicode[1]	code	point	0x235F.
Reasons	for	liking	⍟It’s	kind	of	cute,	possessing	a	radial	symmetry.It	denotes	a	function	for	which	conventional	mathematical	notation	[2]	does	nothave	a	good	symbol:

 ⍟y ←→ ln y or log y

 x⍟y ←→ logx yIt	alludes	to	0=1+*○0j1,	the	most	beautiful	equation	in	all	of	mathematics	[3],relating	in	one	short	phrase	the	fundamental	quantities	0,	1,	e,	π,	and	0j1	and	thebasic	operations	plus,	times,	and	exponentiation.It	is	a	visual	pun	–	the	symbol	looks	like	the	cross-section	of	a	felled	tree,	i.e.	a	log[4].
Chronology

1962-03In	A	Programming	Language	[5],	logarithm,	exponential,	and	power	were	notassigned	symbols.
1966-03In	Elementary	Functions[6],	exponential	and	power	were	denoted	*y	and	x*y,their	definitions	to	this	day.	Natural	logarithm	was	denoted	*'	and	base-xlogarithm	was	denoted	(x*)'.	(In	the	book,	f'	is	the	inverse	of	f.)
1966-11-27	15:53:58	(GMT-7)Initial	implementation	of	APL\360	[7].

VECTOR Vol.26 No.1

36

1967-10-17Natural	logarithm	was	denoted	by	⍟y	no	later	than	the	publication	of	The
APL\360	Terminal	System	[8].	The	dyadic	case	x⍟y,	base-x	log	of	y,	wasundefined;	instead,	it	was	computed	by	a	defined	function	in	the	public	libraryworkspace	1 utility	[9].

1968-08Finally,	natural	logarithm	was	denoted	⍟y	and	the	base-x	logarithm	of	y	wasdenoted	x⍟y,	their	definitions	to	this	day,	no	later	than	the	publication	of
APL\360	User’s	Manual	[10].

References1.	 Unicode	Consortium,	Unicode	Standard	6.2,	2013	
www.unicode.org/charts/PDF/U2300.pdf2.	 Abramowitz,	Milton,	and	Irene	A.	Stegun,	Handbook	of	Mathematical	Functions,US	National	Bureau	of	Standards,	1964;	Chapter	4	
people.math.sfu.ca/~cbm/aands/page_67.htm,3.	 Hui,	Roger	K.W.,	Euler’s	Identity,	J	Wiki	Essay,	2010-02-04	
www.jsoftware.com/jwiki/Essays/Euler's_Identity4.	 McDonnell,	Eugene	E.,	The	Story	of	○,	APL	Quote-Quad,	Volume	8,	Number	2,	1977-12	www.jsoftware.com/papers/eem/storyofo.htm5.	 Iverson,	Kenneth	E.,	A	Programming	Language,	Wiley,	New	York,	1962	
www.jsoftware.com/papers/APL.htm6.	 Iverson,	Kenneth	E.,	Elementary	Functions:	An	Algorithmic	Treatment,	ScienceResearch	Associates,	Inc.,	Chicago,	1966-03	
www.jsoftware.com/jwiki/Doc/Elementary_Functions_An_Algorithmic_Treatment7.	 Hui,	Roger	K.W.,	(ed.),	APL	Quotations	and	Anecdotes,	2010-09-18	
www.jsoftware.com/papers/APLQA.htm#APL_birthday8.	 Falkoff,	Adin	D.	&	Kenneth	E.	Iverson,	The	APL\360	Terminal	System,	Report	RC-1922,	IBM,	1967-10-16	
www.jsoftware.com/papers/APL360TerminalSystem.htm9.	 Conroy,	C.A.,	Editor,	APL\360	Newsletter	Number	1,	IBM,	1967-07	
bitsavers.informatik.uni-stuttgart.de/pdf/ibm/apl/APL_Newsletter_1_Jul67.pdf10.	 Falkoff,	Adin	D.	&	Kenneth	E.	Iverson,	APL\360	User’s	Manual,	IBM,	1968-08;	Table	3.2	bitsavers.informatik.uni-
stuttgart.de/pdf/ibm/apl/APL_360_Users_Manual_Aug68.pdf

VECTOR Vol.26 No.1

37

http://www.unicode.org/charts/PDF/U2300.pdf
http://people.math.sfu.ca/~cbm/aands/page_67.htm
http://www.jsoftware.com/jwiki/Essays/Euler's_Identity
http://www.jsoftware.com/papers/eem/storyofo.htm
http://www.jsoftware.com/papers/APL.htm
http://www.jsoftware.com/jwiki/Doc/Elementary_Functions_An_Algorithmic_Treatment
http://www.jsoftware.com/papers/APLQA.htm#APL_birthday
http://www.jsoftware.com/papers/APL360TerminalSystem.htm
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/apl/APL_Newsletter_1_Jul67.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/apl/APL_360_Users_Manual_Aug68.pdf

Using	email	services	from	APL
Chris	Hogan	(chris.hogan@4xtra.com)

The	details	of	how	standard	email	 is	 generated,	propagated	across	 the	 Internet	andreceived	 by	 a	 remote	 reader	 are	 usually	 hidden	 behind	 elaborate	 GUIs.	This	 shortarticle	 sets	 out	 to	 explain	 the	 basics	 of	 email	 processing	 and	 to	 show	 how	 an	 APLsystem	 can	 beneAit	 from	 being	 able	 to	 utilise	 direct	 access	 to	 email	 handling.	Somesamples	 of	 code	 and	 brief	 case	 studies	 are	 included	 to	 illustrate	 the	 proceduresinvolved	and	the	uses	to	which	they	may	be	put.Most	people	think	of	email	as	a	bi-directional	process,	but	it	isn’t	that	simple...	

Definitions

MUA	(Mail	User	Agent):	an	email	client	such	as	Thunderbird	or	Outlook.	Thiswrites	your	emails	to	a	MSA	and	reads	them	from	a	MAA
MSA	(Mail	submission	Agent):	usually	part	of	a	MTA,	this	communicates	with	theMUA	and	transfers	the	incoming	email	to	the	MTA
MTA	(Mail	Transfer	Agent):	L	handles	the	mail	traffic	between	two	servers,	so

VECTOR Vol.26 No.1

38

this	is	what	actually	“sends”	the	email	–	and	receives	it	at	the	far	end.
MDA	(Mail	Delivery	Agent):	takes	incoming	mail	from	the	MTA	and	places	it	in	theaddressee’s	in-box.	Can	also	be	called	a	LDA	(Local	Delivery	agent)	if	the	emailfolder	and	the	MTA	are	on	the	same	server
MAA	(Mail	Access	Agent):	manages	the	folders	of	an	email	account	and	makes	themessages	available	to	a	MRA.
MRA	(Mail	Retrieval	Agent):	accesses	the	email	folders	via	the	MAA	and	makesthe	messages	available	to	the	MUA

So	where	does	APL	fit	into	this?The	APL	code	is	in	effect	the	MUA	:it	will	log	into	the	MSA	and	send	mail.it	will	log	into	the	MAA	and	act	as	the	MRA
How	does	all	this	communication	happen?Through	the	wonder	of	TCP/IP,	so	we	use	sockets.My	code	is	all	Dyalog	APL,	but	APL2000	also	has	TCP/IP	sockets	and	I	imagine	APL2and	APLX	can	do	this	too.	J	can,	but	that	is	well	beyond	the	scope	of	this	short	article.What	 does	 the	 trafAic	 consist	 of?	 Remember	 that	 email	 really	 started	 on	 Unixmachines,	so	the	commands	are	plain	text.So	what’s	in	a	message?	This	is	the	real	(well,	if	you	know	what	you	are	looking	for)source	 of	 an	 email.	This	 is	 the	 header	 and	 unrendered	 body	 of	 a	 real	 email	 fromAmazon.	 I’ve	 taken	 a	 few	 liberties	with	 the	 long	Amazon	 addresses	 in	 order	 to	 getthem	to	fit	on	this	page,	but	that	does	not	alter	the	substance	of	the	header.
Return-Path: <20113470203e1e8f5b2ae4797a3d6f7453d450d78@bounces.amazon.com>
X-Original-To: sales@4xtra.com
Delivered-To: sales@4xtra.com
Received: from retail-smtp-out-22001.amazon.com
(retail-smtp-out-22001.amazon.com [212.123.28.40])
 by chris.vm.xeriom.net (Postfix) with ESMTP id E74253C5E2
 for <sales@4xtra.com>; Wed, 23 Mar 2011 13:52:12 +0000 (GMT)
DKIM-Signature: v=1; a=rsa-sha256; c=simple/simple;
 d=amazon.co.uk; i=auto-confirm@amazon.co.uk; q=dns/txt;
 s=rte02; t=1300888158; x=1332424158;
 h=date:from:to:message-id:subject:mime-version:
 content-type:bounces-to:x-amazon-mail-relay-type:
 x-amazon-rte-version;
 z=Date:=20Wed,=2023=20Mar=202011=2013:47:02=20+0000=20(UTC
)|From:=20"auto-confirm@amazon.co.uk"=20<auto-confirm@ama
 zon.co.uk>|To:=20"sales@4xtra.com"=20<sales@4xtra.com>
 |Message-ID:=20<1003847.1291711300888022380.JavaMail.corr

VECTOR Vol.26 No.1

39

 eios@rte-svc-eu-12011.dub2.amazon.com>|Subject:=20Your=20
 Order=20with=20Amazon.co.uk|MIME-Version:=201.0
 |Content-Type:=20multipart/mixed=3B=20=0D=0A=09boundary
 =3D"----=3D_Part_93377_21274456.1300888022379"
 |Bounces-to:=202011032313470203e1e8f5b2ae4797a3d6f7453d45
 0d78@bounces.amazon.com|X-AMAZON-MAIL-RELAY-TYPE:=20notif
 ication|X-AMAZON-RTE-VERSION:=202.0;
 bh=ctkIU05imPGMClPT674rciV+ciF5MQ3E0lsqcdH+8Us=;
 b=NP1SvGK3lKhSCu+FTTL+Lol9+ucTuYPdNjrf2dAh+1Fi14nKsVtuWGGx
 bcEjxUT7ksgrou7u16oP9dQ1gbatTQ==;
Date: Wed, 23 Mar 2011 13:47:02 +0000 (UTC)
From: "auto-confirm@amazon.co.uk" <auto-confirm@amazon.co.uk>
To: "sales@4xtra.com" <sales@4xtra.com>
Message-ID: <10847.129180.JavaMail.correios@rte-svc-eu-12011.dub2.amazon.com>
Subject: Your Order with Amazon.co.uk
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary="----=_Part_93377_21274456.1300888022379"
Bounces-to: 2011032313470203e1e8f5b2ae4797a3d6f7453d450d78@bounces.amazon.com
X-AMAZON-MAIL-RELAY-TYPE: notification
X-AMAZON-RTE-VERSION: 2.0

------=_Part_93377_21274456.1300888022379
Content-Type: multipart/alternative;
 boundary="----=_Part_93378_3767371.1300888022379"

------=_Part_93378_3767371.1300888022379
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
Thanks for ordering from Amazon.co.uk. Your purchase information appears be=
low.The	entire	header	routing	information	is	in	plain,	human	readable	text.The	 message	 body	 consists	 of	 one	 or	 more	 sections	 to	 hold	 plain	 text,	 HTML	 andattachments.	In	fact,	because	we	cannot	predict	the	hardware	or	software	which	willhandle	our	message	on	its	journey	even	the	attachment	must	be	plain	text.This	 is	 handled	 by	 Base64	 encoding	 -	 the	 256	 values	 of	 a	 byte	 are	 reduced	 to	 anencoding	of	A-Z,	a-z,	0-9	,	“+”,	“/”	and	“=”	-	Note	how	“=”	was	used	as	a	continuationcharacter	 and	 it	is	 also	 used	 as	 padding.	 Obviously	 any	 attachment	 is	 going	 to	 bebigger	than	the	original	file.
So	what	does	APL	have	to	provide?The	most	 basic	 requirement	 is	 code	 to	 implement	 the	 TCP/IP	 communication.	 I’veused	the	APLmail	namespace	provided	by	Konrad	Hoesle-Kienzlen,	with	a	few	minorchanges	and	improved	handling	for	badly	formed	messages.The	next	major	issue	is	guaranteeing	the	integrity	of	any	messages.	This	is	to	ensureagainst	accidental	corruption	in	transit.	Together	with	encryption	(discussed	below)	ahash	can	also	guard	against	deliberate	tampering	with	the	message.

VECTOR Vol.26 No.1

40

The	simplest	way	of	doing	this	is	to	provide	a	message	digest.	This	is	a	hash:	a	Aixedlength	 string	 usually	 represented	 in	 hexadecimal	 format.	 It’s	 created	 using	 analgorithm	 which	 takes	 the	 message	 as	 input	 and	 returns	 a	 hash.	 Two	 differentmessages	result	in	different	hashes,	no	matter	how	small	the	difference	is.	One	of	themost	popular	algorithms	 is	known	as	Message	Digest	5	or	MD5	for	short	and	this	 isthe	one	which	I’ve	used.We	 also	 need	 an	 encryption	 process.	 MD5	 is	 non-reversible	 and	 what	 is	 to	 stopsomeone	with	malicious	 intent	 from	 altering	 not	 only	 the	message	 content	 but	 theincluded	MD5	hash?	Therefore	we	also	need	to	encrypt	the	hash	and	anything	else	wedon’t	wish	to	be	easily	readable.	Again	there	are	many	algorithms	for	encryption,	butI	chose	the	Tiny	Encryption	Algorithm	(TEA)	as	it	is	secure	and	reasonably	simple	toimplement.For	many	of	the	uses	we	might	want	to	employ	an	APL	email	process	for,	we	will	needAile	 attachments.	 The	aplmail	 workspace	 contains	 suitable	 functions	 which	 workvery	 well	 on	Ailes	 up	 to	medium	 size,	 read	 into	 the	workspace	 using	 the	 native	 Ailesystem	functions.	As	stated	above,	the	attachments	must	also	be	converted	into	plaintext	using	Base64	encoding.	Naturally	we	cannot	assume	that	the	intended	recipient’sprocess	 is	 another	 APL	 workspace;	 therefore	 we	 must	 use	 ASCII	 translation	 whenreading	and	writing	the	files.If	we	are	sending	Ailes	of	any	size	we	should	compress	them.	While	there	are	severalimplementations	 of	 zipping	 in	 APL	 (for	 example	 in	 Dyalog’s	 dfns	 workspace),	 forlarger	 Ailes	 I’ve	 found	 that	 they	 are	 too	 slow,	 so	 I	 use	 the	 freely	 available	 7zipprogram.
A	Message	Digest	5	implementationI	wrote	my	own,	but	there	is	one	on	the	APL	wiki.
r←MD5 n;t;v;F;G;H;I;T
 F←{x y z←de ⍵
 2⊥(x∧y)∨(~x)∧z
 }
 G←{x y z←de ⍵
 2⊥(x∧z)∨y∧~z
 }
 H←{x y z←de ⍵
 2⊥(x≠y)≠z
 }
 I←{x y z←de ⍵
 2⊥y≠x∨~z
 }
 T←{⌊4294967296×|1○⍵}
 r←⊃Loop/SetState PaddingBits ASCII n ⍝v

VECTOR Vol.26 No.1

41

 r←hx indx⊃,/{2⊥⍉(8 4⍴⍵⊤⍨32⍴2)[7 8 5 6 3 4 1 2;]}¨r

PaddingBits←{ ⍝ ⍵ is a message, treat it as binary
 m←11 ⎕DR ⍵ ⍝ assume ASCII translation has been done
 p←{⍵+512×⍵≤0}448-512|⍴m ⍝ pad to multiple of 512, less reserve
 p←m,11 ⎕DR 1=p↑1 ⍝ add "1" & as many "0" to pad
 p←p⍴⍨⌽8,8÷⍨⍴p ⍝ reshape to byte lengths
 p←,p[{,⌽{(4,⍨⍵÷4)⍴⍳⍵}⊃⍴⍵}p;] ⍝ reorder to low bits first, double words
 p←p,,⊖2 32⍴(64⍴2)⊤⍴m ⍝ add original message length low order 1st
 p←⍉p⍴⍨32,⍨32÷⍨⍴p ⍝ reshape to make 32-bit words
 2⊥p ⍝ returns as floating point
 }

{r}←SetState n
 r←⊂hex¨'67452301' 'efcdab89' '98badcfe' '10325476'
 r,←↓n⍴⍨16,⍨16÷⍨⍴n
 r←⌽r

{r}←n Loop state;x;a;b;c;d;t;y;i
⍝ called in this fashion {md5}←Loop/PaddingBits 'message'
⍝ PaddingBits returns 1 row per word, prcessing 16 words at a time
 a b c d←state
 x←n indx Order ⍬ ⍝ put message block in encoding sequence
 i←↓⊖4 16⍴{⍵-⎕IO}⍳64
 y←↓⊖(64⍴0 3 2 1),x,md5Constants ⍬ ⍝ md5Constants set up S11, S12 etc.
 a b c d←⊃F md5Round/(y indx 1⊃i),⊂a b c d ⍝ Round 1
 a b c d←⊃G md5Round/(y indx 2⊃i),⊂a b c d ⍝ Round 2
 a b c d←⊃H md5Round/(y indx 3⊃i),⊂a b c d ⍝ Round 3
 a b c d←⊃I md5Round/(y indx 4⊃i),⊂a b c d ⍝ Round 4
 r←a b c d+state

 md5Round←{a b c d←⍺[1]⌽⍵
 x s ac←1↓⍺
 a←b+2⊥s⌽(32⍴2)⊤a+x+ac+⍺⍺ b c d ⍝ this is an operator ⍺⍺ is F G H I
 (-⊃⍺)⌽a b c d
 }

Tiny	Encryption	Algorithm	(TEA)
 r←k Encrypt v;v0;v1;k0;k1;k2;k3;sum;delta;i;b
⍝ 128-bit key working on 2×4 bytes of data ⍝ Decrypt
⍝ The Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham
⍝ TEA is a Feistel cipher with XOR and AND addition
⍝ as the non-linear mixing functions.
⍝ TEA takes 64 bits of data in v0 and v1, (2 x 4 bytes -> 8 ascii chars)
⍝ and 128 bits of key in k0 k1 k2 and k3.(4 x 4 bytes->16 bytes)
 v0 v1←v ⍝ set up - k is the key
 sum←0
⍝ delta is chosen to be the Golden ratio
⍝ ((5/4)1/2 - 1/2 ~ 0.618034) multiplied by 2*32
 delta←hex'9e3779b9' ⍝ a key schedule constant
 :For i :In ⍳32 ⍝ basic cycle start
 ⍝ floor to force back to 32 bit arithmatic
 b←bits sum+k[⎕IO+2⊥¯2↑bits sum]
 v0←v0+⌊signbit 2⊥(bits v1+2⊥(v1 shiftleft 4)≠v1 shiftright 5)≠b
 ⍝ we keep on adding - this algorithm treats it as a sign bit...
 sum+←delta
 b←bits sum+k[⎕IO+2⊥¯2↑sum shiftright 11]
 v1←⌊v1+signbit 2⊥(bits v0+2⊥(v0 shiftleft 4)≠v0 shiftright 5)≠b
 :EndFor ⍝ end cycle
 r←v0 v1

VECTOR Vol.26 No.1

42

I	leave	Decrypt	as	an	exercise	for	the	reader.
So	what	can	one	use	it	for?A	 mention	 must	 be	 made	 of	Alissa:	 the	 old	 Dfns	 mailing	 list	 was	 built	 by	 KonradHoesle-Kienzlen	 on	 the	aplmail	 workspace,	 conforming	 to	 the	 mailing	 listconventions.
Mail	filtering:A	mass	email	reader.	Analyses	the	headers	to	separate	email	into	groups	according	tosender.	 Fairly	 crude	 textual	 analysis	 breaks	 emails	 into	 interesting	 and	 lessinteresting	lists.	Using	Dyalog’s	OCX	class	thus,	where	ax	is	an	existing	OCX	class:
 {r}←Fetch ax
 :While ax.ReadyState≠4
 ⎕DL 0.1
 :EndWhile
 ⍝ innerText isn´t enough, not all text is preserved if frames are used
 ⍝ so innerHTML & parse it out - again
 r←⊂ax.Document.body.innerText ⍝ text of this page, ignoring all HTML tags
 ⍝ remember this is just the body, not the complete html
 r,←⊂ax.Document.body.innerHTML ⍝ HTML of page

 ax←Make n;Form;OCX;f;w;o
 (f←'Form')⎕WC'form'('visible' 0)
 (o←f,'.OCX')⎕WC'ocxclass' 'Microsoft Web Browser'
 (w←f,'.ActiveX')⎕WC o
 ax←⍎w

 {ax}←http Set ax;count;true;r
 r←'http://'
 ax.Navigate2 http,⍨r/⍨r≢http↑⍨⍴r
 and	then	analysing	these	for	keywords	too.
Remote	data	entryOne	of	HMW’s	 clients	 employees	 a	 number	 of	 travelling	 salesmen	who	must	 reportAigures	back	to	head	ofAice.	They	can	use	a	form	on	a	web	page,	but	very	often	theycannot	access	the	Internet	when	they	wish	to	enter	the	data.	A	simple	application	ontheir	 laptops	 creates	 emails	 which	 can	 be	 sent	 later	 and	 gathered	 up	 by	 an	 APLprocess	which	handles	a	queue	of	update	requests.Each	email	consists	of	a	plain	text	message	with	a	set	of	key=value	pairs	 in	the	mailbody:	the	data	isn’t	particularly	sensitive,	but	it	is	"signed"	with	a	TEA	encrypted	MD5hash	to	ensure	that	the	information	is	not	corrupt	and	has	not	been	tampered	with.

VECTOR Vol.26 No.1

43

Delivering	updatesIn	a	simpler	fashion,	another	client	has	the	need	to	distribute	code	and	data	updatesto	 clients	 but	 cannot	 use	 a	 direct	 "real	 time"	 interface.	 A	 GUI	 is	 provided	 to	 thesupport	team	which	emails	them	to	select	a	Aile	from	within	the	system	and	generatean	email	to	a	speciAied	client.	This	email	has	a	subject	line	which	contains	the	name	ofthe	Aile	and	date	of	the	release,	a	simple	message	body	(typed	by	the	team	member),plus	an	encrypted	signature	which	is	used	to	verify	the	message	and	attachment	andto	which	the	compressed	file	is	attached.At	 the	 remote	 client	 end	 a	 "Receive	 update"	 process	 reads	 the	 email,	 decrypts	 thesignature	and	uses	it	to	check	the	header	and	Aile	attachment.	The	old	version	of	theAile	 is	 archived	 and	 the	 new	 copy	 is	 unzipped	 and	 renamed	 into	 its	 new	 location,based	on	the	information	in	the	subject	line.	The	email	is	then	deleted.
“Split	WS”Harking	back	 to	 the	days	of	 I.P.	 Sharp;	PC	No.	1	 is	 running	a	workspace	with	 thesefunctions	in	it:1.	 It	⎕SAVEs	itself.2.	 It	reads	the	saved	workspace	as	a	native	file.3.	 Base	64	encodes	this,	attaches	it	to	an	email	which	is	sent	to	an	email	account.4.	 Finally	it	“dies”,	terminating	local	processing.Sometime	 later	 on	 a	 PC	 far,	 far	 away	 another	 workspace	 running	 these	 functionsreceives	an	email:1.	 It	detaches	the	attachment,	Base	64	decodes	it	and	writes	it	out	as	a	native	file.2.	 It	⎕LOADs	the	resultant	workspace	and...3.	 The	task	carries	on	from	where	it	left	off	on	the	other	PC.
ConclusionThis	 article	 and	 a	 sample	 Dyalog	 workspace	 are	 published	 on	 HMW	 Computing’swebsite.

VECTOR Vol.26 No.1

44

References1.	 7-zip:	Main	Project	page	http://www.7-zip.org/2.	 APL	Wiki	MD5:	Message	Digest	on	the	APL	wiki
http://aplwiki.com/MessageDigestHash3.	 APLmail:	The	aplmail	workspace	was	included	as	part	of	a	standard	Dyalogdistribution.	It	is	probably	still	available	upon	request.4.	 Hash	Functions:	a	Wikipedia	article	on	hash	algorithms
http://en.wikipedia.org/wiki/Cryptographic_hash_function

VECTOR Vol.26 No.1

45

http://www.7-zip.org/
http://aplwiki.com/MessageDigestHash
http://en.wikipedia.org/wiki/Cryptographic_hash_function

Semantic	arrays
Stephen	Taylor	(sjt@5jt.com)

APL	 functions	 are	 presented	 to	 support	 ‘semantic	 indexing’.	These	 functions	 aremodelled	on	features	of	the	K	language.An	array	is	a	map	between	its	 indexes	and	its	values.	The	indexes	of	APL	arrays	areintegers	 and	 represent	 position	 in	 the	 array.	Where	 the	 elements	 are	 homegenous,this	 is	 congenial.	But	where	elements	 represent	different	kinds	of	 things,	it	 is	 rarelyhelpful	to	indicate	them	by	position.Indeed,	Cannon’s	Canon	[1]	deprecates	using	numerical	constants	to	indicate	anythingbut	numbers.	For	example,	while	the	3	in	+3	indicates	nothing	but	a	number	by	whichsomething	 is	 to	 be	 increased,	+customer[3]	 is	 deprecated	 if	 it	 requires	 one	 toremember	 that	 the	 third	 element	 of	customer	 indicates	 age.	 If	 one	means	age	 thenone	wants	a	way	to	say	so.Call	the	mapping	of	numbers	to	values	ordinal	mapping	and	the	mapping	of	characterstrings	to	values	semantic	mapping.The	workspace’s	 global	 symbol	 table	 provides	 semantic	mapping	but,	 by	 deAinition,there	 can	be	only	one	global	 symbol	 table	–	and	we	frequently	need	multiple	maps.Dyalog’s	namespace	provides	multiple	semantic	mappings	very	nicely	through	‘local’symbol	tables,	eg
 customer.age←38JavaScript	 and	 PHP	 provide	 semantic	 mapping	 through	objects,	 collections	 ofname/value	pairs.
customer = {name: Jane Doe, age:38}JavaScript	also	supports	character	strings	as	array	indexes,	allowing	eg
customer['age'] = 38The	K	 language	 provides	 semantic	mapping	 through	symbols,	 which	 behave	 muchlike	character	strings,	eg

VECTOR Vol.26 No.1

46

http://kparc.com

 customer: `name`age!("Jane Doe";38)
 customer[`age]
38
 customer@`age`name
(38;"Jane Doe")Without	 the	 use	 of	 Dyalog	 namespaces,	 I	 sought	 convenient	representations	 usingmore	generic	APL.	I	was	inspired	particularly	by	K’s	index	function	@.	 Emulating	thisin	 APL	 neatly	 avoided	 any	 need	 for	 special	 syntax.	 This	article	 presents	 what	 Idevised,	much	as	it	is	used	in	the	application	on	which	I	work.
Dictionaries	and	tablesCall	 a	 semantic	 array	 of	 rank	 1	 a	dictionary.	 It	 is	 a	pairing	 of	 names	 and	 values.Represent	it	in	APL	by	a	vector	of	the	values,	preAixed	by	the	enclosed	vector	of	theirnames.	Thus,	↑dict	has	the	same	length	as	1↓dict.	[2]
]display French ← (⊂'cow' 'dog' 'cat') , 'vache' 'chien' 'chat'
.→------------------------------------.
∣.→--------------..→----..→----..→---.∣
∣∣.→--..→--..→--.∣∣vache∣∣chien∣∣chat∣∣
∣∣∣cow∣∣dog∣∣cat∣∣'-----''-----''----'∣
∣∣'---''---''---'∣ ∣
∣'∊--------------' ∣
'∊------------------------------------'Call	 a	 semantic	 array	 of	 rank	2	 a	table.	 It	 is	 a	pairing	of	names	and	vectors.	All	 thevectors	have	the	same	length:	the	depth	of	(number	of	rows	in)	the	table.	Represent	itin	APL	by	a	nested	matrix.	The	first	row	of	the	matrix	contains	the	column	names.
 ∆←('cow' 'vache' 'Kuh')('dog' 'chien' 'Hund')('cat' 'chat' 'Katze')
 ⎕←tbl←'English' 'French' 'German' ⍪ ⊃∆
 English French German
 cow vache Kuh
 dog chien Hund
 cat chat KatzeHappily,	the	default	display	of	a	matrix	is	exactly	what	one	would	want.Clearly,	 the	matrix	 can	 be	 seen	 as	 a	 special	 case	 of	 the	dictionary,	 in	which	 all	 thevalues	are	vectors	of	the	same	length.	It	is	trivial	to	switch	between	forms:
]display dict ← (⊂tbl[1;]), ⎕SPLIT[1] 1 0↓ tbl
.→--
∣.→------------------------..→--------------..→-----------------
∣∣.→------..→-----..→-----.∣∣.→--..→--..→--.∣∣.→----..→----..→--
∣∣∣English∣∣French∣∣German∣∣∣∣cow∣∣dog∣∣cat∣∣∣∣vache∣∣chien∣∣cha …
∣∣'-------''------''------'∣∣'---''---''---'∣∣'-----''-----''---
∣'∊------------------------''∊--------------''∊-----------------
'∊--

VECTOR Vol.26 No.1

47

The	at	functionTables	and	dictionaries	are	in	the	left	domain	of	the	at	function.	The	right	argumentis	either	a	single	key:
 French at 'dog'
chien
 German at 'dog'
Hund
 tbl at 'French'
 vache chien chator	an	array	of	keys:
 French at 'dog' 'cow'
 chien vache
 German at 'dog' 'cow'
 Hund Kuh
 tbl at 'English' 'German'
 cow dog cat Kuh Hund Katze
 dict at 'English' 'German'
 cow dog cat Kuh Hund KatzeIn	 our	 application	 we	 have	 large	 parameter	 sets	 known	 as	bases.	 Their	 deAinitionsvary	 slightly	 from	one	version	of	 the	application	 to	 the	next,	 so	we	need	 to	managethat	variation	during	the	upgrade.Suppose	we	have	a	table	basestable	that	contains	columns	V8	and	V9.	Both	columnscontain	 bases,	 represented	 as	 dictionaries.	 The	 vector	parameters	 lists	 namesdefined	in	the	dictionaries.	We	can	tabulate	parameter	values	from	the	bases:
 (basestable at 'V8') ∘.at parameters
 (basestable at 'V9') ∘.at parameters

at	can	also	take	an	array	of	names	as	its	right	argument,	permitting,	for	example:
 basis←(⊂'MAGEDIF' 'MAGEDIFT' 'FAGEDIF' 'FAGEDIFT') , '5' '' '' 'diffs.csv'
]display basis at 'MF' ∘., 'AGEDIF' 'AGEDIFT'
.→-------------.
↓ .⊖. ∣
∣ 5 ∣ ∣ ∣
∣ - '-' ∣
∣.⊖..→--------.∣
∣∣ ∣∣diffs.csv∣∣
∣'-''---------'∣
'∊-------------'

The	functions	pop	and	pushThe	 functions	pop	 and	push	 are	 syntactic	 sugar	for	 constructing	 and	 parsingdictionaries.	For	example:

VECTOR Vol.26 No.1

48

]display French ← 'cow' 'dog' 'cat' push 'vache' 'chien' 'chat'
.→------------------------------------.
∣.→--------------..→----..→----..→---.∣
∣∣.→--..→--..→--.∣∣vache∣∣chien∣∣chat∣∣
∣∣∣cow∣∣dog∣∣cat∣∣'-----''-----''----'∣
∣∣'---''---''---'∣ ∣
∣'∊--------------' ∣
'∊------------------------------------'
 (keys vals)←pop French
 keys
 cow dog cat
 vals
 vache chien chatFrom	this	we	can	easily	display	a	dictionary:
 ↑,[1.5]/pop french
 cow vache
 sheep mouton
 cat chatThe	push	function	is	overloaded:	it	can	be	used	dyadically	as	above	or	monadically	onan	argument	with	2	elements.	This	makes	monadic	push	and	pop	–	when	applied	to	adictionary	–	inverses	of	each	other,	so	that	French ≡ push pop French.The	dictionary	can	thus	be	flipped,	making	its	values	keys	and	its	keys	values:
 French at 'dog'
chien
 (push⌽pop French) at 'chien'
dogWe	can	also	make	a	French-German	dictionary	from	the	polyglot	word	table:
 (push tbl at 'French' 'German') at 'chien'
Hund

push	 and	pop	 also	 give	 us	 convenient	 ways	 to	turn	 a	 table	 into	 a	 vector	 ofdictionaries:
 (hdr cols) ← pop ⎕SPLIT tbl
 dics ← (⊂hdr) push¨ cols
 (↑dics) at 'English' 'French'
 cow vache

The	map	functionWe	often	want	to	look	up	values	in	one	column	of	a	table	and	read	the	correspondingvalues	from	another	column.	To	find	the	German	forms	of	some	French	words:

VECTOR Vol.26 No.1

49

 (push tbl at 'French' 'German') at 'chat' 'vache'
 Katze KuhThe	function	map	provides	a	little	syntactic	sugar	for	this:
 (tbl at 'French' 'German') map 'chat' 'vache'
 Katze Kuh

The	spin	functionConverting	rows	to	or	from	columns	is	helped	by	the	spin	function,	which	is	its	owninverse:
]display tbl at 'French' 'German'
.→---.
∣.→-------------------..→-----------------.∣
∣∣.→----..→----..→---.∣∣.→--..→---..→----.∣∣
∣∣∣vache∣∣chien∣∣chat∣∣∣∣Kuh∣∣Hund∣∣Katze∣∣∣
∣∣'-----''-----''----'∣∣'---''----''-----'∣∣
∣'∊-------------------''∊-----------------'∣
'∊---'
]display spin tbl at 'French' 'German'
.→---.
∣.→-----------..→------------..→------------.∣
∣∣.→----..→--.∣∣.→----..→---.∣∣.→---..→----.∣∣
∣∣∣vache∣∣Kuh∣∣∣∣chien∣∣Hund∣∣∣∣chat∣∣Katze∣∣∣
∣∣'-----''---'∣∣'-----''----'∣∣'----''-----'∣∣
∣'∊-----------''∊------------''∊------------'∣
'∊---'
 ∆ ≡ spin spin ∆ ← tbl at 'French' 'German'
1Thus	to	loop	through	the	rows	of	a	table:
 :for en fr de :in spin tbl at 'English' 'French' 'German'
 ⎕←'English: ',en,'; French: ',fr,'; German: ',de
 :endforThe	 above[3]	 becomes	 awkward	 where	 many	columns	 require	 many	 local	 ‘loopvariables’.	Instead	one	could	loop	through	table	rows	as	dictionaries:
 :for word :in ∆[1] push¨ 1↓∆←⎕SPLIT tbl
 ⎕←'English: ',word at 'English'
 :endfor

Selecting	from	tablesTo	return	a	table	containing	only	selected	columns,	the	function	select.To	return	a	table	with	selected	rows,	 the	for	 function.	Its	right	argument	 is	either	aboolean	vector	whose	length	is	the	table	depth;	or	a	vector	of	which	the	Airst	elementis	a	column	name	and	subsequent	elements	are	values	to	be	matched.

VECTOR Vol.26 No.1

50

 tbl for 'English' 'cow' 'cat'
 English French German
 cow vache Kuh
 cat chat Katze
 tbl for 'c' = ↑¨tbl at 'French'
 English French German
 dog chien Hund
 cat chat Katze
 (tbl for 'English' 'cow' 'cat') select 'French' 'German'
 French German
 vache Kuh
 chat Katze

The	amend	functionTo	 add	 a	 new	 element,	 or	 replace	 an	 element	 of	 a	 table	 or	dictionary	 with	 a	 newvalue,	the	amend	function.
 (French amend 'cow' 'la vache') at 'cow'
la vache
 tbl amend 'Danish' ('kuh' 'hund' 'katte')
 English French German Danish
 cow vache Kuh kuh
 dog chien Hund hund
 cat chat Katze katte
 tbl amend 'French' ('la vache' 'le chien' 'le chat')
 English German French
 cow Kuh la vache
 dog Hund le chien
 cat Katze le chat

ConclusionThese	 ‘syntactic	 sugar’	 functions	 have	 been	 invaluable	 in	 simplifying	therepresentation	 of	 logic	 in	 our	 application,	 and	 keeping	 our	 code	compliant	 withCannon’s	Canon.
Notes1.	 Cannon’s	Canon	is	so	dubbed	by	me	because	it	was	introduced	to	me	by	RayCannon.2.	 The	monadic	function	represented	by	↑	varies	between	APL	dialects	and	between‘migration	levels’	in	at	least	one	interpreter.	↑	here	represents	the	first	function,that	returns	the	first	element	of	its	argument.	The	monadic	function	mix	is	hererepresented	by	⊃.	The	cut	function	that	splits	an	array	along	its	first	axis	(eg	atable	into	rows),	in	some	interpreters	represented	by	the	↓	glyph,	is	hererepresented	as	⎕SPLIT.3.	 For	interpreters	in	which	the	:for	loop	as	not	been	so	extended:

:for ∆ :in spin tbl at 'English' 'French' 'German' ◊ (en fr de)←∆

VECTOR Vol.26 No.1

51

Appendix	–	Function	definitions
 ∇ Z←L amend R;newhds;newcols;seln;hds
[1] ⍝ sets one or more elements of semantic array L
[2] ⍝ defined for table and dictionary L
[3]
[4] ⍝ parse R
[5] :if 2=↑⍴R
[6] :andif (≡↑R)∊0 1
[7] (newhds newcols)←,¨⊂¨R ⍝ tbl amend 'col4' foo
[8] :elseif ^/(≡¨↑¨R)∊0 1
[9] :andif (↑¨⍴¨R)^.=2
[10] (newhds newcols)←spin R ⍝ tbl amend('col4' foo)('col5' bar)
[11] :endif
[12]
[13] :select ↑⍴⍴L
[14] :case 1 ⋄ hds←↑L ⍝ dict
[15] :case 2 ⋄ hds←L[⎕IO;] ⍝ matrix
[16] :endselect
[17]
[18] seln←~hds∊newhds
[19]
[20] :select ↑⍴⍴L
[21] :case 1 ⋄ Z←push(seln/¨pop L),¨newhds newcols ⍝ dict
[22] :case 2 ⋄ Z←(seln/L), newhds⍪ ⍉⊃newcols ⍝ matrix
[23] :endselect
[24]
 ∇

 ∇ Z←L at cols;hdr;vals;DEFAULT
[1] ⍝ select cols from table, represented either as
[2] ⍝ - matrix with header row
[3] ⍝ - dictionary: keys val val val...
[4] DEFAULT←'' ⍝ for undefined values (where allowed)
[5] :if 2=⍴⍴L ⍝ table: error if cols not found
[6] (hdr vals)←(L[⎕IO;])(⎕SPLIT[⎕IO]1 0↓L)
[7] :else ⍝ dictionary
[8] (hdr vals)←pop L
[9] vals←vals,⊂DEFAULT ⍝ default value if cols not found
[10] :endif
[11] :if 1=≡cols
[12] Z←(hdr⍳⊂cols)⊃vals
[13] :else
[14] Z←vals[hdr⍳cols]
[15] :endif
 ∇

 ∇ Z←tbl for cv;col;vals;msk;hdr;bdy
[1] ⍝ table/dictionary syntax: tbl for 'col1' val1 val2 ...
[2] ⍝ returns a table or dictionary according to tbl
[3] ⍝ or cv may be a boolean mask
[4] :if 1=≡cv ⋄ :andif 1=↑⍴⍴cv ⋄ :andif ^/cv∊0 1
[5] msk←cv
[6] :else
[7] (col vals)←pop cv
[8] msk←(tbl at col)∊vals
[9] :endif
[10]
[11] :select ↑⍴⍴tbl
[12] :case 1 ⍝ table
[13] (hdr bdy)←pop tbl
[14] Z←hdr push msk/¨bdy
[15] :case 2 ⍝ dictionary
[16] Z←(1,msk)⌿tbl

VECTOR Vol.26 No.1

52

[17] :endselect
 ∇

 ∇ Z←L map R;to;from
[1] (from to)←L
[2] Z←to[from⍳R]
 ∇

 ∇ Z←pop R
[1] Z←(↑R)(1↓R)
 ∇

 ∇ Z←L push R;A;B
[1] ⍝ syntax sugar:
[2] ⍝ 'abc' 'def' 'ghi'
[3] ⍝ ←→ 'abc' push 'def' 'ghi'
[4] ⍝ ←→ push ('abc') ('def' 'ghi')
[5] :if 2=⎕NC 'L'
[6] Z←(⊂L),R
[7] :else
[8] (A B)←R
[9] Z←(⊂A),B
[10] :endif
 ∇

 ∇ tbl←tbl select cols
[1] ⍝ select cols from tbl
[2] tbl←(tbl[⎕IO;]∊cols)/tbl
 ∇

 ∇ Z←spin R
[1] Z←⎕SPLIT⍉⊃R
 ∇

VECTOR Vol.26 No.1

53

Compiling	APL	to	JavaScript
Nick	Nickolov	(nick.nickolov@gmail.com)

This	article	is	about	github.com/ngn/apl[1],	an	APL	to	JavaScript	compiler	written	inCoffeeScript.	It	gives	an	overview	of	the	project	and	its	dialect	of	APL,	then	proceedsto	describe	three	major	implementational	obstacles	and	the	design	decisions	taken	toovercome	them.
IntroductionThe	list	of	languages	that	compile	to	JavaScript	is	growing	steadily	for	a	good	reason:almost	 every	 modern	 consumer	 device	 can	 run	 a	 browser	 with	 a	 JavaScriptinterpreter	 in	 it.	And	 for	 the	 server	 there’s	NodeJS.	As	 a	 language,	JavaScript	has	 itssubset	of	good	parts	and	if	you	restrict	your	coding	to	them,	it’s	actually	a	very	decentlanguage.	The	 execution	 model	 is	 reminiscent	of	 Lisp	 with	 its	 lambdas	 and	 lexicalclosures,	despite	the	superficially	C-like	syntax.	As	a	matter	of	fact,	getting	rid	of	thosecurly	braces,	semicolons,	and	other	noise	is	easy	thanks	to	CoffeeScript,	which	gives	acomfortable	layer	of	syntactic	sugar	over	raw	JavaScript.I	 started	 an	 open	 source	 project	 for	 an	 APL	 compiler	 targeting	 JavaScript.	Thoughincomplete	and	of	poor	performance,	 it’s	good	enough	for	experimenting	with	shortprograms,	such	as	the	Game	of	Life	or	the	N	Queens	problem.I	made	a	conscious	decision	to	deviate	from	the	APL	tradition	in	several	ways.
Function	definitionLambdas	are	supported	(function	literals	enclosed	in	curly	braces,	a.k.a.	dfns)	but	thedel	(∇)	syntax	for	function	definition	is	not.	So,	instead	of
 ∇R←A f B
 R←...
 ∇one	is	forced	to	write
 f←{...}

VECTOR Vol.26 No.1

54

Variable	scopingScoping	is	always	lexical.	This	means	that	the	two	occurrences	of	a	below
 f←{a←123}
 g←{a←456}
 h←{...}are	different	variables	and	neither	of	them	is	accessible	from	within	h,	 regardless	ofthe	order	and	nesting	of	f,	g,	h	invocations.A	 variable	 is	 considered	 to	 belong	 to	 the	 outermost	 ancestor	 scope	 where	 it	 ismentioned.	So,	 the	 Airst	 two	 occurrences	 of	a	 below	 are	 the	 same	 variable	 and	 thethird	a	is	distinct	from	them:
 f←{
 a←123
 g←{a←456}
 }
 h←{a←789}Note	 that	 assignment	 doesn’t	 necessarily	 create	 a	 local	 variable.	If	 the	variable	 isalready	present	in	any	enclosing	scope,	assignment	will	set	that	variable.A	 variable	must	 not	 be	 used	 before	 it	 is	 assigned	 a	 value.	The	 compiler	can	 detectmost	violations	of	that:
 ⎕←⍳ a ⍝ compiler error
 a←5

Phrasal	formsExpressions	consisting	of	a	sequence	of	two	or	three	functions	are	said	to	form	a	hookor	a	fork	respectively	and	the	result	is	a	new	function	defined	as	follows:
 (fg)⍵ ←→ ⍵fg⍵
 ⍺(fg)⍵ ←→ ⍺fg⍵
 (fgh)⍵ ←→ (f⍵)g(h⍵)
 ⍺(fgh)⍵ ←→ (⍺f⍵)g(⍺h⍵)Examples	 usages	 of	 phrasal	 forms	 are	 the	 arithmetic	mean	written	 as	+/ ÷ ⍴	 andcontinued	fraction	evaluation	as	(+÷)\.
Non-privileged	primitivesPrimitives	 are	 just	 like	 any	 other	 variable,	 only	 as	 if	 implicitly	 deAined	 in	the	 rootscope.	As	a	side	effect,	they	can	be	overridden:

VECTOR Vol.26 No.1

55

 3⍟4 ⍝ returns 1.2618595071429148
 ⍟←{⍺+2×⍵}
 3⍟4 ⍝ returns 11One	use	of	this	fact	might	be	to	introduce	comparison	tolerance,	which	isn’t	supportedby	default:
 ⎕CT←1e¯13
 =←{(|⍺-⍵)≤⎕CT×(|⍺)⌈|⍵}It’s	okay	 to	use	single	non-alphabetic	characters	as	variable	names,	 so	 the	 languagecan	be	augmented	as	one	sees	fit:
 π←○1
 √←{⍵*.5}
 ∑←+/
 ½←{⍵÷2}
 ±←+,-
 €←{exchangeRate×⍵}
 ≈←{(|⍺-⍵)≤⎕CT×(|⍺)⌈|⍵}

Index	origin	fixed	to	0I	took	a	side	in	this	Holy	War.
 ⍳3 ⍝ returns 0 1 2
 ⎕IO←0 ⍝ ok, no effect
 ⎕IO←1 ⍝ error

Line	terminator	ambiguityA	 line	 terminator	 is	 treated	as	a	 statement	 separator	 if	 it	occurs	within	{}	 or	at	 thetopmost	level,	but	is	considered	whitespace	if	it’s	inside	()	or	[].Example:
 glider←{
 a←3 3⍴(
 0 1 0
 0 0 1
 1 1 1
)
 ⍵ ⍵↑a
 }

Absence	of	control	structuresControl	 structures	such	as	:If ... :Else ... :EndIf	are	not	supported	but	canbe	emulated	using	lambdas,	guards,	and	APL	primitives.	For	instance

VECTOR Vol.26 No.1

56

 :If x
 y
 :Else
 z
 :EndIfcan	be	replaced	with
 {x:y⋄z}0and
 :While x
 y
 :EndWhilewith
 {~x:1⋄y⋄0}⍣⊢ 0The	 rest	 of	 this	 article	 describes	 three	 challenging	 problems	 which	 I	 came	acrossduring	the	implementation	of	APL.	Two	of	them	I	solved	and	the	third	one	is	yet	to	betaken	care	of.
Parsing	APL	expressionsConsider	the	APL	expression
 a b cDepending	on	context,	it	could	mean	different	things:
 a←0 ⋄ b←{} ⋄ c←0 ⋄ a b c ⍝ a dyadic application of b
 a←{} ⋄ b←{} ⋄ c←0 ⋄ a b c ⍝ two nested monadic applications
 a←0 ⋄ b←0 ⋄ c←{} ⋄ a b c ⍝ compiler error
 a←0 ⋄ b←0 ⋄ c←0 ⋄ a b c ⍝ construction of a new vector
 a←{} ⋄ b←{} ⋄ c←{} ⋄ a b c ⍝ a forkSo,	it	seems	the	semantics	depend	on	what	a,	b,	and	c	 represent	at	runtime,	verbs	ornouns,	and	building	a	complete	AST	is	impossible	before	we	have	that	knowledge.Fortunately,	there	exists	a	way	around	this	at	the	cost	of	imposing	a	small	 restrictionon	variable	usage.	The	restriction	is	as	follows:Once	we	assign	a	noun	to	a	variable,	we	are	only	allowed	to	assign	nouns	to	itlater.Once	we	assign	a	verb	to	a	variable,	we	are	only	allowed	to	assign	verbs	to	it	later.In	other	words,	variables	must	preserve	their	lexical	category.

VECTOR Vol.26 No.1

57

Example:
 x ← 0
 x ← 1 ⍝ OK
 x ← {} ⍝ Compiler error

 f ← {}
 f ← +/ ⍝ OK
 f ← 2 3 ⍝ Compiler errorThis	 restriction	 separates	 the	 worlds	 of	 nouns	 and	 verbs	 at	 compile	 time.	Everyexpression	 can	 then	 be	 inferred	 one	 of	 the	 two	 lexical	 categories	 so	 the	compilerknow	what	JavaScript	code	to	render	for	it.
Representation	of	n-dimensional	arraysDuring	 the	 evolution	 of	 the	 project	 I	 went	 through	 a	 couple	 of	 differentimplementations	of	the	basic	APL	data	structure.
Nested	representationMy	Airst	take	on	this	was	to	use	n	nested	levels	of	JavaScript	arrays	to	represent	an	n-dimensional	APL	array.	For	instance:
 APL: 2 3⍴⍳6
 JS: [[0, 1, 2], [3, 4, 5]]Thus,	subscripting	maps	nicely	between	the	two	languages:
 APL: a[i;j;k]
 JS: a[i][j][k]but	 many	 of	 the	 primitives’	 implementations	 had	 to	 involve	 recursion	 or	 multipleloops,	which	apart	from	being	inefAicient	was	complicating	matters	unnecessarily,	so	Itransitioned	to	a	flat	representation.
Flat	representationA	Alat	representation	is	a	single	 JavaScript	array	which	contains	all	 items	of	 the	APLarray	 in	 lexicographic	 order	 of	 their	 indices	 (a.k.a.	 ravel	 order).	 Additional	 meta-information	about	the	shape	must	be	stored,	too.
 APL: 2 3⍴⍳6
 JS:
 var a = [0, 1, 2, 3, 4, 5];
 a.shape = [2, 3];This	way,	indexing	is	not	as	plain	as	before:

VECTOR Vol.26 No.1

58

 APL: a[i;j;k]
 JS: a[
 i * a.shape[0] * a.shape[1] +
 j * a.shape[0] +
 k
]but	it’s	still	worth	it,	as	the	implementation	of	most	primitives	gets	simpler	and	moreefficient.There	turns	out	to	be	an	even	better	data	structure	which	I	was	lucky	to	come	across.
Strided	representationIn	a	strided	representation,	an	APL	array	is	a	record	of:

data:	the	elements,	not	necessarily	in	ravel	order
shape:	as	usual,	an	integer	array
stride:	an	integer	for	each	axis,	indicating	how	many	items	of	data	we	have	toskip	over	in	order	to	move	to	an	adjacent	cell	along	that	axis.	Strides	can	bepositive,	negative,	or	zero.
offset:	the	position	in	data	where	element	[0;0;...;0]	is	locatedExample:

 APL: 2 3⍴⍳6
 JS:
 {
 data: [0, 1, 2, 3, 4, 5],
 shape: [2, 3],
 stride: [3, 1],
 offset: 0
 }and	this	is	another	representation	of	the	same	APL	array
 JS:
 {
 data: [2, 1, 0, 5, 4, 3],
 shape: [2, 3],
 stride: [3, -1],
 offset: 2
 }Indexing	is	relatively	straightforward:
 APL: a[i;j;k]
 JS:
 data[
 offset
 + i * stride[0]
 + j * stride[1]

VECTOR Vol.26 No.1

59

 + k * stride[2]
]The	advantage	of	 this	 strided	 representation	becomes	apparent	when	working	withlarge	volumes	of	data.	Functions	like	transpose	(⍉⍵),	reverse	(⌽⍵),	or	drop	(⍺↓⍵)	canreuse	the	data	array	and	only	care	to	give	a	new	shape,	stride,	and	offset	to	theirresult.	A	 reshaped	 scalar,	 e.g.	1000000⍴0,	 can	 only	 occupy	 a	 constant	 amount	 ofmemory,	exploiting	the	fact	that	strides	can	be	0.
Continuation-passing	styleThe	third	problem,	one	which	I	haven’t	solved	in	code	yet,	arose	from	the	way	NodeJSdoes	I/O.	While	in	some	cases	NodeJS	allows	you	to	do
 var content = fs.readFileSync('a.txt');it	 strongly	 encourages	 the	 so-called	 continuation-passing	 style	 (CPS),	 demanding	 acallback:
 fs.readFile('a.txt', function (content) {
 // ... Invoked later, after content becomes available
 });It’s	not	only	that.	In	a	browser	environment,	if	we	want	to	be	properly	mimicking	I/O,we	 again	 need	 CPS.	Of	 course,	 we	 can	 use	 the	 blocking	 functions	prompt()	 and
alert(),	but	most	users	Aind	those	annoying	because	they	prevent	them	from	usingother	parts	of	the	UI	while	entering	text.This	is	what	happens	when	reading	from	⎕,	for	instance:1.	 APL	code	tries	to	get	the	value	of	variable	⎕.2.	 The	user	is	prompted	to	type	something	in	an	<input/>.3.	 APL	execution	is	suspended	while	the	user	is	typing,	looking	up	help	information,using	the	on-screen	keyboard,	etc.4.	 The	user	presses	enter.5.	 APL	execution	is	resumed	and	the	value	obtained	from	⎕	is	processed.The	trouble	is	in	step	3.	How	do	we	suspend	execution	to	resume	it	later?	We	might	aswell	 try	 to	 make	 the	 compiler	 output	 CPS	 JavaScript	 code,	 but	 that	 appears	 getcomplicated	rather	quickly.If	only	JavaScript	had	a	call-with-current-continuation	primitive	like	Scheme,we	would	be	able	to	do	just	this:

VECTOR Vol.26 No.1

60

 var content = callcc(fs.readFile.bind(fs, 'a.txt'));but	alas,	it	doesn’t.	We	can	amend	that	through	implementing	a	virtual	machine	(VM)in	JavaScript	with	a	callcc	instruction	that	suspends	execution,	captures	the	currentstate	 with	 all	 its	 stack	 and	 variable	 bindings	 and	 presents	 it	 as	 a	 callable	resumefunction.	The	 compiler	 can	 then	 produce	 some	 intermediate	 bytecode	 for	 the	 VMinstead	of	pure	JavaScript.What	if	we	also	expose	callcc	as	an	APL	primitive?	This	would	be	so	powerful	that	itcould	 be	 used	 to	 implement	 an	 exception	 mechanism,	 break/continue,	 coroutines,generators,	Prolog-style	backtracking,	etc	in	APL	itself.	Therefore,	adding	a	VM	lookslike	a	lucrative	prospect	for	ngn/apl.1.	 ngnAPL	https://github.com/ngn/apl

VECTOR Vol.26 No.1

61

http://www.7-zip.org/

Boolean	Reductions
by	Phil	Last	(phil.last@ntlworld.com)

A	look	at	the	boolean	vector	reductions	-	choosing	the	right	one	for	the	job	in	hand;and	some	potential	speed-ups.
Some	boolean	scansMost	 experienced	 APLers	 could	 list	 a	 number	 of	 boolean	 scans,	 some	 more	 thanothers,	that	they	can	include	in	algorithms,	conAident	that	they	will	fulAill	a	particulartask.	Some	of	 these	scans	would	not	necessarily	seem	intuitive	to	a	newcomer,	evenone	conversant	with	the	primitive	itself.
Less-than	and	not-equals	are	possibly	the	most	ubiquitous	of	these.The	less-than	scan	of	a	boolean	vector	turns	off	all	ones	in	the	vector	except	the	first.The	not-equals	scan	of	a	boolean	vector,	reading	from	the	left,	Alips	the	correspondingand	subsequent	items	on	or	off	wherever	the	argument	vector	is	on.Once	 we	 have	 learned	 what	 these	 do	 we	 tend	 not	 to	 question	 how	 they	 work.Thinking	of	them	in	similar	terms	to	the	apparent	left-to-right	processing	of	and	and
or	scans,	the	not-equal	scan	is	fairly	clear.	Not	so	less-than.	This	is	because	not-equalsis,	and	less-than	is	not,	associative	over	the	boolean	domain.	We	can	only	understandnon-associative	 scans	 in	 terms	 of	 the	 individual	 reductions	 that	 constitute	theirresults.	The	less-than	reduction	of	a	boolean	vector	is	true	only	if	the	Ainal	element	isthe	 one-and-only	 one.	 Paradoxical	 except	 for	 the	 fact	 that	 the	 deAinition	of	 scandemands	 it,	 the	 less-than	 scan	 gives	 the	first	 one	 precisely	 because	the	 less-thanreduction	requires	only	the	last.
ReductionsI	don't	know	how	many	scans	are	either	particularly	useful	or	easily	explicable.	ButI'd	guess	that	not	many	of	my	readers	can	give	natural	language	descriptions	of	whichboolean	vectors	will	return	true	for	more	than	a	very	few	of	the	boolean	reductions.It	may	seem	that	there	should	be	no	good	answer	to	this	question.	For	each	functioninAinitely	many	boolean	vectors	resolve	to	one	and	inAinitely	many	resolve	to	zero.	Is

VECTOR Vol.26 No.1

62

it	 reasonable	 to	assume	a	 recognisable	pattern	 to	distinguish	 the	 two	sets?	Think	ofand-reduction	 as	all	 and	 or-reduction	 as	any	 and	 you	 can	 deduce	two	 trivialexamples.I	asked	myself	this	question	nearly	two	decades	ago	and	after	much	experiment	foundanswers	to	fourteen	of	the	sixteen	candidates.If	 the	mention	of	sixteen	 in	 the	previous	statement	doesn't	surprise	you	then	pleaseskip	to	the	next	section	-	Preliminary	results.
Sixteen	boolean	functions?APL	 traditionally	 implements	 either	 four,	 six	 or	 ten	 primitive	boolean	 or	logicalfunctions	 depending	 on	 your	 point-of-view.	 The	 four	 undisputed	 are	and,	 or,	 nandand	nor.	Even	two	of	these	now	have	additional,	non-boolean	deAinitions.	We	can	add
equals	 and	not-equals	by	 restricting	 their	 domains	 and	less-than,	 less-than-or-equals,
greater-than-or-equals	 and	greater-than	 if	we	 are	willing	 to	 accept	 that	p>q	 can	 beread	as	p	and-not	q	instead	of,	and	having	a	different	meaning	from,	p	greater-than	q.But	this	still	only	gives	us	ten.A	boolean	or	logical	dyad	takes	two	booleans	and	returns	one.	A	single	function	mustreturn	 a	single	 one	 or	 zero	 for	 each	 boolean	 pair,	 of	 which	 there	 are	 four:
(0 0)(0 1)(1 0)(1 1).	 Representing	 each	 of	 these	 these	 resultant	 four	 itembooleans	 as	 a	 four-digit	 binary	 and	 there	 being	 sixteen	 of	 those:
0000 0001 0010 ... 1111;	there	must	be	sixteen	functions	to	produce	them.Here	they	are	in	the	order	dictated	by	their	results	as	above:
 b n f
 0000 0
 0001 1 ∧
 0010 2 >
 0011 3
 0100 4 <
 0101 5
 0110 6 ≠
 0111 7 ∨
 1000 8 ⍱
 1001 9 =
 1010 10
 1011 11 ≥
 1100 12
 1101 13 ≤
 1110 14 ⍲
 1111 15

VECTOR Vol.26 No.1

63

The	 six	 missing,	 those	 not	 implemented	 as	 primitives,	 could	 be	 represented	 in	 thenotation	 implemented	 as	 direct	 functions	 (dfns)	 in	 Dyalog	 APL	 as:
{0} {⍺} {⍵} {~⍵} {~⍺} {1}.	But	these	only	work	for	simple	scalar	arguments	asthey	 take	no	 cognizance	 of	 the	 left,	 the	 right	 or,	 in	 two	 cases,	 either	 argument.	Weneed	to	reference	both	of	them	to	produce	an	array	of	the	required	structure	valueda s	the	 identity	 or	 negation	 of	 one	 boolean	 function	 that	 we	 apply	 to	 the	 otherargument.
 b n f
 0000 0 {⍺∧0∧⍵} ⍝ false
 0011 3 {⍺∧1∨⍵} ⍝ left (left notwithstanding right)
 0101 5 {⍵∧1∨⍺} ⍝ right (left nevertheless right)
 1010 10 {⍵=0∧⍺} ⍝ negate right
 1100 12 {⍺=0∧⍵} ⍝ negate left
 1111 15 {⍺∨1∨⍵} ⍝ true

Preliminary	resultsIn	the	following	list	the	comment	describes	the	essential	character	of	logical	vector	⍵when	1<⍴⍵	and	the	result	of	f/⍵	is	true.
 b n f
 0000 0 {⍺∧0∧⍵} ⍝ never
 0001 1 ∧ ⍝ all ones
 0010 2 > ⍝ odd leading ones
 0011 3 {⍺∧1∨⍵} ⍝ first is one
 0100 4 < ⍝ last is the only one
 0101 5 {⍵∧1∨⍺} ⍝ last is one
 0110 6 ≠ ⍝ odd ones
 0111 7 ∨ ⍝ at least one one
 1000 8 ⍱
 1001 9 = ⍝ even zeros
 1010 10 {⍵=0∧⍺} ⍝ last is parity of the length
 1011 11 ≥ ⍝ even leading ones
 1100 12 {⍺=0∧⍵} ⍝ first is zero
 1101 13 ≤ ⍝ last is not the only zero
 1110 14 ⍲
 1111 15 {⍺∨1∨⍵} ⍝ alwaysThose	missing	descriptions,	nand	and	nor,	caused	this	paper	to	be	delayed	by	a	periodapproaching	two	decades.At	"Iverson	College	2012"	at	Cambridge	we	were	discussing	Roger	Hui's	presentation"How	 to	 write	 an	 elegant	 computer	 program"	 and	moved	 on	 to	 the	 subject	 of	 thesemantics	 of	 the	 boolean	 functions	 and	 how	 many	 of	 them	 can	 be	 used	 inunconventional	ways	 to	 increase	 speed	 and	 elegance.	 The	 reference	 to	p>q	 beingequivalent	to	p∧~q	above	being	one	such.	And	of	course	Simon	Garland's	memorable:“To	be	≥	to	be,	that	is	the	question.”	being	an	obvious	improvement	on	the	original.

VECTOR Vol.26 No.1

64

In	conversation	afterwards	about	the	topic	of	this	paper	Roger	mentioned	that	he	hadrecently	come	up	with	efficient	definitions	for	the	missing	pair.These	 were	 in	 the	 form	 of	 an	 operator	 that	 implemented	 the	 four	 reductions:
≤/ ≥/ ⍱/ ⍲/.	But	he	had	also	made	an	effort	to	verbalise	them.	I	include	only	thosefor	my	missing	pair.After	many	false	starts	my	most	concise	wording	of	them	is:

⍱/ implies	odd	leading	zeros	else	the	last	is	the	only	one.
⍲/ implies	even	leading	ones	else	the	last	is	the	only	zero.They	can	be	summed	up	in	these	two	rank-	and	origin-independent	direct	functions:

 ⍱/ ←→ {(+/∧\~⍵){(2|⍺)=⍺<⍵-1}⊢/⍴⍵}
 ⍲/ ←→ {(+/∧\⍵){(2|⍺)≠⍺<⍵-1}⊢/⍴⍵}or	first-dimension	oriented	as:
 ⍱⌿⍵ ←→ {(+⌿∧⍀~⍵){(2|⍺)=⍺<⍵-1}⊣/⍴⍵}
 ⍲⌿⍵ ←→ {(+⌿∧⍀⍵){(2|⍺)≠⍺<⍵-1}⊣/⍴⍵}[⊢/	and	⊢/	(and	⊢⌿	and	⊢⌿)	are	idioms	for	selecting	the	Airst	and	last	sub-arrays	froman	array]see	Appendix:	Traditional	function	equivalents	if	these	are	incomprehensible	to	you.So	here	they	are	in	context:
 b n f
 0000 0 {⍺∧0∧⍵} ⍝ never
 0001 1 ∧ ⍝ all ones
 0010 2 > ⍝ odd leading ones
 0011 3 {⍺∧1∨⍵} ⍝ first is one
 0100 4 < ⍝ last is the only one
 0101 5 {⍵∧1∨⍺} ⍝ last is one
 0110 6 ≠ ⍝ odd ones
 0111 7 ∨ ⍝ at least one one
 1000 8 ⍱ ⍝ odd leading zeros else the last is the only one
 1001 9 = ⍝ even zeros
 1010 10 {⍵=0∧⍺} ⍝ last is parity of the length
 1011 11 ≥ ⍝ even leading ones
 1100 12 {⍺=0∧⍵} ⍝ first is zero
 1101 13 ≤ ⍝ last is not the only zero
 1110 14 ⍲ ⍝ even leading ones else the last is the only zero
 1111 15 {⍺∨1∨⍵} ⍝ alwaysAll	this	might	seem	very	esoteric	but	these	can	prove	useful	in	very	different	contexts.APL	coders	can	produce	simple	expressions	to	validate	the	resulting	pattern	of	amultiple	boolean	check.

VECTOR Vol.26 No.1

65

Interpreter	writers	can	convert	the	description	into	fast	code	written	in	theirfavourite	compiled	language.	Possibly	your	own	interpreter	already	benefitsfrom	this.APL	coders	can	anticipate	their	vendors	efforts	and	produce	fast	work-aroundsfor	slow	implementations.
Appendix:	Traditional	function	equivalentsfor	the	⍱/	variants:
 ∇ r←norRed w;n
 [1] ⍝ {(+/∧\~⍵){(2|⍺)=⍺<⍵-1}⊢/⍴⍵}
 [2] n←+/∧\~w
 [3] r←(2|n)=n<¯1+0⊥⍴w
 ∇for	the	missing	boolean	primitives:
 ∇ r←a left w
 [1] ⍝ {⍺∧⍵=⍵}
 [2] r←a∧w=w
 ∇The	 others	 can	 easily	 be	 inferred	 as	 they	 differ	 to	 the	 same	 extent	 as	 theircounterparts.

VECTOR Vol.26 No.1

66

APLUnit	-	An	APL	unit	test	library
Gianfranco	Alongi	(gianfranco.alongi@gmail.com)

What	is	test	first	programming?Test	Airst	programming,	or	TDD	(Test	Driven	Development) [1]	as	it	is	also	called,	is	apopular	approach	for	development	where	you	design	your	system	in	an	incrementalfashion	by	writing	a	test,	and	then	adding	the	code	for	this	test	to	pass.One	way	to	look	at	it,	is	that	we	figure	out	how	we	would	like	our	code	to	work,	set	upa	 test	 so	 that	 we	 know	when	we	 are	 done,	 and	 then	making	 it	 pass	 our	 test,	 thusmaking	our	code	work	as	we	intended	it	to.Yet	another	way	to	look	at	it:	we	are	constantly	capturing	our	assumptions	about	ourcode,	and	documenting	it	with	a	language	that	allows	the	documentation	to	check	it’sown	correctness.And	Ainally,	I	like	to	think	of	it	as	rock	climbing.	 I	start	out	at	the	base	of	the	mountain,with	a	pretty	good	idea	of	where	I	want	to	go,	and	which	path	I’ll	take.	So,	I	set	out	toreach	the	Airst	point	I	want	(I	write	my	Airst	test),	and	I	go	there	(I	make	the	test	pass).I	 now	 have	 a	 nail	in	 the	 rock	 and	my	 safety	 line	 through	 the	 loop.	 I	 set	 out	 to	 thesecond	goal,	(I	write	my	second	test)	and	I	make	it	there	(I	make	it	pass).	Just	like	inrock	climbing,	it’s	dangerous	to	make	it	too	far	between	the	safe	points.The	 idea	 is	 that	you	should	spend	at	most	about	15	minutes	per	step.	 If	 the	test	youwrote	was	 too	 hard	 then	 remove	 it;	 this	would	 be	 the	 equivalent	 of	 admitting	 thatmaybe	you	 should	 take	 another	 path	 up	 to	 the	 next	 stop.	 Go	 back,	 ponder	 yourstrategy	and	set	out	again	(remove	the	test,	write	another	one	-	a	smaller	step	-	andmake	it	pass).The	way	to	do	TDD	is	to	always	write	a	test	Airst	and	then	write	code	to	make	that	testpass.	 As	 long	 as	 that	 test	 fails;	 you	 have	 a	 problem	 to	 think	 about.	 It	 follows	theprinciple	of	separation	of	concerns;	only	concern	yourself	with	one	problem	at	a	time.Once	your	test	passes,	you	know	it	works,	and	you	can	prove	it!	You	run	the	test.	Yourun	the	test	often	to	feel	secure	and	comfortable;	and	sometimes	just	because	you	likethe	ego-boost	of	seeing	all	the	tests	pass.But	only	write	the	minimal	amount	of	code	needed	to	make	the	test	pass!

VECTOR Vol.26 No.1

67

A	testing	library	for	APLAs	 I	 like	 the	 incremental	 development	 model	 which	 is	 a	 result	 of	 TDD.	 I	 alwaysapproach	languages	with	TDD.	To	do	this,	I	keep	things	simple	and	look	for	 librarieswith	a	minimal	footprint,	rich	feature	set	and	helpful	error	reports	that	facilitate	theerror	 localization.	Unfortunately	I	could	not	 Aind	such	a	 library	for	Dyalog	APL,	so,	 Iset	out	and	rolled	my	own	TDD	library.This	became	what	is	now	APLUnit	a	Test	framework	with	a	small	syntactical	footprintand	 rich	 feature	 set.	 This	 has	 evolved	 through	 technical,	 borderline	 theological	andphilosophical	discussions	with	Morten	Kromberg	 (CTO	@	Dyalog),	who	 representedthe	APL	community	while	I	worked	on	the	initial	development	and	style	of	the	library.
InstallationAPLUnit	is	written	as	a	Dyalog	SALT	script	-	 installation	is	done	by	downloading	theUT.dyalog	file	onto	your	system	and	loading	it	into	the	environment	using
 ⎕SE.SALT.Load './UT.dyalog -target=#'

A	Test	and	it’s	expectationA	 test	 is	 any	 traditional	 (tradfn)	or	direct	 (dfn)	 function	which	ends	with	 ‘_TEST’	aspart	of	the	name.	All	tests	shall	set	the	expectation	of	the	test	into	the	UT	namespacevariable	expect	 (match	 the	 following)	 or	nexpect	 (do	 not	 match),	as	 in	 the	 trivialexamples	below,	written	as	a	tradfn	and	a	dfn.
 ∇ Z ← user_defined_function_TEST
 #.UT.expect ← 1 2 3
 Z ← ⍳ 3
 ∇

 dfn_TEST ← {
 #.UT.nexpect ← 1 2 3
 1 + ⍳3
 }

Running	testsOnce	 loaded	 -	 the	 #.UT.run	 command	 is	 available	 and	 capable	 of	 running	 any	 testwhich	is	defined.	You	may	run	a	single	test	by	naming	it	directly
 #.UT.run 'user_defined_function_TEST'You	can	run	an	array	of	tests

VECTOR Vol.26 No.1

68

 tests ← 'user_defined_function_TEST' 'dfn_TEST'
 #.UT.run testsYou	can	run	all	tests	in	a	particular	SALT	file	(dyalog	script)
 #.UT.run './test/known_bugs.dyalog'Finally	 you	 can	 also	 run	 all	 tests	 from	 test	 Ailes	 in	 a	 directory.	 Test	 Ailes	 are	 SALTdyalog	 scripts	 with	 a	 name	 ending	 in	 ‘_tests.dyalog’-	 this	 enforces	a	 standardizedformat	making	it	easy	to	locate	test	files.
 #.UT.run './bugs_reported_by_customers/'

Result	reportingIf	 the	expected	value	matches	the	produced	result	of	 the	test	 the	test	 is	said	to	havepassed,	and	APLUnit	prints	this	for	you	on	the	screen:
 #.UT.run '#.bowling_tests.parse_strike_frame_TEST'
 Passed 0 m 0 s 0 msIf	 the	 test	 fails,	 (expect	 and	 actual	 result	 does	 not	match,	 or	nexpect	 matches	theoutput	of	the	test),	a	graphical	display	is	printed	to	help	you	understand	the	cause	ofthe	failure.
 #.UT.run '#.bowling_tests.parse_strike_frame_TEST'
 FAILED: #.bowling_tests.parse_strike_frame_TEST
 Expected
 ┌→────────────┐
 │ ┌→─────┐ │
 │ 10 │strike│ │
 │ └──────┘ │
 └∊────────────┘
 Got

 10If	you	ran	a	collection	of	tests	through	the	array,	Aile	or	directory	mechanic,	you	get	atest	 report	 nicely	 written	 on	 the	 screen	 at	 the	 end	 of	 the	 test,	 and	the	 samePass/FAILED	output	for	every	test	executed.
 #.UT.run './test/'
 Passed 0 m 0 s 0 ms
 Passed 0 m 0 s 0 ms

 Passed 0 m 0 s 0 ms
 Passed 0 m 0 s 0 ms
 Passed 0 m 0 s 0 ms

 ./test/fixed_bugs_tests.dyalog tests
 ⍋ Passed: 141

VECTOR Vol.26 No.1

69

 ⍟ Crashed: 0
 ⍒ Failed: 0
 ○ Runtime: 0 m 0 s 10 ms

CrashesWhen	 APLUnit	 runs	 a	 test,	 the	 default	 behaviour	 is	 to	 trap	 all	 errors	 and	 continueexecution	 until	 reporting	 is	 done.	 If	 you	 wish	 to	 change	 this	 behaviour	 -	 you	 cancontrol	the	trapping	by	setting	the	(s)top	(a)t	(c)rash	conAiguration	variable	in	the	UTnamespace	to	either	1
 #.UT.sac ← 1 ⍝ stop at crashor
 #.UT.sac ← 0 ⍝ trap and run on0	is	the	default	value.	This	is	to	ensure	that	bulk-running	of	several	tests	allows	you	toget	a	full	report	without	manual	intervention.If	you	do	set	#.UT.sac←1	you	must	remember	to	→⎕LC	once	you	fix	your	test.
ExampleFor	this	example	I	demonstrate	how	to	use	the	library	on	a	dynamic	toy	problem	witha	made	up	customer.
SetupFirst	I	need	to	load	the	test	framework	into	the	APL	environment.
 ⎕←⎕SE.SALT.Load 'UT.dyalog'
 #.UTNow	 I	 need	 two	 SALT	 Ailes	 (censor.dyalog	 and	 censor_tests.dyalog)	 with	 emptynamespaces
 #.censorwhich	will	contain	the	functionality,	and
 #.censor_tests which	contains	the	tests	for	my	implementation.

VECTOR Vol.26 No.1

70

CodingThe	customer	EvilCorp	wants	the	system	to	censor	all	words	which	has	a	high	enoughmatch	with	blacklisted	words,	nasty	words,	such	as	‘pony’,	‘flower’and	‘sun’.Thus,	we	create	an	initial	test	 for	one	of	them	-	the	 ‘pony’	word.	In	order	to	achievethis	I	add	the	first	test	to	the	#.censor_tests	namespace:
 :NameSpace censor_tests

 censor_pony_TEST←{
 #.UT.expect← 'little xxxx friends'
 'pony' #.censor.run 'little pony friends'
 }

 :EndNameSpaceNow	we	run	the	tests	in	the	current	directory.	It	will	Aind	the	censor_tests.dyalog	 Aileand	execute	the	tests.	We	should	expect	a	failure:
 #.UT.run './'

 CRASHED: censor_pony_TEST
 Expected
 ┌→──────────────────┐
 │little xxxx friends│
 └───────────────────┘
 Got
 ┌→──┐
 ↓VALUE ERROR │
 │censor_pony_TEST[2] 'pony'#.censor.run'little pony friends'│
 │ ∧ │
 └───┘

 ./censor_tests.dyalog tests
 ⍋ Passed: 0
 ⍟ Crashed: 1
 ⍒ Failed: 0
 ○ Runtime: 0 m 0 s 20 msWe	can	now	write	the	implementation	function.
 run←{
 w←⍺
 t←⍵
 i←(w⍷t)/⍳⍴t
 t[¯1+(⍳⍴w)+i]←(⍴w)⍴'x'
 t
 }

VECTOR Vol.26 No.1

71

And	we	can	re-run	the	tests:
 #.UT.run './'
 Passed 0 m 0 s 0 ms

 ./censor_tests.dyalog tests
 ⍋ Passed: 1
 ⍟ Crashed: 0
 ⍒ Failed: 0
 ○ Runtime: 0 m 0 s 6 msNow	-	we	can	write	the	test	for	a	list	of	several	censored	words.
 censor_many_TEST←{
 #.UT.expect←'xxxx in the xxxshine'
 'pony' 'sun' #.censor.process 'pony in the sunshine'
 }Re-running	the	tests	will	cause	our	newest	test	to	fail:
 #.UT.run './'
 CRASHED: censor_many_TEST
 Expected
 ┌→───────────────────┐
 │xxxx in the xxxshine│
 └────────────────────┘
 Got
 ┌→───┐
 ↓VALUE ERROR │
 │censor_many_TEST[2] 'pony' 'sun'#.censor.process'pony in the sunshine'│
 │ ∧ │
 └──┘
 Passed 0 m 0 s 1 ms

 ./censor_tests.dyalog tests
 ⍋ Passed: 1
 ⍟ Crashed: 1
 ⍒ Failed: 0
 ○ Runtime: 0 m 1 s ¯979 msWe	can	now	write	the	implementation	for	this	process	function:
 process←{⊃run/⍺,⊂⍵}Finally	we	re-run	the	tests:
 #.UT.run './'
 Passed 0 m 0 s 0 ms
 Passed 0 m 0 s 0 ms

 ./censor_tests.dyalog tests
 ⍋ Passed: 2
 ⍟ Crashed: 0
 ⍒ Failed: 0
 ○ Runtime: 0 m 0 s 8 msThey	all	passed.	Now	we	know	that	we	are	done	with	the	implementation.

VECTOR Vol.26 No.1

72

Since	we	have	tests	for	correctness,	we	are	free	to	work	the	code	over	(refactoring),as	long	as	we	run	all	the	tests	often.This	will	be	done	now,	I	will	simplify	the	run	function	a	little.	I	will	inline	the	index	(i)and	remove	the	temporary	variable	(w).
 run←{
 t←⍵
 t[¯1+(⍳⍴⍺)+(⍺⍷t)/⍳⍴t]←(⍴⍺)⍴'x'
 t
 }After	this	change,	I	rerun	the	tests.
 #.UT.run './'
 Passed 0 m 0 s 0 ms
 Passed 0 m 0 s 0 ms

 ./censor_tests.dyalog tests
 ⍋ Passed: 2
 ⍟ Crashed: 0
 ⍒ Failed: 0
 ○ Runtime: 0 m 0 s 8 msAll	is	good!This	approach	of	starting	from	the	bottom	up,	is	called	the	‘Chicago	School	of	TDD’.Now,	I	can	focus	on	the	next	requirement.
Final	codeThe	final	version	of	the	censoring	program	from	censor.dyalog
 :NameSpace censor

 process←{ ⊃run/⍺,⊂⍵ }

 run←{
 t←⍵
 t[¯1+(⍳⍴⍺)+(⍺⍷t)/⍳⍴t]←(⍴⍺)⍴'x'
 t
 }

 :EndNameSpaceThe	tests	from	censor_tests.dyalog:
 :NameSpace censor_tests

 censor_pony_TEST←{
 #.UT.expect←'little xxxx friends'
 'pony'#.censor.run'little pony friends'
 }

VECTOR Vol.26 No.1

73

 censor_many_TEST←{
 #.UT.expect←'little xxxx in the xxxshine'
 'pony' 'sun'#.censor.process'little pony in the sunshine'
 }

 :EndNameSpace

References1.	 	http://en.wikipedia.org/wiki/Test-first_programming/

VECTOR Vol.26 No.1

74

http://en.wikipedia.org/wiki/Test-first_programming

NFL	Passer	Rating
Brian	Becker

I	 like	football,	both	the	American	version	and	the	version	the	rest	of	 the	world	callsfootball	 but	 the	 Americans	 call	 “soccer”.	One	 of	 the	 statistics	 in	 American	 footballthat’s	 frequently	 mentioned	 is	 the	 passer	 (or	 quarterback)	 rating.	I've	 heardsportscasters	 say	 the	maximum	passer	 rating	 is	158.3	–	a	 rather	odd	number	 if	youask	 me.	This	 piqued	 my	 curiosity	 and	 I	 turned	 to	 the	 font	 of	 all	 knowledge	 –	 theinternet,	 where	 I	 found	 an	 interesting	 entry	 in	 en.wikipedia.org[1]	 which	 gave	 thefollowing	formula:
a = (COMPATT −0.3) × 5

b = (YARDSATT −3) × .25

c = (TDATT) × 20

d = 2.375− (INTATT × 25)Where:ATT	=	Number	of	passing	attemptsCOMP	=	Number	of	completionsYARDS	=	Passing	yardsYARDS	=	Touchdown	passesINT	=	InterceptionsThen,	the	above	calculations	are	used	to	complete	the	passerrating:
PasserRatingNFL= (mm(a)+mm(b)+mm(c)+mm(d)6) × 100Where:	 mm(x) = max (0, min , (x, 2.375))I	thought	it	might	be	interesting	to	model	the	formula	in	APL	and	look	at	the	impact	ofthe	 various	 inputs,	for	 instance	what	happens	 if	a	passer	completes	only	50%	of	hispasses,	but	every	pass	he	completes	is	for	a	touchdown?It’s	fairly	straightforward	to	translate	the	formula	directly	into	APL:

VECTOR Vol.26 No.1

75

 ∇ rating←att PasserRating(comp yards td int);a;b;c;d;mm
[1] mm←{0⌈2.375⌊⍵} ⍝ define the max/min function
[2] a←((comp÷att)-0.3)×5
[3] b←((yards÷att)-3)×0.25
[4] c←(td÷att)×20
[5] d←2.375-(int÷att)×25
[6] rating←(((mm a)+(mm b)+(mm c)+(mm d))÷6)×100
 ∇For	 instance,	 a	 quarterback	 who	 completes	 17	 of	 20	 attempts	 for	 300	 yards,	 4touchdowns,	and	no	interceptions	would	have	a	“perfect”	rating	of	158.3.
 20 PasserRating 17 300 4 0
158.3333333The	above	function	works	just	Aine,	but	it’s	not	particularly	“APL-like”.	 By	this	I	meanthat	it’s	longer	than	it	needs	to	be	and	doesn't	really	make	use	of	APL's	array	handlingcapabilities.One	of	the	Airst	things	I	noticed	was	that	all	of	the	terms	(completions,	yards,	TDs	andinterceptions)	are	treated	similarly…they’re	each	divided	by	the	number	of	attemptsthe	result	of	that	operation	is	adjusted	by	some	number	(in	some	cases	thenumber	is	0)those	results	are	then	multiplied	by	some	numberthen	those	results	are	added	(or	subtracted)	from	a	number	(again	that	numbermay	be	0)the	mm	function	is	applied	to	each	resultThen	to	complete	the	calculation	the	results	are	summed,	that	sum	is	divided	by	6	andthen	multiplied	by	100.So,	 if	 instead	of	having	4	 terms	(comp,	yards,	 tds,	and	 int)	we	have	one	term	“stats”which	 is	a	4	element	vector	comprised	of	comp,	yards,	 tds,	and	 int,	we	can	simplifythe	first	operation	to:
 stats÷attThe	next	 step	 is	 to	 adjust	 each	 result	 by	 some	number,	 -0.3	 for	 completions,	 -3	 foryards,	 and	 0	 for	 each	 of	 TDs	 and	 interceptions.	There	 are	 a	 few	ways	 to	 do	 this	 inAPL…

VECTOR Vol.26 No.1

76

 (stats ÷ att) - .3 3 0 0 ⍝ is the most straightforward
 ¯.3 ¯3 0 0 + stats ÷ att ⍝ removes the parentheses
 .3 3 0 0 -⍨ stats ÷ att ⍝ uses subtraction and the commute operator ⍨
 ⍝ which commutes (switches) the argumentsAll	of	these	statements	produce	equivalent	results.	So,	you	can	use	whichever	seemsmost	straightforward	to	you.Each	of	 these	results	 is	multiplied	by	a	number:	5	 for	completions,	 .25	 for	yards,	20for	 TDs,	 and	 -25	 for	 interceptions.	Why	 use	 -25?	Because	 the	 interception	 result	 issubtracted	from	2.375	in	the	subsequent	operation.
 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ attNext	 the	mm	 (max/min)	 function	 gets	 applied;	 it’s	 so	 trivial	 we	 can	 skip	writing	 aseparate	function…
 0 ⌈ 2.375 ⌊ 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ attThen	those	results	are	summed…
 +/ 0 ⌈ 2.375 ⌊ 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ attThe	sum	 is	 the	divided	by	6	and	multiplied	by	100,	 again	 there	are	 several	ways	 toaccomplish	this…
 100 × (+/ 0 ⌈ 2.375 ⌊ 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ att) ÷ 6
 (100 ÷ 6) × +/ 0 ⌈ 2.375 ⌊ 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ att
 100 × 6 ÷⍨ +/ 0 ⌈ 2.375 ⌊ 0 0 0 2.375 + 5 .25 20 ¯25 × .3 3 0 0 -⍨ stats ÷ attPutting	it	all	together,	we	can	rewrite	our	function	as:
 ∇ rating←att PasserRating stats
 [1] rating←100×6÷⍨+/0⌈2.375⌊0 0 0 2.375+5 .25 20 ¯25×.3 3 0 0-⍨stats÷att
 ∇This	is	known	as	a	trad-fn	(traditional	function)	in	Dyalog	APL.	Dyalog	also	has	d-fns(dynamic	functions).	PasserRating	written	as	a	d-fn	would	look	like:
 PasserRating←{100×6÷⍨+/0⌈2.375⌊0 0 0 2.375+5 0.25 20 ¯25×.3 3 0 0-⍨⍵÷⍺}Once	 you	 have	 the	 PasserRating	 function,	 you	 can	 see	 the	 effect	 of	 the	 differentinputs.	For	 instance,	 what	 if	 the	 passer	 had	 the	 same	 results	 (17	 completions,	 300yards,	4	TDs,	and	0	interceptions)	but	the	number	of	attempts	varied?

VECTOR Vol.26 No.1

77

 {'Attempts' 'Rating'⍪⍵,[1.1](PasserRating∘17 300 4 0)¨⍵}16+⍳16
 Attempts Rating
 17 158.3333333
 18 158.3333333
 19 158.3333333
 20 158.3333333
 21 158.3333333
 22 158.1439394
 23 155.3442029
 24 152.7777778
 25 148.3333333
 26 144.2307692
 27 140.4320988
 28 136.9047619
 29 133.6206897
 30 130.5555556
 31 127.688172
 32 125 Does	the	passer	rating	formula	make	sense?	For	instance,	consider	two	quarterbackswho	each	have	20	attempts	and	pass	for	400	yards.	The	Airst	quarterback	has	only	10completions,	 but	 each	 of	 those	 is	 for	 a	 touchdown.	The	 second	 quarterback	 has	 20completions,	but	only	1	 touchdown.	Who’s	 the	higher	 rated	quarterback?	Accordingto	the	formula,	they	both	have	the	same	rating.
 20 PasserRating ¨(10 400 10 0)(20 400 1 0)
135.4166667 135.4166667Perhaps	 “passer“	rating	 is	 less	 interesting	 than	 a	 “quarterback”	 rating	 which,	 inaddition,	could	take	into	account	things	like:sacks	–	a	quarterback	who	less	aware	of	his	surroundings	and	is	sacked	morefrequently	isn’t	as	effectivefumbles	–	similarly	a	quarterback	who	fumbles	more	often	isn’t	as	effectiveyards	gained	–	most	of	today’s	quarterbacks	have	to	be	somewhat	mobileCan	passer	rating	be	improved	upon?	There	are	lots	of	possibilities	and	APL	makes	iteasy,	even	fun,	to	explore	them.
References1.	 Passer	rating	http://en.wikipedia.org/wiki/Passer_rating

VECTOR Vol.26 No.1

78

http://en.wikipedia.org/wiki/Passer_rating

Dyalog’s	parser	-	a	new	parser	in	town
Dan	Baronet	(danb@dyalog.com)

In	 the	 following	 text	 I	 use	 terms	 speciAic	 to	 our	 trade.	 You	 won’t	 Aind	 them	 in	 thedictionary	but	I	assume	the	reader	is	familiar	with	words	such	as	‘monad’,	‘global’	(asa	noun)	and	 ‘default’	 (verb).	 I	also	use	quotes	and	angle	brackets	 to	help	determinethe	type	of	the	object	I	am	referring	to.	‘Quotes’	denote	a	variable	or	workspace	and<angle	brackets>	refer	to	a	function/operator	or	Aile.	Often,	the	context	is	sufAicient	toremove	 ambiguities.	Emphasized	 words	 have	 a	 special	 meaning.	Definitions	 areespecially	marked	up,	too.
IntroductionA	line	(string)	parser	is	a	handy	tool	to	carry	around.Such	a	 tool	 should	be	able	 to	accept	a	 string	as	argument	 (its	 input)	and	be	able	 toattribute	meaning	to	its	constituent	parts	by	following	a	number	of	simple	rules.For	example,	 in	C,	a	 function’s	 list	of	arguments	 is	given	by	 “a	 left	parenthesis,	0	ormore	non-blank	strings	separated	by	commas	and	a	right	parenthesis”.	The	statement
ABC(2+3,x,y/z);	 is	 a	 perfectly	 valid	 C	 statement,	 calling	 function	ABC	 with	 3arguments.Another	 example,	 in	 DOS	 (or	Windows’	 command	mode),	 a	 command	 (a	 keyword)takes	0	or	more	words	as	arguments,	followed	by	0	or	more	switches,	a	word	being	aseries	 of	 non-blank	 characters	 and	 a	 switch	 being	 a	 special	 character	 (here	 /)followed	by	a	letter,	possibly	followed	by	a	colon	(:)	and	a	string.The	TREE	command	in	DOS,	for	example,	accepts	0	or	1	argument,	possibly	followedby	the	switches	/F	and/or	/A.Unix	is	similar,	using	dash	(-)	instead	of	/	as	switch	delimiter.There	are	many	 times	when	a	 similar	 situation	arises	and	we	must	 supply	a	knownnumber	of	arguments	and	switches	to	a	program.Closer	to	home,	there	are	cases	where	such	a	parser	could	come	in	handy.	Imagine	aprogram,	REPORT,	 which	 accepts	DATA	 as	 right	 argument	 and	 some	 Options	 as	 left

VECTOR Vol.26 No.1

79

argument.	 The	 options	 could	 be	 e.g.	 "Title",	 “page	width”,	 “use	 page	 numbers”.	 Theprogram’s	header	and	first	line	would	typically	look	like	this:
 ∇ Options REPORT Data;Title;PW;P0;...
[1] (Title PW P0)←Options,(⍴,Options)↓'' 70 0
[2] ...The	onus	is	on	the	user	to	remember	the	order	of	Options	but	with	only	3	options	itisn’t	so	bad.	Imagine	now	that	there	are	a	large	number	of	options.	It	might	be	simplerto	specify	something	like:
 'Sales Report +usepagenos +pagewidth=80 +margin=10 10' REPORT dataThe	syntax	is	cleaner	and	the	user	doesn’t	have	to	remember	all	the	options	and	theirorder.	If	a	change	occurs	and	new	options	are	added	they	can	be	inserted	easily.	Theproblem	of	course	is	to	make	sense	of	that	left	argument.This	kind	of	problem	arose	 in	 the	90s	when	STSC	 introduced	user	commands	 in	 theAPL/PC	product.User	commands	are	commands	that	the	developer	writes	in	APL	and	are	called	by	thesystem	 using	 a	 right	 bracket	 (])	 syntax,	 similar	 to	 the)SYSTEM	 commands.	 Aprogrammer	writes	 command	XYZ	which	 is	 called	 in	 the	 session	by	writing]XYZ.	 Ifthe	 command	 takes	 arguments	 and/or	 switches	 they	 are	 added	 after	 the	 commandname.	The	programmer	 is	 responsible	 to	parse	 the	 line	and	 Aigure	out	 the	meaning.Simple	commands	with	few	arguments	and	switches	take	only	a	few	lines	to	parse	butmany	 acceptable	 switches	 become	 quickly	 overwhelming	 and	 the	 lack	 of	 standardmakes	 it	confusing	 for	 the	user.	And	the	code	 to	parse	 the	 line	quickly	shadows	theimportant	code.When	user	commands	came	out	with	APL/PC	there	was	no	parser	and	I	wrote	one	forthem	 and	 used	 it	 for	many	 years.	 I	 even	wrote	 an	 article	 in	Vector[1]	 about	 it.	 Theproblem	was	that	there	were	no	enclosed	arrays	at	the	time	and	the	parser	had	to	doall	kinds	of	tricks	to	do	its	job	like	setting	globals,	using	delimited	strings	and	so	on.Today	with	arrays	of	enclosures	and,	in	Dyalog	APL’s	case,	namespaces,	it	is	easier	topack	all	the	information	into	a	tight	object.That’s	the	purpose	of	this	text.	I	will	use	user	commands	as	example.	This	is	in	fact	theparser	used	at	Dyalog	for	their	user	command	processor.

VECTOR Vol.26 No.1

80

A	few	definitions

GeneralitiesA	sentence	is	made	of	characters	and	divided	into	0	or	more	sections.Sections	 are	 separated	 from	 each	 other	 by	 one	 or	more	 of	 a	 special	 character,	 theseparator.Each	section	contains	a	single	field	and	a	value.	A	value	is	1	or	a	string.A	 Aield	has	an	ID.	Some	Aields	may	have	a	name	in	which	case	their	ID	is	their	name.An	unnamed	Aield’s	ID	is	a	unique	number	in	the	range	1	to	N	where	N	is	the	numberof	allowed	unnamed	fields.Named	Aields	are	always	optional.	Unnamed	Aields	can	be	compulsory.	In	a	sentence,sections	may	contain	named	fields	which	may	be	repeated.A	named	Aield	is	introduced	with	a	special	symbol	followed	by	the	name.	If	a	sectionwith	 a	 named	 Aield	 in	 it	 will	 have	 a	 value	 it	 will	 appear	 after	 the	 ‘=’	 sign	 after	 thename.Example:	 here	 is	 a	 sentence	 with	 named	 and	 unnamed	sections,	 the	 comma	 is	 the
section	separator:
 una,unb,,$city=mtl,,,$cnt=can,$nice This	sentence	has	5	sections,	2	with	unnamed	fields	and	3	with	named	fields.	The	ID	ofeach	one	is	1,	2,	city,	cnt	and	nice.	All	sections	but	nice	have	a	value	speciAied.	Thefirst	two	sections	have	unnamed	fields	with	values	una	and	unb.	The	last	three	sectionshave	named	fields	and	the	last	one	has	no	value	specified,	its	value	is	1.
ImplementationA	parser	should	be	able	to	determine	if	a	sentence	follows	specific	rules.The	 class	Parser	 produces	 a	 parser	 capable	 of	 recognizing	 if	 a	 sentence	 followsspecific	rules.	Those	rules	are	supplied	at	instantiation	time.The	rules	specifythe	number	of	unnamed	sections.how	many	are	compulsory.the	list	of	named	sections.

VECTOR Vol.26 No.1

81

whether	they	accept	a	value.Example:	the	expression
 CP←⎕NEW Parser ('$city= $cnt= $nice' 'nargs=2')produces	a	parser	(CP)	only	capable	of	determining	if	a	sentence,	like	the	one	above,follows	the	rules	by	applying	its	Parse	method	to	a	sentence,	e.g.:

 Data←CP.Parse ‘una unb $city=mtl $cnt=can $nice‘If	the	sentence	does	not	follow	the	rules	the	parser	will	signal	an	error.	For	exampleif	a	non-existent	named	Aield	 is	speciAied	or	 if	a	named	Aield	accepting	a	value	 is	notgiven	 one	 (or	 vice	 versa)	 then	it	will	 signal	 an	 appropriate	 error.	 The	 validation	 isvery	strict.If	 the	sentence	 is	 valid,	Data	will	be	a	regular	namespace	containing	all	 the	possible
sections	 with	 their	 name	 and	 value.	 If	 a	section	 is	 absent	 its	 value	will	 be	 0.	 If	 it	 ispresent	without	a	value	(e.g.	$nice)	it	will	be	1	(not	‘1’).	If	a	section	is	repeated	onlythe	 last	 value	 is	 retained.	 To	 see	 all	 of	 them	 you	 can	 do	Data.SwD.	 In	 the	 exampleabove	you	would	get

 city mtl
 cnt can
 nice 1
 _1 una
 _2 unbYou	can	access	the	value	of	a	section	directly,	e.g.
 Data.city
mtlThe	unnamed	sections	are	given	the	ID	_1	and	_2.	This	way	you	can	access	their	valuedirectly:
 Data._1
unaThe	parser	can	be	applied	again	to	another	sentence:
 Datb←CP.Parse 'I love $city=Paris '
 Datb.city
Paris
 Datb.SwD
 city Paris
 cnt 0
 nice 0

VECTOR Vol.26 No.1

82

 _1 I
 _2 loveSince	cnt	was	not	specified	in	the	sentence	its	value	is	0.	Same	for	nice.
Unnamed	sectionsOptional	unnamed	sections	can	be	done	using	'S'	with	the	number	of	arguments.	'S'stands	 for	 ‘Short’	 to	 allow	 a	 shorter	 number	 of	 arguments.	 This	 makes	 them	 alloptional	 as	 0	 is	 an	 acceptable	 number	 of	 arguments	 too.	 If	CP	 above	 is	 deAined	 as(note	the	'S'	after	the	2)
 CP←⎕NEW Parser ('$city= $cnt= $nice' 'nargs=2S')Then
 Datc←CP.Parse ‘great $nice $cnt=Canada ‘would	produce	(note	the	2nd	argument	is	0	because	it	is	not	in	the	sentence)
 Datc.SwD
 city 0
 cnt Canada
 nice 1
 _1 great
 _2 0

Sections	with	spaces	in	themIf	a	section	contains	a	section	delimiter	(a	space	here)	in	it	there	must	be	a	way	to	tellthe	parser.	The	preferred	way	is	to	use	yet	another	character	to	escape	the	space	orto	 surround	 the	 section	 with	 a	 pair	 of	 enclosing	 special	 characters.	 An	 obviouscharacter	to	use	in	this	case	is	“.	For	example:
 Datd←CP.Parse ' ”Добрый день” $cnt=Russia 'produces
 Datd.SwD
 city 0
 cnt Russia
 nice 0
 _1 Добрый день
 _2 0

Parse	will	accept	both	‘	and	“	as	string	delimiter	as	long	as	they	are	paired	properly,i.e.	'a … z'	and	"a … z"	are	ok	but	‘a … z"	is	not.If	a	quote	is	part	of	the	string	the	other	quote	can	be	used	or	you	can	double	the	quote

VECTOR Vol.26 No.1

83

inside	the	quotes	string,	e.g.	"I'm OK"	or	'I''m OK'.Quotes	should	also	be	used	if	the	text	includes	a	character	used	to	introduce	a	namedfield	(e.g.	$	above).	Example:	'amount is $20'.
The	Dyalog	parserThe	Dyalog	parser	is	located	in	⎕SE.In	this	parser	the	space	is	used	as	section	delimiter.	It	cannot	be	changed.
TermsBecause	 of	 the	 context	 in	 which	 the	 parser	 is	 used	 an	 unnamed	 Aield	 is	 called	 anargument	and	a	named	field	is	called	a	switch	or	modifier.In	 theory	 the	arguments	could	appear	anywhere	in	the	sentence	but	Dyalog’s	parserdoes	 not	 allow	 it;	 all	arguments	must	 appear	 at	 the	beginning	of	 the	 sentence.	Thismeans	that	since	only	sections	containing	modifiers	can	appear	at	the	end	there	is	noneed	to	quote	the	values	if	they	contain	spaces,	i.e.	in
 Datf←CP.Parse 'huge $cnt=US of A '

US	of	A	does	not	need	to	be	quoted	to	include	the	spaces.	Note	that	the	trailing	spacesare	ignored.On	the	other	hand,	since	arguments	have	an	ID	you	can	specify	them	elsewhere	in	thesentence	by	 simply	using	 their	 ID	 followed	by	=	 and	 the	 value.	 The	 example	 abovethen	becomes
 Datf←CP.Parse ' $cnt=US of A $_1=huge '

FeaturesThis	parser	has	many	features.No	 need	 to	 specify	 the	 number	 of	 arguments	 if	 it	 is	 possibly	 unlimited.	 The	 class’argument	is	then	a	single	string:
 CP←⎕NEW ⎕SE.Parser ‘$city= $cnt= $nice’ If	 you	 do	 not	 specify	 the	 number	 of	 arguments	 no	_n	 variable	will	 be	 stored	 in	 theresulting	 namespace.	 However,	 the	 list	 of	 arguments	 is	always	 stored	 in	 variableArguments.	Example:

VECTOR Vol.26 No.1

84

 Datf←CP.Parse 'there are 7 arguments here, no modifier' ⍝no nargs=string
 Datf.SwD
city 0
cnt 0
dsa 0
]disp Datf.Arguments
┌→────┬───┬─┬─────────┬─────┬──┬────────┐
│there│are│7│arguments│here,│no│modifier│
└────→┴──→┴→┴────────→┴────→┴─→┴───────→┘The	character	introducing	the	names	must	be	specified.It	is	the	1st	char	in	the	list	(here	#)	and	separates	the	names:
 CP←⎕NEW ⎕SE.Parser ‘#city= #cnt= #nice’

Minimum	character	needed	to	specify	namesThere	is	no	need	to	enter	the	entire	name,	only	the	minimum	suffices:
 CP←⎕NEW ⎕SE.Parser '+color = +country='
 Datf←CP.Parse ' +col=blue +cou=UK 'Here	+col	is	sufficient	to	determine	that	it	is	color.	Same	with	+cou	for	country.If	 only	+c	 or	+co	 is	used	the	parser	won’t	be	able	to	tell	which	one	 is	meant	and	anerror	will	be	signalled.On	the	other	hand	you	may	want	to	force	the	entry	of	a	name	to	a	minimum.	You	useparentheses	for	that:
 CP←⎕NEW ⎕SE.Parser '-color= -country(ofresidence)='Here	-color	 can	 be	 abbreviated	 to	-col	 but	-countryofresidence	 can	 only	 beentered	with	a	minimum	of	-country.	This	 is	useful	when	 forcing	 the	user	 to	enterthe	whole	name	because	of	a	security	problem,	e.g.
 CP←⎕NEW ⎕SE.Parser '/file= /delete()'Here	/file	can	be	entered	as	a	single	/f	but	we	don’t	want	the	user	to	enter	/d	aloneby	mistake	and	a	full	/delete	is	required.Only	the	‘(‘	is	important	and	the	last	‘)’	is	ignored	but	it	is	tolerated.
Case	insensitiveNormally	modiAiers’	names	are	used	“as	is”	but	you	may	want	to	enter	them	in	loweror	uppercase.	If	you	do

VECTOR Vol.26 No.1

85

 CP←⎕NEW ⎕SE.Parser ('$City= $Cnt= $nice' 'nargs=2 upper')
 Datg←CP.Parse 'I love $cITy=Paris '
 Datg.SwD
CITY Paris
CNT 0
NICE 0
_1 I
_2 love

 Datg.CITY
Parisall	names	are	uppercased.	There	is	no	way	to	get	them	in	lowercase	form.
Minimum-maximum	number	of	argumentsIt	 is	 possible	 to	 add	 an	'S'	 to	 the	number	of	 arguments	 to	 specify	 that	 they	are	alloptional,	i.e.	that	0	to	n	can	be	entered	(here	5):
 CP←⎕NEW ⎕SE.Parser ('/file= /delete' 'nargs=5S')It	is	also	possible	to	use	n1-n2	to	specify	a	minimum	(here	2	to	5):
 CP←⎕NEW ⎕SE.Parser ('/file= /delete' 'nargs=2-5')If	the	number	of	arguments	is	not	from	2	to	5	the	parser	will	issue	an	error,	either	‘toofew	arguments’	or	‘too	many	arguments’.	Using	'S'	is	the	same	as	0-n.It	is	possible	to	merge	extra	arguments	together.For	example	if	the	last	section	contains	spaces	it	must	be	used	like	this:
 CP←⎕NEW ⎕SE.Parser ('' 'nargs=3') ⍝ note no modifiers accepted
 Dath←CP.Parse ' Joe Blough "42 Penny Lane E." 'If	there	is	nothing	following	the	3rd	section	we	can	tell	the	parser	that	it	is	“Long”	andquotes	are	not	needed	(but	still	accepted).	Note	the	L	after	the	3:
 CP←⎕NEW ⎕SE.Parser ('' 'nargs=3L')
 Dath←CP.Parse ' Joe Blough 42 Penny Lane E. ' ⍝ no quotes needed at the end
]disp Dath.SwD ⍝ note the spaces are preserved
┌→─┬──────────────────┐
↓_1│Joe │
├─→┼─────────────────→┤
│_2│Blough │
├─→┼─────────────────→┤
│_3│42 Penny Lane E.│
└─→┴─────────────────→┘This	feature	is	useful	when	expecting	a	single	long	argument:

VECTOR Vol.26 No.1

86

 Log←⎕NEW ⎕SE.Parser ('-file=' 'nargs=1L')0
 Dath←Log.Parse ' Joe Blough 42 Penny Lane E. –file=\tmp\log.txt'
]disp Dath.SwD
┌→───┬─────────────────────────────┐
↓file│\tmp\log.txt │
├───→┼────────────────────────────→┤
│_1 │Joe Blough 42 Penny Lane E.│
└───→┴────────────────────────────→┘The	number	of	arguments	can	be	both,	"Long"	and	"Short".	There	is	no	restriction	inthat	respect.	The	rules	may	specify	less	than,	say,	3	(Short),	but	merge	any	argumentabove	3	with	the	3rd	one	(Long).	This	would	be	specified	as
 CP1←⎕NEW ⎕SE.Parser (‘’ ‘nargs=3SL’)

There	is	no	limit	on	the	number	of	argumentsAs	 noted	 before	 it	 is	 possible	 to	 specify	 that	 there	 is	 no	 limit	 on	 the	 number	 ofarguments	 simply	 by	not	 specifying	 the	'nargs='	 Aield	 in	 the	2nd	string	 (or	elidingthe	2nd	string	completely).
 CP2←⎕NEW ⎕SE.Parser '/file=/del'It	is	also	possible	to	enter	'nargs=99999'	to	signify	‘a	large	number	of	arguments’.The	 difference	 is	 in	 the	 resulting	 namespace	which	will	 only	 contain	 the	_1,	_2,	 …variables	if	nargs=n	has	been	specified.Although	 there	 is	 no	 limit,	 in	 order	 to	 limit	 the	 number	 of	 variables	 deAined	 in	 theresulting	namespace	(like	Dath,	above),	the	number	of	variables	produced	is	limitedto	 15,	 i.e.	_1,	 _2,	 …,	_15	 will	 be	 there	 but	_16	 and	 up	 won’t	 be.	 The	 list	 of	 allarguments	 is	 always	 kept	 in	Arguments	 inside	 the	 namespace	 so	 they	 are	 alwaysavailable.	For	example:
 CP←⎕NEW ⎕SE.Parser '+s1' ⍝ no nargs=
 Dati←CP.Parse 'Joe Blo 42 Penny Lane E. tel 0 44 12345 890, and more '
 ⍴Dati.Arguments
16
]disp Dati.Arguments
┌→──┬───┬──┬─────┬────┬──┬───┬─┬──┬─────┬───┬───┬────┐
│Joe│Blo│42│Penny│Lane│E.│tel│0│44│12345│890│and│more│
└──→┴──→┴─→┴────→┴───→┴─→┴──→┴→┴─→┴────→┴──→┴──→┴───→┘
]disp Dati.SwD
┌→─┬─┐
↓s1│0│
└─→┴─┘
 CP←⎕NEW ⎕SE.Parser ('+s1' ' nargs=999S')
 Dati←CP.Parse 'Joe Blo 42 Penny Lane E. tel 0 44 12345 890, and more +s'
]disp Dati.Arguments
┌→──┬───┬──┬─────┬────┬──┬───┬─┬──┬─────┬───┬───┬────┐
│Joe│Blo│42│Penny│Lane│E.│tel│0│44│12345│890│and│more│
└──→┴──→┴─→┴────→┴───→┴─→┴──→┴→┴─→┴────→┴──→┴──→┴───→┘

VECTOR Vol.26 No.1

87

]disp Dati.SwD
┌→──┬─────┐
↓s1 │1 │
├──→┼~────┤
│_1 │Joe │
├──→┼────→┤
 …
├──→┼────→┤
│_15│is │
└──→┴────→┘

Ambivalent	modifiersSometimes	 modiAiers	 accept	 a	 value,	 sometimes	 they	 don’t.	 If	 their	 nature	 isambivalent	you	can	specify	it	at	parser	creation	time,	using	square	brackets	around	=to	mean	“maybe”,	like	this:
 CP←⎕NEW ⎕SE.Parser '+s1[=]'Here,	s1	is	a	modifier	that	may	be	specified	with	or	without	a	value:
 Datj←CP.Parse '+s'
 Datj.SwD ⍝ s1 is on the line without a value
s1 1
 Datj←CP.Parse '+s=abc'
 Datj.SwD
s1 abc

Validation

List	memberThe	 parser	 is	 able	 to	 perform	 minimalistic	 validation	 on	 the	 values	 entered	 withmodiAiers.	 For	 example,	 if	 modiAier	s1	 above	 accepts	 any	 of	 the	 values	 in
'ab' 'cde' 'fgjk'	then	we	can	create	a	parser	to	validate	it	like	this:
 CP←⎕NEW ⎕SE.Parser '+s1=ab cde fgjk'and	using	it	is	as	before:
 Datj←CP.Parse '+s=ab'
 Datj.SwD
s1 abexcept	that	if	we	enter	a	value	not	in	the	list	we	get:
 Datj←CP.Parse '+s=abc'
invalid value for switch <s1> (must be ONE of "ab cde fgjk")
 Datj←CP.Parse'+s=abc'
 ∧

VECTOR Vol.26 No.1

88

Set	memberThe	values	can	also	be	checked	against	a	list	of	characters	and	ensure	they	all	belongto	the	list.	We	use	∊	instead	of	=	for	this.	For	example,	if	modiAier	vowel	below	acceptsany	character	in	the	set	'aeiou'	then	we	can	create	a	parser	to	validate	it	like	this:
 CP←⎕NEW ⎕SE.Parser '+vowel ∊aeiou'And	using	it	is	as	before:
 Datk←CP.Parse '+v=aooaee’
 Datk.SwD
 vowel aooaeeexcept	that	if	we	enter	a	character	not	in	the	list	we	get:
 Datk←CP.Parse '+s=aey'
invalid value for switch <s1> (must be ALL in "aeiou")
 Datk←CP.Parse'+s=aey'
 ∧

Default	valuesBy	 default	 all	 Aields	 have	 the	 value	 0	 to	 mean	 “not	 speciAied	 on	 the	 line”.	 When	 amodiAier	 (or	 even	 an	 argument)	 is	 not	 speciAied	we	may	wish	 to	 give	 it	 a	 value	 bydefault.	For	example,	you	may	wish	to	use	the	value	'abc'	for	modiAier	s1	if	it	not	onthe	line.	In	APL	the	code	to	do	this	would	look	like
 :if 0≡v←Datj.s1 ⋄ v←'abc' ⋄ :endifThere	are	2	ways	to	get	a	default	value	with	the	parser.	The	Airst	one	involves	tellingthe	parser	at	creation	time:
 CP←⎕NEW ⎕SE.Parser ‘+city:London’
 Datl←CP.Parse '+c=Kbh'
 Datl.city
Kbh
 Datl←CP.Parse 'blah’ ⍝ no +city specified
Datl.city
LondonThe	 second	 method	 involves	 using	 a	 function	 (called	Switch)	 in	 the	 resultingnamespace.That	 function	 takes	 the	 name	 of	 a	 modiAier	 and	 returns	 its	 value	 when	 calledmonadically.

VECTOR Vol.26 No.1

89

When	called	dyadically	it	returns	its	left	argument	if	the	modiAier’s	value	is	0	(e.g.	notin	the	statement).
 CP←⎕NEW ⎕SE.Parser '+city='
 Datl←CP.Parse '+c=Toronto'
 Datl.Switch ‘city’ ⍝ city has the value "Toronto" as specified
Toronto
 ‘NY’ Datl.Switch ‘city’ ⍝ city was specified, it is returned
Toronto
 Datl←CP.Parse 'blah' ⍝ no +city specified
 Datl.Switch 'city' ⍝ no city means 0
0
 ‘NY’ Datl.Switch 'city' ⍝ no city can mean NY when not specified
NY

Switch	 has	 the	 advantage	 over	 the	 :default	 syntax	 in	 that	 it	 can	 turn	 stringsrepresenting	numbers	into	numbers.
 CP←⎕NEW ⎕SE.Parser '+age:18'
 Datl←CP.Parse '+a=70'
 70=⎕←Datl.age ⍝ ‘age’ is '70'
70
0 0
 Datl←CP.Parse 'blah' ⍝ no +age specified, its value is '18'
 18=⎕←Datl.age ⍝ this is a string, not a number
18
0 0The	parser	cannot	tell	whether	 ‘18’	 is	meant	to	be	a	string	or	a	number.	Switch,	onthe	other	hand,	is	smart	about	it:
 CP←⎕NEW ⎕SE.Parser '+age=' ⍝ we don’t specify a default value here
 Datl←CP.Parse '+a=70'
 70=⎕←Datl.Switch 'age' ⍝ this is character
70
0 0
 70=⎕←18 Datl.Switch 'age' ⍝ this is numeric, thanks to Switch
70
1
 Datl←CP.Parse 'blah' ⍝ no +age specified
18=⎕←18 Datl.Switch 'age' ⍝ this is numeric, thanks to Switch
18
1Note	that	the	result	is	a	numeric	vector,	not	a	scalar.If	you	try	to	turn	a	non-numeric	modifier	into	a	number	Switch	will	also	complain:
 Datl←CP.Parse '+a=seventy'
 666 Datl.Switch 'age'
value must be numeric for age
 666 Datl.Switch 'age'
 ∧

Other	features

VECTOR Vol.26 No.1

90

There	are	a	few	more	features	left:
Prefixing	namesModiAier	names	cannot	start	with	a	number	but	if	you	use	a	preAix	for	them	it	can	bemade	to	work:
 CP←⎕NEW ⎕SE.Parser ('+007[=]')
switches must be valid identifiers
 CP←⎕NEW ⎕SE.Parser('+007[=]')
 ∧
 CP←⎕NEW ⎕SE.Parser ('+007[=]' 'prefix=∆')
 Datm←CP.Parse 'whatever +007=JB'
 Datm.SwD
007 JB
 Datm.⎕nl-2
Arguments SwD ∆007
 Datm.∆007
JB
 Datm.Switch '007'
JB

Not	requiring	space	before	modifiersSince	names	 start	with	a	 special	 character	 there	 is	no	 real	need	 to	 force	a	 space	 todelimit	 them.	An	example	 is	DOS	commands	which	may	be	abutted	as	 in	DIR	/T/A;here	/A	follows	/T	without	any	space	in	between.If	this	can	be	allowed	it	can	be	specified	as	in
 CP←⎕NEW ⎕SE.Parser ('/sw1 /sw2' 'allownospace')

Changing	the	error	number	when	things	go	wrongWhen	 the	 parser	 refuses	 to	 accept	 a	 set	 of	 rules	 it	 signals	 an	 error	 in	 the	 700-710range.	If	this	can	interfere	with	the	calling	program	it	can	be	changed	using	error=	tospecify	the	lower	range	value:
 CP←⎕NEW ⎕SE.Parser ('/sw1' 'error=800')

Propagating	the	modifiersSometimes	 it	 is	necessary	 to	pass	 the	modiAiers	 received	 to	another	program	whichuses	similar	modifiers.For	 example,	 in	 SALT,	 the	 program	 Snap	 uses	many	modiAiers,	 some	 of	 which	 are

VECTOR Vol.26 No.1

91

passed	 along	 to	 the	 program	Save.	 Both	 use	 some	 same	 modiAiers.	 The	 modiAier
–noprompt	is	one	of	them.	When	Snap	calls	Save	it	has	to	pass	along	that	modiAier	inthe	command	string.	Assuming	all	 the	modiAiers	and	arguments	are	 in	namespace	A,one	thing	it	could	do	is
 Save cmdstring, A.nopromt / ' –noprompt'Because	there	are	many	modiAiers	to	pass	along	this	statement	would	be	in	fact	muchmore	complicated,	especially	when	modifiers	have	values.The	 arguments	 namespace	 contains	 a	 function,	Propagate,	 which	 will	 generate	 astring	defining	the	switches	as	they	were	submitted.For	 example,	 if	–noprompt	 was	 speciAied	 on	 the	Snap	 command	 line,	 doing
A.Propagate 'noprompt'	 would	 return	'-noprompt'.	 If	–noprompt	 was	 notspeciAied	 then	 it	 would	 return	''.	 If	 a	 modiAier	 to	 be	 propagated	 has	 a	 value	 thefunction	 will	 reproduce	 it	 verbatim,	 e.g.	 if	–nop –file=\ab\c	 is	 used	 then	 doing
A.Propagate 'noprompt file'	would	return	'-noprompt -file=\a\b\c'.Example:	going	back	to	the	REPORT	example	we	can	see	that	writing:
 ∇ Options REPORT Data;all;Parse;...
[1] Parse←{ (⎕new ⎕se.Parser ⍺).Parse ⍵}
[2] all← ‘+margin= +usepagenos +pagewidth=’ Parse Options
[3] :if all.usepagenos ...is	easier	to	read	and	modify.	We	can	now	call	this	program	like	this:
'Sales Report +usepagenos +pagewidth=80 +margin=10 10' REPORT dataAnother	example,	coding	the	DIR	command	in	DOS	(we	use	a	prefix	because	of	/4):
 pDIR←⎕new ⎕se.Parser ('/a=/b/c/d/n/o=/p/q/r/s/t=/w/x/4' 'allow prefix=S')

EpilogueThis	 tool	 is	 a	 bit	 elaborate	 but	 covers	many	 aspects	 of	 line	 parsing.	Many	 years	 ofprogramming	 convinced	 me	 of	 its	 usefulness.	 I	 have	 programmed	 variants	 of	 thiscode	in	several	 languages	but	none	as	advanced	as	in	Dyalog	APL.	If	you	write	yourown	user	commands	this	will	prove	to	be	very	helpful.If	 your	 version	 of	 Dyalog	 APL	 does	 not	 have	 all	 these	 features	 try	 to	 use	 the	 usercommand]uupdate	to	update	your	version	of	SALT	and	User	Commands.	This	shouldwork	with	all	versions	of	Dyalog	APL	starting	at	V13.1.

VECTOR Vol.26 No.1

92

References1.	 	See	"Tools,	Part	1.	Basics"	in	Vector	19.4	(April	2003)	for	details
VECTOR Vol.26 No.1

93

ELI:	a	simple	system	for	arrayprogramming
Hanfeng	Chen	(wukefe@gmail.com)

Wai-Mee	Ching	(waimee_ching@yahoo.com)

Abstract:	ELI	is	an	interactive	array-oriented	programming	language	system	based	onAPL.	 In	 addition	to	 Alat	 array	operations	of	 ISO	APL,	ELI	 features	basic	 list	 for	non-homogeneous	data,	 temporal	 data,	symbol	 type	and	control	 structures.	By	replacingeach	APL	character	with	one	or	two	ASCII	characters,	ELI	retains	APL’s	succinct	andexpressive	 way	 of	 doing	 array	 programming	 in	 a	 dataAlow	 style.	 A	scripting	 Ailefacility	 helps	 a	 user	 to	 easily	 organize	 programs	 in	 a	 fashion	 similar	 to	 C	 withconvenient	input/output.
1.	IntroductionKen	 Iverson	 Airst	 developed	 the	 APL	 notation	 for	 teaching	 applied	 mathematics	 atHarvard;	 later	 APL	became	machine	 executable	 through	 the	 work	 of	 L.	 Breed	 andcolleagues	 at	 IBM	T.J.	Watson	 Research	 Center.	 Iverson	 intends	APL	 to	 be	 a	 tool	 ofthought	for	communicating	algorithmic	ideas	precisely	(see	his	Turing	Award	Lecture[7]).	 This	 leads	 to	 two	unique	 features	of	APL:	 i)	 arrays	 are	 Airst	 class	citizens,	 ii)	 acomprehensive	set	of	array	operations	as	language	primitives	and	a	special	characterset	enforcing	an	one	character	one	symbol	rule	with	uniform	syntax.	That	results	 insuccinct	 expressions	and	 a	 dataAlow	 style	 of	 programming,	 i.e.	 organizing	 tasks	 aschains	 of	 monadic	 or	 dyadic	 functions	and	 operators	 acting	 on	 arrays.	 As	 aconsequence,	APL	is	remarkably	productive	and	versatile;	it	has	been	used	proAitablyin	 areas	 ranging	 from	 Ainance,	 actuarial,	 computer-aided	 design,	 logistics,manufacturing	to	that	of	research	in	physics,	econometrics	and	biometrics	([8]	has	arecent	example).	In	contrast,	the	array	language	MATLAB	follows	the	FORTRAN	styleand	its	main	application	areas	center	on	scientific	computation	and	engineering.We	 see	 three	 factors	 contributing	 to	 APL’s	 decline	 despite	 its	 power	 to	 rapidlyimplement	 and	 deliver	commercial	 applications:	 i)	 introduction	of	 two	nested	arraysystems	post-ISO	APL	fragmented	APL	community	without	an	increase	of	markets;	ii)its	special	character	set	and	iii)	no	free	version	of	APL	is	(J	is	both	free	and	uses	ASCIIcharacters	but	it	is	more	terse	and	difAicult	to	learn	than	APL).	The	aim	of	ELI	is	to	re-introduce	 APL-style	 programming	 to	 a	 wider	 audience	 by	 a	 free	 and	 simple	 array

VECTOR Vol.26 No.1

94

programming	 system	which	 is	 easy	 to	 learn	 and	 convenient	 to	 use.	 The	 project[3]started	a	decade	ago,	and	reactivated	recently.	We	hope	ELI	will	 attract	new	comersto	APL	family	of	languages	who	may	later	move	on	to	commercial	APL	products.ELI	 has	 all	 Alat	 arrays	 operations	 speciAied	 in	 the	 ISO	 APL	 standard	[1];	 it	does	 nothave	nested	array	feature	of	IBM	APL2	and	other	APL	vendors.	However,	ELI	has	listsand	list	operations	to	deal	with	irregular/non-homogeneous	data.	In	addition,	ELI	hastemporal	data,	symbol	type	and	C-like	control	structures.	In	ELI,	each	APL	characteris	 replaced	by	one	or	 two	ASCII	 characters	 in	a	way	 that	 is	intuitive	and	retains	 thesuccinctness	 of	 original	 symbolic	 representation	 of	 APL	 code.	 Finally,	 ELI	 hasscripting	 Aile	 facility	 to	 conveniently	 transfer	 data	 and	 code	 as	 well	 as	 to	 organizeprograms	 in	 a	way	similar	 to	 the	use	of	#include	 in	C,	which	 is	 further	helped	by	ashort	function	definition	form.While	 MATLAB	 is	 popular	 in	 scientiAic/engineering	 applications,	 a	 simple	 arraylanguage	 of	 APL	lineage	offers	unique	 advantage	 in	programming	 complex	 systemssuch	as	database	systems.	ELI	is	easy	to	learn,	has	useful	features	beyond	original	APLand	 retains	 its	 original	 programming	 style.	 Being	free,	 ELI	 can	 let	 more	 peopleappreciate	 the	 fact	 that	 simplicity	 of	 rules	 and	notation	 in	 a	 programming	languageleads	to	greater	programming	productivity.In	 section	 2,	 we	 describe	 the	 basic	 features	 of	 ELI	 system	 and	 the	 symbolrepresentation,	in	section	3,	we	explain	the	scripting	Aile	facility;	details	can	be	foundin	the	Primer	[4]	on	our	web-site.	We	discuss	future	development	plan	for	ELI	beforeconclusion.	 ELI	 is	 written	 in	 C++	 using	 Microsoft	 MFC,	hence	 is	 Airst	 available	 onWindows,	but	it	soon	will	be	ported	to	Mac	OS	X	and	Linux.	ELI	is	interpreted,	but	wealready	 have	 a	 compiler	 written	 in	 ELI	 with	 some	 restrictions	 (exclusion	 of	 theexecute	function	and	the	general	use	of	lists).	The	compiler,	translates	ELI	code	intoANSI	C	code	(with	this	in	mind,	ELI	prohibits	variable	names	to	be	reused	for	functionnames,	 nor	 a	 function	 name	to	 be	 renamed	 as	 a	 variable).	 Once	 the	 compiler	 hascompiled	 itself,	 it	will	 be	offered	 for	 general	use.	ELI	 can	also	be	used	as	a	 tool	 forgenerating	 parallelized	 code	 for	 multi-core	 desktop	 as	 well	 as	 for	other	 parallelmachines	 similar	 to	what	 have	been	done	using	APL	[6];	 the	 route	 to	parallelism	 isnot	 a	parallel	 implementation	of	 the	 interpreter	but	 to	 automatically	parallelize	 thetranslated	 C	 code	 by	 the	compiler.	We	 also	 intend	 to	 implement	 a	 simple	 column-based	database	system	in	ELI.
2.	The	Array	Language	ELIELI	is	based	on	APL1	as	described	in	the	ISO	APL	standard	[1];	 it	replaces	each	APLcharacter	symbol	by	one	or	two	ASCII	characters.	A	sample	is	listed	in	the	table	below

VECTOR Vol.26 No.1

95

(for	a	complete	 list	of	ELI	symbols	 see	[4],	which	comes	with	the	system)	where	theoriginal	APL	symbol	is	in	parentheses.
(⍴) shape/reshape #. (⍠) matrix inverse/divide
? (∊) where/member ?. (?) roll/deal
! (⍳) interval/index of !. (!") execute/drop
^ (^) count/and ^. (&) first/take
& (∨) or &. (*) transpose
_. (⌊) floor/min <. (.) enclose/encode
~. (⌈) ceiling/max >. (3) grouping/decode
* (×) signum/multiply *. (*) exponential/power
% (÷) inverse/divide %. (9) natural log/log
| (|) abs value/modulo |. (!) factorial/binomial
\. (⍀) scan,expand along 1st axis +. (>) format
$ (⌽) reverse/rotate $. (*) reverse/rotate on 1st axis
> (⍒>) grade down/greater @ (C) circle function
< (⍋<) grade up/less -> (F) branch
<- (←) assign <= (H) less or equalAn	 APL	 symbol	 usually	 represents	 either	 a	monadic	 or	 a	 dyadic	 primitive	 functiondepending	 on	whether	 it	 has	 one	 or	 two	 operands,	 and	 it	 is	 the	 same	 in	 ELI,	 thename(s)	next	to	each	symbol	in	the	table	above	is	the	name	of	the	monadic	(and	thedyadic)	primitive	 function	 it	 represents.	While	ELI	symbols	 lost	 the	exquisite	beautyof	APL	font,	it	retains	the	essential	spirit	of	one	character	one	symbol	of	APL	notation.We	 see	 that	 the	 ELI	 symbols,	 all	 consist	 of	 special	 characters,	 are	 simple	 andsuggestive,	hence	easy	to	remember	and	do	not	require	a	blank	between	symbols	andnames/data	 as	 in	original	 APL.	 This	 is	 in	 contrast	 to	 the	 more	 elaborate	 multi-character	 symbol	 scheme	 of	 J	 and	 the	introduction	 of	 word	 symbols	 in	 Q	[2].	 Thecurrent	 ELI	 symbol	 representation	 differs	 partly	 from	 that	i n	[3],	 though	 it	 isconceived	with	the	same	pragmatic	considerations:	i)	give	frequently	used	primitivessingle	character	representation	while	less	frequent	ones	with	a	second	character	 ‘.’,ii)	 for	 two-character	symbols	 not	 ending	 in	 ‘.’	 the	 character	 pair	 should	 be	 self-suggestive.The	arithmetic,	logical	and	relational	primitives	in	APL/ELI	are	called	scalar	functionssince	 they	 act	on	 arrays	 by	 an	 extension	 of	 their	 action	 on	 each	 (pair	 of)	 scalarelement(s)	 in	 that	 array(s).	 To	 take	cube	 roots	 of	 a	 group	 of	 numbers,	 or	 takedifferent	roots	of	a	single	number	(%3	is	1%3),	we	enter
 1 2 8 1000 81 125 *.%3
1 1.259921 2 10 4.3267487 5
 1024*.%1 2 3 5 10
1024 32 10.079368 4 2
 _1*.0.5
0j1
 .0j1@1
_1For	a	dyadic	scalar	function	f,	the	outer	product	of	f	 is	written	as	.:f.	For	example,to	see	how	1000	dollars	will	grow	under	3%,	5%	and	8%	of	annual	interests	rates	in

VECTOR Vol.26 No.1

96

10	years,	we	do
 1000 *1.03 1.05 1.08 .:*. !10
1030 1060.9 1092.727 1125.5088 1159.2741 1194.0523 1229.8739 1266.7701
 1304.7732 1343.9164
1050 1102.5 1157.625 1215.5063 1276.2816 1340.0956 1407.1004 1477.4554
 1551.3282 1628.8946
1080 1166.4 1259.712 1360.489 1469.3281 1586.8743 1713.8243 1850.9302
 1999.0046 2158.925Please	 note	 that	 a	 line	 of	 code	 in	 ELI,	 as	 in	 APL,	 executes	 from	 right	 to	 left,	 oneprimitive	 or	 derived	function	 at	 a	 time	 with	 equal	 precedence	 but	 respectsparentheses.	For	two	dyadic	scalar	function	f	and	g,	f:g	is	the	inner	product	of	f	and
g.	 +:*	 (+.×	 in	 APL)	 is	 the	well	 known	 matrix	 multiplication,	 but	 there	 are	 otherequally	useful	 inner	products	such	as	^:=.	 For	a	dyadic	 scalar	 function	f	 the	reduceoperator	 produces	 a	 derived	 function	f/	 and	 the	scan	 operator	produces	f\.	 Toillustrate,	+/V	is	the	sum	of	V	while	+\V	is	the	partial	sums	of	V,	and	the	or	scan	&\B	isa	vector	derived	from	boolean	vector	B	by	turning	all	1s	once	it	encounters	a	1.	Now,suppose	emp_Div	 is	 a	 3000	 by	 2	 character	 matrix	 indicating	 which	 division	 anemployee	 belongs	 to	 where	 each	row	 is	 one	 of	 the	 rows	 from	 the	 variablerepresenting	divisions
 Div<-4 2#’HQMKSLIT’
 Div
HQ
MK
SL
ITTo	count	employees	in	each	division,	we	simply	do
 +/.emp_Div ^:=&.Divwhere	&.Div	 is	 the	 transpose	 of	Div	 and	 the	result	of	 inner	product	 is	a	3000	by	4boolean	 matrix	indicating	 the	division	an	employee	belongs;	 Ainally,	+/.	 sums	alongthe	 Airst	 axis	 gives	 a	 4	elements	 vector	 showing	 the	 number	 of	 employees	 in	 eachdivision.A	 data	 of	 symbol	 type	 is	 entered	with	 a	 back-tick	`	 followed	 by	 a	 character	 string(possibly	empty);	a	character	string	which	can	form	a	symbol	obeys	the	same	rule	asthat	governing	a	name	for	variables.
 #s3<-`abc `ddl `comp
3
 2 2#s3
`abc `ddl
`comp `abc

VECTOR Vol.26 No.1

97

There	 are	 6	 temporal	 data	 types.	 For	 date	 and	 second,	 we	 have	 the	 followingexamples:
 2012.10.15+!7
2012.10.16 2012.10.17 2012.10.18 2012.10.19 2012.10.20 2012.10.21 2012.10.22
 23:10:50+30
23:11:20Eli	provides	lists	to	organize	non-homogeneous	data:	a	list	is	a	group	of	items,	each	ofwhich	can	be	a	scalar	or	an	array,	separated	by	 ‘;’	 and	 a	 list	L	can	be	assigned	 to	agroup	of	variables	where	the	number	of	variables	is	equal	to	#L:
 #L<-(`abc `ddl `comp;1 2 3)
2
 L
<`abc `ddl `comp
<1 2 3
 L[1]
`abc `ddl `comp
 L[2]
1 2 3
 (s;n)<-L
 s
`abc `ddl `comp
 n
1 2 3To	enter	a	list	of	one	item,	we	employ	the	monadic	primitive	function	enclose	<.:
 #L<-<.2 4#!12
1
 L
<1 2 3 4
5 6 7 8The	ELI	programming	environment,	follows	that	of	APL,	is	called	a	workspace.	Afteryou	installed	ELI	and	click	on	the	ELI	icon,	a	window	pops	up	with	a	line
 CLEAR WSindicating	a	clear	workspace,	i.e.	there	is	no	user	variable	or	deAined	function	yet	(onright	most	of	the	top	bar	there	is	a	Help	button,	click	on	it	to	access	the	Primer	[4]	fora	basic	description	of	ELI);	but	it	has	default	system	variables	such	as	[]IO,	the	indexorigin,	which	is	set	to	1	and	can	be	changed	to	0:
 !10
1 2 3 4 5 6 7 8 9 10
 []IO<-0
 !10
0 1 2 3 4 5 6 7 8 9One	 is	 either	 in	 execution	 mode,	 i.e.	 executing	 an	 ELI	 expression,	 includingassignments	to	variables	as	we	have	seen	in	previous	examples;	or	in	deAinition	mode

VECTOR Vol.26 No.1

98

to	deAine	a	user	 function.	To	switch	to	the	deAinition	mode,	 you	 type	@.	 followed	bythe	intended	function	head.	A	user	deAined	function	can	have	one	or	two	arguments,or	no	argument,	 it	can	return	a	result	or	no	result	and	all	 these	are	speciAied	by	thefunction	head	(sect.	3.1	 in	[4]).	One	can	use	a	 list	to	effectively	input	more	than	twoarguments:
 `sales bk_load (sa;cu;it;am;py;dt;sp)Once	you	Ainish	writing	your	function,	type	a	matching	@.	to	get	out	of	the	editor	andback	 to	 the	execution	 mode	 of	 the	 interpreter.	 The	 function	 you	 just	 edited	 isavailable	 for	 testing,	 but	 it	 is	 not	 yet	saved.	 To	 save,	 the	workspace	 should	 alreadyhave	a	name,	if	not,	then	do
)wsid ABC
)saveOf	course,	variables	will	also	be	saved.	A	saved	workspace	can	be	loaded	later	by
)load ABCELI	 does	 not	 support	 the)copy	 command	 to	 copy	 in	 a	 workspace	 on	 top	 of	 anexisting	 workspace.	Instead,	 if	 a	workspace	has	no	suspension,	 it	 can	be)out	 ..(seesection	 below),	 and	 then	 bring	 in	 back	by	 the	 command)in	 ..	 which	 differs	 from
)load	in	that	existing	variables	and	functions	previously	existed	would	remain,	but	incase	of	conflict,	those	in	conflict	will	be	replaced	by	newer	ones.ELI	 has	 control	 structures	 quite	 similar	 to	 those	 in	 C	 (control	 structures	 are	 notprescribed	 in	[1],	 and	not	 implemented	 in	 current	 IBM	 APL2	 but	 present	 in	 theproducts	 of	 other	 APL	 vendors).	 There	 are	Aive	 reserved	 words	 in	 ELI	 for	 controlstructures	if,	 else,	 case,	 for	 and	while	 and	 simple	 statements	 can	 be	 groupedtogether	by	a	pair	of	curly	brackets.	We	illustrate	their	use	with	a	recursive	function
rprime	for	finding	primes	up	to	n:
p<-rprime n;i
p<-2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
if (n<=100) p<-(n>=p)/p
else {pl<-#p<-rprime _.n*.0.5
 b<-n#0
for (i:1;pl) b<-b&n#(-p[i])^.1
 p<-p,1!.(~b)/!n
}This	 shows	 how	 control	 structures	 improve	 program	 readability	 when	 there	 arealternate	 choices	 and	irregular	 iteration	 while	 ELI	 boolean	 vector	 operations	 stillentice	a	succinct	dataflow	style	coding.

VECTOR Vol.26 No.1

99

J[10]	pushes	APL	to	be	more	abstract	in	the	direction	of	functional	programming,	butaims	 of	 ELI	 are	 fairly	 pragmatic:	 to	make	 classical	 APL	more	 accessible	 to	 generalpublic	 and	 easier	 to	mix	 with	 other	 application	 environments,	 and	 easycommunication	 such	 as	 pasting	 code	 in	 e-mails.	ELI	 also	 avoids	 the	 complexity	 ofnested	arrays	in	APL2	by	providing	lists	for	non-homogeneous	data.
3.	Scripting	Files	and	TestingWhile	workspace	 is	great	 for	program	development,	as	you	can	save	not	only	cleancode	 but	 partially	debugged	code	as	well,	 it	 takes	quite	 lot	of	 space	(in	 fact,	 the	oldAPL	idea	of	workspace	is	what	we	call	IDE	for	other	conventional	languages	today).When	your	workspace	contains	no	unresolved	error,	 i.e.	 the	 system	 indicator)SI	 isempty,	ELI	(follows	IBM	APL2)	let	you	output	the	content	of	your	clean	workspace	toa	transfer	Aile	by	the	system	command)out	fnam;	and	later	the	content	of	that	Aile	canbe	 brought	 back	 by)in fnam.	However,	 a	 transfer	 Aile	must	 Airst	 come	 from	someworkspace.	 It	is	rather	inconvenient	to	input	a	large	amount	of	data	or	functions	intoan	APL	workspace.	Hence,	we	introduced	 the	scripting	 Aile	 facility	 in	ELI	 to	directlybring	data	and	functions,	written	in	ordinary	text	Ailes,	into	ELI	system.	We	note	thatscripting	 Aile	 facility	 exists	 in	 another	 APL	 dialect,	 A+,	 developed	at	 MorganStanley[9],	but	there	is	no	workspace	facility	in	A+.A	scripting	Aile	can	contain	not	only	function	deAinitions,	as	you	would	write	them	inthe	 ELI	 editor	 in	the	 deAinition	 mode	 of	 the	 ELI	 interpreter,	 but	 also	 values	 forvariables.	To	do	that	you	put
&ABC I 2 50 80
…
&The	first	line	is	the	variable	name	followed	by	its	type	(B:boolean;	I:integer;	E:floatingpoint;	J:	complex	number;	C:character;	S:symbol;	D:datetime)	and	the	rank	and	shapeof	that	variable,	then	followed	by	the	value	of	the	variable	in	ravel	order.	To	load	in	ascripting	file	S,	type
)fload SThere	is	a	companion	command)fcopy S	for	copying	in	a	script	Aile	which	behavessimilar	 to)copy	of	a	workspace.	You	can	even	put	 in	executable	statements	such	as‘RPRIME 120’(where	RPRIME	 must	be	deAined	earlier)	 in	a	script	 Aile;	 that	statementwould	 then	 be	 executed	 at	 the	 time	 of	 loading/copying.	Hence,	 we	 can	 say	 thatscripting	Ailes	provide	a	batch	mode	execution	for	ELI.	A	scripting	Aile	can	also	includeother	system	commands	such	as)fload …,)fcopy …	to	bring	in	other	scripting	Ailes.For	 scripting	 Ailes,	 ELI	 also	 has	 a	 short-form	 function	 deAinition	 facility	 for	 simple

VECTOR Vol.26 No.1

100

functions	which	do	not	access	global	variables	as	follows
 {fnam: …}where	fnam	 is	 the	 name	 of	 a	 function;	 z	 is	 the	 result,	 or	 the	 last	 expression	 is	 theresult,	 of	 the	 function,	x	 is	 the	right	argument,	and	y	 is	 the	 left	argument	 if	present,and	all	other	variables	are	local;	comment	lines	must	be	outside	of	the	function	body
{..}.	 There	 is	 a	 standard	 library	standard.esf	 which	 includes	 the	 followingfunctions:
{avg: (+/x)%_1^.#x} //row-wise average of a numeric array
{gmean: (*/x)*.%#x} //geometric mean of a numeric vector
{intersect: (y?x)/y} //y intersects x, those in y which are from x
{less: (~y?x)/y} //elements in vector y which are not in x
{xor: 2|y+x} //exclusive or of boolean vectors y and x
{last: x[#x]} //last element of a vector
{triml: (&\x~=’ ’)/x} //trim leading blanks off a character vector
{trimr: $(&\r~=’ ’)/r<-$x} //trim trailing blanks off a character vector
{stddev: ((+/(x-avg x)*.2)%#,x)*.05}
 //standard deviation of vector x
{median: ((0.5*w[m]+w[m+1]),w[m<-_1+[]IO+~.0.5*#x])[[]IO+2|#w<-x[<x]]}
 //medianFollowing	examples	in	this	script	Aile,	one	can	easily	extend	the	ELI	language	to	havemany	built-in	functions	which	may	or	may	not	present	in	other	array	languages	suchas	 MATLAB	 or	 R.	 Since	 a	scripting	 Aile	 can	 contain)fcopy	 command	 lines	 in	 thebeginning,	 the	short	 function	form	can	be	utilized	by	users	 in	an	speciAic	applicationarea	 to	 group	 commonly	 used	 functions	 in	 a	 scripting	 Aile	similar	 to	 the	 use	 of
#include	to	bring	in	domain	speciAic	libraries	in	C.	In	addition	to	using	scripting	 Ailefor	input/output,	we	also	have	provided	a	link	between	ELI	and	Excel.For	APL	users	who	have	 legacy	APL	programs	which	do	not	 use	nested	 arrays,	weoffer	 an	 APL	program	 to	 translate	 APL	 source	 codes	 into	 ELI	 scripting	 Ailes.	 This,indeed,	 is	our	main	 tool	 for	testing	 the	ELI	 interpreter.	The	backbone	of	our	 testingprocedure	 follows	 the	 two-pronged	 strategy	 of	[5],	 i.e.	unit	 test	and	a	 large	suite	ofapplication	programs	translated	from	APL.	In	both	cases,	we	utilized	scripting	Ailes	toautomate	the	process	of	generating	input	suites	as	well	as	comparing	output	Ailes	 forcorrectness.	Yet	testing	an	interpreter	is	more	complicated	than	testing	a	compiler	asit	has	to	account	for	erratic	ways	a	user	types	in	codes,	and	that	can	only	be	tested	bythe	usage	of	many	users.
4.	ConclusionWe	 have	 described	 an	 array-oriented	 programming	 system	 called	 ELI,	 which	 isderived	 from	 APL	 but	uses	 ASCII	 characters.	 It	 remains	 to	 be	 simple,	 succinct	withexpressive	 power	 and	 encourages	 a	dataAlow	 style	 of	 programming	 as	 in	 APL.	 The

VECTOR Vol.26 No.1

101

addition	 of	 control	 structures	 aids	 to	 better	 present	complex	 code;	 and	 the	 newscripting	 Aile	 facility	 provides	 convenient	 means	 of	 input/output	 and	 let	 a	userorganize	programs	similar	to	the	use	of	#include	in	C.We	 hope	 the	 easy	 availability	 of	 such	 an	 array	 programming	 system	will	 let	 morepeople	 appreciate	 the	fact	 that	 simplicity	 of	 rules	 and	 notation	 in	 a	 programminglanguage	 leads	 to	greater	programming	productivity.	ELI	can	be	used	both	as	a	 toolfor	 speedy	 implementation	 of	 highly	 complex	 applications	as	 well	 as	 for	 rapidexperimentation	in	building	prototypes	in	search	for	an	ideal	design.
References1.	 	International	Organization	for	Standardization,	ISO	Draft	Standard	APL,	ACMSIGAPL	Quote	Quad,	vol.4,	no.2,	December,	1983.2.	 	Jeffery	Borror,	q	for	Mortals,	a	tutorial	in	Q	programming,	Continuux	LLC,	NewYork,	2008.3.	 	W.-M.	Ching,	The	Design	and	Implementation	of	an	APL	dialect,	ELI,	APL	Berlin2000	Proc.,	Berlin,	2000,	p69-76.	(http://fastarray.appspot.com/	for	documentsand	executable)4.	 	W.-M.	Ching,	A	Primer	for	ELI,	a	system	for	programming	with	arrays,preliminary	version,	2011.5.	 	W.-M.	Ching	and	Alex	Katz,	The	Testing	of	an	APL	Compiler,	ACM	SIGAPL	QuoteQuad,	vol.20,	no.1,	1993,	p55-62.6.	 	W.-M.	Ching	and	Da	Zheng,	Automatic	Parallelization	of	Array-oriented	Programsfor	a	Multi-core	Machine,	Int’l	Jour.	of	Parallel	Programming,	vol.	40,	no.5,	514-531,	2012.7.	 	Ken.	Iverson,	Notation	as	a	Tool	of	Thought,	Comm.	ACM,	vol.23,	no.8,	444-465,1980.8.	 	Lars	Wentzel,	CPAM,	Array	Structured	Product	Data	at	Volvo	Cars,	Conf.	Proc.,International	Conf.	on	APL,	Berlin,	Germany,	2010,	p199-208.9.	 	A+	developed	at	Morgan	Stanley	http://www.aplusdev.org10.	 	J	http://www.jsoftware.com

VECTOR Vol.26 No.1

102

 http://fastarray.appspot.com/
http://www.aplusdev.org
http://www.jsoftware.com

J
VECTOR Vol.26 No.1

103

J-ottings	56Trig	Time
by	Norman	Thomson

A	 general	 objective	 of	 J-ottings	 over	 the	 years	 has	 been	 to	 draw	 attention	 to	 theconsiderable	number	of	mathematical	or	mathematical	type	routines	which	are	builtinto	J	primitives	thereby	leading	to	signiAicant	reductions	of	programming	effort.	Onesuch	 feature	 is	 the	 versatility	 of	 j	 which	 although	 primarily	 a	 complex	numberconstructor	is	adaptable	to	other	circumstances	in	which	objects	are	deAined	by	pairsof	numbers,	for	example	betting	odds	(see	J-ottings	54).A	 further	 example	 concerns	 transformations	 of	 a	 2-dimensional	 plane	 by	means	 ofmatrices	of	the	form
M = (a -b

b a)where	a	and	are	b	real	numbers.	A	transformation	such	as
M = (xy)is	called	a	similitude,	that	is	a	transformation	which	results	in	the	combination	of	an

anti-clockwise	 rotation	 about	 the	 origin	and	 an	enlargement	 of	 the	 objectsdescribed	 by	 the	 coordinates.	 (For	 a	 clockwise	rotation	 exchange	 b	 and	 –b).	Given
det=.-/ .*	 standing	 for	 determinant,	 det	 M	 is	 a²	 +	 b²	and	 its	square	 root	 is	 theenlargement	E.	The	rotation	component	is	represented	by	M	divided	by	E,	resulting	ina	matrix	of	the	form

M = (cos t −sin t
sin t cos t)where	t	is	the	anti-clockwise	angle	of	rotation.Now	although	a	similtude	could	be	applied	to	a	triangle	whose	points	are,	say,	(0,0),(2,1)	and	(0,1)	by

]M=.2 2$2 _3 3 2 NB. similitude matrix
2 _3
3 2

VECTOR Vol.26 No.1

104

]tri=.2 3$0 2 0 0 1 1
0 2 0
0 1 1
 M +/ .*tri
0 1 _3
0 8 2to	give	the	transformed	triangle	(0,0),	(1,8),	(-3,2),	clearly	M	is	deAined	by	the	numberpair	(a,b)	and	so	can	be	represented	compactly	as	a	j	pair,	in	which	case	enlargementE	and	rotation	t	are	given	by	:

 10 o. 2j3
3.60555 NB. enlargement=sqrt of 2^2 + 3^2
 (%10&o.)2j3
0.5547j0.83205 NB. (cos x)j(sin x) where tan x=3%2 Instead	of	using	a	matrix	 inner	product	 to	 transform	points,	 simple	multiplication	 isall	that	is	required,	so	that	the	previous	triangle	transformation	is	given	by
 each=.&>
 2j3*each 0j0 2j1 0j1 NB. triangle transformation
0 1j8 _3j2Also	 since	 multiplication	 is	 commutative,	 a	 product	 such	 as	2j3*2j1	 has	 twogeometric	interpretations,	 viz.	 the	 similtude	2j3	 transforms	 the	 point	 (2,1)	 to	 thepoint	(1,8)	and	the	similtude	2j1	transforms	the	point	(2,3)	to	(1,8).For	 rotation	without	enlargement	 the	 transformed	coordinates	of	 the	point	 (x,	y)	 inthe	new	frame	of	reference	are

(cos t −sin t
sin t cos t)(xy) = (x cos t − y sin tx sin t + y cos t)which	can	be	confirmed	by	elementary	trigonometry:

The	components	of	displacement	from	{x,	y}	are	thus
(x cos t − y sin t
x sin t + y cos t) or (x(cos t −1) − y sin tx sin t + y(cos t −1))

VECTOR Vol.26 No.1

105

which	can	be	written
−(1− cos t)(xy)− sin t(x−y)The	object	of	this	rearrangement	will	become	apparent	shortly.

Rotations	in	three	dimensionsHere	the	geometry	is	more	complicated	and	j	no	longer	helps.	Take	those	rotations	inwhich	 any	 line	through	 the	 origin	may	be	 chosen	 as	 axis.	DeAine	 such	 a	 rotation	byany	point	on	it	other	than	the	origin,	and	normalise	this	so	that	the	deAining	point	lieson	 the	unit	 sphere.	The	 results	of	 this	normalisation	are	 the	direction	cosines	of	 theaxis	of	rotation,	that	is	the	cosines	of	the	angles	which	this	axis	makes	separately	witheach	of	the	coordinate	axes	:
 dircos=.% %:@(+/@:*:) NB. direction cosines
 dircos 3 4 5
0.424264 0.565685 0.707107 A	necessary	 preliminary	 is	 to	 obtain	 the	 cross-product	 of	 the	 rotation	 vector	 and	 apoint	 to	 be	 rotated.	To	 my	 knowledge	 there	 is	 no	 primitive	 which	 delivers	 cross-products	directly,	however	it	is	a	reasonably	straightforward	to	write	a	verb	xp.	Firststitch	3	4	5	 (deAining	 the	 axis)	 to	1	2	3,	 a	point	 to	 rotated,	and	use	 the	 ‘all	 but	one’technique	 described	 in	 J-ottings	 52	 to	 obtain	 the	 submatrices	 obtained	 byprogressively	eliminating	 one	 row	 at	 a	 time.	The	 determinant	 of	 each	 of	 these	 2x2matrices	is	required	with	a	suitable	adjustment	for	alternating	signs	leading	to	:
xp=.4 : '1 _1 1*det each<"(2) 1+\.(dircos x),.y'One	other	requirement	is	an	identity	matrix	of	appropriate	length	:
 id=.=@i.@# NB. identity matrix Now	suppose	the	anti-clockwise	angle	of	rotation	looking	outwards	from	the	origin	ist.	By	a	pleasing	analogy	with	the	two	dimensional	case	the	displacement	componentsare
- (1 - cos t) times <a vector> - sin t times <a cross-product>Where	‘a	vector’	is	the	result	of	the	matrix	multiplication

VECTOR Vol.26 No.1

106

(1−λ12 −λ1λ2 −λ1λ3
−λ1λ2 1−λ22 −λ2λ3
−λ1λ3 −λ2λ3 1−λ32

)(xyz)
in	 which	 the	 λs	 are	 the	 direction	 cosines	 of	 the	 axis	 of	 rotation.	The	 parametersdeAining	 a	 rotation	are	 thus	 an	 axis	 (three	 coordinates)	 joined	 to	 the	 angle	 t,	 and	 itseems	natural	 to	 take	 this	 4-element	 vector	 as	the	 left	 argument	of	 a	 rotation	verb.Also	many	people	are	more	comfortable	with	degrees	rather	than	radians,	so	define	:
dtor=.180%~o. NB. degrees to radians rm	deAines	the	rotation	matrix	above	and	rmdata	multiplies	it	with	the	coordinates	ofthe	data	point	being	rotated	:
rm =.(id - */~)@dircos NB. rotation matrix
 rm 3 4 5
 0.82 _0.24 _0.3
_0.24 0.68 _0.4
 _0.3 _0.4 0.5
 rmdata=.rm@dircos@(}:@[) +/ .*]
 (3 4 5,dtor 60) rmdata 1 2 3
_0.56 _0.08 0.4(As	an	aside,	taking	the	z	axis	as	axis	of	rotation	(0	0	1)	so	that	λ3	=	1	and	λ	1	=	λ2	=	0gives
 rm 0 0 1
1 0 0
0 1 0
0 0 0

which	multiplies	(xyz)	to	give	(xy0)	,	while	the	cross-product	of	(0 x
0 y
1 z)	is	(−yx0)	so	that	this	reducesto	the	formula	given	earlier	for	the	two-dimensional	case.)Next	deAine	m1	and	m2,	bearing	in	mind	that	t	has	to	be	extracted	as	the	4th	elementof	the	rotation	vector:

 m1=.-.@(2&o.@({:@[)) NB. (1-cos t)
 m2=.1&o.@({:@[) NB. sin tFinally	reflect	the	formula	for	the	displacement	components	in
 rotate=.] - (m1 * rmdata) + m2 * }:@[xp]
 (1 0 0,dtor 90)rotate 1 2 3
1 3 _2

VECTOR Vol.26 No.1

107

A	couple	of	further	checks	helps	confirm	understanding	:(a)	Rotate	the	point	(1,2,3)	through	a	clockwise	angle	of	90o	about	the	x-axis:
 (1 0 0,dtor _90)rotate 1 2 3
1 _3 2(b)	Undo	a	clockwise	rotation	of	(1,2,3)	with	an	anti-clockwise	one	:
 axis=.?3$10 NB. choose an axis at random
 (axis,dtor 60)rotate (axis,dtor _60)rotate 1 2 3
1 2 3Multiple	data	points	are	dealt	with	by,	for	example
 (<3 4 5,dtor 60)rotate each 1 2 3;2 3 1;3 1 2
1.03505 2.5299 2.55505
3.03722 1.56268 1.52753
1.82258 0.31773 3.25227 For	practical	uses	consider	 that	every	minute	of	every	day	we	all	perform	rotationson	 a	 merry-go-round	 called	Earth	 which	 itself	 rotates	 continuously	 within	 an	 evenlarger	solar	system	which	itself	gyrates	around	another	even	larger	system	and	so	on.Alternatively,	from	an	earth-bound	view,	units	of	this	larger	system	are	in	a	 perpetualstate	of	3-D	rotation	about	what	appears	to	us	as	a	Aixed	axis.	Perhaps	there’s	an	ideahere	for	next	time	…

VECTOR Vol.26 No.1

108

L-systems	in	J
R.E.	Boss	(r.e.boss@planet.nl)

IntroductionThere	 are	 not	many	 examples	 of	 repeated	 squaring	[1],	but	 I	 stumbled	upon	a	newone	in	2006,	solving	a	problem	posed	by	Bron	[2].	To	explain	it	I	use	some	examplesand	some	theory,	but	then	a	new	method	is	introduced	in	J.	The	term	L-system	in	thetitle	is	short	for	Lindenmayer	system	[3]	[4].
Rabbit	sequenceThis	is	an	inAinite	sequence	[5]	of	booleans	which	has	the	property	that	if	one	changeseach	0	to	a	1	and	every	1	to	the	pair	1	0	,	the	sequence	does	not	change.
1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1
1 0 1 0 1 1 0 1 1 0 1 ….Notice	that	this	is	the	Algae	example	[6]	in	[3].
Lindenmayer	systemsAn	L-system	is	a	parallel	rewriting	system,	i.e.	consisting	of	an	alphabet	V	of	symbolswhich	 can	 be	 replaced,	a	 set	 of	 (production)	rules	P	 such	 that	 each	 rule	 replaces	 aparticular	symbol	of	V	in	a	string	of	symbols	(from	V),	and	an	initial	symbol	S	to	whichthe	rules	subsequently	are	applied.All	rules	are	applied	at	the	same	time,	therefore	the	system	is	parallel.In	 fact	P	 is	 a	 mapping	 from	V	 →	 V*,	 the	set	 of	 all	 strings	 with	 symbols	 from	V,including	the	empty	string.	If	for	some	a	∈	V	one	has	P(a)=s,	with	s	some	string,	this	isalso	denoted	by	a	→	s.If	for	a	symbol	c	in	V	one	has	P(c)	=	c,	then	c	is	called	a	constant.If	a	symbol	in	V	is	not	a	constant,	then	it	is	called	a	variable.In	the	example	of	the	rabbit	sequence,	V	is	the	set	of	booleans	{0,1}.The	rules	are	P(0)	=	1	and	P(1)=	1	0	and	the	initial	symbol	S	is	0.

VECTOR Vol.26 No.1

109

L-systems	in	JTo	apply	J	 [7]	in	producing	an	L-system,	I	prefer	the	alphabet	V	to	be	a	set	of	integers,say	{0,1,…,n-1},	such	that(mostly)	S	is	represented	by	0.Then	the	mapping	P	can	be	represented	by	an	array	of	boxes,	all	of	which	contain	anarray	of	integers	form	V.	The	production	rules	are	then	P(k)	=	;k{P.So	for	the	rabbit	sequence	we	get	V =: 0 1,	S =: 0	and	P =: 1; 1 0	.Now	the	verb	to	produce	the	next	generations	of	S	is	easy	to	construct:
 P {~ S
+-+
|1|
+-+

 P {~^:2 S
+---+
|1 0|
+---+But	after	that	we	get	a	problem:
 P {~^:3 S
|length error
| P {~^:3 SThis	can	easily	be	repaired	by	the	following	verb:
 P ([:; {~)^:3 S
1 0 1 And	now	we	can	get	a	rabbit	sequence	of	any	length:
 P ([:; {~)^:20 S
1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1
1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1
0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1
0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 …Which	can	be	given	a	bit	more	sophisticated	by	P ([:; {~)^:(]`(S"_)) 20Notice	 that	 if	 the	production	 rules	all	have	 the	 same	 length,	no	 boxing	 is	 needed,	inwhich	case	the	;	in	the	expression	is	replaced	by	a	,	.

VECTOR Vol.26 No.1

110

More	examplesSome	examples	from	[3]	are	Cantor	dust	[7]	and	Koch	curve	[8].The	first	is	given	in	J	by	V =: 0 1,	S =: 0	and	P=: 0 1 0; 1 1 1	so
 P ([:; {~)^:(]`(S"_)) 3
0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0Where	0	represents	black	and	1	represents	white.The	Koch	curve	[8]	is	given	by
 V=:0 1 2, S =: 0and
 P=: 0 1 0 2 0 2 0 1 0; 1; 2

 P ([:; {~)^:(]`(S"_)) 3
0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 0 1 0 2 0 1 0 2 0 2 0 1 0 2 0 1 0 2 0 2 0
1 0 1 0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 0 1 0 2 0 1 0 2
0 2 0 1 0 2 0 1 0 2 0 2 0 1 0 1 0 1 0 2 0 2 0 1 0 2 0 1 0 2 0 2 0 1 0 1 0
1 0 2 0 2 0 1 0 2 0 1 0 2 0 2 0 1 …With	the	graph	below.

Given	these	examples,	anybody	can	make	her	own.
Repeated	squaringNow	the	question	(with	which	I	perhaps	whetted	your	appetite)	in	the	introduction	isstill	open,	what	about	repeated	squaring?If	you	look	at	the	verb	P ([:; {~)^:(]`(S"_))	it	is	obvious	the	behaviour	is	ratherlinear.	 In	 each	 iteration	 a	 string	 is	 used	 to	 apply	P	 on	 the	individual	 symbols	 of	 thestring	and	the	results	are	concatenated.Now	consider	Pk	which	is	the	mapping	applied	k	times	(on	S	which	is	0).	It	is	easy	toconstruct	in	J	by	(;@:{&.> <)^:(k-1)~ P	.

VECTOR Vol.26 No.1

111

If	we	apply	this	to	the	rabbit	sequence	(V =: 0 1, S =: 0,P =: 1; 1 0)	we	get
 (;@:{&.> <)^:(<4)~ P
+---------+---------------+
|1 |1 0 |
+---------+---------------+
|1 0 |1 0 1 |
+---------+---------------+
|1 0 1 |1 0 1 1 0 |
+---------+---------------+
|1 0 1 1 0|1 0 1 1 0 1 0 1|
+---------+---------------+As	soon	as	(some	of)	these	Pk	are	known,	repeated	squaring	can	start:
binind=: I.@|.@#:	NB.	The	binary	indices	are	determined
appl=: (;@:{&.> <)	NB.	Applying	the	main	verb
rs=: 4 : '> {. appl/ appl^:(binind y) x'	 NB.	x	 equals	 P	 and	y	 is	 thegeneration	giving	the	complete	solutionThe	Aigures	show	that	the	performance	is	what	you	would	expect,	much	better,	whilethe	output	is	the	same:
 ts'P ([:; {~)^:(]`(S"_))35'
0.50670696 1.6777933e8

 ts'P rs 35'
0.022058907 79695232

 (rs-:P ([:; {~)^:(]`(S"_))]) 35
1 In	this	example	we	can	do	even	better,	since	for	the	rabbit	sequence	we	have	Pk+1	=
Pk	,	Pk-1	,	indeed	Fibonacci!
 ts'3 : '';|. appl/ appl^:(]`(P"_)) binind y-2''35'
0.012114756 46154880So	 this	 gives	 a	 solution	which	 is	 about	40	 times	 as	 fast	 and	3.5	 times	 as	lean	as	 theoriginal	one.
Final	example,	Gray	codesThe	 least	 I	 owe	 the	 reader	 is	 the	 solution	 I	 found	 for	 the	 problem	 of	Bron	[2].	 Heasked	 for	 the	 most	 efAicient	 verb	 to	generate	 the	 Gray	 code,	 see	[9]	 and	[10].Fortunately	he	also	allowed	to	generate	the	decimal	values	of	that	code,	which	for	thefirst	64	numbers	look	like:

VECTOR Vol.26 No.1

112

G=: 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23
22 18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42
46 47 45 44 36 37 39 38 34 35 33 32 .The	fractal	structure	of	the	code	becomes	apparent	if	you	do
 2-~/\ G
1 2 _1 4 1 _2 _1 8 1 2 _1 _4 1 _2 _1 16 1 2 _1 4 1 _2 _1 _8 1 2 _1 _4 1 _2
_1 32 1 2 _1 4 1 _2 _1 8 1 2 _1 _4 1 _2 _1 _16 1 2 _1 4 1 _2 _1 _8 1 2 _1
_4 1 _2 _1 .To	not	let	grow	the	numbers	too	quickly,	I	transformed	it	in
 G1=: (** 2^. 2* |) 2-~/\ 64{.G
1 2 _1 3 1 _2 _1 4 1 2 _1 _3 1 _2 _1 5 1 2 _1 3 1 _2 _1 _4 1 2 _1 _3 1 _2
_1 6 1 2 _1 3 1 _2 _1 4 1 2 _1 _3 1 _2 _1 _5 1 2 _1 3 1 _2 _1 _4 1 2 _1
_3 1 _2 _1 .By	the	way,	this	representation	of	the	(binary	reAlected)	Gray	code	has	a	very	usefulinterpretation:	 each	 number	 gives	 by	 its	 absolute	 value	 the	coordinate	 where	 twoconsecutive	code	words	differ,	and	by	its	sign	how	they	differ:	+	if	0→1	and	–	if	1→0.So	 I	 deAined	V	 to	 be	 the	 set	 of	 integers	 and	S=:1	 .	But	 most	 important	 was	P.	 Toproduce	G1,	I	defined
 P=: 1; 1 2 _1; 3; 4; 5; 6;(…); _6; _5; _4; _3;1 _2 _1Notice	that	in	fact	P	is	infinite,	which	is	indicated	by	the	(…).Notice	 also	 that	 (P{~ –n) -: |.- n{ P	 for	 n	 >	 0,	 so	 in	general	 we	 have
P=:3 :'1; (, [:|. -@|.&.>) 1 2 _1; ;/3+ i.y'n	for	some	n,	like
 [P=:3 :'1; (, [:|. -@|.&.>) 1 2 _1; ;/3+ i.y'6
+-+------+-+-+-+-+-+-+--+--+--+--+--+--+-------+
|1|1 2 _1|3|4|5|6|7|8|_8|_7|_6|_5|_4|_3|1 _2 _1|
+-+------+-+-+-+-+-+-+--+--+--+--+--+--+-------+The	 only	 thing	 one	 has	 to	 do	 is	 to	 transform	 this	 resulting	 fractal	 in	 the	Gray	 codeagain,	ie	to	invert	(** 2^. 2* |)	and	precede	it	by	0	:
 +/\0,(** 2%~ 2^|) P rs 6
0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22
18 19 17 16 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42
46 47 45 44 36 37 39 38 34 35 33 32 which	is	equal	to	the	original	G.	This,	 in	principle,	gives	the	 impressive	performanceresults	in	[2].

VECTOR Vol.26 No.1

113

ConclusionsUsing	 L-systems	 in	 J	 is	 a	 powerful	 technique	 for	 generating	 all	 kinds	 of	 fractal	 likestructures.	In	 a	 next	 paper	 I	 will	 describe	 how	 to	 transform	 these	 arrays	 in	 nicegraphs	using	the	plot	facility	of	J.
Bibliography1.	 RepeatedSquaring.	[Online].	http://www.jsoftware.com/jwiki/Essays/Repeated%20Squaring.2.	 Bron.	[Online].	http://www.jsoftware.com/jwiki/Puzzles/Gray%20Code.3.	 Lindenmayer1.	[Online].	http://en.wikipedia.org/wiki/L-system.4.	 Lindenmayer2.	[Online].

http://mathworld.wolfram.com/LindenmayerSystem.html.5.	 RabbitSequence.	[Online].	http://www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fibonacci/fibrab.html.6.	 Algae.	[Online].	http://en.wikipedia.org/wiki/L-system#Example_1:_Algae.7.	 CantorDust.	[Online].	http://en.wikipedia.org/wiki/L-
system#Example_3:_Cantor_dust.8.	 KochCurve.	[Online].	http://en.wikipedia.org/wiki/L-
system#Example_4:_Koch_curve.9.	 GrayCode1.	[Online].	http://en.wikipedia.org/wiki/Gray_code.10.	 GrayCode2.	[Online].	http://www.jsoftware.com/jwiki/Essays/Gray%20Code.

VECTOR Vol.26 No.1

114

http://www.jsoftware.com/jwiki/Essays/Repeated Squaring
http://www.jsoftware.com/jwiki/Puzzles/Gray Code
http://en.wikipedia.org/wiki/L-system
http://mathworld.wolfram.com/LindenmayerSystem.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrab.html
http://en.wikipedia.org/wiki/L-system#Example_1:_Algae
http://en.wikipedia.org/wiki/L-system#Example_3:_Cantor_dust
http://en.wikipedia.org/wiki/L-system#Example_4:_Koch_curve
http://en.wikipedia.org/wiki/Gray_code
http://www.jsoftware.com/jwiki/Essays/Gray Code

Backgammon	tools	in	J4:	Ace-point	Bearoffs
Howard	A.	Peelle	(hapeelle@educ.umass.edu)

J	programs	are	presented	as	analytical	tools	for	expert	backgammon	to	compute	theprobability	of	winning	a	two-sided	bearoff	with	stacks	of	pieces	on	both	ace	points,	togenerate	binary	probability	trees,	and	to	solve	a	related	problem.Utility	programs:
 ELSE =: `
 WHEN =: @.
 X =: [
 O =:]The	 probability	 of	 the	 Airst	 player	 (X)	 winning	 is	 1	 minus	 the	 probability	 for	 thesecond	 player	 (O)	 --	 which	 is	 the	 sum	 of	 probabilities	 for	 rolling	 double	 dice	andsingle	dice	--	or	else	the	default	1	when	there	are	no	pieces	left:
Ace =: (1: - Double + Single) ELSE 1: WHEN (X<1:)The	 probability	 of	 double	 dice	 is	1%6	 times	 the	 result	 of	Ace	 for	 the	 second	 player(now	 Airst,	 due	 to	switching	 turns)	with	 the	 same	number	 of	 pieces	 to	 bear	 off	 andfour	less	for	the	Airst	player	(now	second).	The	probability	of	single	dice	is	similar,	buttwo	less:
 Double =: (1:%6:) * O Ace X-4:
 Single =: (5:%6:) * O Ace X-2:An	alternative	definition:
Ace =: (1: - Double + Single)~ ELSE 1: WHEN (<1:)

 Double =: (1:%6:) * (Ace (-4:))
 Single =: (5:%6:) * (Ace (-2:))For	example,	the	winning	probability	for	the	first	player	with	8	pieces	vs.	6	pieces	is:
 8 Ace 6
0.301055

VECTOR Vol.26 No.1

115

Here	is	a	table	of	such	probabilities	for	all	odd-numbered	stacks:
 5.2 ": 1 3 5 7 9 11 13 15 Ace"0/ 1 3 5 7 9 11 13 15
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 0.17 0.86 1.00 1.00 1.00 1.00 1.00 1.00
 0.00 0.25 0.79 0.98 1.00 1.00 1.00 1.00
 0.00 0.02 0.30 0.75 0.96 1.00 1.00 1.00
 0.00 0.00 0.05 0.33 0.72 0.93 0.99 1.00
 0.00 0.00 0.00 0.08 0.35 0.70 0.91 0.99
 0.00 0.00 0.00 0.01 0.10 0.36 0.68 0.90
 0.00 0.00 0.00 0.00 0.02 0.12 0.37 0.67Results	for	even	numbers	one	larger	(Ace"0/~ +:>:i.8)	are	the	same.	These	resultscan	 be	 conAirmed	 by	 program	Pwin	 in	[3]	 using	 probability	 distributions.	Forexample,	8 0 0 0 0 0 Pwin 6 0 0 0 0 0 is 0.301055.Now	generalize	these	programs	to	generate	a	binary	tree	for	any	input	probability	P(and	its	complement)	to	a	given	level	L:
 P =: [
 L =:]

BTree =: (Left,Right) ELSE 1: WHEN (L<1:)

 Left =: P * P BTree L-1:
 Right =: -.@P * P BTree L-1:This	can	be	used	to	generate	probabilities	for	n-roll	bearoffs.	For	example,	to	bear	off3	pairs	of	pieces:
 1r6 BTree 3
1r216 5r216 5r216 25r216 5r216 25r216 25r216 125r216The	 sum	 of	 any	p BTREE n	 is	 1,	 and	 the	 previous	 level	p BTREE n-1	 can	 bereconstructed	by	_2 +/\ p BTree n.	The	whole	tree	is:
 1r6 BTree"0 i.4
 1 0 0 0 0 0 0 0
 1r6 5r6 0 0 0 0 0 0
 1r36 5r36 5r36 25r36 0 0 0 0
1r216 5r216 5r216 25r216 5r216 25r216 25r216 125r216

ProblemHere	is	a	related	conundrum	to	solve:	Given	a	stack	of	pieces	on	the	ace-point,	what	isthe	probability	 of	 bearing	 off	 the	 Ainal	 pieces	with	 a	 doubles	 on	 the	 last	 roll?	[Thisproblem	 was	 posed	 by	 Walter	 Trice,	 well-known	 backgammon	 author	 and	world-class	player.]	See	end	of	article	for	answer.

VECTOR Vol.26 No.1

116

It	 is	 easy	 to	 modify	BTree	 to	 produce	 an	 asymmetric	 binary	 tree	 by	 truncating	 abranch:
BTreeA =: (LeftA , RightA) ELSE 1: WHEN (L<1:)

 LeftA =: P * P BTreeA L-2:
 RightA =: -.@P * (P BTreeA L-1:) ELSE 0: WHEN (L<2:)Use	it	to	explore	the	problem:
 +/ 1r6 BTreeA 8 or +/ (1%6) BTreeA 8
479891r1679616 0.285715Or,	use	a	variant	of	Ace	(above):
DoubleOffAce =: (D + S) ELSE 1: WHEN (<1:)

 D =: (1:%6:) * DoubleOffAce@(-4:)

 S =: (5:%6:) * DoubleOffAce@(-2:) ELSE 0: WHEN (<3:)For	instance,	DoubleOffAce 15	is	0.285715.
AnswerThe	probability	of	bearing	off	a	stack	on	the	ace-point	with	doubles	is	2%7.
+/"1 (1r6 BTreeA)"0 i.10	 shows	 oscillating	 convergence,	or
DoubleOffAce"0 i.20	(in	pairs).
References1.	 Peelle,	Howard	A.	“Backgammon	Tools	in	J	(Part	1)	Bearoff	Expected	Rolls”,Vector,	Vol.	24,	No.	2&32.	 Peelle,	Howard	A.	“Backgammon	Tools	in	J	(Part	2)	Wastage”,	Vector,	Vol.	24,	No.43.	 Peelle,	Howard	A.	“Backgammon	Tools	in	J	(Part	3)	Two-sided	BearoffProbabilities”,	Vector,	Vol.	25,	No.	4

VECTOR Vol.26 No.1

117

Fibonacci	and	golden	spirals
Cliff	Reiter	(reiterc@lafayette.edu)

A	spiral	of	 squares	with	Fibonacci	 edge	 lengths	 is	 created	 in	 J.	 Spiral	Fibonacci	 andGolden	curves	are	also	explored.
1.	IntroductionDuring	renovations	of	an	abandoned	farmhouse	much	demolition	debris	was	created.Almost	 all	 of	 it	went	 to	 the	dump,	 but	 occasionally	 a	 piece	 of	 old	wood	was	 saved.Such	 a	 pine	 board	 seemed	 well	 suited	 to	 make	 a	 two	 faced	 clock	 for	 a	 partitionexposing	post	and	beam	construction.	I	considered	several	natural	and	mathy	designsfor	the	clock.	 I	decided	a	golden	ratio	rectangle	would	have	a	nice	overall	 form	andsoon	 focused	 on	 a	 Fibonacci	 spiral	 of	 squares	 that	 would	 approximate	 the	 goldenratio	and	illustrate	the	proof	of	a	Fibonacci	identity.The	 Fibonacci	 sequence	may	 be	 deAined	 by	F1=1,	F2=1,	 and	Fj=Fj-1+Fj-2	 for	 integerindices	j	 greater	 than	 2.	 The	 Fibonacci	 sequence	 has	many	 remarkable	 properties,surprising	applications	and	lovely	connections	to	nature.	[1],[2],[4],[6],[7]We	 can	 implement	 a	 verb	 to	 generate	 the	 positive	 Fibonacci	 sequence	 of	 speciAiedlength	 (greater	 than	 or	 equal	 to	 2)	 as	 follows.	 The	 verb	 iterates	 the	 process	 ofappending	the	sum	of	the	last	two	items	an	appropriate	number	of	times.
 pos_fib_seq=:3 : '(,[:+/ _2&{.)^:(y-2) 1 1'

 pos_fib_seq 8
1 1 2 3 5 8 13 21
 If	we	place	two	1	by	1	squares	adjacent	along	an	edge	then	the	assembly	forms	a	1	by2	rectangle.	 If	we	put	a	2	by	2	square	adjacent	to	the	length	2	edge	of	that,	 the	newassembly	forms	a	2	by	3	rectangle.	If	we	put	a	3	by	3	square	adjacent	to	the	length	3edge,	then	the	new	assembly	forms	a	3	by	5	rectangle.	We	can	continue	this	processresulting	in	a	Fj	by	Fj+1	assembly	at	the	jth	stage.We	organize	the	placement	of	the	edges	so	that	we	adjoin	edges	sequentially	on	thesouth	edge,	east	edge,	north	edge	and	then	west	edge	and	then	continue	repeatedly.	Aspiral	pattern	of	squares	with	edge	lengths	given	by	the	Fibonacci	numbers	develops.

VECTOR Vol.26 No.1

118

See	Figure	1	for	a	hand	sketch	of	the	idea	we	have	in	mind	for	the	spiral	of	squaresand	a	Fibonacci	spiral.	Notice	the	spiral	curve	is	tangent	to	the	intersection	points	asshown.	We	will	describe	one	way	to	define	such	a	spiral	curve	in	Section	3.

Figure	1.	Rough	sketch	of	a	spiral	of	Fibonacci	squares	and	a	spiral	curve.

In	the	next	section	we	will	discuss	J	verbs	to	create	these	spiral	assemblies	of	squares.Then	we	will	look	at	spiral	curves	that	"fit"	the	pattern	of	squares.
2.	Assembling	the	Fibonacci	spiral	of	squaresWe	 begin	 by	 deAining	 matrix	fs_sq1	 (Fibonacci	 spiral	 square	 of	 size	 1)	 with	 rowsgiving	the	vertices	of	the	unit	square	with	diagonal	corners	at	(0,0)	and	(1,1).
]fs_sq1=:#:0 2 3 1
0 0
1 0
1 1
0 1
 The	main	function	draw_fib_sqs,	deAined	below,	organizes	the	overall	assembly.	Itsargument	is	the	number	of	squares	to	create.	It	 initializes	three	global	variables	andthen	updates	 them	at	each	stage.	At	each	stage,	 the	next	square	will	be	a	 translatedversion	of	the	unit	square	fs_sq1	multiplied	by	the	current	Fibonacci	number.	Sincethe	 details	 depend	 upon	 the	 side	we	 adjoin	 the	 next	 square,	we	 organize	 by	 cases,according	 to	 the	 stage	modulo	 4.	 The	 three	 global	 variables	 are	 updated	 using	 theconjunction	nx_fs_sq.The	 three	 global	 variables	 are	 the	 bounds	 of	 the	 assembly,	fs_wsen,	 (Fibonaccispiral:	 west-south-east-north),	 and	 the	 list	 of	 squares,	fs_sqs,	 that	 form	 the	 spiral

VECTOR Vol.26 No.1

119

pattern	and	 the	 list	of	 arcs,	fs_arcs,	 giving	a	spiral	curve.	We	will	not	 fully	discussthe	 arcs	 until	 the	 next	 section.	 Looking	 at	 the	 core	 conjunction,	nx_fs_sq	 (nextFibonacci	spiral	square),	it	updates	the	bounds	of	the	assembly	at	each	stage	using	theglobal	variable	fs_wsen	by	adding	or	subtracting	a	Fibonacci	number	correspondingto	the	 just	 joined	square.	The	conjunction	also	adds	a	new	square,	nsq	to	 the	globallist	fs_sqs	 that	gives	a	 list	of	 the	coordinates	of	each	of	 the	squares.	And	the	 list	ofarcs,	fs_arcs	 is	 updated.	 Notice	 that	 the	 new	 square	nsq	 is	 translated	 so	 that	 thelower	left	has	the	appropriate	coordinates.	As	we	noted,	the	details	of	how	to	do	thatdepend	upon	the	side	we	adjoin	the	next	square.For	 example,	 when	 we	 adjoin	 a	 new	 square	 to	 the	 west,	 the	 Airst	 two	 entries	 of
fs_wsen	 give	 the	position	of	 the	 lower	 left	 corner.	However,	when	adjoining	 to	 theeast,	the	upper	right	coordinates	are	available	from	fs_wsen	but	we	need	to	subtractthe	 current	 Fibonacci	 number	 from	 those	 coordinates	 to	 obtain	 the	 lower	 left.	 Theconjunction	nx_fs_sq	 accomplishes	 these	 tasks.	 It	 also	 presumes	 a	 global	 variable
F_j	giving	the	current	Fibonacci	number	exists.	Note	that	we	use	fibs	as	a	local	listof	positive	Fibonacci	numbers	and	index	to	it	to	obtain	F_j.	The	for-loop	runs	throughall	 those	 Fibonacci	 numbers;	 however,	 its	 indices	 are	 one	 off	 from	 the	 standardindices	of	the	Fibonacci	numbers.The	arguments	to	nx_fs_sq	are	as	follows:	x	which	gives	a	unit	vector	specifying	thedirection	 in	which	wsen	 should	 be	modiAied,	m	which	gives	 the	 indices	of	wsen	 thatgive	 a	 corner	 of	 the	 square,	n	 which	 is	 used	 to	 translate	 the	 Airst	 entry	 in	 the	 newsquare	to	be	the	lower	left	corner	of	nsq,	and	y	which	gives	the	indices	of	the	pointsof	nsq	on	the	arc	that	should	be	drawn	to	get	the	Fibonacci	spiral.	The	main	function
draw_fs_sqs	also	plots	the	spiral	of	squares.The	functions	require	that	we	load	two	scripts	from	the	add-ons	to	give	some	utilitiesfor	interactively	plotting	polygons	and	deAining	a	nice	colour	sequence.	If	you	want	toduplicate	 these	 experiments	 you	 should	have	downloaded	 the	 add-ons	 required	 forthe	 scripts	 below	 (currently	 these	 are	 available	 for	 J6.02,	 32	 bit	[3]).	 A	 scriptcontaining	the	J	expressions	in	this	note	may	be	found	at	[5].
 load '~addons/graphics/fvj3/dwin2.ijs'

 load '~addons/media/image3/image3.ijs'

 draw_fs_sqs=:3 : 0
fibs=.pos_fib_seq y
fs_wsen=: 0 0 0 1
fs_sqs=: i. 0 4 2
fs_arcs=: i.0 8
for_J. i. y do.
 F_j=:J{fibs
 select. 4|J

VECTOR Vol.26 No.1

120

 case. 0 do. NB. add onto west
 _1 0 0 0 (0 1 nx_fs_sq 0 1) 2 0
 case. 1 do. NB. add onto south
 0 _1 0 0 (0 1 nx_fs_sq 0 0) 3 1
 case. 2 do. NB. add onto east
 0 0 1 0 (2 3 nx_fs_sq 1 0) 0 2
 case. 3 do. NB. add onto north
 0 0 0 1 (2 3 nx_fs_sq 1 1) 1 3
 end.
end.
range=.(2 3{fs_wsen)-0 1{fs_wsen
WIN_WH=:range*<.<./0.8*(_2{.".wd'qm')%range
fs_wsen dwin 'Fibonacci Spiral'
(Hue *:(i.%])#fs_sqs) dpoly fs_sqs
)

 nx_fs_sq=:2 : 0
:
fs_wsen=:fs_wsen+x*F_j
nsq=.((m{fs_wsen)-F_j*m-:2 3)+"1 fs_sq1*F_j
fs_sqs=:fs_sqs,nsq
fs_arcs=: fs_arcs,((0{nsq)-n*F_j),(2#2*F_j),,y{nsq
)Now	we	 can	 run	 an	8	 square	 spiral.	 The	 result	 is	 shown	 in	 Figure	 2	 and	 the	 list	 ofsquares	and	bounds	from	the	global	variables	are	given	below.
 draw_fs_sqs 8

 fs_wsen
_6 _9 15 25

 <"2 fs_sqs
+----+-----+----+----+-----+-----+-----+-----+
_1 0	_1 _1	0 _1	_1 1	_6 _1	_6 _9	2 _9	_6 4
0 0	0 _1	2 _1	2 1	_1 _1	2 _9	15 _9	15 4
0 1	0 0	2 1	2 4	_1 4	2 _1	15 4	15 25
_1 1	_1 0	0 1	_1 4	_6 4	_6 _1	2 4	_6 25
+----+-----+----+----+-----+-----+-----+-----+

VECTOR Vol.26 No.1

121

Figure	2.	A	spiral	of	eight	Fibonacci	square.

Now	suppose	we	consider	the	area	of	the	assembled	rectangle	in	two	ways.	Supposethe	last	square	added	had	an	edge	length	of	Fn,	then	the	other	edge	of	the	assembledrectangle	has	length	Fn+Fn-1=	Fn+1;	thus,	the	total	area	of	the	assembled	rectangle	is
FnFn+1.	On	the	other	hand,	the	area	of	the	assembled	rectangle	is	the	sum	of	the	areaof	all	the	squares	which	is	F12+	F22+	F32+	 ...+	Fn2.	Thus,	we	have	given	a	geometricproof	 that	 FnFn+1=	 F12+	 F22+	 F32+…	 +	 Fn2.	 This	 identity	 is	 well	 known	 andcommonly	appears	 in	 lists	of	Fibonacci	 identities	 [1,	2,	4,	6,	7].	 Figure	3	 shows	oneface	of	the	pine	board	clock	illustrating	that	fact.

VECTOR Vol.26 No.1

122

Figure	3.	A	clock	showing	the	Fibonacci	spiral	of	squares.

3.	The	Fibonacci	spiralA	simple	Fibonacci	spiral	can	be	drawn	that	places	a	quarter	circle	in	each	square	[1,2,	 4,	 5,	 6,	 7].	 The	 add-on	graphics/fvj3/dwin2.ijs	 does	not	have	a	utility	 for	drawingarcs,	so	we	will	deAine	one	similar	to	the	style	of	the	add-on.	For	the	right	argumentwe	use	the	same	parameters	as	the	glellipse	function.	Namely,	we	give	a	corner	ofthe	drawing	window,	 the	extent	of	 a	box	 that	bounds	 the	ellipse,	 and	 start	 and	endpoints	for	the	arc	(given	as	points	on	a	ray	from	the	center,	not	necessarily	points	onthe	 ellipse).	 The	 left	 argument	 is	 a	 boxed	 array	 giving	 the	 RGB	 colour	 and	 the	 penstyle	for	the	arc.	Notice	that	darc	converts	its	data	to	window	coordinates	using	theglobal	function	SC	so	it	requires	some	adjustments	since	the	extent	needs	to	be	scaled,but	it	is	not	a	coordinate.
 darc=:3 : 0"1
(0 0 0;1 0) darc y
:
wd 'psel ',WIN_nam
glrgb >{.x
glpen >{:x
'a b c d'=.4 2$y
'A B C D'=.SC a,(a+b),c,:d
glarc x:^:_1 A,(B-A),C,D
glpaint''
)

VECTOR Vol.26 No.1

123

The	result	of	the	following	expressions	is	shown	in	Figure	4.
 draw_fs_sqs 8

 (0 0 0;3 0) darc fs_arcs

Figure	4.	A	Fibonacci	spiral	of	square	and	a
spiral	curve	consisting	of	quarter	circles.

Since	we	are	drawing	arcs	of	circles	the	curvature	is	constant	on	the	interior	of	eachsquare.	However,	 the	 curvature	 discontinuously	 changes	 at	 each	 intersection	 point.One	might	hope	for	a	smooth	spiral	with	continuous	derivatives	of	all	orders.	Such	acurve	seems	plausible	although	we	have	not	seen	one	 in	 the	 literature.	However,	 inthe	 next	 section	 we	 will	 describe	 a	 smooth	 golden	 spiral	 that	 approximates	 theFibonacci	spiral.A	variant	of	 the	above	Fibonacci	spiral	 is	 the	Great	Fibonacci	spiral.	 It	 is	created	by

VECTOR Vol.26 No.1

124

drawing	the	complements	of	the	arcs	(in	their	circles)	that	we	used	in	the	Fibonaccispiral.	This	can	easily	be	done	by	interchanging	the	start	and	end	points	of	the	arcs	asbelow.
 draw_fs_sqs 8

 (0 0 0;3 0) darc 0 1 2 3 6 7 4 5{"1 fs_arcs
 The	result	is	not	shown	but	is	worth	exploring.
4.	The	golden	spiralThe	 golden	 spiral	 is	 a	 spiral	 given	 in	 polar	 coordinates	 by	r	 =	a	 ebθ	 where	b	 =	 2ln(τ)/π	and	τ	=	(1	+	√5)/2	is	the	golden	ratio.[4],	[6],	[8]	We	take	a	=	1/(2	τ)	to	Ait	ourorientation	of	the	spiral	of	squares.	The	argument	to	draw_golden_spiral	gives	theending	angle	(in	radians).
 draw_golden_spiral=:3 : 0
(0 0 0;1 0)draw_golden_spiral y
:
wd 'psel ',WIN_nam
glrgb >{.x
glpen >{:x
gr=.-:>:%:5
]b=.(^. gr)%1r2p1
]r=. ^@:(b&*)
X=.r * cos
Y=.r * sin
]a=. %2*gr
z=. a *(X,.Y) y *(i.%])1000
gllines ,x:^:_1 SC 2{."1 z
glpaint''
)
 In	Figure	5	we	see	the	result	of	the	following	expressions.
 draw_fs_sqs 8

 (0 0 0;3 0) darc fs_arcs

 (255 255 255;2 0) draw_golden_spiral 5p1

VECTOR Vol.26 No.1

125

Figure	5.	Fibonacci	and	golden	spirals	on	eight	squares.

Notice	in	Figure	5	that	the	golden	spiral	does	not	seem	to	be	a	close	approximation	tothe	Fibonacci	spiral,	especially	near	the	center.In	 Figure	 6	 we	 see	 the	 result	 of	 the	 following	 expressions	 where	 we	 plot	 fouradditional	squares.
 draw_fs_sqs 12

 (0 0 0;3 0) darc fs_arcs

 (255 255 255;2 0) draw_golden_spiral 7p1

VECTOR Vol.26 No.1

126

Figure	6.	Fibonacci	and	golden	spirals	on	12	squares.

In	 Figure	 6	 the	 golden	 spiral	 is	 a	 good	 approximation	 for	 the	 large	 squares.	Noticethat	as	we	move	outward	along	the	golden	spiral	 the	curve	bends	more	slowly	thanthe	circle	at	the	beginning	of	the	square	and	it	bends	faster	than	the	circle	toward	theend	of	the	square.	Many	other	geometric	designs	based	upon	the	Fibonacci	numbersand	the	golden	ratio	may	be	found.[4],	[6]
References1.	 	Richard	A.	Dunlap,	The	Golden	Ratio	and	Fibonacci	Numbers,	World	Scientific,19972.	 	Vener	E.	Hoggatt,	Jr.,	Fibonacci	Numbers,	The	Fibonacci	Association,	1969.3.	 	Jsoftware,	J6.01c,	with	Image3	and	FVJ3	addons,	http://www.jsoftware.com.	20074.	 	Alfred	S.	Posamentier	and	Ingmar	Lehmann,	The	Glorious	Golden	Ratio,Prometheus	Books,	2012.

VECTOR Vol.26 No.1

127

http://www.jsoftware.com

5.	 	Cliff	Reiter,	Fibonacci	and	Golden	Spirals	Script,
http://webbox.lafayette.edu/~reiterc/j/vector/fib_spiral.html,	2013.6.	 	Hans	Walser,	The	Golden	Section,	translated	by	Peter	Hilton	et	al,	TheMathematical	Association	of	America,	2nd	ed.,	1996,	translation,	2001.7.	 	Wikipedia:	Fibonacci	Numbers,	http://en.wikipedia.org/wiki/Fibonacci_number8.	 	Wikipedia:	Golden	Ratio,	http://en.wikipedia.org/wiki/Golden_ratio

VECTOR Vol.26 No.1

128

http://webbox.lafayette.edu/~reiterc/j/vector/fib_spiral.html
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Golden_ratio

	Contents
	News
	General
	APL
	J

	Editorial
	Industry News
	Dyalog Ltd
	Going Cross-Platform
	Going Parallel
	Going Functional
	Other Version 14.0 Features

	Optima Systems Ltd – Industry News
	APL2000
	APL+Win Versions 10 - 12
	APL+Win Version 13.1
	Optimized Catenation Yields Breakthrough Speed
	APL+Win Version 13.2
	The C# Script Engine for APL+Win
	The APLNext Supervisor for Multi-threaded Processing in APL+Win Applications
	Expose Your APL+Win Applications to Web Clients with the APLNext Application Server
	APL2000 Conference March 23-25, 2014 in Ft. Lauderdale Florida

	BAA: Chairman’s Report 2013
	Paul Grosvenor (paul@optima-systems.co.uk)
	BAA AGM Minutes
	Start 2.47pm
	2.55pm Paul Grosvenor hands over to the treasurer Nicholas Small
	3.00 pm John Jacob
	3.07pm Back to Paul Grosvenor
	AOB
	Paul- calls the meeting to an end 3.20PM much applause.

	Reflections on a long life
	Sam Sexton
	2^64
	Roger K.W. Hui
	Basics
	Grains on a Chessboard
	Particles in the Universe
	Avogadro Constant
	Age of the Universe
	CPU Cycles
	Supertanker Bytes
	Leaves on Trees
	Compound Interest
	Fibonacci’s Rabbits
	Factorial
	Partitions
	Katana
	E=m*c^2
	Square Inches
	Cubic Inches
	Hilbert Matrix
	Making $$$
	References

	APL
	A Question of character
	Brian Becker
	My favourite APL symbol
	by Roger K.W. Hui
	Reasons for liking ⍟
	Chronology
	References

	Using email services from APL
	Chris Hogan (chris.hogan@4xtra.com)
	Definitions
	So where does APL fit into this?
	How does all this communication happen?
	So what does APL have to provide?
	A Message Digest 5 implementation
	Tiny Encryption Algorithm (TEA)
	So what can one use it for?
	Mail filtering:
	Remote data entry
	Delivering updates
	“Split WS”

	Conclusion
	References

	Semantic arrays
	Stephen Taylor (sjt@5jt.com)
	Dictionaries and tables
	The at function
	The functions pop and push
	The map function
	The spin function
	Selecting from tables
	The amend function
	Conclusion
	Notes
	Appendix – Function definitions

	Compiling APL to JavaScript
	Nick Nickolov (nick.nickolov@gmail.com)
	Introduction
	Function definition
	Variable scoping
	Phrasal forms
	Non-privileged primitives
	Index origin fixed to 0
	Line terminator ambiguity
	Absence of control structures

	Parsing APL expressions
	Representation of n-dimensional arrays
	Nested representation
	Flat representation
	Strided representation

	Continuation-passing style

	Boolean Reductions
	by Phil Last (phil.last@ntlworld.com)
	Some boolean scans
	Reductions
	Sixteen boolean functions?
	Preliminary results
	Appendix: Traditional function equivalents

	APLUnit - An APL unit test library
	Gianfranco Alongi (gianfranco.alongi@gmail.com)
	What is test first programming?
	A testing library for APL
	Installation
	A Test and it’s expectation
	Running tests
	Result reporting
	Crashes

	Example
	Setup
	Coding
	Final code

	References

	NFL Passer Rating
	Brian Becker
	References

	Dyalog’s parser - a new parser in town
	Dan Baronet (danb@dyalog.com)
	Introduction
	A few definitions
	Generalities
	Implementation
	Unnamed sections
	Sections with spaces in them

	The Dyalog parser
	Terms
	Features
	Minimum character needed to specify names
	Case insensitive
	Minimum-maximum number of arguments
	There is no limit on the number of arguments
	Ambivalent modifiers

	Validation
	List member
	Set member
	Default values

	Other features
	Prefixing names
	Not requiring space before modifiers
	Changing the error number when things go wrong
	Propagating the modifiers

	Epilogue
	References

	ELI: a simple system for array programming
	Hanfeng Chen (wukefe@gmail.com) Wai-Mee Ching (waimee_ching@yahoo.com)
	1. Introduction
	2. The Array Language ELI
	3. Scripting Files and Testing
	4. Conclusion
	References

	J-ottings 56
	Trig Time
	by Norman Thomson
	Rotations in three dimensions

	L-systems in J
	R.E. Boss (r.e.boss@planet.nl)
	Introduction
	Rabbit sequence
	Lindenmayer systems
	L-systems in J
	More examples
	Repeated squaring
	Final example, Gray codes
	Conclusions
	Bibliography

	Backgammon tools in J
	4: Ace-point Bearoffs
	Howard A. Peelle (hapeelle@educ.umass.edu)
	Problem
	Answer
	References

	Fibonacci and golden spirals
	Cliff Reiter (reiterc@lafayette.edu)
	1. Introduction
	2. Assembling the Fibonacci spiral of squares
	3. The Fibonacci spiral

	4. The golden spiral
	References

